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The formation of topological defects in continuous phase transitions is driven by the Kibble-Zurek
mechanism. Here we study the formation of single- and half-quantum vortices during transition
to the polar phase of 3He in the presence of a symmetry-breaking bias provided by the applied
magnetic field. We find that vortex formation is suppressed exponentially when the length scale
associated with the bias field becomes smaller than the Kibble-Zurek length. We thus demonstrate
an experimentally feasible shortcut to adiabaticity – an important aspect for further understanding
of phase transitions as well as for engineering applications such as quantum computers or simulators.

In continuous phase transitions, random local choice of
the symmetry-breaking order parameter leads to the for-
mation of topological defects, such as quantized vortices.
Originally a speculation in high-energy physics and cos-
mology [1], this mechanism, known as the Kibble-Zurek
mechanism (KZM),[2–6], is now a cornerstone of out-of-
equilibrium condensed matter physics. KZM has been
observed in a range of systems such as superfluids, su-
perconductors, and Bose condensates [7, 8]. In the KZM
scenario the transition takes place independently in vari-
ous regions with the characteristic size depending on the
transition rate. Each region inherits a random realiza-
tion of the broken-symmetry feature of the new phase,
such as the phase of the order parameter in a superfluid
transition. When the expanding regions merge, topolog-
ical defects, such as quantized vortices, are formed. The
predicted power-law dependence of the defect density on
the quench rate has been confirmed in superfluid helium
[9, 10] as well as in other systems (see e.g. [7, 8, 11]).

In the theory of broken-symmetry phase transitions, a
symmetry-violating bias field plays an important role,
initiating the choice between the different degenerate
states [12]. Bias can in particular be applied to non-
adiabatic thermodynamic [1, 2] or quantum [5] phase
transitions that result in the formation of topological
defects via the KZM. It has been proposed that if
the applied symmetry-breaking bias is sufficiently large,
the adiabatic (defect-free) regime is restored [13]. The
crossover from the Kibble-Zurek regime to the adia-
batic regime occurs at the characteristic value of the
bias defined by the quench rate. Such crossover has
been analyzed theoretically in a quantum phase tran-
sition in the Ising chain [13, 14] and in its classical
counterpart [15]. Generally speaking, the KZM is ex-
pected to be modified in the presence of external fac-
tors such as inhomogeneities [16], or a propagating front
of the phase transition [17]. Applying a bias allows for
the external control of the magnitude of the KZM di-
rectly. Controlled restoration of the adiabatic regime by
a symmetry-breaking bias can be utilized in applications
requiring delicate and fast control of engineered quantum

systems [13, 18].
In this Letter we probe experimentally the use of

an external bias for suppressing the formation of sin-
gle quantum vortices (SQV) and half-quantum vortices
(HQV)[9, 19, 20] produced by the KZM in the phase
transition from normal 3He to the superfluid polar phase
[21]. We report three central observations: (i) For
HQVs the threshold bias for the onset of suppression is
set by matching the characteristic length of the applied
symmetry-breaking field to the Kibble-Zurek length, set
by the quench rate. (ii) Beyond the onset, the suppres-
sion takes over exponentially, with the onset threshold
normalizing the bias field in the exponent. (iii) The cre-
ation of SQVs is similarly suppressed for increasing bias
fields while the threshold value is different from that for
HQVs.

The spectrum of topological defects in the polar phase,
and the bias fields one can apply, are understood in terms
of the order parameter of the polar phase

Ajβ = ∆Pd̂jm̂βe
iΦ . (1)

Here ∆P is the maximum gap in the quasiparticle energy
spectrum and Φ is the superfluid phase. The unit vector
d̂ determines the direction of the easy plane of the mag-
netic anisotropy and m̂ that of the orbital anisotropy.
The anisotropy originates from p-wave Cooper pairing
with the orbital momentum and spin of a pair equal to
one. In the p-wave superfluid, confinement modifies the
resulting order parameter [21, 23–28]. The polar phase is
stabilized within the confining nanomaterial, which con-
sists of nearly parallel solid strands, and m̂ is pinned
along the strand direction, Fig. 1(a). The direction of d̂ is
set by the competition between the magnetic anisotropy
energy χ(d̂ ·H)2/2 in the magnetic field H, and the spin-
orbit interaction energy gso(d̂ · m̂)2, where χ is the mag-
netic susceptibility and gso is the spin-orbit coupling.

In large magnetic fields H2 � H2
so = gsoχ

−1, the d̂
vector is kept in the plane perpendicular to H and the
spin-orbit interaction takes the form

Fso = gso sin2 µ sin2 α , (2)
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(a) (b)

FIG. 1. Experimental principles. (a) The cubic 4×4×4 mm3

sample container is surrounded by NMR coils and filled with
solid strands oriented along the vertical axis with the average
diameter d1 = 9 nm [22] and average separation d2 ≈ 35 nm.
The space between the strands is filled with liquid 3He. The
magnetic field H ‖ ẑ can be applied in any direction in the
plane transverse to the NMR coil axes (angle µ is represented
by the light red sector). The orbital anisotropy vector m̂ is
pinned along the confining strands and the spin anisotropy
vector d̂ is locked to the xy plane (light blue sector repre-
sents angle α) by H. The sample can be rotated about the
vertical axis with the angular velocity Ω up to 3 rad s−1. (b)

The arrows represent the winding of d̂ by angle α (highlighted
by the arrow colors) in the vicinity of two HQV cores (green

cylinders). On a loop around a HQV core the d̂ vector rotates
by π. For a large applied bias (Top) pairs of HQVs are con-

nected by narrow d̂-solitons (highlighted with the background
color) and the width of the soliton, giving the characteristic
length scale of the applied bias field ξbias, is much smaller
than the KZ length, ξbias � lKZ, resulting in suppression of
the HQV formation in the phase transition to the superfluid
phase. For a vanishing bias (Bottom) ξbias � lKZ, the wind-

ing of the d̂-vector is nearly uniform, and formation of HQVs
in the phase transition is not suppressed.

where µ is the angle between the magnetic field and the
m̂ vector and α is the azimuthal angle of d̂ in the plane
perpendicular to the magnetic field, see Fig. 1. For µ 6= 0,
the spin-orbit interaction in Eq. (2) lifts the degeneracy
over α, playing the role of the symmetry-violating bias.

We first study the effect of applying a symmetry-
breaking bias via the spin-orbit coupling. For a magnetic
field oriented along the strands, µ = 0, the spin-orbit bias
is absent and the symmetry-breaking scheme (ignoring
SO(2) orbital rotations about m̂) is

G = U(1)× SO(2)→ Υ = Z2 . (3)

Here G describes the symmetries of normal 3He, U(1)
is the symmetry under the phase transformation, and
SO(2) is the symmetry under rotation in spin space
about the axis of the magnetic field. Υ denotes the sym-
metry of the polar phase order parameter, where Z2 is the

spin rotation by π (corresponding to the change d̂→ −d̂)
accompanied by the phase change by π. Since the ho-
motopy group π1(G/Υ) = Z × Z × Z2, this symmetry-
breaking scheme leads to three types of topological de-
fects: SQVs in the superfluid phase (Φ-field), spin vor-
tices in the orientation of the spin anisotropy vector (α-
field), and HQVs, where both the superfluid phase Φ and
the angle of the spin anisotropy vector α change by π.

When the spin-orbit interaction is turned on (µ 6= 0),
the SO(2) symmetry in Eq.(3) is explicitly violated, and
one obtains the following symmetry-breaking scheme:

G̃ = U(1)→ Υ̃ = 1 . (4)

Now the homotopy group is π1(G̃/Υ̃) = Z, which means
that only SQVs remain stable, since they are not influ-
enced by the spin-orbit interaction. Spin vortices and
HQVs become termination lines of topological solitons
[9, 19, 29–31], illustrated in Fig. 1(b). Assuming only

HQVs are present, d̂-solitons connect pairs of HQVs of
the opposite d̂-winding.

The presence of the solitons can be detected and their
total volume in the sample measured using the nuclear
magnetic resonance (NMR) techniques. The bulk of the
sample forms the main peak in the continuous-wave NMR
spectrum at the frequency ωmain, see Fig. S1 in Ref. [15].

The d̂-soliton provides a trapping potential for standing
spin waves, seen as a satellite peak in the NMR spectrum
at the frequency ωsat [9]. The relative sizes of the main
peak and the satellite are determined by the volume oc-
cupied by the d̂-solitons in the sample. We note that the
vortices created by the KZM are randomly oriented, but
in our case the vortex density is low and thus the soliton
volume connecting two HQVs is simply defined by the
inter-vortex distance [15]. Measuring the initial density
of KZ defects has traditionally been difficult due to the
fast annihilation of non-equilibrium defects at tempera-
tures close to the phase transition [3, 4, 10, 32]. In our
experiments the confining strands pin vortices in place
[9, 19, 30], providing the observer a frozen window to the
out-of-equilibrium physics of the phase transition and a
direct measurement of the KZ vortex density.

We calibrate the size of the satellite peak by prepar-
ing a state by a very slow cooldown through the crit-
ical temperature Tc at H = 0 while the sample is in
rotation. This way we create HQVs with aerial den-
sity nv = 4Ωκ−1, where Ω is the angular velocity,
κ = h/(2m3) is the quantum of circulation, h is the
Planck constant, and m3 is the 3He atom mass. The
calibration gives the relative satellite size Isat = I0

√
Ω,

where I0 = 0.090 s1/2 rad−1/2 [15]. The inter-vortex dis-
tance assuming a square lattice is

L = n−1/2
v =

1

2

√
κ
I0
Isat

. (5)

We use this relation to calculate the HQV density and
inter-vortex distance also for HQVs created purely by the
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FIG. 2. Suppression of the HQV density created by the KZM
as a function of the applied bias. Filled red circles, magenta
triangles, and black diamonds correspond to quench rates of
τQ ≈ 3.8 · 102 s, τQ ≈ 1.4 · 103 s, and τQ ≈ 7.7 · 103 s,
respectively, while applying a constant H = 11 mT mag-
netic field. The field is rotated to achieve different bias fields
H⊥ = H sinµ. Open blue squares (τQ ≈ 6.0 · 102 s) cor-
respond to measurements with zero axial field component,
H⊥ = H. Vortex density is constant for H⊥ < H⊥t and sup-
pressed for higher bias fields. The suppression starts when the
characteristic length scale of the bias field ξbias(H⊥) becomes
smaller than the relevant Kibble-Zurek length. Solid lines cor-
respond to theoretical model, see text for details. The dashed
line shows where the intervotex distance becomes comparable
with the container size. The inset shows the extracted thresh-
old bias length ξt as a function of lKZ with the same symbols.
The dashed line is ξt = lKZ. The patterned gray diamond is
the same measurement as the black diamond, but with lKZ on
the horizontal axis replaced with an estimation of the transi-
tion front thickness lF [15]. For other measurements, lF lies
beyond the right border of the plot.

KZM (i.e. for Ω = 0). The combined effect of rotation
and KZM is discussed in Ref. [15].

We control the spin-orbit bias by applying a fixed mag-
netic field of H = 11 mT with transverse component
H⊥ = H sinµ during the cooldown through Tc. We re-
peat cooldowns for different H⊥ and different cooldown
rates, Fig. 2. We observe a constant satellite size for
small H⊥ and its gradual suppression for larger val-
ues of H⊥. We suggest that the threshold field H⊥t

where the suppression of the formation of HQVs starts
is determined by comparing the Kibble-Zurek length
lKZ = aξ0(τQ/τ0)1/4 with the characteristic length of

the bias, ξbias, given by the thickness of the d̂ solitons.
Here a ∼ 1 fixes the exact length scale for the defect for-
mation (in our measurements a ≈ 2.3 [15]), the quench
rate is τ−1

Q = −d(T/Tc)/dt|T=Tc , T is temperature, t is
time, ξ0 is the superfluid coherence length at low tem-
perature, τ0 = ξ0v

−1
F ∼ 1 ns is the order parameter re-

laxation time, vF is the Fermi velocity, ξbias ∼ ξso/ sinµ,

and ξso = 17 µm is the dipole length [9].
Equating lKZ with ξbias gives the following threshold

bias for the suppression of HQV creation

H⊥t =
ξso
lKZ

H . (6)

In the spirit of Ref. [13] we propose that the defect density
∝ I2

sat decays exponentially after the transition field. In
terms of the satellite intensity, this reads

Isat =

{
Isat0 for H⊥ < H⊥t

Isat0 exp (1−H⊥/H⊥t) for H⊥ ≥ H⊥t ,
(7)

where Isat0 is the initial satellite intensity. We note that
for this model

∫∞
0
IsatdH⊥ = 2Isat0H⊥t and the numeri-

cal integral of the measured Isat can be used to determine
H⊥t without fitting.

Our experiments, Fig. 2, confirm the validity of the
model (7). We use the zero-bias inter-vortex distance
L|H⊥=0, Eq. (5), as the measured value of lKZ [9, 32, 33].
We emphasize that the threshold field H⊥t, which also
normalizes the exponent, is determined by integration of
the experimental data without a fitting procedure. The
result agrees well with the conjecture ξt ≡ ξbias(H⊥t) =
lKZ.

The result for the slowest quench rate deviates, how-
ever, from this dependence. In the presence of a thermal
gradient, the phase transition proceeds via a propagating
front, where the ordering of the low-temperature phase
lags behind the temperature front where T = Tc by dis-
tance lF. The KZM operates in the band of width lF
and is modified in comparison to the homogeneous cool-
ing scenario [17, 34, 35]. As τQ increases, lF decreases
and lKZ increases. We suggest that the smaller of the
two characteristic lengths, lKZ and lF, determines the
threshold bias ξt. We estimate that in our measurement
lF < lKZ only for the slowest quench rate (black dia-
monds in Fig. 2) for which lF ∼ 210µm (gray patterned
diamond in Fig. 2 inset), matching the observed value of
ξt [15].

Alternatively we can apply a direct field bias with a
weak magnetic field oriented perpendicular to m̂. The
small magnetic field H⊥ < Hso violates the symme-
try under rotation about m̂, which leads to the for-
mation of solitons, absent at zero magnetic field, with
the soliton thickness now determined by the magnetic
field directly, ξbias = ξH = ξsoHso/H. Equating ξbias

with lKZ yields a criterion for the threshold field simi-
lar to that in Eq. (6) but with H replaced by Hso. The
expected decrease of the threshold field in this case is
Hso/H = ΩP/ωmain ≈

√
2(1− ωsat/ωmain) ≈ 0.17 [9],

where ΩP is the polar phase Leggett frequency. It is
confirmed experimentally by the blue squares in Fig. 2.
Here the ratio of the threshold field relative to the red cir-
cles, which correspond to the spin-orbit bias with similar
quench rate, is 0.16.
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FIG. 3. Suppression of SQV density as a function of the ap-
plied bias. The measured magnon BEC relaxation rate (ma-
genta diamonds) include contributions from HQVs and SQVs.
The HQV contribution (red circles) is separated using lin-
ear NMR measurements of the satellite intensity and calibra-
tion from Ref. [30]. The remaining contribution to relaxation
(blue triangles) we attribute to SQVs. The observed relax-
ation rates are compared to the suppression model (solid lines,
Eq. (7)), and the red line corresponds to the same thresh-
old as in Fig. 2. In these measurements the quench rate is
τQ ∼ 4 · 102 s and the magnitude of the magnetic field is kept
constant while its direction is varied. The largest transverse
field value corresponds to µ = π/2. Constant BEC relaxation
rate not related to vortices has been subtracted.

Finally, we study the fate of SQVs under the
symmetry-breaking bias created by tilting the magnetic
field. Due to the absence of the topological solitons one
would näıvely expect that the bias has no effect on the
KZM for SQVs. Without the solitons, SQVs are not
seen in continuous-wave NMR, but they were found to
increase the relaxation rate of a magnon BEC [30, 36]. In-
dependent measurements with SQVs created by rotation
indicate that the BEC relaxation rate increases mono-
tonically when the SQV density grows [30]. In our mea-
surements we create both HQVs and SQVs by the KZM
and subtract the effect of HQVs by using a calibration
of the relaxation rate of the magnon BEC with respect
to the satellite intensity, see Fig. 3b from Ref. [30]. The
remaining contribution to the relaxation we attribute to
SQVs. This contribution shows the characteristic depen-
dence with a threshold and exponential suppression akin
to Eq. (7), Fig. 3. A possible explanation for this be-
havior is that an applied bias influences the structure of
the vortex core. For example in the superfluid B phase,
the SO(2) symmetry of the SQV core is spontaneously
broken at low temperatures and the core transforms into
a pair of tightly-bound half-quantum cores [37–39]. In
the polar phase, the spin-orbit interaction and magnetic
anisotropy may play the role of the symmetry-violating

bias for the phase transitions inside the vortex core, but
the detailed investigation remains a task for the future.

In conclusion, we report a crossover from the Kibble-
Zurek regime of HQV creation to the adiabatic regime,
where vortex formation is rapidly suppressed by a
symmetry-violating bias. We thus demonstrate an ex-
perimentally feasible shortcut to adiabaticity, where the
adiabatic regime can be reached without an infinitely
slow transition rate. In our experiments the symmetry-
violating bias is provided either by the spin-orbit interac-
tion or directly by external magnetic field. The crossover
to the adiabatic regime takes place when the characteris-
tic length scale of the bias, given by the thickness of the
topological solitons connecting neighboring HQVs, be-
comes smaller than the Kibble-Zurek length determined
by the transition rate or the thickness of the transition
front in the case of slow inhomogeneous cooling. Beyond
the onset, the suppression of the KZM takes place ex-
ponentially. We also report similar suppression of SQV
formation by the KZM, indicating that there may be a
symmetry-breaking transition in the SQV core, sensitive
to the symmetry-violating external bias.

The symmetry-breaking aspect of the bias field is es-
sential for the suppression of the KZM, which otherwise is
very robust. As an example [15], we show that adding an
array of HQVs created by rotating the sample has no ef-
fect on the KZM even when the characteristic length scale
of the added lattice becomes smaller than the Kibble-
Zurek length. We also note that HQVs are composite
defects, whose KZM formation is rarely studied experi-
mentally, and that they are analogs of Alice strings [40–
42]. The KZM formation of HQVs studied here may shed
light to defect formation across phase transitions in the-
ories considering such systems.

Our results can be generalized to the bias-induced
restoration of adiabadicity in various phase transitions
including quantum phase transitions, which could pro-
vide applications for technologies such as quantum sim-
ulators and computers [13, 18]. On a more speculative
note, it is not excluded that the bias plays a role in the
so-called collapse of the wave function in quantum me-
chanics. In principle, the latter can be seen as “phase
transition” occurring in the continuous spectrum of an
infinite system [43–45]. One of the many quantum states
participating in a given quantum superposition is per-
haps then selected by the infinitesimal bias unavoidably
present in any experiment.
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G. E. Volovik, A. N. Yudin, V. V. Zavjalov, and V. B.
Eltsov, Phys. Rev. Lett. 117, 255301 (2016).

[10] Y. M. Bunkov, A. I. Golov, V. S. L’vov, A. Pomyalov,
and I. Procaccia, Phys. Rev. B 90, 024508 (2014).

[11] J. Beugnon and N. Navon, Journal of Physics B: Atomic,
Molecular and Optical Physics 50, 022002 (2017).

[12] Y. G. Sinai, Theory of Phase Transitions. Rigorous Re-
sults (Pergamon Press, New York, 1982).

[13] M. M. Rams, J. Dziarmaga, and W. H. Zurek, Phys.
Rev. Lett. 123, 130603 (2019).

[14] B. Yan, V. Y. Chernyak, W. H. Zurek, and N. A. Sinit-
syn, Phys. Rev. Lett. 126, 070602 (2021).

[15] See the supplementary material at [URL will be inserted
by publisher] for details.

[16] A. Del Campo, T. Kibble, and W. Zurek, Journal of
Physics Condensed Matter 25 (2013).

[17] T. W. B. Kibble and G. E. Volovik, Journal of Experi-
mental and Theoretical Physics Letters 65, 102 (1997).

[18] A. del Campo and K. Kim, New Journal of Physics 21,
050201 (2019).
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