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ABSTRACT In this brief, we propose a new neuro-fuzzy reinforcement learning-based control (NFRLC)
structure that allows autonomous underwater vehicles (AUVs) to follow a desired trajectory in large-scale
complex environments precisely. The accurate tracking control problem is solved by a unique online NFRLC
method designed based on actor-critic (AC) structure. Integrating the NFRLC framework including an
adaptive multilayer neural network (MNN) and interval type-2 fuzzy neural network (IT2FNN) with a
high-gain observer (HGO), a robust smart observer-based system is set up to estimate the velocities of
the AUVs, unknown dynamic parameters containing unmodeled dynamics, nonlinearities, uncertainties and
external disturbances. By employing a saturation function in the design procedure and transforming the
input limitations into input saturation nonlinearities, the risk of the actuator saturation is effectively reduced
together with nonlinear input saturation compensation by the NFRLC strategy. A predefined funnel-shaped
performance function is designed to attain certain prescribed output performance. Finally, stability study
reveals that the entire closed-loop system signals are semi-globally uniformly ultimately bounded (SGUUB)
and can provide prescribed convergence rate for the tracking errors so that the tracking errors approach to
the origin evolving inside the funnel-shaped performance bound at the prescribed time.

INDEX TERMS Saturation function, reinforcement learning, prescribed performance, high-gain observer,
interval type-2 fuzzy neural networks, multilayer neural networks.

I. INTRODUCTION
Robotics and autonomous system have found many appli-
cations is hazardous environments, especially when the
area is inaccessible to the human or will impose tremen-
dous danger to the operator to work on site. For example,
significant investment has been made to develop next gen-
eration of dexterous manipulators for nuclear decommission-
ing applications [1], [2]. The use of quadcopter along with
the manipulator helps to improve the situational awareness
and autonomy of the manipulator when it interacts with
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the surrounding environment without human intervention
[3], [4]. Another useful robot to operate in nuclear applica-
tions is autonomous underwater robots. They are predom-
inantly used for inspection and monitoring of the nuclear
wastes stored underwater inside the nuclear ponds. Currently,
in most of the applications, a specific category of underwater
robots, i.e. submersible remotely operated vehicles (ROVs)
are utilised. The global offshore ROV industry is predicted to
worth up to $3.5Bn with modern applications including civil
and inshore inspections (CIIs) and decommissioning of oil
and gas pipelines, nuclear storage facilities and accident sites,
liquid storage tanks and tunnels [5]. Autonomous operation of
such underwater vehicles introduces many challenges due to
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the nonlinear and uncertain behavior of the vehicle. For exam-
ple, this includes but not limited to finite scape time, multiple
equilibrium points, limit cycles, appearing new frequencies,
bifurcation, chaos, unmodeled dynamics, uncertainties, etc.
These problems have attracted a lot of interest in many
real world robotic and mechanical systems such as AUVs,
wheeled mobile robots, robot manipulators and aerial vehi-
cles. Classical control approaches have not guaranteed tolera-
ble results in tough operations of uncertain nonlinear dynamic
systems. To this end, it is indispensable for automatic applica-
tions to design model-free intelligent controllers with strong
robustness against uncertain nonlinearities to attain a high
precision tracking performance facing complex system fea-
tures, which are sustainable substitutions under these condi-
tions. To reach appropriate model-free control aims, many
interesting methods have been expanded for uncertain non-
linear systems via artificial neural networks (ANNs) and
fuzzy logic systems (FLSs). For example, Elhaki & Sho-
jaei have developed an output-feedback multi-layer neural
network (MNN)-based controller for AUVs in the situation
of complex nonlinearities and unmeasured states [6]. In [7],
an adaptive IT2FNNwas employed to estimate system’s non-
linear functions. The fuzzy set theory was firstly presented by
Zadeh [8]. Since then, these systems are classified as type-1
fuzzy logic systems (T1FLSs) and they are widely used in
many control applications. However, since T1FLSs are exact
sets, they cannot take into account the uncertainty in the
membership functions (MFs). Therefore, Zadeh established
the idea of type-2 fuzzy logic systems (T2FLSs) in 1975 [9].
As a result, uncertainties have been more sufficiently han-
dled by T2FLSs in control methods since the degree of
MFs are themselves based on the fuzzy logic. On the other
side, since T2FLS was computationally expensive, interval
type-2 fuzzy logic systems (IT2FLSs) have been introduced
by Liang and Mendel [10]. In [11], an IT2FLS was employed
for compensating uncertainties in wireless sensor networks.
But, the knowledge utilized to build rules in a FLS may
be uncertain and inaccurate, which may result in the fact
that rules have uncertain consequents/antecedents revealed in
MFs of consequents/antecedents. To overcome this defect,
many researches have fused IT2FLS and ANNs to create
IT2FNNs. The IT2FNNs take the advantages of both interval
type-2 fuzzy reasoning to prevail severe nonlinearities and the
ability of ANNs to learn and discover the best action from
the process [12]–[14]. The structure of IT2FNNs can enhance
the accuracy of control systems and they are able to prevail
over the limitations of classical controllers, which are para-
metric and structural uncertainties along with time-variant
unmodeled dynamics that can lead to undesirable effects on
the control systems.

Recently, a fuzzy optimal control scheme has been a topic
of the research interest. In [15], the fuzzy optimal tracking
control of hypersonic flight vehicles was addressed. The issue
of the accelerated adaptive fuzzy optimal control of three
coupled fractional-order chaotic electromechanical transduc-
ers was addressed in [16]. Reference [17] has proposed an

adaptive fuzzy inverse optimal output feedback controller
for vehicular active suspension systems. In [18], an optimal
fuzzy adaptive robust controller for a lower limb exoskele-
ton robot system has been suggested. The adaptive fuzzy
finite time control problem for a class of switched nonlinear
systems has been discussed in [19], and in [20], a fuzzy
swing up controller and the optimal state feedback stabiliza-
tion for an inverted pendulum was debated. Lately, multi-
layer neural network reinforcement learning (MNNRL) has
been a topic of research interest for IT2FNNs and ANNs to
improve the performance of the network [21]. The MNNRL
is a combination of multi-layer neural networks (MNNs)
and reinforcement learning (RL) to solve the problem of
dimensional explosion in case the amount of state space
increases that restricts the performance of RL [22]. The
RL is an adaptive intelligent branch of machine learning.
The philosophy behind RL is that the closed-loop system
interacts with an approximator by determining three essen-
tial signals: the system’s state signals, which permits the
controller to affect the system, the action signal, which is
the output of the actor agent and influences the system,
and the reinforcement signal, which is the output of the
critic agent according to the evaluation of the actor’s perfor-
mance that is an estimation of a cost function [23]. In [24],
a RL-based controller has been developed for a flexible two-
link manipulator, and in [25], an integral RL controller with
input saturation for nonlinear systems was studied. However,
these methods could not deal with the dimensionality prob-
lem. In contrast, references [26] and [27] have developed
deep RL-based controllers for wheeled mobile robots, but
these algorithms cannot guarantee the stability of the sys-
tem and suffer from the input saturation. Reference [28] has
proposed an adaptive RL controller for hypersonic vehicles,
but saturation functions along with the compensation of the
actuators saturation nonlinearity are not taken into account
and the suggested controller needs the measurements of all
system’s state derivatives. Here, from our opinion, some
fundamental questions have arisen which are inspiring for
this research work: How to design a saturated NFRLC-based
method whose stability can be guaranteed via a strong Lya-
punov stability analysis? Can we design a hybrid NFRLC-
estimation-based framework including a MNN, which acts
as the actor agent and can deal with the dimensionality
problem, and an IT2FNN, which acts as the critic agent
and can handle uncertain nonlinearities strongly in order to
take the advantages of MNNs and IT2FNNs simultaneously?
Finding answers for the aforesaid questions is one of the main
contributions of this research paper.

Since unmeasured states may exist in some control
structures due to the lack of sensors or the implementa-
tion cost, state feedback controllers may not be applied
and a state observer should be employed in the con-
trol system. In this respect, some influential observer-
based controllers have been developed such as dynamic
event-triggered observer-based PID controller [29], cascade
predictive observer [30], extended state observer [31], and
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high-gain observer (HGO) [32]. Yet, the most of cited con-
trol methods were designed to ensure the stability of the
closed-loop control system by using Lyapunov stability prin-
ciple that may fail to realize the desired tracking perfor-
mance. In this context, the prescribed performance control
(PPC) [33]–[37] is a good option to deal with this problem.
This technique provides a nonlinear transformation from an
unconstrained tracking problem to a prescribed constrained
tracking problem, which is valid to cope with prescribed
performance tracking problems and the tracking errors are
also guaranteed to be within some prescribed performance
bounds (PBs). In the last few years, many control method-
ologies have employed PPC method to improve the perfor-
mance of the control systems. In [38], a PPC-based controller
is designed for uncertain nonlinear systems with unknown
control directions. A new data-driven model-free adaptive
terminal sliding mode control for a class of discrete nonlinear
systems with a prescribed performance has been designed
in [39]. Reference [40] has developed a fuzzy wavelet neu-
ral controller with an improved prescribed performance for
a micro-electromechanical system gyroscope. The problem
of the adaptive neural output-feedback tracking control for
a class of switched uncertain nonlinear systems with a
prescribed performance is addressed in [41], and in [42],
the problem of the finite-time prescribed performance adap-
tive fuzzy control for a class of unknown nonlinear systems
was investigated.

The control strategy in this paper is to design a
multi-objective model-free intelligent controller including
AC-NFRLC, MNNs, IT2FNNs, saturation functions, PPC,
and a state observer with a strong Lyapunov-based stability
proof. Chiefly, main contributions of this study are listed
as follows: (1) A novel hybrid framework for AC-NFRLC
mechanism based on MNNs and IT2FNNs is designed.
(2) The substructure of the proposed AC-NFRLC system
inherits the advantages of MNNs, which is dealing with
the dimensionality problem, and IT2FNNs, which are fuzzy
reasoning and learning form the process. This fact leads to a
strongAC-NFRLC structure for compensating uncertain non-
linearities. (3) The adaptive laws for the learning process are
derived by the Lyapunov theory. (4) To deal with unmeasured
states, a HGO is efficiently employed. (5) An adaptive robust
controller is effectively fused with the proposed AC-NFRLC
framework to compensate the effects of external disturbances
and function approximation errors. (6) An efficient saturation
function is utilized in the design procedure to bound the error
signals and to reduce the actuator saturation risk. (7) The risk
of actuator saturation is diminished by learning and compen-
sating the actuator saturation nonlinearity via the proposed
AC-NFRLC method. (8) To achieve a desired tracking per-
formance with predefined transient and steady-state response
characteristics, the PPC technique is employed. (9) The sta-
bility of the entire closed-loop control system is strongly
proved by the Lyapunov theory. The integration of items
(1)-(9) brings many challenges in designing the proposed
controller and deriving mathematical equations. In this paper,

FIGURE 1. Three-dimensional configuration of a fully-actuated AUV.

we successfully coped with the control objectives presented
in (1)-(9) along with a strong Lyapunov-based stability proof.
To the best of authors’ knowledge, it is the first time that items
(1)-(9) are considered in the context of submersible vehicles,
leading to designing a novel saturated intelligent controller
with the capability of handling external disturbances, dimen-
sionality, and unknown nonlinearities in real-time with a
prescribed performance without velocity measurements.

The arrangement of this paper is given by the following
steps. In Section II, some preliminaries are given. The frame-
work and design ideology of IT2FNNs along with MNNs
and the design process of the proposed method are given in
Section III. In Section IV, simulation results are provided to
show the controller efficacy. Finally, the concluding state-
ments are given in Section V.

II. PRELIMINARIES
A. NOTATIONS
In this paper, the following notations are used otherwise they
will be indicated. diag[•] is a diagonal matrix, 0n×n indicates
a n × n matrix of zeros, In denotes a n × n identity matrix,
‖•‖F stands for the Frobenius norm, ‖•‖ shows the Euclidean
norm, blkdiag[•] represents a block diagonal matrix, and
col(A,B) is a column of a partitioned matrix with arbitrary
sub-matrices A and Bwhere A and B are placed in the top and
bottom blocks, respectively.

B. SYSTEM DESCRIPTION
Consider the following kinematic and dynamic motion equa-
tions of AUVs [43]:

q̇1 = J1(q2)ν1,

M1ν̇1 = −C1(ν1)ν2 − D1ν1 − ud1(ν1)+ τs1 + δ1,

q̇2 = J2(q2)ν2,

M2ν̇2 = −C1(ν1)ν1 − C2(ν2)ν2 − D2ν2 − ud2(ν2)

− g1(q2)+ τs2 + δ2, (1)

where q1 = [x, y, z]T denotes the vector of AUV’s position,
q2 = [φ, θ, ψ]T represents the orientation of the AUV,
ν1 = [u, v,w]T and ν2 = [p, q, r]T are the velocity vectors,
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δ1 = [δx , δy, δz]T and δ2 = [δφ, δθ , δψ ]T denote the bounded
external disturbance forces and torques. Eq. (1) is rewritten
as{

q̇ = Jt (q)ν,
Mt ν̇ = −Ct (ν)ν − Dtν − g(q)− ud (ν)+ τs + δ,

(2)

where q =
[
qT1 , q

T
2

]T is the vector of positions and ori-
entations, Jt (q) = blkdiag[J1, J2] ∈ <6×6 specifies a
rotational matrix, ν =

[
νT1 , ν

T
2

]T
∈ <

6 is the velocity
vector, Mt = blkdiag[M1,M2] ∈ <6×6 stands for the
inertia matrix that is positive-definite and symmetric, Ct =[
col(03×3,C1), col(C1,C2)

]
∈ <

6×6 denotes the matrix of
Coriolis and centripetal forces which is skew-symmetric,
Dt = blkdiag[D1,D2] ∈ <6×6 shows the damping forces
matrix, g(q) =

[
0, 0, 0, gT1 (q2)

]T
∈ <

6 is the gravita-
tional forces and buoyancy moments, ud =

[
uTd1, u

T
d2

]T
∈

<
6 is the vector of unmodeled dynamics and nonlineari-

ties/uncertainties, τs = [τus, τvs, τws, τps, τqs, τrs]T ∈ <6

denotes the saturated input control forces and torques, and
δ =

[
δT1 , δ

T
2

]T
∈ <

6 stands for the vector of bounded envi-
ronmental disturbances. For more details on AUVs dynamics,
readers are referred to [43]. The saturated input forces and
torques are

τs =


τmax, rτ ≥ τmax

rτ, −τmax < rτ < τmax

−τmax, rτ ≤ −τmax

(3)

where τs, τ , and τmax denote the vectors of saturated inputs,
non-saturated inputs, and the limit of the actuators, respec-
tively, and r is a ratio between τ and τs. The input saturation
nonlinearity dτ (τ ) = τs − τ , that is a NLIP term and will be
compensated in the control design procedure, is given by

dτ (τ ) =


τmax − τ, rτ ≥ τmax

(r − 1)τ, −τmax < rτ < τmax.

−τmax − τ, rτ ≤ −τmax

(4)

C. PRESCRIBED PERFORMANCE TRANSFORMATION
To obtain PPC objectives, errors (i.e. e = q − qd ) should
evolve inside a funnel-shaped set during the time [44], [45].
A smooth limited function ηi : <+ → <+, i = 1, . . . , 6,
is a PB, if ηi is decreasing, and lim

t→∞
ηi(t) = ηi∞ [33]. The

PPC is provided if ηli(t) ≤ ei(t) ≤ ηui(t) be true where ei
is ith element of e, ηli and ηui are the pre-set limits of ei,
and ηi is defined as ηi(t) := (ηi0 − ηi∞) exp(−ait) + ηi∞
where ai ∈ <+ is a lower bound on the convergence rate,
ηi0 > ηi∞ ∈ <

+ are design factors, ηi∞ is an upper
bound for the final steady-state error. The PBs can be set as
ηli = −αiηi, ηui = βiηi where αi, βi ∈ <+ are tunable
factors.
Assumption 1: The errors meet ηli(0) ≤ ei(0) ≤ ηui(0).
The next nonlinear transformation is used here:

εe = ρ
−1(e) =

[
ρ−11 (e1), . . . , ρ

−1
6 (e6)

]T
. (5)

which is invertible as e = ρ(εe).

FIGURE 2. Representation of the proposed intelligent system.

Fact 1. Transformation (5) should meet the followings:
lim

εei→+∞
ρi(εei ) = ηui,

lim
εei→−∞

ρi(εei ) = ηli,
(6)

where Fact 1 implies that tracking errors will settle inside
the PBs and converge to a neighbourhood of the zero if
Assumption 1 holds true and εe ∈ L∞ is ensured by a suitable
controller. A candidate for transformation (5) that meets the
properties of Fact 1 is

ei = ρi(εei ) =
ηui − ηli

π
arctan(εei )+

ηui + ηli

2
. (7)

From (7), the transformed errors εei (t) are

εei = ρ
−1
i (ei) = tan

(π
2
×

2ei − ηui − ηli
ηui − ηli

)
. (8)

Time derivation of (8) yields

ε̇ei =
∂εei

∂ei
ėi +9i, (9)

where 9i =
∂εei
∂ηui

η̇ui +
∂εei
∂ηli
η̇li. Utilizing (7) and (8) gives

∂εei

∂ei
=

π

ηui − ηli
sec2

(π
2
×

2ei − ηui − ηli
ηui − ηli

)
> 0, (10)

∂ei
∂εei
=

ηui − ηli

π
(
1+ ε2ei

) > 0, (11)

which show a strictly increasing relation between εei and ei.
Finally, using ė = q̇− q̇d , (2), and (9) gives

ε̇e = Dν + ~, (12)

whereD = TJt , ~(εe, ηu, ηl, η̇u, η̇l, qd , q̇d ) = 9−T q̇d , T =
diag[∂εe1/∂e1, . . . , ∂εe6/∂e6], 9 = [91, . . . , 96]T , ηu =
[ηu1, . . . , ηu6]T , ηl = [ηl1, . . . , ηl6]T , η̇u = [η̇u1, . . . , η̇u6]T ,
and η̇l = [η̇l1, . . . , η̇l6]T .
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III. NFRLC METHODOLOGY DESIGN
In this section, a neuro-fuzzy reinforcement learning-based
controller is designed for the accurate tracking of AUVs in
which the actor agent is a multilayer neural network that can
deal with the dimensionality problem, and the critic agent
is an interval type-2 fuzzy neural network that can handle
uncertainties strongly. By calculating velocity and accelera-
tion from (12) and its derivative as ν = D−1ε̇e −D−1~, ν̇ =
D−1ε̈e−D−1ḊD−1ε̇e+D−1ḊD−1~ −D−1~̇, substituting
them into the second equation of (2), and the product ofD−T

in the resultant equation, one gets the following second-order
error model in terms of unconstrained errors:

M (εe)ε̈e + C(εe, ε̇e)ε̇e + D(εe)ε̇e − ς = D−T τ + δp, (13)

where M (εe) = D−TMtD
−1, C(εe, ε̇e) = D−T

(
Ct −

MtD
−1Ḋ

)
D−1, D(εe) = D−TDtD−1, δp = D−T δ where

|δpi | ≤ Bδi , i = 1, . . . , 6, and NLIP uncertain term ς is

ς = M (εe)~̇ + C(εe, ε̇e)~ +D−TCt (ν)D−1~

+D(εe)~ −D−T g(q)−D−T ud (ν)+D−T dτ (τ ). (14)

Property 1: Because D is a full-rank matrix by recall-
ing (10), the following items are valid for (14).

P1.1: M (εe) = MT (εe) > 0, λm‖x‖2 ≤ xTMx ≤
λM‖x‖2, ∀x ∈ <6 where 0 < λm < λM < ∞, and
λm := min

∀εe∈<6
λmin

(
M (εe)

)
, λM := max

∀εe∈<6
λmax

(
M (εe)

)
.

P1.2: D(εe) = DT (εe) > 0 where λd‖x‖2 ≤ xTDx ≤
λD‖x‖2, ∀x ∈ <6 where 0 < λd < λD < ∞, and λd :=
min
∀εe∈<6

λmin
(
D(εe)

)
, λD := max

∀εe∈<6
λmax

(
D (εe)

)
.

P1.3: The matrix C(εe, ε̇e) has the following properties:
(i) xT

(
Ṁ (εe)− 2C(εe, ε̇e)

)
x = 0,∀x ∈ <6,

(ii) C(εe, x1)x2 = C(εe, x2)x1,
(iii) C(εe, x1 + x2)y = C(εe, x1)y+ C(εe, x2)y,
(iv) ‖C(εe, x1)x2‖ ≤ Bc‖x1‖‖x2‖ where Bc ∈ <+.
Next, the following saturated filtered tracking error is
introduced:

εf = ε̇e +3ε
εe√

1+ ‖εe‖2
, (15)

where 3ε is a gain matrix. Employing (13), (15), items (ii)
and (iii) of P1.3 gives

M (εe)ε̇f
= −C(εe, ε̇e)εf − D(εe)εf + ς + γ

+D−T τ + δp, (16)

γ = M (εe)3ε ε̇e
(
1+ ‖εe‖2

)− 3
2 + D(εe)3εεe

(
1+ ‖εe‖2

)− 1
2

+C(εe, ε̇e)3εεe
(
1+ ‖εe‖2

)− 1
2 , (17)

where γ is bounded by using item (iv) of P1.3, P1.1, and
P1.2 as ‖γ ‖ ≤ ι1‖xε‖ + ι2‖xε‖2 where xε =

[
εTe
(
1 +

‖εe‖
2
)− 1

2 , εTf

]T , and ι1, ι2 ∈ <+ are unknown.
From a study of [46], MNNs can solve the effect of dimen-

sionality curse (high dimensionality of the input space) and

can be used to estimate unknown NLIP term ς (x) as

ςi =

Nh∑
j=1

[
wijσ̄

( Ni∑
k=1

vjkxk + θvj
)
+ θwi

]
, (18)

where i = 1, . . . ,No, Nh,Ni and No are the number of
hidden-layer, input-layer, and output-layer cells, respectively,
wij and vjk are the NN weights, θvj and θwi show thresh-
old offsets, and σ̄ (ξ ) = 1/

(
1 + e−ξ

)
is an activation

function. Eq. (18) is rewritten as ς = W Tσ (V T x) where
W T
∈ <

No×(Nh+1), V T
∈ <

Nh×(Ni+1) are the ideal ANN
matrices and their first columns contain thresholds θvj and
θwi, x =

[
1, εTe , ε̇

T
e , ν

T , τT , ηTl , η̇
T
l , η̈

T
l , η

T
u , η̇

T
u , η̈

T
u , q

T , q̇Td ,
q̈Td
]T
∈ <

Ni+1, ς = [ς1, . . . , ςNo ]
T
∈ <

No , and
σ (V T x) =

[
1, σ̄ (V T

r1x), . . . , σ̄ (V
T
rNh
x)
]T
∈ <

Nh+1 where
V T
rj , j = 1, . . . ,Nh is jth row of V T . For the continuous

function ς (x) : ωn → <
No where ωn ⊂ <Ni+1 denotes

a compact set, there exist ideal ANN weights, thresholds,
and some numbers of hidden-layer cells such that ς (x) =
W ∗Tσ (V ∗T x) + ex(x) where ex(x) ∈ <No is the ANN esti-
mation error that is bounded on ωn in a manner that |exi | ≤
Bxi , i = 1, . . . ,No,∀x ∈ ωn where Bxi ∈ <

+. The ANN
matricesW ∗T ∈ <No×(Nh+1), V ∗T ∈ <Nh×(Ni+1) are given by

(W ∗,V ∗) := arg min
(W ,V )

{
sup
x∈ωn

∥∥∥W Tσ (V T x)− ς (x)
∥∥∥}. (19)

Assumption 2:Matrices W ∗ and V ∗ are bounded on ωn so
that ‖W ∗‖F ≤ Bw, ‖V ∗‖F ≤ Bv where Bw,Bv ∈ <+.
However, matricesW ∗, V ∗ and system derivatives are gen-

erally unknown and ς (x) is substituted by its approximation,
i.e. ς̂ (x̂) = Ŵ Tσ (V̂ T x̂), where Ŵ and V̂ denote the estimated
ANNmatrices. Since it is assumed that system derivatives are
immeasurable, a HGO is used based on the following lemma.
Lemma 1 [47]: Suppose that the transformed error, i.e. εe,

up to its n − 1 derivatives are bounded that is
∥∥ε(k)e

∥∥ ≤ Bk
where Bk ∈ <+, and the subsequent system is considered:

ko ˙̀k = `(k+1), k = 1, . . . , n− 1,

ko ˙̀n = −λ1`n−λ2`(n−1) − · · · − λ(n−1)`2−`1+εe, (20)

where ko ∈ <+ is a design parameter. The constants λ1 to
λ(n−1) are set to allow the polynomial ℵn + λ1ℵn−1 + · · · +
λ(n−1)ℵ+1 be Hurwitz. Then, the following points are valid:
i) `(j+1)/k

j
o − ε

(j)
e = −ko$ (j+1), j = 0, 1, . . . , n − 1 where

$ = `n+λ1`(n−1)+· · ·+λ(n−1)`1, and$ (j) is jth derivative
of $ . According to [47], `(j+1)/k

j
o has a tendency to ε(j)e

asymptotically including a small error subjected to εe(t) and
its jth derivatives be bounded; ii) there exist t1,Gj ∈ <+ so
that for t > t1, the fact

∥∥$ (j)
∥∥ ≤ Gj is true.

Now, by employing Lemma 1, εf can be estimated as ε̂f =
˙̂εe +3εεe

(
1+ ‖εe‖2

)− 1
2 = `2/ko +3εεe

(
1+ ‖εe‖2

)− 1
2 by

ko ˙̀1 = `2, (21)

ko ˙̀2 = −λ1`2 − `1 + εe(t). (22)
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FIGURE 3. Representation of an IT2FNN MF with uncertain standard
deviation.

Now, by using item (ii) of Lemma 1 and ε̃f = ε̂f − εf =
˙̂εe − ε̇e, one has ‖ε̃f ‖ = ‖ko$̈‖ ≤ koG2 := Bε where Bε ∈
<
+. Now, the error of ANN estimation is given by [48]

ς − ς̂ = W̃ T (σ (V̂ T x̂)− σ ′(V̂ T x̂)V̂ T x̂
)

+ Ŵ Tσ ′(V̂ T x̂)Ṽ T x̂ + rt + ex(x), (23)

where σ ′(V̂ T x̂) =
[
0Nh×1, diag[σ

′

1, . . . , σ
′
Nh ]
]T

∈

<
(Nh+1)×Nh , with σ ′i = d σ̄ (z)/dz|z=V̂ Tri x̂

, i = 1, . . . ,Nh, x̂ =[
1, εTe , ˙̂ε

T
e , ν̂

T , τT , ηTl , η̇
T
l , η̈

T
l , η

T
u , η̇

T
u , η̈

T
u , q

T , q̇Td , q̈
T
d

]T ,
and rt in (23) is bounded as

‖rt‖ ≤ ‖W‖F
(
‖σ ′(V̂ T x̂)V̂ T x̂‖ + ‖σ (V̂ T x̂)‖

)
+‖V‖F‖x̂‖‖Ŵ Tσ ′(V̂ T x̂)‖F . (24)

To generate an efficient reinforcement signal by collect-
ing the error metric signal for tuning the ANN system,
an IT2FNN is used here [7], [49], [50]. The major part of
fuzzy systems is the fuzzy rule base that can be expressed as
IF-THEN rules. Presume that the fuzzy rule base includes of
N rules according to the following general rule:
Rj (j = 1, . . . ,N ): If x1 is Ãj1 and · · · and xn is Ãjn then

y1 is f̃j1 and · · · and ym is f̃jm, where xi (i = 1, . . . , n) are
the inputs of the fuzzy system, yk (k = 1, . . . ,m) are the
outputs of the fuzzy system, Ãji =

[
µ
ji
(xi) µji(xi)

]
denotes

the membership degree of jth lower and upper MF for ith
input, f̃jk = [fjkL fjkR] is the interval consequent part of kth
output. The MF of ith input is chosen as

µ
ji
(xi) = exp

(
− 0.5(

xi − mji
σ ji

)2
)
,

µji(xi) = exp
(
− 0.5(

xi − mji
σ ji

)2
)
,

(25)

where mji is mean, σ ji and σ ji denote the width of jth lower
and upper MF for ith input. The output of the IT2FNN is

y = 0.5FTσf (x), (26)

where FT =
[
FTL FTR

]
∈ <

m×2N , FL =

[fjkL] ∈ <
N×m and FR = [fjkR] ∈ <

N×m are
the ideal weight matrices, σf (x) =

[
σ Tf (x) σ Tf (x)

]T ,
σ f (x) =

[
σ f1/

∑N
j=1 σ fj , . . . , σ fN /

∑N
j=1 σ fj

]T , σ f (x) =[
σ f1/

∑N
j=1 σ fj , . . . , σ fN /

∑N
j=1 σ fj

]T , σ fj = 5n
i=1µji

(xi), and

σ fj = 5
n
i=1µji(xi). For a continuous function g(x), an optimal

matrix F exists so that

F := arg min
F

{
sup
x∈ωf

∥∥∥0.5FTσf (x)− g(x)∥∥∥}, (27)

where ωf ⊂ <n is a compact set.
Assumption 3: F is bounded on ωf so that ‖F‖F ≤ Bf ,

where Bf ∈ <+.
Now, the following critic-fuzzy-based cost function is con-
sidered [51]:

Sx = εf + 0.5‖εf ‖FTσf (x). (28)

Since F and some states of the system are unknown in
general, the following adaptive critic fuzzy component is
proposed here:

Ŝx = ε̂f + 0.5‖ε̂f ‖F̂Tσf (x̂), (29)

where Ŝx is used later to generate the ANN weight update
rules that supports the ANN to do the estimation strategy
more precisely online, and corrects the system’s output as
well.
Remark 1: Because the adaptive critic fuzzy component

in (29) can be straightly seen as a form of reinforcement
signal and Ŝx is more informative than the system states,
an excellent control action can be resulted and a better control
efficiency and performance can be obtained [52], [53].
Remark 2: The definition objective for the critic cost func-

tion (29) is to reach an optimal control action. In other words,
the action ANN

(
Ŵ Tσ (V̂ T x̂)

)
not only generates control

signals to track the desired trajectory and cancel the unknown,
uncertain, nonlinear dynamics but also minimises the cost
function. At the same time, the critic agent

(
0.5F̂Tσf (x̂)

)
estimates the cost function (29) and tunes the ANN weighs.
Clearly, through an adaptive learning and minimisation of the
adaptive critic IT2FNN-based cost function in (29), an opti-
mal or near optimal control action will be resulted. In fact,
the proposed controller, that is designed in the sequel, not
only stabilises the closed-loop system but also minimises the
cost function simultaneously [52], [54].
Now, take the following control rule into account:τ = DT

(
− Kp

`2

ko
−Kp3ε

εe√
1+‖εe‖2

− Ŵ Tσ (V̂ T x̂)+h̄
)
,

h̄ = −k1%1ε̂f − k2%2ε̂f − k3%3ε̂f − k4%4ε̂f − Hp̂,
(30)

where Kp ∈ <6×6 is a gain matrix, kj, j = 1, . . . , 4, are con-
trol parameters, H := diag[tanh(ε̂f1/c1r ), . . . , tanh(ε̂f6/c6r )],
p̂ is an upper bound estimation of some unknown parameters
that are defined in the sequel, and the auxiliary terms are

%1 =
(
‖σ ′(V̂ T x̂)V̂ T x̂‖ + ‖σ (V̂ T x̂)‖

)2
×‖σ Tf (x̂)F̂‖

2,

%2 = ‖x̂‖2‖σ Tf (x̂)F̂Ŵ
Tσ ′(V̂ T x̂)‖2,

%3 = ‖σf (x̂)σ T (V̂ T x̂)Ŵ‖2F ,

%4 =
(
‖σ ′(V̂ T x̂)V̂ T x̂‖ + ‖σ (V̂ T x̂)‖

)2
+‖x̂‖2‖Ŵ Tσ ′(V̂ T x̂)‖2F .

(31)
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Then, the adaptive laws are designed here:

˙̂W = 0w
(
σ (V̂ T x̂)− σ ′(V̂ T x̂)V̂ T x̂

)
×ł,

(
`2/ko +3εεe

(
1+ ‖εe‖2

)− 1
2

+ 0.5‖`2/ko +3εεe
(
1+ ‖εe‖2

)− 1
2 ‖F̂Tσf (x̂)

)T
− δw0wŴ , (32)

˙̂V = 0vx̂
(
`2/ko +3εεe

(
1+ ‖εe‖2

)− 1
2

+ 0.5‖`2/ko +3εεe
(
1+ ‖εe‖2

)− 1
2 ‖F̂Tσf (x̂)

)T
× Ŵ Tσ ′(V̂ T x̂)− δv0vV̂ , (33)

˙̂F = 0f
∥∥∥`2/ko +3εεe(1+ ‖εe‖2)− 1

2
∥∥∥σf (x̂)

× (Ŵ Tσ
(
V̂ T x̂)

)T
− δf 0f F̂, (34)

˙̂p = Q
[
H (ε̂f )

(
`2/ko +3εεe

(
1+ ‖εe‖2

)− 1
2
)

−2(p̂− p0)
]
, (35)

where 0w ∈ <(Nh+1)×(Nh+1), 0v ∈ <(Ni+1)×(Ni+1), 0f ∈
<
2N×2N and Q,2 ∈ <No×No are adaptive gains, δw, δv, δf ∈
<
+ are design parameters, and p0 is a design vector. Replac-

ing (30) into (16) and using (23) gives

M (εe)ε̇f = −C(εe, ε̇e)εf − D(εe)εf + γ − Kpε̂f + χ

+ W̃ T (σ (V̂ T x̂)− σ ′(V̂ T x̂)V̂ T x̂
)
− Hp̂

+ Ŵ Tσ ′(V̂ T x̂)Ṽ T x̂ + rt − k1%1ε̂f
− k2%2ε̂f − k3%3ε̂f − k4%4ε̂f , (36)

where χ = δp + ex(x) ∈ <No is bounded according to |χi| ≤
pi, i = 1, . . . ,No, where pi ∈ <+ and p = [p1, . . . , pNo ]

T .
Note that in the design procedure (for the example refer
to (15)) and the proposed control law in (30), the saturation
functions along with the compensation of the input saturation
nonlinearity via the proposed hybrid RL method are utilized
to handle the input constraint. Thus, the proposed controller
generates input control signals with lowest possible ampli-
tude. The schematic block diagram of the proposed control
system is illustrated in Fig. 2. The equations of the system
are given by (30)-(31) with the observer definition in (21) and
(22) and adaptive laws (32)-(35).

A. STABILITY ANALYSIS
Theorem 1: Take into account the kinematic and dynamic of
AUVswhich are given by (2) and the transformedmodel (36).
In accordance with Assumptions 1-3, the designed con-
troller (30), adaptive rules (32)-(35) and state observer
(21)-(22) with the reinforcement signal (29), ensure that
all signals of the closed-loop system are bounded and the
tracking errors are SGUUB which have a tendency toward
the origin, and the pre-set output restrictions are never
infringed.

Proof: See the Appendix section. �

IV. SIMULATION STUDIES
In order to show the contributions of the proposed method,
comparative simulations with two other controllers that
are not RL-based controllers are performed which are the
controller of Elhaki and Shojaei [6] and a non-prescribed
performance output-feedback controller (NPPOFC) whose
equations are given in [6]. Initial conditions of the AUVs are
set as q(0) = [10, 10, 10, 45π/180, 45π/180, 45π/180]T .
The control parameters are as follows: η10 = η20 = η30 =

2, η40 = η50 = η60 = 1, η1∞ = η2∞ = η3∞ =

0.01, η4∞ = η5∞ = η6∞ = 0.02, a1 = a2 = a3 =
0.055, a4 = a5 = a6 = 0.1, α1 = α2 = 5, α3 =
7, α4 = α5 = α6 = 1, β1 = β2 = 5, β3 = 7, β4 =
β5 = β6 = 1.2,3ε = I6, ko = λ1 = 10, σ̄ =
1, σ = 0.1,m1 = −10,m2 = −6,m3 = −2,m4 =

2,m5 = 6,m6 = 10,N = Nh = 6, 0w = 0.01INh , δw =
1, 0v = 2INi+1, δv = 0.1, 0f = I2N , δf = 0.01,Q =
2diag[0.1, 0.1, 0.1, 1, 1, 1],2 = 0.1diag[3, 1.5, 10, 1, 1, 1],
p0 = [1.7, 1.7, 1.7, 1.7, 1.7, 1.7]T , c1r = · · · = c6r =
0.5, k1 = · · · = k4 = 1.5,Kp = 8diag[1, 1, 1, 1, 1, 1].

A. SCENARIO 1
In this scenario, Fig. 4 displays the results for the pro-
posed method along with the comparisons. As it can be seen
in Fig. 4(a), all control methods forced the AUVs to track the
desired trajectory, but the AUV equipped with the proposed
controller achieved a softer tracking than the controller in [6]
and NPPOFC. Figs. 4(c)-4(h) show that the tracking errors
of the proposed method and controller Elhaki and Shojaei [6]
are easily kept inside the predefined funnel-shaped set with-
out any concern about gain tuning. However, the tracking
performance of NPPOFC seriously depends on the exact
selection of control parameters and a random choice of
the control parameters cannot ensure a good tracking per-
formance. Moreover, the control signals that are shown
in Figs. 4(i)-4(j) demonstrate a noticeable superiority for
the proposed controller than the other two controllers due
to the use of saturation functions in the design procedure
and compensating the actuators saturation nonlinearity by the
hybrid RL method, and the output patterns of the controller
Elhaki and Shojaei [6] and NPPOFC are pretty fluctuated
and saturated. This fact makes a compromise between the
feasibility of the generated control signals by the proposed
controller in Figs. 4(i)-4(j) and the convergence behaviour of
the tracking errors in Figs. 4(c)-4(d). However, since the pro-
posed control scheme is designed based on the PPC method,
it never breaches the performance bounds. Moreover, in the
proposed PPC control framework the transient performance
could be improved by adjusting the PPC parameters. More
simulation results on the improvement of the convergence
behavior of the tracking errors are given in the next sce-
nario. As reflected by the simulations, the amelioration in
the outcomes are obviously notable which approve the use
of the proposed novel NFRLC method in practice. Indeed,
the strong estimation and compensation capability of the pro-
posed estimation policy for uncertainties and nonlinearities,
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FIGURE 4. Simulation results for Scenario 1: (a) Trajectories of the AUVs in xyz space, (b) an upper bound approximation of unknown vector p;
comparison results for the tracking errors with performance bounds: (c) xe, (d) ye, (e) ze, (f) φe, (g) θe, (h) ψe; comparison results for the control signals:
(i) input forces, (j) input torques, (k) the Frobenius norms of approximated NN weighting matrices, (l) linear reinforcement signals, (m) angular
reinforcement signals; the growth of (n) Ŵ and (o) V̂ weights, and (p) HGO estimation errors.

which is a result of the fusion between an adaptive MNN,
adaptive IT2FNN, and the saturation functions, with a strong
stability analysis led to generate substantially smooth and
suitable output signals for the proposed controller in both
transient and steady-state behaviours without the need for
velocity measurements. Also, the upper bound of nonpara-
metric uncertainties are estimatedwell in Fig. 4(b) and Frobe-
nius norms of MNN matrices are depicted in Fig. 4(k). The
RL signals are shown in Figs. 4(l)-4(m) and the time evolu-
tion of MNN weights are shown by Fig. 4(n) and Fig. 4(o).
Fig. 4(p) presents the HGO estimation error, from which it
can be realized that the designed HGO is able to present

estimations of the velocities adequately well. In this sim-
ulation, the CPU elapsed time for the proposed controller,
the controller of Elhaki and Shojaei [6], and NPPOFC are
62, 46, and 15 ms, respectively, in a computer with a 2.4 GHz
intel Core i5 processor. This result shows that the proposed
hybrid RL controller has a little more computational cost with
respect to the controller in [6] and NPPOFC at the cost of
generating considerably better control action.

B. SCENARIO 2
In order to improve the trajectory tracking performance of
the proposed controller by gain tuning, another simulation is
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FIGURE 5. Simulation results for Scenario 2: (a) Trajectories of the AUVs in xyz space, (b) an upper bound approximation of unknown vector p;
comparison results for the tracking errors with performance bounds: (c) xe, (d) ye, (e) ze, (f) φe, (g) θe, (h) ψe; comparison results for the control signals:
(i) input forces, (j) input torques, (k) the Frobenius norms of approximated NN weighting matrices, (l) linear reinforcement signals, (m) angular
reinforcement signals; the growth of (n) Ŵ and (o) V̂ weights, and (p) HGO estimation errors.

performed here. The adjusted control parameters are a1 =
a2 = a3 = 0.1,3ε = diag[12, 12, 12, 1, 1, 1] and other con-
trol parameters are similar to Scenario 1. Fig. 5(a) shows that
the AUV equipped with the proposed controller converged
considerably faster to the desired trajectory than other AUVs.
As it can be seen fromFigs.5(c)-(e), the convergence behavior
of the tracking errors significantly improved which is the
result of this proper gain tuning. Hence, the advantage of the
proposed controller in both transient and steady-state behav-
iors of the tracking errors is crystal-clear in Figs. 5(c)-(h).
However, as shown by Figs. 5(i)-(j), this improvement of the

convergence for the proposed controller demands more con-
trol action than Scenario 1, but the generated control signals
of the proposed controller are still more feasible than other
two controllers. The other bounded signals of the suggested
closed-loop system are also depicted in Figs. 5(b), (k)-(p).
To put it in a nutshell, this scenario is considered to show that
users may tune the convergence behavior of the closed-loop
control system and can make a nice trade-off between the
feasibility of the control action and convergence properties
by a careful gain adjustment. More simulation results on the
improvement of the convergence behavior of the tracking
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errors with re-tuning of PPC parameters show the better
performance of our controller. Nonetheless, they are omitted
here and left to the interested readers.

V. CONCLUSION
In this paper, an intelligent saturated output feedback frame-
work has been proposed for fully-actuated AUVs subjected
to the unmodeled dynamics, actuator saturation and ocean
disturbances. An adaptive robust controller has been used
to reject exogenous disturbances. By designing an adaptive
critic IT2FNN agent and an adaptive MNN, an adaptive
hybrid NFRLC method was introduced to cope with dimen-
sionality problem and to compensate every type of NLIP
uncertainties and unmodeled dynamics. The suggested con-
trol model was independent of velocity sensors by means of
a HGO, and the output constraints have been guaranteed via
the PPC method. In conjunction with adaptive NFRLC and
output feedback problems, a robust output feedback-based
AC-NFRLC strategy was designed that did not engage with
the system dynamics. In addition, by applying a saturation
function into the design procedure alongwith the learning and
compensating the actuators nonlinearity deeply, an effective
saturated controller was developed. Moreover, by perform-
ing the Lyapunov stability analysis, it was proven that the
tracking errors are SGUUB and all signals of the closed-loop
control system were bounded and the tracking errors were
also forced to evolve inside a funnel-shaped set to guarantee
a prescribed performance. The performance of the proposed
control structure could also be improved by employing more
advanced control methods. For example, guaranteeing small
overshoots and unknown initial errors are the subjects left for
the future studies.

APPENDIX A
PROOF OF THEOREM 1
Proof: The following Lyapunov function is taken into

account:

E =
√
(1+ εTe εe)− 1+ 0.5εTf M (εe)εf + 0.5p̃TQ−1p̃

+ 0.5tr
{
W̃ T0−1w W̃

}
+ 0.5tr

{
Ṽ T0−1v Ṽ

}
+ 0.5tr

{
F̃T0−1f F̃

}
, (37)

where W̃ = W ∗ − Ŵ , Ṽ = V ∗ − V̂ , F̃ = F∗ − F̂ , and
p̃ = p̂− p. Eq. (37) is bounded by

λxε‖xε‖
2
≤ λl‖zl‖2 ≤ E(t) ≤ λu‖zu‖2, (38)

where xε =
[
εTe (1+ ‖εe‖

2)−
1
2 , εTf

]T and

λxε = 0.5min{1, λm},

λl = 0.5min
{
1, λm, λmin{0

−1
w }, λmin{0

−1
v },

λmin{0
−1
F }, λmin{Q−1}

}
,

λu = 0.5max
{
1, λM , λmax{0

−1
w }, λmax{0

−1
v },

λmax{0
−1
f }, λmax{Q−1}

}
,

zl =
[
xTε , w̃11, . . . , w̃(Nh+1)No , ṽ11, . . . , ṽ(Ni+1)Nh ,

f̃11, . . . , f̃2N×m, p̃T
]T
,

zu =
[
εTe , ε

T
f , w̃11, . . . , w̃(Nh+1)No , ṽ11, . . . , ṽ(Ni+1)Nh ,

f̃11, . . . , f̃2N×m, p̃T
]T
.

The derivative of (37) by using (36), item (i) of P1.3 and
ε̃f = ε̂f − εf gives

Ė =
(
1+ ‖εe‖2

)− 1
2 εTe ε̇e +

1
2
εTf Ṁ (εe)εf + εTf M (εe)ε̇f

− tr
{
W̃ T0−1w

˙̂W
}
− tr

{
Ṽ T0−1v

˙̂V
}
− tr

{
F̃T0−1f

˙̂F
}

+ p̃TQ−1 ˙̂p

= −
(
1+ ‖εe‖2

)− 1
2 εTe 3εεe

(
1+ ‖εe‖2

)− 1
2

+
(
1+ ‖εe‖2

)− 1
2 εTe εf − ε

T
f D(εe)εf + ε

T
f γ

+ εTf (χ − Hp̂)+ ε
T
f W̃

T (σ (V̂ T x̂)− σ ′(V̂ T x̂)V̂ T x̂
)

+ εTf Ŵ
Tσ ′(V̂ T x̂)Ṽ T x̂ + εTf rt − ε

T
f

4∑
j=1

kj%jε̂f

− tr
{
W̃ T0−1w

˙̂W
}
− tr

{
Ṽ T0−1v

˙̂V
}
− tr

{
F̃T0−1f

˙̂F
}

+ p̃TQ−1 ˙̂p− εTf Kpεf − ε
T
f Kpε̃f . (39)

Using update rules (32)-(35) yields

Ė = −
(
1+ ‖εe‖2

)− 1
2 εTe 3εεe

(
1+ ‖εe‖2

)− 1
2

+
(
1+ ‖εe‖2

)− 1
2 εTe εf − ε

T
f D(εe)εf + ε

T
f γ

− tr
{
W̃ T (σ (V̂ T x̂)− σ ′(V̂ T x̂)V̂ T x̂

)
ε̃Tf
}
+ εTf rt

−
1
2
tr
{
W̃ T (σ (V̂ T x̂)− σ ′(V̂ T x̂)V̂ T x̂

)
‖ε̂f ‖σ

T
f (x̂)F̂

}
− tr

{
Ṽ T x̂ε̃Tf Ŵ

Tσ ′(V̂ T x̂)
}
− εTf Kpεf − ε

T
f Kpε̃f

−
1
2
tr
{
Ṽ T x̂‖ε̂f ‖σ Tf (x̂)F̂Ŵ

Tσ ′(V̂ T x̂)
}
+ δvtr

{
Ṽ T V̂

}
− tr

{
F̃T ‖ε̂f ‖σf (x̂)σ T (V̂ T x̂)Ŵ

}
+ δwtr

{
W̃ T Ŵ

}
+ δf tr

{
F̃T F̂

}
− εTf

4∑
j=1

kj%jε̂f + εTf (χ − Hp̂)

+ p̃T [H (ε̂f )ε̂f −2(p̂− p0)]. (40)

By applying the next inequalities via using (24) and
Lemma 1:

‖εTf rt‖

≤
1
2
‖W‖2F +

1
2
‖V‖2F +

1
2
‖εf ‖

2%4,

− tr
{
W̃ T (σ (V̂ T x̂)− σ ′(V̂ T x̂)V̂ T x̂

)
ε̃Tf
}

− tr
{
Ṽ T x̂ε̃Tf Ŵ

Tσ ′(V̂ T x̂)
}
≤

1
2
‖W̃‖2F +

1
2
‖Ṽ‖2F

+
1
2
B2ε%4,

−
1
2
tr
{
W̃ T (σ (V̂ T x̂)− σ ′(V̂ T x̂)V̂ T x̂

)
‖ε̂f ‖σ

T
f (x̂)F̂

}
≤

1
4
‖W̃‖2F +

1
2
‖εf ‖

2%1 +
1
2
B2ε%1,

10 VOLUME 9, 2021



O. Elhaki et al.: Saturated Output-Feedback Hybrid RL Controller

−
1
2
tr
{
Ṽ T x̂‖ε̂f ‖σ Tf (x̂)F̂Ŵ

Tσ ′(V̂ T x̂)
}
≤

1
4
‖Ṽ‖2F

+
1
2
‖εf ‖

2%2 +
1
2
B2ε%2,

− tr
{
F̃T ‖ε̂f ‖σf (x̂)σ T (V̂ T x̂)Ŵ

}
≤‖F̃‖2F+

1
2
‖εf ‖

2%3

+
1
2
B2ε%3,

− εTf Kpε̃f ≤
1
2
λmax{Kp}‖εf ‖2 +

1
2
λmax{Kp}B2ε,

εTf γ ≤
ι1

2
‖εf ‖

2
+
ι1

2
‖xε‖2 +

ι2

2
‖εf ‖

2
+
ι2

2
‖xε‖4,(

1+‖εe‖2
)− 1

2 εTe εf ≤
1
2
‖εe‖

2/
(
1+‖εe‖2

)
+
1
2
‖εf ‖

2,

Eq. (40) is simplified as follows:

Ė ≤ −βm‖xε‖2 + εTf (χ − Hp̂)+
4∑
j=1

ξj%j

+ δf tr
{
F̃T F̂

}
+ δvtr

{
Ṽ T V̂

}
+ δwtr

{
W̃ T Ŵ

}
+

1
2
‖W‖2F +

1
2
‖V‖2F +

3
4
‖W̃‖2F + ‖F̃‖

2
F

+
3
4
‖Ṽ‖2F + p̃

T [H (ε̂f )ε̂f −2(p̂− p0)
]

+
ι1

2
‖xε‖2 +

ι2

2
‖xε‖4 +

1
2
λmax{Kp}B2ε, (41)

where βm = min
{
λmin{3ε} − 0.5, λmin{Kp + D(εe)} −

0.5λmax{Kp} − ι1/2 − ι2/2 − 0.5
}

and ξj%j =
(
−

(0.5kj − 0.5)‖εf ‖2 + (0.5kj + 0.5)B2ε
)
%j. So, if ‖εf ‖ ≥

Bε
√
(kj + 1)/(kj − 1) be true with kj > 1, one has ξj%j ≤

0. By using the Young’s Inequality [55] and the following
relation [56]:

p̃T
[
H (ε̂f )ε̂f −2(p̂− p0)

]
+ εTf (χ − Hp̂)

≤ 1.5B2ε

+ 0.2785[c1r , . . . , c6r ]p+ ‖p‖2 −
1
2
λmin{2}‖p̃‖2

+ 0.5‖p̃‖2 + 0.5(p− p0)T2(p− p0),

Eq. (41) is rewritten as

Ė ≤ −
(
βm − 0.5ι1 − 0.5ι2‖xε‖2

)
‖xε‖2

−
(
0.5λmin{2} − 0.5

)
‖p̃‖2−

(
δw(1−

1
2k2

)−
3
4

)
‖W̃‖2F

−
(
δv(1−

1
2k2

)−
3
4

)
‖Ṽ‖2F −

(
δf (1−

1
2k2

)− 1
)
‖F̃‖2F

+4, (42)

where k >
√
2/2, 4 = 0.2785[c1r , . . . , c6r ]p +

1.5B2ε + ‖p‖
2
+ 0.5(p− p0)T2(p− p0)+ 0.5λmax{Kp}B2ε +

0.5δwk2‖W‖2F+0.5δvk
2
‖V‖2F+0.5δf k

2
‖F‖2F+0.5‖W‖

2
F+

0.5‖V‖2F . If the following condition be true for βm:

βm > 0.5ι1 + 0.5ι2‖xε‖2, (43)

one has

Ė ≤ −c1‖xε‖2 − c2‖W̃‖2F − c3‖Ṽ‖
2
F − c4‖F̃‖

2
F

− c5‖p̃‖2 +4, (44)

where c1 = βm − 0.5ι1 − 0.5ι2‖xε‖2, c2 = δw(1− 1/2k2)−
0.75, c3 = δv(1−1/2k2)−0.75, c4 = δf (1−1/2k2)−1 and
c5 = 0.5λmin{2} − 0.5. Then, one has Ė ≤ −c‖zl‖2 + 4
where c = min{c1, . . . , c5}. This means that Ė is strictly
negative when it is outside the compact set �zl =

{
zl |0 ≤

‖zl‖ ≤
√
4/c

}
∀t ≥ 0. Next, one may find that E(t) ≤

E(0) ≤ λu‖zu(0)‖2 by recalling (38). Consequently, one
infers that ‖xε‖2 ≤ λu/λxε‖zu(0)‖

2. As a result, an adequate
situation for (43) is 2βm > ι1 + ι2(λu/λxε )‖zu(0)‖

2 which
means that the following region of attraction

RA =
{
zu ∈ <18+ξn |‖zu‖2 <

λxε (2βm − ι1)
ι2λu

}
, (45)

where ξn = (Nh + 1)No + (Ni + 1)Nh + 2N × m, can
include every initial condition by choosing control gains
properly. By recalling (15), one deduces ε̇e ∈ L∞. This
situation implies that tracking errors, NN and fuzzy weights
as well as variables estimation errors are SGUUB. Besides,
by employing Assumptions 2-3 and ‖ε̃f ‖ ≤ Bε, one
concludes that εe, ε̂f , ŵ11, . . . , ŵ(Nh+1)No , v̂11, . . . , v̂(Ni+1)Nh ,
f̂11, . . . , f̂2N×m, p̂ ∈ L∞. Because εe ∈ L∞ and Assumption
1 is considered, εe tends to a vicinity of the origin, then,
the tracking errors converge to the origin vicinity guarantee-
ing output constraints and the boundaries conditions on the
tracking errors, i.e. ηli(t) ≤ ei(t) ≤ ηui(t) are never breached
as t →∞, and the proof is accomplished here. �
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