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LIST OF ABBREVIATIONS

IV: Instrumental Variables.

GIVE: Generalized Instrumental Variables Estimation.

GLS: Generalized Least Squares.

GMM: Generalized Method of Moments.

HAC: Heteroskedasticity and Autocorrelation Consistent (HAC) covariance matrix.

LAD: Least Absolute Deviations.

LMS: Least Median of Squares.

MAE: Mean Absolute Error.

MARE: Mean Absolute Relative Error.

MCMC: Markov Chain Monte Carlo.

LAD: Least Absolute Deviations.

OLS: Ordinary Least Squares.

RMSE: Root Mean Squared Error.
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1 Introduction

Multi-objective optimization is an important methodology when we face conflicting objectives (see Das & Dennis,

1998; Handi, Kell, & Knowles, 2007). Portfolio analysis, for example, can be presented in terms of multiobjective

programming instead of the classical mean-variance approach. The nature of the problem as multicriteria decision

making has been emphasized by many authors (e.g. Mavrotas et al. 2008; Xidonas and Psarras 2009; Xidonas et al.

2009a, b, 2010 a, b; Steuer et al. 2005, 2006a, b, 2007a, b; Zopounidis and Doumpos 2002; Zopounidis 1999; Hurson

and Zopounidis 1993, 1995, 1997; Spronk and Hallerbach 1997; Zeleny 1977, 1981, 1982; Colson and Zeleny 1979,

1980). For deep reviews of other solution methods, consider the below references: Awasthi and Omrani (2019),

Duan et al. (2018), Dubey et al. (2015), Gharaei et al. (2019a,b,c), Giri and Bardhan (2014), Giri and Masanta

(2018), Hao et al. (2018), Kazemi et al. (2018), Rabbani et al. (2019, 2020), Sarkar and Giri (2018), Sayyadi and

Awasthi (2018a,b), Shah et al. (2020). Shakarabi et al. (2019), Tsao (2015) and Yin et al. (2016).

Narula and Wellington (2007) consider a multi-criteria formulation in regression with a single explanatory

variable. Their motivation is different from this paper, as they want to minimize the sum of squared and absolute

errors simultaneously, or minimize the sum of absolute errors and the maximum absolute error simultaneously. We

are not aware of further applications or extensions of this method. Hwang et al. (2010) propose using regression in

a special context (collaborative filtering in engineering) to obtain weights and then use multi-criteria analysis and

find that experimental results showed that the proposed approach outperformed the single-criterion collaborative

filtering method. Priya and Venkatesh (2012) follow the same approach but first they use regression and principal

components to identify important objectives and then use the Analytic Hierarchy Process. For a variation of this

technique see Nilashi et al. (2016).

This paper is based on the idea that obtaining parameter estimates in regression is, indeed, a multi-criteria

decision making problem, but the objectives should include criteria that can deal with the standard problems of

regression, viz. autocorrelation, heteroskedasticity, possible nonlinearities, out-of-sample forecasting, as well as

endogeneity (correlation between errors and explanatory variables). It is known that the Ordinary Least Squares

(OLS) estimator is consistent even when autocorrelation and heteroskedasticity are present but inconsistent when

we have nonlinearities and endogeneity. When autocorrelation, heteroskedasticity and the other problems are

absent, the OLS estimator is known to be the best linear unbiased estimator (BLUE), a property that holds for

finite samples (whereas consistency is associated with infinitely large data sets). In practice, researchers have

used a number of criteria to obtain parameter estimates. The OLS estimator is known as L2 estimator as it

minimizes the sum of squared residuals. The L1 estimator minimizes the sum of absolute errors, and it is popular

when researchers want to mitigate the problem of outliers. The L∞ estimator minimizes (with respect to β) the

maximum absolute error and depends sensitively on outliers (Stam, 1997). In the operations research community,

practical problems associated with OLS are, to a large extent, ignored, despite the fact that in small or finite

samples, autocorrelation, heteroskedasticity, and the other problems mentioned, can have a significant effect on
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estimates and thus, in measurement and interpretations.

This becomes even more important, when we realize that even “simple” violations of the assumptions in OLS

(like autocorrelation and heteroskedasticity) can be viewed as misspecification errors: When a heteroskedastic or

autocorrelated variable is erroneously omitted from the regression model, the OLS estimates of the parameters are

biased and inconsistent, but the residuals can be informative for these problems as the omitted variable becomes part

of the error term. Of course, both autocorrelation and heteroskedasticity can be present in a missing variable, so a

systematic investigation of the residuals is called for. In practically every empirical situation, tests are performed

for autocorrelation and heteroskedasticity and, if problems are found, the standard errors of OLS are replaced by

Heteroskedastic and Autocorrelation Consistent (HAC) standard errors. HAC retains OLS estimates and corrects

only standard errors. This practice, however, ignores the fact that it is the rule, rather than the exception, that

autocorrelation and heteroskedasticity may, in fact, be due to omitted variables which happen to be autocorrelated

and / or heteroscedastic. In such instances, the OLS estimator is biased and inconsistent, and application of

HAC standard errors is misguided. To summarize, autocorrelation and heteroskedasticity may, in fact, detect

misspecification problems.

From the empirical viewpoint, this problem is important as in most applications, measurement of effects

and interpretation of coefficients may, in fact, be compromised under conditions of misspecification. From another

point of view, datasets with outliers pose a serious challenge in regression analysis and many solution techniques

have been proposed (e.g. Panagopoulos et al., 2019, and Zioutas et al., 2009). Mielke and Berry (1997) have

proposed L1 regression when errors are generated from fat-tailed or outlier-producing distributions, which are

common in operations research. Moreover, these authors developed a chance-corrected goodness-of-fit measure

between observed and predicted values. Dielman and Rose (1997) proposed L1 regression with autocorrelated errors.

Bowlin et al. (1984) compare Data Envelopment Analysis and regression approaches to efficiency measurement,

which shows the importance of estimation procedure in efficiency analysis: Without model problems, efficiency

estimates will be accurate enough. See also Ouenniche and Carrales (2018). However, under heteroskedasticity and

/or autocorrelation, such estimates will not even be consistent. Desai and Bharati (1998) investigated whether the

predictive power of economic and financial variables can be enhanced if regression is replaced by feedforward neural

networks with back-propagation of error. These authors find that the neural networks forecasts are conditionally

efficient with respect to the linear regression forecasts. In fact, this finding may be due to misspecification of

functional form or other diagnostic failures in regressions and reinforces our arguments. More recent approaches

(Wang, and Zhu, 2018) employ support vector regression for financial time series forecasting. The authors applied

their technique to forecast the S&P500 and the NASDAQ market indices with promising results.

Stam (1997) correctly argued that: “there is a need to forge a link between researchers active in statistical

discriminant analysis and researchers in the area of Lp-norm classification. Such a link would be beneficial for

both groups. Particularly, Lp-norm classification may well be of considerable interest to researchers in areas where
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nonparametric classification analysis is traditionally used successfully, such as discrete variable classification, mixed

variable classification, and in application areas which are often susceptible to data analytical problems, such as

medical diagnosis, psychology, marketing, financial analysis, engineering and pattern recognition. Without reach-

ing out, the Lp-norm classification field will remain limited to a small group of researchers with interesting new

methodologies that are hardly used where they may be most needed” (pp. 28–29). This statement illustrates the

importance of alternative criteria, other than OLS, in the context of linear (or nonlinear) models with an emphasis

on potential applications in the fields mentioned by Stam (1997). This paper contributes to this general research

agenda by focusing not only on Lp-norm regression but also in the area of providing estimators that are robust to

potential problems such as autocorrelation, heteroskedasticity, endogeneity, nonlinearity, etc.

2 The model

In this paper, we consider regression models of the form:

yt = x′
tβ + ut, t = 1, . . . , T, (1)

where xt ∈ Rk is a vector of explanatory variables, β ∈ Rk is a vector of coefficients (parameters) and ut is an error

term whose properties are not specified for the moment except that E(ut|xt) = 0. Let y = [y1, . . . , yT ]
′ and X =

[x′
t, t = 1, . . . , T ]. Common regression problems include (i) heteroskedasticity, (ii) autocorrelation, (iii) misspecified

functional form, (iv) outliers, and (v) relatively unacceptable out-of-sample forecasting performance. The modern

econometric approach in heteroskedasticity and autocorrelation, is to retain the same Ordinary Least Squares

(OLS) coefficients but provide so-called robust standard errors derived from Heteroskedasticity and Autocorrelation

Consistent (HAC) covariance matrices. This practice is justified when the model is correctly specified, that is

there are no important omitted variables, the functional form is correctly specified, etc. In such cases, under

heteroskedasticity and / or autocorrelation, the OLS estimator remains consistent so OLS estimates are reliable

but OLS standard errors are biased. More often than not, researchers are not comfortable with the assumption of

correct specification in terms of variables included and the linearity assumption as in (1). In such cases, residuals

are informative about misspecification problems. For example, if the omitted variables are heteroskedastic and / or

autocorrelated, standard diagnostic tests will revel the existence of heteroskedasticity and / or autocorrelation. This,

in fact, shows that heteroskedasticity and /or autocorrelation are not merely “nuisances” that can be dealt away

using robust-HAC standard errors. The diagnostic tests, actually, provide guidance as to the problems of model

specification itself. In this paper, we propose a multi-criteria decision-making approach to regression by developing

an estimator which minimizes, simultaneously, the sum of least-squares errors and Lp-objective (as measures of fit,

for some p > 0), as well as the extent of heteroskedasticity, autocorrelation, nonlinearity in the functional form,

outliers, and out-of-sample forecast errors.
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In practical applications we face several econometric problems which can be summarized as follows:

Autocorrelation: This happens when:

ut =

L∑
l=1

γlut−l + εt, t = 1, . . . , T, (2)

where, typically, εt ∼ iid(0, σ2), and L is the number of lags in the autoregressive process.

Heteroskedasticity: This is the case when:

E(u2
t |xt) ≡ var(ut|xt) = f(xt; δ), (3)

for some function f(·) and parameters δ ∈ RK .

Nonlinearity: When nonlinear functions of the explanatory variables have been omitted from (1).

Endogeneity: When the assumption E(ut|xt) = 0 is violated.

Failure in out-of-sample forecasting: When actual and predicted values out-of-sample (or in a hold-out

sample) are not “close” enough.

Autocorrelation and heteroskedasticity are not considered as problems, per se, as one can always use “robust”-

HAC standard errors. However, this practice of correcting standard errors but not ordinary least squares (OLS)

estimates is misguided. Autocorrelation and heteroskedasticity, more often than not, are, in reality, specification

problems and, as such, they indicate misspecification in some direction(s). Therefore, they really call for re-

examining the specification in (1). Moreover, we often have to deal with the problem of outliers.

In this paper, we want to provide an estimator of parameters that satisfies multiple criteria: Specifically,

additionally to minimizing the sum of squared residuals in (1), we also need to minimize simultaneously the presence

of autocorrelation, heteroskedasticity, misspecification arising from nonlinearities, endogeneity, and failure in out-

of-sample forecasting.

3 The multi-objective nature of regression problems

Suppose the model in (1) has been estimated using a certain technique (not necessarily OLS) and the resulting

estimates are β̂. Then, autocorrelation can be tested via the hypothesis H0 : γ1 = · · · = γL = 0 under the

specification in (2) where ût = yt − x′
tβ̂ is used in place of ut.

Heteroskedasticity is traditionally tested using White’s form:

h(ût) = δ0 + δ′1xt + δ′2vech(x
′
t ⊗ xt) + ξt, (4)

for some error term ξt. Moreover, ⊗ is the Kronecker product of two vectors, viz. a⊗ b = [aib, i = 1, . . . , dim(a)],
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and vech removes all duplicate elements. This is a second order approximation to an arbitrary variance function,

and h(ût) = û2
t .

Functional form misspecification is traditionally tested using Ramsey’s Regression Specification Error Test

(RESET) . If ŷt = x′
tβ̂, the RESET test uses the regression:

ût = a0 + a1ŷ
2
t + a2ŷ

3
t + a3ŷ

4
t + ζt, (5)

with an error term ζt. If a1 = a2 = a3 = 0 we conclude there is no neglected nonlinearity.

Endogeneity is trickier and cannot be tested using OLS regressions (notice that all the above tests can be

effectively implemented using OLS residuals and fitted values). All we can do, practically, is to find a vector of

instruments (say zt ∈ Rdz ) such that E(ut|zt) = 0 and E(ztx
′
t) 6= 0 to implement the so called Instrumental

Variables (IV) estimator or the Generalized Method of Moments (GMM) estimator.

Out-of-sample forecasts, say {ŷT+h, h = 1, . . . , H}, can be compared to actual values yT+h to ŷT+h using a

metric such as root-mean-squared-error (RMSE), mean absolute error (MAE), etc. Finally, outliers can be avoided

by adopting a norm other than L2 when minimizing the average deviation of ut(β) = yt − x′
tβ, as we explain in the

next section.

4 Multi-criteria OLS and IV

In the absence of endogeneity, we propose a new formulation of OLS which takes explicitly into account, autocor-

relation, heteroskedasticity, possible nonlinearity, and out-of-sample forecasts as follows:

min
β

T−1
T∑

t=1

(yt − x′
tβ)

2,

(
T−1

T∑
t=1

|yt − x′
tβ|p

)1/p

, δ′δ, a′a, γ′γ,H−1
H∑

h=1

|ŷT+h − yT+h|

 . (6)

The first criterion is the usual OLS criterion for fit. The second minimizes the Lp-norm (for example p = 1

provides the Least Absolute Deviations (LAD) estimator and p → ∞ provides the maximum absolute residual,

i.e. the Chebyshev norm). Here δ = [δ′1, δ
′
2]

′, a = [a1, a2, a3]
′ and γ is defined by (2). Therefore, δ′δ deals with

heteroskedasticity, γ′γ with autocorrelation, a′a with problems of neglected nonlinearity, and the last criterion

minimizes the average absolute error of out-of- sample forecasting using a hold out sample {yT+1, ..., yT+H}. To

avoid heteroskedasticity, autocorrelation, and nonlinearity, ideally, we should have δ′δ = γ′γ = a′a = 0.

Moreover, we may have problems with outlying observations which are taken care of by using p = 1 or similar.

In addition, if a set of linear restrictions must be imposed, the minimization above is subject to:

Rβ ≤ b, (7)
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where R is a J × k matrix of coefficients representing the J restrictions, and b is a J × 1 vector of constants.

If endogeneity is thought to be a problem, and instruments zt ∈ Rdz are available, the problem in (6) can be

reformulated as follows:

min
β

T−1
T∑

t=1

(ỹt − x̃′
tβ)

2,

(
T−1

T∑
t=1

|ỹt − x̃′
tβ|p

)1/p

, δ′δ, a′a, γ′γ,H−1
H∑

h=1

|ŷT+h − yT+h|

 , (8)

where Z is the T × dz matrix of instrumental variables, ỹt = ztyt, x̃t = ztx
′
t. A more convenient expression results

if we express (1) in vector form:

y = Xβ + u. (9)

Given the matrix of instruments, we have:

Z ′y = Z ′Xβ + Z ′u, (10)

where by definition E(Z ′u) = 0. This can be written as

Z ′y = Z ′Xβ + e, (11)

where e = Z ′u. The IV estimator is β̂IV = (Z ′X)−1Z ′y when dz = k. When dz > k one can use the OLS estimator:

β̂IV = (X ′ZZ ′X)−1X ′ZZ ′y. (12)

Since

cov(e) ∝ (Z ′Z)−1, (13)

the Generalized Instrumental Variables Estimator (GIVE) is the Generalized Least Squares (GLS) estimator applied

to (10):

β̂GIV E = [X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y. (14)

Of course, using (8) is more transparent. If we define ũt(β) = ỹt − x̃tβ, and ũ(β) = [ũt(β), t = 1, ..., T ]′ the

GIVE form of (8) is:

min
β

T−1ũ(β)′(Z ′Z)−1ũ(β),

(
T−1

T∑
t=1

|ũt(β)|p
)1/p

, δ′δ, a′a, γ′γ,H−1
H∑

h=1

|ŷT+h − yT+h|

 , (15)

possibly subject to (7). To obtain δ, a, γ which implicitly depend on the estimator β we perform regressions in (4),

(5), and (2). Similarly, for the hold-out-sample we define: ŷT+1:T+h = x′
T+1:T+hβ.

Additionally, one may wish to avoid OLS altogether in (15) and use Rousseeauw’s (1984) least median of
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squares (LMS) technique:

min
β

{
median
t=1 ,...,T

(ỹt − x̃′
tβ), δ

′δ, a′a, γ′γ,H−1
H∑

h=1

|ŷT+h − yT+h|

}
. (16)

This formulation begins directly with LMS and then proceeds with autocorrelation, heteroskedasticity, ne-

glected non-linearity, endogeneity, and out-of sample forecasting. Relative to (15), (16) deals with endogeneity in a

somewhat clumsy way as it does not take account of the covariance of errors given by (13). Choosing between (15)

and (16) is an empirical issue that we try to resolve on the basis of Monte Carlo simulations.

Suppose now θ = [δ′, a′, γ′]′ denotes the corresponding parameters for heteroskedasticity, neglected nonlin-

earity and autocorrelation. It may not be enough to make the Euclidean norm ||θ|| as small as possible as in (6),

(15) or (16). What is of interest is to be able to accept the hypothesis: H : θ = 0. To this purpose, we would like

to minimize the maximum coefficient of determination (R2) in (6), (15), and (16). If the maximum coefficient of

determination in regressions (2), (4), and (5) is denoted by R2
θ then the modified multi-criteria IV problems can be

stated as follows:

min
β

T−1ũ(β)′(Z ′Z)−1ũ(β),

(
T−1

T∑
t=1

|ũt(β)|p
)1/p

, δ′δ, a′a, γ′γ,R2
θ,H

−1
H∑

h=1

|ŷT+h − yT+h|

 , (17)

min
β

{
median
t=1 ,...,T

(ỹt − x̃′
tβ), δ

′δ, a′a, γ′γ,R2
θ,H

−1
H∑

h=1

|ŷT+h − yT+h|

}
. (18)

Additionally, if we target statistical insignificance of δ, a, γ we can consider the maximum absolute value of

the t-statistics for these coefficients, which we denote by tθ. Therefore, we can modify (17) and (18) as follows:

min
β

T−1ũ(β)′(Z ′Z)−1ũ(β),

(
T−1

T∑
t=1

|ũt(β)|p
)1/p

, δ′δ, a′a, γ′γ,R2
θ, tθ,H

−1
H∑

h=1

|ŷT+h − yT+h|

 , (19)

min
β

{
median
t=1 ,...,T

(ỹt − x̃′
tβ), δ

′δ, a′a, γ′γ, tθ, R
2
θ,H

−1
H∑

h=1

|ŷT+h − yT+h|

}
. (20)

Therefore, we have eight objectives in (19) and seven objectives in (20), possibly subject to (7). Additional

restrictions that we may want to impose are as follows:

−2 ≤ tθ ≤ 2,

R2
θ ≤ 0.10,

H−1
∑H

h=1 |
ŷT+h−yT+h

yT+h
| ≤ 0.05.

(21)
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The expression in the last constraint is Mean Absolute Relative Error (MARE). The other two constraints

imply that i) the maximum absolute value of t-statistics in diagnostic regressions, which is denoted by tθ, is

less than the 95% critical value (1.96 which is close to 2), and ii) the maximum coefficient of determination in

diagnostic regressions is less than 10%. The value of the coefficient of determination in diagnostic regressions,

shows the explanatory power of such regressions. If large then the presence of autocorrelation. heteroskedasticity

and misspecified functional form cannot be excluded. Clearly, in practice, we want to avoid this.

Under these constraints, a solution may not exist so one may want to remove (21) and examine their values at

a Pareto optimal solution. We examine the behavior of estimators in both (19) and (20). We use 10,000 simulations.

In all cases we have T +H observations where H = 20 is the length of the hold-out sample.

5 Solution technique

Due to the presence of absolute values the multi-criteria problems in (19) and (20) are not differentiable so, finding

a Pareto optimal solution is difficult, and, clearly, not available in closed form. For the solution technique, we rely

heavily on Tsionas (2017) although we avoid the use of cumbersome Sequential Monte Carlo or Particle Filtering

techniques. A significant advantage of the technique proposed here is that it delivers (posterior) standard deviations

of parameters of interest and, therefore, confidence bands can be constructed as well. This is in contrast to other

multi-objective optimization techniques which, if applied to the present problem, would not deliver measures of

statistical uncertainty such as standard errors. Standard errors would have to be computed via sub-sampling or

bootstrap methods which would increase the complexity of existing multi-objective methods and, at any rate, they

would put them at par with our MCMC technique for Bayesian inference.

Suppose F (β) = (F1(β), ..., Fn(β))
′ ∈ Rn, F = (F 1, ..., Fn)

′ ∈ Rn. The objective is to solve the problem:

min
β∈X⊆Rk

F (β), (22)

where β incorporates all restriction on β. As in Qu et al. (2014) we settle for global Pareto optimality, meaning that

β∗ is a solution if and only if there does not exist β ∈ X and β̂GIV E = [X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y.F (β) ≤

F (β∗), F (β) 6= F (β∗).

In multi-criteria decision making the problem is:

min
β∈X

n∑
i=1

αiFi(β), (23)

for a certain vector of Pareto weights α = (α1, ..., αn)
′ which belong to the unit simplex, S = {α ∈ Rn : αi ≥ 0, i =

1, ..., n,
∑n

i=1 αi = 1}. In this problem, we can get a solution for any given set of αs. Moreover, if we solve (23) for

a range of values of α ∈ S we can trace out the Pareto frontier. Therefore, we proceed as follows. Problem (23) is
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equivalent to finding the mean of the following posterior distribution1:

p(β|α, h, F ) =
exp {−h

∑
αiFi(β)} p(β)∫

X
exp {−h

∑
αiFi(b)} p(b)db

, (24)

for a given positive constant h and a prior for β , denoted by p(β). For this prior, it is reasonable to assume:

β ∼ Nk(β̂OLS , ϕs
2(X ′X)−1), (25)

where β̂OLS = (X ′X)−1X ′Y , û = (y−Xβ̂OLS)
′(y−Xβ̂OLS), and (n−k)s2 = û′û, and ϕ = 10. This prior depends

on the data so, strictly speaking, it is not a pure, coherent Bayes prior. Nevertheless, it is reasonable in our context

which can, in fact, be given an empirical Bayes interpretation. Here, we re-emphasize that we can condition on the

αs. Then, the posterior mean is:

β =

∫
X
β · exp {−h

∑
αiFi(β)} p(β)dβ∫

X
exp {−h

∑n
i=1 αiFi(b)} p(b)db

. (26)

This result goes back to Pincus (1968) and it is known that h must be “large”. If we consider the non-normalized

posterior:

p(β, h|α, F ) ∝ exp

{
−h

n∑
i=1

αiFi(x)

}
p(β)p(h), (27)

for a certain prior p(h) then h becomes part of the parameter vector. For example, we can use a gamma prior of

the form:

p(h) ∝ ha−1 exp {−ch} , h > 0, a, b > 0, (28)

where the parameters a and b can be chosen so that the prior mean E(h) = a
c is small and the prior variance

V ar(h) = E(h)
c is also small. For example, we can set a = 0.01 and c = a

100 . In this way, we do not have to consider

different values of h, although it might be useful to perform sensitivity analysis. An alternative is to integrate

analytically h out of (27) using (28) to obtain:

p(β|α, F ) ∝

{
c+

n∑
i=1

αiFi(β)

}−a

. (29)

Further analytical integration with respect to α (when unknown and assigned a prior distribution) is not

possible. Therefore, the posterior mean has to be computed numerically. Here, we use a standard random-walk

Metropolis-algorithm (a well known Markov Chain Monte Carlo [MCMC] technique). This MCMC technique
1One may proceed in two ways. One is the scalarization approach where a single objective is formulated and corresponding Pareto

optima are determined numerically (Das & Dennis, 1998). The alternative is to solve the first-order conditions for Pareto optimality
in multiobjective programming (see Fliege, Grana Drummond, & Svaiter, 2009; Vieira, Takahashi, & Saldnha, 2012). Qu et al. (2011)
present a quasi-Newton method for smooth problems. Qu, Goh, and Liang (2013) and Neto, Silva, Ferreira, and Lopes (2013) consider
methods for non-smooth objectives. Qu et al. (2014) propose an extension of the quasi-Newton method in Qu et al. (2011) to the
non-smooth case along with a new algorithm to compute the critical point under non-convexity. Other techniques are presented in
Angilella et al. (2017), Chica et al. (2016), Cardoso et al. (2016), Kadziński et al. (2017), Mavrotas et al. (2015), Paul et al. (2017),
and Tsai and Chen (2017). It is not the purpose of this study to compare different solution techniques for multi-criteria decision-making
problems.
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produces a set of draws {β(s), s = 1, ..., S} that converges (as S increases) to the posterior whose non-normalized

density is (29). To construct this sequence suppose we have β(s) and we generate a candidate, say, βc as follows:

βc ∼ N (β(s), τs2(X ′X)−1), (30)

where τ is a certain parameter. Then we accept the candidate, that is β(s+1) = βc with the Metropolis-Hastings

probability:

min

{
1,

p(βc|α, F )

p(β(s)|α, F )

}
, (31)

otherwise we set β(s+1) = β(s). We select τ so that the acceptance ratio is between 20-30% during the “burn in”

phase, as the optimal acceptance ratio for a multivariate normal posterior is close to 24%.

On an average personal computer, the algorithm does not take more than about a few minutes of wall clock

time to perform full posterior analysis in samples of size 1,000. Convergence is examined using two techniques: i)

Geweke’s (1992) t-statistic for convergence of posterior means, and ii) by running separate chains starting from

randomly chosen different initial conditions. Ten such chains are used here and computation is implemented in

parallel. This parallel implementation does not contribute to increases in computation timing.

Convergence of MCMC algorithms like the ones described here can be tested by starting the algorithm from

different sets of initial conditions and testing convergence using Geweke’s (1992) diagnostic which is asymptotically

distributed (in the number of MCMC draws) as standard normal. Using the settings reported here and starting

from ten randomly selected sets of initial conditions, Geweke’s z-test indicated that our MCMC chains are not

incompatible with the hypothesis of convergence.

6 Monte Carlo study

We consider the following model. First, k = 5 so that we have five regressors. The specification is yt = 1 + xt1 +

xt2 + xt3 + xt4 + xt3xt4 + ut, ut ∼ iidN (0, 0.12), t = 1, . . . , T . The regressors xt3, xt4 are omitted and they are

generated as follows:

xt1 = 0.8xt−1,1 + ut + e, et ∼ iidN (0, 0.12), (32)

xt4 =
1

exp
(
− xt3−min xt3

max xt3−min xt3

) + |xt1 + x2
t1|vt + ut, vt ∼ iidN (0, 1). (33)

Equation (32) implies that xt1 is autocorrelated. Equation (33) implies that xt2 is heteroskedastic and

depends on xt1 in a nonlinear way. In fact, the first term is a sigmoid. Notice that to allow for endogeneity both

(32) and (33) depend on ut.

By omitting xt3, xt4, xt1xt2 all the problems we mentioned are simultaneously present. We construct five
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instruments as follows:

zti = βi1xt1 + βi2xt2 + εti, εti ∼ iidN (0, 0.12), i = 1, . . . , 5, (34)

and βi1, βi2, i = 1, . . . , 5, are generated from a uniform distribution in [−1, 1].2 We implement MCMC using 15,000

passes, the first 5,000 of which are discarded to mitigate possible start-up effects. The initial conditions are obtained

from OLS. We assume that all Pareto weights are equal.

From the results in Table 1, it turns out that OLS always has a bias as expected and the RMSE remains

approximately constant for all sample sizes. The multi-criteria OLS does better but still it is biased and inconsistent.

In contrast, both multi-criteria IV techniques have much lower bias and RMSE which decrease as the sample size

increases, showing that they have great potential in large samples. Autocorrelation is eliminated in, approximately,

75-80% of Monte Carlo samples, while heteroskedasticity is eliminated in over 80% of the samples. The multi-

criteria OLS is not equally successful and, of course, this can be attributed to the fact that it does not deal with the

endogeneity problem. From Figure 1, it is evident that multi-criteria IV provides estimators which are much closer

to the true values compared to OLS and multi-criteria OLS. It seems that there is no ground to choose between

multi-criteria IV as in (19) and (20). However, from Table 1, it is evident that average mean absolute relative error

is much lower for the multi-criteria IV estimator in (19).
2Several different parameter values have been tried and the results were the same.
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Table 1: Monte Carlo results
OLS Multi-criteria IV, (19) Multi-criteria IV, (20) Multi-criteria OLS

Average (absolute) Bias of estimator
T = 100 3.12 1.35 1.29 1.71
T = 500 3.23 0.72 0.85 1.65
T = 1, 000 3.20 0.36 0.35 1.52

Average RMSE of estimator
T = 100 5.15 1.89 1.77 1.81
T = 500 5.19 0.13 0.17 2.33
T = 1, 000 5.21 0.025 0.036 2.45

Autocorrelation
T = 100 100% 25.2% 25.3% 87.3%
T = 500 100% 19.3% 20.5% 82.5%
T = 1, 000 100% 12.0% 20.4% 82.0%

Heteroskedasticity
T = 100 100% 17.3% 17.8% 92.7%
T = 500 100% 15.2% 15.3% 91.5%
T = 1, 000 100% 15.5% 15.5% 91.5%

RESET
T = 100 100% 12.4% 12.7% 100%
T = 500 100% 8.33% 8.10% 100%
T = 1, 000 100% 5.71% 8.10% 100%

Average Predictive MARE
T = 100 33.5% 3.15% 3.71% 41.2%
T = 500 33.2% 1.20% 2.89% 41.0%
T = 1, 000 33.1% 0.71% 2.77% 41.0%

Notes: RMSE is root mean squared error of the estimates. MARE is mean absolute relative error in out-of-sample predictions with H = 20. The
percentages represent the proportion of Monte Carlo samples where standard F -tests for autocorrelation, heteroskedasticity, and RESET are
statistically significant at the 5% level of statistical significance. The percentages in Average Predictive MARE, represent actual mean absolute
relative error in out-of-sample predictions with H = 20.

Sampling distributions of the different estimators are reported in Figure 1. Notably the sampling distribution

of multi-criteria OLS is non-normal even in large samples. Multi-criteria IV has a non-normal sampling distribution

only when T = 100.

Figure 1: Sampling distributions
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To examine more closely the behavior of the two IV estimators, we present the sampling distributions of tθ,

R2
θ and MARE in Figure 2.
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Figure 2: Sampling distributions of tθ, R2
θ and MARE
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For both multi-criteria IV estimators, maximum absolute t-statistics are less than 1.96 for multi-criteria IV-1

but they exceed this critical value for nearly 1% of the samples when we consider multi-criteria IV-2. Values of

R2
θ are less than 0.10 in both cases (although lower for multi-criteria IV-1). Finally, the sampling distribution of

MARE is concentrated around 0.70% for multi-criteria IV-1. Although there is some concentration around this

value for multi-criteria IV-2, its sampling distribution allows for values as large as over 8%. From this point of view,

multi-criteria IV-1 performs better than multi-criteria IV-2.

To visualize the Pareto front, we assume a simple model where:

yt = βxt + ut, t = 1, . . . , T,

ut = ρut−1 + εt, εt ∼ iidN (0, 0.12),
(35)

where β = 1, xt ∼ iidN (0, 1), and ρ = 0.7. The weight for the OLS criterion is λ ∈ (0, 1) and the weight for

autocorrelation is 1 − λ. As λ → 1 we obtain OLS, and as λ → 0 we focus exclusively on autocorrelation. As

the latter case does not make sense, we restrict λ to [0.20, 1] and we examine 100 points in this interval. We also

examine the heteroskedastic case where

ut|σt ∼ N (0, σ2
t ), t = 1, . . . , T,

σ2
t = exp

(
0.1 + xt + x2

t

)
.

(36)

In both cases the sample size is T = 100. The Pareto front is presented in panel (a) of Figure 3, where b

denotes the estimate of β.

As the choice of λ is not obvious from panel (a), in panel (b) we report MARE across different values of λ for

the autocorrelation and heteroskedasticity cases. Out-of-sample prediction is implemented using a hold-out sample

of size 20. Clearly, MARE attains a minimum value close to 0.55 for autocorrelation, and 0.47 for heteroskedasticity,

showing that some balance between in-sample fit and autocorrelation / heteroskedasticity is required. The Pareto

weights are not far from 0.5, at least in this example. It is possible that in some cases MARE does not attain a

minimum for the chosen values of λ. In such cases, one can use leave-one-out cross-validation similarly to bandwidth

selection in non-parametric estimation.
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Figure 3: Pareto front
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7 Empirical application

To illustrate the usefulness of the new techniques, we use the same data-construction methodology as in Wang and

Zhu (2010). We use data for 2,014 trading days from 11/June/2011 to 12/June/2019, which covers nearly eight

years, for the NASDAQ index. From the daily closing prices of NASDAQ indices, Wang and Zhu (2010) proposed

to compute the 5 (weekly), 10 (biweekly), 20 (monthly), and 50-day (quarterly) moving averages, which are widely

used technical indicators by traders. Let Pt denote the closing price on day t and At,T be the T -day moving average

on day t, where At,T is computed as follows:

At,T = T−1
t∑

k=t−T+1

Pk, T = 5, 10, 20, 50. (37)

Next, the moving average log-return Rt,T (including the daily log-return) for each day t, is as follows:

Rt,T = ln
At,T

At−T,T
, T = 5, 10, 20, 50. (38)

In turn, we have five time series: (1) Rt,1, (2) Rt,5, (3) Rt,10, (4) Rt,20, and (5) Rt,50. The dependent variable

is yt = Rt+1,1, the next day’s log-return. Then we constructed the input features. For the jth time series, we

extract pj data points to construct the input features. Specifically, let

xj
t =

[
Rt−(pj−1)Tj,Tj

, Rt−(pj−2)Tj ,Tj
, . . . , Rt,Tj

]
, j = 1, . . . , 5, (39)

where T1 = 1, T2 = 5, T3 = 10, T4 = 20, T5 = 50. The overall input features for day t are:

xt = [x1
t ,x

2
t ,x

3
t ,x

4
t ,x

5
t ]. (40)
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Figure 4: Performance for 100 last trading days for NASDAQ
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As in Wang and Zhu (2010) , x1
t and x2

t capture the short-term (daily and weekly) behaviors of the market,

while x4
t and x5

t capture the long-term (monthly and quarterly) trends. Moreover, “[i]t is not clear a priori which

features are important for predicting the next day return, neither how they should be combined to predict (Wang

and Zhu, 2010, p. 110). The problem with the specification of explanatory variables in (40) is that, since they are

constructed from functions of lagged values of yt, they introduce, autocorrelation as well as heteroskedasticity in

the error term. The error term is also expected to be heteroskedastic because of the well-known stylized fact that

we have time-varying second-order moments in financial data.

To compare the various alternatives, we consider buy-and-hold strategy, artificial neural network (ANN)3,

OLS and MCDR for the last 100 trading days which have not been taken into account in estimations.

In the upper left panel of Figure 4, we present NASDAQ log-returns. In the upper right panel we compare buy-

and-hold, ANN, OLS, and MCDMR. OLS, clearly, does not do well relative to buy-and-hold and ANN. MCDMR,
3Our formulation is yt = x′

tβ0 +
∑G

g=1 λgϕ (x′
tβg), where ϕ(·) is the sigmoidal activation function, ϕ(z) = (1 + e−z)−1, z ∈ R. Our

selection of G was based on the ANN model that delivers the best out-of-sample mean absolute prediction error, and we found G = 4.
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for the most part, does quite well in terms of cumulative returns, even when compared to ANN. In the lower panel

we report results from Multi-criteria IV along with 95% Bayes probability intervals which can be computed easily,

once MCMC draws from the posterior in (29) are available. It turns out that Multi-criteria IV delivers rather tight

error bounds so, the performance in terms of cumulative returns, is statistically, important.

8 Managerial implications

That linear regression is used in many managerial decision making processes, is well-known and beyond any doubt.

Stam (1997) succinctly pointed out the relevance in discrete variable classification, mixed variable classification,

and in application areas which are often susceptible to data analytical problems, such as medical diagnosis, psy-

chology, marketing, financial analysis, engineering and pattern recognition.In this paper, we provide an estimator

of parameters in linear regression or instrumental-variable models that satisfies multiple criteria: In addition to

minimizing the sum of squared residuals in (1), we also need to minimize simultaneously the presence of autocor-

relation, heteroskedasticity, misspecification arising from nonlinearities, endogeneity, and failure in out-of-sample

forecasting. These problems are commonly encountered in applications, but they are addressed, for the most part, in

an ad hoc way. A formulation of linear regression estimation as a multi-criteria decision-making problem, addresses

these problems in a common and principled framework, also permitting the user to assign different importance to

different objectives, if so desired. Managers often need to understand how a process work by using the framework

of linear regression. We have argued that autocorrelation and heteroskedasticity are not incidental problems that

can be treated in a mechanical way by using, for example, so-called robust standard errors, which are now part

of commonly available statistical software. Autocorrelation and heteroskedasticity rather indicate misspecification

of the model as it is quite likely that autocorrelated and / or heteroskedastic variables, have been omitted from

the model, becoming part of the error term. Our new multi-criteria decision making for OLS and IV regression, is

found to perform well in a Monte Carlo study. An application to NASDAQ daily returns shows that the cumulative

predicted returns are higher than buy-and-hold strategies and even artificial neural networks, whereas least-squares

regression fails to deliver acceptable results.

These particular aspects of the model as it relates to forecasting performance are encouraging and deserve

further investigation in future research.

Concluding remarks

In this paper, we consider OLS and IV regression. We argue that specification problems related to autocorrela-

tion, heteroskedasticity, neglected non-linearity, unsatisfactory out-of-small performance and endogeneity can be

addressed in the context of multi-criteria optimization. We show that the new technique performs well, it minimizes

all these problems simultaneously, and effectively eliminates them for the most part. Markov Chain Monte Carlo
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techniques are used to perform the computations. An application to NASDAQ daily returns shows that cumulative

predicted returns are higher than buy-and-hold strategies and even an artificial neural network, whereas OLS re-

gression fails to deliver acceptable results. As such, the new techniques are likely to be of interest for practitioners in

most applied fields dealing with estimation, misspecification and interpretation of regression models. In particular,

the method may relevant in portfolio optimization and prediction, as it minimizes the effect of regression problems,

simultaneously. Although we use Bayesian analysis and MCMC methods to solve the multi-criteria OLS and IV

problems, it is possible to use several other techniques (see Footnote 1). The downside is that computation of stan-

dard errors and confidence bands are not straightforward to derive, and it is likely that the use of the sub-sampling

bootstrap and other variants becomes imperative thus increasing computational complexity and timing. From this

point of view, as simulation techniques are required, the use of Bayesian MCMC may be more straightforward, in

practice.

The new techniques allow dealing with outliers in a straightforward way, as appropriate norms of errors are

introduced among the objectives in multi-criteria OLS / IV. Out-of-sample fit is also taken into account so that

the techniques deliver the best predictions possible when commonly encountered regression problems are also taken

into account.

In terms of future research several problems are open. First, a generalization to Generalized Method of

Moments estimation is possible to deal with specification problems of regressions. Second, it would be worthwhile

to address the same problems in non-linear regression models, which seems to be quite easy. Third, methods for

selecting valid instruments in practical situations should be developed. One such technique in the big-data context

is provided by Bai and Ng (2010).
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