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between low and medium strengths is significant but there are diminish-

ing returns for a higher strength. . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Plots of dH/dλ for turning on the intermolecular electrostatic interac-

tions in the urea crystal according to the Özpınar model. The same con-
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tration behaviour is similar to turning on all interactions. . . . . . . . . . 62

3.17 Plots of dH/dλ for turning on the intermolecular electrostatic interac-

tions in the urea molecule according to the Özpınar model. The be-
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Abstract

UNIVERSITY OF LANCASTER

Department of Chemistry

Doctor of Philosophy

Solubility Prediction from First Principles

by James Cameron Carruthers

Solubility is a phenomenon of critical importance in countless areas of nature and in-

dustry. Solubility drives geological evolution through sedimentation and erosion. The

solubility of pharmaceuticals and agrochemicals determines their efficacy and how they

have to be formulated for the best efficiency of resources. Solubility determines the fate

of artificial chemicals in nature. There are many areas of science where recreating the

system in a lab environment is physically impossible or prohibitively expensive so the

ability to simulate these systems is a high priority.

This thesis is an exploration of methods to estimate solubilities from direct simulation

of molecular systems and seeks to test their accuracy, precision and efficiency, and how

they can be further improved.

The first study seeks to recreate the solubility of urea in water using two different ther-

modynamic cycles (molecular and atomic routes) and two different sets of force fields

(Özpınar and TIP3P versus Hölzl and TIP4P/2005) of significantly different ages. This

project is a test of simulation software to see if the thermodynamic cycles produce the

same results and a test of the force fields to see if the newer force fields give a better

estimate of the solubility of urea in water than the older force fields. Neither set of

xxiii
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force fields were actually tested in this way. The solubilities are also estimated using

direct coexistence simulations to test the efficiency of this method with modern soft-

ware and computing power. The newer Hölzl and TIP4P/2005 force fields are closer

to reproducing the solubility of urea in water than the older Özpınar and TIP3P force

fields according to direct coexistence method but the simulations take a very long time

to equilibrate and a different solubility is obtained depending on whether the initial

system is subsaturated or supersaturated. The Özpınar and TIP3P force fields failed to

produce sensible chemical potential data. The chemical potentials derived from Hölzl

and TIP4P/2005 through the molecular route agree with the direct coexistence results.

The atomic route gives a too low estimate of the chemical potential difference between

the crystal and solution.

The second study seeks to recreate the temperature/solubility phase diagram of bu-

tanol and water with direct coexistence simulations and free energy calculations to

construct the curves of free energy of mixing using the GAFF and TIP3P force fields.

The thermodynamics of mutual solvation are complicated by the competing solvation

processes between phases and requires a more thorough analysis than for the solvation

of solids which potentially means that direct coexistence simulations are competitive.

The direct coexistence simulations were much more efficient than anticipated and gave

statistically rigorous estimates of the solubilities of butanol and water. Numerically,

they were not accurate estimates but reproduced the qualitative behaviour of the phase

diagram and the critical temperature of miscibility was closely reproduced at just above

100°C. The free energy calculations failed to produce chemical potential data with the

precision required to create the curves of free energy of mixing at any temperature but

the excess chemical potential calculations showed the correct behaviour of electrostatic

interactions being more favourable in water than butanol and dispersion interactions

being more favourable in butanol than water.

The third study explores the phenomenon of polymorphism where a molecule can

adopt multiple different crystal arrangements depending on temperature and pressure.

The stability of polymorphs affects how soluble a molecule is in a particular solvent —

higher stability means lower solubility. The drug molecule carbamazepine exists in

four known polymorphs. The GAFF force field was tested on how well it can repro-

duce its polymorphs, judged on crystal unit cell parameters. The chemical potentials of



xxv

carbamazepine in its four polymorphs and in water were calculated to then see how the

solubilities of the four polymorphs compare with experimental data. The GAFF force

field closely reproduced three of the four polymorphs with one having issues on a sin-

gle crystal axis. The stability hierarchy of the four polymorphs was reproduced but the

experimental solubility of carbamazepine was over an order of magnitude lower than

experimental data.

In conclusion, these studies show that there is still much progress required in general-

use force field development in order for solubility estimation to go mainstream. In some

applications, direct coexistence simulations will give faster solubility estimates than

free energy calculations but they can’t give the same thermodynamic insight. For free

energy calculations, the thermodynamic cycle should be as simple as possible to avoid

unnecessary errors — a thermodynamic adaptation of Occam’s Razor. Finally, there

needs to be development of dedicated software for setting up free energy simulations.

There were thousands of simulations in these studies and much time was dedicated

to writing input files by hand and troubleshooting errors in them. Dedicated software

that automates the process will reduce errors and open up free energy simulations to

wider use.
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2 CHAPTER 1. INTRODUCTION

1.1 Introduction to Solubility

Solubility is one of the fundamental properties of multi-component chemical systems.

Given a solute molecule and a solvent, the solubility of the solute is its maximum stable

concentration in the solvent at a given temperature and pressure. Given this fundamen-

tal nature and interest, much effort is dedicated to collecting solubility data, particularly

in water which is ubiquitous [1].

Solubility can range from infinite (fully miscible), such as ethanol in water, to poorly

soluble for solids such as most metal phosphate salts. There is no commonly agreed

threshold below which a compound is considered ”insoluble” and no compound has

zero solubility due to entropic effects.

It is necessary to distinguish between solubility and the ability of a solvent to ”dissolve”

a substance. A compound may react with the solvent to produce another compound

which is then soluble. An example is insoluble zinc metal reacting with hydrochloric

acid to produce soluble zinc chloride.

What determines solubility is the balance of the affinity for the solute in its own bulk

state versus the affinity for the solution determined by a complex interplay of inter-

molecular interactions. In general the guideline is ”like dissolves like” — the familiar

example being the poor solubility of oil and water. The structure of liquid water is a

constantly fluctuating network of strong polar interactions. For something to be dis-

solved, a cavity in the water needs to be formed which incurs an energy penalty as the

network is disrupted. The interactions of the solute with the solvent need to be strong

enough to overcome this energy penalty otherwise it will be almost entirely excluded.

Conversely, if the interactions between solute molecules are too strong, they will not be

able to be pulled apart into solution.

The numerical definition of solubility is defined by the chemical potential (µ). The

chemical potential of a solute NX is the change in free energy upon the addition of a

molecule to a system:
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µ(NX) =

(
∂G

∂NX

)
NY ,...,p,T

. (1.1)

At the concentration of solubility, the chemical potential of the solute in solution is

equal to its own bulk phase (Figure 1.2).

1.2 Applications of Solubility

Solvation is a crucial process in countless aspects of nature and technology from bio-

chemistry to metallurgy. For some purposes solubilisation is a desired process such as

for improving uptake of pharmaceuticals while for other purposes solubilisation has to

be minimised, such as maintaining structural integrity of building materials.

1.2.1 Chemical Synthesis and Isolation

Exploiting the differing solubilities of reagents, intermediates and products in a variety

of solvents is a convenient route to improve yields and purity in chemical synthesis.

Precipitation and Effervescence

One of the simplest applications of differential solubility is the reaction of soluble reagents

to produce a product that falls out of solution as a solid (precipitation) or gas (efferves-

cence). This can be an easy way to produce pure chemicals in high yields, particularly

for gases [2]. The pH can also be manipulated to induce precipitation through displace-

ment as unionised forms of chemicals are generally much less soluble in water than

their salts.

Precipitation is a historically important method of inorganic analysis as ions can be

differentiated by particular combinations of ions being insoluble. While largely super-

seded by modern analytical techniques, it still serves as a useful pedagogical process

[3].

Liquid–liquid Extraction

Liquid–liquid extraction is used to isolate a particular component from a mixture by

dissolving it into a solvent in which it has a much higher affinity. Typically, this is
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demonstrated as separation of non-polar organic substances from a mixture using a

non-polar solvent. Acidic and basic compounds can be pulled into an aqueous phase

by converting them into their salt forms. It is a useful technique in a diverse range of

applications [4, 5]. Metal ions can be selectively extracted into an organic solvent by

using a selective chelating agent, such as the extraction of cobalt using trioctylamine

into m-xylene [6]. DNA is isolated using a variety of extraction methods depending on

cost and required purity [7]. Extraction of fragrances using solvent methods helps pre-

vent degradation of delicate molecules that would otherwise occur through traditional

distillation methods [8].

1.2.2 Biology and Pharmaceuticals

The human body is 60% water [9] and the knowledge that biological activity is tied

with aqueous solubility has been known for over 150 years [10].

Differential aqueous solubility is naturally exploited as a driving force in homeosta-

sis and creating biological structures. Lipids are used to create hydrophobic mem-

branes that control the transport of molecules while specialised proteins are used to

select what hydrophilic molecules are allowed to pass. Amino acid side groups have

different affinities for water which is a large influence on the tertiary and quaternary

structures of proteins [11].

Failure in homeostasis is the cause of many diseases. These can present in an acute or

chronic manner. An acute example is decompression sickness, such as when a diver

rises too quickly in deep water and blood gases can no longer be dissolved in the re-

duced pressure leading to bubbles forming, severely compromising blood circulation

[12]. A chronic example is the formation of plaques of amyloid proteins through errors

in folding. The misfolded protein influences the misfolding of adjacent proteins and

they stick together in a useless mass. This process is suspected as a leading cause of

Alzheimer’s disease [13].

Drugs in the body will encounter a variety of environments and navigating these ob-

stacles is key to getting to where it needs to be. Oral drugs, which comprise the vast

majority of drugs consumed by humans, need to survive the highly acidic stomach and



1.2. APPLICATIONS OF SOLUBILITY 5

then be able to pass through the various barriers of intestinal wall to enter the blood-

stream.

Fick’s first law of diffusion states that the rate of diffusion J between two different

concentrations is proportional to the concentration gradient [14]. In a single dimension:

J = −D∂φ
∂x

(1.2)

where D is the diffusion coefficient, φ is concentration and x is displacement. There-

fore, if a drug cannot be provided in a high concentration or easily pass a barrier, the

rate of absorption is severely limited.

Issues can also arise in the manufacture and storage of pharmaceuticals [15]. Poor sol-

ubility reduces the efficacy of candidate drugs as many are screened out before pre-

clinical and Phase I studies, leading to major monetary losses [16, 17]. There has been

an estimate of 39% of drug candidates failing due to poor pharmacokinetics (how well

a drug is absorbed, carried to where it is needed, and excreted) [18]. Modern solubility

prediction techniques are reducing this proportion as computing power has increased

exponentially [19]. Despite this, it still remains difficult to develop these techniques

as computational predictions can be significantly inaccurate [20]. Measuring solubility

can also be time consuming if the chemical is relatively insoluble or prone to hydrolysis

[21].

Combinatorial chemistry and high throughput screening (HTS) approaches to drug de-

sign provide fast results but can be biased towards high molecular weight and lipophilic-

ity. These negatively correlate with aqueous solubility so, while a candidate may have

high predicted bioactivity, its absorption may be slow [22]. This emphasises the role

of accurate solubility data and its efficient measurement in determining the efficacy

of new drugs [23]. Therefore, accurate solubility prediction from computational sim-

ulations is an important goal for pharmaceutical research in terms of both time and

resources.
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1.2.3 Environmental Science

Solubility is an important factor in how the Earth has developed in environments rang-

ing from minerals deep in the mantle to nutrient distributions in soils [24, 25]. Com-

putational methods are of particular importance in geology as the temperatures and

pressures deep within Earth are practically impossible to recreate in a lab environment.

1.2.4 Agrochemicals

Although agrochemicals are dominated by organic chemistry just like pharmaceuticals

and share some correlations, the motivations are very different [26]. There are ma-

jor concerns with the environmental impact of agrochemical products and food safety

[27]. Water scarcity is increasing and there have been millions of cases of people being

poisoned through the abuse of pesticides [28, 29]. In addition, environmentally driven

data collection faces similar time and cost difficulties to pharmaceuticals.

Solubility also determines how pollutants travel through the environment and uptake

by organisms [30, 31]. The use of solubility in agricultural and environmental science

is extended to measuring specialised data such as soil sorption coefficients [32].

1.2.5 Metallurgy

Alloys are solid solutions with a metal as the base solvent. Metallurgy is one of the

oldest sciences in the world and the production of bronze, the alloy of tin in copper,

is used as one of the major milestones in the development of civilisation [33]. Metals

are typically alloyed to improve their strength and workability, though there are niche

developments such as alloys with very low melting points used as coolants.

Iron and Steel

The smelting of iron is recognised as the next major technological milestone after bronze

production. Iron is notable for its ability to dissolve carbon. The inclusion of carbon in

iron improves its strength and this property is the etymology of the word ”steel”. Steel

is ubiquitous in the modern world and many different varieties have been found and

developed throughout history [34].
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Amalgams

Amalgams are alloys of mercury, a few of which occur in nature. It is an easily smelted

and vaporised metal and along with the softness of amalgams lead to it becoming a

popular means of metal-plating materials. It was also a common method of extracting

precious metals from ores. In modern times the recognised toxicity of mercury restricts

its use but it still remains popular for a few purposes such as tooth fillings [35, 36, 37].

Its ability to dissolve and destroy metals means that it is forbidden to transport by

air[38].

1.3 Experimental Determination of Solubility

Various methods for solubility measurement have been developed to satisfy the huge

need and turnover required by industrial interests [39]. The methods fall under two

broad categories based on the physical end point that is sought;

• Kinetic solubility — the concentration of solute when precipitate first starts to

appear

• Thermodynamic solubility — the concentration after the amount of precipitate

has stabilised in equilibrium with solution

1.3.1 Thermodynamic Methods

There have been a variety of thermodynamic methods developed to tackle different

priorities [40, 41]:

• Shake-flask — hydrophilic compounds

• Column elution — solid compounds

• Potentiometric methods — ionisable compounds only

• Passive dosing — hydrophobic compounds

• Saturated vapour — volatile liquid compounds



8 CHAPTER 1. INTRODUCTION

Shake-flask Method

The shake-flask method of determining solubility is likely the most familiar to a layper-

son. An excess amount of solute is added to a solvent in a specialised vessel and is

continuously stirred or agitated for a long time to ensure equilibration. The solution is

then analysed to record the concentration. It is a simple process but is not suitable for

high-throughput screening and requires a relatively large amount of the solute.

Column Elution

A chromatography column is loaded with a carrier coated with the compound of in-

terest. The solvent is passed through the column and the eluate is collected to analyse.

This method generally has a shorter saturation time than the shake-flask method but re-

lies on the compound being stable on the carrier otherwise the solubility measurement

will be inaccurate.

1.3.2 Kinetic Solubility Assay

The main method of kinetic solubility in high-throughput screening is to dissolve the

test compound in DMSO and adding set amounts of this solution to the solvent of

choice (usually water) until precipitation is first detected. Kinetic methods are quicker

than thermodynamic methods but because there is an energy barrier to nucleation, ki-

netic methods may often overestimate solubility. This clash of speed and accuracy has

been an issue for decades for industry as low solubility is a major source of attrition for

target compounds [42].

1.4 Solubility Prediction

1.4.1 Qualitative Structure-Property Relations (QSPRs)

The current paradigm in the prediction of a particular property is to take a large set of

molecules, called a training set, with known values for this property and fit a regres-

sion that relates the property of interest to molecular descriptors (such as counting a

functional group) or other physical properties (such as the melting point). A typical

quantitative structure-property relationship (QSPR) takes the form:



1.4. SOLUBILITY PREDICTION 9

P = f

(
N∑
gi(pi)

)
+ E (1.3)

where P is the core property of the study, f and g are functions to be determined on de-

scriptor p, andE represents inherent model and observation error. This is then tested on

a set of molecules outside the training set. Initially the focus was on biological activity

and thus there also exists the term quantitative structure-activity relationship (QSAR)

[43, 44]. A well-made QSPR can not only be used for predicting properties outside the

training set, but also to fill data gaps for molecules in the training set.

An excellent broad background and applications of QSPR/QSAR are given in the per-

spective paper QSAR Modeling: Where Have You Been? Where Are You Going To? [45].

Here I focus on the application of QSPR to solubility.

Early Developments

The records of early QSAR studies are sporadic but go back remarkably far in scientific

history for such a mathematically intensive technique [46]. The earliest known study

into structure-activity relationships is that of Cros in 1863 [10]. QSPR specifically was

initially developed in the late 19th century by looking at melting and boiling points

in homologous series [47]. The first known solubility study was in 1924 when Fühner

observed a reduction in solubility by a factor of 4–4.5 upon the addition of successive

methylene groups to non-polar molecules [48]. There was eventually a consensus that

these early solubility studies were all relating the property with molecular size [46].

In the latter half of the 20th century, solubility prediction studies expanded into the

relationship with properties such as molar refraction [49] and melting point [50].

Modern Quantitative Structure Property Relationships

The modern form of QSPR is considered to have been developed by Hansch et al. in

the 1960s through investigating the relationship between some of the properties of phe-

noxyacetic acids and their biological activity [51], though their predictive results were

poor with an R2 of 0.43 which they neglected to provide alongside their raw data. As

computing power increased exponentially, the scope of these investigations grew from

basic regression on small sets of organics to analysing thousands of molecules with the

introduction of neural networks in 1991 and utilisation of more advanced analytical
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techniques [52]. Despite the technique not being restricted to biological activity, the

phrase ”quantitative structure activity relationship” still dominates (fig. 1.1).

Figure 1.1: Ngram of QSPR and QSAR obtained from Google’s Ngram Viewer.

For aqueous solubility, the molecular descriptors tended to be focused on the basic data

like lipohilicity (log D), partition coefficients (log P) and the number of hydrogen bond

donors and acceptors [53]. More recent studies have chosen larger, more sophisticated

sets of descriptors [54], though concerns about overfitting have been around for a long

time [55]. Notable studies and developments include:

• Sutter and Jurs [56] — A study early in the ”QSPR rennaisance” which used 140

compounds and 53 descriptors refined from a set of 144. They report a suspi-

ciously high R2 of 0.987 for a nine-descriptor model yet they also go into much

detail about the difficulties of QSPR development such as the quality of exper-

imental data. They identified that errors are high for polychlorinated biphenyls

and that functional groups need to be represented by multiple compounds to con-

tribute well to the QSPR.

• Gao et al. [57] — An extensive QSPR study of a diverse training set of 930 com-

pounds and 46 descriptors with a test set of 249. The study included agrochem-

icals and pollutants. They obtained an R2 of 0.92 while the RMSE of logS was

0.53.

• DRAGON [58] — Software for calculating over 5,000 molecular descriptors — a

useful utility for cheminformatics.

With QSPR becoming increasingly popular in research and industry, scientists have

developed guidelines for the effective development and reporting of QSPR studies



1.4. SOLUBILITY PREDICTION 11

[44, 45, 59]. However, in the context of solubility, there has been a persistent issue

of accuracy, struggling to reduce RMSDs below 1 log unit regardless of the model [60].

This means that the predictive power of QSPR models are severely limited.

Challenges and Limitations of QSPR in Solubility Prediction

Creating an effective QSPR is a difficult endeavour that requires specialist knowledge

and skills in statistical analysis. Over time there have been notable cases of naı̈ve ap-

proaches to QSPR leading to fundamental errors in scientific analysis [61].

One of the greatest obstacles in QSPR development is the ”QSPR paradox”. One would

expect that a small change in a molecule would lead to a correspondingly small change

in the property of interest. However, this is often not the case, particularly in drug

design [62].

1.4.2 Quantum Mechanics

The ”purest” route to calculating molecular properties is to use quantum mechanics,

where the electronic structure of molecules are calculated by solving the Schrödinger

equation. However, quantum calculations are very intensive and system sizes are usu-

ally limited to tens of atoms. This means that using quantum methods to acquire ther-

modynamic data is a great challenge. As an approximation, implicit solvation can be

used where the solvent is modelled as a continuum with a particular dielectric constant.

There are a variety of methods that have been developed to model implicit solvation

[63]. In a 2019 study, the solubilities of 51 drug molecules in various glycerides were

predicted using the COSMO-RS method with an mean absolute error of 0.576 log units

[64], which is respectable for a relatively unexplored solvation environment. The im-

plicit solvation approach requires empirical data such as the melting point and lattice

enthalpy and cannot account for local phenomena like hydrogen bonding and the hy-

drophobic effect.

1.4.3 Molecular Simulation

The ideal method of solubility prediction would only require molecular structures and

a set of system conditions to generate a solubility value. A simple approach is to have
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a mixed phase system of solute and solution, allow the system to equilibrate and mea-

sure the number density of the solute in solution. This is known as direct coexistence

and can give good results with decent force fields. However, it is time intensive as it

requires very large system sizes to minimise system size artifacts and simulation times

on the order of microseconds to achieve equilibrium [65].

As an alternative, with smaller systems one can use techniques that calculate the chem-

ical potential via free energy changes associated with adding a solute molecule in order

to determine the concentration at solubility.

Chemical Potentials

Solubility can be determined by calculating chemical potentials which are a measure of

how energetically favourable it is to add a molecule to a system. Given a solute and

solvent, the basic approach is to calculate the concentration of solution which has the

same chemical potential for the solute as the pure solute has for itself [66]. This works

well for solids dissolving in fluids but more complex phase behaviours such as mutual

solubility require a deeper considerations.

From the early years of molecular dynamics, the significance of solubility modelling

was recognised. One of the earliest studies was in 1984 with Swope and Andersen

modelling the solubilities of noble gases in water [67]. They determined their own esti-

mates for the force field parameters from experimental data. Systems were limited to 64

water molecules and simulation times of up to 300 ps but despite the lack of computa-

tional resources they produced rigorous results and the team recognised the limitations

that needed to be overcome.

Also in 1984, Frenkel published the first codification of the Einstein crystal method for

determining the chemical potential of a crystal, using a simple hard-sphere model and

Monte Carlo simulation [68].

By the 1990s, progress had been made with the Einstein crystal method, moving onto

molecular crystals, codified in 1990 by Meijer and Frenkel with the calculation of the

melting point of nitrogen [69].
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Figure 1.2: Chemical potential of a solute in a solvent versus the chemical potential for

the pure bulk solvent.
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In 2002, Ferrario et al. published the first major study into estimating solubility, calcu-

lating the solubility of KF in water [70]. The study demonstrated the robustness of the

Einstein crystal method, with significant no numerical or statistical challenges, for this

purpose while acknowledging the sensitivity of the results to the accuracy of the force

fields.

Vega et al. then developed a new method of determining chemical potentials through

an alternative reference state they called the ”molecular Einstein crystal” [71]. The

method uses fewer position restraints than the original Einstein crystal method and

instead utilises a field restricting entire molecular rotations. While this method is effec-

tive, the orientation restriction field is not normally available for free energy calcula-

tions in common software.

In 2017, Li, Totton and Frenkel estimated the solubility of hydrophobic organic molecules

using a modification of Vega’s molecular Einstein crystal [66]. Instead of an orientation

field, molecules were simply held in a specific position and rotation using three posi-

tion restraints. This method proved effective but the study was limited by using a rigid

molecule with no partial charges and the central position restraint for the molecular

Einstein crystal was implemented through a dummy atom.

In 2019, Belluci et al. developed a robust protocol for the molecular Einstein crystal

method that required no dummy atoms or orientation field, instead only using three

non-colinear atoms to restrain position and rotation of the molecule [72]. They used

the more soluble paracetamol as an example and also measured the real solubility of

paracetamol to compare their simulation results, which turned out to be within 0.03

molar ratio of the experimental solubility.

Density of States

A recently developed method estimates solubility by constructing a comprehensive

density of states for a range of concentrations in a single Monte Carlo simulation [73].

In the simulation, the system volume and number of molecules are allowed to change

and the energy. The Wang–Landau algorithm is applied to fully explore the energy

landscape and the system passes through supercritical states to avoid phase transitions
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and gas phase configurations to aid molecule insertions and removals. Eventually, a

bimodal probability distribution with respect to solute molar fraction can be produced

with the peaks at solubility and pure solute.

While the technique is theoretically more effective than molecular dynamics as Monte

Carlo considers unphysical moves to better explore phase space, the phase space vol-

ume needed to calculate the density of states is still very large which makes exploring

all of it difficult. To compensate, the technique has been limited to small systems.

1.5 Research Aims and Objectives

The purpose of this project is to explore and refine methods of predicting solubility from

molecular simulations with the aim of establishing robust protocols and identifying

improvements needed to be able to use molecular simulations for predicting solubilities

of novel compounds. There are a plethora of methods to determine solubility so in

the interest of time this project focused on explicit solvation and molecular mechanics

methods which are easy to implement and have a wide range of applications.

1.5.1 Solubility of Urea

This study is a comparison of two thermodynamic routes to obtain chemical potentials

and the direct coexistence method. One thermodynamic route preserves the molecular

structure and the other breaks down the molecules into individual atoms [72, 74]. As

the two routes have the same end states, they should give the same chemical potential

difference of the crystal and solution. As most studies have focused on poorly soluble

molecules, it was decided that a study into one of the most soluble molecules in water

would be a useful addition to the literature. Urea was chosen as it is a small molecule

with a simple crystal structure. This study compares the estimated solubility from two

urea force fields optimised for opposite sides of the equilibrium. Özpınar et al. devel-

oped a force field to reproduce the crystal structure while et al. developed a force field

to accurately reproduce aqueous urea solutions [75, 76]. The aim is to gain insight into

which approaches are more effective for acquiring accurate solubility estimates.
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1.5.2 Mutual Solubility Phase Diagram of Butanol and Water

The thermodynamics of the solvation of liquids are complicated by them dissolving

into each other, requiring much more free energy data than for the solvation of solids.

Butanol and water have an interesting phase diagram where, as temperature increases,

the solubility of butanol in water decreases and then increases until the two are misci-

ble close to the boiling point of water. The aim here was to reconstruct the solubility-

temperature phase diagram of butanol and water through both free energy and direct

coexistence simulations. With the increased diffusion in liquids and diffusion taking

place in two directions, direct coexistence simulations were anticipated to have good

efficacy and could be potentially shown to be of comparable value to free energy based

methods with modern computing power.

1.5.3 Aqueous Solubilities of Polymorphs of Carbamazepine

Carbamazepine is a drug molecule that has four stable polymorphs at standard con-

ditions with very different solubilities. These differences caused major issues for its

formulation. Here the aim is to recreate the stability hierarchy of the four polymorphs

and determine the solubilities with the intention of carrying the technique forward to

new candidates to detect similar issues much earlier in the development cycle of phar-

maceuticals, agrochemicals etc.
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2.1 Introduction

In this chapter the theory and methodology of the studies in this project are explained:

a review of the statistical mechanics that form the basis of molecular simulation and

thermodynamics, the implementation of molecular dynamics and how energy calcu-

lations are efficiently carried out and how free energy and chemical potential data are

extracted from molecular dynamics. Specific simulation details are later given in the

study chapters.

2.2 Statistical Mechanics

2.2.1 Phase Space, Macrostates, Microstates and Thermodynamic Ensem-
bles

Phase space is the space defined by the positions and momenta of all particles in a sys-

tem [77]. A single particle is characterised in terms of its three dimensions of position

and three dimensions of momenta. For a system ofN particles, phase space is described

by 6N coordinates. For a system of indistinguishable particles, each microstate is a set

of N ! points corresponding to the permutations of the particles, i.e. swapping the posi-

tions and momenta of two identical particles results in the same microstate.

A macrostate is a set of microstates that meet a particular set of macroscopic thermody-

namic constraints (e.g. a particular number of particles, system volume and tempera-

ture).

A thermodynamic ensemble is a region in phase space which can be reasonably be ex-

pected to be visited according to a set of thermodynamic conditions with a system at

thermodynamic equilibrium. From a purely mathematical perspective, it is the prob-

ability distribution function of phase space according to those thermodynamic condi-

tions. The most common thermodynamic ensembles are:

• Microcanonical Ensemble (NVE) — Constant particle number, system volume

and system energy
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• Canonical Ensemble (NVT) — Constant particle number, system volume and tem-

perature

• Isothermal–isobaric Ensemble (NPT) — Constant particle number, system pres-

sure and temperature

• Grand Canonical Ensemble (µVT) — Constant chemical potential, system volume

and temperature

The NVE ensemble has the simplest statistical mechanics and is the only one to be

ergodic (the entirety of valid phase space is accessible) but it is not experimentally re-

alistic as it does not provide a complete link to thermodynamics. The NVT ensemble is

usually used for equilibrating systems in preparation for NPT simulations. NPT simu-

lations represent experimental conditions for a closed system and is most common for

predicting real system properties. The µVT ensemble is useful for those wishing to ex-

plore properties of dilute or non-interacting gases but is usually infeasible for complex

chemical systems as particle insertion carries too high a barrier for dense systems.

Ensemble Average

One of the main purposes of molecular simulation is to collect the average of a partic-

ular property of interest such as pressure or volume. The mean of a system property A

is given by:

〈A〉 =
1

N

N∑
A(q) (2.1)

with N being the number of samples and q is a point in phase space.

2.2.2 Partition Function and Thermodynamic Potential

The partition function is a dimensionless quantity which describes the number of dis-

tinct states available to a thermodynamic ensemble. One can derive almost all ther-

modynamic properties of a system from the partition function. The internal partition

function of a molecule is commonly divided into separate contributions from transla-

tion, rotation, vibrational normal modes and electronic states:

q = qtr qrot qvib qel (2.2)
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with the following canonical partition function for N indistinguishable particles:

Z =
qN

N !
. (2.3)

The N ! factor comes about as swapping two identical particles does not result in a new

microstate. Therefore the N ! is needed to avoid overcounting of microstates.

The partition function is associated with a thermodynamic potential defined as the log-

arithm of the partition function. The definition of the partition function depends on the

ensemble.

Finally, the derivative of the thermodynamic potential with respect to particle number

is the chemical potential, which determines reaction and phase equilibria — the desired

data of this thesis.

Microcanonical Ensemble

The partition function is not generally definable for the microcanonical ensemble but

the thermodynamic potential is simply the entropy. The ideal gas is a special case for

which the microcanonical partition function can be defined [78]:

Φ(E, V,N) = V N (2πmE)3N/2

N !h3NΓ(3N/2 + 1)
(2.4)

Where Γ is the extension of the factorial function from positive integers to real numbers.

Canonical Ensemble

The generic partition function for a canonical ensemble of N identical particles is:

Z(N,V, T ) =
1

h3NN !

∫
e−βH(p1,...,pN ,q1,...,qN )d3Np d3Nq (2.5)

with h being Planck’s constant to maintain a dimensionless Z and H is the Hamilto-

nian (sum of kinetic and potential energies). In general, this needs to be estimated nu-

merically but there are reference systems for which the integration can be analytically

calculated such as the ideal gas, which has zero potential energy. The associated ther-

modynamic potential is called the Helmholtz energy (F for ”free energy” or A for Ger-
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man Arbeit meaning ”work”) which is the maximum available thermodynamic work at

a constant temperature:

F = −kT lnZ (2.6)

And the chemical potential for a substance in a mixed system is:

µA(NA, . . . , V, T ) =

(
∂F

∂NA

)
NB ,...,V,T

(2.7)

Isothermal–Isobaric Ensemble

The partition function for the NPT ensemble is similar to the NVT ensemble:

Z(N,P, T ) =
1

h3NN !

∫
e−βpV e−βH(p1,...,pN ,q1,...,qN )d3Np d3NqdV (2.8)

=

∫
Ze−βpV dV (2.9)

Similarly, the Gibbs energy is related to the Helmholtz energy through the simple rela-

tionship:

G = F + pV. (2.10)

2.2.3 Chemical Potential

The chemical potential of a molecule is the derivative of free energy with respect to the

number of molecules in the system (as defined in Equation 1.1) [79].

In the NPT ensemble, for a single component system of N particles the chemical poten-

tial is defined as:

µG =
G

N
=
F

N
+ p

V

N
(2.11)

In practice, p VN is a very small value. Given a pressure of 100 kPa and volume change

of 0.1 nm3, the associated energy is 6 J/mol — much smaller than common error sizes.

Chemical potential simulations do not tend to even approach that amount of volume

change. As a result, one could use Helmholtz and Gibbs chemical potentials inter-

changeably with no noticeable error.
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Figure 2.1: Demonstration of the common tangent for an arbitrary curve.

For solvation of a solid in a fluid where there is no solvation of the fluid in the solid, the

concentration of solubility occurs where the chemical potential of the solution matches

that of the solid.

If there is mutual solvation (typically two liquids), the calculation of the solubility equi-

librium is more complicated. The free energy per molecule needs to be calculated as a

function of molar fraction and the compositions of solubility are determined by the

common tangent of the curve, as demonstrated in Figure 2.1, as this is where the chem-

ical potentials are equal.

The chemical potential of the system as a function of composition is determined as the

”free energy of mixing” (∆Gmix) [80]. The definition of ∆Gmix for a binary system of

components A and B is:

∆Gmix(xA) = Gsol(xA)−Gpure(xA) +Gideal(xA) (2.12)

∆Gsol(xA) = xAµA(xA) + (1− xA)µB(xA) (2.13)

∆Gpure(xA) = xAµA(1) + (1− xA)µB(0) (2.14)

∆Gideal(xA) = RT (xA ln(xA) + (1− xA) ln(1− xA)) (2.15)
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where µA(xA) and µB(xB) are the excess chemical potentials of components A and B

at molar fraction xA which need to be obtained through simulations. When a sufficient

number of values for µA and µB have been obtained, the data can be interpolated using

the second-order Redlich–Kister equation:

∆Gmix(x) = RT x (1− x)[A+B(2x− 1) + C(2x− 1)2] + ∆Gideal(x). (2.16)

2.3 Intermolecular Interactions

There are two main different ways of representing atomic interactions in simulations,

quantum mechanics and molecular mechanics. Which to use depends on what proper-

ties are being sought and the computational resources available.

2.3.1 Quantum Chemistry

Quantum chemistry seeks to determine the forces on atoms in molecules by calcu-

lating the electronic structure of the molecule. The methods are split into two main

approaches. Ab initio (Hartree–Fock etc.) methods seek to solve the many-electron

Schrödinger equation given the nuclear positions. Density Functional Theory (DFT)

seeks to calculate electron density with functionals (functions that take a function as an

input and output a number) to determine the forces between nuclei. Ab initio methods

are more accurate and do not require empirical data but come with great computational

cost, while DFT methods trade ultimate accuracy in favour of much quicker calcula-

tions and can be expedited with empirical data.

Even with the efficiency of DFT, quantum methods for molecular dynamics are very

intensive, limiting systems to very few atoms, so researchers tend to only resort to them

in limited circumstances where they can use small systems or anticipate that the results

are worth the wait [81].

2.3.2 Molecular Mechanics

Molecular mechanics ignores the electronic structure of molecules in favour of imple-

menting what are called ”force fields” to determine the forces between atoms. Force

fields are a set of potential functions which define particular geometric aspects of the
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molecule and intermolecular forces. A force field is typically the sum of the following

forces:

• Covalent bond interactions

• Bond angle and dihedral interactions

• Dispersion forces / van der Waals interactions

• Coulombic/electrostatic forces.

Typical forms of each contribution are as follows:

Ubond(r) = k/2(r − r0)2 (2.17)

Uangle(θ) = k/2(θ − θ0)2 (2.18)

Udihedral(φ) = k(1 + cos(nφ− φ0)) (2.19)

UvdW (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(2.20)

UCoul(r) =
q1q2

4πε0r
(2.21)

More specialist force fields can introduce extra potential functions to model interactions

such as hydrogen bonding and polarisability.

Molecular mechanics is a very cheap method of modelling, easily supporting millions

of atoms, but it relies entirely on empirical data and refining the force field takes many

years of work. However, once the force field has been developed, they can be very good

at generating and reproducing useful physical data such as heat capacity [82].

Molecular Mechanics Force Fields

The common force fields in use today are:

• AMBER (Assisted Model Building and Energy Refinement) — specialised for pro-

tein and DNA simulation [83]. Has a variant in GAFF (Generalised Amber Force

Field) [84].

• CHARMM (Chemistry at HARvard Molecular Mechanics) —- specialised for bi-

ological molecules. CGenFF is the generalised version [85].
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• GROMOS (GROningen MOlecular Simulation) — Initially specialised for con-

densed hydrocarbon systems with subsequent variants for different chemical sys-

tems [86].

• OPLS (Optimized Potential for Liquid Simulations) [87]

Much effort over decades has been dedicated to modelling water due to its ubiquity[88].

It has been a notoriously hard molecule to portray within the bounds of common force

field parameters due to how anomalous its properties are such as its high density and

phase transition temperatures[89]. The most commonly used explicit models are Trans-

ferable Intermolecular Potential n-Point (TIPnP, n from 3 to 5) and Simple Point Charge

(SPC). In TIP3P, water is simply represented by the three atoms. In TIP4P, an extra

charged particle with no mass is added towards the centre of mass, replacing the charge

on the oxygen, to better represent the charge distribution. In TIP5P, there are massless

charges added to the oxygen to represent the lone pairs. The force fields mentioned

above are developed with the incorporation of the three point versions of either one of

these. Although the three point versions are lacking accuracy in many aspects, they are

considered ”good enough” for representing solvation at ambient temperatures and are

simple to implement.

2.4 Molecular Simulation Methods

2.4.1 Monte Carlo Simulation

Monte Carlo simulation is a method of simulating the evolution of a system through

random perturbations of the positions of atoms or whole molecules. The most common

implementation in the canonical ensemble is the Metropolis–Hastings algorithm [90].

When a new state is generated, the probability p of its acceptance is determined by

the potential energies of the old and new states (Enew and Eold) and according to the

temperature:

p = min

[
1,

exp(−Enew/kT )

exp(−Eold/kT )

]
(2.22)

If the new energy is lower than the old energy, then the move is accepted. The probabil-

ity of increasing the energy by a set amount increases as the temperature increases. If a

move is rejected, the old state is counted again as an additional sample. This algorithm
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is then used to sample the probability distribution of phase space. It should be noted

that there is no time progression involved in Monte Carlo simulation so it cannot be

used to simulate dynamic processes.

The main advantage of Monte Carlo is that it is more efficient at sampling high en-

ergy states compared to dynamic simulations. However, it is difficult to parallelise

over multiple processors for faster sampling and sampling progress is sensitive to how

large the perturbations are. Too small perturbation leads to inefficient sampling and

too large perturbation will lead to a too high rejection rate for new states. With the re-

cent progress in computing power, particularly with the advent of GPU coding, Monte

Carlo has been sidelined in favour of dynamic simulation for most purposes as MC

cannot provide dynamical information such as diffusion rates.

2.4.2 Molecular Dynamics

Molecular dynamics simulates the motions of atoms according to Newton’s laws of

motion. A useful property of phase space in MD is that trajectories in phase space

never cross each other and therefore a trajectory is defined by a single Hamiltonian.

This means that, except for niche systems like a harmonic oscillator, the system will

never return to its original state. It is this property which allows us to effectively sample

phase space in a dynamic way, assuming ergodicity. The mean of a system property in

MD with continuous sampling is:

〈A〉 = lim
t→∞

1

t

∫ t0+t

t0

A(τ)dτ (2.23)

where t is the sampling time. Since in MD we cannot actually sample continuously or

indefinitely, we have to estimate the mean:

〈A〉 ≈ 1

N

N∑
A(τ) (2.24)

where N is the number of samples.

This is similar to the Monte Carlo process above but here extra caution must be taken as

if the sampling frequency is too high, the samples will not be independent. However,

sometimes a high frequency is desired if one is interested in the evolution of a property

over time.
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2.4.3 Integration Algorithms

Despite the core laws of motion being a small set of rules, integrating these in the nec-

essarily discrete world of MD is not simple. Different integration algorithms have been

developed over the years.

Leapfrog Integration

The leapfrog algorithm is so named because the positions x(t) and velocities v(t) are

updated on alternate steps, ”leapfrogging” each other in time. The method was codified

by Störmer in 1907 [91]. The acceleration ai is simply derived from the total force on

the atom and its mass.

vi+1/2 = vi−1/2 + ai∆t (2.25)

xi+1 = xi + vi+1/2∆t (2.26)

This scheme is time-reversible and inherently preserves the total energy of a dynamical

system. However, calculating the Hamiltonian is more memory intensive than other

schemes and initialising the half steps can be computationally tricky.

Verlet Integration

Verlet integration is an old integration scheme first developed in 1791 by Delambre

but named after Loup Verlet when he implemented it into MD in the 1960s [92]. Like

Leapfrog, it is time-reversible and preserves total energy but requires less memory.

Given position xn and acceleration A(xn), the algorithm works as follows:

xi+1 = 2xi − xi−1 + A(xi)∆t
2 (2.27)

Velocity Verlet

The Velocity Verlet algorithm is a variant of the Verlet algorithm that explicitly includes

velocities [93]. It is similar to the Leapfrog algorithm but coordinates and velocities are

calculated simultaneously. The basic algorithm is:
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x(t+ ∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2 (2.28)

v(t+ ∆t) = v(t) +
1

2
∆t[a(t) + a(t+ ∆t)] (2.29)

Stochastic Dynamics

Stochastic dynamics is an approach to MD that introduces an artificial randomness to

the motions of atoms [94] (F i(r) and ”noise” (̊ri)) terms to the core differential equation:

mi
d2ri
dt2

= −miγi
dri
dt

+ F i(r) + r̊i. (2.30)

This approach does come at the cost of losing proper dynamic evolution of the system

but it is advantageous for imposing temperature, equilibration and sampling phase

space.

2.4.4 Periodic Boundaries

To avoid finite size effects and energetic distortions from exposed surfaces, simulations

are run with periodic boundaries. This means that atomic coordinates are treated ac-

cording to modular arithmetic. Given a cubic box of edge length a, atomic coordinates

are constrained to between 0 and a or −a/2 and a/2 depending on the software. If an

atom moves beyond these bounds, a is added to or subtracted from the coordinates to

restore its position to within the box. Atomic interactions are also calculated across the

boundary on a nearest neighbour/minimum image basis. The maximum distance to

calculate atomic interactions is constrained to below half the box length so that an atom

does not interact with another atom twice in opposite directions.

2.4.5 Thermostats and Barostats

Thermostats control the momenta of the atoms in a system to maintain a particular

temperature within reasonable fluctuations while taking care to maintain a correct dis-

tribution of momenta. The most common thermostats are:

• Andersen — Randomly assigns velocities to particles to produce a Maxwell–

Boltzmann distribution. Inherently produces a correct ensemble but disrupts ki-

netics and transport phenomena [95].
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• Berendsen — Controls the temperature through a time-dependent friction force

acting on particle velocities. This method is simple but it fails to produce a correct

ensemble [96].

• Nosé–Hoover — Similar to the Berendsen thermostat with an evolution of the

friction coefficient and a tunable parameter, allowing the thermostat to produce a

correct ensemble [97].

• Stochastic/Velocity Rescaling — A modification of the Nosé–Hoover thermostat

with an added stochastic term to produce a correct ensemble [98].

The most famous and widely used strong coupling thermostat is the Nosé–Hoover ther-

mostat [97]. It utilises a thermal bath and friction term into the equations of motion to

control particle velocities.

Barostats manipulate the box axes to maintain an average pressure by monitoring the

internal pressure calculated from what is known as the virial.

p =
1

V

NkT +
1

3

∑
i<j

f ijrij

 (2.31)

The virial modifies the ideal gas pressure due to the pairwise forces between atoms

with f ij and rij being the force and displacement respectively between atoms i and j.

Like with thermostats, coupling can be strong or weak but volume fluctuations are

much greater than temperature fluctuations, up to hundreds of bars for smaller sys-

tems. The common barostat used for equilibrating systems is the Berendsen barostat

which applies instantaneous scaling factors to the box axes and atom positions [96].

Barostats such as Parrinello–Rahman treat the box axes like particles subject to the same

equations of motion as the atoms and can have much stricter control on the volume [99].

They are not used for equilibration as they can induce large fluctuations which are not

easily damped.

2.4.6 Constraints

There are two main forms of constraints in MD, molecular constraints and the centre-of-

mass (COM) constraint. In Monte Carlo simulation, constraints are hard to implement



30 CHAPTER 2. METHODS

unless molecules are completely rigid and perturbations are applied only to centre-of-

mass translation and rotation of the entire molecule.

Molecular Constraints

Molecular constraints enforce a desired geometry in a molecule to be constant. Af-

ter each MD step, the new coordinates of the constrained set of atoms are reset within a

set tolerance to satisfy the constraint while maintaining the COM of the constrained set.

An ubiquitous form of constraint is the bond constraint, which simply enforces a dis-

tance between two atoms. Maintaining a constant distance rather than having a har-

monic potential allows a longer time-step and is a more accurate portrayal of a covalent

bond, except for heavy atoms like chlorine, as bond vibrational modes are not excited

at normal conditions. The common constraint algorithms are:

• SHAKE [100] — Can be applied to whole molecules but is an iterative process

that can take many steps to be satisfied.

• SETTLE [101] — An evolution of SHAKE used for certain water models.

• LINCS [102] — A constraint algorithm specifically for bonds and isolated angles.

Centre-of-Mass Constraint

Normally, an MD simulation is set up so that the initial total momentum of the system

is zero. However, incorrectly coded MD can build up errors that lead to the system

gaining a total momentum. This runs the risk of producing a ”flying ice cube” where

the total kinetic energy is largely absorbed into the COM motion and interatomic dy-

namics are suppressed. To avoid this, one can simply track the total momentum of the

system and subtract it after each step when necessary. There is a free energy penalty

associated with the removal of the degrees of freedom but with a large enough sys-

tem, this penalty tends to be negligible and corrections can be implemented through

the thermostat.
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2.4.7 Restraints

Unlike constraints, restraints allow the geometry to change but with an energy penalty.

They are easier to implement than constraints as they are just extra terms for the force

field. Common forms are:

• Position restraints — an atom is restrained to a point in space.

• Angle restraints — a pair of atoms is restrained to a specified angle with another

pair of atoms or a system axis

• Dihedral restraints — A dihedral angle is enforced between a set of four atoms

• Orientation restraints — The orientation of an entire molecule relative to a system

axis is enforced. This is used for NMR simulations.

2.4.8 Efficient Calculation of Intermolecular Forces

Intermolecular forces are the major computational load in molecular simulation so the

priority in software development is in making their calculation as efficient as possible.

A variety of methods have been developed over the decades.

Interaction Cut-Off

The long-range behaviour of van der Waals forces decays very quickly (r−7 for the

usual Lennard–Jones potential form) so with a reasonably large system these forces are

negligible at long distances. With this in mind, a force cut-off is set beyond which van

der Waals forces are ignored. Current practice has the cut-off set at 1.2 or 1.4 nm. To

avoid artifacts from the potential form jumping to zero at the cut-off, the potential is

modified so that it smoothly changes to zero at the cut-off.

Electrostatic forces are more important at long range as they only decay as a function

of r−2. However, they are still subject to a cut-off limited to half the system box length

to avoid double interactions with atoms. Beyond this range, alternative methods have

to be used to account for the electrostatic contribution to the potential energy.
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Neighbour Lists

The neighbour list is the data structure that tracks which atoms are within the inter-

action cut-off distance of each other by detecting when atoms enter or leave a buffer

region around each atom. It is updated at a lower frequency than the simulation takes

place depending on how dynamic the system is. This increases the efficiency of simula-

tion as the machine does not waste time calculating distances between far-apart atoms

during the force calculation stage.

Ewald Summation

Ewald summation is a method of calculating long-distance interactions between atoms

in periodic systems, usually electrostatics [103]. The potential is divided into a sum of

short range and long range potentials:

φ(r) = φsr(r) + φlr(r) (2.32)

where φsr(r) is calculated as with van der Waals interactions but φlr(r) is treated in

Fourier space. The Fourier transformation allows a much faster computation for long-

range interactions and later development of the Particle–Mesh–Ewald (PME) method

employing the Fast Fourier Transform further improved computational efficiency [104].

2.5 Free Energy Calculations

As free energy plays a fundamental role in thermodynamics, a large part of simulation

research is dedicated to calculating free energies for various purposes such as phase

equilibria and protein binding.

For solvation of a pure crystal, the crystal has a set chemical potential and the aim is to

find the concentration of the solute molecule in the solvent that gives the same chemical

potential. Solvation of fluids is more complicated as there is solvation in both directions

with more complex chemical potential behaviour.
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2.5.1 Free Energy Differences and Reference States

As in real life, in molecular dynamics simulation it is only possible to calculate free en-

ergy differences, not absolute free energies.

To obtain an absolute free energy, one needs to perform a free energy calculation start-

ing from a system with an analytically known partition function and absolute free en-

ergy. There are two common reference states, the ideal gas for fluids and the Einstein

crystal for solids.

The partition function of a uniform atomic ideal gas is:

Z =
V N

N !

(
2πkTm

h2

)3N/2

=
1

N !

(
V

Λ3

)N
(2.33)

with Λ being the de Broglie wavelength of the particle. This equation is only valid for

V � Λ3 otherwise quantum effects have to be accounted for. For a polyatomic ideal

gas, the partition function is:

Z =
1

Nmol!

(
V q∏nmol
i=1 Λ3

i

)Nmol

(2.34)

where Nmol is the number of molecules, q is the molecular partition function (covering

bonds etc.) and nmol is the number of atoms in the molecule. The molecular partition

function has dimension L3(nmol−1).

The Einstein crystal is a lattice of particles bound to points in space by harmonic po-

tentials. Since the particles cannot swap the sites they are bound to, they are in effect

isolated systems (in other words distinguishable particles) so there is no factorial term to

consider. The partition function for an Einstein crystal with a single particle type and

restraint strength KE is:

Z =

(
2πkT

KEΛ2

)3N/2

. (2.35)

If the ideal gas or Einstein crystal has multiple species, then the total partition function

is simply the product of the partition functions as if the species were separated.
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2.5.2 Free Energy Perturbation

In the free energy perturbation (FEP) scheme, the free energy difference between states

A and B is given by:

∆F (A→ B) = −kT (lnQ′B − lnQA)

= −kT ln

(
Q′B
QA

)
= −kT ln

〈
exp

HA −H ′B
kT

〉
A

(2.36)

Here, a simulation is performed according to the force field of state A and periodically,

the potential energy is calculated according to state B and the difference between the

potential energies is recorded [105]. Standard practice is to run two simulations to ob-

tain ∆F (A→ B) and ∆F (B → A) then take the average of the two.

To be effective, there must be significant overlap between the distributions of potential

energies in the two simulations. If the difference is too great, intermediate states must

be established to bridge the gap with additional simulations.

2.5.3 Bennett Acceptance Ratio

The Bennett Acceptance Ratio (BAR) scheme takes the same information as FEP but

with some statistical insight to improve convergence [106]. The main downside is that

the approach is based on an implicit equation that needs to be solved numerically:

nA∑
i=1

1

1 + exp(ln(nA/nB) + (UA − UB)i/kT −∆F/kT )

−
nB∑
j=1

1

1 + exp(ln(nB/nA) + (UB − UA)j/kT −∆F/kT )
= 0 (2.37)

with nA and nB being the number of samples from simulations A and B. There is still

the requirement for the potential energy distributions to overlap well so BAR also re-

quires intermediate states where necessary.
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It was later determined that the BAR was the maximum likelihood method with respect to

the data it uses [107]. This means that it has the minimum variance in the free energy

values derived from the data provided to it.

2.5.4 Thermodynamic Integration

Thermodynamic Integration (TI) takes a different approach to FE calculations than per-

turbation schemes. TI takes two systems A and B and a thermodynamic pathway be-

tween the two defined with a scaling parameter λ.

U(λ) = UA + λ(UB − UA) (2.38)

When λ is 0 the system is A and at 1 the system is B. Taking the definition of free energy

(Equation 2.6) and the above equation, the free energy change between the two states

is given by:

∆F (A→ B) =

∫ 1

0

∂F (λ)

∂λ
dλ

= −
∫ 1

0

kT

Q

∂Q

∂λ
dλ

=

∫ 1

0

kT

Q

∑
s

1

kT
exp[−Us(λ)/kT ]

∂U(λ)

∂λ
dλ

=

∫ 1

0

〈
∂U(λ)

∂λ

〉
λ

dλ

=

∫ 1

0
〈UB(λ)− UA(λ)〉λ dλ (2.39)

where s is a configuration satisfying the ensemble, and UA(λ) and UB(λ) represent the

potential energy of a configuration produced by intermediate state λ but with the end-

state force fields applied.

For example, in an FE calculation for Coulombic charges on a molecule, an intermedi-

ate simulation would calculate the potential energies for the current configuration with

zero charge and full charge on the molecule.

TI is simpler to implement than BAR but it is sensitive to large variations in ∂U(λ)
∂λ . There

need to be enough intermediate states with the right λ values to accurately portray the
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curve to integrate.

The chemical potential of a molecule in a system is the free energy change of turning

on its intermolecular forces combined with the ideal chemical potential.

2.5.5 Soft-Core Potentials

In free energy calculations, when λ is close to zero the van der Waals potential gains a

very harsh singularity that introduces significant statistical issues due to energy spikes.

To avoid this, the force field for intermediate λ states is modified with a soft-core func-

tion that has the singularity removed. The soft-core potential used in Gromacs is [108]:

Vsc(r) = (1− λ)VA(rA) + λVB(rB) (2.40)

rA = (ασ6Aλ
p + r6)

1
6 (2.41)

rB = (ασ6B(1− λ)p + r6)
1
6 (2.42)

Where VA(rA) and VB(rB) are the potentials of state A and B, and α, σ and p are tunable

parameters of the soft-core modification.
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3.1 Introduction

The purpose of this study is to attempt to reproduce the solubility of urea in water us-

ing different thermodynamic pathways that should give the same results. The success

lies in a thorough and robust understanding of molecular interactions and, from this

benchmark, research can move on to novel compounds.

The unique properties of urea solutions have fascinated scientists, especially in regards

to its use as a protein denaturant. It improves the solubility of hydrophobic molecules

and there is much controversy about its aggregation behaviour in water [109, 110]. Ac-

curately modelling urea in water is challenging due to the strong and complex hydro-

gen bonding interactions. Like water, urea forms a relatively open crystal structure

and easily forms porous frameworks. This can be exploited to form clathrates and co-

crystals [111, 112].

In this study two urea models, one optimised for the crystal and the other for aqueous

solutions, and two thermodynamic pathways shall be implemented and their results

compared. One thermodynamic pathway maintains the molecular structure of the so-

lute and the other breaks down the molecule into its constituent atoms. Another part

of the study is investigating how the choice of restraint strength of the Einstein crystal

affects the calculated crystal chemical potential.

As computing power and code efficiency have massively improved in the past decade,

it is now considered feasible to run direct coexistence simulations for crystals and sol-

vents in a reasonable time frame. It is still much slower than free energy methods but

it should give the most accurate estimated range of solubility with a robust simulation

setup.

3.2 Methods

The molecular simulation software used in this project is Gromacs [113]. It is free, open

source and has an active community for development and support with comprehensive
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Table 3.1: Partial charges on the urea molecule according to the two models used in this

study. Cis and trans hydrogens are in relation to the oxygen. The unit ec is the charge

of the electron.

Atom Özpınar Partial Charge / ec Hölzl Partial Charge / ec
C 0.884 0.6068

N –0.888 −0.8400

O –0.660 −0.6162

Hcis 0.388 0.4026

Htrans 0.388 0.4421

Table 3.2: Lennard-Jones parameters for urea atoms according to the two models used

in this study.

Atom Özpınar σ / nm Hölzl σ / nm Özpınar ε / kJ/mol Hölzl ε / kJ/mol

C 0.339967 0.36039 0.359824 0.35982

N 0.325000 0.34452 0.711280 0.51114

O 0.295992 0.31377 0.878640 0.59432

H 0.106908 0.11333 0.0656888 0.065689

documentation. The free energy data was analysed using the ”alchemical-analysis”

suite by MobleyLab [114].

3.2.1 System Data

The urea force fields used in this study are a refined GAFF force field for reproducing

the crystal [75] and a custom force field designed to reproduce urea aqueous solutions

[76] — their non-bonded parameters shown in Tables 3.1 and 3.2. The TIP3P water

model was used for the Özpınar model and TIP4P/2005 was used for the Hölzl model.

The crystal used for this study is Crystallography Open Database entry 1008776 based

on neutron diffraction data [115].

Free Energy Calculation Systems

The crystal unit cell was tiled to 5×a, 5×b and 6×c to enable the use of a standard

1.2 nm cut-off for non-bonded forces giving a system size of 300 molecules. To generate
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the reference sites for the Einstein crystal position restraints, the crystal was simulated

with the constant-stress (NST) regime to test the stability and accuracy of the crystal

parameters within the 5% threshold. The average configuration parameters were taken

from an equilibrated NST run and then an NVT simulation was carried out. The aver-

age atomic positions from the NVT run were used as the reference positions.

Seven solution systems were made from 1000 molecules ranging from 0 to 300 urea

molecules in 50 molecule intervals. This goes up to roughly the solubility of real urea

in water at standard conditions [1].

The molecular dynamics integrator was stochastic dynamics for improved phase space

sampling. This means less accurate kinetics on the approach to equilibrium but it is

an acceptable compromise for faster acquisition of thermodynamic data. The timesteps

used were 2 fs for systems with completely constrained bonds and 0.5 fs for systems

with flexible bonds. Energy data were collected every 1000 steps. Non-bonded en-

ergy potentials were the potential-switch function for van der Waals interactions and

Particle-Mesh Ewald for electrostatics with a cut-off distance of 1.2/nm and long range

dispersion corrections were applied for energy and pressure. The barostat used for

solution simulations was Parrinello-Rahman with a compressibility of 4.5 × 10−5 bar

(matching that of water at standard conditions). Free energy calculations for van der

Waals and electrostatics use 26 and 11 equidistant λ-states respectively. Calculations for

bonds and position restraints unfortunately have to be tuned on an ad hoc basis with

test runs. Soft-core parameters are left as Gromacs defaults.

Direct Coexistence

There are two systems that are used for determining direct coexistence solubility. The

crystal can either be placed in contact with a pure solvent to give a lower bound (Figure

3.1) or in contact with a supersaturated solution for an upper bound (Figure 3.2). Care

must be taken to ensure the regions away from the phase boundaries are large enough

to be statistically reliable. The crystal used was produced by tiling the FE calculation

crystal 2× 2× 2 for a total of 2400 molecules and equilibrated.

For the pure water system, the box size was simply extended in the z direction and

the space was filled with gmx solvate. The system was then checked to remove any
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Figure 3.1: Schematic for a crystal dissolving into an initially pure solvent.

Figure 3.2: Schematic for a supersaturated solution depositing excess solute onto a crys-

tal.

water molecules erroneously placed within the crystal (urea has a rather open crystal

structure). The number added cannot be strictly controlled when trying to fill the en-

tire space — in this case 15697 water molecules were present after removing the water

molecules in the crystal. The system used anisotropic pressure scaling. The simulation

was performed until the concentration of urea in the solvent had stabilised for a long

enough time to get a good average.

The supersaturated system requires greater care as there is great uncertainty as to

guessing the required concentration. The system was constructed similarly to the pure

water system but the empty space had urea molecules added, too. The initial molar
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ratio was chosen as 0.5 but this was far too high and the solvent part of the system be-

came too small for good statistics. A new system was created with a roughly 0.2 molar

ratio of urea (1980 urea to 7920 water) and this worked for statistics.

3.2.2 Thermodynamic Pathways

Two distinct approaches to calculating crystal free energies have been established in

the literature. In the atomic route, the reference state is a mixed Einstein crystal with

each atom attached to its average position in the real crystal. This is only possible when

flexible bonds have defined parameters. In the molecular approach, the reference state

is a ”molecular” Einstein crystal where a single atom of the molecule (preferably close

to its centre of mass) is bound to its average position. The molecule is free to rotate. If

the software allows, one can maintain the internal non-bonded interactions to reduce

free energy changes and their errors. A schematic for the two routes is given in Figure

3.3.

Atomic Approach

The thermodynamic pathway for the atomic approach from reference to real crystal is

as follows:

1. Turn on bonded interactions within molecules (bonds, angles etc.)

2. Turn on vdW interactions. One can actually get away with not using a soft-core

potential as the atoms are restrained from overlapping.

3. Turn on electrostatic charges.

4. Remove position restraints.

The thermodynamic pathway for the atomic approach to the solvation free energy of

the probe molecule is as follows:

1. Calculate internal partition function of probe molecule (bonds, angles etc.)

2. Turn on vdW interactions.

3. Turn on electrostatic charges.
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The partition function of a bond potential U in a cuboid box of dimensions a, b, c is:

Zbond =

∫ a/2

−a/2

∫ b/2

−b/2

∫ c/2

−c/2
exp(−U(x, y, z)/kT ) dx dy dz (3.1)

The partition function of the molecule before activating angle and dihedral potentials

is simply the product of the partition functions of every bond. As angle and dihedral

potentials are coupled, their free energy contributions have to be calculated numeri-

cally. The subsequent calculations for the vdW and Coulombic free energies are no

more complicated than for the crystal.

Molecular Approach

The thermodynamic pathway for the molecular approach from reference to real crystal

is as follows:

1. Add position restraints to molecules to enforce correct rotation

2. Turn on vdW interactions. As with the atomic approach, a soft-core potential may

not be necessary.

3. Turn on partial charges.

4. Remove position restraints.

For the solvation free energy, one only needs to scale the intermolecular non-bonded

forces (i.e. turn on vdW potentials then charges).

3.2.3 Einstein Crystal Restraint Strength Testing

Part of refining the free energy calculations is using the optimum strength for position

restraints. If the strength is too low, atoms could still overlap and energy spikes de-

crease precision. If the strength is too high, the free energy calculation for their removal

also involves huge energies and makes the integration difficult. Another question is

whether the choice of restraint strength has a significant effect on the value of the final

free energy estimate. To this end, the crystal free energy was calculated for the Özpınar

model with restraint strength ranging from 10000 to 5000000 kJ/mol nm2 according to

the 1-2-5 scheme.
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3.3 Results

3.3.1 Özpınar Model

Direct Coexistence

The evolution of the molar fraction of urea in solution as a function of time for pure wa-

ter and a supersaturated solution are given in figures 3.4 and 3.5. The evolution of the

systems are surprisingly straightforward with distinct equilibria being shown. The rate

of urea dissolution fluctuates as successive crystal layers are removed, a behaviour pre-

viously explored by Piana and Gale [116]. It can be seen that the solubility is between

around 0.035 and 0.06 molar fraction. This is a small fraction of the real solubility of

about 0.3 molar fraction.
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Crystal Chemical Potential

The TI curves for low, intermediate and high restraint strengths are compared in fig-

ures 3.6 to 3.13. It is apparent that there is a balancing act for the restraint strength as

precision suffers if it is too low or too high. The chemical potential with 500000 kJ/mol

nm2 was used to compare with the solution chemical potentials.
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The contributions to the chemical potential of the urea crystal according to the atomic

and molecular routes are given in tables 3.3 and 3.4 respectively. The incomplete data

for the atomic approach is due to the Gromacs build at the time having stability issues

but there was not enough time to repeat the simulations with a later build.

After these simulations finished and the restraint strength was decided, new simula-

tions were carried out for longer with a restraint strength of 500000 kJ/mol nm2 to

refine the statistical errors. The final estimates of the free energy contributions (in units

of kJ/mol) in the atomic route were as follows:

• Einstein Crystal 133.49

• Bonds, angles and dihedrals 52.761±0.001

• van der Waals −27.531±0.00001

• Electrostatics −802.812±0.0005

• Restraint release −80.732±0.034

giving a total chemical potential of −723.091±0.034 kJ/mol.

The contributions for the molecular route were:

• Einstein Crystal 14.127

• Orientation restriction 37.632±0.023

• van der Waals −25.822±0.0008

• Electrostatics −62.943±0.005

• Restraint release −32.67±0.005

giving a total chemical potential of −69.676±0.024 kJ/mol.
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Solution Chemical Potential

TI Curves

There is very little change in behaviour of the TI curve for electrostatics as a function

of composition, as shown in figures 3.14 to 3.17. This makes sense as both water and

urea engage in strong O· · ·H hydrogen bonding interactions. The behaviour of the van

der Waals interactions are more interesting. The peak of the curve for the concentrated

solution is higher than in pure water and the curves cross with the concentrated solu-

tion showing more favourable behaviour in the high λ region. This could be an artifact

of the soft-core potential. These behaviours are shown in both atomic and molecular

routes.
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Ö
zp

ın
ar

m
od

el
.T

he
ra

ng
e

of
dH

/d
λ

is
gr

ea
te

r
at

hi
gh

er
co

nc
en

tr
at

io
n.



3.3. RESULTS 61

Fi
gu

re
3.

15
:

Pl
ot

s
of

dH
/d
λ

fo
r

tu
rn

in
g

on
th

e
el

ec
tr

os
ta

ti
c

in
te

ra
ct

io
ns

in
th

e
ur

ea
m

ol
ec

ul
e

ac
co

rd
in

g
to

th
e

Ö
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Ö
zp

ın
ar

an
d

TI
P3

P
m

od
el

s.
En

er
gi

es
in

kJ
/m

ol
.E

le
ct

ro
st

at
ic

s
do

m
in

at
e

to
a

le
ss

er
ex

te
nt

co
m

pa
re

d
to

th
e

at
om

ic
ro

ut
e.

x(
ur

ea
)

Vo
lu

m
e

/
nm

3
Id

ea
lG

as
vd

W
vd

W
Er

ro
r

El
ec

tr
os

ta
ti

c
ES

Er
ro

r
To

ta
l

To
ta

lE
rr

or

0
30

.3
69

5
−

34
.9

86
1.

56
4

0.
06

3
−

61
.1

73
0.

06
4

−
94

.5
95

0.
09

0

0.
05

32
.1

77
5

−
25

.3
24

0.
21

5
0.

07
2

−
61

.3
14

0.
06

6
−

86
.4

23
0.

09
8

0.
1

34
.0

09
9

−
23

.7
59

−
0.

30
9

0.
07

6
−

61
.1

33
0.

06
5

−
85

.2
01

0.
10

0

0.
15

35
.8

73
9

−
22

.8
88

−
1.

01
1

0.
08

3
−

61
.3

45
0.

06
7

−
85

.2
44

0.
10

7

0.
2

37
.7

33
5

−
22

.3
02

−
1.

29
1

0.
09

0
−

61
.3

61
0.

06
7

−
84

.9
54

0.
11

2

0.
25

39
.6

23
4

−
21

.8
69

−
1.

60
9

0.
09

3
−

61
.5

57
0.

07
2

−
85

.0
35

0.
11

8

0.
3

41
.4

97
−

21
.5

27
−

2.
02

8
0.

10
0

−
61

.4
17

0.
07

2
−

84
.9

72
0.

12
3



3.3. RESULTS 65

3.3.2 Hölzl Model

Direct Coexistence

The kinetics for the Hölzl and TIP4P/2005 system were much slower than for the

Özpınar and TIP3P combination and does not display the same ”layer-by-layer” disso-

lution behaviour. Subsequently a much wider range of solubility for urea of 0.03–0.11

molar fraction was given by the pure and supersaturated simulations as shown in fig-

ures 3.18 and 3.19. These simulations were performed very late in the study so there

was not enough time for fully ascertain whether equilibration had been reached.
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Crystal Chemical Potential

The free energy contributions (in units of kJ/mol) to the chemical potential of the Hölzl

model with a restraint strength of 500000 kJ/mol nm2 through the atomic route are:

• Einstein Crystal 133.49

• Bonds, angles and dihedrals 48.901±0.002

• van der Waals −17.984±0.001

• Electrostatics −825.465±0.001

• Restraint release −76.459±0.043

giving a total chemical potential of −737.513±0.043 kJ/mol.

The contributions for the molecular route are:

• Einstein Crystal 14.127

• Orientation restriction 34.666±0.027

• van der Waals −15.199±0.001

• Electrostatics −103.344±0.005

• Restraint release −27.621±0.022

giving a total chemical potential of −97.372±0.035 kJ/mol.

3.3.3 Solution and Crystal Chemical Potential Comparison

The results of the four protocols are given in Figure 3.20. They all give very differ-

ent results with the atomic route giving a lower chemical potential difference than the

molecular route for both models. The Özpınar free energy simulations failed to give

chemical potential differences that agreed with the direct coexistence simulations.
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3.4 Discussion

The molecular chemical potential pathway with the Hölzl model was the only combi-

nation of the four force field/pathway combinations that gave a sensible estimate of

the chemical potential differences of the urea crystal and solution between 0.05 and 0.1

molar fraction. This agrees very well with the direct coexistence simulation range of

0.03-0.11 molar fraction.

Unfortunately, there have been major issues that have not been able to be resolved.

Both urea models were subject to exactly the same simulation protocols yet the Özpınar

model failed to produce chemical potential differences that made sense. The chemi-

cal potentials for the Özpınar model are significantly higher than the Hölzl model, up

about 25 kJ/mol higher for the crystal in the molecular route. Human error cannot be

excluded as a possibility. There are large differences in each contribution to the free

energy from the two models so locating and identifying erroneous data proved very

difficult.

The difference in chemical potentials are significantly lower in the atomic route for both

force field sets, which indicates an inherent error in data production for free energies

particular to this route. Until this issue can be resolved, the atomic route cannot be rec-

ommended for chemical potential calculations. It is suspected that the issue lies in the

transformation of the harmonic functions in the force field as the calculations of their

free energy contributions can be particularly difficult at high strengths.

The chemical potential difference for both models show a similar drop in chemical po-

tential difference in the atomic thermodynamic pathway compared to the molecular

pathway. This indicates that there could be an issue with the handling of intramolecu-

lar forces in free energy calculations.

Even if the unknown protocol errors are corrected, there are still valid observations to

be made. Most importantly, the precision of the crystal chemical potential calculations

are excellent regardless of force field or thermodynamic pathway. Solution chemical po-

tential errors are an order of magnitude larger but still very good at below 0.2 kJ/mol —

this is because of only being able to transform a single molecule so sampling efficiency
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is reduced. For both urea models, the van der Waals contribution to the chemical po-

tential in solution decreases significantly as a function of concentration. This leads to

a very flat behaviour for the chemical potential at higher concentrations such that sta-

tistical error can easily have a large effect on the solubility estimate. The electrostatic

free energy contribution to the solution chemical potential is surprisingly flat as a func-

tion of concentration, indicating that the interactions of urea molecules in the solution

phase with water molecules and other urea molecules are of similar strength. While

water and urea are both strongly polar with high hydrogen bonding potential, that

consistency was not anticipated.
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4.1 Introduction

Mutual solubility is of fundamental interest to a large variety of applications including

ionic liquids [117], geology of the Earth’s mantle [118] and fuel engineering [119]. The

mutual solubility of liquids is more complicated in comparison to solvation of solids as

there are multiple competing solvation processes in thermodynamic balance. Compu-

tational methods are particularly important for investigating systems like the Earth’s

mantle as they are impossible to recreate in lab conditions.

The butanol-water system was chosen for its chemical simplicity and interesting phase

behaviour where the solubility of butanol in water at low temperatures decreases as a

function of temperature, reaches a minimum and then the two become miscible close to

the boiling point of water [120, 121]. This study seeks to recreate this phase behaviour

through chemical potential calculations and direct coexistence simulations. Direct co-

existence simulations should be particularly effective as equilibration of fluid systems

is rapid.

4.2 Methods

4.2.1 Direct Coexistence

The initial direct coexistence system comprised pure blocks of 2400 butanol molecules

and 12000 water molecules in a tetragonal box with the z-axis around 3 times the x and

y-axes. At 293 K the equilibrated box dimensions were 6.23× 6.23× 18.68 nm. The sys-

tem was simulated at a series of temperatures from 233 K to 413 K (−40°C to 140°C) in

20 K steps. Simulation was continued until the concentrations in the water and butanol-

rich phases were stable for a significant amount of time. Molar fractions of water and

butanol were tracked by slicing the system along the z-axis and over time using gmx

select to count how many water and butanol molecules were present in each slice. The

slicing is used to determine where the phase boundary is during the simulation as the

two phases may significantly drift in the z-axis. Once equilibrium was achieved and

a significant amount of time had passed, the average number density was then de-

termined which was then converted to other quantities to compare with experimental

data.
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4.2.2 Free Energy Calculations

Because of the complication of mutual solubility, the chemical potentials of butanol and

water have to be determined across the whole composition range from pure water to

pure butanol. The same series of temperatures as for direct coexistence were used. All

free energy calculation systems were 3000 atoms to maintain a consistent system size

and the compositions used are given in Table 4.1.

The systems were equilibrated for 10 ns (5,000,000× 2 fs) before the free energy simu-

lations with equilibrium determined by consistent volume and potential energy. Each

free energy simulation was 10 ns with the first 0.5 ns of thermodynamic data ignored in

free energy calculations to account for any equilibration due to the perturbed molecule.

The stochastic dynamics integrator was used for improved sampling with a friction

constant of 1 ps. The Parrinello–Rahman barostat was used with a coupling constant of

2 ps and compressibility of 4.5×10−5 bar. A potential-switch function was used for van

der Waals interactions and Particle-Mesh Ewald for electrostatics with a cut-off distance

of 1.2/nm. Sampling of energies required for free energy analysis occurred every 1000

steps. Butanol bonds were constrained with the LINCS algorithm with water handled

by the SHAKE algorithm. In total, this study used 1,776 simulations for free energy cal-

culations. The calculated excess free energies were taken to create mixing free energies

and fitted to Equation 2.16.
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Table 4.1: Butanol/water system compositions used in free energy calculations. N is

the number of molecules.

N(butanol) N(water) x(butanol)

0 1000 0

1 995 0.0010

2 990 0.0020

4 980 0.0041

6 970 0.0061

8 960 0.0083

10 950 0.0104

20 900 0.0217

40 800 0.0476

60 700 0.0790

80 600 0.1176

100 500 0.1667

120 400 0.2308

140 300 0.3182

160 200 0.4444

180 100 0.6429

184 80 0.6970

188 60 0.7581

192 40 0.8276

196 20 0.9074

197 15 0.9292

198 10 0.9519

199 5 0.9755

200 0 1
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Figure 4.1: Count of water molecules in a butanol-water direct coexistence simulation

at 233 K as a function of time and average z-coordinate with cyan representing the wa-

ter rich phase and black the butanol rich phase. There is an initial separation of wa-

ter phases which quickly merged and then on there is a sharp phase boundary which

slightly drifted with time. The points away from the phase boundaries after 100 ns

were used to determine the average number densities of water in each phase. The same

process was used for butanol where the colours are essentially switched.

4.3 Results

4.3.1 Direct Coexistence

The butanol and water distributions as a function of time and z-coordinate are given

visually for various temperatures (Figures 4.1 to 4.4). Numerically, these figure are

graphs of counts of water molecules as a function of z-coordinate and time but they

show why stratifying the number density in both space and time is important as the

phase boundaries clearly drift and equilibrium is not a straightforward process. All

the simulations were essentially equilibrated after 100 ns and the points after this time,

determined to be significantly away from were used to determine the average number

densities of butanol and water as a function of temperature.
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Figure 4.2: Count of water molecules in a butanol-water direct coexistence simulation at

373 K as a function of time and average z-coordinate with cyan representing the water

rich phase and black the butanol rich phase. The phase behaviour is much simpler than

at 233 K with no significant drift in the phase boundary. The difference may merely be

coincidental.
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Figure 4.3: Count of water molecules in a butanol-water direct coexistence simulation at

393 K as a function of time and average z-coordinate with cyan representing the water

rich phase and black the butanol rich phase. The phase boundary has become very

diffuse with a lot of drift making statistical analysis difficult. This is very close to the

critical temperature of miscibility.
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Figure 4.4: Count of water molecules in a butanol-water direct coexistence simulation at

413 K as a function of time and average z-coordinate with cyan representing the water

rich phase and black the butanol rich phase. Phase separation has completely broken

down and the two liquids are miscible.
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It can be seen that as the temperature increases, the phase boundary becomes more dif-

fuse. For lower temperatures the change in phase boundary behaviour is slight but as

the system approaches the critical temperature, the boundary quickly becomes broader

until the whole system becomes miscible. The simulation derived solubilities of butanol

and water are presented as mass fractions in Table 4.2 and compared with experimental

data. Unfortunately, there is little numerical agreement of the direct coexistence data

with the experimental data. However, the qualitative behaviour is similar, particularly

with the solubility of butanol in water showing a local minimum. Estimation of solubil-

ity close to the critical temperature of miscibility becomes very imprecise as the phase

boundary broadens. The critical temperature of miscibility has not been precisely de-

fined but it appears to roughly agree with experimental data showing it to be just above

100°C.

4.3.2 Free Energy Calculations

The free energy of mixing for a binary mixture was obtained by calculating the ex-

cess chemical potentials of both components. In this study the excess chemical po-

tential is separated into van der Waals and electrostatic components. Representative

dH/dλ curves for each transformation are shown in Figure 4.6 and the excess chem-

ical potential components are given in Figure 4.8. The van der Waals dH/dλ curves

are mostly unremarkable with the water curves showing a stronger rejection at low

λ. The Coulombic dH/dλ curves in the butanol rich phase show an interesting two-

part behaviour where at high λ the interaction distinctly becomes more favourable.

This is maybe the region where the perturbed water molecule or butanol hydroxyl

group is preferentially associated with the hydroxyl chains. The water-rich systems

are more favourable for electrostatic interactions while the butanol-rich systems are

more favourable for van der Waals interactions. Remarkably, for both interactions, the

majority of the change occurs in the water-rich region with a smaller gradient in the

butanol-rich phase.

The systems used in the free energy simulations were stable against phase separation

throughout the composition range. The density analysis as a function of composition

(Figure 4.7) shows an uncomplicated relationship and statistical errors were consis-

tently very small (smaller than the symbol sizes) which corroborated the stability.
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Unfortunately, the free energy data for butanol-rich systems had very high statistical

uncertainty (as seen in figures 4.9 to 4.14) and this made constructing a chemical poten-

tial curve as a function of composition very difficult with poor R2 for all fitted curves.

The statistical errors follow the opposite trend to direct coexistence as they decrease

with increasing temperature. As a result of the large errors, in this study it was not

possible to obtain sensible estimates of solubility from free energy calculations. Despite

this poor data, there is still some indication that water is more soluble in butanol-rich

systems than butanol in water-rich systems, which is consistent with the direct coexis-

tence data.

4.4 Discussion

The butanol-water direct coexistence simulations were effective for deriving statisti-

cally robust solubility data (Table 4.2). Despite the numerical inaccuracy of the simula-

tion data versus experimental data (Figure 4.5), there was a decent reproduction of the

qualitative behaviour of the solubility of butanol and water in each other as shown in

the closeness of the critical temperature of miscibility at just above 100°C and the local

minimum solubility of butanol in water which is only about 0.02 mass fraction off but

disagreeing in temperature. This is a good step forward for the use of direct coexistence

simulations for mutual solubility of liquids as it can be seen from this study that the in-

accuracy of the data comes from the molecular force fields rather than the simulation

protocols. The high variance of the molecular counts for systems near miscibility is po-

tentially an issue but one could look at the standard error and extend simulation until

the standard error is reduced below an acceptable threshold.

The free energy calculations of butanol and water across the composition range un-

fortunately failed to produce reliable data from which to derive solubilities. The vari-

ance of the free energy data are simply far too large for what turned out to be a small

range of mixing free energy to cover (see figures 4.9 to 4.14). There were persistent

difficulties with obtaining precise and reliable free energy estimates for butanol-rich

systems in particular. The hydroxyl groups of butanol form chains dividing the system

into hydrophilic, electrostatic-dominated and hydrophobic, van der Waals-dominated

regions. This transient chaining behaviour may be a factor of frustration in the pre-
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cision of these free energy calculations that normally require relatively homogeneous

systems. Evidence of this is in the distinctive two-part behaviour of the electrostatic

dH/dλ curve and the significant decrease in statistical error at higher temperatures,

where these chains have lower barriers to being created and destroyed. The butanol-

rich systems were significantly perturbed by the probe molecule. As butanol is a much

larger molecule than water, a system which is butanol-rich will not have as much free-

dom for the molecules to accommodate the probe molecule than a water-rich system

of the same size. Therefore, systems composed of larger molecules require much larger

systems to compensate for this lack of freedom.

The construction of a curve for the free energy of mixing two components requires a

large number of simulations that take a correspondingly large amount of CPU time. If

one is only interested in solubility of fluids without needing the free energy data, it will

be more efficient to run direct coexistence simulations that only take one simulation for

a particular temperature and pressure. Looking back at figures 4.9 to 4.14, it can be

seen that a holistic approach to generating the free energy of mixing is not necessary

for obtaining the solubility compositions as they will usually be close to the pure com-

positions. A more efficient approach would be to start with the pure system and add

more of the solute until the minimum is seen in the free energy of mixing. The common

tangent can then be generated from these two parts of the curve.

In conclusion, this study shows that direct coexistence simulations are preferable to free

energy calculations for determining the mutual solubility of liquids from the perspec-

tive of ease-of-use and time efficiency. Calculating the free energy of mixing of two

components requires a lot of simulations providing data with precision that may be

very difficult to achieve, especially without dedicated software to expedite the process

and avoid human errors.
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5.1 Introduction

Polymorphism is a phenomenon in the solid state in which the molecules of a com-

pound can have different stable arrangements of molecules depending on temperature

and pressure. A polymorph is more stable than another when it has a lower chemical

potential. There are two modes of polymorphism, monotropism and enantiotropism.

The chemical potentials of monotropic polymorphs do not cross before the melting

point and the transformation from one polymorph to the other is irreversible. The

chemical potentials of enentiotropic polymorphs do cross before the melting point and

can be reversibly transformed by adjusting the temperature.

Polymorphism is relevant to many areas of science and engineering. Understanding the

polymorphs of silicate and oxide minerals is key to understanding the structure of the

Earth’s mantle — there are discontinuities in the structure of the mantle determined

by the phase boundaries of mineral polymorphs [122]. The pigment 5-methyl-2-[(2-

nitrophenyl)-amino]thiophene-3-carbonitrile gained the nickname ROY (Red Orange

Yellow) because it can form a large range of polymorphs with various colours. It holds

the record for the most polymorphs isolated with 11 as of 2020 [123]. Polymorphism in

explosives has a significant effect on their energetic properties [124].

In pharmaceuticals, polymorphism is a critical priority in formulation as regulatory

approval can only be given to one polymorph at a time and the sudden appearance

of a new polymorph can have disastrous effects on efficacy [125]. A notable example

is ritonavir [126]. The second polymorph of ritonavir was not known until after for-

mulation and regulatory approval proceeded without issue. The critical issue was that

ritonavir is not bioavailable in the solid state so had to be delivered as a solution or gel.

In 1998, liquid capsules started failing solubility tests and eventually form II started ap-

pearing throughout the manufacturing process as the formulation concentration was

400% supersaturated with respect to Form II, forcing a new formulation to be devel-

oped. Therefore, the ability to determine, isolate, and control polymorphism is critical

in determining and ensuring the efficacy of liquid and gel drug formulations.
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The precision of computational free energy calculations for crystals is such that the sta-

bility of polymorphs should be able to be differentiated. The majority of polymorph

pairs have a chemical potential difference below 2 kJ/mol [127].

Here we attempt to use molecular dynamics with a common force field to differentiate

polymorph stabilities for a molecule and establish the stability hierarchy of the poly-

morphs. This study looks at carbamazepine, a drug molecule used to treat various

mental and neurological conditions that exists in several polymorphs at ambient con-

ditions [128, 129, 130, 131, 132]. Carbamazepine was chosen as a test case for these well

characterised polymorphs and relative rigidity of the molecule which will help reduce

noise in free energy sampling. The unit cell parameters for the four well-characterised

polymorphs are given in Table 5.1.

These polymorphs have different stabilities (III>I>IV>II at standard conditions) with

a corresponding inverse ranking in solubility. The aim of this study was to recreate

this stability hierarchy and estimate how different the solubilities are with the aim of

establishing a robust protocol that can be used for novel compounds.

5.2 Theory

The chemical potential of an extra molecule in a system of N solute molecules in a fluid

of volume VIG using the ideal gas reference is:

µsol = −RT ln

(
VIG
N + 1

)
+ µexsol. (5.1)

For solutes with low solubility, the route to estimating solubility is simplified as the

chemical potential is dominated by the ideal contribution and µexsol can be considered

constant in the narrow concentration window of interest. With this assumption, only a

single chemical potential determination at infinite dilution (single molecule in pure sol-

vent) is required to compare with the estimated crystal chemical potential. The chemi-

cal potential for a solute molecule in a pure solvent simplifies to:

lim
N−→0

µsol = −RT ln(VIG) + µexsol. (5.2)

The chemical potential of a crystal using the Einstein crystal reference is:



100 CHAPTER 5. CARBAMAZEPINE

Ta
bl

e
5.

1:
Ex

pe
ri

m
en

ta
lu

ni
tc

el
lp

ar
am

et
er

s
fo

r
th

e
fo

ur
po

ly
m

or
ph

s
of

ca
rb

am
az

ep
in

e.

Po
ly

m
or

ph
Sp

ac
e

G
ro

up
Z

a
/

Å
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µcrys = −RT ln(VEC) + µexcrys (5.3)

The Einstein crystal reference is where the molecules are held in their average positions

by harmonic restraints on a central atom. The available volume VEC of an Einstein

crystal with restraint strength KE is given by:

VEC =

(
2πkT

KE

) 3
2

. (5.4)

The contribution µexcrys is from the transformation of the reference state to the normal

crystal, proceeding through the application of two extra restraints to restrain rotation,

turning on the intermolecular interactions and then removing the harmonic restraints.

At solubility, µinfsol = µcrys and therefore:

−RT ln

(
VIG
VEC

)
+ ∆Gexsol −∆Gexcrys = 0 (5.5)

which can be rearranged to give an estimated volume per molecule:

VIG = VEC e
∆Gex

sol−∆Gex
crys

RT (5.6)

Excess chemical potentials are calculated using the Bennett Acceptance Ratio method

[106].

5.3 Methods

The thermodynamic conditions were 300 K and 100 kPa. The force field used for car-

bamazepine is GAFF [133]. There are no novel moieties in the molecule so the van der

Waals parameters were taken from the standard GAFF set. Partial charges were gener-

ated using RESP with the HF/6-31G* basis set — the recommended process for GAFF

[133]. The partial charges on the azepine and terminal amine moieties were adjusted

by averaging the partial charges on opposite atoms to account for their symmetry. The

differences between the partial charges on opposite sides were small enough that no

significant effects on phase equilibria were anticipated. Partial charges are shown in

Figure 5.1.
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Figure 5.1: Partial charges generated for carbamazepine using RESP with the HF/6-

31G* basis set. The charges on the amine hydrogens and opposite azepine atoms have

been averaged to suit the symmetry of these moieties.
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5.3.1 Simulation Details

Simulations were carried out using the stochastic dynamics integrator for improved

phase space sampling. To avoid statistical issues, the centre-of-mass was constrained

at every step in crystal calculations. With bond constraints, a timestep of 2 fs was per-

mitted. Data for free energy calculations were collected every 5000 steps. The energy

potentials used were a potential-switch function for van der Waals interactions and

Particle-Mesh Ewald for electrostatics with long range dispersion corrections for en-

ergy and pressure. The Berendsen barostat was used for equilibration simulations and

the Parrinello-Rahman barostat for free energy simulations with a compressibility of

4.5× 10−5 bar (matching that of water at standard conditions). Free energy calculations

for van der Waals and electrostatics use 26 and 11 equidistant lambda states respec-

tively. Calculations for bonds and position restraints unfortunately have to be tuned

on an ad hoc basis with test runs. Soft-core parameters are left as Gromacs defaults —

sc-alpha = 0.5, sc-r-power = 6, sc-power = 1 and sc-sigma = 0.3.

Each polymorph unit cell was extended to a system large enough to allow a 1.2 nm

cut-off for non-bonded forces:

• Form I — 5a× 2b× 2c — 2.58525 nm × 4.1148 nm × 4.449 nm — 160 molecules

• Form II — 1a× 1b× 5c — 3.5454 nm × 3.5454 nm × 2.6265 nm — 90 molecules

• Form III — 4a× 3b× 2c — 3.036 nm × 3.345 nm × 2.7834 nm — 96 molecules

• Form IV — 1a× 4b× 2c — 2.6609 nm × 2.77076 nm × 2.7954 nm — 64 molecules

The force field was tested for Forms I, II and IV through NST simulations of 2 ns du-

ration and testing whether the unit box dimensions were maintained within 5% of ex-

perimental values. Gromacs had stability issues with simulating Form II under NST

conditions due to the extreme box angles so an NPT simulation was used instead. Af-

ter equilibration, the average box parameters were taken forward and the crystals were

then simulated in the NVT regime for 2 ns. The reference atom positions for the Ein-

stein crystals were taken from the average atom positions in the NVT simulations. The

reference crystals are shown in Figure 5.2.

For this study the Einstein molecule approach to free energy calculations was employed

with a restraint strength of 500000 kJ/mol nm2. As the de Broglie wavelength does not

influence the chemical potential difference between crystal and solution at constant
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Table 5.2: GAFF unit cell parameters for the four polymorphs of carbamazepine. The

angles in Form II were not tested due to software issues.

Polymorph a / Å b / Å c / Å α / deg β / deg γ / deg

Form I/triclinic 5.203 21.229 22.474 83.81 88.81 84.47

Form II/trigonal 35.324 35.322 5.175 90 90 120

Form III/P-monoclinic 7.660 11.389 14.717 90 114.28 90

Form IV/C-monoclinic 26.926 7.010 14.123 90 109.7 90

Table 5.3: Percentage errors of GAFF unit cell parameters for the four polymorphs of

carbamazepine in relation to the experimental values in Table 5.1

Polymorph a b c α β γ

Form I/triclinic 0.6 3.2 1.0 −0.4 0.9 −0.8

Form II/trigonal −0.4 −0.4 −1.5 N/A N/A N/A

Form III/P-monoclinic 1.7 2.1 5.7 0.0 23.0 0.0

Form IV/C-monoclinic 1.2 1.2 1.2 0.0 0.0 0.0

temperature, the wavelength of the molecule was set at 1 nm for convenience. The

central restraint was applied to the azepine nitrogen and orientation restraints were

applied in the x and y dimensions to the outermost carbons on the azepine. The ex-

cess free energy of carbamazepine was determined for a single molecule in 1000 TIP3P

water molecules. The volume given by an Einstein restraint of 500000 kJ/mol nm2 is

1.75489×10−7 nm3.

5.4 Results

5.4.1 Polymorph Tests

The GAFF force field successfully reproduced most of the unit cell parameters within

5% of the experimental values for all the polymorphs at standard conditions — their

structures are shown in Figure 5.2. The notable exception is Form III which suffered

significant distortion in the c-axis but was fine in the other axes. The parameters are

given in Table 5.2 and errors in Table 5.3. Despite the distortion of Form III, free energy

calculations were still carried out for the sake of completeness.
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5.4.2 Chemical Potentials

The Einstein crystal free energy is 38.801 kJ/mol and the free energy change of restrict-

ing the orientation is 30.624 kJ/mol. The rest of the free energy contributions and total

chemical potentials for each polymorph are given in Table 5.4. The free energy calcu-

lations for the four polymorphs have successfully reproduced the stability hierarchy of

III>I>IV>II, though the chemical potential of Form III is suspect with its distortion.

The dH/dλ curves for the transformations are given in Figure 5.3. The statistical er-

rors are very small compared to the chemical potential differences — the largest error is

0.071 kJ/mol compared to the smallest chemical potential difference of about 1.3 kJ/mol

between forms II and IV.

For the solvation free energy, the contributions of the van der Waals and electrostatic

components respectively are 2.925±0.186 kJ/mol and −56.031±0.084 kJ/mol — a total

of −53.106±0.204 kJ/mol. The dH/dλ curves are shown in Figure 5.4

Using Equation 5.6, the estimated solubilities of each polymorph are as follows:

• Form III/P-monoclinic — 1.5x10-5 M

• Form I/triclinic — 2.8x10-5 M

• Form IV/C-monoclinic — 5.7x10-4 M

• Form II/trigonal — 9.7x10-4 M

There is a simple exponential relationship between crystal chemical potential and sol-

ubility as shown in figure 5.6. The real solubility is 4.91x10-4 M [134]. The estimated

solubility of the most stable polymorph is therefore more than an order of magnitude

out.

5.5 Discussion

Not only did GAFF, a general purpose force field, faithfully reproduce three different

polymorph crystal structures for carbamazepine, it also successfully produced the cor-

rect stability hierarchy. This is a great accomplishment for relatively little effort. The

cause of the distortion in Form III is yet unknown but it may be based on interactions
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neglected in the force field — the structure of carbamazepine is controlled by both hy-

drogen bonding between the amide groups and π-stacking of the azepine rings which

are not explicitly handled. It could also be an issue in the barostat parameters in the

simulation settings. The statistical errors in the crystal free energy calculations are very

small with most of the error coming from the imposition of orientation restraints. An

investigation into whether weaker restraints could work to give an even lower error

would be prudent.

The polymorphs have a range of solubilities spanning almost two orders of magnitude.

While they have theoretically much higher solubility, the much lower stability for the

C-monoclinic and trigonal polymorphs combined with solvation would probably lead

to their transformation to the more stable P-monoclinic or triclinic polymorphs with a

corresponding drop in solubility. A method to prevent formation of the more stable

polymorphs would greatly increase the bioavailability of carbamazepine. The easy cre-

ation of the force field, only requiring quantum chemistry software to generate partial

charges with everything else already taken from standardised parameters, means that

it would not be difficult to extend this testing to other drug molecules with well char-

acterised polymorphs and then possibly on to predictive studies.

Even with the successful thermodynamic hierarchy, there is a lot that isn’t predicted by

free energy calculations, particularly the kinetics of phase transitions. Transition from

the trigonal and C-monoclinic forms to the P-monoclinic form are probably quicker

than from the triclinic form but would require a dedicated study to verify this.

The greatest difference to the crystal polymorph free energy comes from the van der

Waals contribution while there is very little difference due to partial charges. It is a

surprise that there is little difference in electrostatic contributions to the free energy

considering the role of hydrogen bonding in the crystal structures. This implies that

the van der Waals parameters (dispersion forces in reality) have the largest influence

on polymorph stability. While decades of optimisation have gone into these parame-

ters, there are still moieties that are not covered. When addressing a novel moiety, the

greatest care should therefore be taken in choosing the right van der Waals parameters.

The estimated solubility, being more than an order of magnitude out, is less promis-
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ing than the precision of the crystal free energy calculations but there are clear ways

to seek an improvement. This study used the very old TIP3P water model as it is the

recommended model for GAFF. Better results may come from using more modern mod-

els such as TIP4P/2005, then investigating alternative force fields for carbamazepine if

necessary to improve accuracy further. In addition, the partial charges are calculated

without taking dielectric constants into account — in reality, the polarity of a molecule

changes according to the permittivity of the environment. There are also many atomic

interactions that are neglected by common force fields, such as polarisability and ex-

plicit handling of hydrogen bonding with its partial covalent character, that may be

significant contributions to the free energy.

Corroborating the free energy derived estimates with a direct coexistence simulation

would be useful but, despite being technically possible, it would likely be a major chal-

lenge in itself considering a very large crystal would be required to avoid finite size

effects for a large molecule.
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Chapter 6

Conclusion

This research was an exploration of various methods used to predict solubility, iden-

tifying limitations and ways to improve methodology for future studies. The research

was split into three studies — estimating the solubility of urea in water using different

force fields and thermodynamic pathways, estimating the mutual solubility of butanol

and water using direct coexistence and free energy of mixing calculations, and finally

predicting the stability heirarchy of the four carbamazepine polymorphs and estimat-

ing their solubilities.

The first study sought to recreate the solubility of urea in water using four differ-

ent combinations of two theoretically valid thermodynamic pathways, one preserving

molecular structure and the other breaking the perturbed molecules down to atoms,

and two sets of force fields of different ages — Özpınar’s urea force field from 2010

with TIP3P and Hölzl’s urea force field from 2019 with TIP4P/2005. The free energy

calculations had excellent precision but only the Hölzl set with the molecular pathway

produced a sensible chemical potential difference between the crystal and solution, giv-

ing a solubility of urea in water between 0.05 and 0.1 molar fraction. This agreed with

direct coexistence simulations giving a range of solubility for the Hölzl urea model

of 0.03-0.11 molar fraction. The direct coexistence simulations for the Özpınar model

gave a range of 0.035-0.06 molar ratio but the free energy calculations failed to agree

with this. Unfortunately, this discrepancy could not be successfully troubleshooted.

The atomic thermodynamic pathway gave chemical potential differences several kJ/mol

lower than the molecular route for both force fields — this indicates a possible issue
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with how Gromacs calculates the data for free energy analysis and therefore the atomic

pathway should not be used for research until it can be troubleshooted and validated.

Other studies in the literature have encountered persistent issues with estimating solu-

bility for a variety of molecules which indicates severe issues with force fields and free

energy calculations. A separate study by Boothroyd on the solubility of urea in water

gave an estimate of 0.46-50.0 mol/kg, a margin of error that is practically useless for

further analysis [73]. Matos and Mobley could not get a reasonable estimate of the sol-

ubility of aspirin in water as the chemical potential difference was much too high [135].

These are recent studies with modern software and technology yet reconciliation of es-

timates and experimental data was not possible. These issues underpin the importance

of direct coexistence simulations as they do not rely on complex free energy calcula-

tions and solubility is given explicitly — only finite-size effects have to be accounted

for.

The second study sought to recreate the interesting solubility/temperature phase dia-

gram of butanol and water using the GAFF and TIP3P force fields. Direct coexistence

simulations and free energy calculations to construct curves of free energy of mixing

were performed at a wide range of temperatures. The direct coexistence simulations

had excellent performance due to both phases being liquid state and produced sta-

tistically robust estimates of the mutual solubilities of butanol and water, though the

variance of the solubility became very large near the critical temperature of miscibil-

ity. The critical temperature was correctly estimated at just above 100°C. The estimated

solubilities were far off experimental values but their qualitative behaviour was sim-

ilar, showing a local minimum in the solubility of butanol in water. The free energy

calculations failed to produce chemical potentials with the required precision needed

to construct the curves of free energy of mixing. Qualitatively, the chemical potential

calculations showed the correct behaviour as a function of composition but they were

hampered by finite-size effects not being sufficiently suppressed, especially in butanol-

rich systems. In future, significantly larger system sizes are needed.

The third study was a test to see if a general-use force field (GAFF in this study) could

correctly represent polymorphism and to see how strongly it affects solubility. The test

molecule was carbamazepine with four characterised polymorphs. GAFF successfully

reproduced the lattice parameters at standard conditions for three polymorphs in NST
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but had issues with one of the axes for the form III. Chemical potential calculations

successfully reproduced the stability hierarchy of the polymorphs (III>I>IV>II) but

the chemical potential of form III is suspect due to the lattice parameter issues. As in

the urea study, the precision of the free energy calculations were excellent. The calcu-

lated solubilities span almost two orders of magnitude (9.7x10-4 — 1.5x10-5 M) but the

estimated solubility of Form III is an order of magnitude lower than the experimental

solubility of 4.91x10-4 M.

It has been shown that direct coexistence simulations are now an effective method of

determining solubilities. They are particularly effective for mutual solubilities of fluids

where it can be quicker than the total time for the large number of simulations required

for a comprehensive coverage of mixing free energy with respect to composition. Direct

coexistence is less effective for solid state solvation as the kinetics are much slower and

outcomes of dissolution and precipitation simulations are different but is still a useful

diagnostic tool if the accuracy of free energy calculations are suspect.

Free energy calculations are very effective for crystals as applying the alchemical trans-

formation to every molecule in the system helps the collected data quickly converge to

a robust average due to the Central Limit Theorem, as shown with the small standard

errors in the study data. Conversely, solution free energy calculations are less precise as

the alchemical transformation is limited to one molecular unit to minimise perturbation

of the rest of the system, leading to the free energy data having much greater variance.

This is particularly problematic for mutual solubility of fluids as very high precision is

needed to accurately represent the mixing free energy curve as a function of compo-

sition, particularly when the local minimum has small magnitude or high curvature.

Another way to ameliorate statistical errors is to perform multiple simulations starting

from different configurations on each lambda point to gain a set of statistically inde-

pendent samples to average over. However, this may be onerous on time for a study

on a subject like mutual solubility which already requires thousands of simulations at

a minimum.

This research project demonstrated how difficult it is to represent many properties of

molecules with one force field. Being able to reproduce the correct densities and crys-

tal structures is important but is not enough for the purpose of solubility prediction.
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Future work needs to be dedicated to refining force fields to reproduce chemical poten-

tials. However, there may be only so much that can be achieved with the traditional

combination of the Lennard-Jones potential and point charges.

It has been shown that large fluid molecules require larger systems to reduce the per-

turbation from the probe molecule. A study into the relationship between the size of a

molecule and the amount of solvent required to minimise finite size effects to a consis-

tent threshold would be welcome. We are not aware of any existing literature dedicated

to this issue.

The time required for individual simulations for a free energy calculation are very short

now. The free energy simulations for turning on charges in the urea crystal had a simu-

lation rate of 1.2 hr/ns on a 16-core 2.6 GHz Intel Xeon CPU and the direct coexistence

simulation for urea and water had a simulation rate of around 1.4 hr/ns on a 40-core

2.4 GHz Intel Xeon CPU. In the modern computing age, the concern is no longer how

fast CPUs are but how many you can access and the cloud computing industry could

be a huge boon for physical chemists. Molecular dynamics simulations are very easy to

parallelise these days and they should be significantly faster with the newest versions

of molecular dynamics software embracing the dedicated vector-computing power of

GPUs.

Another major issue in this project was the lack of dedicated software for creating free

energy calculations. All the simulation setting files were made by hand or expedited by

small programs from old tutorials or written ad hoc. When a study requires thousands

of simulations there are many risks for human error. If free energy calculations are to

truly go mainstream in industry, there need to be software that automates and expe-

dites the process.

In essence, there is now a robust theoretical and technological foundation for the use

of free energy calculations and direct coexistence simulations to determine solubilities.

Force fields need to be further developed to reliably recreate experimental solubility

data and software need to be developed to make free energy calculations easier to set

up and analyse. This is of particular importance for industrial applications such as

pharmaceuticals and agrochemicals, which require seamless processes to analyse the



119

plethora of candidate molecules coming through the pipeline.
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A.1 System Topology Files

A.1.1 Özpınar Urea

[ defaults ]

; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 2 yes 0.5 0.83333

[ atomtypes ]

; name mass charge ptype sigma eps

C 12.010 0.0 A 3.3997e-1 3.59800e-1

N 14.010 0.0 A 3.7500e-1 7.11300e-1

H 1.008 0.0 A 1.0691e-1 6.57000e-2

O 16.000 0.0 A 2.9599e-1 8.78600e-1

[ bondtypes ]

; i j func r k

C N 1 0.1383 354803.2

C O 1 0.1250 548940.8

H N 1 0.1010 363171.2

[ angletypes ]

; i j k func th k

N C O 1 120.9 669.4

N C N 1 118.6 585.8

C N H 1 120.0 251.0

H N H 1 120.0 292.9

[ dihedraltypes ]

; i j k l func th k n

H N C O 9 0.0000 8.368 1.0000

H N C O 9 180.0000 10.46 2.0000

X C N X 1 180.0000 10.46 2.0000
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[ moleculetype ]

; Name nrexcl

URE 3

[ atoms ] ; nr type r# res atom cgnr charge mass

1 C 0 RES C 1 0.884 12.010

2 N 0 RES N 2 -0.888 14.010

3 H 0 RES H 3 0.388 1.008

4 H 0 RES H 4 0.388 1.008

5 O 0 RES O 5 -0.660 16.000

6 N 0 RES N 6 -0.888 14.010

7 H 0 RES H 7 0.388 1.008

8 H 0 RES H 8 0.388 1.008

[ bonds ]

; i j funct

1 2 1

1 5 1

1 6 1

2 3 1

2 4 1

6 7 1

6 8 1

[ pairs ]

; i j funct

2 7 1

2 8 1

3 5 1

3 6 1

4 5 1

4 6 1

5 7 1

5 8 1
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[ angles ]

; i j k funct

2 1 5 1

2 1 6 1

5 1 6 1

1 2 3 1

1 2 4 1

3 2 4 1

1 6 7 1

1 6 8 1

7 6 8 1

[ dihedrals ]

; ai aj ak al funct

5 1 2 3 9

5 1 2 4 9

6 1 2 3 9

6 1 2 4 9

5 1 6 7 9

5 1 6 8 9

2 1 6 7 9

2 1 6 8 9

3 1 4 5 9 180.0 4.6024 2

6 1 7 8 9 180.0 4.6024 2

1 2 3 6 9 180.0 43.932 2

[ position restraints ]

; ai f Akx Aky Akz

1 1 500000.0 500000.0 500000.0

2 1 500000.0 500000.0 0.0

6 1 500000.0 500000.0 0.0
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A.1.2 Hölzl Urea

[ defaults ]

; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 2 yes 0.5 0.83333

[ atomtypes ]

; name mass charge ptype sigma eps

C 12.010 0.0 A 0.36039 0.35982

N 14.010 0.0 A 0.34452 0.51114

H 1.008 0.0 A 0.11333 0.06569

O 16.000 0.0 A 0.31377 0.59432

[ bondtypes ]

; i j func r k

C N 1 0.13350 410032.0

C O 1 0.12290 476976.0

H N 1 0.10100 363171.2

[ angletypes ]

; i j k func th k

N C O 1 121.4 670

N C N 1 117.2 670

C N H 1 120.0 390

H N H 1 120.0 445

[ dihedraltypes ]

; i j k l func th k n

H N C O 9 0.0000 8.368 1.0000

H N C O 9 180.0000 10.46 2.0000

X C N X 1 180.0000 10.46 2.0000

[ moleculetype ]

; Name nrexcl
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URE 3

[ atoms ] ; nr type r# res atom cgnr charge mass

1 C 0 RES C 1 0.6068 12.010

2 N 0 RES N 2 -0.8400 14.010

3 H 0 RES H 3 0.4026 1.008

4 H 0 RES H 4 0.4421 1.008

5 O 0 RES O 5 -0.6162 16.000

6 N 0 RES N 6 -0.8400 14.010

7 H 0 RES H 7 0.4026 1.008

8 H 0 RES H 8 0.4421 1.008

[ bonds ]

; i j funct

1 2 1

1 5 1

1 6 1

2 3 1

2 4 1

6 7 1

6 8 1

[ pairs ]

; i j funct

2 7 1

2 8 1

3 5 1

3 6 1

4 5 1

4 6 1

5 7 1

5 8 1

[ angles ]
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; i j k funct

2 1 5 1

2 1 6 1

5 1 6 1

1 2 3 1

1 2 4 1

3 2 4 1

1 6 7 1

1 6 8 1

7 6 8 1

[ dihedrals ]

; ai aj ak al funct

5 1 2 3 9

5 1 2 4 9

6 1 2 3 9

6 1 2 4 9

5 1 6 7 9

5 1 6 8 9

2 1 6 7 9

2 1 6 8 9

5 1 2 6 4 180.00 43.93200 2

2 1 3 4 4 180.00 4.18400 2

6 1 7 8 4 180.00 4.18400 2

[ position restraints ]

; ai f Akx Aky Akz

1 1 500000.0 500000.0 500000.0

2 1 500000.0 500000.0 0.0

6 1 500000.0 500000.0 0.0
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A.1.3 Butanol

; 1-Butanol

[ defaults ]

; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 2 yes 0.5 0.8333

[ atomtypes ]

;name bond type mass charge ptype sigma epsilon

c3 c3 0.0000 0.0000 A 3.39967e-01 4.57730e-01

hc hc 0.0000 0.0000 A 2.64953e-01 6.56888e-02

h1 h1 0.0000 0.0000 A 2.47135e-01 6.56888e-02

oh oh 0.0000 0.0000 A 3.06647e-01 8.80314e-01

ho ho 0.0000 0.0000 A 0.00000e+00 0.00000e+00

[ bondtypes ]

; a b f r k

c3 hc 1 1.0920e-01 2.8225e+05

c3 c3 1 1.5350e-01 2.5363e+05

c3 h1 1 1.0930e-01 2.8108e+05

c3 oh 1 1.4260e-01 2.6284e+05

oh ho 1 9.7400e-02 3.0928e+05

[ angletypes ]

; a b c f theta k

hc c3 hc 1 1.0835e+02 3.2970e+02

hc c3 c3 1 1.1005e+02 3.8828e+02

c3 c3 c3 1 1.1063e+02 5.2886e+02

c3 c3 h1 1 1.1007e+02 3.8828e+02

c3 c3 oh 1 1.0943e+02 5.6651e+02

c3 oh ho 1 1.0816e+02 3.9413e+02

h1 c3 h1 1 1.0955e+02 3.2803e+02

h1 c3 oh 1 1.0988e+02 4.2677e+02
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[ dihedraltypes ]

; a b c d f

c3 c3 c3 c3 3 3.68192 3.09616 -2.09200 -3.01248 0.00000 0.00000

c3 c3 c3 hc 3 0.66944 2.00832 0.00000 -2.67776 0.00000 0.00000

c3 c3 c3 h1 3 0.65270 1.95811 0.00000 -2.61082 0.00000 0.00000

c3 c3 c3 oh 3 0.65270 1.95811 0.00000 -2.61082 0.00000 0.00000

c3 c3 oh ho 3 1.71544 0.96232 0.00000 -2.67776 0.00000 0.00000

hc c3 c3 hc 3 0.62760 1.88280 0.00000 -2.51040 0.00000 0.00000

hc c3 c3 h1 3 0.65270 1.95811 0.00000 -2.61082 0.00000 0.00000

hc c3 c3 oh 3 1.04600 -1.04600 0.00000 0.00000 0.00000 0.00000

h1 c3 oh ho 3 0.69873 2.09618 0.00000 -2.79491 0.00000 0.00000

[ moleculetype ]

; Name nrexcl

1-butanol 3

[ atoms ]

; nr type resnr residue atom cgnr charge mass

1 c3 1 MOL C1 1 -0.16680 12.000000

2 hc 1 MOL H1 2 0.04020 1.000000

3 hc 1 MOL H2 3 0.04020 1.000000

4 hc 1 MOL H3 4 0.04020 1.000000

5 c3 1 MOL C2 5 0.03140 12.000000

6 hc 1 MOL H4 6 -0.00080 1.000000

7 hc 1 MOL H5 7 -0.00080 1.000000

8 c3 1 MOL C3 8 -0.00650 12.000000

9 hc 1 MOL H6 9 0.03340 1.000000

10 hc 1 MOL H7 10 0.03340 1.000000

11 c3 1 MOL C4 11 0.29770 12.000000

12 h1 1 MOL H8 12 -0.03040 1.000000

13 h1 1 MOL H9 13 -0.03040 1.000000

14 oh 1 MOL O1 14 -0.71430 16.000000

15 ho 1 MOL H10 15 0.43350 1.000000
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[ bonds ]

; ai aj funct r k

1 2 1

1 3 1

1 4 1

5 6 1

5 7 1

8 9 1

8 10 1

11 12 1

11 13 1

14 15 1

1 5 1

5 8 1

8 11 1

11 14 1

[ pairs ]

; ai aj funct

1 9 1

1 10 1

2 6 1

2 7 1

2 8 1

3 6 1

3 7 1

3 8 1

4 6 1

4 7 1

4 8 1

5 12 1

5 13 1

6 9 1
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6 10 1

6 11 1

7 9 1

7 10 1

7 11 1

8 15 1

9 12 1

9 13 1

9 14 1

10 12 1

10 13 1

10 14 1

12 15 1

13 15 1

1 11 1

5 14 1

[ angles ]

; ai aj ak funct theta cth

1 5 6 1

1 5 7 1

2 1 3 1

2 1 4 1

2 1 5 1

3 1 4 1

3 1 5 1

4 1 5 1

5 8 9 1

5 8 10 1

6 5 7 1

6 5 8 1

7 5 8 1

8 11 12 1

8 11 13 1
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9 8 10 1

9 8 11 1

10 8 11 1

11 14 15 1

12 11 13 1

12 11 14 1

13 11 14 1

1 5 8 1

5 8 11 1

8 11 14 1

[ dihedrals ]

;i j k l func C0 ... C5

1 5 8 9 3

1 5 8 10 3

2 1 5 6 3

2 1 5 7 3

2 1 5 8 3

3 1 5 6 3

3 1 5 7 3

3 1 5 8 3

4 1 5 6 3

4 1 5 7 3

4 1 5 8 3

5 8 11 12 3

5 8 11 13 3

6 5 8 9 3

6 5 8 10 3

6 5 8 11 3

7 5 8 9 3

7 5 8 10 3

7 5 8 11 3

8 11 14 15 3

9 8 11 12 3
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9 8 11 13 3

9 8 11 14 3

10 8 11 12 3

10 8 11 13 3

10 8 11 14 3

12 11 14 15 3

13 11 14 15 3

1 5 8 11 3

5 8 11 14 3

A.1.4 Carbamazepine

[ defaults ]

; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 2 yes 0.5 0.833

[ atomtypes ]

; name bond type mass charge ptype sigma eps

c 12.01000 0.000 A 3.39967e-1 3.59824e-1

c2 12.01000 0.000 A 3.39967e-1 3.59824e-1

ca 12.01000 0.000 A 3.39967e-1 3.59824e-1

ha 1.00800 0.000 A 2.59964e-1 6.27600e-2

hc 1.00800 0.000 A 2.64953e-1 6.56888e-2

hn 1.00800 0.000 A 1.06908e-1 6.56888e-2

n 14.01000 0.000 A 3.25000e-1 7.11280e-1

o 16.00000 0.000 A 2.95992e-1 8.78640e-1

[ bondtypes ]

; i j func

c n 1 0.1379 357815.68

c o 1 0.1218 533627.36

c2 c2 1 0.1373 419153.12

c2 ca 1 0.1456 322251.68
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c2 hc 1 0.1084 292126.88

ca ca 1 0.1398 385848.48

ca n 1 0.1412 321498.56

ca ha 1 0.1086 289365.44

hn n 1 0.1013 337397.76

[ angletypes ]

; i j k func

n c n 1 113.56 610.3188

n c o 1 123.05 621.36984

c n ca 1 123.71 534.30104

c n hn 1 117.55 404.61876

c2 c2 ca 1 113.51 566.11464

c2 c2 hc 1 121.76 406.37688

ca c2 hc 1 124.04 383.68876

c2 ca ca 1 120.79 544.34744

ca ca ca 1 120.02 557.74264

ca ca n 1 120.19 568.20764

ca ca ha 1 119.88 403.36296

ca n ca 1 117.37 542.25444

hn n hn 1 117.95 331.19632

[ dihedraltypes ]

; i j k l func

X ca ca X 1 180.0000 15.1670 2.0000

X c n X 1 180.0000 10.4600 2.0000

X ca n X 1 180.0000 1.8828 2.0000

hn n c o 9 0.0000 8.3680 1.0000

hn n c o 9 180.0000 10.4600 2.0000

X c2 c2 X 1 180.0000 16.736 2.0000

X c2 ca X 1 180.0000 2.9288 2.0000

[ moleculetype ]

; Name nrexcl
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CBZ 3

[ atoms ]

; nr type resnr res atom cgnr charge mass

1 o 0 RES o 1 -0.641 16

2 n 0 RES n 2 -1.025 14.01

3 hn 0 RES hn 3 0.419 1.008

4 hn 0 RES hn 4 0.419 1.008

5 n 0 RES n 5 -0.316 14.01

6 c 0 RES c 6 0.896 12.01

7 ca 0 RES ca 7 0.125 12.01

8 ca 0 RES ca 8 -0.176 12.01

9 ha 0 RES ha 9 0.144 1.008

10 ca 0 RES ca 10 -0.156 12.01

11 ha 0 RES ha 11 0.151 1.008

12 ca 0 RES ca 12 -0.135 12.01

13 ha 0 RES ha 13 0.149 1.008

14 ca 0 RES ca 14 -0.256 12.01

15 ha 0 RES ha 15 0.163 1.008

16 ca 0 RES ca 16 0.193 12.01

17 c2 0 RES c2 17 -0.226 12.01

18 hc 0 RES hc 18 0.148 1.008

19 c2 0 RES c2 19 -0.226 12.01

20 hc 0 RES hc 20 0.148 1.008

21 ca 0 RES ca 21 0.193 12.01

22 ca 0 RES ca 22 -0.256 12.01

23 ha 0 RES ha 23 0.163 1.008

24 ca 0 RES ca 24 -0.135 12.01

25 ha 0 RES ha 25 0.149 1.008

26 ca 0 RES ca 26 -0.156 12.01

27 ha 0 RES ha 27 0.151 1.008

28 ca 0 RES ca 28 -0.176 12.01

29 ha 0 RES ha 29 0.144 1.008

30 ca 0 RES ca 30 0.125 12.01
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[ bonds ]

; ai aj f

1 6 1

2 3 1

2 4 1

2 6 1

5 6 1

5 7 1

5 30 1

7 8 1

7 16 1

8 9 1

8 10 1

10 11 1

10 12 1

12 13 1

12 14 1

14 15 1

14 16 1

16 17 1

17 18 1

17 19 1

19 20 1

19 21 1

21 22 1

21 30 1

22 23 1

22 24 1

24 25 1

24 26 1

26 27 1

26 28 1

28 29 1
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28 30 1

[ pairs ]

; ai aj f

1 3 1

1 4 1

1 7 1

1 30 1

2 7 1

2 30 1

3 5 1

4 5 1

5 9 1

5 10 1

5 14 1

5 17 1

5 19 1

5 22 1

5 26 1

5 29 1

6 8 1

6 16 1

6 21 1

6 28 1

7 11 1

7 12 1

7 15 1

7 18 1

7 19 1

7 21 1

7 28 1

8 13 1

8 14 1

8 17 1
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8 30 1

9 11 1

9 12 1

9 16 1

10 15 1

10 16 1

11 13 1

11 14 1

12 17 1

13 15 1

13 16 1

14 18 1

14 19 1

15 17 1

16 30 1

16 20 1

16 21 1

17 22 1

17 30 1

18 20 1

18 21 1

19 23 1

19 24 1

19 28 1

20 22 1

20 30 1

21 25 1

21 26 1

21 29 1

22 27 1

22 28 1

23 25 1

23 26 1

23 30 1
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24 29 1

24 30 1

25 27 1

25 28 1

27 29 1

27 30 1

[ angles ]

; ai aj ak funct

1 6 2 1

1 6 5 1

3 2 4 1

3 2 6 1

4 2 6 1

2 6 5 1

6 5 7 1

6 5 30 1

7 5 30 1

5 7 8 1

5 7 16 1

5 30 21 1

5 30 28 1

8 7 16 1

7 8 9 1

7 8 10 1

7 16 14 1

7 16 17 1

9 8 10 1

8 10 11 1

8 10 12 1

11 10 12 1

10 12 13 1

10 12 14 1

13 12 14 1
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12 14 15 1

12 14 16 1

15 14 16 1

14 16 17 1

16 17 18 1

16 17 19 1

18 17 19 1

17 19 20 1

17 19 21 1

20 19 21 1

19 21 22 1

19 21 30 1

22 21 30 1

21 22 23 1

21 22 24 1

21 30 28 1

23 22 24 1

22 24 25 1

22 24 26 1

25 24 26 1

24 26 27 1

24 26 28 1

27 26 28 1

26 28 29 1

26 28 30 1

29 28 30 1

[ dihedrals ]

; ai aj ak al f phi k n

1 6 2 3 9 0.0 0.0 1

1 6 2 3 9 180.0 0.0 2

1 6 2 4 9 0.0 0.0 1

1 6 2 4 9 180.0 0.0 2

1 6 5 7 1
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1 6 5 30 1

3 2 6 5 1

4 2 6 5 1

2 6 5 7 1

2 6 5 30 1

6 5 7 8 1

6 5 7 16 1

6 5 30 21 1

6 5 30 28 1

8 7 5 30 1

16 7 5 30 1

7 5 30 21 1

7 5 30 28 1

5 7 8 9 1

5 7 8 10 1

5 7 16 14 1

5 7 16 17 1

5 30 21 19 1

5 30 21 22 1

5 30 28 26 1

5 30 28 29 1

9 8 7 16 1

10 8 7 16 1

8 7 16 14 1

8 7 16 17 1

7 8 10 11 1

7 8 10 12 1

7 16 14 12 1

7 16 14 15 1

7 16 17 18 1

7 16 17 19 1

9 8 10 11 1

9 8 10 12 1

8 10 12 13 1
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8 10 12 14 1

11 10 12 13 1

11 10 12 14 1

10 12 14 15 1

10 12 14 16 1

13 12 14 15 1

13 12 14 16 1

12 14 16 17 1

15 14 16 17 1

14 16 17 18 1

14 16 17 19 1

16 17 19 20 1

16 17 19 21 1

18 17 19 20 1

18 17 19 21 1

17 19 21 22 1

17 19 21 30 1

20 19 21 22 1

20 19 21 30 1

19 21 22 23 1

19 21 22 24 1

19 21 30 28 1

23 22 21 30 1

24 22 21 30 1

22 21 30 28 1

21 22 24 25 1

21 22 24 26 1

21 30 28 26 1

21 30 28 29 1

23 22 24 25 1

23 22 24 26 1

22 24 26 27 1

22 24 26 28 1

25 24 26 27 1
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25 24 26 28 1

24 26 28 29 1

24 26 28 30 1

27 26 28 29 1

27 26 28 30 1

6 2 3 4 9 180.0 0.0 2

6 5 7 30 9 180.0 0.0 2

1 6 2 5 9 180.0 0.0 2
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[41] A. Veseli, S. Žakelj, and A. Kristl. A review of methods for solubility determina-

tion in biopharmaceutical drug characterization. Drug Development and Industrial

Pharmacy, 45(11):1717–1724, 2019. PMID: 31512934.

[42] C. A. Lipinski. Drug-like properties and the causes of poor solubility and poor

permeability. Journal of Pharmacological and Toxicological Methods, 44(1):235 – 249,

2000. Current Directions in Drug Discovery:A Review of Modern Techniques.

[43] C. Nantasenamat, C. Isarankura–na–ayudhya, and T. Naenna. A Practical

Overview Of Quantitative Structure-Activity Relationship. Excli J, 8(7):74–88,

2009.

[44] A. Tropsha. Best Practices for QSAR Model Development, Validation, and Ex-

ploitation. Molecular Informatics, 29(6-7):476–488, 2010.



BIBLIOGRAPHY 151

[45] A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek, I. I. Baskin, M. Cronin, J. C.

Dearden, P. Gramatica, Y. C. Martin, R. Todeschini, V. Consonni, V. E. Kuz’min,

R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard,

and A. Tropsha. QSAR Modeling: Where Have You Been? Where Are You Going

To? Journal of Medicinal Chemistry, 57(12):4977–5010, 2014.

[46] J. C. Dearden. In silico prediction of aqueous solubility. Expert Opinion on Drug

Discovery, 1(1):31–52, 2006.

[47] E. J. Mills. XXIII. On melting-point and boiling-point as related to chemical com-

position. Philosophical Magazine Series 5, 17(105):173–187, 1884.

[48] H. Fühner. The water solubility in homologous series. Reports of the German

Chemical Society (A and B Series), 57(3):510–515, 1924.

[49] V. A. Filov, A. A. Golubev, E. I. Liublina, and N. A. Tolokontsev. Quantitative

Toxicology. John Wiley & Sons, Ltd, New York, 1979.

[50] D. Mackay, R. Mascarenhas, W. Y. Shiu, S. C. Valvani, and S. H. Yalkowsky. Aque-

ous solubility of polychlorinated biphenyls. Chemosphere, 9(5–6):257–264, 1980.

[51] C. Hansch, P. P. Maloney, T. Fujita, and R. M. Muir. Correlation of Biological Ac-

tivity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition

Coefficients. Nature, 194(4824):178–180, 1962.

[52] N. Bodor, A. Harget, and M. J. Huang. Neural network studies. 1. Estimation

of the aqueous solubility of organic compounds. Journal of the American Chemical

Society, 113(25):9480–9483, 1991.

[53] M. H. Abraham and J. Le. The correlation and prediction of the solubility of

compounds in water using an amended solvation energy relationship. Journal of

Pharmaceutical Sciences, 88(9):868–880, 1999.

[54] D. Cao, Q. Xu, Y. Liang, X. Chen, and H. Li. Prediction of aqueous solubility of

druglike organic compounds using partial least squares, back-propagation net-

work and support vector machine. Journal of Chemometrics, 24(9):584–595, 2010.

[55] J. G. Topliss. Utilization of operational schemes for analog synthesis in drug de-

sign. Journal of Medicinal Chemistry, 15(10):1006–1011, 1972.



152 BIBLIOGRAPHY

[56] J. M. Sutter and P. C. Jurs. Prediction of Aqueous Solubility for a Diverse Set

of Heteroatom-Containing Organic Compounds Using a Quantitative Structure-

Property Relationship. Journal of Chemical Information and Computer Sciences,

36(1):100–107, 1996.

[57] H. Gao, V. Shanmugasundaram, and P. Lee. Estimation of Aqueous Solubility of

Organic Compounds with QSPR Approach. Pharmaceutical Research, 19(4):497–

503, 2002.

[58] A. Mauri, V. Consonni, M. Pavan, and R. Todeschini. DRAGON software: An

easy approach to molecular descriptor calculations. MATCH Communications in

Mathematical and in Computer Chemistry, 56(2):237–248, 2006.

[59] W. L. Jorgensen. QSAR/QSPR and Proprietary Data. Journal of Chemical Informa-

tion and Modeling, 46(3):937–937, 2006.

[60] J. L. McDonagh, N. Nath, L. De Ferrari, T. van Mourik, and J. B. O. Mitchell.

Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous

Solubility of Crystalline Druglike Molecules. Journal of Chemical Information and

Modeling, 54(3):844–856, 2014.

[61] J. C. Dearden, M. T. D. Cronin, and K. L. E. Kaiser. How not to develop a quan-

titative structure-activity or structure-property relationship (QSAR/QSPR). SAR

and QSAR in Environmental Research, 20(3-4):241–266, 2009.

[62] S. B. Bunally, C. N. Luscombe, and R. J. Young. Using physicochemical measure-

ments to influence better compound design. SLAS DISCOVERY: Advancing the

Science of Drug Discovery, 24(8):791–801, 2019. PMID: 31429385.

[63] R. E. Skyner, J. L. McDonagh, C. R. Groom, T. van Mourik, and J. B. O. Mitchell. A

review of methods for the calculation of solution free energies and the modelling

of systems in solution. Phys. Chem. Chem. Phys., 17(9):6174–6191, 2015.

[64] J. Alsenz and M. Kuentz. From quantum chemistry to prediction of drug sol-

ubility in glycerides. Molecular Pharmaceutics, 16(11):4661–4669, 2019. PMID:

31518142.

[65] J. L. Aragones, E. Sanz, and C. Vega. Solubility of NaCl in water by molecular

simulation revisited. The Journal of Chemical Physics, 136(24):244508, 2012.



BIBLIOGRAPHY 153

[66] L. Li, T. Totton, and D. Frenkel. Computational methodology for solubility pre-

diction: Application to the sparingly soluble solutes. The Journal of Chemical

Physics, 146(214110), 2017.

[67] W. C. Swope and H. C. Andersen. A molecular dynamics method for calculat-

ing the solubility of gases in liquids and the hydrophobic hydration of inert–gas

atoms in aqueous solution. The Journal of Physical Chemistry, 88(26):6548–6556,

1984.

[68] D. Frenkel and A. J. C. Ladd. New Monte Carlo method to compute the free

energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres.

The Journal of Chemical Physics, 81(7):3188–3193, 1984.

[69] E. J. Meijer, D. Frenkel, R. A. LeSar, and A. J. C. Ladd. Location of melting point

at 300 k of nitrogen by monte carlo simulation. The Journal of Chemical Physics,

92(12):7570–7575, 1990.

[70] M. Ferrario, G. Ciccotti, E. Spohr, T. Cartailler, and P. Turq. Solubility of KF in wa-

ter by molecular dynamics using the Kirkwood integration method. The Journal

of Chemical Physics, 117(10):4947, 2002.

[71] C. Vega, E. Sanz, J. L. F. Abascal, and E. G. Noya. Determination of phase di-

agrams via computer simulation: methodology and applications to water, elec-

trolytes and proteins. Journal of Physics: Condensed Matter, 20(15):153101, 2008.

[72] M. A. Bellucci, G. Gobbo, T. K. Wijethunga, G. Ciccotti, and B. L. Trout. Solubility

of paracetamol in ethanol by molecular dynamics using the extended einstein

crystal method and experiments. The Journal of Chemical Physics, 150(9):094107,

2019.

[73] S. Boothroyd, A. Kerridge, A. Broo, D. Buttar, and J. Anwar. Solubility predic-

tion from first principles: a density of states approach. Phys. Chem. Chem. Phys.,

20:20981–20987, 2018.

[74] M. S. Sellers, M. Lı́sal, and J. K. Brennan. Free-energy calculations using classical

molecular simulation: application to the determination of the melting point and

chemical potential of a flexible rdx model. Phys. Chem. Chem. Phys., 18:7841–7850,

2016.



154 BIBLIOGRAPHY
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(Paris), 9(11):395–399, 1912.

[92] L. Verlet. Computer ”experiments” on classical fluids. i. thermodynamical prop-

erties of lennard–jones molecules. Phys. Rev., 159:98–103, 1967.

[93] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer sim-

ulation method for the calculation of equilibrium constants for the formation of

physical clusters of molecules: Application to small water clusters. The Journal of

Chemical Physics, 76(1):637–649, 1982.

[94] N. Goga, A. J. Rzepiela, A. H. De Vries, S. J. Marrink, and H. J. C. Berendsen.

Efficient algorithms for langevin and dpd dynamics. Journal of chemical theory and

computation, 8(10):3637–3649, 2012.



156 BIBLIOGRAPHY

[95] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or

temperature. The Journal of chemical physics, 72(4):2384–2393, 1980.

[96] H. J. C. Berendsen, J. P. M. van Postma, W. F. van Gunsteren, A. R. H. J. DiNola,

and J. R. Haak. Molecular dynamics with coupling to an external bath. The Journal

of chemical physics, 81(8):3684–3690, 1984.

[97] W. G. Hoover. Canonical dynamics: Equilibrium phase–space distributions.

Physical review A, 31(3):1695, 1985.

[98] G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity

rescaling. The Journal of chemical physics, 126(1):014101, 2007.
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