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We analyze the conductance of a one-dimensional topological superconductor periodically driven to host
Floquet Majorana zero-modes for different configurations of coupling to external leads. We compare the con-
ductance of constantly coupled leads, as in standard transport experiments, with the stroboscopic conductance
of pulsed coupling to leads used to identify a scattering matrix topological index for periodically driven systems.
We find that the sum of DC conductance at voltages multiples of the driving frequency is quantitatively close
to the stroboscopic conductance at all voltage biases. This is consistent with previous work which indicated
that the summed conductance at zero/pi resonance is quantized. We quantify the difference between the two
in terms of the width of their respective resonances and analyze that difference for two different stroboscopic
driving protocols of the Kitaev chain. While the quantitative differences are protocol-dependent, we find that
generically the discrepancy is larger when the zero mode weight at the end of the chain depends strongly on the
offset time between the driving cycle and the pulsed coupling period.

I. INTRODUCTION

Driven non-equilibrium quantum systems can host a va-
riety of distinct phases with no counterparts in equilibrium
systems'~®. Unlike time independent systems whose proper-
ties are intrinsic to the setup and hard to change in situ, the
nature of phases in driven systems can be controlled by the
more versatile external drive. Of particular interest are topo-
logical systems known to host conducting states at the edges
of an insulating bulk, which are robust to local disorder and
protected by the symmetries of the given system®!®. Sub-
jecting such systems to a source of periodic driving results
in the emergence of additional topological phases>'!~!7. One
such example is that of a one-dimensional p-wave supercon-
ductor (Kitaev chain) subject to a periodic driving of period
T, which has been shown to possess, in addition to Majorana
zero modes at zero energy'®, protected modes at energy /T
(Majorana 7 modes)'®2. These driven states of matter hold
promise for a wider range of applications’®?%. In particular
the driven Kitaev wire has been stipulated as a potential candi-
date for demonstrating a topologically protected, non-Abelian
Majorana braiding operation within a single wire'”?°. Such
braiding operations are a necessity for topological quantum
computing and hence the exploration of diverse alternatives
for their realizations is a highly desirable goal.

The gapless surface states found in topological systems in-
fluence the scattering of electrons incident from the leads in an
open geometry setup’*=34. Scattering matrices provide topo-
logical indices for a full classification of topological phases
as well as an understanding of the periodicity of the 10 fold
way>>38_ Additionally, expressing the topological indices in
terms of a scattering matrix allows one to relate the topology
to measurable transport properties. Unlike their static counter-
parts, the invariants of DC scattering matrices of periodically
driven systems are not directly related to the presence of topo-
logically protected states at their surface. Instead it is possi-
ble to relate the topological properties of Floquet systems to
a gedanken scattering experiment, in which the leads are cou-
pled to the system only at discrete times separated by the driv-

ing period'®. While the application of these results to realis-
tic measurable DC conductance in electronic systems remains
unclear®*?, Floquet topological system have been shown to
exhibit a quantized sum of conductances at bias multiples of
the driving frequency?’-??, indicating that a modified relation
between the two seemingly different physical processes might
still exist.

In this manuscript we explore the relationship between
topological invariants and the average DC conductance prop-
erties of a driven non-interacting electronic system. By ana-
lyzing the conductance associated with pulsed coupling to the
leads, which defines the scattering matrix topological invari-
ant, we show that it generically differs from its counterpart
in the constantly coupled leads setup, i.e. the conductance
summed over all Floquet sideband energies, which is acces-
sible in experiments. Interestingly, however, we show that, in
the limit of small coupling to the leads, the difference between
the two is generically small and can be quantified in terms of
the difference of the respective resonance widths. We analyze
these features for a one-dimensional topological superconduc-
tor with two different stroboscopic drivings characterized by
sudden switches between two Hamiltonians, Hy and H; and
explore the dependence of the difference between the two con-
ductances on the different regions of the phase diagram.

II. CONDUCTANCE AND SCATTERING MATRIX FOR
DIFFERENT SYSTEM-LEAD COUPLINGS

We consider a general setup in which a one-dimensional,
non-interacting, periodically driven electronic system is in
contact with external leads. The latter are electron reservoirs,
with constant density of states, tunnel coupled to the system
of interest. The system is schematically presented in Fig.1 and
is described by the Hamiltonian

H= Hsys(t) + HT + Hleada (1)

where Hgys(t) = Zé\fk:l c}hj7;?(t)ck is the Hamiltonian Qf
the system of interest, which is assumed to be a generic
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Figure 1. (a) Schematic of an electronic system connected to two
external leads (terminals) via tunneling rates 'z, I'r and driven via
periodic control of its parameters X1, X2 the time dependence of
which is sketched in (b). Each terminal (L, R) includes ingoing and
outgoing (+—, —) electron (e) and hole (h) scattering states. (c) Two
scattering scenarios are depicted, corresponding to either a contin-
uous coupling to the leads (dashed lines) or time-pulsed couplings
with periodicity 1" (solid lines).

non interacting system of local fermionic degrees of freedom
annihilated by the operator ¢;. The Hamiltonian is explic-
itly dependent on time in a periodic way, Hgys(t + T) =
Hgys(t), so that T = 27/w is the period of the external
driving. The tunneling to the leads is described by Hr =

Dk \/FaaL,kKaCja + h.c.} , where K, is the contact ma-

trix between the system and the lead «, with I', character-
izing the coupling strength, and c;_ annihilates a particle in
the mode j,*. Finally, the leads are generic free particle
reservoirs with constant density of states and linear disper-
sion, H, = v,k Zk[al wOak — bTa wbak], where aq j and
ba.r, annihilate ingoing and outgoing particles with momen-
tum k in the reservoir « = L, R. The creation/annihilation
operators for energy eigenstates in each lead can be identified
with the momentum creation operators, e.g. by (E) = by g
and ar,(E) = ar  via E = vrk respectively.

The transfer of particles between the leads and the system is
described by the scattering of ingoing particles to the outgoing
modes of the leads due to the system. The current in lead « is
given by the net flux of particles through a section of the lead
at a given position. As long as the energies involved in the
transport and driving are much smaller than the Fermi energy
of the terminals, the current is expressed in terms of creation
and annihilation operators of the scattering states by**

(bl (£)ba (1)) — (al(Daa (D)), 2

where ao(t) = (1/27m) [dteFlan(E), ba(t) =
(1/2m) [ dte'F'b,(E), the spatial dependence is imma-
terial, i.e. by (t) = bo(z,t), and the operators are explicitly
time-dependent due to the time-dependence of the system.
Note that, consequently, the current is explicitly time depen-
dent. It can be expressed in term of the scattering matrix of

Ia(t) =

= o

the system via:

ba(t) = / 4t St )as (). 3)

The form of the scattering matrix, and hence the current de-
pends on the system Hamiltonian and on the coupling to the
leads.

Rewriting the above relation in the energy domain, we ob-
tain

ba(E) = Zsaﬂ(EaEn)aB(En)v €]
n,B

where E,, = F + nw and we have used the periodicity of the
system to constrain the Fourier expression of the scattering
matrix to take the form>,

Sti)=3" / dBe POt S(B B, (5)

The two-energy scattering matrix, S(E, E,,), is known as the
Floquet scattering matrix, and describes scattering processes
in which an outgoing particle of energy E emerges after ab-
sorbing/releasing energy in quanta of w in the scattering pro-
cess, and encodes all the information of the time-dependent
scattering process™ 7.

Using the Floquet scattering matrix, one can express the
current averaged over the driving period I, = £ [ dtI,(t) in
the form

=5 [ Yy bsaﬁ(En,E)Ffﬁ(E)

)

- |SB,04(En7 E)|2foz(E)

where fo(E) = (al(E)as(E)) is the distribution function
of particles entering the scatterer through channel «. The dif-
ferential conductance is then found via the derivative of the
current with respect to the voltage bias, G, = dI,/dV,.

The formulation can be kept general for non-interacting
systems to include superconductors. This requires accounting
for both particle and hole degrees of freedom*®. In this way,
the expression for current in Eq. (6) remains unchanged with
the index 8 now running over both particle and hole degrees
of freedom in each external lead.

For simplicity we consider two external leads with a sym-
metric voltage bias with respect to the superconductor fermi
level, so that the corresponding Fermi distribution functions
for both electrons and holes are then given by: fr. =
f(E—=€eV), fin = f(E+€V), fre = f(E + €V) and
frr = f(E — €V). In the zero temperature limit, the deriva-
tive of the Fermi distribution functions are simply step func-
tion and hence, after integrating over energy, the contribution
to the conductance from each element of the scattering matrix
can be expressed as

2
Gap(V) = %leaﬁ(Vn,V)l27 (7)



and the total conductance, in the left lead for example, reads
GL(V) :GLEL" (—V) -|— GLeRe (—V)

V)+ ) Gpre(V). ®)
BFa
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Eq. (8) is a general expression for a periodically driven
electronic systems. In the following, we specialize to two
cases in which either (i) we keep constant coupling to the leads
as typical in transport measurements setups, or (ii) the system-
leads coupling is §-like pulsed, a configuration of interest in
determining the scattering matrix topological invariants of the
system.

A. Conductance with constant couplings

We start by deriving the expression for the conductance for
the case in which the coupling to the leads is kept constant
and the time dependent driving is applied to the bulk system in
order to induce a topological phase. This is the most straight-
forward setup to be used in transport experiments?’. In order
to evaluate the Floquet scattering matrix for a given scattering
system it is useful to first consider the Floquet operator which
is the evolution over a full period F' = U(T,0), where the
evolution is dictated by an effective (non-Hermitain) Hamil-
tonian Hgy(t) — i%, where ¥ = 13, T5Ks1K; is a self
energy accounting for the coupling between the system of in-
terest and the external leads.

The Floquet operator can be decomposed in terms of left
and right eigenstates:

Flihy) = e~ o) gy
(3o P = eteesnr (5, .

Here ¢, give the so-called quasienergies of the periodically
driven system and are defined modulo the driving frequency
w. The eigenstates of the Floquet operator can be used to de-
fine the periodic Floquet eigenstates of the effective Hamilto-
nian

€))

[Wq(t)) = e Ce™TU(¢,0) ob) ,

- o - (10)
()] = e (G| U(0.0),
with harmonics given by the Fourier transform
Tt
‘\ygp>> - T/ dte™! W, (1)),
T (1
- 1 _ -
<\Il§f> = —/ dte Pt <\I/a(t)’ :
T Jo

The harmonics of the Floquet states can be subsequently used
to find the Floquet-Green’s function G? (E)*

w0 (3
Gr(E) =ZE_ P——r (12)

T

From this Floquet-Green’s function the scattering matrix ele-
ments required to find the conductance across the scattering
center can be found via the relation®

iVl 3G (B, (13)

where I',, g denote the coupling strength between the sys-
tem and corresponding scattering channel and j, g labels the
mode of the system which is tunnel coupled to lead a.

In this setup with constant couplings to leads, it has been
shown?? that in the presence of a Majorana zero/7 mode, the
conductance in Eq. (8) at resonance is subject to the quantiza-
tion condition

SOZ,B(EWH En) = 5a,56m—n,o

2¢?
> Grleor +mw) = (14)

where ¢g = 0 and ¢, = & = w/2. We will re-derive this
result in the following after comparing it with a different setup
in which the coupling to the leads is controlled in periodic
time-pulses.

B. Stroboscopic Scattering Configuration

Unlike the static case, in which the conductance quantiza-
tion is a direct consequence of the topological index associ-
ated with the scattering matrix of the system, there is no direct
relation between the Floquet scattering matrix in Eq. (13) and
the topological indices of the driven system. Instead, an alter-
native formulation of the topological index in Floquet systems
has been put forward in terms of a gedanken scattering con-
figuration, not immediately related to measurable quantities'®
For a system driven periodically with period 7', the gedanken
scattering configuration consists of instantaneously emitting
and absorbing particles from the leads into the systems at in-
tervals of period 7. Between two subsequent instantaneous
couplings to the external leads at times ¢ and ¢ 4+ 7', the un-
coupled system evolves according to its governing Hermitian
Hamiltonian Hgy(¢), from which we can define a correspond-
ing unitary Floquet operator F}. Since the Floquet operator F}
determines the unitary evolution of the decoupled system over
a period, the corresponding stroboscopic scattering matrix is
expressed as 0!

ST W
1 eiETF T

w ,
T — e ETENT — WIW !

where the matrix W encodes the coupling to the leads and,
using the notation from Eq. (1), takes the form: W =
> s VITKs.

Physically, the scattering matrix in Eq. (15) describes the
situation in which particle scatter into the absorbing terminals
stroboscopically, only at the beginning and end of each time
period’!2. Specifically, once an arbitrary starting point ¢ = 0
has been set for the periodic driving, we assume that couplings
to the terminals are performed by omitting and collecting par-
ticles at times that are separated by full periods at a time offset

S?trOb(E)
(15)




of ¢ with respect to the driving period. If we define the Flo-
quet operator F' = U(T, 0), the stroboscopic scattering matrix
is obtained using

F,=U(t,0)FU"(t,0), (16)

corresponding to the Floquet evolution operator which explic-
itly depends on the offset time ¢. Note that, while the spectrum
of the Floquet operator F}, which discriminates the existence
of Floquet edge states, is of course independent of the offset
time ¢, the stroboscopic scattering matrix depends in principle
on t. In fact, physically, the scattering between the times ¢ and
t + T depends on the specifics of the evolution between the
two times, and hence on ¢ itself.

This stroboscopic scattering matrix can be used to define
a corresponding conductance that is averaged over the offset

time ¢, I57°P = £ fo dtI;'°P, where

Ijtrob = h/ dEZ

stro 2
|SEai (B)| fo(E

A7)

b
S5 (B)|' 1a(E

The corresponding contribution to the stroboscopic conduc-
tance from each element of the scattering matrix at zero tem-
perature is then given by

STtro 62 1 stro 2
GaEt (v )—gf/o dt|Szar (V)T as)

and the total conductance reads
GEP (V) = G (=V) + G (—V)

— G (V) + ) GERN(V
BF#a

(19)
The voltage profile of this stroboscopic conductance will re-
flect the existence of topological indices of the periodically
driven system, which can be formulated in terms of the corre-
sponding stroboscopic scattering matrix [Eq. (15)]. Namely,
the presence of topologically protected edge states will result
in quantized conductance peaks. While there is a similarity
between the conductance sum-rule quantization in Eq. (14)
and the quantization of the pulsed conductance in Eq. (19), in
that both result in quantized conductance peaks at bias volt-
ages corresponding to topological edge states, the relationship
between these two quantities remains to be explored.

Unlike the physical conductance for a system continuously
coupled to the external leads [Eq. (8)], Eq. (15) shows that the
stroboscopic scattering matrix and consequently the strobo-
scopic current are both periodic in energy. This is consistent
with the fact that the quantization condition for the physical
conductance is expressed as a sum rule Eq. (14). This relation
is further highlighted by considering an intermediate scenario
in which the system is continuously coupled to the external
leads but outgoing scattered particles are only measured at dis-
crete times separated by the driving period and starting at the
delay time ¢.

In this intermediate scenario, the relation between the stro-
boscopic scattering matrix with continuous coupling to the
leads, denoted S;(E), and S(E, E,,) can now be obtained by
explicitly considering that the scattering operators are relevant
only at discrete times, hence they can be expanded in a Fourier
series

a(IT +t) = / dEa(E)e BUT+), (20)

where a(E) = >, a(IT +t)e’PUT+Y and (@l (E)aq(E)) =
fo(E)S(E — E'). Using the Fourier expansion of the scat-
tering matrix in Eq. (2), (the details of the computation are
presented in Appendix A), we find that

L(T+0) = § [dE I ERCICISACNC
and S, (E), can be expressed in terms of the Floquet scattering
matrix via

S{(E) = S(En, Enyr)e™ (22)
n,k

Although S;(F) fails to include scattered particles in be-
tween the stroboscopic detection times and is hence a non-
unitary construction, this relationship to the Floquet scattering
matrix highlights the need to sum scattering events over all
Floquet sideband energies, F,, = F + nw, in order to make a
meaningful comparison. We therefore define a summed con-
ductance

Ga(V) =D Ga(V + nw), (23)

which reproduces the expression in Eq. (14) and provided us
with the natural quantity to be compared with the quantized
conductance at zero bias in Eq. (19).

C. Weak Coupling Limit

Since both G, (V) and G5*°P(V/) are expected to display
apeak at V' = €/, with the same quantized maximum, we
can analyze their behavior in the vicinity of the resonance
leV' — €| < w and at small coupling (which is expected to
set the width of the peak) to appreciate the difference between
the two. In the case in which the system-lead coupling can be
considered weak with respect to the other energy scales asso-
ciated with the system Hamiltonian H,y(t), the self energy
contribution X can be treated as a perturbation. In particular,
the Floquet states appearing in the definition of the Floquet-
Green’s function, can be approximated by the solutions to the
uncoupled Floquet equation,

(Honl®) 55 ) 19a(6) = calbat)). @)

The first order corrections to the quasienergies due to the per-
turbation are found to be

1T
Gomg [ GOS0, @
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with the self energy term again defined as ¥ =
% s I‘(;KgK s- The elements of the Floquet scattering ma-
trix that contribute to the current in Eq. (6) can then be ap-
proximated as

K |o)

K} 18) (Bl K

PRDICE

(26)

|Saﬂ(EnaE

=T FBZ

ijrr!

where (¢;| K, |@) is the tunnel matrix element between the
mode ¢; of the system and the scattering mode «, and « runs
over both particle and hole scattering modes in each external
lead.

In the limit of weak coupling, the elements of scattering
matrix take the form of sharp Lorentzian peaks at energies
€;+rw and €;+r'w. Consequently, the sums are dominated by
contributions for which these energies coincide and hence i =
j and r = 7’ or for which the quasienergies ¢; are degenerate.
Hence, in this limit, the scattering matrix components read

|Ses(En, B)|* ~
2

’Zk (n+7 > <¢§]:) Ks ‘5>‘ 27)
d FBZ (E—ei—krw)? ’

where |¢;, ) represent the eigenstates corresponding to the de-
generate eigenvalue ¢;. As Majorana bound states are local-
ized at one end of the chain, they only couple to one of the
external leads. Consequently, their contribution to the conduc-
tance will arise from from the Andreev reflection components
of the scattering matrix. This localization of the degenerate
Floquet eigenstates allows us to henceforward drop the sum
over degenerate states k in expressions for the scattering ma-
trices. ~

The contribution to the summed conductance G(V') at zero
temperature from each term of the scattering matrix reads

~ (ol Ko |60 (0] K518)]
Gap(V) = %Fo‘rﬁ Z ‘ 24+ (V Z<eZ + mw)? ‘

_e?TaTg (o Ko |6i(t)) (:(¢)] K5 18)|”
T h T2 Z/ dtdt’ 2+ (V=€ + mw)? '

m

(28)

Close to the resonant quasi-energies, V' = ¢; /e, the conduc-
tance contributions take the form of a Lorentzian distribution:
~ () 1 (ﬂ) eV —

~ e? ’yz ’L
Gap(V) ~ 52— (

(1+22)~

where £(z) = ! is the Lorentzian function and
@ 17 2
Vi =7 | Tal{a] Kaldi(®))],
T 0 (30)
so that ¥; = Z ’yi(é)
5

(EZ' +rw — Z’%)] [E —

(Ej + r’'w + ’L’S/J)]

(

Since the Majorana bound states are localized at one end of the
system, they contribute to the conductance through Andreev
reflection only. The particle-hole symmetry of the system also
h
dictates that for Majorana states we have that fy(L ) = 1(()72 ),

Consequently, for V' ~ ¢y, /e,

~ ~ Eﬁ(eV—eU/ﬂ).

G(V) = QGLEE’Lh (V) ~ h 5/0/ (31)

Next we derive the expression for the stroboscopic conduc-
tance in the vicinity of the resonances. In order to compare
these two quantities, it is instructive to express the strobo-
scopic conductance in terms of the Floquet eigenstates of the
unperturbed driving Hamiltonian Hgys(t). We would like to
use perturbation theory to perform an expansion in the cou-
pling strength, I', of the operator appearing as a fraction in
Eq. (15). We can first rewrite this expression as a geometric
series,

1 iET k
= et FRNVIT - WIW
T BTN - WIW Zk: (A )
. 1
~ 3 (€ FT(F - FWiW).
~— 2
Ay —_——
TA;
(32)
We can write the operator A = Ay + ['A; in terms of its
eigenstates defined as, A |z;) = x; |x;):

=57 (P ay fa) (2])"
k 7

1
1_ ciBET . i) (il
3

1
T —eBTRNT — WiW

(33)
The Floquet operator of the decoupled system calculated at a
particular offset time ¢ can be expanded in terms of its eigen-
states as

(@i(D)]. (34)

F = Z e " gy (t))

The eigenstates and eigenvalues of Ay are hence given by
|p:(t)) and e’“T respectively. We can then use perturbation
theory to calculate the first order correction to the eigenvalues



due to the perturbed operator A:
L (i(t)| EWTW [i(t))

zi(t) = e 4 -

2 (di(®)lei(t)) 5)

T (14T (30 21ou(1) )
—_———
vi(t)
The stroboscopic scattering matrix now takes the form

SSOP () =/ - WIW

z(E )T (36)

W 3 g ) I,

Contributions to the stroboscopic conductance defined in
Eq. (18) then read

GEE(V) =

62
S TTals / dt Z

Here we have again used the fact that, in the limit of weak
coupling, the conductance profile will consist of sharp peaks
at quasienergies ¢;. In order to directly compare the strobo-
scopic and Floquet conductances in the weak coupling limit,
it is instructive the rearrange the expression for the conduc-
tance summed over Floquet sidebands (Eq. (28)) into a similar
form:

o] Kli(t >><¢i<t>|Kg 8|
— (V=T (1 4 Ty (1)
G

G ,B(V) =

K, ()| K5 |8
“rr Z/ at a| 6:6) 6:(t) K5 19)
_ez(V—ei)T(l_i_T,%)’
(38)
where we have used the relation
zpwz Tie 1Az
ZA 5T AT T (39)

Egs. (38) and (28) show similarities between the conductance
obtained for constant and stroboscopic coupling to the leads
in the sense that they are both dominated by resonances in
the weak coupling limit. Even in the weak coupling limit, the
two expressions might remain generically different since the
width of the respective resonances is controlled by different
parameters.

In order to identify this difference, we can compare the ex-
pressions close to a resonance in the weak coupling limit. Ap-
proaching the resonant quasienergies ¢; (V' = ¢;/¢), the con-
tributions to the stroboscopic conductance from each scatter-
ing matrix element can be further simplified as

Gstrob( ) _

21 7 el Kalo) oI KL 9] o -
WT ),y 20 (@)
_ 1 Vf")(t)%(ﬂ)(t) eV —¢
T o (S
(40)

where
= Ts|(0] K5 |i(1))],

27(6) (4D

Again the localized nature of the Majorana states along with
the particle-hole symmetry of the system mean that the con-
ductance at these energies (i.e. V = €y, /e) can be expressed
as

5
'Yz'( )( t)
so that ~;(t

22 1 €V*€0/w
G (V) = / L —2LT).  (42)
V)= AT ( ’Yo/w(t) )

Egs. (31) and (42) are the main finding of this section.
Their comparison shows that the discrepancy between the two
can be quantified by the time dependence of the function ; (t)
defined in Eq. (35), and that the two quantities agree in the
case that this function is time-independent. The time depen-
dence of v;(t) is captured by the quantity

Va = ((val) = (a))”). 3)

As a further figure of merit that quantifies the discrepancy
between the two conductance setups at each resonance, we
can introduce the quantity:

DiZIl‘/:HFFdE L(E;iei) —,}/jdtﬁ(ii@)@)}.

;=T

(44)
To explore these features we analyze below the constant cou-
pling conductance and the pulsed coupling conductance of the
periodically driven Kitaev chain subject to two different driv-
ing protocols.

III. TRANSPORT SIGNATURES OF A PERIODICALLY
DRIVEN KITAEV CHAIN

We demonstrate the difference between the two expressions
for the conductance using the driven Kitaev chain, which is
a simple model that displays multiple topological phases of
driven systems. The Hamiltonian for this systems is given by

w A
H(w,A,pn) = Z [—2010141 + 501(:Z+1 +h.c.

—uy_cle (45)

We consider two different step like driving protocols in
which the parameters of the Hamiltonian are switched instan-
taneously between two different sets of values.

A. Sudden switching between Hamiltonians in different
topological phases

In the first protocol, following Ref. 17 we consider the two
part driving protocol which switches between a topologically
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Figure 2. Phase space diagram illustrating how the topological phase of the Floquet Kitaev wire depends upon the Hamiltonian parameters Ao
and A; (see Egs. (47) (48)). (a-h) Numerical results for the zero temperature differential conductance summed of energy sidebands, G and the
stroboscopic conductance G®™°, plotted as a function of the total voltage bias between the left and right external leads V' = Vi, — V. The
plot colours correspond to those in the phase diagram. The conductance is evaluated at both the four sweet spots, marked by black crosses and
plotted with the darker shade, as well as the points marked by the white crosses in for each phase: (a,b) Trivial, (c,d) MZM, (e,f) MPM, (g,h)
MZM/MPM. The results were obtained using a chain of 20 sites and with tunneling rates to the external leads given by 'z, /g /w = 0.016.

trivial and a topologically non trivial Hamiltonians, expressed
by the Floquet operator:

F = e—iHlT/2e—iHUT/2, (46)

where
H() = H(27T)\0/T, 27T)\0/T70), (47)
Hy, = H(0,0,27\ /T), (48)

correspond to the static Hamiltonian of the topological phase
and the trivial phase of the Kitaev chain, respectively. Hj
describes the sweet spot of the topological phase which is
characterized by Majorana zero modes, with zero correlation
length.

The phase diagram of driven system is plotted in Fig. 2
in the parameter regime 0 < A; < 1. The system exhibits
4 distinct topological phases distinguished by the presence or
absence of Majorana zero modes and Majorana m modes. The
phases can be identified via the topological index expressed in
terms of the scattering matrix'® via

1
Vo/m = Elogdet{RL(EO/ﬂ')}a 49)

where R is the part of the entire stroboscopic scattering ma-
trix that describes reflection in the lead L. A clear insight
can be obtained by analyzing the stroboscopic scattering ma-
trix at the sweet spots which are characterized by Majorana
modes localized at the left and right most sites, and for per-
fectly transparent leads W = > /TT;Ks. = Y s K. In

this limit there is no transmission and the scattering matrix
decouples into S(e) = Ry(e) ® Rr(e), which are both two
by two reflection matrices at the two leads. The details of the
following calculations are outlined in Appendix B.

From Eq. (15), we have:

(1) For the trivial phase sweet spot at )‘,1 =1/2and \g =0
we have Ry (¢) = Rr(e) = —ie*T'o,, and the topo-
logical index is:

Vo/x = 0. (50)

(ii) The MZM phase, where the sweet spot is \g = 1/2
and \; = 0 results in Rz (e) = e /2[(1 — e*T)1 —
(1+€e*T)o,] and Rp(e) = T /2[(1 — eiT)1 + (1 +
e*“To,], and the topological index is:

v=1;v,=0. on

(iii) The sweet spot of the MPM phase is at A\g = 1/2 and

A = 1 with Rp(e) = e"7/2[(=1 — e*T)1 4 (1 —
¢“To,] and Rp(e) = e /2[(—1 — €)1 — (1 —
e*“To,] , and the topological index is:

v=0; v, =1 (52)

(iv) Finally, the sweet spot of the MPM+MZM phase at
Ao = land \; = 1/2 gives Rr(¢) = —Rr(e) =
BlETO'y.

V():].;l/ﬂ—:].- (53)



These results are directly reflected in the quantized values of
Gstrob(v — 60/71')~

Fig. 2 shows the zero temperature conductance profiles as
a function of bias voltage obtained for the driving protocol
in Eq. (46) for each of the 4 different topological phases at
the sweet spots (black crosess) and away from the sweet spots
(white crosses). Results were obtained numerically using a
chain of 20 fermionic sites. This chain is sufficiently long
that, for the parameters studied, any interaction between Ma-
jorana modes at either end of the superconductor, and hence
any splitting of the Majorana conductance peaks, is negligi-
ble. The solid line corresponds to the physical conductance
of the system, summed over Floquet harmonics, calculated
from Eqns. (8) and (23) and the dashed line corresponds to
the stroboscopic conductance calculated from the fictitious
pulsed scattering problem in Eq. (17). The three topological
non-trivial phases are characterized by the existence of con-
ductance peaks of height 2¢2 /h at eV = 0 and/or eV = /T,
corresponding to the existence of Majorana zero and 7 modes,
respectively. These peaks arise due to resonant Andreev re-
flection events via the Majorana modes and the values of volt-
age bias at which they occur can be deduced via the maxima
of the off-diagonal elements of the corresponding reflection
matrices.

As discussed in Sec. II, the DC conductance and averaged
stroboscopic conductance correspond to different scattering
setups with constant vs. pulsed coupling to the leads, and con-
sequently different broadening of levels. As a result, the re-
spective conductance traces are expected to differ in the width
of the resonant conductance peaks. For weak coupling to the
leads we find that the conductance traces show a very good
a3greement, even away from the eV = 0 and eV = /T peaks
5

In order to quantify the discrepancy between the two con-
ductances, we plot the difference function Dy, (Eq. (44))
around the eV = 0 and eV = 7/T resonances throughout
the parameter space spanned by A, A; in Fig. 3 (a) and (c),
respectively. The difference is maximal in the MZM/MPM
phase at points where the offset time variance V,, (Eq. (43))
of the function controlling the resonance width v, (¢) is great-
est, as captured in Fig. 3 (b) and (d). Fig. 3 (e-h) show the
stroboscopic and DC conductance traces taken at values of )\
and A1 where the difference function Dy, is maximal. This
difference, although small, is persistent in the limit I' — 0.
Panel (j) shows the energy-integrated difference between the
stroboscopic and DC conductance. Notably, this is quantita-
tively well captured by the figures of merits Dy and D, ob-
tained from the discrepancy between conductances at the res-
onances. Upon increasing the coupling to the external leads,
the agreement between the conductance resonances in the two
coupling configurations breaks down and the stroboscopic and
DC conductance are increasingly different [cf. panel (i)].

B. Sudden switching between Hamiltonians within the trivial
topological phase

As a second example we consider a different driving pro-
tocol that consists of instantaneously switching between two
topologically trivial Hamiltonians, which differ by the value
of the chemical potential z(£)%.

Hy = H(wvAauﬂ) (54)
Hy = H(w, A, 1) (55)

such that 191 > w/2. Here the phase diagram is spanned by
changing the driving frequency §2/w, see Fig. 4 (a).

In Fig. 4 (d-f) we compare the conductance traces for se-
lected driving frequencies summed over side bands with the
stroboscopic conductance. As in the previous case, we find
that the conductance calculated using the sum rule shows good
agreement with the stroboscopic fictitious conductance. In
panels (b) and (c) we see that, once again, the time variance of
the function ;(¢) captures the behaviour of both differences
between the conductances at the zero and m Majorana peaks
as a function of the driving frequency.

While the difference between the stroboscopic and DC con-
ductance appears to be small across the whole voltage range
and is well captured by the difference between the width of
the resonant peaks, some aspects of the differences between
the two conductances are protocol-dependent. The maximum
difference in the second protocol is roughly two orders of
magnitude smaller than in areas of maximum difference of
the first protocol. This is due to the time dependence of the
function ~(t), which is dictated by the how the structure of
the eigenstates of the Floquet operator depend upon the off-
set time between the stroboscopic coupling and the start of
the driving cycle. In particular it depends upon the contribu-
tion to the eigenstates on the fermionic sites at the ends of the
chain, which are coupled to the external leads. At the points
of maximum difference in the first protocol, the eigenstates
are highly localized on the final site when ¢ = 0 but as the off-
set time increases this localization is shifted almost entirely to
the second site and then back to the first at ¢ = 0.57". This
leads to significant time dependence of (¢) and consequently
a difference between the two conductance quantities. In the
second protocol, the eigenstates are more evenly distributed
throughout the entire chain and the contribution on the end
sites seems to depend little on the variation of the offset time
t. By exploring the factors which contribute to the discrepancy
between the two conductance quantities being small, we can
determine the regimes in which transport experiments mea-
suring conductance can provide a good approximation of the
topological invariant for Floquet systems arising from the as-
sociated stroboscopic scattering matrix.

IV. CONCLUSIONS

In conclusion, we have established a connection between
the experimentally accessible Floquet scattering matrix for
driven topological systems and a related scattering matrix for
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Figure 3. (a,c) Density plots illustrating the value of the difference function for both the zero mode resonance Dy and 7 mode resonance
D respectively throughout the parameter space (Ao, A1) with coupling strength 'z, /g /w = 0.0016. (b,d) Corresponding plots of the time
variance of the function 74 (¢) controlling the resonance widths. The comparison between the conductance summed over energy sidebands
G and the stroboscopic conductance G5*™°® for selected points are shown in (e-h) again with coupling strength I'f, /r/w = 0.0016. (i)
Comparison of @ (solid lines) and G5'™°® (dashed lines) for increased strength coupling to the external leads I' close the MZM resonance.
(j) Density plot illustrating difference between the stroboscopic and summed conductances integrated over the entire spectrum throughout the
parameter space, calculated using a coupling strength of I';, ) g /w = 0.016. All data was obtained using a chain of n = 20 fermionic sites.

the case of pulsed coupling to external leads'®. The com-
parison between the two provides a platform from which to
explore signatures of Floquet topological phases in transport
properties such as differential conductance, building upon the
relationships between scattering matrix invariants and topo-
logical phase classification established for non-driven sys-
tems.

We have compared the transport properties of the two
coupling configurations by analyzing the DC conductance
summed over Floquet side bands and the period-averaged
stroboscopic conductance of pulsed coupling to the leads,
both showing conductance peaks quantized at height of
2¢? /h. We have shown that in general the difference between
the two is captured by the different widths of the resonant
peaks in the limit of small coupling to the external leads.

We have demonstrated this relation in a specific example of
a periodically driven Kitaev chain, considering two different
driving protocols: A driving protocol which instantaneously
switches between Hamiltonians at the sweet spots of the triv-
ial and topological phases, and a driving protocol which in-
stantaneously switches between two Hamiltonians within the
same topologically trivial phases. Both protocols show the

emergence of four distinct topological phases which can be
accessed via tuning of the Hamiltonian parameters. Each of
the three non trivial phases is characterized by the existence
of Majorana zero or m modes. These topological phases can
be characterized by scattering matrix invariants formulated in
terms of a gedanken pulsed scattering experiment'®. The three
non trivial phases are also characterized by DC conductance
signatures which, when summed over Floquet side bands, re-
sult in conductance peaks quantized at height of 2¢2/h, at val-
ues of external bias corresponding to the energy of the Majo-
rana modes characteristic of the given phase. We have shown
that the difference between the DC experimentally accessible
conductance and the conductance obtained from the gedanken
pulsed measurement is reflected in the width of the zero and
7 conductance peaks. We have studied the dependence of the
difference function on the physical parameter space in the two
protocols and found that generically the discrepancy is larger
when the zero mode weight at the end of the chain depends
strongly on the offset time between the driving cycle and the
pulsed coupling period.

Although we have focused here upon the example of a
driven Kitaev chain, our methodology could be applied to any
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Illustrates the behaviour of the difference functions for the zero (Do)
and 7 (D) mode resonances over this range of frequencies and (c)
the corresponding behaviour of the time variance of ~y;(¢) dictating
this difference. (d-f) Conductance profiles for selected driving fre-
quencies comparing the measured conductance summed over side-
bands with the stroboscopic construction. All data was obtained us-
ing a chain length of n = 70 and coupling strength I';, )z /w = 0.04
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open, periodic system to explore the connection between ex-
perimentally accessible transport features and Floquet topo-
logical phases.
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Appendix A: Computation of the current in terms of S;(E)

We derive here Eqgs. 21. Our starting point is Eq. 2,

We use the time periodicity in the Fourier expansion of the scattering states operators:

a(IT +1) = / dEaF (B)e—iE(T+) (A1)
where aF (E) = 3, a(IT + 1)e!PUT+0) and (af " (E')al (E)) = fF(E)6(E — E') to get
I(T +t) = /dE SN Sh st +HIT M T)Sa p(t+ T, t+m"T) f5 (B)e B T=m"T) _ I (p)
B m/ m//
This expression is simplified by plugging in the Fourier expansion of the scattering matrix and using ¢™*T = 1 and
S €ED™ = 255( ) to arrive at
I(IT 4+ t) = /dE SN Sk 4B Ew)Sap(E, Enr) 5 (E)e'™ —m)% — fI(E) (A2)
ﬁ n/7n//
Finally, the current is expressed in terms of a stroboscopic scattering matrix
AT 41 /dEZ 1S5 5 0 (B (B)] — 7E(B),
(A3)
where
> Sas(E,E,)e™ = SF(E). (A4)

n

Once we have identified the relation between scattering matrix of the full time dependent problem the stroboscopic scattering
matrix of the fictitious problem, we can express the actual current in terms of S;(E). For this we manipulate Eq. A3 along the

lines of Ref.>:

/ DD {ISas(Bn, E)Pfs(E

fra n

_|Sﬂa(EmE)| fa( )}

(A5)
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‘We also note that
Zsa,ﬁ(EaEn) inQt Zsa 3 E n’E> inSt

n

_ ZSO‘ 8 Em,E) —imQt SF( ) (A6)
where in the first equality we have redefined our energy to be £ — E + nf) and in the second we have changed the sum to be
over m = —n. We can also use the fact that eq. (A7) defines a discrete FT s.t.:

2r (T F inQt
Sa,8(En, B) = T Sy (E)e™ ™. (A7)
0

Using this expression we can write:

e [ 2m\ . it —
o= [ () [ e {5 0 BISTa  BIME)  SE 0 E)SE ED
B#a n
(A8)

We perform the sum over n which results in the final expression (cf. Eq. 21)

fazf/ dEz</ CLLATT NG >|>fﬁ<>

BF#a

- ( / S (B >|2> fulE). (A9)

Appendix B: Calculating the scattering matrix topological index

Here we outline how we obtain the values of the scattering matrix topological index at the sweet spots of the four distinct
phases of the driven Kitaev chain discussed in Sec. III A. Following the work of I.C Fulga and M. Maksymenko'®, one can define
the topological index associated with a particular phase in a periodically driven system in terms of the stroboscopic scattering
matrix (Eq. 15) as:

1
Vo/n = Elogdet{RL(eo/ﬁ)}. (B1)

Here R 1, denotes the part of the stroboscopic scattering matrix describing reflection processes in the left lead and we consider
the case that the offset time between the stroboscopic coupling to the leads and the driving period is set to zero, S§*°P(E).

In order to gain insight into the value of this index in each of the four topologically distinct phases in our model, we chose to
evaluate v, at the sweet spot in each phase which are characterized by the complete localization of the Majorana modes at the
end sites of our Kitaev chain. For simplicity we also consider the situation in which the coupling to the external leads is perfectly
transparent so that W = > +/TT's K5 = ) ; Ks. Here we detail the calculation of the topological index for each sweet sport
in turn:

1. The sweet spot of the trivial phase corresponds to A; = 1/2 and Ay = 0. In this case the Floquet operator with zero offset
time is given by

F = e—z‘HlT/Q7 (B2)

and can be written as F' = &, F,, where F,, = i, acts in the subspace spanned by Majoranas a,, and b, from the same
fermionic site. Using the expression of the stroboscopic scattering matrix given in Eq. (15), we find that the transmission
coefficients between different leads vanish and the matrix decouples as S(¢) = R (¢) ® Rr(¢). The reflection matrices
take the form

Ruq =ie™ () = Rato ®3)
— Ri(eo) = (jf 8) Rilex) = (5 fz.). (B4)

Using Eq. (B1), we find the topological index vanishes at both Majorana energies, v,/ = 0.
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2. In the phase hosting Majorana zero modes only, the sweet spot is located at Ao = 1/2 and A; = 0. The Floquet evolution
at this point is described by

F = e*il{oT/Q7 (BS)

and can be written as F' = Fi; @;V;f Fy nt1 where F, .1 = io, operates in the basis by, a,41 and Iy v = I
operating in the basis a1, by. The reflection matrix is then:

eieT eieT -1 14+ eieT
Ru0) = 5 (

eieT eieT -1 —-1-= eieT
2 1+ eieT 6ieT -1 ) ) RR(e) = T ( _1— eieT eieT -1 ) ) (B6)
01 10
:>RL(€0)=<1O),'RL(EW)Z(Ol). B7)

This results in the topological index values of v = 1 and v, = 0.

3. The sweet spot of the phase hosting only Majorana 7 modes is at A\ = 1/2 and A\; = 1. Here the Floquet operator can
be written as ' = Fiy 1 @f:;_ll F, n41 where F,, ,, 11 = —io, again operates in the basis b, an41 and F1 y = —Z>. The
reflection matrix is:

eteT eteT +1 eteT _ 1 eteT 1+ eteT 1 _ gieT
RL<€) - 9 ( eieT -1 eieT +1 ) ) RR(E) - 9 1— eieT 1+ eieT ) (BS)
10 01
:RL(EO):(O 1),RL(€TF)=<1 0). (B9)

The topological indices corresponding to this phase are hence given by vy = 0 and v, = 1.

4. The sweet spot of phase hosting both zero and © Majorana modes is found at Ay = 1 and \; = 1/2. Here the Floquet
operator can be written as F' = @;V:an where F;, = —io, forn =2,...,. N — 1, F} = —0, and Fy = 0, all operating
in the basis ay,, b,. In corresponding reflection matrix can be expressed as:

Ri(e) = T ( ol ) — Rale), (B10)
0 0 —i
— RL(E()) = (Z 0) , RL(GW) = < i 0 ) . (B11)

Hence the topological indices in this phase take the form v/, = 1. From these results it is clear how the values of the
stroboscopic scattering matrix topological index can be used to distinguish each distinct phase.



