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Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure 

Abstract 

We replicate the Pesaran, Shin and Smith (2001) bounds testing procedure (BTP), and extend it with 6 

new cases, 4 of which involve a quadratic trend.  We provide critical values for the BTP of the lagged 

regressors in levels under the framework of unrestricted error-correction models (UECMs) to account 

for degenerate cases of co-integration.  Further, we extend the BTP with 11 cases for the quantile 

UECMs of Cho, Kim and Shin (2015), and present critical values for interdecile and interquartile BTPs 

for the unrestricted cases.  Moreover, we extend the Shin, Yu and Greenwood-Nimmo (2014) 

methodology to account for non-linear, or asymmetric, responses of the dependent variables to its 

covariates (NARDL) and for distributional, or location, asymmetry (QARDL of Cho, Kim and Shin; 

2015) of the dependent variable.  This is the quantile non-linear ARDL, or QNARDL.  We provide 

codes that generate critical values for different sample sizes of the BTPs.  These critical values are 

utilized in an empirical application of a dynamic equity valuation model for the S&P Global Index.  

Misspecifying a non-linear relationship as linear produces misleading results and policy implications.  

There is strong evidence of (i) trading activity based on fundamentals and (ii) the existence of a stable 

equilibrium relationship for the price-to-book (PB) ratio of the market index and its fundamentals.  

During periods of high PB relative to its fundamental values, convergence to equilibrium is faster than 

during periods of relatively low PB.  There is also evidence of momentum trading, i.e. of traders that 

rely on positive feedback. 
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1. Introduction 

In this paper we first replicate the bounds testing procedure (BTP) of Pesaran, Shin and Smith 

(2001, hereafter PSS) using unrestricted error-correction models (UECMs) based on the 

autoregressive distributed lag (ARDL) models of Pesaran and Shin (1999).1  Second, we extend 

PSS with 6 new cases, as well as introduce this BTP to the quantile framework of Koenker and 

Bassett (1978).  Furthermore, we present new critical values for interdecile and interquartile 

BTP and test whether there is within-quantile evidence of co-integration.  We also introduce 

the term quantile non-linear ARDL, or QNARDL, in the literature of the ARDL family. 

Our contribution to the relevant literature (see e.g. Koenker and Bassett 1978; PSS; 

Narayan 2005; Xiao, 2009; Shin, Yu and Greenwood-Nimmo 2014, hereafter SYG; Cho, Kim 

and Shin 2015, hereafter CKS; Jordan and Philips 2018; McNown et al. 2018) is fivefold: 

1. We introduce 2 new cases with intercept and linear trend bringing the total number of 

cases involving linear trend to 4 along with those examined by PSS.  Further, we 

introduce 4 new cases with quadratic trend (in the model there are linear and quadratic 

trend terms, as well as a constant term).  These cases involve the following restrictions 

when we test for the co-integrating relationship in levels between the dependent and 

the independent variables: restricted intercept (there is a constant term in the long-run 

equation), restricted trends (there are trends in the long-run equation), restricted 

intercept and trends (both intercept and trends are included in the long-run equation), 

and no restrictions at all (unrestricted case, where no constant term or trends are 

involved in the long-run equation).  Hence, for a total number of 11 cases, we provide 

critical values for the PSS BTP. 

2. We provide critical values (lower and upper bounds) for testing the lagged-once levels 

of the stochastic regressors in unrestricted error-correction models (UECMs) both for 

joint tests (F-statistics) along with any deterministic factors (intercept, linear trend, 

                                                 
1  UECMs are also known as conditional, or structural, error-correction models. 
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quadratic trend) and individual tests (t-statistics).  With these values we can check 

whether there is a degenerate case of co-integration (see PSS, p. 304) when the lagged-

once level of the dependent variable has a negative and statistically significant 

coefficient, and the lagged-once levels of the dependent and stochastic variables along 

with any deterministic factors (intercept, linear trend, quadratic trend) are jointly 

statistically significant, while the lagged-once regressors in levels are either jointly 

statistically insignificant along with any deterministic factors (intercept, linear trend, 

quadratic trend), or individually statistically insignificant. 

3. We repeat 1. and 2. for the quantile UECMs of CKS under the quantile framework of 

Koenker and Bassett (1978).  We provide lower and upper bounds of the critical values 

required for the quantile version of PSS BTP. 

4. We provide critical values (Wald statistics or W-statistics) for interdecile, i.e. the 10th, 

20th, … , 90th percentiles, and for interquartile, i.e. the 25th, 50th and 75th percentiles, 

BTP a la PSS for 3 cases.  These cases involve no deterministic restrictions under the 

null of no co-integration when we test for the long-run relationship in levels between 

the dependent and independent variables, i.e. the equilibrium relationship does not 

include an intercept or trends.  We also allow for a constant term in the model.  

Specifically, we are interested in the cases where the model includes (i) an intercept, 

(ii) an intercept and linear trend, or (iii) an intercept, a linear and quadratic trend.  

Alternatively, we test for these cases to see whether there is evidence of quantile-

dependent co-integration.  Specifically we test first, whether the coefficient on the 

lagged dependent variable in levels is jointly equal across the quantiles and the lagged 

covariates in levels are jointly equal across the quantiles, second whether the coefficient 

on the lagged dependent variable in levels implies convergence rates subject to 

quantile-oriented heterogeneity and third, whether the lagged-once covariates in levels 

are location shifters. 
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5. Finally, we present an empirical application, which allows for both non-linear 

responses in the spirit of SYG and for distributional, or location, asymmetry employing 

conditional quantile regressions (CQREGs).  Therefore, we contribute to the growing 

literature that focuses on quantile-varying relationships with co-integration analysis.  

The literature, which shows evidence in favor of quantile-varying or time-varying co-

integrating relationships, has been growing fast lately (see Xiao 2009; Lee and Zeng 

2011; Tsong and Lee 2013; CKS; Zhu et al. 2016; Lahiani et al. 2017; Benkraiem et al. 

2018; Shahbaz et al. 2018; Lahiani et al. 2019; Mensi et al. 2019). 

We provide computer codes that generate critical values for different sample sizes (lower 

and upper bounds) for ARDL models with up to 13 regressors.  These simulated critical values 

ignore terms that do not matter asymptotically (e.g. lagged differences).  Naturally, this may 

have some limitations when dealing with finite samples, in particular when dealing in an 

empirical application with “short” time-series and when there is a rich lag structure in the 

estimated ARDL model. 

Our empirical application demonstrates the new critical values using an asymmetric variant 

of Bertsatos and Sakellaris (2016) Dynamic Dividend Discount Model (3DM) of equity 

valuation applied to the global stock market, proxied by the S&P Global Index.  We find 

evidence of non-linearities in the price-to-book ratio (PB), which, if neglected, mask the 

existence of co-integration between PB and its fundamental determining factors.  We provide 

ample evidence of co-integration once we allow for asymmetric responses both in OLS and 

CQREG setups.  However, there are differences between the two estimation procedures. 

With OLS we find that, on average, there is a long-run equilibrium relationship for every 

period, or state, of the PB ratio.  In the quantile framework, however, we uncover time-varying 

co-integrating relationships that depend on the conditional distribution of the PB ratio and do 
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not hold for every period.2  Specifically, during periods of high PB relative to its fundamental 

values (25th or lower percentile) and very low PB relative to its fundamentals (90th or higher 

percentiles), PB shares no long-run relationship with its covariates and exhibits persistency.  In 

contrast, in periods that PB takes values in its middle range relative to its fundamental values, 

we find that PB is driven by its fundamental factors.  Finally, we find no evidence for equality 

of the coefficient of the error-correction term within quantiles or for the lagged fundamental 

factors in levels within quantiles using the interdecile and interquartile BTP.3 

The rest of this paper is organized as follows: Section 2 is dedicated to the bounds testing 

procedure and is divided in three subsections.  In 2.1 we present the original cases and new 

cases, in 2.2 we provide some motivation for the empirical relevance of the new cases, and in 

2.3 we provide the replication of PSS and analyze the extensions.  Section 3 presents the 

empirical application on the global stock market and Section 4 offers concluding remarks.  

Section 5 contains declarations and Section 6 provides the references.  Also, there is an Online 

Appendix with supplementary information. 

 

2. Bounds testing 

The PSS BTP is one the most influential and cited paper in time-series analysis and co-

integrating relationships.  The BTP is a series of tests, which imply the existence of co-

integration once their null hypotheses are jointly rejected.  This method relies on the 

unrestricted version of an error-correction model (ECM) that comes from an ARDL model (see 

                                                 
2  Xiao (2009) is the first to note time-varying co-integrating relationships with the help of CQREGs.  We discuss 

this later in the text. 

3  The coefficient of the ECT in an UECM is equal to the coefficient of the lagged-once dependent variable in 

levels, i.e. 
1t

y


. 
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Pesaran and Shin 1999).  Banerjee et al. (1993 and 1998) state the benefits of using unrestricted 

error-correction models (UECM) in relation to the 2-step method of Engle and Granger (1987). 

In brief, the 2-step procedure is shown to be inefficient (see e.g. Pagan 1984; and CKS) and 

allows only I(1) variables to enter the long-run equation.4  The long-run multipliers from the 

first step are super consistent but their t-ratios are not interpretable since their distribution is 

unknown.5  The second-stage regression involves only stationary variables and so, standard 

inference can be applied. 

UECMs on the other hand, allow for both stationary and non-stationary variables to enter 

the co-integrating equation, while they estimate both the short-run and long-run coefficients.6  

Also, the ARDL models have nice small-sample properties (see Pesaran and Shin 1999), which 

are transferred to the respective UECMs.  Hassler and Wolters (2006) show the equivalence 

between an ARDL in levels and an ARDL in error-correction form, i.e. UECM. 

Let us have a quick look at the BTP of PSS.  Suppose we get in practice an ARDL (1, 1) in 

levels from an information criterion of our choice: 

 1 0 1 1t t t t ty c y x x              (1) 

                                                 
4  This involves the problems associated with pre-testing and unit-root tests (increased “type II” error, i.e. failing 

to reject the null when it does not hold, or low statistical power). 

5  Three estimators have been proposed in the literature to deal with the inference of the long-run coefficients: 

fully-modified OLS (FMOLS) of Phillips and Hansen (1990), canonical co-integrating regression (CCR) of Park 

(1992) and dynamic OLS (DOLS) of Saikkonen (1992), and Stock and Watson (1993). 

6  To see this better, let all variables be I(1) and one regressor be I(0).  Also, suppose you test for an economic 

theory suggesting a model with all these variables.  The Engle-Granger approach sets the long-run multiplier of 

the stationary variable to zero, which is a quite restrictive scenario, while within the ARDL framework all 

variables are included in the model. 



7 

 

This is equivalent to the following ARDL (0, 0) in unrestricted error-correction form: 
7 

    1 1 0 1 1 01t t t t t ty y c y x x                   (2) 

  1 1 0t t t t ty c y x x               (3) 

where,  1    is the coefficient of the error-correction term (ECT), 
0 1     and 





   is the long-run coefficient of xt.  The speed of adjustment (SOA) is equal to – φ.  PSS 

suggest for Case III that if (i) φ and β are not jointly equal to 0, i.e. the hypothesis of 0    

(F-test is employed) is rejected over the alternative that both φ and β, or one of them, are not 

0, and (ii) φ is not statistically insignificant, i.e. the hypothesis of 0   (t-test is employed) is 

rejected over the alternative 0   then, a co-integrating relation running from xt to yt exists.  

However, PSS also argue that this could be a degenerate case of co-integration when   is 

statistically insignificant.  Furthermore, with ARDLs, yt is allowed to Granger-cause xt only in 

the short run through the error-projection mechanism (see Pesaran and Shin, 1999, p. 385; PSS, 

p. 293; SYG, p. 289; and CKS, p. 293, for more details), however xt may Granger-cause yt both 

in the short run and the long run implying that at most one co-integrating vector exists.  With 

this mechanism, ARDLs deal with the problem of endogenous regressors (see also PSS, p. 308, 

footnote 18). 

 

                                                 
7  In Section 4 of the Online Appendix, we point out differences between an ARDL in unrestricted error-correction 

form and a model in first differences. 
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2.1 Original cases and new cases 

We follow PSS for the data generation process (DGP) of the simulations.  We expand this DGP 

first, with the inclusion of the quadratic trend, and second, by transferring it to the quantile 

environment.  We employ the following estimation methods: 

 
1

:

,   1,2, ,t t t t

OLS

y t T
       Φ z a w

  (4) 

 
     1

:

,   1,2, ,t t t t

CQREG

y t T   
       Φ z a w

  (5) 

where,  1 1 1,t t ty  


z x ,  1 , ,t t ktx x x , 21, ,t t t

   w , the variables ty  and tx  are 

generated from 1 1,t t ty y    and 1 2,t t t x Px ε  with 0 0y   and 0 x 0 , and  1 2,t t t


ε ε  

is drawn as  1k   independent standard normal variables.   0 , 1  is the user-specified 

percentile and Equation (5) is the quantile counterpart of Equation (4).  T is the size of sample, 

or the number of observations, and yt contains a unit root.  If  
tx  is purely I(1) then, 

kP I , 

while if 
tx is purely I(0) then, P = 0 .  The same data generation process for yt and xt holds in 

the quantile environment, i.e. 1 1,t t ty y    and 1 2,t t t x Px ε  with 0 0y   and 0 x 0 , and 

 1 2,t t t


ε ε  is drawn as  1k   independent standard normal variables, where  0,1  is 

the user-specified percentile and    1|
tt t y ty Q        with  1 1,t t t   z w being the 

smallest sigma field generated by  1,t tz w .8 

                                                 
8  We follow CKS for the definition of the error term in the quantile framework.  However, we could also follow 

Xiao (2009) and rewrite Equation (5) as: 

             1 2

1 1ty t t t
Q C A t B t


      



  
              Φ z Φ z a w  , where 
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The raw vectors Φ  consists of    1, , , ,y y k    xφ  and  , ,c b a , where c is 

the constant term, α the coefficient of the linear trend and b is the coefficient of the quadratic 

trend.  PSS provide critical values for 0, ,10k   and 1,000T   for Cases I, II, III, IV and V 

of Table 1, where k stands for the number of stochastic regressors xt and is the row size of xt.  

Table 1 contains also new cases that we introduce and motivate in the next subsection. 

Table 1: Cases of the bounds testing procedure 

 1 1 1,  and 0t t t ty w  


 z x  

 

Case I 

 1 1 1, ,1 and 0t t t ty w  


 z x  

 

Case II 

 1 1 1, and 1t t t ty w  


 z x  

 

Case III 

 1 1 1, , and 1t t t ty t w  


 z x  

 

Case IV 

   1 1 1, and 1,t t t ty w t  

  z x  
 

Case V 

 1 1 1, ,1 and t t t ty w t  


 z x  

 

Case VI 

 1 1 1, ,1, and 0t t t ty t w  


 z x  

 

Case VII 

 2

1 1 1, ,1, , and 0t t t ty t t w  


 z x  

 

Case VIII 

 2

1 1 1, , , and 1t t t ty t t w  


 z x  

 

Case IX 

   2

1 1 1, ,1 and ,t t t ty w t t  


 z x  

 

Case X 

   2

1 1 1, and 1, ,t t t ty w t t  


 z x  

 

Case XI 

  

Notes: Cases I to V are presented in PSS, while cases VI to XI are introduced in this paper.  We estimate Equations 

(4) and (5), respectively, with OLS and conditional quantile regressions (CQREG) of Koenker and Bassett (1978).  

                                                 

              1
, , , ,C A B C A B


      

      a  and is  .  is the cumulative distribution 

function of t . 
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The tests involved in each case are: (i)  0Φ  (Fyx-test), where Φ  equals to  ,
y

  
x

φΦ , includes the 

coefficients of 
1tz   according to Table 1 and y  is the coefficient of 

1ty 
, (ii) 0

y
   (ty-test), (iii)  xφ 0  

(Fx-test) and (iv) 0
j

   (tx-test), where j = 1 to k.  However, the ty-test is the same for Cases II and III (we keep 

Case III), Cases IV to VII (we keep Case V), and Cases VII to XI (we keep Case XI).  The same also holds for 

the tx-test.  The ty-test is left oriented and the tx-test is two tailed.  For the calculation of the critical values we have 

created 3 codes in EViews (9th edition) based on 50,000 replications: one for the BTP in the OLS framework, one 

for the BTP in the CQREG environment and one for the interpercentile BTP (for the 3 quartiles and the 9 deciles).  
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2.2 Motivation for the new cases 

Why do we expand the PSS BTP with more cases?  Let us review first the 5 cases for the BTP 

introduced by PSS.  The first one (Case I) does not incorporate either an intercept or a linear 

trend in the model to be estimated.  The next two incorporate a constant term in the model and 

specifically, one case (Case II) includes the intercept in the long-run equation and the other 

case (Case III) excludes the constant term from the co-integrating relationship.  Next, there are 

2 more cases, where PSS add a linear trend in the model.  In one case (Case IV) the trend term 

is included in the steady-state equation, whereas in the other case (Case V) no intercept and no 

trend is incorporated in the co-integration relation.  However, what if in the long-run 

equilibrium relationship both a linear trend and an intercept, or a just a constant term should be 

included?  We extend the cases involving a linear trend below. 

  We start with 2 new cases (Cases VI and VII) that involve two scenarios not examined by 

PSS in their specification with a linear trend.  As stated earlier, Case IV and V of PSS 

incorporate UECMs with intercept and linear trend.  Case IV suggests that the equilibrium 

relationship includes a linear trend and no constant term.  So, under the null of no co-integration 

the dependent variable in levels involves just an intercept.  Furthermore, Case V suggests that 

the equilibrium relationship does not include either a constant term or a linear trend.  So, under 

the null of no co-integration the dependent variable in levels involves both an intercept and a 

linear trend.  The newly introduced Case VI under the null of no co-integration allows for the 

dependent variable, in levels, to evolve in time with only a linear trend.  Another scenario 

would be that the dependent variable does not incorporate either a linear trend or an intercept 

(Case VII) under the null of no co-integration.9  Alternatively, Case VI suggests that in the 

                                                 
9  So, testing for Cases IV or V, while the true null hypothesis is depicted in Cases VI or VII then, this could 

involve distortion of the power of the tests. 
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long-run equilibrium there should be an intercept, and Case VII suggests that the steady-state 

relationship should include both a constant term and a linear trend.  So, we introduce 2 new 

cases with linear trend that complement these of PSS (Cases VI and VII). 

Moreover, if the key variable of interest, i.e. the dependent variable, is best fit by a trend 

polynomial of second order and the regressors are a mix of I(0) and I(1) variables then, 

specifying the ARDL model with intercept and/or linear trend could produce severe estimation 

and inference problems.  A quadratic trend should be included in the model to be estimated.  A 

quadratic trend accounts for unobserved factors that are increasing, or decreasing, at either an 

increasing, or a decreasing, rate.  A linear time trend captures unobserved factors rising, or 

falling, at a constant rate in a model (first derivative is constant).  In the same spirit, a quadratic 

trend can capture unobserved increasing, or decreasing, patterns at either an increasing or 

decreasing rate (“rising part” of a concave function, “falling part” of a concave function, 

“falling part” of a convex function, “rising part” of a convex function).10 

  Motivated by the above, we introduce 4 cases (VIII, IX, X and XI) where in the model we 

allow for an intercept, a linear trend and a quadratic trend.  Specifically, Case VIII includes in 

the long-run equation a constant term, a linear and quadratic trend, Case IX is like Case VIII 

but there is no constant in the equilibrium relationship and Case X is like Case VIII but there 

are no trend terms in the steady-state equation.  Finally, Case XI is the unrestricted case in the 

quadratic model since in the F-test for the BTP neither a constant term nor trend terms are 

incorporated into the long-run equilibrium equation.  Alternatively, under the null of no co-

integration Case VIII suggests there are no trends and constant term in the evolution of the 

dependent variable, Case IX suggests that the dependent variable incorporates just a constant 

                                                 
10  Harvey et al. (2011) argue that a quadratic trend allows for an evolution from an upward linear trend at the 

beginning of the time series to a downward linear trend at the end of the time series, or the opposite, i.e. from a 

downward to an upward trend. 
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term, Case X suggests that the dependent variable evolves in time with the components of 

linear and quadratic trend and lastly, according to Case XI the dependent variable does not 

incorporate neither an intercept nor linear and quadratic trend terms.  To sum up, with these 

new cases researchers and practitioners have several options to test for co-integration given the 

presence of a second-order trend polynomial, or unobserved factors as those described in the 

previous paragraph. 

Examples of data with quadratic trend could be these in Charalambakis et al. (2017, see 

Figure 1), Toudas et al. (2017, see Figure 1), and Anastasiou et al. (2019, see Figures 3 and 4).  

These papers study the NPLs in the case of Greece and empirically it seems that the levels of 

NPLs evolve in time incorporating a quadratic trend.  The first paper examines the NPLs by 

type of loans (business, consumers and mortgages) in aggregate level, while the second paper 

studies the NPLs for the 4 systemic banks in Greece.  Finally, the third paper focuses on the 

governance indicators and aggregated NPLs in Greece.  So, re-examining the case of the Greek 

NPLs with ARDL modelling and quadratic trend sounds like a promising project with fruitful 

discussion. 

Next, we pose a second question: Why is it interesting to develop a quantile version of the 

PSS BTP?  Quantile regressions are attractive because they provide robust estimates even under 

the presence of extremely low, or high, values in the dependent variable.  Further, they allow 

the researcher/practitioner to explore the whole distribution of the dependent variable and not 

only the mean like the OLS estimator, which is sensitive to outliers.  Also, they allow for a 

shift of the location, scale and shape of the distribution of the dependent variable (see Xiao, 

2009; and CKS).11  Moreover, the quantile autoregressive distributed lag (QARDL) model of 

                                                 
11  However, there is a potential problem with quantile regressions when the sample size becomes smaller than 

the total number of estimated coefficients across different percentiles.  To alleviate this, a researcher, or 

practitioner, could (i) either employ a simple model with few regressors so that he/she can compare the coefficients 
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CKS is the quantile extension of the ARDL models of Pesaran and Shin (1999), and it is a 

promising tool for modelling quantile-dependent co-integrating relationships from single-

equation models.  QARDL accounts for potential multiple thresholds, as determined by the 

quantiles (see Lahiani et al., 2019), and inherits all the advantages of the standard ARDL 

methodology; it allows for a mix of regressors, i.e. I(0) and I(1) or mutually co-integrated ones, 

and estimates both short-run and long-run responses of the dependent variable in one step. 

Furthermore, regarding quantile non-linear ARDL, every application that has been 

performed by (N)ARDL models could be reexamined with Q(N)ARDL should the main 

variable exhibits non-linear and distributional asymmetries.  Therefore, there is plenty of room 

for reexamination of many empirical findings, as well as for promising results on new projects.  

In the introductory section (5th bullet point) we present some papers, where QARDL models 

are employed.  It would be interesting to check if the results are robust to allowing non-

linearities under QNARDL modelling.  In the empirical application in this paper, the results 

are sensitive to non-linearities.  With ARDL and QARDL no co-integration exists, while with 

the non-linear ARDL (NARDL) and QNARDL there is ample evidence of co-integration. 

Regarding the quantile version of ARDLs and co-integration in the quantile environment, 

Xiao (2009) proposes a quantile version of the dynamic OLS (DOLS) estimator, i.e. a quantile 

co-integrating technique for the estimation of the long-run multipliers using the CQREGs of 

Koenker and Bassett (1978).  CKS introduce in the literature of co-integration the QARDL 

model and, in their concluding remarks, encourage future researchers to invest on completing 

the PSS BTP under the quantile framework.  CKS also employ the estimation technique of 

Koenker and Bassett (1978) and suggest a complete way of running the QARDL model.  Our 

paper shows how to execute the BTP both at a given percentile as well as across percentiles. 

                                                 
across different percentiles at the cost of a probable misspecification bias or, (ii) estimate a full model, as in the 

OLS case, only at specific quantiles (e.g. the 50th). 
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We also contribute to the literature of quantile co-integrating estimators (see Xiao 2009; and 

CKS) by adding a new way to test for the statistical significance of the long-run multipliers, 

where in the same step short-run responses of the dependent variable are also estimated along 

with long-run coefficients. 

Another contribution is that we empirically extend the SYG methodology of non-linear 

modeling, under the quantile framework.  SYG extend the ARDL model to the non-linear 

ARDL, where the regressors are allowed to affect differently the dependent variable.12  

Particularly, the dependent variable may respond differently to increases of a regressor rather 

than to equal-size decreases, i.e. non-linear responses of the dependent variable are allowed.13  

Also, SYG talk about a pragmatic BTP and they argue that the BTP introduced by PSS is valid 

in the NARDL framework. 

So, we account for non-linear, or asymmetric, responses of the dependent variables to its 

covariates (NARDL) and for distributional, or location, asymmetry (QARDL) of the dependent 

variable.  Thus, we introduce the term quantile non-linear ARDL, or QNARDL, in the literature 

of the ARDL family.  A concrete example of non-linear and quantile non-linear ARDLs is 

given in the empirical application of this paper in Section 3. 

 

                                                 
12  In ARDL modelling, increases and equal-size decreases affect the dependent variable equally.  That is, the 

responses of the dependent variable to shocks of the regressors are linear. 

13  If at least one of the two coefficients matching to the increases and decreases of xt is statistically significant 

then, this is the case of asymmetry (full asymmetry with two significant and unequal coefficients, and partial 

asymmetry with one significant coefficient).  On the other hand, if yt equally responds to increases and decreases 

of xt then, no asymmetry exists.  In the Online Appendix file, Section 5 describes in detail each of the 13 cases of 

a possible asymmetric behavior. 
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2.3 Replication of PSS and extensions  

PSS find for Cases I to V (see Table 1) the bounds of the critical values of t-statistics for the 

null hypothesis 0y  , where y  is the coefficient of 
1ty 
 , and the bounds of F-statistics for 

the null hypothesis 0Φ , where Φ  is equal to  ,y  xφΦ  and includes the coefficients 

of 
1tz  according to Table 1, using a sample of 1,000 observations with 40,000 replications in 

GAUSS.  However, as Narayan (2005) points out, these critical values depend heavily on the 

size of the sample and thus, the two-step testing procedure (F-test first and then, the t-test) of 

PSS (see PSS, p. 304) for the existence of co-integration between yt and the vectors xt can be 

misleading.14  We replicate the BTP of PSS using EViews and our simulations provide almost 

identical results to PSS (all our codes are available in the journal’s website).15 

We go beyond replicating PSS and introduce 6 new cases for the F-statistics, namely Cases 

VI, VII, VIII, IX, X and XI, (see Table 1) which are added to Cases I to V of PSS, and 1 new 

case for the t-statistics, namely Case XI, which is added to Cases I, III and V of PSS. 16  We 

                                                 
14  So, Narayan (2005) borrows the GAUSS codes from Pesaran and Shin, and calculates new critical values for 

the F-statistics for sample sizes ranging from 30 to 40 observations with a step of 1 observation (that is in Narayan 

2004) and from 40 to 80 observations with a step of 5 observations (that is in Narayan 2005, where he shows 30 

to 80 with a step of 5) for Cases II to V for 0, ,7k  .  Following Narayan (2005), Jordan and Philips (2018) 

provide a program in STATA and R for the BTP of PSS for Cases I to V with critical values for the F-tests. 

15 We compute the critical values using 50,000 simulations.  For example, when k = 0 our code generates t-

statistics that are either exactly the same with those of PSS or differ by 0.02 in the worst case, and when k = 10 it 

generates F-statistics that are either the same with those of PSS or differ by 0.03 in the worst case.  To ensure 

comparability of our replication and the work of PSS, we round the critical values at the 2nd decimal as PSS do.  

This program as well as two more programs and an Online Appendix are in the website of the journal as supportive 

material to this paper. 

16  When in the right-hand side there are only lags of the dependent variable, the critical values of t-statistics (in 

the OLS setup) of Cases I, III and V correspond to the Dickey-Fuller (DF, 1979) unit-root t-statistics.  Also, Case 
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also introduce a new set of critical values for the t-statistics of the null hypothesis 

0 for  1, ,13j j    and F-statistics of the null hypothesis  xφ 0 , where 
x

φ  includes the 

coefficients of 
1tz  except for that of 

1ty 
.17  With these critical values we shed light on the 

degenerate case, as PSS argue (see PSS, p. 304).  That is when the following two conditions 

are met. First, the F-test (H0:  Φ 0 , where Φ  includes the coefficients of 1tz  according to 

Table 1) and t-test (H0: 0y  ) show evidence in favor of the existence of a co-integrating 

relationship between yt  and the vector 
tx , and second, the t-test (H0: 0j  ), or F-test (H0: 

 xφ 0 ) show that the 
tx variables in model (1) are statistically insignificant.18  We apply this 

exercise both in OLS and CQREG setups. 

When we depart from the OLS setup to the quantile framework, we also provide critical 

values for interdecile and interquartile BTP for Cases III, V and XI with Wald tests.19  We find 

that these critical values also depend on sample size, number and integration order of 

regressors, and the inclusion of intercepts and trends (see also Narayan and Narayan 2005, for 

the OLS framework).  With these tests we can check whether, y  and xφ  (Wyx-test), or y  

(Wy-test), or finally, xφ  (Wx-test), are common within percentiles.  The interdecile test, tests 

the slope equality of the lagged dependent variable in levels and/or lagged stochastic regressors 

                                                 
XI is a new case to the (augmented) DF framework, where a second-order trend polynomial is taken into 

consideration. 

17  These t-statistics are not normally distributed.  However, they exhibit no skewness and are symmetrically 

distributed. 

18  McNown et al. (2018) also notice this degenerate case, where the lagged levels of the explanatory variables are 

statistically insignificant, and they employ simulations based on an eight-step bootstrap procedure to deal with it. 

19  We study the unrestricted cases only because the deterministic regressors (intercept, linear and quadratic trends) 

are not likely to be equal within the quantiles and thus, the test statistic may be biased towards the rejection of the 

null hypothesis. 
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in levels for the 9 deciles, i.e. the 10th, 20th, … , 90th percentiles, while the interquartile test for 

the 3 quartiles, i.e. the 25th, the 50th and the 75th percentiles. 20  So, these tests give us the 

opportunity to explore whether there is evidence of time-varying estimates or quantile-

dependent co-integration. 

Regarding the critical values for different sample sizes, first we simulate the data according 

to Equations (4) and (5), and Table 1.  Subsequently we compute the statistics for the tests 

employed (t-tests and F-tests for the BTP in OLS and CQREG setup, and W-tests for the 

interpercentile BTP) and the empirical quantiles of these statistics become the critical values.  

This is also how PSS compute their critical values for the case of 1,000 observations.  

Regarding our codes, we first generate y as I(1), and x as I(0), I(1), or a mixture of stationary 

and non-stationary variables.  Then, we run regressions as in Equations (4) and (5), and 

compute the t-statistics and F-statistics according to Table 1 (11 Cases) for the BTP in OLS 

and CQREG setup, and the W-statistics for Case III, V and XI for the interpercentile BTP.  We 

repeat this 50,000 times and subsequently, we compute the empirical test statistics at 1%, 2.5%, 

5% and 10% levels of statistical significance. 

 

3. Empirical application 

In our empirical application we examine whether there is a stable long-run relationship of the 

market PB valuation of the S&P Global Index with its fundamentals.  Such a stable long-run 

relationship was found in Bertsatos and Sakellaris (2016), and Bertsatos et al. (2017) for the 

                                                 
20  CKS suggest that the standard Wald tests are asymptotically valid for testing the equality of parameters at the 

3 quartiles, i.e. 25th, 50th and 75th percentiles (jointly or for two of them, i.e. 4 Wald tests), in a setup of a QARDL 

(1, 1) model in levels with intercept and one I(1) regressor, i.e. k = 1.  Specifically, they deal first, with the equality 

of the autoregressive terms of the dependent variable in levels, Y, second, with the sum of the coefficients (of 

current and previous period) of the stochastic regressor X and third, the long-run response of Y to X. 
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case of the largest systemic U.S. banks.  If such a relationship exists, what can we infer about 

the existence and influence of momentum/contrarian traders and fundamentalists?  This 

question has not been addressed before.  The economic hypothesis we are going to test is that 

PB shares an equilibrium relationship with risk, growth and cash flow characteristics for the 

case of the S&P Global Index: 

~\~\~ a  steady-state relationship exists for the S&P Global IndexPB    ~/~/~ (6) 

Bertsatos and Sakellaris (2016) developed an equity valuation model using the price-to-

book (PB) ratio as the main variable of interest.  They named it Dynamic Dividend Discount 

Model or 3DM.  The fundamental factors determining PB according to 3DM are the cost of 

equity, expected growth of net income and dividend payout ratio.  These variables represent 

the risk, growth and cash flow characteristics of a firm’s stock. 

In this paper, we use 3DM allowing for asymmetric responses of PB in the spirit of SYG, 

i.e. we let the increases and the decreases of the right-hand-side variables to affect PB in a 

different way, where there is a “positive” and a “negative” regime.  Thus, our model 

incorporates a regime-switching co-integrating relation, where the regimes depend on whether 

a positive, or a negative, shock occurs in the covariates of PB (see also SYG, footnote 4).  Also, 

we replace cost of equity with the z-score variable (more details in the “Data description” 

below). 

The 3D model 

In our empirical application, we adopt an asymmetric variant of the Bertsatos and Sakellaris 

(2016) model.  We employ ARDL and QARDL models (see Equations 7 and 8).  Further down 

in this section we also employ NARDL and QNARDL modelling strategies (see Equations 12 

and 13).  The models belonging to the ARDL family allow for one co-integrating vector 

running from xt to yt, while in the short run yt can also affect xt. We assume that PB affects 
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ZSCORE, DPR and GROWTH in the short run.  However, PB responds to shocks of ZSCORE, 

DPR and GROWTH both in the short run and in the long run. 
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where, PB is the price-to-book ratio, ZSCORE is the z-score variable, DPR is the dividend payout 

ratio, GROWTH is the expected growth of net income, DC is a dummy variable for the recent 

financial crisis and τ represents the user-specified percentiles. 

Data description 

We use data of the S&P Global Index provided by Datastream for the period 1982:Q1-2017:Q1, 

i.e. 141 observations.  Table 2 provides some descriptive statistics, where one can observe that 

all main variables exhibit skewness and this is a primal source of asymmetry. 

Table 2: Descriptive statistics 

 PB ZSCORE DPR GROWTH 

Mean 12.141 12.420 20.893 21.602 

Median 5.020 8.851 10.830 19.162 

Std. deviation 23.931 12.399 31.794 52.010 

Skewness 4.171 1.575 4.215 -8.714 

Kurtosis  20.965 5.708 21.260 94.078 

Notes: Std. corresponds to standard.  PB is the price-to-book ratio, ZSCORE is the z-score variable, DPR is the 

dividend payout ratio and GROWTH is the expected growth of net income.  We round to the 3rd decimal point. 
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The price-to-book (PB) ratio is the ratio of market value of equity to the book value of 

equity.  The z-score variable is constructed as: 

 
1

ROE

ROE
ZSCORE




   (9) 

where, ROE is the return of equity and σROE is the standard deviation of ROE.  We estimate 

ROE as the ratio of current earnings times 100 to the average of the first and second lag of book 

value of equity, and σROE as the standard deviation of current ROE and its first seven lags. 

ZSCORE indicates the number of standard deviations that a firm’s ROE can fall in a single 

period before it becomes insolvent.  High values represent a low probability of default.  

Alternatively, small values imply great risk.  For example, a value of 5 in ZSCORE indicates 

that a firm becomes insolvent when its ROE falls more than 5 times its standard deviation in a 

single period.  In the case of a market index, ZSCORE portrays distress rate of that market and 

in our case, it is a measure of the overall financial health of the global market.  The dividend 

payout ratio (DPR) is calculated as the share of current dividends to the previous value of book 

value of common equity in percentage points: 

 
1

100t
t

t

DIV
DPR
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    (10) 

where, DIV is the dividends distributed to the shareholders.  We calculate the expected growth 

in percentage points as the product of the retention ratio (RR) and return on equity. 

 1
100

t
t t t t
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  (11) 



22 

 

where, 1 minus DPR/100 is equal to RR and shows the amount of ROE that is invested back in 

the firm for future projects, and ROE is the return of equity in percentage points.  The dummy 

for the recent financial crisis takes the value of 1 for the period 2007:Q1-2009:Q4.21 

Regarding the “positive” and “negative” asymmetries of a variable, or the increases and 

decreases, we follow the definitions of SYG, and Greenwood-Nimmo and Shin (2013, hereafter 

GS).  These variables are required for the NARDL and QNARDL models.  Specifically, given 

a variable ABt, the “positive” first differences, tAB  , are defined as  max ,0tAB  and the 

“negative” first differences, tAB  , as  min ,0 .tAB   Correspondingly, tAB
 and tAB

 are 

calculated as 
1

T

j

j

AB 



  and 
1

T

j

j

AB 



 , i.e. the partial sums of the “positive” and “negative” 

first differences, respectively. 

Also, the regime probabilities of the asymmetric variables in first differences, i.e. tAB   

and tAB  , are defined as the effective number of observations as a share of the total number 

of observations.  The effective number for tAB   ( tAB  ) is defined as the total number of 

observations net of the zero values in tAB   ( tAB  ).  SYG and GS suggest that these 

probabilities should be close to each other, i.e. near 50%.  Otherwise, researchers and 

practitioners should worry about the validity of their estimates, as well as their inference.  For 

                                                 
21  The number of “1’s” for the crisis dummy over the total number of observations is near 9%.  PSS argue that 

the dummy variables should bear a ratio close to zero such that the simulated critical values for the BTP remain 

valid.  In their empirical application, PSS use two dummy variables, where one dummy has a ratio of 7.6% and 

the other 19.2%.  Therefore, considering a maximum threshold of 20% for dummy variables from PSS, we have 

no reason to worry in our estimation about the critical values for the BTP, as well as other researchers and 

practitioners that augment their specification with dummy variables under this condition.  Also, one could include 

such a dummy variable in the long-run relationship however, he/she should increase k by 1 for the critical values 

for the BTP. 
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example, in GS, the empirical probabilities in the “positive” and “negative” regime have 

roughly a “60-to-40” ratio in favor of the “positive” regime and the authors claim there are no 

worries for estimation and inference. 

PB exhibits positive skewness (see Table 2), 4.171, and excess kurtosis, 17.965, so the 

assumption of linear responses does not seem to be reasonable.  Panel A of Figure 1 indicates 

signs of asymmetry for PB and in Panel B we see that PB exhibits indeed asymmetric 

characteristics.  Furthermore, “negative” and “positive” PB ratios display different measures 

of skewness (-3.590 vs 2.803) and excess kurtosis (13.564 vs 6.982).  “Negative” PB and 

“positive” PB are defined as partial sums of negative and positive-first differences of PB, 

respectively.  ZSCORE and DPR are also positively skewed (the respective numbers are 1.575 

and 4.215) and the corresponding excess kurtosis is 2.708 and 18.260, while GROWTH 

displays negative skewness (-8.714) and excess kurtosis (91.078).  The empirical probabilities 

in the “positive” and “negative” regimes for ZSCORE are 53% and 47%.  The corresponding 

ones for DPR are 42% and 58%, and for GROWTH are 51% and 49%.22 

  

                                                 
22  Hence, according to the “60-to-40” ratio of GS we do not have to worry about estimation and inference issues. 
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Figure 1: Quantile-Quantile (QQ) plots of the PB ratio (in logs) 
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Notes: Panel A shows the empirical plot of the standard normal distribution with the logged PB ratio.  A normally-

distributed variable would exhibit points very close to the straight line.  Panel B shows the empirical symmetry 

plot of the logged PB ratio.  Being close to the straight line implies symmetry.  If not close then, asymmetries are 

present.  The data of the PB ratio for the S&P Global Index comes from Datastream. 

Estimation 

We reserve the first 8 observations to construct the lag differences, and the partial sums of 

positive and negative first differences in order to ensure comparability of the results during the 

lag-length selection.  We allow up to 6 maximum lags in the UECMs, i.e. 7 maximum lags for 

the ARDL in levels.  The length of the time series is 133 observations and the reference period 

becomes 1984:Q1-2017:Q1.  So, the common sample consists of 133 observations for all the 

models (ARDL, NARDL, QARDL and QNARDL) across the lag-selection procedure.  The 

optimally selected OLS model is chosen among 36 7 2,058   models for the linear 

specification and among 66 7 705,894   models for the non-linear specification.  We rely on 

the Schwarz (1978) information criterion (SIC) and test whether there are serially correlated 
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errors (we use the Breusch-Godfrey LM test) in the OLS-based models before we continue our 

analysis.23, 24 

First, we confirm that none of the variables is I(2) so that the ARDL method is valid, and 

then, that the dependent variable and at least one of the regressors is I(1) so that the regression 

is well-balanced.25  To answer the question posed in the null hypothesis (6), we are going to 

rely on linear and non-linear modelling.  We start with linear models of ARDL and QARDL.  

Regarding the deterministic factors, we follow the practice of Harvey et al. (2011), where the 

authors suggest the inclusion of a linear-trend-only fit.  A quadratic fit would be very 

suggestive for the eyes and does not allow the reader to judge on the necessity of the quadratic 

trend.  We observe in Figure 2 that the PB ratio does not seem to evolve into time following a 

path of linear trend.  Therefore, we add a second-order trend polynomial in our specifications.26 

  

                                                 
23  As PSS state, there is a dilemma regarding the choice of the lags.  A small number does not always guarantee 

a free-of-serial-correlation model (a crucial assumption for the validity of ARDL models), while with a large 

number one may end up with an over-parameterized model.  We use the LM test to test for 1st order to 13th order 

serial correlation.  In our OLS-based specifications we find no evidence of either short-run or long-run serially 

correlated errors. 

24  The Hannan and Quinn (1979) information criterion (HQIC) gives the same lag structure with SIC in our 

empirical application. 

25  Details and results of unit-root tests are in the Online Appendix (see Section 2 there).   

26  We also employ an augmented DF test with quadratic trend for the first time as far as we know, where we use 

the simulated critical values for k = 0.  In this way, we address any concerns that the dependent variable could be 

modelled as a stationary process around a quadratic trend.  The PB ratio persists to be a I(1) variable.  See Tables 

7 and 8 in the Online Appendix for more details.  Moreover, a Perron-Yabu (2009) test for the presence of a 

quadratic trend could also be preferred but this type of particular test is not documented in their series of papers. 
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Figure 2: Time path of the PB ratio (in logs) 

 

Notes: We use the logged PB ratio for illustration and presentation reasons.  The time-series ranges from 1984:Q1 

to 2017:Q1, i.e. 133 quarterly observations.  The data of the PB ratio for the S&P Global Index comes from 

Datastream. 

We run the linear ARDL with OLS (see Equation 7), which generates a positive error-

correction coefficient, i.e. 0y  .  This indicates a divergent behavior and an explosive 

relationship.  Switching to the quantile framework, we run a QARDL with the same lag order 

as in the OLS specification to ensure that our results are comparable (see Equation 8).27, 28  We 

find positive error-correction coefficients across the quantiles of the conditional distribution of 

PB implying that no steady-state equilibrium relationships exist.29 

                                                 
27  See CKS, p. 293, for an excellent discussion for the transition from a (conditional) mean to a conditional 

quantile model.  Moreover, the mean-based models are used as a benchmark for the quantile-oriented models. 

28  We estimate both Equations (8) and (13) at the 9 deciles, as well as at the 3 quartiles. 

29  We do not report the models’ estimates with the linear specification since the speed of adjustments (SOAs) are 

positive denoting divergence and thus, the relationships are explosive. 
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To sum up, we conclude that the hypothesis posed earlier (see 6) for the S&P Global Index 

is rejected assuming linear responses of PB to risk, cash flow and growth as measured by the 

ZSCORE, DPR and GROWTH variables. 

Does the existence of explosive relationships with linear modelling imply that PB adopts a 

random-walk behavior?  The answer is no.  Dropping the quite restrictive assumption of linear 

responses and adopting the assumption of non-linear responses may be helpful.  SYG argue 

that linear adjustment could be extremely restrictive in a plethora of economically interesting 

situations, especially in the presence of non-negligible transaction costs and policy 

interventions by authorities.30  We now adopt asymmetric non-linear modelling and we follow 

GS and SYG.  Therefore, we focus on the non-linear versions of ARDL and QARDL, i.e. 

NARDL and QNARDL, and explore whether the hypothesis (6) we examine holds in our 

empirical application. 

Our specifications for the NARDL and QNARDL models are the following: 
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30  For an excellent analysis of this topic and a review of relative works, see the introductory part in SYG. 
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where, PB is the price-to-book ratio, ZSCORE is the z-score variable, DPR is the dividend payout 

ratio, GROWTH is the expected growth of net income, DC is dummy variable for the recent 

financial crisis and τ represents the user-specified percentiles.  To the best of our knowledge 

this is the first time (i) that non-linear responses are introduced to PB modelling and (ii) that 

the PB ratio is used for analysis at a market-index level. 

Once we allow for non-linearities (NARDL, see Equation 12) or both non-linearities and 

distributional asymmetries (QNARDL, see Equation 13) into the specification of 3DM we get 

significant results.31  We thus, confirm Shin (2009) that (i) misclassifying a non-linear 

asymmetric process as linear can be misleading and (ii) being unable to detect a linear co-

integrating relationship when there truly exists a stable non-linear, or regime-switching, 

relationship can be misleading.  Also, we witness that the choice of estimation strategy (OLS 

vs CQREGs) does contribute to the differentiation of the models’ estimates; the coefficients at 

the 30th to 50th percentile of the conditional distribution of PB are greatly different from those 

of OLS when we allow for asymmetric responses to PB.  Finally, using the interdecile and 

interquartile BTP we find no support of the equality of the ECT and/or its lagged fundamental 

factors in levels. 

GS and SYG refer to a pragmatic BTP and show that the BTP of PSS is valid in the 

framework of NARDL modelling, where complex interdependencies could arise due to the 

nature of partial sum decompositions.  They argue that the long-run inference can be achieved 

through the BTP shown in PSS regardless of the integration order of the variables.  The 

underlying regressors can be I(0), I(1) or mutually co-integrated.  Also, SYG advise that the 

number of explanatory variables, xt, should be calculated before the decomposition of the 

partial sums to ensure conservatism.  In our case, k = 3, and the BTP is executed with k = 3 for 

                                                 
31  These results are presented below in Table 3 and its discussion. 
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both linear and non-linear models.  Furthermore, the long-run and short-run symmetry can be 

tested with the standard Wald tests. 

Moreover, given the existence of co-integration we can claim that there are investors, who 

heavily rely on fundamental valuation.  However, the presence of fundamentalists cannot be 

explained (i) during periods of high market PB ratios relative to fundamental (or predicted) PB 

ratios, i.e. during an overheated financial market and when overvaluation status prevails, and 

(ii) during periods of low market PB ratios relative to fundamental (or predicted) PB ratios, i.e. 

when increased financial stress and economic mayhem triumph over the markets.  

Alternatively, the evidence of no co-integration at percentiles lower than the 25th percentile or 

higher than the 90th percentile, i.e. during “boom” and “bust” periods respectively, does not 

justify the presence of traders relying on grounds of fundamental analysis. 
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Table 3: Estimates of the NARDL and QNARDL models 

(i) Panel A: NARDL, Unrestricted Error-Correction Model 

 Momentum Z-score_neg(-1) Z-score_pos(-1) DPR_neg(-1) DPR_pos(-1) Growth_neg(-1) Growth_pos(-1) ECT 

 9.387* -0.274* 0.538* -1.498* -0.437*** 0.498* 1.122* -1.469**** 

Long-run values - -0.186** 0.366* -1.020* -0.298**** 0.339* 0.764* - 

(ii) Panel B: QNARDL, Unrestricted Error-Correction Model 

Quantile Momentum Z-score_neg(-1) Z-score_pos(-1) DPR_neg(-1) DPR_pos(-1) Growth_neg(-1) Growth_pos(-1) ECT 

0.3 3.760* -0.043 0.252* -0.790* -0.158 ga 0.184* 0.374* -0.701*** 

Long-run values - -0.062 0.360* -1.127* -0.225 0.262* 0.534* - 

0.4 2.941* -0.049 0.229* -0.806* -0.096 0.104 ga 0.300* -0.604 ga 

Long-run values - -0.081 0.380* -1.335** -0.160 0.172**** 0.496* - 

0.5 4.314* -0.040 0.181*** -0.697* -0.136 0.163** 0.303* -0.788** 

Long-run values - -0.051 0.229* -0.885** -0.173 0.207** 0.385* - 

0.6 7.277* -0.073 0.334** -1.352* -0.275 ga 0.333* 0.687* -1.327** 

Long-run values - -0.055 0.251* -1.019* -0.207 0.251* 0.518* - 

0.7 10.338* -0.147 ga 0.468* -1.370* -0.346 ga 0.590* 1.037* -1.652** 

Long-run values - -0.089 0.283* -0.830** -0.209 0.357* 0.628* - 

0.75 12.057* -0.132 0.559* -1.469* -0.386**** 0.691* 1.157* -1.912* 

Long-run values - -0.069 0.293* -0.768* -0.202 0.362* 0.605* - 

0.8 11.643* -0.169 ga 0.498* -1.278* -0.511*** 0.648* 1.160* -1.777** 

Long-run values - -0.095 0.280* -0.719** -0.287**** 0.365* 0.653* - 

Notes: The selected unrestricted error-correction model by the Schwarz (1978) information criterion (SIC) has the following lag order: (6, 0, 2, 6, 0, 6, 4).  For brevity, we do not report the 1st, 

2nd and 9th decile that produce statistically insignificant speed of adjustments as well as the 1st quartile for the same reason.  Statistical inference for the momentum parameter (i.e. the aggregate 

past changes of ΔPB based on the 6 autoregressive parameters of ΔPBt)  is based on standard distributions, while that of the lagged regressors in levels and that of the error-correction term (ECT) 

is based on the simulated critical values we generate in this paper.  The long-run coefficients (second line of each row) are calculated via the delta method as the coefficient of the lagged-once 

variable in levels from the unrestricted error-correction model (first line) over the absolute value of the coefficient of the error-correction term.  The R2 for NARDL is 95.4%, and the pseudo R2 

for QNARDLs at 30th, 40th, 50th, 60th, 70th, 75th and 80th percentile are 58.9%, 51.6%, 45.2%, 42.5%, 45.5%, 49.7% and 55.2%, respectively.  We round to the 3rd decimal.  ga denotes grey area 

at 10%, * denotes statistical significance at 1%, ** denotes statistical significance at 2.5%, *** denotes statistical significance at 5% and **** denotes statistical significance at 10%. 
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Employing the Fyx-tests for the 1st stage of the BTP for the NARDL model (see Table 3), 

we find F-statistics (for Cases VIII to XI), which are greater than 24.  Thus, we reject the null 

of no co-integration at every conventional statistical significance level.  For the 2nd stage of the 

BTP the statistic of ty is -4.431 and thus, it lies in the grey area at 2.5% and 5%, while at 10% 

we reject the null of no co-integration.  To test whether there is a degenerate case of co-

integration, we employ the Fx-tests, whose values (for Cases VIII to XI) are also greater than 

24.32  So, the long-run coefficients of 3DM shown in Table 3 (4th row, NARDL) are valid.  

Moving to the quantile environment (specifically at the 50th percentile), we find F-statistics for 

the Fyx-tests that are greater than 8 and for the Fx-tests that are greater than 7.  Also, the t-

statistic for the ty test is -4.053, which lies in the grey area at 1% significance level however, it 

is greater than the upper bound at 2.5% significance level.  So, we find strong evidence of co-

integration using the least absolute deviation (LAD) regression as with the OLS estimator 

whether or not we include the intercept and the trend terms in the equilibrium relationship, and 

we do not fall in the degenerate case of co-integration.33 

Regarding the tests of the lagged regressors, we can see their role at determining the 

significance of the long-run multipliers.  The lagged positive decomposition of ZSCORE at the 

6th decile is found to be significant at 2.5% and the associated long-run effect to PB is 

significant at 1%.  Thus, a degenerate case exists here at 1% significance level.  Something 

similar happens at the median regression as well.  One other example of a degenerate case is at 

the 4th (7th) decile with the negative decomposition of DPR.  The lagged regressor is found to 

be significant at 2.5% and the corresponding long-run multiplier at 1%.  However, this might 

                                                 
32  Doing the same for the 4 alternative specifications (Table 9 in the Online Appendix), we find qualitatively the 

same results. 

33  Repeating the BTP for the rest of the quantiles depicted in Table 3, we find qualitatively the same results except 

for the estimation at the 4th decile, where the ty-statistic lies in the grey area at 10% significance level.  The critical 

values for the BTP in our application for the OLS and LAD regressions are in the Online Appendix (Table 1). 
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be explained by the fact that the speed of adjustment, at the 7th decile is statistically significant 

at 2.5% and for the 4th decile lies in the grey area at 10% significance level.  On the other hand, 

we find two other cases of degenerate co-integration, where the statistical significance weakens 

when we move from the lagged regressor to the long-run effect.  At the upper quartile and at 

the 8th decile the lagged “positive” DPR is statistically significant at 10% and 5%, respectively.  

The corresponding long-run multiplier at the 75th percentile is found to cause no effect on PB, 

while at the 80th quantile is significant only at 10%.  In both cases, the speed of adjustment is 

significant at lower significance levels. 

From Table 3 we can see that the speed of adjustment is different depending on the quantile 

of the conditional PB distribution.  So, a time-varying pattern exists.  CKS argue that a plausible 

explanation for quantile-varying, or time-varying, co-integration is that the underlying 

relationship may vary over time due to heterogeneous shocks arising at each point of time (see 

Xiao, 2009) and if this is the case then, the quantile setup is the best estimation strategy because 

quantile coefficients can be seen as random coefficients (see Koenker and Xiao, 2006).  

Alternatively, we find location, or quantile, asymmetries for the speed of adjustments of the 

conditional distribution of PB.  However, we notice that tail-quantile co-integration is absent 

and maybe this explains a great part why the linear OLS-based ARDL, given the existence of 

non-linearities, produces an explosive relationship.34 

We can confirm the time- or quantile-varying speed of adjustments by testing whether the 

coefficients of ECT are equal at decile and quartile level.  The Wald test (Wy-test) produces a 

statistic valued at 26.935 for the 9 deciles and 16.256 for the 3 quartiles, which are greater than 

the critical values of the upper bounds (see Table 1 in the Online Appendix, Panel C1 and C2).  

                                                 
34  This finding gives more credit to our claims stated earlier in the text that results in works and papers based on 

ARDL or NARDL or QARDL should be reconsidered with QNARDL modelling.  Also, researchers and 

practitioners in future projects should try both linear and non-linear modelling within both the mean and quantile 

environment. 
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So, we reject the null hypothesis of interdecile and interquartile equality of ECTs and, thus, the 

speeds of adjustment differ.  Similarly, we reject the null hypothesis of interdecile and 

interquartile equality of the lagged regressors in levels (Wx-test), and the lagged regressors in 

levels and the ECT (Wyx-test).  The values for the interdecile tests of the lagged regressors, and 

the lagged regressors and the lagged PB ratio, respectively, are 197.077 and 226.299.  For the 

interquartile tests the corresponding values are 129.598 and 145.193.  In all cases, they exceed 

the critical values of the upper bounds (see Table 1 in the Online Appendix, Panel C1 and 

C2).35 

The absolute value of  1 y  at the upper percentiles exceeds these of the rest percentiles 

of interest by a specific threshold.  Specifically, we find that the absolute deviation of SOA 

from unity, at the 8th decile is greater by at least 0.13 than the respective values at 3rd, 4th, 5th, 

6th and 7th deciles.36  So, considering a threshold up to 13% (or 0.13) we find strong evidence 

of this kind of asymmetry in the convergence rate to equilibrium.  The SOA at the 80th 

percentile denotes a slower convergence rate than the rest of the significant SOAs (30th, 40th, 

50th, 60th and 70th percentiles).37  Alternatively, we find that during periods, where PB of the 

market index is high relative to its fundamentals, convergence to equilibrium is faster than 

during periods of low PB relative to its fundamentals.  In other words, fundamentalist traders 

expect their strategy to be lucrative over a longer horizon during periods of increased financial 

stress than during periods of stock market buoyancy.  From Table 3, we can see that there is a 

                                                 
35  However, when we use the general-to-specific approach we see that inference can be misleading if the standard 

critical values of the Wald test are used.  Section 3 of the Online Appendix provides more details. 

36  We use absolute deviations from unity to take into consideration that SOAs close to unity denote a faster 

convergence rate than SOAs close to 0 or 2, given that we are interested for values that lie in the interval (0, 2).  

For example, a coefficient of the ECT with value of -0.2 is larger than another one with -1.3 however, -0.2 implies 

a much slower convergence rate than -1.3 (0.8 > 0.3). 

37  A coefficient of the ECT greater than unity, in absolute values, implies a damped equilibrium path. 
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co-integrating relationship with the NARDL model, while when we move to the quantile 

environment a long-run equilibrium relationship exists for the 30th to 80th percentile of the 

conditional distribution of PB. 

In our application, when we look at the QNARDL results, we observe in the long run a 

partial asymmetry of PB to shocks in the z-score variable and to shocks in dividend payout 

ratio (an exemption is at the 8th decile for DPR), and a fully asymmetric behavior of PB when 

expected growth of net income changes.  Specifically for the median regression, the p-value of 

the Wald test of the equality of the long-run coefficients of ZSCORE is 2.6% indicating that at 

5% and 10% levels of statistical significance there is evidence of long-run asymmetry.38  The 

corresponding p-values for DPR and GROWTH are 1.7% and 3.7%, and reject the hypothesis 

of long-run symmetry at 5% % statistical level of significance.39 

When ZSCORE increases, i.e. risk decreases, PB increases, whereas it does not respond 

when then there is an increase of risk (ZSCORE decreases).  On the other hand, decreases of 

DPR increase PB, while PB is unresponsive to positive shocks of DPR (an exemption is at the 

8th decile).  This might seem strange because when DPR decreases, the firms return a smaller 

part of their profits to their shareholders.  However, this is not the case if investors see it as an 

increase of the expected future growth.  So, a DPR decrease can also be translated as high 

expectations for future growth.40  In confirmation of our claim, the long-run multiplier of 

expected growth is positive and statistically significant.  Moreover, increases in GROWTH 

increase PB more than an equal decrease does. 

                                                 
38  We employ the delta method for the comparison of the long-run coefficients so that we can infer whether there 

is an asymmetric behavior.  GS and SYG imply that they use the delta method for the long-run symmetry test. 

39   Results remain the same qualitatively at 5% and 10% significance levels for the rest of the quantile regressions 

shown in Table 3 except for DPR at the 8th decile, where a 10% significance level is required. 

40  When DPR decreases, the retention ratio increases and thus, expected growth will be larger.  See Equation (11) 

in the “Data description” in Section 3. 



35 

 

Regarding the NARDL and the long-run estimates, we find evidence in favor of a fully 

asymmetric behavior of PB for the ZSCORE, dividend payout ratio and expected growth.  PB 

increases no matter what happens to risk however, it is more sensitive to risk decreases 

(ZSCORE increases) than to risk increases (ZSCORE decreases).  Performing a Wald test for 

the equality of the long-run coefficients of ZSCORE in the positive and negative regime, we 

get a 0% p-value, which implies that the “positive” coefficient is greater than the “negative” 

coefficient at any conventional level of statistical significance. 

This is an interesting phenomenon that could be interpreted through an interaction between 

“Type A” investors and “Type B” investors at the global stock market level.  When risk 

decreases (ZSCORE rises), “Type B” investors buy and “Type A” investors sell.  If the effect 

of “Type B” investors is greater than that of “Type A” investors, then PB rises. When risk 

increases (ZSCORE deteriorates) “Type A” investors buy and “Type B” investors sell, and if 

the effect of “Type B” investors dominates that of “Type A” investors then PB increases.  To 

sum up, greater risk in the international stock markets seems to be associated with buying 

activity by “Type A” investors dominating selling activity by “Type B” investors, while lower 

risk with exactly the opposite effect.  However, this phenomenon disappears when we move to 

the quantile framework.  Specifically, when risk decreases (ZSCORE rises) the positive effect 

of “Type B” investors on PB dominates.  When risk increases (ZSCORE falls) on the other 

hand, the positive effect from “Type A” investors is counterbalanced by the negative effect of 

“Type B” investors and thus, PB does not respond to reductions of the z-score variable. 

According to NARDL estimates, PB decreases (increases) when DPR increases (decreases) 

with stronger sensitivity to decreases of DPR.  The p-value from the Wald test of the equality 

of the two long-run coefficients is 0.9% indicating that the coefficient of the negative regime 

is greater than that of the positive regime at 1% statistical level.  Increases in DPR can be seen 

as lower future expected growth and investors penalize increased dividend policies.  On the 

other hand, lower dividends are rewarded for the sake of greater future expected growth.  When 
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we move to the quantile framework we witness that PB is insensitive to DPR increases.  

Investors value equally their gain from dividends and the loss from the firms’ lower expected 

growth.  The only exception is at the 8th decile, where the long-run multiplier of “positive” 

DPR is close to the corresponding coefficient with the NARDL model. 

Finally, there is also evidence in favor of full asymmetry for the expected growth of net 

income in NARDL (the same type exists in the quantile framework).  Specifically, the p-value 

of the Wald test of the equality of the long-run coefficients is 0% implying that the positive 

effect stemmed from higher growth expectations is greater in absolute terms than the negative 

effect stemmed from lower growth expectations of net income of the S&P Global Index firms.  

PB responds more to GROWTH increases than to equal-size decreases.  Therefore, the 

asymmetric behavior of PB with respect to the long-run multipliers changes substantially when 

we depart from OLS to the quantile framework.41 

When we calculate the long-run marginal effects allowing for a one-standard-deviation 

change in the long-run coefficients, we find that GROWTH dominates ZSCORE and DPR, and 

plays the biggest role in determining fundamental values of PB.  When we use the standard 

deviations of the variables after the decomposition of SYG, ZSCORE captures 10.7%, DPR 

20.6% and GROWTH 68.7% of the variability in PB.  Performing the same task with the 

QNARDL model we find similar results.  For robustness, we also use the standard deviations 

of the variables prior the decomposition of SYG and the corresponding numbers for the 

NARDL model are 6.4%, 39.5% and 54.1% (with QNARDL we also find similar results). 

Next, we examine evidence on momentum versus contrarian trading.  These are two 

different forms of chartist strategies.  Based on the autoregressive coefficients of our models 

                                                 
41  With NARDL we observe a fully asymmetric behavior of PB for ZSCORE, DPR and GROWTH.  With 

QNARDL we observe partial asymmetry of PB to ZSCORE and to DPR (an exemption is at the 8th decile for 

DPR), and full asymmetry of PB to GROWTH. 
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we find strong evidence of momentum, i.e. positive-feedback, trading.  Testing whether the 

sum of the 6 autoregressive coefficients of ΔPB is statistically insignificant we get a 0% p-

value.  The aggregate past changes of ΔPB are statistically significant at any conventional 

significant level both at the NARDL and QNARDL models (see Equations 12 and 13). 

The momentum effect is reinforced in higher quantiles in the QNARDL setup, i.e. during 

periods with increased market stress.  In general, we find heterogeneous momentum trading 

across the quantiles.  Along the transition from the “boom” to the “bust” part of the economic 

cycle investors seem to rely more on trading based on technical analysis.  This type of investors 

follow “past winners” and get rid of “past losers”.  Thus, we find evidence of time-varying, 

quantile-dependent, momentum effect, which becomes more intense during periods 

characterized by PB undervaluation. 

We have seen that market participants of the S&P Global Index use both momentum trading 

strategies (aggregate past PB changes exert a positive and statistically significant effect on 

current PB) and fundamental trading strategies (there is co-integration in our model).  In Figure 

3 we can see that at least 56% of the explained variability of PB is due to the presence of traders 

(both chartists and fundamentalists).   Alternatively, about 5% of the total components of the 

covariance matrix associated with models of Equations (12) and (13) capture more than the 

half of the variation in PB.  Figure 4 presents a decomposition of the traders’ effect into the 

fundamentalist and chartist components.  Specifically, we observe that at least 69% of the total 

traders’ effect is due to fundamentalists, who predominate the chartists during all periods with 

verified co-integrating relationships (30th to 80th percentile).42  

                                                 
42  69% corresponds to the 5th decile and is the minimum value.  The greatest values are met in the NARDL model, 

88%, and at the 4th decile of QNARDL model, 86%. 
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Figure 3: Sources of explained variation of the Price-to-Book ratio (in %) 

 

Notes: Numbers shown in Figure 3 are based on the estimates of the models presented in Table 3.  “Traders” 

effect incorporates the covariance effect of the autoregressive variables (36 components), and the covariance effect 

of the error-correction term (ECT) and the lagged regressors in levels (49 components).  “Rest” effect involves 

the remaining 1,596 components of the covariance matrix.  The number of total components of the covariance 

matrix is 1681, 412, where 41 is the number of total variables in the right-hand side.  0.3, 0.4, 0.5, 0.6, 0.7, 0.75 

and 0.8 refer to the user-specified quantiles with the Quantile Non-linear Autoregressive Distributed Lag model 

(QNARDL). We round to the 3rd decimal.  Values are in percentages, e.g. 58.7 means 0.587 or 58.7%. 

 

Figure 4: Decomposition of the traders’ effect on Price-to-Book valuation 

 

Notes: Figure 4 shows the decomposition of the traders’ effect on market valuation (from Figure 3) to two 

components: the fundamentalist component and the chartist component.  0.3, 0.4, 0.5, 0.6, 0.7, 0.75 and 0.8 refer 

to the user-specified quantiles with the Quantile Non-linear Autoregressive Distributed Lag model (QNARDL).  

We round to the 3rd decimal.  Values are in percentages, e.g. 48.2 means 0.482 or 48.2%. 
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4. Concluding remarks 

Pesaran, Shin and Smith (2001, PSS) is one of the most influential papers in time-series 

analysis with many applications in economics and finance.  In this paper, we provide useful 

and important extensions of the bounds testing procedure of PSS in two modelling setups.  

First, in the ARDL models in unrestricted error-correction form of Pesaran and Shin (1999) in 

the OLS framework.  Second, in the QARDL models in unrestricted error-correction form, of 

Cho, Kim and Shin (2015) under the conditional quantile framework of Koenker and Bassett 

(1978). 

To demonstrate the new critical values and tests for the bounds testing procedure, we 

employ an empirical application and we use a variation of the 3D model (3DM) of equity 

valuation of Bertsatos and Sakellaris (2016) allowing for non-linear responses in the spirit of 

Shin, Yu and Greenwood-Nimmo (2014).  We find that misspecifying an asymmetric 

relationship as a linear relationship can be misleading in terms of findings.  Specifically, we 

find evidence of no co-integration when we restrict ourselves to linear modelling either with 

OLS or quantile estimators.  More precisely, the long-run equations are explosive.  However, 

once the linearity restriction is lifted and we allow for asymmetric, or non-linear, responses in 

the ARDL and QARDL models, i.e. when we use NARDL and QNARDL models, the 

conclusions differ considerably.  We discover that there are asymmetric long-run relationships 

using NARDL and, in the case of quantile environment employing QNARDL, our results show 

further evidence of time-varying co-integration across quantiles of the conditional distribution 

of the PB ratio. 

These results point to certain caveats on the conventional practice of linear ARDL 

modelling.  Different forms of asymmetry (e.g. time-varying relationships, threshold-oriented 

non-linear responses) may lead to misleading results under this practice. 
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To conclude, we discuss some caveats and offer suggestions for future extensions.  On the 

methodological part of the paper, it should be kept in mind that the standard BTP of PSS and 

the extensions that we present here may yield spurious results when more than one co-

integrating relationships exist.  Also, this estimation strategy is invalid when there is a variable 

of second-order integration, I(2), or under the presence of serially correlated errors.  Moreover, 

the critical values we provide with our codes for different sample sizes are based on asymptotic 

arguments that ignore terms such as lagged differences.  This may have limitations in finite 

samples, in particular when dealing with “short” time-series in an empirical application and 

when there is a rich lag structure in the estimated ARDL model.  Regarding further work, a 

bounds-testing framework could be expanded to panel data, or a BTP could be developed 

incorporating a mixture of I(2), I(1) and I(0) regressors to cover projects with “stocks”, where 

the “flows” could be I(1) and I(0) variables. 

On the empirical application in the paper, one could link several global events to the PB 

ratio of the S&P Global Index, or perform extra diagnostic tests (normality tests, 

homoscedasticity tests, etc).  Additionally, one could devise more sophisticated tests of the 

“chartists and fundamentalists” traders’ effects, search for optimal thresholds in the 

construction of the asymmetric variables (see Greenwood-Nimmo et al., 2012) together with 

the selection of the lag structure, as well as provide asymmetric dynamic multipliers with their 

bootstrapped confidence intervals, or emphasize on the short-run coefficients.  Finally, we 

could also engage in detecting possible differences between conditional and unconditional 

quantile regressions in our study.  This is something that Borah and Basu (2013) do in the 

cross-sectional level for a large US data about medication adherence. 

These suggested extensions are beyond the scope of this paper.  The main goal of this paper 

is to present extensions of the BTP of PSS and to demonstrate them with emphasis on the 

existence of (time-varying) co-integrating relationships either with linear or asymmetric 

relationships.  
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