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Summary 

 

Phytochromes (phy) are key regulators of photosynthesis that act in the nucleus to 

orchestrate signalling pathways involved in co-ordinating plant growth and development in response 

to environmental cues, including light and temperature. Using publicly available transcriptomic 

datasets, this thesis identifies phys as master modulators for the control of nuclear genes involved in 

plastome gene expression mechanisms in response to red light, regulating genes involved in both 

the transcriptional and post-transcriptional signalling pathways. This thesis also identifies that the 

bZIP transcription factor HY5 may be a key transducer for phys in regulating these pathways.  

Among the RNA-binding proteins families that conduct the post-transcriptional regulation of 

the plastome are the chloroplast RNA-binding proteins (cpRNPs). Published research has shown that 

the cpRNPs are global modulators of plastome genes, and this thesis further identifies them as a part 

of an R-phyB-HY5-cpRNP signalling cascade. This thesis also shows that cpRNPs are essential to R-

light mediated greening responses in Arabidopsis thaliana and are involved in delivering light signals 

to the required chloroplast-encoded genes during de-etiolation. Through phyB and HY5, this thesis 

also shows that in addition to light quality signals, cpRNPs also integrate a diverse range of light 

intensity and temperature environmental signals to maintain photosynthesis.  

The cpRNP family has previously been characterised as regulators of the plastome but this 

thesis shows that they are also involved in the nucleus. Reverse genetics studies identify reductions 

in photosynthesis-associated nuclear-encoded gene (PhANG) transcripts in cprnp mutants, making 

cpRNPs a part of the co-ordination of nuclear- and plastid-encoded genes pathways for tuning 

photosynthesis to environmental changes. The evidence gathered here also reveals that through the 

phyB-modulation of alternative transcriptional start sites (TSS), cpRNP isoforms are generated with 

alternative nuclear subcellular localisations. Furthermore, this thesis shows that cpRNP expression is 

linked to retrograde signals from the chloroplast through chemical retrograde signal activator 

treatments affecting both cpRNP subcellular localisation and transcript accumulation.  

Finally, this thesis shows that the conservation of cpRNPs across higher plants makes them 

notable for the global efforts to generate new toolkits to maintain photosynthetic rates in crops 

under changing environments. This thesis describes a novel role for cpRNPs in plastid transition 

processes, using Solanum lycopersicum as a model crop to study chloroplast-to-chromoplast 

transitions.  
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Chapter 1: Literature review of the Chloroplast RNA-binding Proteins (cpRNPs) as novel sensors for 

the environmental control of photosynthesis.  

1.1. Environmental control of Photosynthesis.  

1.1.1. Climate Change is predicted to impact crop yields.  

 Climate change is ongoing crisis, projected to reduce crop growth rates, yields, and lower 

overall agricultural productivity (Lobell and Gourdji, 2012). Furthermore, climate change is also likely 

to reduce water availability, and induce an accompanying increase the frequency of droughts 

(Varela-Ortega et al., 2016) that will be exacerbated by an increasing average global temperature 

and sharply decreasing winter temperatures (Wallace, 2014). Forecasts predict a high risk of yield 

loss for areas in the Northern Hemisphere, and there is still much uncertainty regarding how quickly 

farms can adapt (Moore and Lobell, 2014). Specifically for crop plants, current weather change 

trends predict reduced yields for maize, wheat, and rice (Bassu et al., 2014; Challinor et al., 2014; 

Asseng et al., 2013);one of the primary ways productivity in these important food crops will be 

affected is through a reduction in photosynthetic activity (Galmes et al., 2013). 

 

1.1.2. Photosynthesis is a vital process performed in the chloroplast. 

 Photosynthesis is the primary factor behind biomass accumulation and crop yield. This 

process captures light and converts it to biomass through a complex series of biochemical reactions 

(Long et al., 2006). This process occurs in the chloroplast and can be divided into the light reactions, 

in which electrons pass through protein complexes in the chloroplast thylakoid membranes, and the 

Calvin-Benson cycles involving of carbon fixation in the stroma (Renger and Kuhn, 2007).  

 The light reactions of photosynthesis involve Photosystem II (PSII), the electron transport 

chain and cytochrome b6f complex, and Photosystem I (PSI), all leading to the production of ATP and 

NADPH to drive carbon fixation (Rochaix, 2011; Foyer et al., 2012). Photons are captured in the light-

harvesting antenna complexes of PSII by chlorophyll a, providing an electron separated by the 

Oxygen-Evolving Complex (OEC) with an excited energy level. This electron is transferred through 

the electron transport chain to generate series of redox reactions, and then enters PSI, where it 

receives further energy from the Light Harvesting Complexes (LHC), finally moving through a system 

of electron acceptors to drive the movement of hydrogen ions from the thylakoid lumen to the 

stroma, driving the ATP synthase reaction. The key photosynthetic apparatus used for light reactions 

of photosynthesis are summarised in Figure 1.1.  
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Photosystem II. The core apparatus of Photosystem II is a large, multi-subunit chlorophyll-protein 

complex located in thylakoid membranes and drives the oxidation of water, oxygen evolution, and 

plastoquinone reduction (Shi and Schroder, 2004; Minagawa and Takahashi, 2004). The complex is 

composed of over 30 protein subunits comprising the core reaction centre proteins, the low 

molecular mass proteins, the extrinsic Oxygen-Evolving Complex proteins (OEC), and additional light-

harvesting complex proteins, all encoded by genes from both the chloroplast and the nucleus (Kouril 

et al., 2012).  

The core complex is formed from reaction centre proteins D1 and D2 (encoded by 

chloroplast genome-genes psbA and psbD), the core chlorophyll a-binding antenna proteins CP43 

and CP47 (encoded by plastid genes psbC and psbB), and the two (alpha and beta) cytochrome b559 

subunits (encoded by plastid genes psbE and psbF); all of which are essential components for PSII 

assembly (Pakrasi et al., 1991; Swiatek et al., 2003; Minagawa and Takahashi, 2004). 

The low molecular mass proteins PSBH, PSBI, PSBJ, PSBK, PSBL, PSBM, PSBN, PSBT, and PSBZ 

are encoded in the chloroplast, and both PSBX and PSBY are encoded in the nucleus (Nickelsen and 

Rengstl, 2013). Their specific functions are reviewed in Shi and Shroder (2004), but each broadly 
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contributes to photoautotrophic growth, protection from photoinhibition, and electron transport. In 

Arabidopsis, the OEC contains nuclear-encoded PSBO, PSBP, and PSBQ subunits (Thornton et al., 

2004; Bricker et al., 2012): PSBO assists in stabilising the catalytic Mn cluster, and PSBP and PSBQ are 

involved in optimizing the availability of Ca2+ and Cl- cofactors to maintain the active Mn-Ca2+-Cl-

cluster of PSII (Yabuta et al., 2010). The Light-Harvesting antenna Complex of PSII (LCHII) is 

composed of three major antenna trimeric proteins LCHB1, LHCB2, LHCB3, and three minor 

monomeric proteins CP29, CP26, and CP24 are formed from LHCB4, LHCB5, and LHCB6, all encoded 

in the nucleus (Liu et al., 2004). Furthermore, there is a wide range of auxiliary proteins, enzymes, 

and trafficking systems that both directly and indirectly assist in PSII biosynthesis and maintenance 

(Lu, 2016).  

 

Photosystem I. Photosystem I (PSI) is also located in the thylakoid membrane, and mediates 

electron transport from water to NADPH (Bashir et al., 2015). It contains at circa 19 protein subunits, 

175 chlorophylls, 2 phylloquinones, and 3 ferrodoxin proteins (Ben-Shem et al., 2003). There are 15 

core subunits of PSI, encoded by psaA, psaB, psaC, psaI, and psaJ in the chloroplast genome, and by 

PSAD, PSAE, PSAF, PSAG, PSAH, PSAK, PSAL, PSAN, PSAO, and PSAP in the nucleus; of these PSAD, 

PSAE, and PSAH have two known forms (Scheller et al., 2001). Of these proteins, only psaA, psaB, 

and psaC encode proteins that bind electron transport cofactors; psaA and psaB encode the P700 

(primary electron donor of PSI) apoproteins A1 and A2; other the remaining subunits have 

complementary functions that include: interactions with the luminal electron donor plastocyanin 

(PSAF, PSAN, PsaJ) (Farah et al., 1995; Haldrup et al., 1999; Fischer et al., 1999; Hansson et al., 2007; 

Jensen et al., 2007); docking sites for soluble stromal ferredoxin (PSAD and PSAE) (Varotto et al., 

2000; Ihnatowicz et al., 2004); and acting as binding proteins for the antenna complex (PSAF) 

(Haldrup et al., 2000). Subunits such as PsaI, PsaJ, PSAK, and PSAL contribute to stabilisation of the 

core antenna, itself composed of 100 chlorophyll A and 22 β-carotene molecules (Fromme et al., 

2001). PSAG and PSAK bind PsaB and PsaA, and are respectively also predicted to be involved in the 

binding of the LHCA complex with PSAG contributing towards stability of the PSI complex (Ben-Shem 

et al., 2003; Varotto et al., 2002). It has also been described that PSAH, PSAL, PSAO, and PSAP act 

together to form an interaction domain to link PSI to LHCII to balance excitation energy between PSI 

and PSII (Jensen et al., 2004; Zhang and Scheller, 2004; Khrouchtchova et al., 2005).  

The Light Harvesting Complex I (LHCI) is another key part of PSI that acts as a peripheral 

antenna to balance light energy distribution through state transitions, organised to maintain 

optimum photosynthetic output and avoid photoinhibition (Huang et al., 2021). LHCHI is comprised 
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of the nuclear-encoded subunits LHCA1, LHCA2, LHCA3, LHCA4, LHCA5, and LHCA6, which form 

heterodimers LHCA1/4 and LHCA2/3 (Mullet and Arntzen, 1980; Ihalainen et al., 2000; Croce et al., 

2002).   

 The correct expression and maintenance of the Photosynthetic apparatus over both 

photosystems and co-ordination between plastid- and nuclear-encoded subunit-encoding genes is 

vital for a plant to maintain biomass accumulation, and by extension for crop production.  

 

1.1.3. Photosynthesis is a stress-sensitive process in a changing world.  

 As sessile organisms’ plants must tolerate and cope with abiotic stress rather than avoid it or 

seek a better location. Many abiotic stresses such as drought and increased and decreased 

temperatures- or even just suboptimal environmental factors- can reduce photosynthetic efficiency. 

This can occur through photoinhibition, oxidative stress, RUBISCO activity, or stomatal conductance, 

often affecting Photosystems I and II, electron transport, and chlorophyll biosynthesis and 

significantly reducing crop yield, as was reviewed in Sharma et al (2020). Robust photosynthesis 

therefore requires a complex and tightly controlled regulatory signalling network to sustain it in a 

changing environment. To best navigate the inevitable problems posed by climate change, the 

mechanisms involved to maintaining homeostasis must be properly understood. 

 

Temperature is a major regulator of photosynthesis. Temperature has a profound effect on 

photosynthetic efficiency (Hikosaka et al., 2006; Sharma et al., 2020). At both low and high extremes 

of temperature, internal cellular homeostasis is disrupted; for example, the light-saturation rates of 

photosynthesis are much lower than their optimum at an intermediate temperature, and can induce 

marked phenotypic changes (Hikosaka et al., 2006; Mathur and Jajoo, 2014). Another key factor 

affected by alterations in temperature is the fluidity of cell membranes. Low temperature, for 

example, changes the chloroplast membrane bilayer from a fluid-crystalline state to a solid-gel state; 

this affects the properties of protein transporters, kinsases, and G-protein-associated receptors, and 

has a downstream effect on chloroplast and can trigger Reactive Oxygen Species (ROS) generation 

when regulatory mechanisms (eg NADPH) cannot function (Niu and Xiang, 2018). The mechanisms 

plants employ to cope with non-optimal changes to temperature can include changes in expression 

of photosynthetic components or CO2 concentration at carboxylation sites (Berry and Bjorkman, 

1980; Hikosaka et al., 1999). Some of the temperature-specific effects on photosynthesis are 

summarised below.  
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Low temperature-specific effects on photosynthesis. Low temperatures can impact 

photosynthesis at many levels, impairing photosynthetic activity through stomatal closure, internal 

CO2 concentration, ROS accumulation, RUBISCO activity, and impairing thylakoid electron transport 

(Allen and Ort, 2001; Hou et al., 2016a). The coping strategies are varied and dependent upon the 

specific temperature range and developmental stage: for example, in Nerium oleander (Oleander), 

lower temperature acclimation for desert-grown plants was regulated by increasing quantities of 

photosynthetic proteins (Badger et al., 1982). Similar mechanisms involving higher photosynthetic 

proteins in low-temperature conditions have been observed in many crop and model organisms: in 

Arabidopsis, a cold-temperature (5oC) acclimation response resulted in new leaves grown in cold 

conditions performing photosynthesis at an equal rate to those at ambient temperature (Strand et 

al., 1999). This feat was accomplished through adjustments in the partitioning in carbon from starch 

to sucrose, and increases in activity in Calvin-cycle enzymes and sucrose biosynthesis enzymes, with 

a greater cytoplasmic volume (Strand et al., 1999). The chilling response involves the repression of 

photosynthetic gene expression in Arabidopsis (Krapp and Stitt, 1995; Strand et al., 1999), as well as 

interrupting circadian-regulated expression of nuclear-encoded photosynthetic genes in Arabidopsis 

and tomato mutants (Martino-Catt and Ort; Kreps and Simon, 1997). Furthermore, leaves that 

originate in cold conditions (5oC) rather than undergoing an acclimation response exhibit an altered 

phenotype and have a greater rate of photosynthesis, and do not undergo a compensatory 

suppression of photosynthetic gene expression (Strand et al., 1997). In cold temperatures photo-

damage is also often observed (Hou et al., 2016b) and in conjuncture with high light can induce 

oxidative damage to the D1-D2 heterodimer, affecting the D1 repair cycle through expression of 

psbA (Barber, 1995) and necessitating effective LHCII- and PSII/PSI-reaction centre quenching 

strategies to dissipate excess energy (Velitchkova et al., 2020). Much research documenting the 

effect of cold on photosynthesis is conducted in chilling conditions, but even a drop of a few degrees 

can impact greening and plant morphology (Samach and Wigge, 2005). 

 High temperature-specific effects on photosynthesis. In heat stress conditions, 

photosynthetic apparatus is prone to damage and inhibition (Berry and Bjorkman, 1980; Mathur and 

Jajoo, 2014). In some plants such as spinach, data indicates that leaves grown at a higher 

temperature have a higher ratio of cytochrome b6f to Rubisco (Yamori et al., 2005b; Yamori et al., 

2005a), indicating one of the pathways for altered environmental temperature in the differential 

regulation of the photosynthetic apparatus. In addition, the increased fluidity of the thylakoid 

membrane in PSII in high temperature results in dislodging of the light harvesting complex and 

disruption of the water-oxidizing complex and reaction centres through dissociation of chloride, 

magnesium, and calcium ions from pigment-protein complexes (Havaux and Gruszecki, 1993; Wise 
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et al., 2004; Lipova et al., 2010). Specific proteins such as D1 are also cleaved in high temperatures in 

spinach thylakoids (Yoshioka et al., 2006). This highlights a complex regulatory network integrating 

environmental signals to affect photosynthesis, affecting numerous processes and photosynthetic 

apparatus subunits. 

High light stress and photosynthesis. With a crucial role in plant development, light is nevertheless a 

key stress factor when present at levels in excess of what the photosynthetic apparatus can process 

(Sharma et al., 2020). A high light stress can overload the electron transport chain and ATP synthesis 

systems, as light harvesting and energy transfer to reaction centres by antennae occur at faster rates 

than the electron transport chain can contend with (Ruban et al., 2012). This leads to over-

accumulation of energy in the thylakoid membrane and a closure of the PSII reaction centres and 

results in photoinhibition (Aro et al., 1993). A classical by-product of oxygenic photosynthesis is 

triplet oxygen 3O2 generated during oxidation of water- the excess of energy provided during 

photoinhibition of PSII results can convert triplet oxygen to singlet oxygen (1O2), a Reactive Oxygen 

Species (ROS) (Dmitrieva et al., 2020). Singlet oxygen can destroy membranes, proteins, and DNA, 

inhibiting protein synthesis in the chloroplast, requiring a high turnover of D1 and D2 proteins 

(Malnoe et al., 2014; Dmitrieva et al., 2020). ROSs can be dissipated through the antioxidants 

produced in the chloroplast, detoxifying enzymes, and other repair mechanisms (Falk and Munne-

Bosch, 2010) or managed through carotenoids, tocopherols, plastoquinone, and secondary 

metabolites like anthocyanins (Gould, 2004; Ksas et al., 2015; Falk and Munne-Bosch, 2010; Mène-

Saffrané and DellaPenna, 2010).   
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1.2. Photoreceptors in the Regulation of Photosynthesis. 

1.2.1. Phytochrome is a key regulator of Photosynthesis. 

 Although integrating many varied environmental cues, photosynthesis is foremost a light-

dependent process, using photon excitation energy to drive the electron transport chain. However, 

light plays an additional role in photosynthesis as a key signal stimulus: plants use light to best co-

ordinate growth, development, and photosynthetic functioning with a changing environment. Light 

provides information on location, circadian and seasonal status, and plants integrate light signals to 

modulate multiple responses including the breaking of seed dormancy, growth, flowering, stomatal 

activity, metabolic responses (Matthews et al., 2005). Plants sense light cues through families of 

photoreceptors, including the red/far red light sensing phytochromes (phys); blue light sensing 

cryptochromes (crys), Phototropins (phots) and UV-B sensing UVR-8 (Quail, 2002).  

 The phys, crys, and phots light signalling networks orchestrate complex and large-scale 

changes in gene expression, to control photomorphogenesis, photoperiodic responses and shade-

avoidance (Jiao et al., 2007). Phototropins are involved in optimising photosynthetic efficiency 

through stomatal opening and chloroplast movements (Christie et al., 2007). However, whilst crys 

also play a role in the control of photosynthetic and plastid gene expression (Ohgishi et al., 2004), 

this thesis will focus on the contribution of phytochrome and red-light signalling to photosynthesis.  

 Phytochromes are soluble, dimeric chromoproteins that can undergo light-induced 

reversible conformational changes between active and inactive forms depending on the far-red/red 

light wavelengths they are exposed to (Quail, 2002). The biologically active forms are the far-red 

light-absorbing forms, or ‘Pfr’, and phytochromes are inactive when in the red light-absorbing form, 

Pr (Quail, 2002). In Arabidopsis there are five known phytochromes, named respectively PhyA 

through PhyE. When activated they act as a trigger for plant growth and photomorphogenic 

development, including the transcription of the genes involved in assembling the photosynthetic 

machinery (Quail, 2002). This is an evolutionary response for plants to detect when appropriate light 

conditions have been met in the external environment to allow photosynthesis to occur. Reverse-

genetics approaches have elucidated many different phytochrome-controlled responses, including 

some of the molecular mechanisms to promote photomorphogenic gene expression. 

 phyA and phyB are the best characterised phytochromes and are the most abundant 

proteins of the family (Shen et al., 2007; Tepperman et al., 2006; Quail, 2002). Labile phyA is 

accumulated highest in dark-grown seedlings and is closely associated with early-light modulation of 

changes in gene expression in response to red and far-red light (Quail, 2002); phyB is the most active 
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and abundant phytochrome in de-etiolated seedlings in the light, promoting de-etiolation and red-

light induced molecular and physiological responses (Clough et al., 1995; Sharrock and Clack, 2002). 

Key features of phys and phyB activity relevant to the thesis are described below. 

phyB regulates greening. One of the main de-etiolation responses induced by phys is greening. De-

etiolation is the process through which plants first transition from a dark-grown to a light-grown 

state and induces the development of chloroplasts from etioplasts (Lifschitz et al., 1990). Greening 

principally involves chlorophyll biosynthesis and the expression of photosynthetic apparatus 

encoded from both the nucleus and plastome (Lifschitz et al., 1990). A mutant lacking fully 

functioning phyB showed not only elongated hypocotyls and reduced cotyledon expansion, but 

reduced chlorophyll synthesis and greening (Reed et al., 1993).  

phys and the modulation of gene expression. phys coordinate multiple signalling cascades to 

regulate plant growth and development in response to red/far red light (Quail, 2002). When 

converted to its biologically active form, phyB translocates to the nucleus (Sakamoto and Nagatani, 

1996) where it physically interacts with families of transcription factors to regulate a network of 

around 3000 genes (Quail, 2002; Tepperman et al., 2006; Lee et al., 2007). Among the phyB targets 

of these cascades are key nuclear genes coding for proteins required for photosynthesis, referred to 

as ‘Photosynthesis-Associated Nuclear Genes’ (PhANGs), which are then localised to the chloroplast 

via a transit peptide (Berry et al., 2013). As described in section 1.1.2, these nuclear-encoded 

proteins are vital for the functioning of all the photosynthetic complexes, including the 

Photosystems I and II, the cytochrome b6f, and the ATP synthase complexes (Nelson and Ben-Shem, 

2004; Eberhard et al., 2008). phyB also impacts upon chloroplast gene expression mechanisms, 

contributing to the expression of over 60% of plastid-encoded genes in Short Day (SD)-cycling 

conditions (Michael et al., 2008; Griffin et al., 2020). 

phyB is also a temperature sensor. In addition to being key light-sensors, phys have also been linked 

to temperature sensing (Legris et al., 2016). phyB can sense temperatures up to 30oC through 

temperature-dependent reversion from active Pfr to inactive Pr state (Legris et al., 2016). In this 

capacity, increased rates of thermal reversion in warm environments reduces the abundance of 

biologically active Pfr-Pr phyB pool, in turn reducing phyB’s downstream effects. Evidence also 

shows that phyB directly associates with key temperature-sensitive genes in a temperature-

dependent manner, in a range between 17oC and 27oC (Jung et al., 2016). Current evidence also 

supports a role for phyB as an important light and temperature sensor for integrating a wide range 

of variability in regular daily cycles for Arabidopsis (Halliday and Davis; Casal and Questa, 2018). 

Although these studies identified roles for phyB as a temperature sensor predominantly at night, 
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phyB also plays a critical role in the day through the PHYTOCHROME-INTERACTING FACTOR 4 

(PIF4)/HEMERA (HMR) pathway in red light (Qiu et al., 2019). 

phyB modulates transcription factor activity. phyB co-ordinates multiple signalling cascades 

required for greening in part by controlling the activity of multiple transcription factor families, 

including the PHYTOCHROME INTERACTING FACTORS (PIFs), a subfamily of bHLH transcription 

factors involved in repressing photomorphogenesis in the dark (Lee et al., 2007); as well as GARP 

nuclear transcription factors GOLDEN2-LIKE (GLK), and the bZIP-LONG HYPOCOTYL 5 (HY5) 

transcription factors, that activate greening (Lee et al., 2007; Waters et al., 2009; Toledo-Ortiz et al., 

2014). The bZIP transcription factor HY5 controls many different light-modulated processes including 

hormone accumulation, light-developmental responses, anthocyanin and photopigment 

biosynthesis, and reactive oxygen stress responses in high-light (Kobayashi et al., 2012; Toledo-Ortiz 

et al., 2014; Gangappa and Botto, 2016).  

 HY5 is affected by phytochrome abundance (Lee et al., 2007); phyB supresses the activity of 

COP1, an E3 ubiquitin ligase that suppresses photomorphogenesis-promoting transcription factors 

like HY5 through proteasome-mediated degradation (Li et al., 2011b). Without COP1 accumulation in 

the nucleus, HY5 accumulates. Genome wide chromatin immunoprecipitation (chip) experiments 

established that HY5 binds to the promoters of approximately 20% of all light-inducible genes, 

inducing both up- and down-regulation (Lee et al., 2007). HY5 recognition sites in the promoters of 

light modulated genes include multiple motifs, such as G-box, T/G-box, E-box, ACE-box, Z-box, GATA-

box, and hybrids therein (Gangappa and Botto, 2016).  

 In addition to transducing red-light signals through phys, HY5 also integrates blue light 

signalling inputs from the cryptochromes (Wang et al., 2017). Like phytochromes, cryptochromes 

also target COP1 and allow accumulation of HY5 in the nucleus. This allows HY5 to promote 

photomorphogenesis in both light conditions (Osterlund et al., 2000), including the regulation of 

plastid and nuclear gene expression mechanisms (Griffin et al., 2020) .  

 HY5 has also been connected to other inputs, including the circadian clock and temperature. 

Like phyB, HY5 is also temperature-sensitive, especially at cooler temperatures where it contributes 

to modulation of greening (Toledo-Ortiz et al., 2014; Jung et al., 2016; Legris et al., 2016). Toledo-

Ortiz et al (2014) demonstrated that carotenoid and chlorophyll levels vary at different 

temperatures, accumulating at higher levels at higher temperatures and lower levels in cooler 

conditions, finding this was HY5-dependent. HY5 is also involved in circadian responses and can bind 

to four clock oscillator components: dusk regulators TIMING OF CAB1 (TOC1) and EARLY FLOWERING 

4 (ELF4), and dawn regulators CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) AND LATE ELONGATED 



24 
 

HYPOCOTYL (LHY) (Lee et al., 2007; Andronis et al., 2008; Li et al., 2011a; Gangappa and Botto, 

2016). 

 By integrating multiple light wavelengths and circadian responses, HY5 is therefore a master 

regulator of light responses. While many of the described functions of HY5 relate to the setup of 

nuclear signalling cascades, recent research points at the relevance of HY5 in controlling genes that 

act in the chloroplast such as the sigma factors and plastid Transcriptionally Active Chromosome 

(pTAC) family (Pfalz et al., 2006; Chen et al., 2010; Mellenthin et al., 2014) involved in the 

transcription of the plastome. Bioinformatic studies suggest that HY5 could be an important 

component for the light dependent regulatory mechanisms linking the activity of the photoreceptors 

to the expression of the chloroplast genome (Ruwe et al., 2011; Griffin et al., 2020), and therefore a 

key regulator of photosynthesis.   
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1.3. Chloroplast RNA Binding Proteins (cpRNPs): a new role for phytochrome in Post-Transcriptional 

Regulation? 

1.3.1. Regulation of the chloroplast genome expression.  

 The chloroplast genome, also known as the plastome, is evolutionally separate to that of a 

plant nucleus. Originally free-living cyanobacteria, chloroplasts became integrated into plant cells 

and entered into an endosymbiotic relationship, after which the chloroplast genome subsequently 

shrunk to around 200 genes (Martin and Kowallik, 1999). Comparisons of typical cyanobacterial 

genomes containing around 5,000 nuclear-encoded gene products, against contemporary plastid 

genomes that encode between 60-200 proteins (Raven and Allen, 2003) show that over time, genes 

from the plastid genome migrated to the nuclear genome. 

 As described in section 1.1.2, many of the components of the photosynthetic apparatus are 

encoded across both the chloroplast and the nuclear genomes. For example, genes psaA, psaB, 

psbA, and psbB for Photosystem II remain in the chloroplast, but genes PSBO, PSBP, PSBQ, and the 

LHCII genes are encoded in the nucleus (Sugiura, 1992; Jarvi et al., 2015). This gene migration likely 

allowed greater regulatory control over the chloroplast by the plant nucleus in synchronising gene 

expression to environmental conditions, increasing resource use efficiency and improving the whole 

organism fitness (Mullet, 1988a). Accordingly, the gene expression mechanisms must also be tightly 

co-ordinated.  

 

Transcriptional regulation of the plastome. Chloroplast gene expression is mediated by two RNA 

polymerases: the plastid-encoded plastid RNA polymerase (PEP) and the nuclear-encoded plastid 

polymerase (NEP) (Börner et al., 2015). The PEP transcribes proteins for photosynthetic machinery, 

and the NEP transcribes components for plastid transcription and translation regulation (Börner et 

al., 2015). This divides expression into three classes: class I expression is exclusively by PEP, and 

involves photosynthesis-related genes; class II expression involves housekeeping genes by both PEP 

and NEP; and class III genes that involve polymerase transcription are transcribed by NEP (Allison et 

al., 1996; Hajdukiewicz et al., 1997). The specificity of transcriptional regulation of the plastome is 

regulated by the sigma factors, a family of six genes in Arabidopsis (Lerbs-Mache, 2011). Knockout 

mutants and recombinant protein studies have been used to deduce that SIG1 binds the Large 

Rubisco subunit (rbcL) and psbA, a gene encoding the D1 reaction centre precursor (Privat et al., 

2003); SIG2 binds PSII subunits that complement the chlorophyll-deficient phenotype (Nagashima et 

al., 2004b); and SIG3 and SIG4 may influence the expression of the psbB operon and ndhF but sig3 
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and sig4 mutants do not show notable phenotypes (Favory et al., 2005; Zghidi-Abouzid et al., 2011). 

SIG5 is responsive to blue light and regulates the psbD-psbC operon encoding the D2 reaction centre 

protein and chlorophyll-binding antenna CP43 of PSII (Nagashima et al., 2004c; Nagashima et al., 

2004a). The sig6 mutant shows major chlorophyll deficiencies in the cotyledons, affecting psb, ndh, 

and psb transcripts (Ishizaki et al., 2005; Loschelder et al., 2006). The sigma factors were the first link 

made between the nuclear photoreceptors and light signalling components, like HY5, and the 

transcriptional control of the plastome (Oh and Montgomery, 2014; Griffin et al., 2020). However, 

chloroplast gene expression involves the co-transcription of often large, polycistronic precursor 

RNAs that require a large degree of RNA processing (Sugita and Sugiura, 1996) to generate mature 

and translatable mRNAs. Therefore, post-transcriptional regulation is a highly significant in the 

modulation of plastid gene expression.  

Post-transcriptional modulation of the plastome. Research by Deng et al (1989) first indicated that 

a primary mechanism for regulation of chloroplast gene expression occurs through post-

transcriptional processes. In different light conditions, the differential accumulation of plastid 

transcripts could not be explained by transcriptional mechanisms. Similar levels of transcriptional 

activity were observed occurring in contrasting light conditions, despite differences in active 

transcript accumulation, and it was deduced that an additional level of post-transcriptional 

regulation was therefore a major contributor (Deng et al., 1989). Post-transcriptional editing can 

involve site-specific editing of RNA sequences, nucleolytic enzymes, and translational events. In all 

post-transcriptional modulatory events, RNA-binding proteins (RBPs) play essential roles and are 

required for normal plant growth and development (Gutteridge et al., 2018).  

 However, there are multiple families of RBPs and their functions are still under investigation. 

Among the chloroplastic RBPs, the pentatricopeptide repeat proteins (PPRs) are a major family: 

containing approximately 100 members in both rice and Arabidopsis, PPRs recognise their RNA 

ligands with a high specificity (Lurin et al., 2004; Schmitz-Linneweber et al., 2005; Sugita et al., 2016). 

PPRs perform roles in RNA metabolism in chloroplasts and are also involved in RNA editing, splicing, 

and cleavage (Hashimoto et al., 2003; Schmitz-Linneweber et al., 2005; Okuda et al., 2007). A second 

large family of chloroplast RBPs is the RRM family, containing 23 members (Ruwe et al., 2011). 

Among the RRMs, the largest subgroup is the Chloroplast RNA-Binding Proteins (cpRNPs) family (Li 

and Sugiura, 1990). Members of this family have been documented as environmental sensors for 

cold (Kupsch et al., 2012) and are linked to light-induced activation (Li and Sugiura, 1990; Schuster 

and Gruissem, 1991; Churin et al., 1999; Wang et al., 2006). In addition, 4 members of the family 

were identified as phyB-induced genes during de-etiolation (Tepperman et al., 2006).  
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1.3.2. The cpRNPs are key Post-Transcriptional Regulators of Photosynthesis.  

The cpRNPs were first identified as a family of 5 proteins in tobacco, and more were 

identified in maize, spinach and later 10 cpRNPs were described in Arabidopsis (Li and Sugiura, 1990; 

Schuster and Gruissem, 1991; Ohta et al., 1995). All cpRNPs nuclear-encoded and imported into the 

chloroplast post-translationally, accumulating in the stroma and plastid nucleoid (Nakamura et al., 

2001; Melonek et al., 2016). Studies on the spinach 28RNP determined that cpRNPs could bind 

specifically to RNA transcripts- notably regulate the 3’ UTR processing required for RNA stabilisation 

(Lisitsky and Schuster, 1995). Since then, cpRNPs have been characterised by their global RNA-

binding capacity to the plastid-encoded genome and their contribution to photosynthesis-associated 

transcript accumulation (Ruwe et al., 2011; Kupsch et al., 2012; Teubner et al., 2017). 

Members of the cpRNP family are 250 to 370 amino acids (aa) long and consist of an N-

terminal transit peptide, an acidic region, and two RNA-Recognition Motifs (RRM) separated by a 10-

20 aa long spacer (Ohta et al., 1995; Sugita et al., 2016) (Figure 1.2). The RRM are canonical 

consensus sequences, called RNP1 and RNP2, and bind RNA via hydrophobic and stacking 

interactions between conserved aromatic sidechains- the presence of two RRMs in a single protein 

allows long RNA sequences to be bound, and with higher affinity (Maris et al., 2005; Cléry et al., 

2008). 

cpRNPs are conserved across dicot plants. Previous phylogenetic analysis using the amino acid 

sequences of first RRM for each cpRNP showed that the family is conserved in dicot higher plants 

(Ohta et al., 1995). This phylogenetic analysis further grouped cp29A, cp31A and cp33A into distinct 

subgroups by sequence similarity; some cpRNP members were later identified as paralogues of each 

other and it was hypothesised that there may be gene duplication and functional redundancy 

between family members (Churin et al., 1999; Tillich et al., 2009). Phylogenetic analysis of a wider 

range of RNPs revealed a long-term conservation of binding domains for RNPs between PABP, the 

cpRNPs, hnRNPs, and nucleolin (Maruyama et al., 1999). This suggested a potentially similar role for 

cpRNPs to the hnRNPs, which target RNA transcripts in the nucleocytosol for RNA processing (Ruwe 

et al., 2011).  
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1.3.3. cpRNPs are Global Post-Transcriptional regulators of Plastid Gene Expression 

 cpRNPs were identified to be co-expressed with many photosynthetic mRNAs and were 

suggested play a role in their expression (Mentzen and Wurtele, 2008; Cho et al., 2009). Current 

studies indicate that cpRNPs regulate mRNA transcripts associated to photosynthesis through a 

variety of RNA processing mechanisms, including 3’ ends processing, mRNAs splicing, message 

stabilization, and protection from nuclease activity (Zoschke and Bock, 2018). Following the 

identification that cpRNPs can bind ribosome-free RNA, (Nakamura et al., 2001), functional 

characterization of individual members revealed a role for cp31A in Nicotiana benthamiana in the 

editing of psbL mRNA (Hirose and Sugiura, 2001), and later for cpRNPs in 3’ UTR processing and 

protection (Loza-Tavera et al., 2006; Tillich et al., 2009). In Arabidopsis, transcripts of psaA, psbD, 

psbF, psbB, petB, and rbcL were also found to have defects in their processing and editing in cp31a 

and cp29A mutants, correlating with disruption of the electron transport chain and impaired 

photosynthesis (Kupsch et al., 2012). In cp33a mutants, accumulation of ndhB, psbA, rbcL, and psbF 

transcripts was reduced, and a lower accumulation of chlorophyll biogenesis proteins from PSI and 

PSII was reported in sucrose-supplemented, Long Day (LD)-grown plants (Teubner et al., 2017).  

 cpRNPs’ RNA processing occurs through the binding of RNA transcripts via two RNA 

Recognition Motifs (RRMs) (Ruwe et al., 2011). Each cpRNP has two RRMs: RNP1 and RNP2 (Lorković 

and Barta, 2002); structurally, RRMs are four-stranded beta pleated sheets packed against two alpha 

helices and can bind between two and eight nucleotides, and affinity for RNA increases with the 

number of RRMs bound to a sequence (Ruwe et al., 2011). The binding specificity of cpRNPs is site-

specific (Schuster et al., 1999; Hirose and Sugiura, 2001), and is predicted to be modulated by 

phosphorylation sites in the acidic domain (Lisitsky and Schuster, 1995; Okuzaki et al., 2019).  

 Current in-vivo RIP-chip evidence indicates that cpRNPs are capable of binding all the major 

groups of chloroplast RNAs, including RNA polymerases, ATPases, both photosystems, and the NDH 

complex (Kupsch et al., 2012; Teubner et al., 2017). This global binding capacity across the plastome 

encoded mRNAs indicates that they may be general modulators of post-transcription in contrast to 

the far more specific TPR and PPR families (Sugita et al., 2016).  

 However, cpRNPs themselves may not perform all the specific RNA modifications themselves 

and instead function as scaffold proteins for associating to multiple RNA processing high molecular 

weight complexes (HMWCs). For example, Hayes et al (1996) reported the association of the spinach 

28RNP to an HMWC involved in RNA processing that contained an exoribonuclease polynucleotide 

phosphorylase (PNPase)-like activity. When the 28RNP did not associate to the 3’ end of petD, this 
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mRNA could not be processed and transcript abundance was low. Processing and accumulation of 

the petD was reconstituted with the presence of the 28RNP (Hayes et al., 1996). 

 Yet, acting directly or indirectly, current experimental evidence supports an important role 

of cpRNPs in plastid mRNAs post-transcriptional control, and their removal reduces accumulation of 

multiple plastome transcripts. Preliminary experiments by Toledo-Ortiz et al (personal 

communication) for Arabidopsis cp29b-1 and cp31a-1 knockout mutants during de-etiolation show a 

greening phenotype (Figure 1.3), and defects in photopigment accumulation at 17oC compared to 

Wild-Type (WT) plants. 
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1.3.4. cpRNPs are integrators of multiple environmental signals.  

 cpRNPs are expressed abundantly throughout green tissues, and genomic studies revealed 

their transcript modulation by light, temperature, and potentially photoperiodicity (Zimmerman et 

al., 2004). Repression of cpRNP gene expression has also been documented following pathogen 

attack and hypoxia in a similar fashion to the PPR family (Zimmermann et al., 2005).   

cpRNP expression is light-inducible and expressed in aerial tissues. In Arabidopsis, microarray data 

shows that light-grown plants accumulate higher cpRNP transcripts than dark grown plants, 

especially during the dark-light transition in de-etiolating plants (Dohmann et al., 2008). Light-

inducible expression was also detected for cpRNPs across a range of plant species beyond 

Arabidopsis including tobacco, spinach and barley (Li and Sugiura, 1990; Schuster and Gruissem, 

1991; Churin et al., 1999; Wang et al., 2006). Expression of cpRNPs is notably found to be higher in 

aerial shoot and leaf tissues compared to a lower expression in the roots, further indicating an 

association with tissues exposed to light (Li and Sugiura, 1990; Churin et al., 1999). In this respect, 

data from the ePlant database, from the Bio-Analytic Resource for Plant Biology (BAR) (Waese et al., 

2017) (Figure 1.4), shows cp31A transcript accumulation in different vegetative states. Similar 

expression profiles were observed for other members of the family (Supplementary Figure 1.1) with 

transcript accumulation in vegetative rosettes, and especially in the youngest leaves, but remains 

high in leaves over the course of the plant life cycle. These patterns indicate that cpRNPs 

accumulation is tied to photosynthetic tissues.  

cpRNPs promoter sequence elements may be involved in their light-inducible expression patterns. 

A sequence analysis of cpRNPs promoters reveals that several family members include light 

regulatory elements in their promoters. These elements include but are not limited to the G-box, 

Light Responsive Elements (LRE), A-box, C/G-box, and ACGT-containing element (ACE) (Toledo-Ortiz, 

unpublished). The G-box motif is a promoter motif typically bound by bZIP and bHLH proteins (Ishige 

et al., 1999; Leivar et al., 2012). The presence of these elements suggest a close relationship of light 

to the transcriptional modulation of this genes, and a potential role for of photoreceptor signalling 

components such as phyB and HY5 in their modulation (Gangappa and Botto, 2016). In addition to 

classical light regulatory elements, cp29A, cp29B, cp31A, and cp33C all contain a promoter motif for 

CCA1, which hints at a potential for these cpRNPs to integrate light and circadian signalling (Seaton 

et al., 2014).  
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cpRNP activity is modulated by light-dependent phosphorylation. Lisitsky and Schuster (1995) first 

identified that cpRNPs can be phosphorylated in a light-dependent manner. Although the role of 

phosphorylation on cpRNPs remains unclear, phosphorylation of the cpRNPs occurs within the acidic 

domain (Reiland et al., 2009; Okuzaki et al., 2019). For Spinacia oleracea CP28, light-induced 

phosphorylation was shown to impair its RNA-binding ability in-vitro, however phosphorylation for 

CP24 increased RNA binding, resulting in more stable RNA/RNP complexes and protection from 

endolytic cleavages (Lisitsky and Schuster, 1995; Loza-Tavera et al., 2006; Vargas-Suárez et al., 2013). 

Phosphorylation has further been reported for cp29 in Oryza sativa (rice) (Kleffmann et al., 2006), 

and for Arabidopsis cp31A, linked to the cold acclimation response (Schönberg and Baginsky, 2012; 

Okuzaki et al., 2019). 

cpRNP expression and activity is also linked to a cold-temperature response. Cold temperature 

treatments can affect cpRNP protein abundance of cp29, cp31, and cp33 in the chloroplast stroma in 

Triticum aestivum (wheat) (Sarhadi et al., 2010). A similar increase in protein abundance in the 

stroma was observed for cp29B and cpSEBF after cold-shock and cold acclimation treatments of 

Arabidopsis (Amme et al., 2006; Goulas et al., 2006). Further experimental evidence of a role for 

cpRNPs in the cold was provided for cp29a and cp31a mutants, for which cold stress induced a 

bleaching phenotype in newly emerged tissues; this cold-induced phenotype was rescued when the 

plants were returned to physiological conditions (Kupsch et al., 2012). A screen of 11,000 T-DNA 
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mutants for a sensitivity to chilling also identified cp29A and cp31a mutants that exhibited a 

bleaching phenotype and lowered biomass accumulation at 4oC (Wang et al., 2016).  

 Based on their described sensitivity to light and temperature, cpRNPs may therefore be 

molecular integrators of signals that are delivered to the chloroplast, and a link to the signalling 

pathways of the photoreceptors.  

 

1.3.5 cpRNPs may be involved in plastid-to-nuclear communication.  

 Chloroplast biogenesis, operation, and development is influenced by the flow of information 

between nucleus and the organelle (Chan et al., 2016). There are two signalling pathways regulating 

this: an anterograde pathway from the nucleus to the chloroplast to direct protein expression, and a 

retrograde pathway in the opposite direction to allow the chloroplast to communicate stressors to 

the nucleus following the original endosymbiosis event (Krause et al., 2012; Berry et al., 2013). As 

reviewed by Berry et al (2013), these signalling networks are dynamic, and can respond to many 

different stimuli to adjust gene expression to the environment.  

 In the anterograde signalling pathways, chloroplast gene expression is regulated through 

transcriptional, post-transcriptional, and translational processes by nuclear-encoded trans-acting 

factors, including RNA-binding proteins like the cpRNPs (Stern et al., 2010; Barkan and Goldschmidt-

Clermont, 2000). The retrograde signalling pathway relays information about the status of 

chloroplast to the nucleus, and involves multiple signalling molecules, including a combination of 

carotenoid derivatives, isoprenoids, phosphoadenosines, tetrapyrroles, heme, and reactive oxygen 

species (Chan et al., 2016).  

 In addition to participating in anterograde signalling pathways, some preliminary indications 

that cpRNPs point at a potential nuclear localization for some members of the family. A truncated 

form of Arabidopsis cp31A was identified to have nuclear DNA-binding capacity in regulating 

telomere length (Kwon and Chung, 2004) and Potato PR-10a- a homolog of Arabidopsis cpSEBF- is 

reported as a transcriptional repressor of the nuclear genes with a dual nuclear/chloroplast 

localisation (Boyle and Brisson, 2001).  
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1.4. Hypotheses and aims.  

 This thesis will explore the primary hypotheses that:  

1. Phytochrome B (phyB) acts in the nucleus to orchestrate post-transcriptional signalling pathways 

involved in coordinating photosynthesis, plant growth, and development in response to 

environmental cues including light and temperature. 

2. The chloroplast RNA-Binding proteins (cpRNPs) function as integrators of light and temperature 

environmental signals to maintain photosynthesis.  

3. cpRNPs are involved in nuclear gene regulation, and their regulation may be linked to retrograde 

signalling pathway.  

 

 The specific aims of this thesis are to:  

1. Identify the contribution of cpRNP activity to the phytochrome R-light signalling cascades 

controlling greening, biomass production and photosynthesis. (Chapter 2) 

2. Address if the cpRNPs are part of the mechanisms involved in adjusting chloroplasts, not only to 

light quality, but to changing light environments including high-intensity light and photoperiods. 

(Chapter 2) 

3. Address if the cpRNPs’ environmental sensing capacity extends to the co-ordination of light and 

temperature responses. (Chapter 2, Chapter 3) 

4. Investigate the molecular mechanisms behind cpRNP function as phy signalling components, 

including their chloroplastic targets. (Chapter 3) 

5. Address whether the cpRNPs act beyond the chloroplast and can be involved in retrograde 

signalling communication channels. (Chapter 3) 

6. Investigate a role for cpRNPs in plastid-to-plastid transitions using tomato as a model plant. 

(Chapter 4) 
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Chapter 2: Characterising the cpRNPs as Novel Candidates for the Environmental Regulation of 

Photosynthesis  

2.1 Introduction. 

 Recent advances in research have provided evidence that the phytochrome (phy) 

photoreceptor family are significant modulators of the regulatory mechanisms for chloroplast 

genome, or plastome, gene expression (Griffin et al., 2020). The first links to the modulation of the 

plastome came from studies addressing transcriptional mechanisms and the role of light signals in 

the modulation of sigma factors, the Plastid-Encoded Polymerase (PEP), and HEMERA (HMR) 

complexes (Chen et al., 2010; Oh and Montgomery, 2013; Yoo et al., 2019). Yet, the role of the 

phytochromes in modulating other levels of plastome expression, such as for post-transcriptional 

regulatory mechanisms, has not been explored in-depth. Genome-wide bioinformatics studies 

(Griffin et al., 2020) identified that, in particular, red light signals and phys controlled the expression 

of a number of RNA-binding proteins with a predicted function in the chloroplast. Among the RNA-

binding proteins identified were members of the Chloroplast-RNA Binding protein family (cpRNPs). 

 Four members of the cpRNP family were among genes early identified to be modulated by 

red light in a phy-dependent manner (Tepperman et al., 2006). This transcriptional control by light 

may indicated that cpRNPs may be components linking phyB to the light signalling cascades that 

deliver light environmental signals to the plastome. cpRNPs act as post-transcriptional regulators of 

the chloroplast genome (Lisitsky and Schuster, 1995), and they are co-expressed with and involved in 

the modulation of transcript abundance of photosynthetic mRNAs (Nakamura et al., 2001; Mentzen 

and Wurtele, 2008; Kupsch et al., 2012).  

 cpRNPs represent interesting candidates to characterise for their significant role in 

regulation of the plastome through RNA processing (Loza-Tavera et al., 2006; Tillich et al., 2009). In 

comparison to other chloroplast RNA binding protein families, such as the Pentatricopeptide-domain 

containing (PPR) family, cpRNPs have a global binding capacity for the plastome (Kupsch et al., 2012; 

Teubner et al., 2017) and can therefore regulate multiple transcripts’ accumulation for the whole 

photosynthetic apparatus, including the electron transport chain, Photosystems I and II, NADH 

Dehydrogenase, and carbon fixing processes (Kupsch et al., 2012).  

 Additionally, cpRNPs are expressed abundantly throughout green tissues, with genomic 

studies revealing that cpRNPs’ transcript abundance is regulated by light and temperature 

(Zimmermann et al., 2005). cpRNPs are therefore potential integrators of a wide range of 

environmental signals to globally regulate the plastome. Their characterisation could lead to a better 
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understanding of how the plastome perceives and adapts to environmental cues and could have a 

future impact on the development of new strategies to modulate photosynthesis in crops.  

 This chapter examines the role of cpRNPs, post-transcriptional regulators of plastid-encoded 

RNAs, as new components in the environmental regulation of photosynthesis coordinated by the 

phytochrome photoreceptors. Using a reverse genetics approach and a variety of different light and 

temperature environmental conditions, the function of the cpRNPs in growth responses and 

greening was evaluated. To elucidate the molecular basis of their contribution to photosynthesis and 

greening responses, the transcript abundances of photosynthesis-associated genes were examined.  

 The specific aims of this research are:  

1) To identify the contribution of the cpRNPs to the phytochrome R-light signalling cascades 

controlling greening, biomass production and photosynthesis. 

2) To address if the cpRNPs are part of the mechanisms involved in adjusting chloroplasts, not only 

to light quality, but to changing light environments including high-intensity light and photoperiods.  

3) To address if the cpRNPs’ capacity to integrate environmental signals involves the integration the 

coordination of light and temperature responses.  
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2.2 Materials and Methods.  

2.2.1 Plant material and genotypes tested.  

 To evaluate the impact of different environmental inputs on cpRNP transcript abundance 

and contribution to physiological responses, Arabidopsis thaliana wild-type (Col-0), phyB-9 (Col-0) 

and hy5-215 (Col-0) mutants were used. The stock of phyB-9 mutant used was confirmed to be a 

true phyB-9 mutant after sequencing and did not contain a second-site mutation in the VENOSA4 

gene (Yoshida et al., 2018). The following cprnp mutants were used: cp29b_2 (SALK_043415 (S), 

N543415), cpsebf_1 (SALK_008984C, N681974), and cp31a_2 (SALK_109613C, N664816), sourced 

from the Nottingham Arabidopsis Stock Centre.  

 

2.2.2. Genotyping mutant plants.  

 Mutant cprnp lines (cp29b_2, cpsebf_1, and cp31a_2) were genotyped to confirm the 

homozygous presence of the T-DNA insert (position shown in Supplementary Figure 2.1). Genomic 

DNA (gDNA) was extracted by grinding a tissue sample with a pestle and mortar in a 1.5ml 

Eppendorf tube and adding Thompson Buffer (65% v/v MilliQ H2O, 20% 1M Tris pH7.5 v/v, 5% 5M 

NaCL v/v, 5% 0.5M EDTA v/v, 5% SDS (10%) v/v, vortexing, centrifuging (14,000 x g) to separate 

supernatant, and then removing 300µl to a new tube and adding an equal volume of 2-propanol. 

Samples were incubated at room temperature and centrifuged (14,000 x g) again to precipitate 

gDNA on the outer edge of the tube; supernatant was removed and gDNA was resuspended in T.E. 

Buffer overnight. gDNA was then analysed via PCR using genotyping primers shown in Table 2.1 

below. PCR used Redtaq DNA Polymerase Biomix (Bioline, BIO-25043), primers (3µM), and water, 

according to manufacturers recommended guidelines and scaled to a 10µl reaction volume. An 

Eppendorf Mastercycler personal PCR machine was used with the following thermal cycling 

program: 95oC for 1 min, followed by 30x cycles of a denaturation step of 95oC for 15 sec, annealing 

step of 60oC for 15 sec, and 72oC extension step for 10 sec. Finally, samples were subject to a final 

72oC extension for 5 min and cooled at 4oC until collected. This product was then run through a 1.2% 

(w/v) agarose gel to detect correct band sizes.  

 Following genotyping, cpRNP transcript abundance was measured in the respective mutants 

using qPCR primers shown in Table 2.1 and methods described in 2.2.7. The cp29b_2 mutant was 

identified as showing a -80% expression reduction compared to WT; the cpsebf_1 mutant was 

identified as a knock-down showing a -50% expression reduction compared to WT; and the cp31a_2 

mutant is a null mutant showing a -100% expression reduction compared to WT. Primers were 

targeted to the 3’ end of target cpRNP cDNA, overlapping with the 3’ untranslated region.  
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Table 2.1. Genotyping primers (supplied by Eurofins) used in Chapter 2 to identify homozygous T-

DNA insertions in mutant plants.  

Arabidopsis thaliana Primers 

G
en
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ty
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rs

 cp31A_gDNA_F TGATGGGATATTGCTCCTTTG 

cp31A_gDNA_R AGAAGCCTTTCATTCTCAGCC 

cp29B_gDNA_F GTTCTGCTTTGGAGACGACAC 

cp29B_gDNA_R TACAGATGTGAGGACCCCAAG 

cpSEBF_gDNA_F ACTCACAAATTGGGGAAAACC 

cpSEBF_gDNA_R GAAGGACGCGTTTGTATGATC 

LBb1.3 ATTTTGCCGATTTCGGAAC 

 

2.2.3. Seed Sterilisation and Sowing. 

 Arabidopsis thaliana seed were sterilised via treatment with a 15% (v/v) bleach solution for 

10 min, and dilution and washing with sterilised distilled water. Seeds were plated using a Pasteur 

pipette.  

 

2.2.4 Plant Growth Conditions. 

 Plants were grown on 0.5 MS agar (Murashige and Skoog, 1962) with 0% sucrose. Plants 

were grown in Snidjer Clima Red/Blue Light Monochromatic Light Cabinets, model EB2-N-PB. Plants 

were germinated with a 3hr white light treatment followed by 21hr darkness at 22oC before being 

moved to experimental conditions.  

Greening-dependence during de-etiolation and gene expression assays. Plants were grown in de-

etiolating conditions- after germination plants were kept in darkness for 3 days to promote 

skotomorphogenesis followed by a treatment of 24hr Red Continuous (80 µmol m-2s-1) at either 

17oC, 22oC, or 27oC.  

Light Intensity experiments. Plants were grown for 10 days in alternating 1hr High Light (HL) 

intensity (Red light 150 µmol m-2s-1) and 1hr Low Light (LL) (Red light 50 µmol m-2s-1), or for 2hr HL 

and 6hr LL.  

Photoperiodic phenotyping experiments. Plants were grown for 10 days in 80 µmol m-2s-1 Red light 

in Long Day (LD) conditions (16hr Light, 22oC/ 8hr Dark, 17oC) or Short Day (SD) conditions (8hr Light, 

22oC/16hr Dark, 17oC).  

Temperature phenotyping experiments. Plants were grown for 10 days in Red Continuous (RC) light 

at 80 µmol m-2s-1 at either 17oC, 22oC, or 27oC prior to harvest.  
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2.2.5 Plant Harvesting  

Phenotyping Experiments. When ready for harvest, plants were photographed for representative 

records of growth and weighed for fresh weight (FW). 6 plants were measured for each of the three 

minimum biological replicates, and then plants were frozen in liquid Nitrogen (N2(l)) for chlorophyll 

extraction. Chlorophyll quantification was performed using frozen plant tissues ground using pestles 

and mortars and mixed with volumes of ice‐cold 80% (v/v) acetone and centrifuged at 10,000 rpm 

for 15 min until pellets were white. Samples were then measured in a 96-well microplate reader 

(SpectroStarNano, BMG Labtec, Aylesbury, UK) and chlorophyll concentration calculated as 

described in Lichtenthaler & Buschmann (2001). 

Gene Expression Analysis. Plants were harvested in a dark room with green light ambient 

illumination to prevent light contamination. Plants were harvested into liquid Nitrogen (N2(l)) 

immediately to prevent degradation.  

 

2.2.6 RNA Extraction and cDNA Synthesis. 

 RNA extraction was performed using a Sigma Aldrich SpectrumTM Plant Total RNA Kit and 

cleaned with Qiagen RNase Free DNase Set. RNA was quantified with a Nanodrop and 1µg of RNA 

was used. To validate its quality, 500ng of RNA was stained with Thermofisher 6x DNA Loading Dye 

and run through a 0.5% (w/v) agarose gel. To synthesise cDNA, a Thermo ScientificTM RevertAid First 

Strand cDNA Synthesis Kit was used according to manufacturer’s instructions. For experiments 

analysing plastid gene expression, Random Hexamer Primers were used in the cDNA synthesis 

(Schuster et al., 1999), and for experiments analysing nuclear gene expression Oligo dTs were used.  

 

2.2.7 Quantitative RT-PCR Analysis. 

 RT-qPCR analysis was performed using 5µl PrimerDesign PrecisionPLUS qPCR Master Mix 

premixed with SYBR Green, 1µl of 3µM Forward and Reverse primer, 1µl of sample cDNA, and 2µl of 

sterilised water in a 10µl reaction volume. The reaction was performed using a Stratagene Mx qPCR 

Machine with the following thermal cycling program: 95oC for 10 min, followed by 40x cycles of 95oC 

for 10 sec, 60oC for 10 sec, and 72oC for 15 sec followed by melting curve from 65oC to 95oC to 

ensure primer targeting specificity. At least two technical replicates of each biological replicate were 

performed, and the mean values were used for further calculations. Results were analysed using 

Stratagene Mx PRO software and Microsoft Excel. Results were normalised to PP2A reference gene 

(Klie and Debener, 2011) for its light-stable properties compared to classical reference genes ACT2 
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or SAND, and relative gene expression was calculated as described in Pfaffl’s methods for analysing 

LightCycler PCR data (Pfaffl, 2001). A full list of primers is presented below in Table 2.2.  

 

Table 2.2 qPCR Primers used in Chapter 2. Reference genes were used to identify a stable transcript 

accumulation to compare experimental gene expression against; cpRNP gene primers were used to 

identify the red light- and phyB-dependency of cpRNPs; and plastid-encoded gene primers were 

used to quantify a contribution of cpRNPs to photosynthesis-associated plastid-encoded gene 

expression.  

Arabidopsis thaliana qPCR Primers 

Reference 
Genes 

ACT7_F CAGTGTCTGGATCGGAGGAT 

ACT7_R TGAACAATCGATGGACCTGA 

PP2A_F TATCGGATGACGATTCTTCGTGCAG  

PP2A_R GCTTGGTCGACTATCGGAATGAGAG 

cp
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cp28A_F CTCGATGGAACTGAGTATCTTGG 

cp28A_R TGGATACAGAGGTTCTTTGTTAGG 

cp29A_F GCAGCTCAACAGTTCAATGG 

cp29A_R GCCTTCAAATTCAAGTCCACAC 

cp29B_F CAATGGAACACAATATGAAGGTCG 

cp29B_R AAAGCAGAACAGTTGGTTTACG 

cpSEBF_F TTGGATGGTGCTGATTTGGA 

cpSEBF_R ATAGGAAGTCATAGATTGGTGCTC 

cp29C_F ACCTGGAACTTCCAAATCCAC 

cp29C_R CTTCCAGCAACGAATTGTTAAGAG 

cp31A_F CGATGGACAGAACTTGGAGG 

cp31A_R TCTCAGCTTTAATATCCACGCC 

cp31B_F CAATGAGTACAGTTGAAGAAGCAG 

cp31B_R TCTGTTTACTGTCAAACGCCT 

cp33A_F CTGCTTTGGCTACAATGAATGG 

cp33A_R TACGGAAGGAGGAGACACAG 

cp33B_F AACTCAATGGGAAGGAGATAATGG 

cp33B_R TGTTAGCTTCTACACTGTCACC 

cp33C_F CAGATTGATTGCTCAGAATGTTCC 

cp33C_R ACATCTCAATGTCGATAACACTCC 
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atpA_F AAGCTTCTTCCGTGGCTCA 

atpA_R CTCCTGTATAAGGCGCGAGG 

atpH_F TTCTGCCTCAGGTTGTCTCG 

atpH_R TCGGTTATTGCTGCTGGGTT 

atpI_F ACAATTCCAACTGACGGCCA 

atpI_R TTCCACGGTAAAAGGGCTCC 

ndhG_F GTAGCTGCTGCACAACTCCT 

ndhG_R CCCCGTACCATGACGTATCG 

petA_F AGGGGCTTTGAATGTGGGAG 

petA_R GCAGGGTCTGGAGCAAGAAT 
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petB_F TGTTCCTCCGCATGTCAACA 

petB_R GCCGACCATCGATGAACTGA 

petD_F CCTGCGGATCCTTTTGCAAC 

petD_R CGCGGTGCCAATCAAAAAGA 

petG_F TTTTTATTTGGAATCGTCTTAGGTCT 

petG_R AAAAGTCCAACTGATCACCACG 

psaB_F TGGTTGCCTGGCTGGTTAAA 

psaB_R CACAAGTACCACCTCGTCCC 

psaJ_F ACATATCTTTCCGTAGCACCG 

psaJ_R AGGGAAATGTTAATGCATCTGGA 

psbA_F ATTCGGCGGCTCCCTTTTTA 

psbA_R CGGCCAAAATAACCGTGAGC 

psbC_F AGAACGACGTTCGGACAGAAT 

psbC_R CTTCCCGCGTGCCATAAATG 

psbD_F TTTCCCAGGAAATCCGTGCA 

psbD_R TCCACGTGGTAGAACCTCCT 

psbF_F CCTATCCAATTTTTACAGTGCGC 

psbF_R TCGTTGGATGAACTGCATTGC 

 

2.2.8. Statistical Analysis. 

 Statistical analysis of the data was conducted in Microsoft Excel and R (Team, 2020) using 

One-Way ANOVA, Two-Way ANOVA, and TUKEY HSD post-hoc where appropriate testing at a 

significance level of 0.05.  

 Expression profiles of published datasets were analysed using Microsoft Excel and R (Team, 

2020); significant differences in gene expression ratios were analysed with the package GSALightning 

(Chang and Tian, 2016) and the Mann-Whitney-Wilcoxon test for all genes and were adjusted using 

the Benjamini-Hochberg False Discovery Rate (FDR) at the significance level of 0.05.  

 

2.2.9. Genomic Datasets Used 

 Publicly available genome-wide transcriptomic datasets were used to generate Figures 2.1, 

2.4, 2.6, 2.11, and 2.12.  

 The microarray dataset GSE31587 (Hu et al., 2013) was used to generate Figures 2.1 and 2.6; 

this data was generated using 4-day old WT and phyABCDE Arabidopsis seedlings grown in darkness 

or under continuous red light (50 µmol m-2 s-1). Microarray time-course dataset E-MEX-1299 (Michael 

et al., 2008) was used to generate Figure 2.4 and Figure 2.12, and was used 7-day old WT and phyB-9 

null knock-out mutant plants grown in SD conditions (8hr light (100 μmol m-2s-1) and 16hr dark) at 

22°C. Microarray datasets GSE58552 (He et al., 2015), and GSE62119 (Kawashima et al. unpublished 
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data) were used to generate Figure 2.6; dataset GSE58552 used 4.5-day old WT and cry1cry2 

mutants grown in darkness or continuous blue light (15 µmol m-2 s-1), and dataset GSE62119 used 3-

day old WT and hy5 grown under continuous white light (no intensity data provided). The Long Day 

datasets GSE50438 and data from the DIURNAL Database (Mockler et al., 2007) were used to 

generate Figure 2.11. Dataset GSE50438 was generated using Col-0 WT plants grown in LD 

conditions (16hr light (56 μmol m−2 s−1) and 8hr dark) at 22 °C for nine to ten days. Microarray 

DIURNAL database data was generated using Ler WT seedlings grown in LD conditions (16hr light 

(100 μmol m−2 s−1) and 8hr dark) at 22°C for eight days. 

 Dataset E-MEX-1299 was generated using Random Hexamer Priming technology; all other 

datasets were generated using oligo-dT based technology.  

 

2.2.10. Selection of gene lists used for chloroplastic genome modulation functional categories.  

 GO-term categories corresponding to chloroplast regulatory mechanisms (GO:0009507), 

transcription (GO:0006350), post-transcription (GO:0010608) or translation (GO:0006412) were 

selected using TAIR website annotation. To identify genes with a function in the chloroplast, genes 

corresponding to these terms were corroborated with the GO term “chloroplast” (GO:0009507), and 

the final gene sets were manually curated to remove false positives.  

From these gene sets a set of commonly occurring genes with R/B light- or phy/cry- 

sensitivity that were part of wider families/classes was manually identified. Three families/classes 

were selected for further examination in each one of the general plastome regulatory categories. 

Gene lists were manually curated for annotated members of the family that also had a chloroplast 

function. Where appropriate, the presence of specific functional domains was verified to 

corroborate classification. Light sensitivity for the genes analysed was established using WT data and 

an absolute log2 ratio >0.5 difference compared to dark datasets. After establishing light-sensitivity, 

subsequent photoreceptor-dependency of these targets was calculated based on an absolute log2 

ratio >0.5. For each category, only a log2 ratio >0.5 validated by multiple comparisons Wilcoxon test 

followed with FDR at 0.05 were considered as significant. A Chi2 test was used to evaluate the 

significance of enrichment of differentially modulated genes in each category and differentiate 

enrichment from random observations. Statistical differences were defined as those with a P-value 

of <0.05.  

  



43 
 

2.3 Results: Characterization of cpRNPs in red-light responses. 

2.3.1. phyB regulates post-transcriptional mechanisms of plastome gene expression. 

 Plastome gene expression involves transcription by nuclear- and plastid- encoded RNA 

polymerases (NEP, PEP) supported by transcriptional co-regulators known as sigma factors (Berry et 

al., 2013), in addition to extensive post-transcriptional RNA processing (Ruwe et al., 2011), and 

translational control (Chotewutmontri and Barkan, 2016). However, the plastid mRNAs’ organization 

in polycistronic operons requires extensive processing, stabilization, editing, and splicing, therefore 

making post-transcriptional control a dominant process in plastid gene regulation (Stern et al., 2010; 

Barkan, 2011). 

 Before this work, the global contribution of phys to the light-dependent regulation of 

nuclear-encoded genes involved in plastid gene expression had not been widely explored. To further 

evaluate the potential extent of phys’ contribution to plastome regulatory mechanisms, a GO-term 

biological function analysis using the GO-term categories “transcription” (GO:0006350), “post-

transcription” (GO:0010608), and “translation” (GO:0006412) were overlapped with the GO-term 

“chloroplast” (GO:0009507) (see section 2.2. Material and Methods) to generate a shortlist of 

potential targets in datasets comparing dark vs illumination in different genetic backgrounds. The 

genes’ R-light dependent up-regulation was defined by a log2 ratio >0.5 vs darkness in the WT in 

response to R-light dataset (GSE31587) and the contribution of phys to the R-light response was 

evaluated by comparison between WT and phyABCDE, shown in Figure 2.1. The statistical 

significance of each factor was established using an FDR-adjusted multiple comparison Mann-

Whitney-Wilcoxon at P<0.05 (see 2.2 Materials and Methods).  

 This investigation revealed that 9% (13 genes out of 141) in the transcription category, 26% 

(11 genes out of 43) in post-transcription, and 8% (21 genes out of 265) from the translation 

category were R-phys dependent (Figure 2.1). In addition, R-phys’ modulation of genes defined by 

the GO-term biological function as part of the transcriptional, post-transcriptional, and translational 

chloroplastic processes showed enrichment in specific gene families/classes with an already 

described role in plastid gene expression regulation.  

 This chapter focuses on the role of phys in post-transcriptional processes in the chloroplast. 

Within the post-transcriptional category, the Pentatricopeptide Repeat-containing domain (PPR) 

family, the RNA Recognition Motif-containing family (RRM) (including cp28A of the cpRNP family), 

and the Tetratricopeptide Repeat-containing domain protein (TPR) families involved in chloroplastic 

RNA processing, editing, cleavage, splicing and protection against degradation (Lamb et al., 1995; 
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Ruwe et al., 2011) were identified. Based on the initial study, a second analysis was conducted to 

evaluate light responsiveness and photoreceptor dependency for all TAIR-annotated members of 

these specific gene classes that overlapped with the GO-term chloroplast. Red light was again 

identified by a log2 ratio >0.5 difference compared to darkness, and phy-dependency was identified 

by a log2 ratio >0.5 in WT vs phyABCDE. Statistical support was defined with a multiple comparison 

Mann-Whitney-Wilcoxon adjusted with FDR test at P<0.05 (See 2.2 Materials and Methods), and a 

Chi2 test was used to evaluate the significance of enrichment in light up-regulated genes from 

random observations in each category at P<0.05. 

Within the post-transcriptional regulation category, the PPR and TPR categories were 

identified as significant and R-phys-modulated (Figure 2.1). A full evaluation of the role of phys and 

crys photoreceptors in the modulation of plastome gene expression mechanisms is described in the 

published paper attached to this thesis (Griffin et al., 2020).  

 The results therefore show a clear contribution of R-phys in the broader category of post-

transcriptional modulation. Phytochromes’ involvement in the post-transcriptional regulatory 

mechanisms of organellular gene expression has not previously been addressed, and given the 

particular relevance of these mechanisms to plastome mRNAs’ maturation, a further exploration of 

the role of chloroplastic RNA binding proteins by photoreceptor signalling is of interest.  



45 
 

 

  



46 
 

2.3.2. cpRNPs are downstream signalling components of phytochrome B. 

 Informed by the role of red light and phytochromes in the mechanisms of post-

transcriptional regulation of the plastome, the Chloroplast RNA-binding protein (cpRNP) gene family 

members in the RRM category were selected for characterisation. The selection of this family for a 

focussed study was further supported by the identification of four cpRNPs’ transcripts as phyB-

dependent genes (Tepperman et al., 2006), as well as the converging roles of phyB and cpRNPs in 

the modulation of the plastome (Franklin and Quail, 2010; Kupsch et al., 2012; Griffin et al., 2020).  

 The first tests to establish cpRNPs as being involved in the R-phys-dependent 

photomorphogenic responses were conducted during de-etiolation (selected as a well-characterised 

model to dissect phy light responses), including examination of greening responses and over the 

associated assembly of photosynthetic machinery. The initial analysis of cpRNP transcript abundance 

during de-etiolation was conducted by Dr. Karine Prado in the Halliday lab (personal 

communication); these tests compared cpRNP accumulation in WT and phyB plants grown in 

darkness for 3 days and then treated with red continuous 80 µmol m-2s-1 light or darkness for a 

further 24hr. Presented in Figure 2.2, the results showed a strong red-light induction of all cpRNPs 

transcripts compared to darkness, and between a 40-70% reduction in expression in the phyB 

mutant compared to WT. Based on these preliminary results, cp29B, cpSEBF, and cp31A were 

selected as candidates for characterisation based on their strong phyB-dependency and high red-

light induction. 

 

2.3.3. cpRNPs integrate red light signalling to promote greening during de-etiolation. 

 To characterise the role of cpRNPs as downstream phyB signalling components, cprnp 

mutants were obtained from the Arabidopsis NASC seed collections. Homozygous mutants for 

cp29b_2, cpsebf_1, and cp31a_2 were isolated and the effects of T-DNA insertions on transcript 

abundance was evaluated via qPCR analysis in collaboration with Dr. Karine Prado, University of 

Edinburgh. This revealed that cp29b_2 and cp31a_2 mutants were null mutant knockouts, and that 

cpsebf_1 was a partial knockdown mutant, summarised in Table 2.3, and location of the T-DNA 

insertion is described in Supplementary Figure 2.1. Preliminary experiments by Toledo-Ortiz et al 

(personal communication), shown in Figure 1.3 as representative photos, indicated that mutations in 

cpRNP genes induced greening defects during de-etiolation at 17oC. This reduced greening was 

supported by data from Kupsch et al (2012) in experiments conducted for cp29a and cp31a mutant 

plants moved to 8oC after 3 weeks growth at 23oC.  
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Table 2.3. Mutant information for cprnp mutants used in this thesis. The table shows the cp29b and 

cp31a mutant alleles are knockout mutants, but cpsebf mutant is a partial knockdown.  

Mutated 
Gene 

Accession 
Mutant 
Allele 

Name 
NASC 
Stock 

% Expression reduction 

cp29B AT1G01080 cp29b_2 SALK_043415 (S) N543415 -100 

cpSEBF AT2G37220 cpsebf_1 SALK_008984C  N681974 -50 
cp31A AT4G24770 cp31a_2 SALK_109613C  N664816 -100 
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 To quantify cpRNPs’ importance for light-dependent greening during seedling establishment, 

the greening responses for 3-day old etiolated seedlings was evaluated for mutants cp29b, cpsebf, 

and cp31a grown at 22oC (the physiological temperature for Arabidopsis thaliana) in response to a 

24hr red light treatment (80 µmol s-1m-2).  

 These results are shown in Figure 2.3. While no effect on greening was observed for the 

cp29b mutant, a significant reduction (One-way ANOVA (p<0.05)) in chlorophyll a and chlorophyll b 

was observed in cpsebf and cp31a mutants. These results highlight the importance of cpRNPs for 

greening responses under red light. 
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2.3.4. Investigating the cpRNPs’ role in delivering phytochrome-red light signals to plastid encoded 

genes.  

 The plastome contains between 120 and 130 genes, including photosynthesis-associated 

genes and the core components of the plastids’ transcription and translational machineries (Sato et 

al., 1999). In most photosynthetic organisms the plastome is tightly packed inside nucleoids; in green 

plants, these nucleoids are distributed around the stroma (Kobayashi et al., 2002; Morley et al., 

2019). Inside, the plastid DNA is circular and organised into operons- a cluster of genes bound to a 

single promoter that are transcribed together, and then subject to post-transcriptional processing 

and editing for specificity (McFadden, 2014).  

 The plastome contains around 80 genes for proteins involved in plastidial gene expression 

machinery (including the Large Ribosomal Proteins (rpl), Small Ribosomal Proteins (rps), and RNA 

polymerase (rpo); photosynthetic apparatus and the electron transport chain (including the 

Photosystem I (psa), Photosystem II (psb), NADH Dehydrogenase (ndh), Cytochrome b6f (pet), and 

Rubisco Large Subunit (rbcL), ATP Synthase (atp)); and hypothetical and uncharacterised proteins 

(ycf) (Dobrogojski et al., 2020). The remaining c.40 genes of the plastome encode for tRNAs and are 

not protein-coding (Harris et al., 1994). This is summarised in Table 2.4 below. 

 

Table 2.4: List of protein-encoding genes in the plastome by gene name and product in the 

chloroplast. This table was adapted from Dobrogojski et al (2020). 

Gene Name Gene Product 

accD acetyl-CoA carboxylase, carboxyl transferase subunit beta 

atpA ATP synthase CF1 subunit alpha 

atpB ATP synthase CF1 subunit beta 

atpE ATP synthase CF1 subunit epsilon 

atpF ATP synthase CF0 subunit I 

atpH ATP synthase CF0 subunit III 

atpI ATP synthase CF0 subunit IV 

clpP CLP protease ATP binding subunit 

matK intron maturase K 

ndhA NADH-plastoquinone oxidoreductase subunit 1 

ndhB NADH-plastoquinone oxidoreductase subunit 2 

ndhC NADH-plastoquinone oxidoreductase subunit 3 

ndhD NADH-plastoquinone oxidoreductase subunit 4 

ndhE NADH-plastoquinone oxidoreductase subunit 4L 

ndhF NADH-plastoquinone oxidoreductase subunit 5 

ndhG NADH-plastoquinone oxidoreductase subunit 6 

ndhH NADH-plastoquinone oxidoreductase subunit 7 
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ndhI NADH-plastoquinone oxidoreductase subunit I 

ndhJ NADH-plastoquinone oxidoreductase subunit J 

ndhK or psbG NADH-plastoquinone oxidoreductase subunit K 

orf77 or ycf15 Uncharacterized protein YCF15 

orf77 or ycf15 Uncharacterized protein CYF15 

petA Cytochrome f 

petB Cytochrome b6 

petD Cytochrome b6/f complex subunit 4 

petG Cytochrome b6/f complex subunit 5 

petL Cytochrome b6/f complex subunit 6 

petN Cytochrome b6/f complex subunit 8 

psaA Photosystem I P700 apoprotein A1 

psaB Photosystem I P700 apoprotein A2 

psaC Photosystem I subunit VII (iron-sulfur center) 

psaI Photosystem I reaction center subunit VIII 

psaJ Photosystem I reaction center subunit IX 

psbA Photosystem II reaction center protein D1 

psbB Photosystem II CP47 chlorophyll apoprotein 

psbC Photosystem II CP43 chlorophyll apoprotein 

psbD Photosystem II reaction center protein D2 

psbE Photosystem II cytochrome b559 alpha subunit 

psbF Photosystem II cytochrome b559 beta subunit 

psbH Photosystem II 10 kDa phosphoprotein 

psbI Photosystem II protein I 

psbJ Photosystem II protein J 

psbK Photosystem II protein K 

psbL Photosystem II protein L 

psbM Photosystem II protein M 

psbN Photosystem II protein N 

psbT Photosystem II protein T 

psbZ Photosystem II subunit PsbZ 

rbcL RuBisCo large subunit 

rpl14 Ribosomal protein L14 

rpl16 Ribosomal protein L16 

rpl2 Ribosomal protein L2 

rpl2 Ribosomal protein L2 

rpl20 Ribosomal protein L20 

rpl22 Ribosomal protein L22 

rpl23 Ribosomal protein L23 

rpl23 Ribosomal protein L23 

rpl32 Ribosomal protein L32 

rpl33 Ribosomal protein L33 

rpl36 Ribosomal protein L36 

rpoA RNA polymerase α subunit (PEP) 
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rpoB RNA polymerase β subunit 

rpoC2 RNA polymerase β″-subunit 

rpoC1 RNA polymerase β’-subunit 

rps11 Ribosomal protein S11 

rps12 Ribosomal protein S12 

rps12 Ribosomal protein S12 

rps14 Ribosomal protein S14 

rps15 Ribosomal protein S15 

rps16 Ribosomal protein S16 

rps18 Ribosomal protein S18 

rps19 Ribosomal protein S19 

rps2 Ribosomal protein S2 

rps3 Ribosomal protein S3 

rps4 Ribosomal protein S4 

rps7 Ribosomal protein S7 

rps7 Ribosomal protein S7 

rps8 Ribosomal protein S8 

ycf1 Hypothetical protein ArthCp087 

ycf1 Hypothetical protein ArthCp070 

ycf10 or cemA Envelope membrane protein 

ycf2 Conserved hypothetical chloroplast protein YCF2 

ycf2 Conserved hypothetical chloroplast protein YCF2 

ycf3 photosystem I assembly protein YCF3 

ycf4 photosystem I assembly protein YCF4 

ycf5 or ccsA Cytochrome c biogenesis protein CCSA 
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2.3.5. Photoreceptors in the modulation of plastid gene expression.  

 Phytochromes are essential to chloroplast biogenesis, regulating greening, assembly, and 

maintenance of photosynthetic apparatus, and production of photosynthetic pigments (Franklin and 

Quail, 2010) in response to light quality and quantity (Oh et al., 2013).  

 However, the global impact of phys on the plastome had not yet been fully addressed. The 

role of the R-light receptor phyB on the global modulation of the plastome was bioinformatically 

evaluated bioinformatically for this thesis (see also Griffin et al (2020) (Figure 2.4). The genomic 

dataset analysed the effect of phyB over the plastome in Short Days (SD) (E-MEX-1299) (Michael et 

al., 2008), and was selected from multiple phy transcriptomic studies published due to the random 

hexamer priming method used to generate plastid cDNAs, which is required due to the association 

of poly-A tails in chloroplast mRNAs to degradation pathways (Schuster et al., 1999).  

 The analysis revealed that phyB is required for the modulation of 55 out of the 80 plastome 

genes evaluated during at least one timepoint of the experiment. Plastome transcript abundances 

were examined in the phyB mutant compared to WT during the light (ZT4-ZT8) and dark (ZT12-ZT0) 

periods of the time-course experiment and identified using a log2 ratio >0.5 differences between WT 

and phyB. This shows a strong effect of phyB over plastome expression, with phyB-dependent 

modulation of photosynthesis-associated genes from the psb family (Photosystem II), psa family 

(Photosystem I), ndh family (NADH dehydrogenase complex) and pet genes (Cytochrome b6f 

complex) (Griffin et al, 2020) (Figure 2.4).  
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2.3.6. cpRNPs are global regulators of plastid gene expression. 

 Published literature has linked cpRNPs to the global regulation of plastid-encoded, photo-

synthesis-associated genes (Nakamura et al., 2004; Kupsch et al., 2012). A strong binding capacity for 

psbA, rbcL, and petD in tobacco by cpRNPs indicated a potential affinity for PSII-related processes in 

particular (Nakamura et al., 2004). Transcript abundance of the NADH-dehydrogenase gene ndhF is 

also reduced in a cp31a null mutant, accompanied by a subsequent disruption of the electron 

transport chain and impaired photosynthesis (Tillich et al., 2009). 

  A further study of the in-vivo RNA-binding capacity of cp29A and cp31A on cold-treated 3-

week old plants indicated a strong enrichment for psbB, psbD, psaA, psaB, atpB, and ndhB, as well as 

an intermediate enrichment for almost all other chloroplast mRNAs, confirmed by a dot blot assay 

(Kupsch et al., 2012). This suggests a near-global binding capacity for the plastome by members of 

the cpRNP family. An overlap in binding affinities was observed between cp29A and cp31A, also 

indicating some level of redundancy between family members, although cp31A coprecipitated with a 

greater number of RNAs than cp29A (Kupsch et al., 2012). An analysis of cp33a null mutant 

identified a strong albino phenotype in plants grown in Long Day (LD) conditions at 23oC, and RIP-

chip analysis showed an association for cp33A with most chloroplast mRNAs in the stroma with 

particular binding to the psbD/C operon, atpA operon, ndhA operon, and psbE operon in Arabidopsis 

(Teubner et al., 2017). Additional studies of cp33B showed a binding preference for psbA, but also 

showed binding peaks to atpH, psbD, ndhJ, and petB (Teubner et al., 2020). In conjuncture, these 

experiments revealed a potentially wide-ranging gene targeting affinity for the cpRNPs, and 

potential candidate genes with clear modulation in the Photosystem I (psa), Photosystem II (psb), 

ATP Synthase (atp), Cytochrome b6f (pet), and NADH dehydrogenase (ndh). 

  

2.3.7. Identifying plastome target genes sensitive to R-light and dependent on cpRNP action during 

de-etiolation. 

 To evaluate the molecular mechanism behind the effects of cprnp mutations on greening 

reported during de-etiolation (Figure 2.3), the effect of mutations on cpRNP genes on the transcript 

abundance of plastome-encoded genes during de-etiolation was investigated.  

 De-etiolation is a crucial stage of plant development, during which chloroplast gene 

expression is critical for the construction of PSI and PSII photosynthetic apparatus (Armarego-

Marriott et al., 2020). De-etiolation represents the first time in a seedling’s development in which 

these light-induced genes will be expressed, including nuclear- and plastome-encoded genes, making 
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it an optimal point in light-induced plant development to quantify the impact of cpRNPs on light-

induced plastome gene expression (Armarego-Marriott et al., 2020). As light-sensitive components 

with a global binding capacity for plastome encoded photosynthesis-associated transcripts, cpRNPs 

may be actively involved in organellar responses to light cues including the processing and 

accumulation of transcripts for protein production. 

 Candidate genes to examine were selected from preliminary red-light induced plastid 

encoded transcript accumulation experiments conducted by Dr. Prado University of Edinburgh 

(personal communication). Selected candidates were corroborated to be direct targets of cpRNP 

activity using the published RIP-chip datasets cp29A and cp31A (Kupsch et al., 2012).  

Experimental material was gathered from etiolated plants grown for three days in darkness 

and treated with 24hr red light (80 µmol m-2s-1) to induce de-etiolation. Transcript accumulation was 

evaluated for WT, phyB and cprnp mutants cp29b, cpsebf, and cp31a.  

 The results of the transcript abundance analysis are shown in Figure 2.5. Panel A shows the 

transcript abundance of three genes in the ATP Synthase family (atp), for which atpH was identified 

as phyB- and cpRNP-dependent. atpH abundance was statistically significantly reduced in phyB 

mutants, and accumulation was also reduced in all tested cprnp mutants, indicating that cpRNPs 

could act downstream of the phytochromes to modulate this gene. No statistically significant 

differences in transcript abundance were detected for atpA or atpI, although trends indicated a 

lower average transcript abundance in phyB and cprnp mutants compared to WT.  

 Panel B showed that ndhG, of the NADH-dehydrogenase family, may be phyB-dependent but 

transcript abundance was only reported to be cp31A-dependent. No significant differences were 

observed between WT and phyB, although analysis showed an average fold difference of 1.8x 

between the genotypes.  

 The examination of the Cytochrome b6f (pet) family in panel C showed that petD 

accumulation was phyB-dependent. However, neither petA, petB, or petG transcript abundances 

were affected by phyB mutation and no remaining pet gene transcript abundances were detected as 

cpRNP-dependent.  

 Evaluation of Photosystem I (psa) gene transcripts in Panel D showed that psaJ transcript 

accumulation is phyB-dependent and psaB accumulation shows a trend that indicates a contribution 

of phyB to its accumulation. Analysis showed a significant 2.1-fold reduction in average psaJ 

transcript abundance between phyB and WT, indicating that phyB is necessary for light up-regulation 

of this gene. Regarding cpRNPs’ contribution to the transcript accumulation, analysis of cp29b 
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mutant compared to WT indicated a significant 1.8-fold reduction, indicating that cp29B contributes 

to psaJ accumulation; but for this gene no significant effect of cpsebf or cp31a mutation was 

observed. For psaB transcript abundance, phyB and cpsebf mutants showed an average fold 

reduction of 2.5x and 2.4x, despite no but no statistically significant differences.  

 Finally, the investigation of Photosystem II (psb) transcript abundance is shown in Panel E 

and identified that psbA, psbC, psbD, and psbF are all phyB- and cpRNP-dependent. The analysis of 

phyB mutants compared to WT showed significant reductions in psbA, psbC, psbD, and psbF 

transcript accumulation. Further examination of these genes in cprnp mutants identified a 

statistically significant reduction psbA in cp31a mutants; of psbC abundance in cp29b and cpsebf; of 

psbD in all tested cprnp mutants; and of psbF in cp29b and cpsebf.   

 Therefore, the overall analysis of plastome transcripts identified a clear phyB-dependency of 

transcripts from the ATP Synthase, Cytochrome b6f, Photosystem I, and Photosystem II families, 

representing entry points of light signals for the modulation of photosynthesis-associated processes 

during de-etiolation. As suggested in Griffin et al (2020), these results show that phyB is a key signal 

transducer for the global expression of the plastome. This investigation further showed a clear 

cpRNP-dependency for atpH, ndhG, psaB, psbA, psbC, psbD, and psbF, highlighting an important role 

for cpRNPs in the molecular mechanisms downstream of phyB involved in greening. These findings 

bring a new understanding of how phyB can co-ordinate photosynthetic responses by acting on a 

group of proteins that perform essential post-transcriptional processing of plastome-encoded genes 

involved in photosynthetic metabolism.  
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2.3.8. HY5 links phy activation to cpRNPs modulation in response to red light.  

 Phytochrome B enables a vast signalling network to co-ordinate multiple light-dependent 

responses (Franklin and Quail, 2010). One of the key transcriptional regulators of these pathways is 

Elongated Hypocotyl 5 (HY5), a bZIP transcription factor that inhibits hypocotyl growth and lateral 

root development, and promotes photosynthetic gene expression and photopigment accumulation 

in a light- and temperature-dependent manner (Toledo-Ortiz et al., 2014; Gangappa and Botto, 

2016). HY5 can integrate not only red-light signals through phyB, but also blue-light signals through 

the cryptochrome (cry) photoreceptors (Osterlund et al., 2000; Wang et al., 2017).  

 Based on its clear impact on greening responses (Toledo-Ortiz et al., 2014), a global 

evaluation of HY5’s impact in the regulation of genes encoding proteins with a regulatory effect on 

the plastome was conducted to assess its involvement in the modulation of the plastome (Griffin et 

al., 2020). A genome-level bioinformatics study was conducted to test whether HY5 could act as a 

signaling component involved in delivering light cues to the plastome by controlling the expression 

of nuclear genes potentially involved in chloroplast genetic machinery control. The genomic dataset 

GSE62119, using 3-day old hy5 and WT seedlings grown under continuous white light (Kawashima et 

al. unpublished data), was used to examine the contribution of HY5 to the light induction of the 

genes classified in the general functional categories of chloroplast transcription, post-transcription, 

and translation (Figure 2.6) as well as for the specific gene families singled within each one.  

 Figure 2.6 shows that HY5 significantly contributed to around 25% of the light modulation of 

the genes included in the post-transcriptional regulation category of the plastome, affecting 12 

genes. HY5 also contributed to between 10-20% of genes in the chloroplast transcription and 

translation categories. Within the specific gene families evaluated, HY5 was found to be involved the 

up-regulation of the 3 mTERFs, 5 pTACs, and 5 sigma factor family members with potential to 

participate in transcription of the plastome. Despite a lack of statistical enrichment, HY5 

contributions were identified to the light-dependent transcript accumulation of 25 PPRs, 4 TPRs, and 

3 RRMs in the post-transcriptional category and in the translation category 2 tRNA ligase genes and 3 

RPSs.  

 These results highlighted that HY5 could be an important contributor to the nuclear signaling 

cascades that connect environmental signals by photoreceptors to control of nuclear-encoded genes 

with proteins that function in the plastome regulation. In particular, HY5’s contribution to the light-

modulation of RNA binding products indicates a previously underestimated capacity to act in the 

post-transcriptional pathways.  
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 As phyB-R light signalling components, cpRNPs may also be a part of the HY5-regulated 

involved in the greening responses; through cpRNPs, HY5 could be involved in previously 

unaddressed cascades to exert a global influence over the plastome in response to environmental 

cues. To explore this hypothesis, an analysis of the promoters of cp31A, cp29B, and cpSEBF was 

conducted to identify known if HY5 binding sites were present. Results are presented in Figure 2.7. 

 The upstream promoter regions of each of these cpRNPs were examined. The region 1500 

nucleotide base pairs upstream from the ATG start codon was examined for each gene, to identify 

HY5-recognition motifs using the Patterns Locator online bioinformatics tool (Mrázek and Xie, 2006).  
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Motifs investigated included the G-Box (Chattopadhyay et al., 1998), C-Box motifs, CG-

Hybrid Box, and CA-Hybrid Box (Song et al., 2008), E-Box and T/G-Box (Abbas et al., 2014), GATA-Box 

(Shi et al., 2011), ACE-Box (Shin et al., 2013), and Z-Box (Andronis et al., 2008). This revealed the 

presence of seven E-box motifs, and six C-boxes, a CA Hybrid-box, and an ACE-box in cp29B; three E-

Box motifs, three C-Boxes, five ACE-boxes, and a CG Hybrid-box in cpSEBF; and three C-boxes, three 

E-boxes, a G-box, and an ACE-box in cp31A (Figure 2.7). 

 The presence of common HY5 binding motifs in these cpRNPs suggests that HY5 may be 

involved in their regulation. To test the involvement of HY5 in the regulation of the transcript 

accumulation of cpRNPs in response to red light, transcript levels for cp31A, cp29B, and cpSEBF were 

measured for WT and hy5 mutant plants grown for 3 days in darkness and treated with 24hr of R-80 

(Figure 2.8). This revealed a 77% reduction of cp29B transcript accumulation in hy5 compared to WT; 

a 73% reduction for SEBF transcripts; and a 93% reduction for cp31A mRNA accumulation. These 

differences were statistically validated using a Students’ t-Test. This suggests that HY5 may be a vital 

regulator of these cpRNPs. This regulation is also supported by a Chromatin Immunoprecipitation 

assay that detected the binding of HY5 to the cpSEBF (Lee et al., 2007). 
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A HY5-dependent modulation of cpRNP transcripts accumulation indicates a novel role for 

HY5 in the cascades leading to the post-transcriptional regulation of the plastome. To further test if 

HY5 could be involved in the red-light cascades for activation of the plastome, the effect of hy5 

mutation on transcript abundance of previously-examined plastome-encoded genes during de-

etiolation was investigated, shown in Figure 2.9.    

 This experiment revealed HY5-dependent, light-dependent transcript accumulation of genes 

encoding subunits of the ATP Synthase (atp), Photosystem I (psa), and Photosystem II (psb), but no 

effect of hy5 mutation was observed for the Cytochrome b6f (pet) or NADH Dehydrogenase (ndh) 

plastid-encoded mRNAs accumulation. Notably, significant reductions in atpA, atpH, and atpI were 

observed in hy5 compared to WT, as evaluated using a Student’s t-Test, as well as for psaJ, psbA, 

psbC, psbD, and psbF subunits for Photosystem I and Photosystem II. This hints at a specificity 

behind HY5-transduced light signals for specific components of the photosynthetic machinery in red 

light. Interestingly, results for atpH, psaJ, psbA, psbC, psbD, and psbF accumulation in hy5 correlate 

with results from phyB and cprnp mutants.  

 Altogether, the data show that HY5 is a key transcriptional regulator of cp31A, cp29B, and 

cpSEBF. The modulation of these cpRNPs by R-phy signals make their inclusion in a phyB-HY5-

cpRNPs-plastome regulatory pathway plausible. Figure 2.10 presents a working model for the new 

regulatory pathway proposed, based on the photoreceptors, nuclear light signalling components in 

control of cpRNPs, and the potential of cpRNPs to deliver perceived environmental light signals to 

the plastome. 
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2.4. Results: Are cpRNPs involved in the photosynthetic stress responses induced by high light and 

fluctuating light intensities? 

 In a natural environment plants are subject to a range of light intensities including rapid 

changes over short periods, that can have a large impact on photosynthesis and photosynthetic 

apparatus (Way and Pearcy, 2012; Hou et al., 2015). In low light conditions photosynthetic rate is 

light-limited, but in high light the photosynthetic rate is light-saturated and excessive light 

absorption can lead to oversaturation and damage caused by reactive oxygen species (ROS) (Kanervo 

et al., 2005).  

 Fluctuations in light intensity from low to high light can therefore induce stress in the 

photosynthetic apparatus by overloading reaction centres, inflicting photoinhibition and lowering 

photosynthetic efficiency (Aro et al., 1993; Kanervo et al., 2005; Ruban et al., 2012). Plants must 

therefore maintain an optimum balance of absorption of sunlight and protection of the 

photosynthetic apparatus and chlorophyll content (Aro et al., 1993). 

  Photoreceptors play a key role in responding to light fluctuations. Although cryptochromes 

(crys) have been linked to fluctuations in light intensity (Lin et al., 1998), phytochromes such as phyB 

have also been linked to the response (Sellaro et al., 2019). The active conformer of phyB is the Pfr-

Pfr homodimer, D2 (Klose et al., 2015): D2 states respond to light intensity fluctuations in 

Photosynthetically Active Radiation (PAR), and can rapidly and accurately follow changes from base 

to over 400 µmol m-2s-1 PAR (Sellaro et al., 2019). Phys also induce photoprotective mechanisms by 

regulating water-use efficiency (Boccalandro et al.; Kreslavski et al., 2020), maintaining chlorophyll 

concentration and photosynthetic rates in response to short-term high light stresses (Kreslavski et 

al., 2020). 

   

2.4.1. Photosynthetic apparatus in chloroplasts are vulnerable to fluctuations in light intensity and 

high light stress.  

 As sessile organisms, plants have therefore developed a range of acclimation mechanisms to 

deal with fluctuations in light intensities (Vialet-Chabrand et al., 2017). This can involve modifying 

thylakoid proteins and photosynthetic machinery through state transitions (Kanervo et al., 2005; 

Walters, 2005), modulating antenna protein concentration and the contents of the electron 

transport chain (Anderson et al., 1995), as well as turnover of components such as D1 protein, which 

is vital to PSII function (Andersson and Aro, 2001).  
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 The acclimation to light intensity responses can be short- and longer-term. Rapid responses 

to light fluctuations can involve state transitions of LHCII associating reversibly with either 

Photosystem (Walters, 2005): in high light, overload of PSII increases the pool of reduced 

plastoquinone and leads to the activation of protein kinase STN7 and phosphorylation of LHCII and 

its migration between PSII and PSI states (Bellafiore et al., 2005; Allen and Staehelin, 1992). Likewise, 

oxidation of the plastoquinone pool prompts the opposite, with dephosphorylation of LHCII and a 

return to PSII (Pribil et al., 2010; Rochaix et al., 2012). Other short-term high light acclimatory 

mechanisms include rearrangement of chloroplast components or by triggering of non-

photochemical quenching (Ruban and Murchie, 2012; Bielczynski et al., 2016; Schumann et al., 

2017).  

 These short-term responses involve modulation of the transcriptome. A rapid high-light 

response in Arabidopsis induced differential expression of over 700 transcripts, including many 

associated to the plastome gene expression such as sigma factor SIG1 (Suzuki et al., 2015).  

 Longer-term acclimation occurs over hours or weeks and involves the replacement synthesis 

and degradation of chloroplast components after damage to Photosystem reaction centres (Tian et 

al., 2017; Li et al., 2018). Regarded as one of the important protective systems of the thylakoid 

membrane at high light intensities (Kanervo et al., 2005), repair and replacement of the D1, D2, and 

additional subunits such as PsbH are vital components of the PSII complex and targets of photo-

damage in strong irradiance (Komenda and Masojídek, 1995; Rokka et al., 2005). These components 

are also positioned as potential quenchers of excitation energy themselves that act to protect 

neighbouring PSII subunits (Lee et al., 2001; Matsubara and Chow, 2004).  

 Both light-fluctuation acclimation responses imply a further need for proper tuning on the 

photosynthetic machinery, including the setup of regulatory cascades including transcriptional and 

post-transcriptional control points for the adjusted expression of the plastome. cpRNPs, as proteins 

involved in greening responses and as phyB- modulated genes with a post-transcriptional 

modulatory capacity, may be candidates to investigate in the context of an acclimation pathway. 

Their modulation of the photosynthetic apparatus, including of cytochrome b6f plastid-encoded 

subunits (Kupsch et al., 2012), D1 reaction centre protein-encoding gene psbA (Teubner et al., 2020), 

and of ATP Synthase subunits and both Photosystems I and II (Figure 2.5) could orchestrate a broad 

responsiveness. Furthermore, HY5, an upstream signalling component involved in cpRNP transcript 

accumulation, was found to be induced following a 1hr high light stress treatment (Rossel et al., 

2002). 
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2.4.2. Investigating the phenotypic response of cprnp mutants to high light stress (HL). 

 Based on the identified R-light modulated targets of cpRNP targets including the psbA-D1 

(Nakamura et al., 2001) and other PSII components (Figure 2.5), a potential role of for cpRNPs in 

tolerating high-light stress conditions was investigated. 

 The effect of fluctuating high-light phenotypes of cprnp mutants was evaluated using two 

modified versions of a method described in Hou et al (2015), designed to constantly stress PSII in 

plants from day 0. cprnp mutants cp29b, cpsebf, and cp31a were grown in regimes of 1hr LL 

treatment (50 µmol m−2s−1)/1hr HL (150 µmol m−2s−1) treatment and 6hr LL (50 µmol m−2s−1)/2hr HL 

(150 µmol m−2s−1) treatment. Results were compared to plants grown in non-fluctuating continuous 

red light (80 µmol m−2s−1) as a control. cprnp mutants’ responses were evaluated through their 

capacity to green under constant acclimation stress and accumulate biomass as indicators of 

photosynthetic efficiency. Experiments were conducted in Red Continuous grown 10-days old plants.  

 

Fresh Weight Analysis. Results are shown in Figure 2.11. The 1hr LL/1hr HL condition (Panel A), 

shows a statistically significant FW reduction in phyB as well as reductions in cpsebf and cp31a. No 

statistically significant changes were detected in cp29b mutants. This result was compared to plants 

grown in control red-continuous light conditions, shown in Panel C, in which only a significant 

reduction in phyB FW was reported. 

A Two-Way ANOVA analysis reported a significant interaction effect between light regime 

and genotype on FW accumulation in mutant plants (P<0.001). A post-hoc Tukey HSD test identified 

there was significant interaction effect on the relationship between FW in WT and phyB (P<0.001). 

The Two-Way ANOVA also revealed a significant effect of light condition in both datasets (P<0.001), 

showing that the fluctuating light caused a global reduction in FW. An analysis of the interaction 

effects between light condition (fluctuating light condition vs control) and genotypes also indicated 

that WT is more greatly inhibited in fluctuating light, compared to phyB and cpsebf. 

 An analysis of FW accumulation for the 6hr LL/2hr HL condition (shown in Figure 2.11 Panel 

B) showed significantly reduced phyB FW accumulation compared to WT, but cprnp mutants were 

unaffected. A Two-Way ANOVA analysis comparison of continuous light to fluctuating light (6hr 

LL/2hr HL) reported a significant interaction effect of light condition and genotype on FW 

accumulation (P<0.001). A Tukey HSD post-hoc test identified the interaction affected the 

relationship of WT to phyB on FW, with phyB plants being more inhibited in control conditions. The 
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Two-Way ANOVA also reported a significant effect of the fluctuating light treatment on global plant 

growth (P<0.001).  

 Unshown repeats of these experiments in older plants (14 days) also showed no effect of 

fluctuating light regimes on cprnp mutant plants. Overall, this indicates only a limited role for 

cpRNPs in responses to fluctuating light conditions. 

 

Chlorophyll accumulation analysis. For the 1hr HL/1hr LL condition shown in Figure 2.11 panel A, no 

statistical differences were observed in chlorophyll a or b accumulation between WT and cprnp 

mutants, but reductions in both Chl a and Chl b were detected in phyB mutant. When compared to 

control plants grown in red-continuous light conditions, shown in Panel C, in which only a significant 

reduction in phyB FW was reported, a Two-Way ANOVA analysis reported a significant interaction 

effect between light regime and genotype for Chl b (P<0.001), affecting the relationship between WT 

and phyB (P<0.01).  

 Additionally, for the 2hr HL/6hr LL condition (Figure 2.11, panel B), no significant differences 

were reported between WT and cprnp mutants in the accumulation of chlorophyll a or b. However, 

as for the other tested condition, significant reductions in both chlorophylls was observed in phyB. 

When compared to control plants grown in red-continuous light conditions, (panel C), Two-Way 

ANOVA analysis reported a significant interaction effect between light regime and genotype for both 

Chl a (P<0.001) and Chl b (P<0.001), affecting the relationship between WT and phyB in both 

instance (P<0.001, P<0.01 respectively). 

Overall, these FW and chlorophyll results indicates only a limited role for cpRNPs in 

responses to fluctuating light conditions but do identify that phyB-dependent accumulation of 

chlorophyll b is affected by fluctuating light regime.  
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2.5. Results: Investigating the cpRNPs sensitivity to photoperiodicity.  

2.5.1. phyB is a key integrator of photoperiodicity. 

 Photoperiodicity is a key factor that affect almost all aspects of Arabidopsis growth and 

development (Adams and Langton, 2005), including a range of photosynthesis-associated processes 

such as glucose and sucrose distribution (Ceunen and Geuns, 2013), and chlorophyll content (Adams 

and Langton, 2005). Plants adjust to day-length cycles to optimise growth in response to dark-light 

cycles depending on latitude and seasonal growth (Graf and Smith, 2011; Baerenfaller et al., 2015). 

 Long Day (LD; 16hr light, 8hr dark) and Short Day (SD; 8hr light, 16hr dark) photoperiods 

dramatically affect plant morphology and associated photosynthetic rates (Carpenter et al., 1983). 

Experiments on P. tomentosa showed that LD-grown plants accumulated a greater biomass through 

larger leaf area, root and stem length, and total dry weight, but SD-grown plants exhibited a higher 

net photosynthetic rate (Carpenter et al., 1983).  

 Arabidopsis is a facultative long-day plant, and SD conditions decrease final leaf area and 

rates of leaf expansion compared to LD (Cookson et al., 2007), as well as affecting leaf shape 

(Willmann and Poethig, 2011). Plants were also observed to accumulate starch rapidly in light and its 

degradation in dark was slower in SD compared to LD plants, which instead exhibited the higher 

growth rates (Sulpice et al., 2014). These changes were represented in the cell by LD-grown leaves 

having a higher chlorophyll content per area due to an increased leaf thickness (Lepistö and 

Rintamäki, 2012). At a transcriptomic level, significant differences were found in the Arabidopsis 

transcriptome between LD and SD (Baerenfaller et al., 2015). Genes involved in RNA processing 

mechanisms, Photosystem I, and Photosystem II were overrepresented in SD conditions, speculated 

to be related to the increased rate of photosynthesis to use the limited light most efficiently 

(Baerenfaller et al., 2015).  

 The dark-light cycles that define photoperiodicity are in part detected through 

phytochromes. Phys are sensors of photoperiods with phyB playing a role in the photoperiod- 

photoperiodic-dependent flowering (Blázquez and Weigel, 1999; Kippes et al., 2020) and CO2 uptake 

and loss (Mousseau, 1981). The phyB-photoperiodic flowering pathway relies modulation of 

FLOWERING LOCUS T (FT) (Kaiserli and Chory, 2016) as well as adjustments in transcription factors 

activity, growth regulators and chromatin remodelling factors (Loudet et al., 2008), suggesting a 

wide photoperiod-regulated signalling cascade. As such, phyB is both capable of detecting and 

transducing photoperiodic signals to regulate gene expression.  
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 phyB is therefore a key integrator of both light and photoperiod, and may deliver 

photoperiodic environmental signals to organelles, including the signals for the modulation of plastid 

gene expression. An effect of phyB mutation has previously been observed on plastome transcript 

accumulation in data derived from SD plants (Figure 2.4) (Michael et al., 2008).  

 An evaluation of available photoperiodic databases was conducted to identify whether 

cpRNP genes could exhibit photoperiod modulation and be part of the signalling cascades. 

 

2.5.2 Bioinformatic examination of cpRNPs’ response to different photoperiods. 

cpRNPs’ transcript accumulation response to Long Day conditions. To investigate whether cpRNPs 

follow a photoperiod-sensitive transcript accumulation, Long Day (LD; 16hr Light, 8hr Dark, 22oC) 

microarray timeseries expression datasets were examined. Dataset GSE50438, and data from the 

DIURNAL dataset (Mockler et al., 2007) were analysed in Figure 2.12 in panels A and B respectively. 

These datasets indicated a LD-photoperiodic expression pattern for cp29B and cp31A.  

 Figure 2.12 panel A, based on data from GSE50438, shows expression of cp29B peaking at 

the very end of the night period and just at dawn with expression dropping to low levels within 

8hours/by midday. The pattern for cp31A appears to show a peak in expression in the early day and 

a trough before the dark period with expression slowly rising up to the morning period again. Data 

show that cpSEBF does not have a clear photoperiodic dependent modulation with only minor peaks 

about 8 hours into each day, and potentially a mild night-time peak. Figure 2.12 panel B, analysing 

data from the DIURNAL dataset, shows a similar expression pattern for cp29B with high 

accumulation at the end of night/early morning but in a phase just earlier than in panel A, and shows 

an additional smaller peak just before the night phase. cpSEBF shows a less oscillating pattern, with 

even less variation in its cycling; and results for cp31A appear to show a peak in expression before 

the night period.  

 The dataset GSE50438 analysed in Figure 2.12 panel A was generated using agar with 0.5% 

(w/v) sucrose and Col-0, and the data presented in Figure 2.12 panel B from the DIURNAL dataset 

was generated using agar with 3% (w/v) sucrose and Ler WT seedlings (Mockler et al., 2007). Whole 

the datasets are not strictly comparable, and the inclusion of sucrose in media is known to affect 

phyB signalling pathways (Nemhauser and Chory, 2002), the preliminary evidence points at the 

possibility of a Long Day expression pattern for cp29B transcripts peaking at the end of the 

night/dawn, and peaks for cp31A in the middle of the day. Although some minor oscillations were 
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observed, cpSEBF did not show a strong photoperiodic dependent transcript accumulation, so only 

cp29b and cp31a were chosen for phenotypic analysis in Long Day conditions.  

 

cpRNPs’ transcript accumulation pattern response to Short Day conditions. To identify whether 

cpRNPs have a photoperiod sensitive transcript accumulation in Short Days (SD) (8hr Light, 16hr 

Dark), genomic dataset E-MEX-1299 from the DIURNAL project (Mockler et al., 2007) was examined, 

using 8-10 days old plants grown in SD conditions (see section 2.2 Materials and Methods). 

E-MEX-1299 compared WT and phyB-9 mutants, allowing examination of how phyB affects 

SD photoperiodism. This data is shown in Figure 2.13 and shows clear oscillating patterns for cp29B 

and cp31A with transcript abundance spiking at the end of the light period and decreasing 

throughout the night and early light period. A similar pattern was observed for cpSEBF, but peak 

amplitude was much reduced. However, for cp29B and cpSEBF the only observable differences 

between phyB and WT was a moderate reduction in peak amplitude. No observable differences 

were detected for cp31A expression between phyB and WT. 
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2.5.3 Phenotypic characterisation of cpRNPs’ response to different photoperiods. 

 Based on the results obtained by bioinformatics studies, the photoperiodic phenotypes of 

cprnp mutants were evaluated. cprnp mutants cp29b and cp31a were grown in Long or Short-Day 

photoperiodic conditions to evaluate day length effects on their growth, including capacity to green 

(measured via chlorophyll accumulation) and biomass accumulation (Fresh Weight). The 

experiments were conducted in 10-day old plants grown under the specified photoperiodic 

condition in red light (80 µmol m−2 s−1). 

Phenotypic evaluation of cprnp mutants’ response to Long Day photoperiodic conditions. Informed 

by potentially LD-cycling expression patterns, phyB, cp29b and cp31a mutants were examined for 

effects of LD-cycling on growth and greening phenotypes. Plants were grown in Long Day conditions 

(80 µmol m−2 s−1 /16hr/22oC, darkness/8hr/17oC) for 14 days (Figure 2.14). Phenotypic evaluation 

illustrated in representative photos from this experiment (panel A) indicated no notable 

physiological differences between cp29b or cp31a and WT, and no significant differences to WT 

were detected for cp29b or cp31a for FW or chlorophyll a or chlorophyll b accumulation (panel B). 

However, significant reductions in biomass accumulation and chlorophyll a were observed in the 

phyB mutant compared to WT.  

 However, while cp31a mutants were clearly no different from WT plants, noticeably lower 

chlorophyll content averages were recorded for cp29b. To clarify the possibility of cp29B having a 

photoperiodic role, an experimental repeat was conducted (Supplementary Figure 2.2), which 

indicated that cp29b plants exhibited a statistically lower FW, but no differences in chlorophyll a or b 

accumulation. These results may point at cp29b plants showing defects in biomass accumulation in 

Long Day compared to WT, thinly hinting at a role in the modulation of photoperiodic responses 

associated to growth and greening. 

Phenotypic evaluation of cprnp mutants’ response to Short Day photoperiodic conditions. Equally 

informed by potentially SD-cycling expression patterns, phyB, cp29b and cp31a mutants were 

examined for effects of SD-cycling on growth and greening phenotypes. Plants were grown in Short 

Day conditions (80 µmol m−2 s−1 /8hr/22oC, Darkness/16hr/17oC) for 14 days. The results for this 

analysis are presented in Figure 2.15. Representative photos, biomass accumulation, and chlorophyll 

accumulation results are shown in panels A, B, and C. These results show no significant reductions in 

biomass accumulation or chlorophyll accumulation between WT and cprnp mutants, but significant 

reductions were reported in phyB mutants for each factor tested.  
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 In summary, data from the described publicly available microarrays show clear LD and SD 

expression patterns for cp29B and cp31A. However, experiments with cprnp mutants only 

demonstrated the possibility of a modest phenotype for cp29b in LD conditions, and no effect from 

cp31A.  
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2.6. Results: Beyond light: the cpRNPs and photoreceptor-dependent temperature sensing.  

2.6.1. Ambient Temperature responses.  

 The variation in ambient growth temperatures can have important impacts on a plant 

phenotype, affecting development, physiology, flowering, and morphology, and therefore an 

understanding of how plants sense and response will be increasingly important with the ongoing 

global climate changes (Wigge, 2013; McClung et al., 2016). Physiological and morphological effects 

vary dependent upon temperature: higher temperatures (27-30oC) induce changes in plant 

architecture, such as elongation of stems and accelerated flowering (Capovilla et al., 2015), and even 

mild reductions in temperatures (eg 18oC) induce stunted growth and photobleaching (Samach and 

Wigge, 2005). cpRNPs have been linked to cold-temperature tolerance (Kupsch et al., 2012), as has 

their upstream signalling component HY5 (Toledo-Ortiz et al., 2014). This section will examine how 

cpRNPs may integrate temperature signals to regulate the plastome.  

 

2.6.2. phyB and HY5 are a key integrators of ambient temperature responses, linking temperature 

sensitivity to cpRNPs’ regulation . 

 phyB is a thermosensor capable of regulating temperature-sensitive genes and affecting 

transcript accumulation between 17-30oC, indicating a role in ambient-temperature sensing (Jung et 

al., 2016; Legris et al., 2016).  

 HY5 is also an ambient temperature sensor (Toledo-Ortiz et al., 2014). In particular, at 17oC 

HY5 transcripts accumulated more abundantly than at 27oC, with a clear role of HY5 in the 

accumulation of photopigments in particular at 17oC (Toledo-Ortiz et al., 2014). HY5 also participates 

in anthocyanin accumulation in chilling conditions (4oC) (Zhang et al., 2011; Catalá et al., 2011), with 

hy5 mutants showing lower freezing tolerance than WT. HY5’s involvement in heat shock responses 

include stabilised HY5 protein levels due to reduced COP1 accumulation, suggesting that HY5 may be 

required for a synergism for heat and light signals (Karayekov et al., 2013).  

 As downstream components of both phyB and HY5, and in addition to their described 

involvement in cold responses (Ruwe et al., 2011; Kupsch et al., 2012), cpRNPs are good candidates 

to investigate as temperature-sensitive signal transducers to the plastome. cpRNPs cp29, cp31, and 

cp33 highly expressed in cold conditions in wheat and were within the 50 most highly expressed 

proteins upregulated after two weeks’ cold stress (Sarhadi et al., 2010). This may equate to higher 

levels of protein, as indicated by evidence from B. thellungiella, where the CP29-related protein was 

elevated after a 24-day 4oC chilling treatment (Gao et al., 2009).  
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2.6.3. cpRNP transcript accumulation is ambient temperature-dependent. 

 In Arabidopsis, cp29B gene showed induction after 1 week cold-shock treatment at 6oC 

(Amme et al., 2006). Temperature-sensitive accumulation for cp29A and cp31A was observed in 

plantlets transferred to 8oC for 18 days, where cp29a and cp31a mutants showed bleaching of newly 

emerged leaves and pale primary leaf development for plants germinated at 8oC (Kupsch et al., 

2012). This pale phenotype was proposed to be due to failures in setting up photosynthetic 

apparatus, based on an analysis of the bleached, newly-emerged tissues which showed a 50% or 

greater reduction of plastid-encoded transcripts psaA, psbD, psbF, psbB, petB, rbcL, and ndhF at 8oC 

but not at 23oC (Kupsch et al., 2012). An analysis of cp31a mutant also showed a cold (8oC)-

dependent binding of four ndh transcripts (ndhF, ndhK, ndhB, and ndhD), further indicating a 

temperature-dependent effect of cp31A protein in cold (Okuzaki et al., 2019). 

 Results presented in this chapter support the investigation of the role of cpRNPs in light- and 

temperature- integrating pathways under phy control; while most of the current published 

experimental data had been gathered under chilling or cold stress conditions (0-15oC), the cpRNPs 

position downstream of the ambient-temperature sensing phyB may indicate a role at ambient 

temperature sensing too (Jung et al., 2016). This research therefore examined the role of phy, HY5, 

and cpRNPs in ambient temperature sensing pathways (17-27oC).  

 Considering that the cpRNPs regulate plastome-encoded transcripts involved in the 

photosynthetic apparatus (Figure 2.5) and the photosynthetic apparatus is particularly sensitive to 

changes in temperature (Strand et al., 1997; Samach and Wigge, 2005) it was hypothesized that 

cpRNPs could play a role in integrating ambient temperature signalling. To investigate this 

possibility, the transcript accumulation of cpRNPs was tested at 17oC, 22oC and 27oC in de-etiolating 

plants was examined first (Figure 2.16). 

This analysis revealed a temperature-dependent transcript accumulation of cp29B, cpSEBF, 

and cp31A. Results showed transcript accumulation for these genes was lowest in 17oC, and highest 

at 22oC in control conditions, with intermediate expression at 27oC for cp29B and cp31A. cpSEBF 

accumulation, however, was equally high in 22oC and 27oC. 
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2.6.4 Biomass and chlorophyll accumulation in cprnp mutants are sensitive to warm and cold 

temperatures. 

 The role of cpRNPs in plantlet development was evaluated through the impact of cprnp 

mutations on greening (measured by chlorophyll accumulation) and biomass accumulation 

(measured via FW) responses at 17oC, 22oC and 27oC. WT (Col-0), phyB, hy5, cp29b, cpsebf, and 

cp31a plants were grown for 10 days in Red Continuous illumination (80 µmol m−2 s−1) in the three 

temperature conditions. Results are shown in Figure 2.17.  

 Representative photos of results (panel A) pointed at clearly observable, temperature-

dependent phenotypes in cprnp mutants, and corroborated Arabidopsis WT morphological 

differences at the 3 temperatures tested. Hypocotyl length in the WT increased proportionally with 

temperature, as did petiole growth. Furthermore, the leaf area appeared to be greatest at 22oC and 

reduced at the non-optimal temperatures.  

 At 22oC, cprnp mutants cp29b and cpsebf show smaller cotyledons and leaves compared to 

WT. At 17oC, a lower leaf size and slower true leaf emergence can be seen in cprnp mutants 

compared to WT, showing an intermediate phenotype between WT and the effects of hy5 and phyB. 

At 27oC plants show much smaller leaf sizes and reduced petiole elongation in cprnp mutants 

compared to WT. At this temperature phyB and hy5 mutants show clear morphological changes   
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including exceedingly long hypocotyls and miniscule cotyledons. Overall, this indicated a role for 

phyB, HY5, and cpRNP proteins in temperature-dependent growth. 

 

Fresh weight response. Analysis of the plantlets’ Fresh Weight (FW) was conducted as a proxy 

parameter for biomass accumulation, and is shown in Figure 2.17 panel B. This analysis showed a 

temperature-dependent phenotype of phyB and hy5 at 17oC and 27oC with a pronounced reduction 

in biomass accumulation. All cprnp mutants were more sensitive to a cold ambient temperature 

compared to WT, and cpsebf was also sensitive at the higher ambient temperature. Statistical 

comparison to control plants grown at 22oC revealed this response was subject to interaction effects 

between temperature and genotype, implicating cpRNPs in a temperature-dependent response.  
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 At 22oC, no cprnp mutants were statistically different from the WT control. However, in the 

17oC treatment cprnp mutants accumulated a lower biomass compared to WT, validated through a 

One-Way ANOVA statistical analysis by One-Way and Tukey HSD post-hoc testing (P<0.001). Of these 

mutants, cpsebf and cp31a showed the greatest sensitivity to cold with strongest effect on fresh 

weight reductions. At 27oC, cprnp mutants were less sensitive to the increased temperature; despite 

a lower average fresh weight for cp29b and cp31a mutants, the difference was not statistically 

significant. However, cpsebf did exhibit a significant c.1.5-fold lower fresh weight accumulation. 

These results indicate that cpRNPs cp29B, cpSEBF, and cp31A are involved in an ambient 

temperature-response to modulate biomass accumulation. 

 A Two-Way ANOVA analysis of these results revealed a significant interaction effect between 

genotype and temperature on Fresh Weight (p<0.001). A Tukey HSD post-hoc test identified that the 

interaction effect significantly affected the relationship between WT and phyB, hy5, and cpsebf 

(p<0.001), WT and cp29b (p<0.01), and WT and cp31a (p<0.05). Therefore, the FW of cprnp mutants, 

phyB, and hy5 was dependent on the temperature condition, suggesting that cpRNPs do integrate 

temperature signals to modulate in the cold and the warm biomass accumulation.  

 Chlorophyll accumulation response. As shown in Figure 2.17 panel C, Chl a accumulation is 

phyB-dependent in all temperature conditions, and Chl b accumulation is phyB-dependent only at 

17oC, suggesting a unique temperature-dependent pathway for phyB in cold conditions. 

Interestingly, accumulation of Chl a in phyB was less inhibited at 17oC and 27oC compared to WT 

than at 22oC. Similarly, Chl a production is also HY5-dependent at 17oC, 22oC and 27oC.   

In the evaluation of contributions of cpRNPs to the Chl a accumulation response, Chl a 

content is reduced in cpsebf and cp31a compared to WT plants in cold (17oC) and warm (27oC) 

temperature conditions, but not at a standard (22oC) temperature in Arabidopsis plantlets, showing 

Chl a accumulation is affected by temperature-dependent activity of cpSEBF and cp31A. Chl b 

accumulation is additionally shown to be cpSEBF-dependent at 17oC. At 22oC, no notable changes 

were observed in cprnp mutants compared to WT, consistent with biomass accumulation results.  

 A Two-Way ANOVA statistical analysis reported a significant interaction effect of genotype 

and temperature on Chl a (P<0.001) and Chl b (P<0.001) accumulation, showing that both 

chlorophylls’ accumulation was temperature- and genotype-dependent. A post-hoc Tukey HSD test 

for Chl a accumulation identified there was significant interaction effect on the relationship between 

Chl a in WT and phyB (P<0.001), WT and hy5 (P<0.001), WT and cpsebf (P<0.05), and for WT and 

cp31a (P<0.05). A post-hoc Tukey HSD test for Chl b also reported significant interaction effects on 

the relationship between Chl b in WT and hy5 (P<0.001).  
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 This indicates that cpSEBF and cp31A may be involved in an ambient temperature-

dependent greening and growth response. This expands cpRNPs’ known temperature range from 

their known cold and chilling tolerance response (Kupsch et al., 2012) to perception of ambient 

temperatures. To further examine the effect of the observed changes temperature changes on 

functions dependent on the cpRNPs, the effects of cprnp mutation in the temperature-dependent 

adjustment of the plastome gene transcript accumulation was investigated next.  
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2.6.5. The plastome response to ambient temperature changes is mediated by cpRNPs.  

 Analyses of cprnp mutant phenotypes in 17oC and 27oC temperature conditions showed 

significant effects on biomass accumulation and greening (Section 2.6.4). Considering the molecular 

function of the cpRNPs in modulating the accumulation of plastid encoded genes, an investigation of 

temperature sensitivity on the cpRNP plastome targets previously identified as light- and phyB-

modulated in cprnp mutants was conducted. These candidates included atpH of the ATP Synthase 

complex, psaJ of Photosystem I, and psbC and psbF of Photosystem II.  

 The effects of cprnp mutations on plastid gene expression were examined compared to phyB 

and hy5. This analysis was conducted at both 17oC and 27oC and compared to results obtained at 

22oC, using de-etiolation as a model to evaluate cpRNPs’ role in light-induced transcript 

accumulation (Armarego-Marriott et al., 2020).  

 

ATPase complex. As previously described in Figure 2.5, atpH transcript abundance was significantly 

reduced at 22oC in phyB, hy5, and cprnp mutants, indicating a potential cascade to modulate this 

transcript. Shown in Figure 2.18, at 17oC, the average transcript accumulation of atpH was lower 

than at 22oC, with phyB and hy5 plants showing a significant reduction. However, whilst cp29b and 

cp31a mutants accrued a statistically significantly lower atpH transcript levels than WT, contribution 

of cpsebf was not supported by the data. At 27oC, phyB mutants accumulated lower levels of atpH 

than WT, but in hy5 mutants the difference was not statistically different, perhaps indicating 

alternate pathways at higher temperatures to modulate plastid genes. No differences were detected 

for cp29b or cpsebf either, but a significant reduction was found for cp31a.  

 A Two-Way ANOVA analysis comparing the effect of genotype and temperature on 

transcript abundance across all three conditions reported no significant interaction effect between 

genotype and temperature over transcript abundance (P=0.74). However, a significant effect of 

temperature (P<0.001) and a significant effect of genotype (P<0.001), was reported. This indicates 

that temperature is an important factor in atpH expression, and that the phyB-signalling pathway is 

involved in atpH accumulation may occur through other signalling components.   

 

Photosystem I.  The plastid gene psaJ was selected as a light-sensitive gene from the Photosystem I 

(psa) family. The temperature-dependent accumulation analysis (Figure 2.18) indicted that at 22oC 

psaJ accumulation was phyB- and cp29B-dependent. At 17oC, psaJ accumulation was reported to be 

significantly reduced in phyB mutants but not cprnp mutants or hy5. However, at 27oC, overall 
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transcript abundance of psaJ was increased compared for all genotypes compared to 22oC, except in 

the phyB mutant; but compared to WT at 27oC psaJ transcript accumulation was significantly 

reduced in phyB, hy5, and all tested cprnp mutants. A Two-Way ANOVA test reported a significant 

interaction effect of genotype and temperature on psaJ abundance (P<0.01). A Tukey HSD post-hoc 

analysis revealed that the interaction effect affected the relationship between WT and phyB 

(P<0.01), and for WT and cp31a (P<0.05). 

 

Photosystem II. The transcript abundance of two key PSB family members psbC and psbF was shown 

to be both in the phyB-HY5 signalling cascade, as well as cp29B- and cpSEBF- dependent at 22oC in 

section 2.3. Analysis of these transcripts across 17oC and 27oC showed that cpRNP-regulation of psbC 

is temperature-dependent for cp29B, cpSEBF, and cp31A, but regulation of psbF is only 

temperature-dependent for phyB and HY5 (Figure 2.18).  

 Average WT accumulation of psbC was similar at all tested temperatures. Previous results 

identified that psbC is phyB- and HY5- dependent at 22oC. At 17oC significant reductions in transcript 

abundance were detected between WT and phyB, but not for hy5. In cprnp mutants, significant 

reductions were observed for cp29b and cp31a mutants, but not for cpsebf- contrasting 

observations at 22oC. At 27oC, psbC accumulation is also significantly reduced in phyB but not hy5; 

and in cprnp mutants, significant reductions were observed in cpsebf and cp31a but not for cp29b. 

This may indicate an alternate phyB-cpRNP pathway that does not involve HY5 activity at lower and 

higher temperatures is involved in the regulation of these genes, as well as a non-redundant role in 

the control of cpRNPs by temperature responsiveness. 

  These results suggest that the psbC reduction only occurs in the cp29b mutant at 22oC and 

its expression is not dependent upon cp29B at higher or lower temperatures. A further specificity for 

cpSEBF was observed, in which a reduction psbC in cpsebf was apparent at 27oC and 22oC but not in 

17oC. Results for cp31a indicate that cp31A equally specific, and only necessary for psbC abundance 

at 17oC and 27oC but not at 22oC. However, in all conditions, psbC expression was observed to be 

dependent on phyB. A Two-Way ANOVA analysis of these results confirmed a significant interaction 

of genotype and temperature on psbC abundance (P<0.01), with a Tukey HSD post-hoc test reporting 

the interaction effect was significant for all WT-mutant relationships (P<0.001). This revealed a 

complex web of temperature-dependent effects that implies a unique role for each tested cpRNP.  
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  At 22oC, abundance of psbF was significantly reduced in phyB and hy5, as well as in cp29b 

and cpsebf. At 17oC and 27oC, only phyB plants exhibited a significant reduction in psbF 

accumulation; neither hy5 plants nor cprnp mutants showed any significant differences. A Two-Way 

ANOVA analysis determined that there was a significant interaction effect of genotype and 

temperature on psbF accumulation (P<0.05). A Tukey HSD post-hoc test reported that the 

interaction effect was significant for the relationship between WT and phyB (p<0.001) and hy5 

(p<0.001). This indicates that cpRNP-dependence of psbF is not temperature-dependent, although 

psbF expression in all tested temperature is in a temperature-dependent phyB signalling cascade.  

 

Overall, results presented in Figure 2.18 show a significant interaction effect of light and 

temperature responsiveness for psaJ and psbC in all cprnp mutants, and that psbF accumulation is 

phyB- temperature-dependent. Interestingly, no interaction effect of phyB, HY5, or cpRNPs and 

temperature was detected for transcript accumulation of atpH. Although this experiment only tested 

selected plastome genes corresponding to 3 complexes, it did reveal that cpRNPs’ regulation of the 

plastome is temperature-dependent and provides insight into the potential of cpRNPs to integrate 

light and temperature sensing to modulate greening and biomass accumulation as well as the 

existence of selected subunits in the photosystems that are more prone to temperature and light 

regulation. This analysis also reaffirms the importance of phyB and HY5 as thermo-sensitive 

regulators with extended effects over genes encoded in the plastome.  
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2.7. Discussion  

2.7.1. cpRNPs integrate Red-Light phyB- and HY5- signals to regulate greening in Arabidopsis.  

 This chapter provided evidence that the cpRNPs are involved in a phyB- and likely HY5-

directed pathway that integrates both light and temperature signalling to modulate plant 

development, in particular greening and growth responses. Due to their functional role as post-

transcriptional modulators of the plastome gene expression, the phyB-HY5-cpRNP cascade has the 

potential to deliver signals perceived by the light receptors to the plastome for the modulation of 

photosynthesis and the functions encoded by the plastome.  

Mechanistic insights showed that cpRNP transcript accumulation is phyB-dependent in 

response to red light during de-etiolation and during seedling establishment. Reverse genetics 

studies in this chapter revealed greening and biomass accumulation defects in knockout mutants 

cp29b and cp31a and knockdown mutant cpsebf in an array of light conditions; these included red 

light-mediated de-etiolation in 4-day old seedlings, fluctuating high light intensity stress, and Long 

Day- photoperiodic grown 10-day old plantlets. Moreover, experimental results support a role of 

these proteins in the photoreceptor orchestrated cascades for sensing temperature and in the 

delivery of these signals to plastid genome.  

 These key findings are summarised and presented in Figure 2.19. 

 

Phytochrome is involved in R-light induced post-transcriptional regulation of the plastome through 

cpRNPs.  

 Phytochrome exerts an important influence over chloroplast biogenesis, in part through the 

assembly and maintenance of the photosynthetic apparatus (Franklin and Quail, 2010), but the 

extent of its contribution and the detailed mechanisms involved remain under-investigated. Most of 

the research to date has focused on the effects of the photoreceptors on the modulation of nuclear 

encoded photosynthetic genes (Tepperman et al., 2006; Franklin and Quail, 2010). In addition, 

recent genomic evidence supports a role for phyB and cry2 in the global modulation of the plastome 

(Facella et al., 2017; Griffin et al., 2020). Yet, at present only transcriptional mechanisms- mostly 

operating through the effects of light on sigma factors and the HEMERA (HMR) complex- have been 

described (Oh and Montgomery, 2014; Yoo et al., 2019). However, beyond transcription, plastid 

gene expression is subject to intense regulation by post-transcriptional and translational 

contributions, and the role of the photoreceptors to such regulatory mechanisms remains highly 

unexplored (Deng et al., 1989; Griffin et al., 2020). 
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 In this chapter, bioinformatic genomic evidence demonstrated a significant role for phyB in 

the regulation of potential post-transcriptional modulators of plastid gene expression. This analysis 

indicated that modulation could be directed through the phyB-dependent transcriptional control of 

nuclear-encoded but chloroplast acting RNA binding proteins, including members of the 

Pentatricopeptide domain-containing (PPR) and Tetratricopeptide domain-containing (TPR) protein 

families and RRM families (Griffin et al., 2020) (Figure 2.1).  

 While PPRs and TPRs have a highly specific target range (Lurin et al., 2004; Schmitz-

Linneweber et al., 2005), the RRM-containing chloroplast RNA binding protein family (cpRNPs) is 

involved in the global regulation of the plastome. Members of this family were previously reported 

to be light-activated (Li and Sugiura, 1990; Kupsch et al., 2012), yet the mechanisms of activation 

remained undefined. Four members of the cpRNP family were identified among the red light phyB-
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regulated genes in microarray genomic analyses (Tepperman et al., 2006), and cp29A has been 

implicated as phy-dependent (Franklin and Quail, 2010).  

 To corroborate and further investigate this link of red light phyB-cpRNPs, cpRNPs’ transcript 

accumulation during red light-induced de-etiolation was measured (Figure 2.2). Transcript 

accumulation of cpRNPs was reduced in phyB mutants compared to WT seedlings, with expression of 

cp31A, cp29B, cp29C, and cpSEBF showing red-light induction and phyB-dependence. These results 

provide evidence that all the 10 cpRNPs in Arabidopsis are phyB-dependent and are induced by red 

light during de-etiolation. A light control of the expression of genes involved in post-transcriptional 

plastid gene expression therefore points at a novel function for phyB in the modulation of the 

plastome. 

 

cpRNPs modulate greening and plastid transcript accumulation in red-light induced de-etiolation.  

 Previous studies have shown that cpRNPs are involved in the greening response during cold 

stress (Kupsch et al., 2012), but no examination had been made of cpRNPs’ involvement during de-

etiolation, a critical stage of seedling establishment (Armarego-Marriott et al., 2020). Using a reverse 

genetics approach, experimental evidence in this chapter showed that the cpRNPs cpSEBF and 

cp31A were involved in the greening process and affected accumulation of both Chl a and Chl b 

(Figure 2.3). No reductions in chlorophyll were observed in cp29b mutant, but this may be due to 

redundancy in the cpRNP family and suggests cp29B’s loss may be compensated by other cpRNPs 

(Kupsch et al., 2012).  

 Greening and chlorophyll biosynthesis correlates to photosystems structure and function 

(Smith, 1954), and assembly of photosynthetic apparatus is critical to greening (Kobayashi et al., 

2012). Disruption of chloroplast development often results in a pale-greening phenotypes and 

reduced greening (Pogson and Albrecht, 2011). In addition, inhibition of plastid gene expression 

pathways also inhibits greening (Huang et al., 2013). Considering their function, the results therefore 

suggested that the impact of cprnp mutations could be linked to altered plastome transcript 

accumulation. 

 While phyB is a major regulator of plastid biogenesis and greening responses (Franklin and 

Quail, 2010), results included in this chapter revealed that phyB has a near-global impact on the 

plastome (Griffin et al., 2020). Specifically, evidence provided here showed that phyB is required for 

the accumulation of 69% of plastid-encoded, protein-coding genes in 7-days old Short-Day grown 

plants, including members of the Photosystem II (psb), Photosystem I (psa), NADH Dehydrogenase 
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(ndh), and Cytochrome b6f (pet) families (Figure 2.4). Prior data have shown that, mechanistically, 

phyB has a role in regulating plastid transcription via light modulation of components such as the 

sigma factors (Oh and Montgomery, 2014), but other mechanisms beyond transcription had not 

been explored.  

 To investigate the involvement of phyB in red-light de-etiolating seedlings on plastid gene 

accumulation, genes corresponding to components of the ATP Synthase (atp), Photosystem II (psb), 

Photosystem I (psa), NADH Dehydrogenase (ndh), and Cytochrome b6f (pet) families were examined 

for R-light phyB dependent modulation. This showed that genes such as atpH, petD, psaJ, psbA, 

psbC, psbD, and psbF were clearly sensitive to R-light inputs in a phyB-dependent modulation (Figure 

2.5). The overlap of these genes with those identified in cpRNPs RIP-chip studies (Tillich et al., 2009; 

Kupsch et al., 2012; Teubner et al., 2017) identified them as potential targets to elucidate the 

molecular role of the phyB-induced cpRNPs post-transcriptional cascades during greening.  

Prior research has indicated a global binding capacity for cpRNPs on the plastid genome 

(Kupsch et al., 2012), and an examination of impact of cprnp mutations revealed statistically 

significant reductions in atp, ndh, psa, and psb gene family transcript accumulations. Specifically, the 

analysis showed roles for cp29B, cpSEBF, and cp31A on ATP Synthase (atp), a unique role for cp31A 

in NADH Dehydrogenase (ndh) and cp29B in Photosystem I (psa), and roles for cp29B, cpSEBF, and 

cp31A in Photosystem II (psb) during de-etiolation (Figure 2.5). The modulation of ndh transcripts by 

cp31A is supported by observations from published research (Tillich et al., 2009; Okuzaki et al., 

2019). While no effect was observed by cpRNPs on transcripts encoding components of the electron 

transport chain (pet) during de-etiolation, binding by cpRNPs to pet genes has previously been 

documented by RIP-chip analyses (Kupsch et al., 2012; Teubner et al., 2017).  

 Although not statistically significant, trends in average transcript abundance indicated that 

the tested cpRNPs may be connected to the expression the identified subunits, and this could be 

verified in future experiments including the full plastome. Yet, current results hint at specialised 

roles for cpRNPs in regulating photosynthetic processes during de-etiolation and of an impact on 

photosynthetic efficiency during later plantlet development. The observed target specificity hints at 

a complex signalling network regulating cpRNP activity in different environmental conditions 

(Kupsch et al., 2012; Okuzaki et al., 2019).    

 The results therefore reinforce and highlight that phyB is critical for the assembly of the 

photosynthetic apparatus including the modulation of plastid encoded transcripts in response to R-

light during de-etiolation. The experimental results provided here further identify that this 

regulation can be transduced through phyB-dependent components such as the cpRNPs, which show 
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an important contribution to plastid transcript accumulation in a R-light dependent manner. 

Physiological studies of the greening response highlight that the cpRNPs’ play a critical role during 

early seedling development, in accordance with the essential role of the photoreceptors in the 

assembly of photosynthesis.  

 

HY5 links expression of cpRNPs to phyB signalling cascade.  

 HY5 is a master bZIP transcription factor that integrates red-light phyB signals (Osterlund et 

al., 2000) and blue-light CRY signals (Wang et al., 2017) to promote light dependent-responses such 

as hypocotyl growth, root development, photosynthetic gene expression, and pigment accumulation 

(Toledo-Ortiz et al., 2014; Gangappa and Botto, 2016). To begin understanding how phyB-

transduced red-light signals could lead to the control of nuclear-encoded genes with a regulatory 

function in the chloroplast and plastid gene expression, this chapter examined the role of HY5 in 

such mechanisms.  

Analyses of hy5 mutant genomic datasets identified a significant contribution of HY5 to post-

transcriptional pathways-associated to chloroplast-encoded genes (Figure 2.6) (Griffin et al., 2020). 

This analysis expanded the previously described role of HY5 from plastome transcriptional control 

through sigma factors (Mellenthin et al., 2014), to the post-transcriptional cascades.  

 Based on the R-phyB-dependence of cpRNPs and the presence of HY5 binding sites in the 

promoters of cp29B, cpSEBF, and cp31A, HY5s may bring in phy-R light signals to the regulation of 

post-transcriptional modulators of the plastome by controlling the light dependent transcription of 

cpRNPs. (Figure 2.7). Promoter studies also indicated that the HY5 binding sites may include 

different motifs including E-Box, C-Box, ACE-Box, and CG-Hybrid Box (Song et al., 2008; Shi et al., 

2011; Shin et al., 2013; Abbas et al., 2014); different binding motifs may be associated with induction 

strength, or co-regulation of cpRNPs alongside other light signalling components. 

Evidence of the relevance of HY5 for cpRNP transcript accumulation was obtained from the 

experiments on the hy5 mutants during red-light induced de-etiolating conditions (Figure 2.8). This 

revealed a 73-93% reduction of cp29B, cpSEBF, and cp31A transcript accumulation in a HY5-

dependent manner. This data is supported by the genomic chromatin immunoprecipitation (chip) 

assays that identified global HY5 binding sites to cpRNPs promoters for cpSEBF (Lee et al., 2007), and 

microarray analysis that showed a HY5-dependence of cp31A (Ma et al., 2005). This genetic and 

molecular evidence places cpRNPs on a red-light signalling cascade dependent on phys and HY5. 
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 Further examination of the impact of the hy5 mutation on plastome encoded transcripts 

abundance revealed significant reductions in components of the ATP Synthase (atp), Photosystem I 

(psa), and Photosystem II (psb) (Figure 2.9). This is the first time that a link between HY5 and the 

modulation of plastome transcripts abundance during de-etiolation has been drawn. Although only a 

narrow range of transcripts was examined, results hint at a targeted modulation of specific 

components. The findings correlate with observed effects of phyB and the overlap of HY5 and 

cpRNPs targets on the transcript accumulation for specific subunits of multiple complexes including 

atpH, psaJ, psbA, psbC, psbD, and psbF.  

 These studies pave a pathway through which HY5 can participate in the integration of R-phys 

signals and transmit them to the plastome. HY5 modulation of the cpRNPs will ensure a general 

effect over a wide range of plastome encoded genes. The significance of HY5 as a transcriptional 

regulator of cpRNPs can also be part of the wider cpRNPs’ capacity to integrate multiple 

environmental signals. Being part of the phyB-HY5 signal transduction cascade, cpRNPs could 

integrate phyB’s sensing of multiple environmental stimuli including light, temperature, and 

photoperiodicity (Franklin and Quail, 2010; Baerenfaller et al., 2015; Jung et al., 2016), and through 

HY5 multiple light and temperature signals (Catalá et al., 2011; Toledo-Ortiz et al., 2014). HY5 

transcriptional control over cpRNPs could ensure responsiveness to multiple light inputs beyond 

phys, such as other light qualities including blue light and crys, (Wang et al., 2017) and circadian 

inputs (Andronis et al., 2008). Analysis from Griffin et al (2020) indicated an important contribution 

of crys to regulating plastid gene expression. While the relative contribution of phys and crys remain 

to be addressed, modulation of components such as the cpRNPs could represent convergent points 

for a global control of the plastome in response to changing light environments and should be 

examined in the future.   

 

2.7.2. Examining cpRNPs functions beyond light quality inputs. 

 Beyond light quality, photoreceptors are also involved in the perception of light intensity, 

light fluctuations, and photoperiodicity. All these light inputs are likely interpreted by the plastome 

for a proper adjustment of chloroplast metabolism to the prevailing environments. Plants must be 

able to respond to light intensity fluctuations that could inflict photoinhibition and damage to the 

photosystems (Kanervo et al., 2005), and photoperiods inform plants growth, affecting 

photosynthesis-associated processes including sugar distribution, chlorophyll content, and 

photosynthetic rates (Carpenter et al., 1983; Adams and Langton, 2005). phyB can integrate all these 

light environmental signals, but the mechanisms used remain poorly understood (Mousseau, 1981; 
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Kaiserli and Chory, 2016; Sellaro et al., 2019; Kreslavski et al., 2020). Genome-wide analyses support 

plastid-encoded gene expression and plastome regulatory processes are modulated in the plant in 

response to fluctuating light and photoperiod to synchronise photosynthetic rates and repair 

mechanisms (Rokka et al., 2005; Mockler et al., 2007; Baerenfaller et al., 2015; Suzuki et al., 2015). In 

this respect, cpRNPs could be part of the phyB-dependent signalling cascades for the integration and 

delivery of multiple light inputs to the plastome in order to optimise chloroplast metabolism. Yet, 

analysis of the selected cprnp mutants showed a limited role for cpRNPs in modulating plant 

response to fluctuating light intensity. While previous research indicated that cpRNPs could be 

involved in the repair of D1 protein (psbA) from PSII, one of the most vulnerable targets of 

photoinhibition in fluctuating light and high light intensity (Komenda and Masojídek, 1995; Rokka et 

al., 2005), the negative results may be explained by functional redundancy, in particular with cp33A 

(Teubner et al., 2017).   

 While no clear role for the tested cpRNPs was detected in conditions that mimic natural light 

intensity fluctuations, the data supported a moderate role for phyB (Figure 2.11) in greening and 

biomass accumulation during low light acclimation and high light stress periods. In this respect, the 

role of crys and blue light in the stress responsiveness would be interesting to address, as crys are 

also photoreceptors involved in the HL and low fluence-dependent photomorphogenic responses 

(Lin et al., 1998). The limited effect of phyB and cpRNPs in fluctuating light intensities compared to 

standard growing conditions is consistent with reports that photoinhibited plants don’t feature 

slower growth rates and that mature cprnp plants under high light and low light stress (Kupsch et al., 

2012; Adams and Langton, 2005) don’t show growth phenotypes. 

This may point at the relevance of investigating the role of B-light and CRYs in fluctuating 

environments. A new examination of cprnp and hy5 mutants in fluctuating blue light intensities may 

reveal different responses from the ones evaluated in R-light.  

 

cpRNP expression cycles with photoperiod, but no phenotypes were detected in mutant 

backgrounds.  

 Photoperiodicity regulates plant growth and development, providing vital cues for sugar 

distribution and chlorophyll production, and optimisation of photosynthesis (Adams and Langton, 

2005; Graf and Smith, 2011). phyB is involved in photoperiodic responses (Mousseau, 1981; 

Blázquez and Weigel, 1999; Kaiserli and Chory, 2016), and transcriptomic comparisons between 
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photoperiods have identified differential expression of plastome regulating mechanisms 

(Baerenfaller et al., 2015).  

The investigation of the role of cpRNPs as potential effectors of photoperiodic signals 

revealed strong photoperiod cycling for cp29B and cp31A in dawn/early light phases in Long Days, 

and in the dusk phase during Short Days (Figure 2.11, 2.12). cpSEBF was not observed to show 

marked cycling behaviour in either conditions. However, phenotypic characterization of cp29b and 

cp31a did not show statistically significant growth alterations in either condition, although trends 

indicated a lower average Fresh Weight in cp29b (Figure 2.13). This evidence may point at a 

redundant role of cpRNPs in integrating photoperiod signals, and would require double- or multiple 

mutant analyses to further elucidate if the observed changes in transcript accumulation for specific 

cpRNPs were tied to a phenotype or function, as well as performing an exploration into whether 

plastid gene expression may change in cp29b mutant plants in photoperiodic time course 

experiment. While phyB is a major contributor to Short Day-dependent plastome gene expression, at 

present the signalling components involved remain to be dissected. Photoperiod sensing is also a 

factor of the blue-light crys signalling pathway (Yang et al., 2017); as photoperiod cycling of cpRNPs 

was reported in white light (Mockler et al., 2007), it may be the case that cpRNPs’ sensitivity 

photoperiod signals are not transduced in red light. 

 No examination of circadian cycling in entrained conditions was conducted yet, but 

promoter analyses indicated that cp29B, cp29C, cp31A, and cp33B contain CCA1-binding sites, and 

HY5 has been observed to integrate blue-light induced circadian stimuli (Hajdu et al., 2018). 

Therefore, combined effects of photoperiodism and/or circadian regulation may be a blue-light-

induced effect that would require experimental testing.  

 

2.7.3. Beyond Light: cpRNPs in the delivery of temperature signals to regulate the plastome.  

 Based on phyB and HY5’s recently described ambient temperature sensitivities and 

involvement in temperature dependent greening responses (Toledo-Ortiz et al., 2014; Jung et al., 

2016; Legris et al., 2016), evidence gathered here showed that cp29B, cpSEBF, and cp31A transcript 

accumulation is also temperature-sensitive in cold (17oC) and warm (27oC) conditions. Young cp29b, 

cpsebf, and cp31a mutant plantlets further revealed temperature-sensitive phenotypes affecting 

greening and biomass accumulation. These phenotypes correlated with temperature-dependent 

alterations in plastid gene transcripts’ during de-etiolating cprnp mutants.  
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A role for cpRNPs in temperature-sensing is also supported by reported increases in cpRNP 

protein abundance in wheat, Brassica, and Arabidopsis during cold treatments (Amme et al., 2006; 

Gao et al., 2009; Sarhadi et al., 2010), as well as differential accumulation of photosynthesis-

associated plastid-encoded genes in chilling conditions (Kupsch et al., 2012; Okuzaki et al., 2019).  

 cpRNP transcript abundance during de-etiolation at 17oC, 22oC, and 27oC revealed that 

abundance was temperature-dependent (Figure 2.15). Yet, differential responses of cp29A, cp31A 

and SEBF in the range of 17-27oC, hint at perception differences between cpRNPs. Overall, cpSEBF 

showed a greater predominance at higher temperatures compared to cp29B and cp31A, but 

transcript abundance is not necessarily indicative of changes in protein abundance. This hints that 

non-transcriptional modulation may be behind the previously reported observations of increments 

in wheat cpRNPs cp29, cp31, and cp33 protein abundance in cold conditions (Amme et al., 2006; 

Gao et al., 2009; Sarhadi et al., 2010). An examination of cpRNP protein accumulation in altered 

temperature conditions in protein blots would be necessary to evaluate responses under ambient 

temperature regimes and correlations with transcript accumulation. However, the initial 

observations of altered cpRNP transcript accumulation under ambient temperatures support a 

further investigation of their role as transducers of temperature signals to the plastome.  

While the exact mechanism of cpRNPs differential temperature responsiveness has not been 

dissected yet, phenotypic and physiological experiments place them as part of the temperature 

signalling cascades. Cold temperatures have previously shown to induce a cold-stress phenotype in 

cp29a and cp31a mutants, including bleaching and pale leaves in mature plants moved to cold 

conditions (Kupsch et al., 2012). The studies conducted here provided evidence that phyB, hy5, and 

cprnp mutations affected growth and development, revealing reductions in biomass accumulation 

(measured through Fresh Weight) and chlorophyll accumulation (Chl a and Chl b) in moderate warm 

(27oC) and cold (17oC) conditions (Figure 2.16).  

phyB’s role as an integrator of temperature signals includes reductions on FW and 

chlorophyll accumulation (Figure 2.16 panels A and B). In particular, interesting effects of 

temperature were observed on the phyB mutant accumulation of chlorophyll a. In phyB, Chl a 

content was significantly lowered at all temperatures tested but Chl b content was only affected at 

17oC. This suggested that Chl b accumulation at 17oC is strongly phyB-dependent, but less impacted 

at other temperatures; this may be due to a redundant effect of the other members of the phy 

family (Heschel et al., 2007; Halliday and Whitelam, 2003) or the effect of phy over the PSI and PSII 

ratios. Recently, research has shown that mutations in plastid-encoded genes encoding PSI subunits, 

such as psaA and psaB, led to a non-functional PSI and triggered a feedback loop that reduced 
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chlorophyll expression and caused greening defects (Schaffner et al., 1995; Leelavathi et al., 2011; 

Azarin et al., 2020). Results also corroborated a clear role for HY5 in the modulation of greening 

responses at 17oC as previously reported (Catalá et al., 2011; Toledo-Ortiz et al., 2014; Jung et al., 

2016).  

 Under these ambient temperature changes (17oC-27oC), the analysis also revealed limited 

redundancy of cpRNPs in the transduction of different temperature environmental signals. Results 

pointed at a differential role of cpRNPs in biomass and chlorophyll accumulation, and a Two-Way 

ANOVA analysis reported an interaction effect of respective cprnps’ mutation and temperature on 

both biomass accumulation and Chl a and Chl b content as significant compared to WT. These results 

therefore highlight the temperature-sensitivity for cp29B, cpSEBF, and cp31A in cold temperatures 

and their effects on biomass accumulation and greening, but also hints at roles for cpSEBF and 

cp31A in warm temperatures. As a family, the cpRNPs may have a combinatorial role where multiple 

cpRNPs contribute to vital processes in stable conditions, but each may have an important 

specialised role.   

Interestingly, the observed temperature effects extend to the modulation by phyB, HY5 and 

cpRNPs of plastid gene expression during de-etiolation. This chapter demonstrates a temperature-

dependent modulation of components of the Photosystem I (psa) and Photosystem II (psb) plastid-

encoded subunits psaJ, psbC, and psbF (Figure 2.17) by phyB and HY5 in addition to effects by 

cpRNPs, showing for the first time that phyB and HY5 integrate temperature signals for differential 

plastome transcript accumulation. This builds on phyB and HY5’s roles in integrating temperature 

signals to control nuclear-encoded genes (Toledo-Ortiz et al., 2014; Jung et al., 2016; Legris et al., 

2016) and extends control of genes encoded in a different organelle. Results showed that HY5-

dependent regulation psbC and psbF occurs only 22oC, and a temperature-specific role is consistent 

with HY5 activity relying on a variety of potentially temperature sensitive co-factors (Catalá et al., 

2011), and further indicates that HY5’s role in temperature-dependent modulation of the plastome 

is likely to be complex and involve as-yet unidentified components.  

Furthermore, complex relationship between cp29B, cpSEBF, and cp31A and temperature-

dependent transcript accumulation of psaJ and psbC (Figure 2.17) suggests a further specificity of 

the cpRNP pathways: an influence of cp31A over psaJ accumulation occurred only at 27oC; an effect 

of cp29B was evident over psbC accumulation at 22oC but cp31A-dependent regulation occurred in 

warm or cold conditions, and a cpSEBF-dependent effect over psbC occurred in control or warm 

conditions. This indicates that the cpRNP family has a combinatorial role, with a broad impact of 

cpRNPs in standard conditions, but specialised roles for individual members in conditions that 
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require it. This further supports a combinatorial and partially redundant functional role for the 

cpRNP family as had previously been described for cp31A and cp31B (Tillich et al., 2009).  

Beyond the transcriptional effects addressed here, cp31A and other cpRNPs’ cold-

temperature sensing may involve post-translational modifications including protein phosphorylation 

(Loza-Tavera et al., 2006; Kupsch et al., 2012; Okuzaki et al., 2019). This mechanism is under-

examined but represents an interesting avenue to explore for other cpRNPs such as cp29B and 

cpSEBF, and their temperature-specific modulation of the plastome.  

 Ultimately, the experimental results gathered provide support for a phy-directed cpRNP 

modulation of Photosystem I and Photosystem II plastid-encoded subunits in a temperature-

dependent manner. The results expand the cpRNPs’ operational beyond the previously described 

cold temperature roles to include warm conditions. Overall, the phyB-HY5-cpRNPs signalling module 

provide multiple avenues for the appropriate delivery of light and temperature signals across 

organelles, with a particular focus on plastome-encoded genes for the modulation of greening and 

photosynthesis.  
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Chapter 3: Beyond the chloroplast: plastid-nuclear communication to acclimate photosynthesis to 

environmental change 

3.1. Introduction. 

 As described in Chapter 1, photoreceptors such as the phytochromes are major regulators of 

nuclear photosynthetic gene expression (Franklin and Quail, 2010). Recent research has highlighted 

that photoreceptor control extends beyond the nucleus to the regulation of plastid-encoded genes 

(Facella et al., 2017; Griffin et al., 2020) (Figure 2.1). For chloroplast function and metabolism, 

including photosynthesis, plastid-encoded photosynthetic gene expression must be synchronised to 

nuclear-encoded gene expression, as the photosynthetic apparatus requires subunits encoded in 

both organelles (Soll and Schleiff, 2004). This co-ordination involves the activity of anterograde and 

retrograde signalling pathways, relaying information from the nucleus to the plastid and vice versa 

(Berry et al., 2013). While some of the pathways co-ordinating the plastid and nuclear genomes have 

been investigated, the mechanisms linking the two are not fully understood (Shimizu et al., 2019).  

 Bioinformatic studies have shown that phytochromes and cryptochromes can exert control 

over nuclear-encoded genes that encode for chloroplast-localised proteins involved in the 

transcriptional, post-transcriptional, and translational modulation of plastome gene expression 

(Griffin et al., 2020). Experimental evidence from Chapter 2 shows that one pathway involved is 

through the activation of chloroplast RNA binding proteins (cpRNPs), a family of light-induced post-

transcriptional regulators of the plastome (Li and Sugiura, 1990). Among the cpRNPs, three members 

of this family were shown to be phyB- and HY5-dependent modulators of plastid-encoded genes 

with the potential to integrate both light and temperature signals.  

 Interestingly, early studies of cpRNPs reported potential nuclear functions (Kwon and Chung, 

2004; Ruwe et al., 2011). These early studies reported that truncated versions of cp31A localised to 

the nucleus and displayed DNA-binding capacity (Kwon and Chung, 2004), and identified a 

homologue of cpSEBF in potato that was also reported to have a dual nuclear-chloroplast 

localisation (Boyle and Brisson, 2001). While a possible nuclear localisation of cpRNPs had not been 

linked to the activity of photoreceptors, the recent discovery of the phytochromes as global 

modulators of transcriptional start sites, leading to alternative protein isoforms with differential 

subcellular distributions, suggests a potential mechanism by which this may occur (Ushijima et al., 

2017). For cpRNPs cp29A, cp31a, cp29C, and cpSEBF genes, which were reported as targets of this 

novel phytochrome mechanism to diversify the proteome, this presented a new avenue to research 

(Ushijima et al., 2017). This chapter examines the hypothesis that cpRNPs have a role beyond the 
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chloroplast and may regulate nuclear-encoded transcripts by participating in plastid-to-nucleus 

communication. 

 The aims of this chapter are:  

1) To conduct a bioinformatics study to investigate potential alternative localisation for the cpRNPs. 

2) To conduct in planta cell biological studies of subcellular localisation of GFP- tagged cpRNPs with 

differential N-terminal ends, product of alternative transcriptional start sites. 

 3) To investigate whether nuclear gene transcript accumulation is altered in cprnp mutants.  

 4) To determine if environmental inputs can modulate cpRNPs nuclear function as they modulate 

chloroplastic functions. 

 5) To determine if cpRNPs are targets of retrograde signalling pathways.  
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3.2. Material and Methods. 

3.2.1. Plant material and genotypes tested.  

 To evaluate the impact of cprnp mutation on nuclear-encoded transcript accumulation, 

Arabidopsis thaliana wild-type (Col-0), phyB-9 (Col-0), hy5-215 (Col-0), and the following cprnp 

mutants were used: cp29b_2 (SALK_043415 (S), N543415), cpsebf_1 (SALK_008984C, N681974), and 

cp31a_2 (SALK_109613C, N664816), sourced from the Nottingham Arabidopsis Stock Centre (See 

Materials and Methods Chapter 2 for further information on mutant lines). The stock of phyB-9 

mutant used was confirmed to be a true phyBi9 mutant after sequencing and did not contain a 

second-site mutation in the VENOSA4 gene (Yoshida et al., 2018). A summary of these mutants and 

methods for their genotyping is provided in Chapter 2 and are shown in Table 2.1 and Table 2.3.  

 To evaluate a sub-cellular localisation for cp31A and cpSEBF in response to phytochrome-

mediated alternative promoter selection, T2 transgenic lines were provided by Professor Matsuhita’s 

laboratory from Kyushu University. These lines were generated using alternatively transcribed 

cpRNP sequences with altered N-terminals and were selected for using Basta resistance in both E. 

coli and A. tumefaciens- transformed plants. These transgenic lines were screened to T3 stage using 

a 3:1 segregation ratio and for fluorescence signal detected via epifluorescence. The list of the lines 

is provided below in Table 3.1.   

 To evaluate the effect of temperature and the retrograde signal-activating agent Lincomycin 

on cpRNP protein localisation, T2 transgenic lines were provided by Dr. Karine Prado from Edinburgh 

University. These lines were generated using a pDONR207 and pGWB4 Gateway Cloning method 

with resistance to spectinomycin in E. coli and kanamycin in A. tumefaciens-transformed plants. The 

constructs included cpRNP coding sequences with a 720kb C-terminus GFP tag and a 2kB N-terminal 

native promoter respective to each cpRNP. These transgenic lines were screened to T3 for a 3:1 

segregation ratio and protein fluorescence as detected via epifluorescence microscopy. A list of 

transgenic lines is provided below, also in Table 3.1.  

  

Table 3.1. Transgenic Lines used for cell biological analysis using confocal microscopy.   

cpRNP Vector Promoter cpRNP form Background 

cp31A pBIN30 35S 31A (TSS_A, Long) Col-0 

cp31A pBIN30 35S 31A (TSS_B, Short) Col-0 

cp31A pGWB4 Native Promoter 31A (Full length CDS) 31a_1 

cpSEBF pBIN30 35S SEBF (TSS_A, Long) Col-0 

cpSEBF pBIN30 35S SEBF (TSS_B, Short) Col-0 

cpSEBF pGWB4 Native Promoter SEBF (Full length CDS) sebf_1 
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3.2.2. Seed Sterilisation and Sowing. 

 Arabidopsis thaliana seed were sterilised via treatment with a 15% (v/v) bleach solution for 

10 min, and dilution and washed with sterilised distilled water until bleach was undetectable. Seeds 

were plated using a Pasteur pipette.  

 

3.2.3. Plant Growth Conditions. 

 Plants were grown on 0.5 MS agar (Murashige and Skoog, 1962) with 0% (w/v) sucrose. 

Plants were grown in Snidjer Clima Red/Blue Light Monochromatic Cabinets, model EB2-N-PB. Plants 

were germinated with a 3hr white light treatment followed by 21hr darkness at 22oC before being 

moved to experimental conditions.  

Confocal microscopy and gene expression assays. Plants were grown in de-etiolating conditions, 

after germination plants were kept in darkness for 3 days to promote skotomorphogenesis followed 

by a treatment of 24hr Red Continuous (80 µmol m-2s-1) at either 17oC, 22oC, or 27oC. For analysis of 

retrograde signal inducer Lincomycin on cpRNP localisation, 0.5mM Lincomycin was added to MS 

media.  

Gene expression assays using retrograde signal activators Lincomycin and Norflurazon. Plants were 

grown in low white light (10 µmol m-2s-1) at 22oC for 6 days in media modified with 0.5mM 

Lincomycin or 5µM Norflurazon. These agents act to inhibit plastid translation or carotenoid 

biosynthesis respectively, leading to photobleaching and repression of Photosynthesis Associated 

Nuclear Gene (PhANG) expression.  

  

3.2.4. Plant Harvesting.  

Gene Expression Analysis. Plants were harvested in a dark room with green light ambient 

illumination to prevent light contamination. Plants were harvested into liquid Nitrogen (N2(l)) 

immediately to prevent degradation.  

 

3.2.5. RNA Extraction and cDNA Synthesis. 

 RNA extraction was performed using a Sigma Aldrich SpectrumTM Plant Total RNA Kit and 

cleaned with Qiagen RNase Free DNase Set. RNA was quantified with a Nanodrop and 1µg of RNA 

was used. To validate its quality, 500ng of RNA was stained with blue Thermo Fisher ScientificTM 6x 

DNA Loading Dye and run through a 0.5% (w/v) agarose gel. To synthesise cDNA, a Thermo Fisher 
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ScientificTM RevertAid First Strand cDNA Synthesis Kit was used according to manufacturer’s 

instructions. For experiments analysing plastid gene expression, Random Hexamer Primers were 

used in the cDNA synthesis (Schuster et al., 1999), and for experiments analysing nuclear gene 

expression oligo dTs were used.  

 

3.2.6. Quantitative RT-PCR Analysis. 

 RT-qPCR analysis was performed using 5µl PrimerDesign PrecisionPLUS qPCR Master Mix 

premixed with SYBR Green, 1µl of 3µM Forward and Reverse primer, 1µl of sample cDNA, and 2µl of 

sterilised water in a 10µl reaction volume. The reaction was performed using a Stratagene Mx qPCR 

Machine with the following thermal cycling program: 95oC for 10 min, followed by 40x cycles of 95oC 

for 10 sec, 60oC for 10 sec, and 72oC for 15 sec followed by melting curve from 65oC to 95oC to 

ensure primer targeting specificity. Results were analysed using Stratagene Mx PRO software and 

Microsoft Excel. Results were normalised to the light-stable PP2A reference gene (Klie and Debener, 

2011) and relative gene expression was calculated as described in Chapter 2 (Pfaffl, 2001). A full list 

of primers is presented below in Table 3.2.  

 

Table 3.2. qPCR Primers used in this chapter for the examination of cpRNP and candidate nuclear-

encoded gene transcript accumulation. 

Arabidopsis thaliana Primers 

Reference 
Genes 

PP2A_F TATCGGATGACGATTCTTCGTGCAG  

PP2A_R GCTTGGTCGACTATCGGAATGAGAG 

cp
R

N
P

 G
en

es
 

cp29B_F CAATGGAACACAATATGAAGGTCG 

cp29B_R AAAGCAGAACAGTTGGTTTACG 

cpSEBF_F TTGGATGGTGCTGATTTGGA 

cpSEBF_R ATAGGAAGTCATAGATTGGTGCTC 

cp29C_F ACCTGGAACTTCCAAATCCAC 

cp29C_R CTTCCAGCAACGAATTGTTAAGAG 

cp31A_F CGATGGACAGAACTTGGAGG 

cp31A_R TCTCAGCTTTAATATCCACGCC 

Marker 
Genes 

IAA19_F TGGCCTTGAAAGATGGTGAC 

IAA19_R TTGCATGACTCTAGAAACATCCC 

Ex
p

er
im

e
n

ta
l 

n
u

cl
ea

r-
en

co
d

ed
 

ge
n

es
 

LHCB2.3_F CGGAGGATCCAGAAGCGTT 

LHCB2.3_R TAGCCACAGGGTCTGCAATG 

LHCB4.2_F CCCGTTAGGACTAGCGTCTG 

LHCB4.2_R TGAGTCGCCCAGTTGTTGAG 

PSBO1_F GTGACTAAGAGCAAGCCGGA 

PSBO1_R TAGCACCCAAGTCAGTGTCC 
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PSBO2_F GCAAACCGGAGACAGGTGAA 

PSBO2_R GCACCCAAGTCAGTATCCGA 

PSBQ2_F CTCACCGCAAAGCTTTTCCAA 

PSBQ2_R ACTCTTTGATCTCGCCGCAT 

PSBQl2_F ATGATTACGTTCAGGCGGCA 

PSBQl2_R GTACACCTTTGGCGTCCGTA 

LHCA2.1_F CGATGCTTGCTTTCCTTGGG 

LHCA2.1_R TGATGTAAATGCCGAAAAGACG 

PSAD-2_F TTGGCTTTAGGTACGAGGTTGA 

PSAD-2_R GAACCTCTCCGTTAGGGAACA 

PSAN_F GAAGCTGCAAGTTCCCTGAG 

PSAN_R TGTCCTTGCCTTCGCATTCC 

PSY_F GACACCCGAAAGGCGAAAGG 

PSY_R CAGCGAGAGCAGCATCAAGC 

PSB27_F TACTCGGCGTTGAATGCTGTT 

PSB27_R GAATCCTCGCCTTCCTCTTCG 

DEG1_F CACGTCGGTGAACGGTACAA 

DEG1_R GTCCGGCTTTGGTTCGAGA 

NPQ1_F ACATGTGGTCCTGAACCTGC 

NPQ1_R AGGTCATCTCAGTCCTACCGA 

NPQ4_F TGCCCTCGGTCTCAAAGAAC 

NPQ4_R GCTAATGCTCCTTTCCCGGT 

CA_F GAAGGACTTGTGAAGGGAACA 

CA_R TTTAACAGAGCTAGTTTCGGAGAG 

 

3.2.7. Statistical Analysis 

 Statistical analysis of the data was conducted in Microsoft Excel and R (Team, 2020) using 

One-Way ANOVA, Two-Way ANOVA, and TUKEY HSD post-hoc where appropriate testing at a 

significance level of 0.05.  

 

3.2.8. Genomic Datasets Used 

 A publicly available genome wide transcriptomic data set (GSE31587) (Hu et al., 2013) was 

used to identify genes with R-phys dependency. This dataset was generated using 4-day old WT and 

phyABCDE Arabidopsis seedlings grown in darkness or under continuous Red light (50 µmol m-2 s-1) 

using oligo-dT based technology. Genes in this dataset were evaluated for red light induction 

between WT-Rc and WT-D and phyABCDE dependency between WT-Rc and phyABCDE-D for genes 

with a greater than two-fold expression difference. This list was then manually curated using 
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available literature to identify key representative candidates involved in photoprotective 

mechanisms and photorepair. 

 Publicly available genome-wide transcriptomic datasets GSE24517 (Ruckle et al., 2012), 

GSE110125 (Zhao et al., 2019), and GSE12887 (Koussevitzky et al., 2007) were used to generate 

Figures 3.17 and 3.18. The microarray dataset GSE24517 used WT plants grown with (L+) or without 

(L-) Lincomycin (0.5mM), grown in low light (0.5 µmol m-2 s-1 blue plus red (BR) light) for 6 days. After 

6 days, plants were transferred to 60 µmol m-2 s-1 blue plus red (BR) light. Plants were harvested 

immediately before the light treatment, and then at 4hr and 24hr. The microarray dataset 

GSE110125 examined 5-day old seedlings with Col6-3 (WT) plants grown under 24hr light condition 

with 100 µmol m-2s-1 at 22°C with or without a treatment of 5μM Norflurazon; and dataset 

GSE12887 examined WT plants grown in 21oC under continuous light (100µmol m-2s-1) in the 

presence of 5µM Norflurazon. 

 

3.2.9. Confocal Microscopy 

 All confocal microscopy was conducted using a ZESISS LSM 880 confocal microscope. Data 

was gathered and analysed using Zen Black and Zen Blue software.  

 Whole seedlings were treated with 100 µg/ml 4′,6-diamidino-2-phenylindole (DAPI) and 

incubated in darkness for 10 min. Plants were then washed with sterilised distilled water to remove 

excess DAPI and mounted using a coverslip for observation.  

All confocal images were acquired with a Zeiss LSM 880 microscope. Excitation lasers for the 

confocal microscope were switched on and fully warmed up for at least 30 min prior to imaging. 

Fluorescent signals were visualised using the following settings: GFP excitation= 488 nm, emission= 

493–573 nm; chlorophyll auto-fluorescence excitation= 633 nm, emission= 639–747 nm; DAPI 

excitation= 405, emission= 415-508 nm.  

 No GFP control was tested in this thesis. However, previously published literature has shown 

that GFP does not ‘leak’ into subcellular organelles, and so any subcellular localisation observed is 

likely to be an accurate visualisation of the cpRNP-GFP localisation (Grebenok et al., 1997; Köhler, 

1998).   
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3.3. Results: Investigating a potential dual subcellular localization (chloroplastic-nuclear) for cpRNPs. 

3.3.1. cpRNP structure, function, and published literature imply a role for cpRNPs in nuclear-encoded 

gene expression.  

 Although commonly described to regulate plastid-encoded mRNAs (Kupsch et al., 2012), in 

vivo evidence has shown the RNA Recognition Motifs (Chapter 1, Figure 1.1) of an S. tuberosum 

cpRNP orthologue of Arabidopsis cp29A binding single-stranded DNA probes, later confirmed 

through chromatin immunoprecipitation (chip) studies (Boyle and Brisson, 2001; González-Lamothe 

et al., 2008). Arabidopsis CP29A protein has also been detected in nuclei lysates from Arabidopsis 

(Gosai et al., 2015), indicating that a nuclear function may be conserved between Arabidopsis and 

potato. Evidence supports a nuclear role for other cpRNP members too: a cpRNP-telomeric DNA 

binding was also reported for STEP1, a truncated form of cp31A in Arabidopsis identified using gel 

shift assays (Kwon and Chung, 2004). Furthermore, a role for cp31A in the nucleus is supported by it 

sharing an identical partial amino acid sequence with the nuclear Arabidopsis nucleolin-like 

ribonucleoprotein FMV3bp (Ohta et al., 1995).  

 

3.3.2. Bioinformatics predict cpRNPs localise to the nucleus.  

 To further investigate potential alternative localisation in organelles for cpRNPs, the ePlant 

database, a part of the Bio-Analytic Resource for Plant Biology (BAR) (Waese et al., 2017), was used. 

Results from this database shown in Figure 3.1 panel A suggest that in addition to the chloroplast, 

cp29B is strongly predicted to localise to the nucleus, and cp31A, cp29A, and cp33C are weakly 

predicted to have a nuclear localisation. However, the remaining members cp28A, cp29C, cp31B, 

cp33A, cp33B, and cpSEBF were not predicted to localise to the nucleus (presented in 

Supplementary Figure 3.1).  

 A second analysis was conducted using the plant protein subcellular localisation prediction 

program Localizer (http://localizer.csiro.au/). This program includes a database of known nuclear 

localisation signals (NLSs) against which queries are compared (Sperschneider et al., 2017). This 

program predicted a chloroplast localization for all cpRNPs, as well as a nuclear localisation for 

cp29B, cp33B, and cp33C (Figure 3.1, panel B). Nuclear localisation was predicted by the presence of 

‘KKPR’, ‘KRKL’, and ‘RRLKVDYAKTKKKKTY’ and ‘RRSSGYGFVSFKTKKQ’ amino acid sequences 

respectively (Figure 3.1). Interestingly, predictions for a cp31A mitochondrial localisation, and for a 

cp33C triple-localisation to nucleus, chloroplast, and mitochondria were also obtained.  

http://localizer.csiro.au/)
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 While the data from these two sources indicate that cp29B and cp33C may have nuclear 

localisations and that cp31A may have non-plastid localisations, they differ on their predictions for 

cp29A and cp33B. However, this initial study supports the investigation of a potential dual nuclear-

chloroplast localization in red-light for the cpRNPs.  
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3.3.3. Phytochrome-mediated alternative promoter selection for cpRNPs induces non-plastid 

localisations.  

 Alternative promoter selection can generate multiple variations of a protein from the same 

gene, increasing protein diversity from alternative transcriptional start sites (TSSs) (Landry et al., 

2003; Davuluri et al., 2008). Recent research provided evidence that R-phytochromes play an 

important role in regulating alternative promoter selection in Arabidopsis to induce alternative 

subcellular localisations in response to light via expression of isoforms with altered N-terminals 

(Ushijima et al., 2017; Shikata et al., 2014).  

Among the 2104 gene targets identified in Ushijima et al’s research, an enrichment was 

reported in chloroplastic proteins likely to be involved in photosynthesis (Ushijima et al., 2017); 

these included cp29A, cp29C, cp31A, and cpSEBF members of the cpRNPs protein family. Figure 3.2 

summarizes the data published by Ushijima et al (2017) on the effects of alternative transcriptional 

start site (TSS) selection for cpRNPs. Using mRNA-seq, the study showed three alternative 

transcription start site (TSS) derived forms for cp29A, two forms for cp29C and cp31A, and four 

forms for cpSEBF. Sequence analysis showed that the longest form for each (TSS_A) contained a full 

chloroplast transit peptide, and shorter forms (TSS_B et al) lacked one. Ushijima et al (2017) 

predicted that the shorter forms would localise to the nucleus using the ngLOC (v4) software (King 

and Guda, 2007).  

An analysis of 5’ RACE transcript abundance reported by Ushijima et al (2017) at 0hr, 1hr, 

and 3hr in WT and phyA phyB double mutant vs WT revealed light-dependent differences in the 

accumulation of the detected TSS-isoforms.  

cp29A. For cp29A, the predicted cp29A TSS_A corresponds to the cp29A protein sequence with 

chloroplastic localization and produces the full 363 amino acids (aa) long protein (Figure 3.2). cp29A 

TSS_B begins after the chloroplast transit peptide (as shown in Chapter 1, Figure 1.1) and encodes a 

217aa long protein. The shortest sequence is produced from TSS_C is only 72aa long, starting 

approximately 16aa into the second RNA recognition motif (RRM).  

 TSS-seq reads published in Ushijima et al (2017) indicates that cp29A TSS_B was detected at 

higher rates than cp29A TSS_B at 1hr and 3hr in red light compared to 0hr (Table 3.2). Data also 

indicate that cp29A TSS_C was more abundantly accumulated at 3hr, showing the alternative forms 

are both accumulated under light conditions. A comparison of abundance in WT compared to phyB 

also showed cp29A TSS_B and TSS_C levels were proportionally higher compared to TSS_A, showing 

phyB is required for the generation of the alternative transcripts.   
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cp29C. For cp29C, two alternative transcriptional start sites were identified (Figure 3.2). cp29C TSS_A 

encodes a 253aa long full-length protein and TSS_B encodes a 130aa long protein beginning halfway 

through the first RRM. cp29C TSS_B was shown to be proportionally more highly accumulated than 

TSS_A in WT between 3hr and 0hr of R-illumination (Table 3.3).  

cp31A. Two alternative TSSs were identified for cp31A: TSS_A, encoding the full-length 329aa long 

protein, and TSS_B, which encodes a protein 162 aa long (Figure 3.2). The cp31A TSS_B-derived 

protein begins c. 18aa into the sequence of the first RRM. TSS_B was observed to be up-regulated in 

comparison to TSS_A in red light treated WT plants and upregulated in WT compared to phya phyB 

(Table 3.3).  

cpSEBF. For cpSEBF, four TSS forms were identified (TSS_A- TSS_D) (Figure 3.2) The longest form, 

cpSEBF TSS_A, encodes the classical long sequence at 289aa long. The TSS_B protein is 171aa and 

begins within the second RRM after the chloroplast transit peptide ends; the TSS_C variant is 151aa 

long and begins 20aa downstream from TSS_B, halfway through the same RRM. Finally, the fourth 

form TSS_D is only 72aa long and starts c.13 aa into the second RRM motif.  

 Of these alternatively transcribed cpSEBF forms, the longest and shortest TSS_A and TSS_D 

were found to be more highly reported in TSS-seqs in WT at 1hr compared to WT at 0hr and phyA 

phyB compared to TSS_B and TSS C, but the intermediate length TSS_B, TSS_C, and TSS_D were 

reported to be more highly expressed than TSS_A at 3hr in WT compared to 0hr. This may suggest 

that the full length TSS_A may have an important earlier role, but that priority may switch to the 

non-plastid TSS_B and TSS_C forms at 3hr, suggesting that time, as well as light, may affect their 

expression.  

 To explore this further, a collaboration with Professor Matsushita from Kyushu University 

(now in Kyoto University) and the principal investigator of Ushijima et al (2017) was established. 

Professor Matsushita’s laboratory group generated constructs for the long (TSS_A) and short (TSS_B) 

form for each cpSEBF, cp29C, cp29A, and cp31A with a C-terminal GFP tag under a 35S:: promoter. 

Expression of these constructs was initially verified in onion cells, in comparison with a tagRFP as 

maker of plastids and nuclei, and the cytoplasm and nuclei. The results of this experiment are 
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presented in Figure 3.3. These results demonstrate a transient in vivo localisation of the longer 

cpRNP forms to the chloroplast and in contrast, the shorter forms localisation to the nucleus and 

cytoplasm. To further validate these findings in planta, Arabidopsis plants were transformed with 

the construct 35S::cpRNP-GFP constructs. Single insertion T3 plants were selected at Lancaster 

University for further cell biological studies using confocal microscopy. 

 

Table 3.3. Alternative transcriptional start site (TSS) transcribed cpRNPs are differentially expressed 

in R-light compared to full length counterparts, and are phyA phyB-dependent. Data was obtained 

and reproduced from Ushijima et al, 2017.  
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Fold Difference 
(TSS_up/TSS_down) 

in WT (1h or 3h) / 
(TSS_up/TSS_down) 

in WT (0h) 

P value: 
WT (0h) vs 
WT (1h or 

3h) 

Fold Difference 
(TSS_up/TSS_down) 

in WT (1h or 3h) / 
(TSS_up/TSS_down) 
in phyA phyB (1h or 

3h) 

P value: WT 
(1hr or 3hr) 

vs phyA phyB 
(1h or 3hr) 

cp29A 
  
  

TSS_B TSS_A R1H 2.36 1.21E-03 2.18 1.69E-03 
TSS_C TSS_A R3H 97.95 0.00E+00 16.88 1.13E-47 
TSS_B TSS_A R3H 207.36 0.00E+00 88.23 1.40E-74 

cp31A TSS_B TSS_A R3H 49.15 0.00E+00 48.31 0.00E+00 
cpSEBF 

  
  
  
  
  
  

TSS_A TSS_B R1H 7.40 5.19E-08 3.23 7.43E-03 
TSS_D TSS_B R1H 11.86 1.09E-07 6.86 2.40E-04 
TSS_A TSS_C R1H 12.79 1.65E-09 8.00 6.54E-06 
TSS_D TSS_C R1H 20.50 4.58E-11 17.00 2.99E-09 
TSS_D TSS_A R3H 275.33 0.00E+00 69.68 7.74E-51 
TSS_B TSS_A R3H 68.90 0.00E+00 180.89 6.50E-65 
TSS_C TSS_A R3H 519.53 0.00E+00 1347.67 0.00E+00 

cp29C TSS_B TSS_A R3H 18.06 1.03E-08 6.27 3.92E-03 
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3.3.4. In planta examination of Alternatively Transcribed cpRNP Isoforms reveals nuclear localisation 

in Arabidopsis.  

 Seeking to confirm a dual and/or dynamic localisation of the alternatively transcribed 

cpRNPs in planta, an analysis of Arabidopsis transgenic lines was conducted using confocal 

microscopy. A list of the examined lines is described in Table 3.1. The hypothesis driving the 

experiments is that alternatively transcribed cpRNP isoforms can lead to differential protein 

subcellular localization. Based on the bioinformatic predictions, longer isoforms would include a 

longer N-terminal including a chloroplast transit peptide to localise in the plastids, while shorter 

isoforms without the transit peptide would localise to the cytoplasm and/or the nucleus.  

 The transgenic lines for analysis were provided by Ms. Sera Akune from the Matsushita lab 

in Kyushu University. Cp31A- and cpSEBF-GFP tagged isoforms were analysed using confocal 

microscopy. Transgenic plants were grown for 3 days in darkness and treated with 24hr R-80. For 

each cpRNP, a transgenic line containing a construct expressing the longer form produced by TSS_A, 

and a transgenic line containing a construct expressing a shorter form from TSS_B were selected to 

analyse. To determine a nuclear localisation, a 4′,6-diamidino-2-phenylindole (DAPI) stain that binds 

to adenine-thymine-rich DNA regions was used (DAPI preferentially binds to the condensed nuclear 

DNA), and chlorophyll auto-fluorescence was used to determine a chloroplast localisation. A WT 

plant with no GFP was used as control for chlorophyll auto-fluorescence, shown in Figure 3.6. 

 

Confocal microscopy examination of cp31A (TSS_A)-GFP and cp31A (TSS_B)-GFP. Figure 3.4 shows 

that cp31A (TSS_A)-GFP has a chloroplast localisation. Panels A and F of Figure 3.4 show overlap 

between PMT brightfield (panels E, J), chloroplast auto-fluorescence (panels B, G), DAPI staining 

(panels D, I), and GFP fluorescence (panels C, H). The green GFP signal from the constructs under 

evaluation overlaps with the red chlorophyll auto-fluorescence, but no co-localization was detected 

within the nuclear blue DAPI. Panel A shows the GFP signal occurs throughout the chloroplast, and 

panel F demonstrates represents consistent expression across multiple cells. This would be 

considered a classical cpRNP localisation.  

 cp31A (TSS_B)-GFP (Figure 3.5 panel C), however, shows an alternate localisation with 

overlap with the nuclear DAPI stain (panel D) (circled). As can also be observed in panel B, 

chlorophyll auto-fluorescence is absent from these spots, shown in the overlap panel A. This was 

observed in multiple cells throughout the cotyledons examined (panels F-J). Panels C and H also 

illustrate a cp31A (TSS_B)-GFP cytoplasmic localization. This variant of cp31A was absent from the 
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chloroplast, as shown by the lack of GFP-signal colocalization with auto-fluorescence overlap 

between panels B, G and C, H.   

 The control plant, WT, shows no GFP can be detected in Figure 3.6, panels C, H, but classical 

DAPI-nuclear staining is demonstrated in panels D and I and healthy chlorophyll auto-fluorescence 

can be seen in panels B and G. 

 To further confirm observation of single planes, an integration of Z-stacks was performed to 

construct 3D representations of whole cells Figure 3.7. Z stacks clustered 21 frames taken 1nm 

apart. The merging of chlorophyll auto-fluorescence (red), DAPI-staining (blue), and cp31A-GFP 

(green) signals is shown for cp31A (TSS_A)-GFP in panel 3.7 panel A, and for cp31A (TSS_B)-GFP in 

panels B-D. Panel A indicated a clear GFP co-localization with the red chlorophyll auto-fluorescence, 

indicating chloroplasts, and no GFP signal was detected in the larger blue-stained nuclei. Panels B-D 

show the absence of GFP signal from the chlorophyll auto-fluorescence that identified chloroplasts, 

and a speckled distribution of GFP within the blue-stained nuclei and cytoplasm (indicated with 

arrows). This speckling, most clearly observable in panel D (indicated with an arrow), also provide 

insight into potential subcellular distribution patterns of cp31A (TSS_B) in the nucleus in planta.  

 

Confocal microscopy examination of cpSEBF (TSS_A)-GFP and cpSEBF (TSS_B)-GFP. cpSEBF (TSS_A)-

GFP shows a chloroplast localization through overlap of the GFP signal with chlorophyll auto-

fluorescence (Figure 3.8, panels A-C, F-H). No co-localisation was observed between GFP and blue 

DAPI-stained nuclei (panels D, I). The same localisation pattern was detected for multiple 

independent plants from the same line (panels A-E, F-J) 

 cpSEBF (TSS_B)-GFP’s localization is shown in Figure 3.9. Similarly to cp31A (TSS_B)-GFP, 

cpSEBF (TSS_B)-GFP shows localization to the nucleus (panels A, F) through with co-localization with 

DAPI (panels D, I) (circled). Interestingly, panel C also appears to show a widespread distribution of 

cpSEBF (TSS-B)-GFP throughout the cell, indicating an additional cytoplasmic localisation. However, 

while the chlorophyll auto-fluorescence observed in panels B, G is unclear, the GFP fluorescence 

detected in panels A, C, F, and H indicate a non-chloroplast localisation.  

 To further confirm these observations from single plane images, a 3D representation of 

whole cells was constructed by an integration of Z-stacks for cpSEBF-GFP lines, shown in Figure 3.10. 

This merging of chlorophyll auto-fluorescence (red), DAPI-staining (blue), and cpSEBF-GFP (green), 

shows cpSEBF (TSS_A)-GFP in panel A, and cpSEBF (TSS_B)-GFP in panel B. Panel A shows the co-

localisation of cpSEBF (TSS_A)-GFP signal with the red chlorophyll auto-fluorescence and an no 
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presence of GFP signal in the blue DAPI-stained nuclei. On the other hand, panel B shows co-

localisation of cpSEBF (TSS_B)-GFP to blue-stained nuclei. 

In summary, this study provided the first in planta evidence for Arabidopsis plants that 

alternatively-transcribed cpRNPs localise to the nucleus and the chloroplast, and that these 

localisations are specific to their respective isoforms and transcriptional start sites. The longer forms 

cp31A (TSS_A)-GFP and cpSEBF (TSS_A)-GFP) localised to the chloroplast, and the shorter forms 

cp31A (TSS_B)-GFP and cpSEBF (TSS_B)-GFP) localised to the nucleus.  

A nuclear localisation of cp31A and cpSEBF in planta during de-etiolation opens the 

possibility of a function in the regulation of nuclear-encoded transcripts. Beyond the role of R-light-

phyB in generating the isoforms, the role of these isoforms in the nucleus and the range of phyB-

light-dependent signals that could control localization are underexplored.   
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3.4. Results: Investigating a potential role for cpRNPs in modulating nuclear-encoded transcript 

abundance.  

3.4.1. Identification of R-phys regulated nuclear-encoded transcript targets.  

 To examine if the detected nuclear localization of cpRNPs could be linked to mechanisms 

that modulate nuclear photosynthetic gene expression, a reverse genetics strategy was followed 

using cprnp mutants. Based on the evidence that cpRNPs modulate greening responses (Chapter 2, 

Figure 2.3) and the transcript accumulation of some of the plastid-encoded subunits from the ATP 

Synthase, NADH Dehydrogenase, Photosystem I, and Photosystem II photosynthetic complexes 

(Chapter 2, Figure 2.5), the effect of cprnp mutation was evaluated over red-phytochrome 

modulated nuclear counterparts for these complexes/functions. As previously described in Chapter 2 

section 3, analysis of transcript abundance was conducted using 24hr red-light de-etiolated seedlings 

as a model system to evaluate the impact of cprnp mutation on nuclear photosynthetic gene 

expression, especially for genes linked to the assembly and maintenance of PSI and PSII 

photosynthetic apparatus (Armarego-Marriott et al., 2020).  

 The selection of the nuclear-encoded counterparts started with the analyses of transcript 

accumulation in a R-Phys dependent manner using genomic datasets publicly available for phyABCDE 

(GSE31587) in 4-day old seedlings grown under Rc-50 µmol m−2 s−1. This first analysis identified genes 

that are phy-regulated, and whose dependence on cpRNPs could be investigated. Genes selected 

showed a statistically significant greater than two-fold difference for red light-phyABCDE-

dependence vs WT, or were manually selected based on biological relevance in photosynthesis and 

photoprotection (see 3.2 Materials and Methods for further details). Ultimately, six genes encoding 

Photosystem II subunits, three genes encoding Photosystem I subunits, and five genes encoding 

proteins involved in photoprotective mechanisms were selected. These are described in Table 3.4, 

showing protein function, phyB-dependency, and statistical significance.   

 The final list of candidate genes included three members from the Light Harvesting 

Complexes (LHC), involved in harvesting light energy from chlorophylls a and b, photoprotection, 

and response to stress (Jansson, 1994; Fristedt and Vener, 2011; Chen et al., 2018). Shown in Table 

3.4, transcript accumulation of two members of the LHCII, bound to Photosystem II (Holtzegel, 

2016), were identified as R-phys dependent: LHCB2.3 and LHCB4.2. One member of the LHCI, 

LHCA2.1, was also identified as R-phys-dependent. This gene encodes a key protein component of 

the light harvesting antenna complex for PSI (Otani et al., 2018).  
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 Three genes associated to the oxygen-evolving complex (OEC) of Photosystem II in the 

thylakoid membrane were identified as R-phys dependent and selected for analysis. The oxygen-

evolving complex performs the oxidation of water and is the critical step in the light reactions 

(Raymond and Blankenship, 2008). These three included PSBO1 and PSBO2, isoforms of the PSBO 

extrinsic subunit of PSII critical to its assembly and involved in stabilization of the catalytic 

manganese cluster (Murakami et al., 2002; Bricker et al., 2012), and PSBQ2, an extrinsic subunit with 

a vital role in contributing to the maintenance of the Mn cluster (Kakiuchi et al., 2012).  

 One nuclear gene from the chloroplast NAD(P)H dehydrogenase complex (NDH). PSBQ-LIKE 

2, or PQL2, was identified as strongly R-phys-dependent. This gene is one of three PQL genes 

required for the NADH complex function (Yabuta et al., 2010) and was selected as a representative 

of the NADH complex following identification of ndhF and ndhG as plastome encoded targets of 

cp31A (Kupsch et al., 2012).  

 

Table 3.4. List of experimental genes delineated for examination in cprnp mutants. Genes were 

identified based on an R-phys dependency or selected for reported biological function. Genome-

wide analysis of R-phys activated genes in WT vs phyABCDE mutant was conducted using dataset 

GSE31587, and defined by a log2 >1 ratio (WT-R/phyB-R) and statistical significance of gene 

expression ratios was estimated with FDR at P<0.05 (see 3.2 Materials and Methods) 

Gene 
Name 

Locus Protein Function  
Log2 ratio PhyB-

Dependency (WT-R/phyB-
R) 

P-value (adj) 
LHCB2.3 AT3G27690 Chlorophyll a/b-binding protein in 

Photosystem II 
2.919436609 0.0462 

LHCB4.2 AT3G08940 Chlorophyll a/b-binding protein in 
Photosystem II 

2.829665501 0.0049 
PSBO1 AT5G66570 Chlorophyll a/b-binding protein in 

Photosystem II 
1.728889218 0.0053 

PSBO2 AT3G50820 Chlorophyll a/b-binding protein in 
Photosystem II 

2.564763926 0.0613 
PSBQ2 AT4G05180 Chlorophyll a/b-binding protein in 

Photosystem II 
3.063589007 0.0629 

PSBQl2 AT1G14150 Chlorophyll a/b-binding protein in 
Photosystem II 

2.261855479 0.0003 
LHCA2.1 AT3G61470 Chlorophyll a/b-binding protein in 

Photosystem II 
1.796532822 0.0857 

PSAD-2 AT1G03130 Photosystem I reaction centre subunit 2.68768543 0.0397 
PSAN AT5G64040 Photosystem I reaction centre subunit 2.426784457 0.0185 
PSY AT5G17230 Phytoene Synthase 1.80065987 0.0464 

PSB27 AT1G03600 Photosystem II repair protein 1.213074807 0.0006 
DEG1 AT3G27925 DegP protease 1.619683322 0.0095 
NPQ1 AT1G08550 Non-Photochemical Quenching protein 1.318902654 0.0112 
NPQ4 AT1G44575 Non-Photochemical Quenching protein 0.66050733 0.0043 
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 From the Photosystem I-associated genes, LHCA2.1 was selected, encoding a protein that is 

a key component of the Light Harvesting Complex attached to PSI (LHCI) (Otani et al., 2018). The 

LHCI complex is involved in binding chlorophylls and state transitions following a light intensity stress 

response (Benson et al., 2015). Two Photosystem I protein subunit-encoding genes were also 

identified as R-phys dependent: PSAD-2 and PSAN. PSAD-2 is a Photosystem I subunit involved 

electron transport through in forming complexes with ferredoxin and ferredoxin-oxidoreductase to 

the PSI reaction centre (Ihnatowicz et al., 2004). PSAN mediates the binding of antenna complexes 

and the PSI reaction centre and in linking plastocyanin and the wider PSI complex (Haldrup et al., 

1999; Ihalainen et al., 2000).  

 For genes associated to additional photoprotective and photorepair mechanisms, R-phys 

dependent PHYTOENE SYNTHASE (PSY) was selected. PSY is active in the carotenoid biosynthesis 

pathway and is the first committed step in the carotenoid pathway that leads to lutein, xanthophylls 

and other carotenoid photoprotectants (Ruiz-Sola and Rodríguez-Concepción, 2012).  

 To represent photorepair mechanisms, PHOTOSYSTEM II REPAIR PROTEIN 27 (PSB27) was 

identified as R-phys dependent. PSB27 is closely associated to Photosystem II and involved in 

adaptation to changes to light intensity; a psb27 mutant showed lower PSII-efficiency and enhanced 

ROS production, and represents a gene involved in a longer-term photoprotective mechanism (Hou 

et al., 2015). A second photorepair-associated gene, a member of the DEGRADATION OF 

PERIPLASMIC proteins (DEG) Serine Protease family, DEG1, was identified as R-Phys dependent. 

DEGs are active in the thylakoid lumen and are involved in degrading damaged luminal proteins and 

PSII subunits- in particular, damaged D1 reaction core proteins, a key component of the antenna and 

target of photo-oxidative damage (Schuhmann and Adamska, 2012).  

 Finally, two Non-Photochemical Quenching-encoding gene candidates were identified as R-

phys dependent: NPQ1 and NPQ4. These genes are involved in short-term non-photochemical 

quenching responses, with critical roles in maintaining a balance between dissipating and using light 

energy to protect against photo-oxidative damage (Roach and Krieger-Liszkay, 2012; Ware et al., 

2015). Although NPQ4 was not identified as R-phys dependent (Table 3.4) it was selected for its 

biological significance after a modest phenotype was detected in cprnp mutants grown in fluctuating 

high light regimes (Chapter 2, Figure 2.11). 
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3.4.2. Nuclear-encoded transcript accumulation for selected photosynthesis related genes is lower in 

cprnp mutants.  

 Analysis of transcript abundance of chloroplast-encoded gene in cprnp mutants (Chapter 2, 

Figure 2.5) demonstrated that cpRNPs were important to the regulation of the plastome. However, 

photosynthetic metabolisms require co-expression of plastome-encoded genes with nuclear-

encoded counterparts. Based on observations that cpRNPs can localise to the nucleus in a Red-phyB-

mediated pathway, it was hypothesised that cpRNPs may be involved in co-ordinating the expression 

of genes encoded in the plastome and nucleus with a photosynthetic function. The impact of phyB 

and cprnp mutation on the selected photosynthesis-associated nuclear genes was evaluated during 

de-etiolation (Figure 3.11). phyB was used to confirm the effect of R-phys dependence observed in 

genomic experiments and analyse the relative contribution of cpRNPs to the light response. 

 

Dependence of Photosystem II-associated nuclear transcripts accumulation on cpRNPs function. 

Analysis of the transcript abundance of genes encoding subunits in LHCII, LHCB2.3 and LHCB4.2, 

showed statistically significant reductions in the cprnps and phyB mutants compared to WT. The 

transcript accumulation of LHCB2.3 in phyB mutant was also significantly lower than compared to all 

three cprnp mutants, indicating a greater contribution of phyB. However, accumulation of LHCB4.2 

between phyB and cprnp mutants was not statistically different, indicating a proportionally greater 

contribution of cpRNPs to its regulation than for LHCB2.3. Transcript accumulation of the three OEC 

genes PSBO1, PSBO2, and PSBQ2 was significantly reduced in phyB and all cprnp mutants compared 

to WT, except for abundance of PSBO1 in cpsebf mutants. Together, these results showed that cprnp 

mutation had significant impact upon transcript abundance of Photosystem II genes encoding 

photosynthetic subunits.  

 

Dependence of NADH Dehydrogenase-associated nuclear transcripts on cpRNP function. Transcript 

abundance of the NADH Dehydrogenase subunit-encoding PSBQl2 was significantly reduced in phyB 

and cpRNP mutants compared to WT. Statistical analysis reported that the contribution of cpRNPs 

and phyB to PSBQL2 accumulation was equal, indicating that cpRNPs are important regulators of the 

complex.  
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Nuclear Photosystem I-associated genes transcript accumulation dependence on cpRNPs. 

Transcript accumulation of selected R-phy dependent genes encoding subunits associated to 

Photosystem I (PSI) was partially affected by cprnp mutation. LHCA2.1, of the Light Harvesting 

Complex I (LHCI), accumulation was not significantly reduced in phyB or cprnp mutants, despite a 

lower average trend; neither was transcript accumulation for PSAD-2 of the PSI reaction centre 

super complex was reduced in any of the tested mutant genotypes. However, abundance of PSAN 

transcript, involved in linkage of PSI to plastocyanin, was significantly reduced in phyB, cp29b, and 

cp31a. This indicates a limited but important role of cpRNPs and phyB in PSI complex production.  

 

Effect of cpRNP-dependence of photoprotection and photorepair-associated gene transcript 

accumulation. Analysis of genes associated to photoprotective and photorepair mechanisms 

showed that PSY and DEG1 transcript accumulation is strongly dependent on phyB but was not 

reduced in cprnp mutants. However, abundance of PSB27 was both phyB- and cpRNP-dependent 

compared to WT. For NON-PHOTOCHEMICAL QUENCHING genes’ accumulation, NPQ1 and NPQ4 

revealed no statistically significant effect in phyB or cprnp mutants, despite the lower average 

accumulation observed for NPQ1.  
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Overall, RT-qPCR revealed a clear contribution of cpRNPs to the transcript accumulation of 

nuclear-encoded Photosystem II-associated transcripts, with pronounced reductions in the 

accumulation of transcripts for genes encoding nuclear subunits of the Light Harvesting Complex II 

(LHCII), the oxygen-evolving complex (OEC), and NADH Dehydrogenase. However, only one tested 

gene associated to Photosystem I was found to be cp29B- and cp31A-dependent. Similarly, only one 

of photoprotection and photorepair involved genes was found to be cpRNP-dependent, PSB27. This 

points at a potential role for cpRNPs in regulating Photosystem II-associated processes, with a more 

limited effect on Photosystem I-associated nuclear transcript accumulation.  
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3.5 Results: Investigating the effect of temperature on the modulation of cpRNP subcellular 

localisation and function. 

 As previously mentioned, cpRNPs have been linked to the integration of temperature 

responses in chilling temperatures (4-8oC) (Kupsch et al., 2012), through changes in ambient 

temperatures (17-27oC) (Chapter 2, section 2.6), and through upstream signalling components phyB 

and HY5 (Toledo-Ortiz et al., 2014; Jung et al., 2016). Chapter 2 showed that cprnp mutants’ defects 

in greening responses are particularly observable in cold and warm conditions compared to WT and 

plants grown in control conditions in 22oC. Mutant cprnps showed temperature-sensitive 

phenotypes with effects on greening and biomass accumulation in young plantlets, which correlated 

with altered transcript accumulation responses of plastome-encoded transcripts during de-

etiolation, in particular for Photosystem II and Photosystem I subunits protein-encoding genes 

(Chapter 2 Figures 2.16, 2.17). 

 As described in Chapter 2, ambient temperatures from 17oC to 27oC can affect plant 

development and growth, altering greening and morphology (Samach and Wigge, 2005; Lorenzo et 

al., 2016). Under this temperature range, phytochromes integrate light and temperature-dependent 

signals to modulate plant growth and development (Jung et al., 2016; Legris et al., 2016). In Chapter 

2, transcript accumulation of cpRNPs was demonstrated to be temperature-sensitive (Chapter 2, 

Figure 2.15). In brief, cp29B, cpSEBF, and cp31A transcript accumulation was dramatically reduced at 

17oC, highest at 22oC, and for cp29B and cp31A accumulation at 27oC was intermediate between the 

two at 17oC and 22oC . However, the effects of temperature at the transcriptional level may not be 

representative of the final protein abundance, as transcript accumulation alone are is not sufficient 

to determine protein abundance (Liu et al., 2016). To begin investigating whether temperature alters 

cpRNP protein abundance and distribution, native-promoter driven cpRNPs tagged with C-terminal 

GFP were examined using confocal microscopy. 

 

3.5.2. Cell Biological studies of Native-Promoter driven GFP fusion of cp31A and cpSEBF using 

confocal microscopy. 

 Evidence presented in Chapter 2 section 2.6 indicated that cpRNPs transcript accumulation 

and functionality are temperature-sensitive. In addition, in red light phyB induces alternatively-

transcribed forms of the cpRNPs with alternate localisations (Ushijima et al., 2017). As phyB is also a 

key ambient temperature sensor, it was hypothesised that cpRNPs’ response to temperature may 

involve changes in in protein subcellular localisation or abundance.  
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 To evaluate temperature-dependent protein accumulation patterns, native-promoter driving 

C-terminal GFP tagged cpRNPs (NP::cpRNP-GFP) were generated for cp31A and cpSEBF in 

collaboration with Dr Karine Prado from the University of Edinburgh. Constructs were used to 

transformed cprnp mutants cp31a_1 and cpsebf_1, each including a 2kB native promoter region. 

Single insertion T3 plants were selected and used for cell biological experiments to evaluate the 

protein distribution and abundance at 17oC, 22oC, and 27oC conditions during 24hr R-80- driven de-

etiolation in 3-day old seedlings. Images shown in Figure 3.12, and 3.14 are representative results of 

the confocal observations conducted, which included at least 3 independent biological samples. 

Confocal examination of NP::cp31A-GFP. In planta confocal analysis showed that NP::cp31A-GFP 

fluorescence was low at 22oC and 27oC, but high fluorescence signal was detected at 17oC (Figure 

3.12). At 22oC, an examination of subcellular NP::cp31A-GFP protein distribution in mesophyll cells 

revealed co-localisation of GFP with DAPI-stained nuclei, as well as chlorophyll auto-fluorescence-

identified chloroplasts (Figure 3.13 panel F). A similar localisation was also observed at 17oC (Figure 

3.12 panel A), but at 27oC GFP fluorescence was only observed to co-localise with chlorophyll auto-

fluorescence and not with DAPI (panel K). This indicated that cp31A localises to both chloroplast and 

nucleus in cold (17oC) and physiological (22oC) temperatures, but not at warm temperatures (27oC), 

where localisation was mostly chloroplastic.   

 At 22oC, GFP fluorescence of NP::cp31A-GFP was high throughout the seedling cotyledons 

(Figure 3.12, panels C-D). Subcellular evaluation of protein distribution (panels F-J), shows that 

NP::cp31A-GFP (green) colocalises with the DAPI-stained nucleus (blue) (circled), as well as with 

chloroplast identified by overlap with the chlorophyll auto-fluorescence channel (red). At 17oC, GFP 

fluorescence signal was brighter than at 22oC in cotyledons (Figure 3.12, panel A). A subcellular 

examination of GFP distribution in mesophyll cells revealed co-localisation of the NP::cp31A-GFP 

signal with DAPI fluorescence (circled) and chlorophyll auto-fluorescence (indicated by arrows) 

(Figure 3.13, panels A-E), showing a dual nuclear and chloroplast localisation. By contrast, 

NP::cp31A-GFP fluorescence was weaker in 27oC than at 22oC in cotyledons (Figure 3.12, panels E-F), 

and GFP fluorescence was only observed to co-localise with chlorophyll auto-fluorescence (Figure 

3.13, panel M, L), and not to the nuclei stained with DAPI (panels K, N). As GFP fluorescence was very 

weak at 27oC, an enhanced image is shown in Supplementary Figure 3.2 to show that GFP does not 

overlap with DAPI fluorescence and only weak GFP-chloroplast signal was detected. All comparisons 

were conducted using same pinhole and gain confocal microscope settings.  

 3D representations of whole cells constructed using an integration of Z-stacks was 

constructed for the NP::cp31A-GF/nucleus co-localization at 17oC and 22oC merging single-plane 
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images. As shown in Supplementary Figure 3.3. Panel A (17oC) and panel B (22oC) the re-

constructions show GFP fluorescence-cpRNP signal (green) overlapping with DAPI fluorescence 

(blue) (circled), and chlorophyll auto-fluorescence (red), pointing at a dual localization of the cpRNP-

GFP construct .  

Confocal examination of NP::cpSEBF-GFP. In planta confocal analysis revealed NP::cpSEBF-GFP 

fluorescence signal in seedling cotyledons was stronger at 17oC, intermediate at 22oC, and weakest 

at 27oC, indicating that temperature may affect cpSEBF abundance (Figure 3.14). A subcellular 

examination of GFP fluorescence revealed only a co-localisation with chloroplasts, as indicated 

through chlorophyll auto-fluorescence (red) (Figure 3.15), showing that cpSEBF may not localise to 

the nucleus in these conditions. However, while pinhole settings used in Figure 3.14 were the same 

for all temperature conditions, the fluorescence gain setting was set to 650 for plants examined at 

22oC, and 690 for the 17oC and 27oC conditions. Despite the difference in settings, fluorescence 

intensity detected at 27oC is still lower.  

 A subcellular examination of NP::cpSEBF-GFP fluorescence in mesophylls cells at 22oC 

showed clear GFP co-localisation with chlorophyll auto-fluorescence (Figure 3.15 panels G, H), but 

no overlap was detected between GFP and the DAPI-stained nucleus in the merged images (panel F, 

I). Results observed at 17oC showed identical distributions (panel A, D). This pattern was also 

observed at 27oC (panels K-O), however at this temperature the GFP fluorescence signal (panel M) 

was very weakly detected and had to be been enhanced in post-image processing to conclude an 

overlap of GFP with chlorophyll auto-fluorescence signal (red) but not with DAPI (blue) 

(Supplementary Figure 3.4). 

 A 3D reconstruction of whole cells integrating the Z-stacks was conducted to confirm the 

subcellular distribution of NP::cpSEBF-GFP (Supplementary Figure 3.5). This reconstruction clearly 

shows an overlap of the GFP fluorescence signal (green) and chlorophyll auto-fluorescence (red), but 

no overlap with the DAPI- stained nuclei (blue), indicating that NP::cpSEBF-GFP is only detected in 

the chloroplast during de-etiolation at 17oC (panel A), 22oC (panel B), and 27oC (panel C).  

 In summary, this confocal analysis indicated that cp31A protein accumulation as indicated 

through GFP fluorescence intensity is greatest in colder conditions and reduced in warm conditions 

and localises to the nucleus and chloroplast at 17oC and 22oC. Analysis of cpSEBF protein GFP 

fluorescence intensity indicated a similar increased intensity in cold conditions and reduced intensity 

in warm conditions but was only detected to localise to the chloroplast in all three temperature 

conditions.  
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3.5.2. cpRNPs integrate light and temperature signals to modulate nuclear gene expression  

 Evidence in Figures 3.5 and 3.11 show that cprnp mutation reduces nuclear transcript 

accumulation at 22oC, and that alternatively transcribed forms of cpRNPs can localise to the nucleus, 

as indicated by subcellular localisation of cpRNPs TSS isoforms fused to GFP. Next, it was 

investigated whether light- and temperature-integrated signals also affected nuclear-encoded 

transcript accumulation in cprnp mutants, as cpRNPs do for plastid encoded transcripts. The impact 

of phyB and cprnp mutation in plants grown for 3 days in darkness and treated with 24hr of red light 

(80 µmol m-2s-1) at both 17oC and 27oC was evaluated to complement the results obtained at 22oC 

(Figure 3.11). phyB was included to corroborate the R-phys dependence response of the target gene 

transcript accumulation and compare it to transcript accumulation in cprnps.  

 

Effect of temperature on cpRNP-dependence nuclear transcripts associate to Photosystem II-

functions. As shown in Figure 3.16, regulation of LHCII-genes LHC2.3 and LHCB4.2 was phyB- and 

temperature-dependent. phyB mutation did not affect accumulation in the cold, but was critical to 

abundance at 22oC and 27oC. The analyses also showed that LHCB4.2 accumulation is temperature-

dependent but a contribution of cpRNPs was only observed at 22oC. While transcript accumulation 

of LHCB2.3 and LHCB4.2 showed significant reductions in phyB and cprnp mutants at 22oC compared 

to WT, no reductions were detected at 17oC. At 27oC, reductions were only observed in phyB 

mutant, and not in any of the tested cprnp mutants. A Two-Way ANOVA analysis reported significant 

interaction of temperature and genotype on LHCB2.3 transcript abundance (P<0.001), and a Tukey 

HSD post-hoc test reported that this affected the relationship between WT and phyB on transcript 

accumulation. For LHCB4.2, an interaction effect was also reported (P<0.01), and post hoc testing 

identified this affected the relationship between WT and phyB (P<0.001), cp29b (P<0.05), and for 

cpsebf and cp31a (P<0.001).  

 Transcript accumulation of PSBO1 and PSBO2 was observed to be temperature-dependent in 

phyB and cprnp mutants- for PSBO1, this regulation only occurred at 22oC for cpRNPs but was phyB-

dependent at 22oC and 27oC. For PSBO2, cpRNP modulation occurred in 17oC and 22oC, and phyB-

dependence was more pronounced in cold and warm conditions. In contrast, PSBQ2 accumulation 

was only temperature-dependent for cpSEBF at 22oC, and for cp31A at 17oC and 22oC, with phyB-

dependence showing a marked temperature sensitivity at 27oC. At 22oC, previous analysis showed 

that three OEC genes PSBO1, PSBO2, and PSBQ2 were phyB- and cpRNP-dependent. At 17oC, no 

reductions were observed in mutant genotypes for PSBO1, but all genotypes showed reductions for 

PSBO2. PSBQ2 only showed reductions in cp31a mutant. At 27oC, reductions for all three genes’ 
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transcript accumulation were only observed in phyB mutant. A Two-Way ANOVA analysis revealed 

significant interaction effects of temperature and genotype for PSBO1 (P<0.05), PSBO2 (P<0.01), and 

PSBQ2 (P<0.001). Tukey HSD post hoc testing reported that this affected the relationship between 

WT and phyB (P<0.001) and WT and each cprnp mutant (0.05) for PSBO1; between WT and phyB 

(P<0.001) and WT and each cprnp mutant (P<0.01) for PSBO2; and between WT and phyB (P<0.001) 

and WT to cpsebf (P<0.001) and cp31a (P<0.05) for PSBQ2.  

 Overall, this demonstrated temperature-dependent regulation of PSII gene-encoding 

subunits by phyB for LHCB2.3, LHCB4.2, PSBO1, PSBO2 and PSBQ2 at 22oC and 27oC. Regulation by 

tested cpRNPs was reported to be temperature-dependent at 22oC for LHCB4.2 and PSBO1, and at 

both 17oC and 22oC PSBO2. A more complex regulation was observed by cpSEBF and cp31A in 

PSBQ2, occurring at 22oC and 17oC respectively.  

 

Effect of temperature- and cpRNP- dependence on nuclear-encoded NADH Dehydrogenase-

associated gene transcript accumulation. Analysis of the NADH Dehydrogenase subunit-encoding 

gene PSBQl2 revealed its regulation was temperature-dependent by phyB at 22oC and 27oC, and that 

abundance was temperature- and cpRNP-dependent at 22oC. At 22oC, PSBQl2 transcript 

accumulation was observed to be reduced in phyB and cprnps. However, at 17oC and 27oC, no 

significant reductions were observed in cprnp mutants. At 27oC, PSBQl2 accumulation was also 

observed to be reduced in phyB. A Two Way ANOVA analysis reported a significant interaction effect 

of temperature and genotype in transcript accumulation (P<0.05), and Tukey HSD post hoc testing 

reported this affected this relationship between WT and phyB (P<0.001) and between WT and all 

cprnp mutants respectively (P<0.001), revealing that phyB- and cpRNP-dependence was 

temperature dependent.  

 

Effect of temperature- and cpRNP- dependence on nuclear-encoded Photosystem I-associated 

gene transcript accumulation. Analysis of the Light Harvesting Complex I subunit-encoding gene 

LHCA2.1 could only be conducted at 17oC (Figure 3.16, panel B). This revealed its accumulation was 

cp31A-dependent at 17oC, but was unaffected by mutation of phyB, cp29b, or cpsebf in either 

temperature condition. This interaction effect of temperature and genotype was reported by Two-

Way ANOVA analysis (P<0.05) and Tukey HSD post hoc testing reported it significantly affecting the 

relationship between WT and cp31a on transcript abundance (P<0.01).  
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Effect of temperature on photoprotection and photorepair-associated nuclear gene transcript 

accumulation and contribution of cpRNPs to the response. Analysis of the three photoprotection 

and photorepair genes is shown in Figure 3.16 panel C. Evaluation of PSB27, a gene involved in 

adapting to changes in light intensity, revealed a temperature-sensitive cpRNP-dependence. This 

revealed a cp29B-dependence that only occurred at 22oC, and at 22oC and 27oC for cpSEBF. PSB27 

was cp31A-dependent in all three temperature conditions, but dependence was double at 17oC 
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compared to at 22oC or 27oC. The interaction of temperature and genotype on transcript 

accumulation for PSB27 was reported by Two Way ANOVA (P<0.05), and Tukey HSD post hoc testing 

identified it affected the relationship between WT and phyB (P<0.001), and between WT and each 

tested cprnp mutant (P<0. 001).  

 The final examined gene DEG1 encodes a gene from the Degradation of Periplasmic proteins 

(DEG) Serine Protease family involved in turnover of damaged D1 protein, and was observed to be 

cp31A-dependent at 17oC. Previous examination of DEG1 accumulation at 22oC showed no cpRNP-

dependence, but examination at 17oC identified a reduction in cp31a. No reductions were observed 

in phyB or cprnp mutants at 27oC. A Two-Way ANOVA analysis reported a significant interaction 

effect of temperature and genotype on DEG1 accumulation (P<0.5), and Tukey HSD post hoc testing 

reported this affected the relationship between WT and phyB (P<0.001) and WT and cp31a (P<0.01) 

on transcript abundance.  

  

Overall, it was therefore observed that cpRNP regulation of Photosystem II subunit-encoding 

genes was temperature-dependent (Figure 3.16 panel A). This affected transcripts for genes 

encoding Light Harvesting Complex II (LHCII) subunits LHCB4.2, OEC-encoding subunit PSBO1, and 

NADH Dehydrogenase subunit PSBQl2 at only 22oC. Temperature-dependent regulation by cpRNPs 

was observed for PSBO2 at 17oC and 22oC. cpSEBF and cp31A were reported to contribute to 

temperature-dependent regulation of the OEC transcript PSBQ2 at 22oC and 17oC respectively in 

PSBQ2. However, cp31A-specific temperature dependence was observed for the LHCI complex-

subunit encoding LHCA2.1 at 17oC (panel B). In the case of photoprotection and photorepair related 

genes (panel C), a temperature- and cpRNP-dependent accumulation response for PSB27 unique to 

each cpRNP was observed. cp29B was involved in the transcript accumulation response only at 22oC; 

cpSEBF at 22oC and 27oC, and cp31A contributed to all temperatures, but with a strongest effect at 

17oC. In addition, cp31A also contributed to the cold-dependent regulation of DEG1 at 17oC.  

 In summary, cpRNP modulation of nuclear-encoded transcripts was therefore observed to 

be temperature-sensitive during R-light mediated de-etiolation. Although exceptions were observed, 

for cp29B and cpSEBF this modulation mostly occurred only at 22oC and was often insensitive to cold 

or warm conditions. However, a notable role for cp31A was observed in the cold-dependent 

regulation of multiple transcripts. This analysis also highlighted the temperature-sensitive role of 

phyB in contributing to Photosystem II-associated transcript abundance in warm conditions.  
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3.6. Results: Investigating whether a retrograde signalling pathway regulates cpRNP transcript 

accumulation and localisation.  

 The operation and biosynthesis of photosynthetic apparatus requires constant 

communication between the chloroplast and the nucleus (Jarvis and López-Juez, 2013). This 

communication co-ordinates the expression and import of photosynthetic subunits and proteins 

from the anterograde nucleus-to-chloroplast signalling required for regulation of the chloroplast. 

The communication of signals from the chloroplast to the nucleus is retrograde signalling, and is a 

means for the plastid to regulate nuclear-encoded gene expression in response to developmental 

cues and stresses (Singh et al., 2015; Chan et al., 2016). 

 The retrograde signalling pathways can involve a wide range of signals, encompassing 

tetrapyrrole signalling, phosphoadenosines, carotenoid oxidation products, isoprenoid precursors, 

carbohydrate metabolites, and chloroplastic or nuclear proteins (Strand et al., 2003; Koussevitzky et 

al., 2007; Lee et al., 2007; Estavillo et al., 2011; Šimková et al., 2012; Xiao et al., 2012; Ramel et al., 

2012; Woodson et al., 2013; Shumbe et al., 2014; Häusler et al., 2014; Vogel et al., 2014). Retrograde 

signalling is a highly complex regulatory system and its elucidation is still ongoing; the pathways are 

further reviewed in Chan et al (2016). 

 One of the retrograde signalling pathways is biogenic signalling, during which photosystem 

assembly and maintenance and other processes for a fully functioning chloroplast are regulated 

(Pogson et al., 2008). This kind of signalling occurs from plastid biogenesis during de-etiolation when 

chloroplasts develop from proplastids or etioplasts, and thylakoids and photosynthetic subunits are 

rapidly biosynthesised within hours (Jarvis and López-Juez, 2013). Biogenic signalling is known to 

involve tetrapyrrole signalling (Strand et al., 2003; Woodson et al., 2011), the GUN1-PTM-ABI4 

pathway (Koussevitzky et al., 2007; Sun et al., 2011), PRIN2-PEP pathway (Kindgren et al., 2012), and 

the GLK family (Kakizaki et al., 2009; Waters et al., 2009). A second paradigm for retrograde signal is 

operational signalling, in which mature chloroplasts respond to a stimulus- often a stress response- 

and leads to an adjustment of chloroplast homeostasis (Chan et al., 2016). The operational pathway 

regulates PSII overexcitation via B-cyclocitral (Ramel et al., 2012), and the EX pathway (Lepistö et al., 

2012). The experiments described in section 3.4.2, examining alterations of photosynthesis-

associated nuclear gene transcript accumulation in cprnp mutants, were conducted in de-etiolation- 

a stage where biogenic retrograde signalling pathways are active. 

 Activation of retrograde signalling by chemical agents that inhibit chloroplast development 

include the use of the herbicide Norflurazon that inhibits carotenoid biosynthesis and induces 

bleaching, and Lincomycin that inhibits plastid translation and leads to bleaching and repression of 
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Photosynthesis Associated Nuclear Genes (PhANGs), especially for the Photosystem II-associated 

Light Harvesting Complex II (LHCB) genes (Ruckle et al., 2012; Martín et al., 2016). Use of these 

chemicals has previously identified gun phenotypes related to the genome uncoupled status, linked 

to the high expression of various PhANGS in plants with inhibited chloroplast biogenesis (Susek et 

al., 1993; Larkin, 2014). In section 3.4.2, it was demonstrated that cprnp mutation reduced the 

accumulation of PhANG transcripts, indicating a role for cpRNPs in PhANG expression. In this section, 

bioinformatic and experiment evidence is provided to show that cpRNP transcript accumulation is 

repressed by Lincomycin and Norflurazon treatments, and that Lincomycin alters the subcellular 

distribution of native promoter-expressed cp31A-GFP. Therefore, cpRNPs may be involved in the 

regulation of PhANGs via retrograde signalling pathway.  

 

3.6.1. Analysis of published Retrograde Signalling datasets and experimental validation.  

 Results described section 3.4.2 showed an effect of cprnp mutation on nuclear-encoded 

Photosynthesis associated nuclear genes’ (PhANGs) transcript accumulation, including LHCB2.3, 

LHCB4.2, PSBO1, PSBO2, PSBQ2, PSBQl2, and PSAN genes. PhANGS are commonly affected in the 

biogenic retrograde signalling pathway during de-etiolation, and a recent meta-analysis recently 

published genome-wide expression studies revealed LHCB2.3, LHCB4.2, and PSBQ2 are common 

targets of the biogenic signalling pathway (Grübler et al., 2021). Using retrograde signal activators 

Lincomycin and Norflurazon, three publicly available microarrays were examined to evaluate 

whether cpRNPs’ expression is affected by the retrograde signalling pathway. One dataset was 

generated using Lincomycin as a retrograde signal activator, and two using Norflurazon. The analysis 

revealed a strong down-regulation of cpRNP transcripts in response to both retrograde signal 

activator treatments. These results were then experimentally verified using RT-qPCR analysis.  

 

Analysis of Lincomycin Datasets. The publicly available dataset GSE24517 (Ruckle et al., 2012) was 

used to evaluate the effects of Lincomycin (Linc) on cpRNP transcript accumulation. Results were 

analysed for fold-difference in expression, and genes were adjusted using the Benjamini-Hochberg 

False Discovery Rate (FDR) at the significance level of 0.05. 

 Shown in Figure 3.17, dataset GSE24517 examined WT plants grown with (Linc+) or without 

(Linc-) Lincomycin in low light (0.5 µmol m-2 s-1 blue plus red (BR) light) for 6 days. After 6 days, 

plants were transferred to 60 µmol m-2 s-1 blue plus red (BR) light for 4hr and 24hr. This array 

showed significant down-regulation of cpSEBF and cp31A at 0hr in the Linc+ treated plants, and of 
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cp29C at 4hr. A significant down-regulation of cp29B was also observed at 24hr, and although the 

difference was not statistically significant as reported by FDR analysis, a down-regulation trend was 

observed for cp29C, cpSEBF, cp31A, and cp29A was in Linc+ plants.  

 

Analysis of Norflurazon Datasets. To evaluate the effect of Norflurazon (NF) treatment on cpRNP 

expression, the public datasets GSE110125 (Zhao et al., 2019) and GSE12887 (Koussevitzky et al., 

2007) were used (Figure 3.18). 

 Dataset GSE110125 examined 5-day old WT seedlings grown in 24hr light (100 µmol m-2s-1) 

at 22°C with or without a treatment of 5μM Norflurazon. Differentially expressed genes in WT after 

NF treatment were published in Zhao et al (2019), having been identified with a Log2-converted fold 

change ≥ 1 or ≤ -1 by FDR (False Discovery Rate) ≤ 0.05 and representing a two-fold difference. This 

identified that cp29B, cp29C, and cp31A transcripts are accumulated to higher levels in WT (NF-) 

compared to WT (NF+) (Figure 3.18 panel A). 

 Dataset GSE12887 examined plants grown in 21oC under continuous light (100µmol m-2s-1) in 

the presence of 5µM Norflurazon. This dataset corroborated the trend observed for cp29B, cp29C, 

and cp31A and added a similar response for SEBF. These cpRNPs transcripts accumulated to higher 

levels in untreated WT (NF-) compared to WT (NF+) at a 1> Log2 fold change, indicating that these 

cpRNPs transcripts were down-regulated when exposed to the retrograde-signal activator (Figure 

3.18, panel B). 

 

Experimental verification of cpRNPs transcript accumulation in response to Lincomycin and 

Norflurazon. Transcript levels of cpRNPs cp29B, cpSEBF, cp29C and cp31A were evaluated after 

exposure to 0.5mM Lincomycin and 5µM Norflurazon in plants grown for 6 days under low white 

light (10µmol m-2s-1). These conditions were selected for their effectiveness in identifying crosstalk 

between photoreceptors and RS pathways (Martín et al., 2016). 

Experimental results are shown in Figure 3.19. CARBONIC ANHYDRASE (CA) and LIGHT 

HARVESTING COMPLEX B 2.3 (LHCB2.3) were selected as two positive control genes responsive to 

the retrograde signal activator treatments. Transcript accumulation for these genes corroborated 

that both Lincomycin and Norflurazon treatments produced a statistically significant decrease in 

transcript abundance compared to untreated controls.  

 Transcript abundances of cp29B, cpSEBF, cp31A, and cp29C were significantly reduced in the 

Lincomycin treatment. However, only cp29B showed a significant reduction in the Norflurazon 
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treatment, and no significant reductions were detected for cpSEBF, cp31A, or cp29C. The 

experimental data broadly correlate with the genomic datasets analysis for Lincomycin results, 

showing the tested cpRNPs are subject to regulation by retrograde signals activated by the 

Lincomycin-induced biogenic signalling pathway. However, it is possible that the responsiveness to 

Norflurazon-activated signals may be specific for some members of the family.  
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3.6.2. Retrograde Signal Activator treatments alter the subcellular localisation of cp31A, but not 

cpSEBF. 

 Retrograde signals can alter protein behaviour and subcellular localisation and distribution 

(Ren et al., 2017). Evidence suggests that cpRNP transcript accumulation is changed when treated 

with retrograde signal activators (Figure 3.18), and a nuclear localisation has been observed for 

alternatively transcribed forms of cp31A and cpSEBF (section 3.3.3), indicating the possibility that 

these cpRNPs’ subcellular localisations may be affected by retrograde signals.   

To investigate whether retrograde signalling affected cpRNP localisation and distribution in 

addition to transcript accumulation, transgenic lines cp31A (NP::cp31A-GFP (cp31a_1)) and cpSEBF 

(NP:cpSEBF-GFP (cpsebf_1)) using cpRNP native promoters and GFP fusions were examined (see 

Materials and Methods). Seedlings were germinated and grown on control media or media 

containing 0.5mM Lincomycin. These plants were grown at 22oC for 3 days in darkness and treated 

with 24hr R-80 to induce de-etiolation, before being treated with DAPI staining and mounted for 

examination with a confocal microscope.  

 

Comparison of NP::cp31A-GFP treated with and without Lincomycin by confocal examination. In 

planta confocal analysis showed that, without Lincomycin, NP::cp31A-GFP transgenic seedlings 

showed clear GFP fluorescence in cotyledons (Figure 3.20 panel C). Observations of GFP in mesophyll 

cells showed a co-localisation of NP::cp31A-GFP with chlorophyll auto-fluorescence (Figure 3.20, 

panels F, G, H), and a possible co-localisation with DAPI-stained nuclei (blue) (panel I) (red circle). 

The pattern of expression correlates with the one observed in similar experiments described in 

section 3.4.2. 

 When treated with Lincomycin NP::cp31A-GFP fluorescence was observed in the cotyledons 

(Figure 3.21, panel C). No chlorophyll auto-fluorescence could be detected in Lincomycin-treated 

plants (panel B, G), consistent with the chloroplast biogenesis arrest by Lincomycin and seedlings did 

not accumulate chlorophyll, remaining white. In a closer examination of mesophyll cells, GFP was 

observed to co-localise to multiple few DAPI-stained nuclei (blue) (panels F, I, H) (circled).  

 3D representations of whole cells were constructed using an integration of Z-stacks for 

NP::cp31A-GFP fluorescence in seedlings treated with (Supplementary Figure 3.6 panel B) or without 

Lincomycin (Supplementary Figure 3.6, panel A). These images were enhanced in post-processing. In 

the 3D reconstructions, the GFP in seedlings without Lincomycin co-localises with red-indicated 

chlorophyll auto-fluorescence, and with DAPI-staining (circled). Seedlings treated with Lincomycin 
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did not show chlorophyll auto-fluorescence, and GFP is seen to co-localise with DAPI-stained nuclei. 

A cytoplasmic distribution was also observed.  

Therefore, without Lincomycin, NP::cp31A-GFP shows a dual localisation nucleus-chloroplast 

distribution and a nucleus/cytoplasmic distribution in Lincomycin-treated plants.  

 

Subcellular localisation of NP::cpSEBF-GFP treated with and without Lincomycin. In planta 

subcellular distribution of NP::cpSEBF-GFP in seedlings not treated with Lincomycin showed GFP-

fluorescence in cotyledons with co-localisation with chlorophyll auto-fluorescence (red), indicating a 

plastid localisation (Figure 3.22, panels A, B, C, F, G, H). However, GFP signal was not observed to co-

localise with DAPI-stained nuclei (panels D, I).  

 In seedlings treated with Lincomycin, no chlorophyll auto-fluorescence could be observed 

(Figure 3.23, panel B, G) due to the treatment. NP::cpSEBF-GFP fluorescence was strong (panels C, 

H), but did not co-localise with DAPI-stained nuclei (blue) (panels A, D, F, I), indicating that 

retrograde signal activators did not induce a nuclear localisation in NP::cpSEBF-GFP. However, 

NP::cpSEBF-GFP can be seen fluorescing in structures that may correspond to a proplastid 

distribution. 

 Z-stacks were integrated into a 3-D representation to better analyse the NP::cpSEBF-GFP 

fluorescence distribution in the whole cell without Lincomycin (Supplementary Figure 3.7, panels A, 

B) and with Lincomycin (panels C, D). The 3-D reconstruction shows an exclusively chloroplast 

localisation for NP::cpSEBF-GFP in control seedlings, and no co-localisation with DAPI-stained nuclei 

(blue) in Lincomycin-treated seedlings.  

 

In summary, in planta confocal analysis of NP::cp31A-GFP indicated a dual chloroplast and 

nuclear localisation without Lincomycin, and a nuclear and cytoplasmic localisation in plants treated 

with Lincomycin. In contrast, NP::cpSEBF-GFP showed a chloroplast localisation in control conditions, 

and did not show a nuclear localisation in Lincomycin-treated seedlings. This indicates a capability 

for cp31A to alter localisation dependent upon retrograde signal activator treatment, but indicates 

that this is not the case for cpSEBF, suggesting both additional function for cp31A and diversification 

between the two.  
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3.7. Discussion. 

 This chapter investigated the potential functions of the cpRNPs beyond the chloroplast, with 

focus on nuclear roles and the involvement of light- and temperature- signals in driving changes in 

subcellular distribution and accumulation, as well as the potential links in chloroplast-nuclear 

coordination for photosynthesis.  

 

3.7.1. cpRNPs localise to the nucleus and are critical to photosynthesis-associated nuclear gene 

transcript accumulation. 

 Chapter 2, section 2.3.7 reported evidence that plastid mRNAs’ transcript abundance is 

dependent upon cpRNPs’ functioning during de-etiolation. However, many of the processes that 

cpRNPs contribute to (such as the transcript accumulation for genes required for the photosynthetic 

apparatus) involve not only plastid-encoded subunits, but nuclear-encoded subunits too. The 

assembly of the photosynthetic complexes requires a tight co-ordination between the plastid and 

the nuclear genomes, including regulatory mechanisms that link them (Hernández-Verdeja and 

Strand, 2018), and the cpRNPs are therefore implicated as one of these mechanisms.  

While some experimental evidence using in vitro gel shift assays on truncated forms of 

cp31A (Kwon and Chung, 2004) and protein blots from of cp29A on purified nuclei lysates (Gosai et 

al., 2015), predicted a nuclear subcellular localisation for cpRNPs, no in planta evidence of 

accumulation in the nucleus had been reported. In this chapter, in addition to further bioinformatic 

evidence presented to support predictions of a nuclear distribution for cp29B, cp33B, cp33C, cp31A, 

and cp29A, experimental results provide not only evidence an in vivo nuclear localisation for 

alternatively transcribed versions of cpRNPs but also mechanistic insights into how light and 

photoreceptors may be involved in their expression. 

In particular, the mechanism of phy action investigated was the recently described phy-light 

dependent modulation of alternative transcriptional start sites linked to alternative subcellular 

localisations (TSS) (Ushijima et al., 2017). Ushijima et al’s research described the global role of phys 

in controlling the light-dependent selection of TSS, and identified cp31A, cpSEBF, cp29A, and cp29C 

among the potential targets of this mechanism to produce longer and shorter isoforms. The 

experimental evidence gathered in this chapter showed that, as predicted by Ushijima et al (2017), 

the longer and shorter TSS isoforms for cpRNPs cp31A and cpSEBF (TSS_A and TSS_B) have a 

chloroplast and nuclear localisation in planta (section 3.3.3). This evidence therefore supports a 

light-dependent mechanism that alters subcellular localisation of these proteins, and a nuclear 
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localization indicates a wider role for cpRNPs beyond the previously described effects over plastome 

regulation (Ruwe et al., 2011; Kupsch et al., 2012). Interestingly, the STEP1 cp31A isoform described 

by Kwon and Chung (2004) has an identical sequence to cp31A (TSS_B). The STEP1 isoform was 

previously described to bind single-stranded G-rich plant telomeric DNA, but not double-stranded 

telomeric DNA; this indicates that the nuclear localisation observed for the shorter cpRNP TSS_B 

isoforms may function through binding to single-stranded DNA (Kwon and Chung, 2004).  

 For some of the cpRNPs additional TSS isoforms were also described by Ushijima et al, 

(2017); in particular multiple shorter isoforms were described for cp29C and cpSEBF. While the 

localisation and function of these further isoforms was not addressed in this thesis, these alternate 

forms might localise in multiple alternative localisations, including mitochondrial, and contribute to 

the inter-organellar communication networks necessary to cellular metabolism to environmental 

changes.  

 

Revealing a novel function of cpRNPs in the coordination of the photosynthetic gene expression 

between nuclear and the plastid transcriptomes during de-etiolation.  

De-etiolation is a critical phase of seedling establishment (Armarego-Marriott et al., 2020) 

that requires the co-ordinated expression of photosynthesis-associated nuclear genes to 

complement plastome gene expression. The in planta nuclear localisation of cpRNPs suggested a 

potential role for cpRNPs in this process, complementing their influence reported in the plastome 

(Chapter 2 Section 2.3.7). The evidence presented in this chapter supports a novel role for cpRNPs as 

a part of the mechanism controlling the accumulation of nuclear transcripts in response to phy-

transduced signals (Figure 3.11). This expands the role of cpRNPs beyond the modulation of plastid-

encoded transcripts (Kupsch et al., 2012; Teubner et al., 2017; Teubner et al., 2020), and therefore 

points to a much wider biological function for cpRNPs in regulating photosynthesis-associated 

processes. Furthermore, this discovery hints at a potential of cpRNPs to act in the networks that co-

ordinate the nuclear and plastome genomes. Whilst the exact mechanism and function of the 

cpRNPs localised in the nucleus was not addressed, future studies, potentially including RIP-chip, 

protein-protein interactions and subnuclear localisation, would be of interest to dissect their exact 

nuclear role.   

The novel function of cpRNPs in modulating nuclear transcripts in this chapter was described 

over PhANGs that encode complementary genes to plastome-encoded subunits. The data gathered 

(section 3.4.2) therefore supports that the investigated phy-cpRNP mechanism contributes to the 
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synchronisation of complementary nuclear-encoded and plastome-encoded subunits. For example, a 

cpRNP-dependent effect was reported in this chapter for PSBQl2, a part of the NADH Dehydrogenase 

apparatus; and over PSAN of Photosystem I; two processes over which cpRNPs have been 

documented to effect in the plastome (ndhF, ndhK, ndhB, ndhG, psaJ) (Kupsch et al., 2012; Okuzaki 

et al., 2019) (Chapter 2, Figure 2.5). In addition to informing a deeper understanding of how 

photosynthetic apparatus is built and maintained as a complex processes encoded in two 

compartments, this also provides an entry point from which to investigate further nuclear-encoded 

transcripts that the cpRNPs may be involved in regulating in a global manner.   

Furthermore, a nuclear-localisation for cpRNPs may extend to the modulation of genes that 

may not have a direct ‘counterpart’ in the plastome, but are associated to a photosynthetic function. 

This role was illustrated by cpRNPs’ modulation of the nuclear-encoded oxygen evolving complex 

(OEC) of PSII (Figure 3.11) (Thornton et al., 2004; Bricker et al., 2012), the LHCB2.3 and LHCB2.4 

nuclear-encoded Light Harvesting Antenna complexes (Holtzegel, 2016), and PSB27, involved in the 

high light intensity response (Hou et al., 2015). The targets may also vary depending on the 

environmental growth conditions, such as the light and cold temperature effects observed over 

DEG1, involved in D1 protein turnover in PSII (Schuhmann and Adamska, 2012). As such, their 

nuclear targets indicate that cpRNPs also regulate chloroplast responses to stimuli and stresses 

linked to photosynthetic function.  

In addition, the data gathered indicate that different members of the family, by having a 

differential environmental responsiveness and target preference, could differentially contribute to 

the modulation of different photosynthetic complexes. While some targets are common to more 

than one cpRNP, but others have a preferential regulation by a specific cpRNP under specific 

environmental conditions. A combinatorial role for cpRNPs was previously described for cp31A and 

cp31B (Tillich et al., 2009), and results presented in section 3.4.2 indicate this extends to the wider 

family too.  

 

3.7.2. Temperature is a significant regulator of cpRNP subcellular distribution and nuclear 

functioning  

 This chapter showed some evidence that ambient temperature (17-27oC) may be a 

significant regulator of cpRNPs’ protein accumulation. While no direct protein quantifications were 

carried out, cell biological studies showed that for cpRNP-GFP protein fusions, fluorescence intensity 

varied with temperature. These results support a higher accumulation of cpRNPs-GFP in the cold in 
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support of their described participation in cold temperature responsiveness (Amme et al, 2006, 

Goulas et al, 2006). The data also indicated a lower GFP fluorescence signal for cp31A-GFP and 

cpSEBF-GFP in warmer temperatures, and may reflect a temperature-dependent protein dynamic 

correlating with their function (Section 3.5.2). Evidence gathered in Chapter 2, section 2.6.3 showed 

an additional temperature-dependent transcriptional control of the cpRNP genes; however, no clear-

cut links between transcript abundance and protein accumulation were detected at the level of 

cpRNPs-GFP fluorescent signal. As indicated by the study of GFP-tagged versions of the cpRNPs 

under native promoter expression, the abundance of cpRNPs varies with temperature, and whether 

the observed preferential accumulation of cp31A and cpSEBF in the cold is exclusive during de-

etiolation remains to be addressed. Yet, during this developmental stage, cpRNPs are essential for 

plastid development and the construction of a functional chloroplast. Cold sensitivity may vary over 

development as studies in older plants showed no change in protein abundance in the cold (Kupsch 

et al., 2012; Waese et al., 2017) . 

In addition to temperature-dependent changes in protein abundance, this chapter provides 

initial evidence of a temperature-dependent impact on subcellular distribution. Cell biological 

studies of cp31A-GFP showed a dual nucleus-chloroplast localisation at 17oC and 22oC, but an 

exclusively chloroplast localisation at 27oC (Figure 3.13). Temperature-dependent changes in 

subcellular localisation may be a key influence over the cold and physiological temperature-specific 

roles for cpRNPs. The chloroplast- or nuclear-specific localisation observed under different 

temperature regimes may be a product of temperature-dependent expression of the TSS isoforms of 

cp31A. For example, this indicates expression of a nuclear-localised cp31A (TSS_B) isoform during 

17oC and 22oC, but not at 27oC. This likely linked to the thermosensing capacity of phyB’s thermal 

reversion properties at higher temperatures (Jung et al., 2016; Legris et al., 2016), and its control of 

cpRNP TSS isoform expression (Ushijima et al., 2017). Interestingly, alternative TSS- and 

temperature-dependent subcellular localisation may be a specific characteristic of some cpRNPs, as 

cpSEBF subcellular localisation was not observed to be temperature-dependent. However, the 

specific molecular connections between TSS-derived cpRNPs isoforms and phyB thermosensing 

remain to be elucidated. 

Overall, results suggest that under natural cold-warm temperature gradients cpRNP protein 

abundance varies, with promoting accumulation favoured at the cold end of the gradient and 

reduced at the warm end. The role of temperature also extends to the modulation of cpRNP 

subcellular localisation and the generation of phy-dependent TSS-derived isoforms. Further 

dissection of the mechanisms behind the temperature dependent generation of TSS-isoforms will be 
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of interest towards elucidating the impact and function of cpRNPs in different subcellular 

compartments.  

 In accordance with the observed effects of temperature on protein abundance and 

subcellular localisation, an analysis of nuclear-encoded, photosynthesis-associated transcripts also 

showed that the modulation of nuclear transcripts by cpRNPs is temperature-dependent, and that 

the contributions of different cpRNPs can deliver specific temperature-sensitive effects (Figure 3.16). 

Experimental evidence in this chapter revealed a role for cp31A in modulating cold-sensitive 

regulation of multiple nuclear transcripts (Figure 3.11). This parallels the cold-sensitive phenotype 

and differential RNA-editing activity of cp31A in chloroplasts (Kupsch et al., 2012). Whilst no direct 

investigation was carried out on the mechanisms surrounding phosphorylation-dependent 

modulation of cpRNPs, cold- and light-sensitive phosphorylation has previously been reported as a 

regulator of cpRNP mRNA binding affinity (Lisitsky and Schuster, 1995; Loza-Tavera et al., 2006; 

Okuzaki et al., 2019). This may point to a post-translational modification as a key regulator of cpRNP 

functioning: multiple phosphorylation sites have been reported for the cpRNP family, including at 

multiple phosphorylation sites for cp31A, cp29A, cp29B, cp33B, and cpSEBF (Reiland et al., 2009; 

Roitinger et al., 2015; Baginsky, 2016). While not yet demonstrated for cpRNPs, protein 

phosphorylation has also previously been linked to protein accumulation in cold stress (8oC) 

conditions (Kamal et al., 2020). 

This possibility is supported by the effects of cp31a mutation on Photosystem I and 

photorepair processes, which were detected on transcripts at 17oC but not at 22oC. The cold 

sensitivity of cp31A may also be linked to specific cold responsiveness of transcripts from 

Photosystem II, Photosystem I, and photorepair-associated processes, for which protein abundance 

has been shown to increase during cold-acclimation processes (Badger et al., 1982; Strand et al., 

1997). Overall, results provided here support a role for cp31A in mechanisms to adapt 

photosynthesis to lower temperature, extending its previously described role in non-chilling cold 

temperature (Kupsch et al., 2012), and participating in the adaptation of photosynthetic gene 

expression to lower temperatures in both the nucleus and the plastome.  

However, in contrast to cp31A, regulation of nuclear transcripts by cp29B and cpSEBF 

occurred predominantly at 22oC and was often insensitive to cold or warm conditions (although 

exceptions were observed, such as the cold-sensitivity of PSBO2 and warm-sensitive regulation of 

PSB27 by cpSEBF). While an increase in cp29B and cpSEBF protein abundance has been reported in 

the chloroplast in cold conditions (Amme et al., 2006; Goulas et al., 2006), modulation of nuclear 
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mRNA accumulation was not correlated and the cold-related roles of cp29B and cpSEBF may be 

chloroplast-specific. This possibility is supported by observations that cpSEBF was not detected in 

the nucleus in planta in cold conditions. However, only a limited range of targets was investigated, 

and more extensive analysis such as via RNAseq experiments may be necessary to fully analyse the 

temperature responsiveness of nuclear mRNAs in a cp29B- and cpSEBF-dependent manner. 

Therefore, although the mechanisms behind the different cpRNPs’ acquisition of temperature 

sensitivity are still unclear, the evidence provided suggests that these mechanisms affect nuclear 

targets that are linked to the phys. 

For the studied cpRNPs cp29B, cpSEBF, and cp31A, a role in warm-temperature responses 

seem to be lesser compared to cold conditions; in correlation with trends in cpRNPs-GFP reduced 

fluorescence signals. Only PSB27 transcripts for a thylakoid protein with a role in adapting to light 

intensity changes (Hou et al., 2015)were detected to be cpSEBF- and cp31A- dependent in the warm 

(Figure 3.16); whether other photoprotection-associated genes have a cpRNP-dependence in the 

warm awaits further genomic experimental data.  

In summary, this section suggests that nuclear-encoded transcript regulation by cpRNPs 

occurs predominantly in cold (17oC) and at 22oC, and in the warm the function of these proteins can 

be affected by mechanisms that lead to a lower accumulation. The reduced effect of cpRNPs 

contrasts with the warm-temperature sensitivity observed by phyB over nuclear-encoded 

transcripts, which affected all tested Photosystem II- and NADH Dehydrogenase-associated 

transcripts (Figure 3.16). Whether other cpRNPs not investigated here are exclusively working in the 

warm and in a phy-dependent manner, remains to be explored, together with the full sensitivity of 

the plastome and the nuclear transcripts linked to cpRNPs functions. 

 

3.7.3. cpRNPs are regulated by the retrograde signalling pathway.  

The operation and assembly of the photosynthetic apparatus is dependent upon anterograde and 

retrograde signalling pathways between the chloroplast and nucleus. The retrograde signalling 

pathways are activated when the plastid is stressed or subject to a specific stimulus and alters 

nuclear processes such as nuclear transcripts accumulation in response (Jarvis and López-Juez, 2013; 

Szechyńska-Hebda and Karpiński, 2013; Chan et al., 2016). This thesis provides evidence that 

indicates cpRNPs regulate both plastome- and nuclear-encoded transcripts that contribute to the 

assembly of photosynthetic apparatus in the chloroplast (Chapter 2, section 2.3.7, Chapter 3 section 

3.5.2); cpRNPs functional role in modulating nuclear-encoded genes that are among the targets of 
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Retrograde signals including PhANGS such as the Light Harvesting Complexes (LHCBs) (Susek et al., 

1993; Strand et al., 2003) prompted the exploration of testing whether they are part of the RS 

pathways.  

The data collected suggests cpRNPs respond to treatments that activate retrograde signals 

(RS) such as Lincomycin (Linc) and Norflurazon (NF), which reduce cpRNP transcript abundance in 

treated plants. This suggests that cpRNP transcript accumulation is retrograde-signal dependent, and 

that cpRNPs could be functionally involved in integrating signals from the plastid in addition to 

delivering phyB, nuclear-derived signals in the anterograde pathway. Furthermore, while 

experimental data indicated a consistent down-regulation of all tested cpRNPs to Lincomycin, a 

differential sensitivity to Norflurazon was detected between members (Figure 3.18). The regulation 

of cpRNPs by retrograde signals is under-explored, but published Northern Blot analyses previously 

revealed the down-regulation of barley Hvcp31A in Norflurazon-treated plants; showed no change 

to Hvcp31B; and detected an up-regulation of Hvcp33A (Churin et al., 1999). Although transcript 

accumulation of Arabidopsis orthologues for Atcp31B and Atcp33A were not examined, evidence 

supports the observed differential sensitivity of At-cpRNPs to Norflurazon-induced retrograde signals 

with only cp29B showing down-regulation among the tested ones (Figure 3.18). Yet, this data 

contrasts with genomic experiments that show cp29B, cp29C, cpSEBF, and cp31A down-regulation in 

Norflurazon (Figure 3.17). The differences may reflect changes in the light environments used, with 

experiments presented here conducting in low light (10 µmol white light m-2s-1) versus the higher 

light conditions used in genomic tests (100 µmol white light m-2s-1). Whether cpRNPs also respond to 

light intensity signals was not addressed in this thesis, with the exception of fluctuating light 

environments.  

Although overlapping in their signal ranges, light intensity is a key regulator of retrograde 

signals (Pfannschmidt et al., 2008; Szechyńska-Hebda and Karpiński, 2013). Previous comparisons of 

Norflurazon-treated plants in low light compared to high light in cucumber revealed higher levels of 

33-kDa protein of the Oxygen Evolving Complex, a higher quantum yield of electron transport, and 

better photochemical quenching capacities (Jung et al., 2000). Interestingly, the 33-kDa protein 

described is encoded by PSBO genes in Arabidopsis, shown to be cpRNP-dependent during de-

etiolation (Figure 3.11). This may suggest cpRNP function is also modulated by retrograde signals in 

different light intensities, therefore allowing a greater specificity for plants to respond to specific 

stress-inducing signals, and a more finely-tuned and energetically-responsible response.  

Retrograde signals are transduced through a plethora of pathways, but recent research has 

indicated the participation of phyB/PIFs in a GUN1-mediated pathways (Martín et al., 2016; Jiang et 
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al., 2020). Interestingly, cp28A was identified within the Martin et al (2016) dataset as PIF-repressed, 

light-induced, RS-downregulated gene. As such, dissection of the role of phys and PIFs in modulating 

RS modulation of cpRNPs function would be an interesting area for future exploration.  

In addition, experiments with Lincomycin showed an alteration in patterns of cpRNP 

subcellular localisation and distribution. Examination of native-promoter cp31A-GFP transgenic 

provided with indication that retrograde signals can induced cpRNPs changes in subcellular 

distribution. In contrast to the dual chloroplast-nucleus localisation observed in control plants, 

NP::cp31A-GFP was detected only in the nucleus and cytoplasm in Lincomycin-treated plants (Figure 

3.19, Figure 3.20). This alteration in localisation suggests that the nuclear-localised cp31A (TSS_B) 

may be the preferentially expressed isoform, and not the chloroplast-localised cp31A (TSS_A). This 

hints at a RS-modulation of the phyB-TSS selection mechanisms, and further suggests that 

differential expression of alternatively transcribed cpRNP isoforms is an important mechanism to 

diversify the functional roles of cpRNP proteins. Published research shows that Lincomycin represses 

photomorphogenesis via a GUN1-mediated, phytochrome/PIF-repressed pathway (Gommers et al., 

2020). Whether this pathway is involved in the RS-modulation of cpRNPs and links to the phyB- 

dependent TSS-isoforms remains to be determined, but this possibility is supported by initial 

bioinformatics identification of cpRNPs as targets of the GUN1/phyB dependent mechanisms, 

including changes in their transcript accumulation.  

 A Lincomycin-RS-induced differential expression of nuclear-localised cpRNPs such as cp31A 

could contribute to specific modulation of nuclear-encoded transcripts in the absence of functioning 

chloroplasts. The identification of cp31A-dependent nuclear-encoded transcripts with a function in 

photoprotective mechanisms and responsiveness to light fluctuations that are RS-modulated (such 

as PSB27), points at a potential area to develop new studies on the links between cpRNPs and 

retrograde signals (Szechyńska-Hebda and Karpiński, 2013; Richter et al., 2020). 

 The data also point at some cpRNPs having additional alternatively localisations, non-

chloroplast and non-nuclear, when treated with Lincomycin. These localisations may be linked to the 

unexamined cpSEBF isoforms TSS_C and TSS_D. The data shown in Figure 3.21 may reflect a 

localisation in other plastid forms, such as proplastids, as indicated by previously reported plastid 

sizes (Sakamoto et al., 2008), appearance (Robertson et al., 1995; Haseloff et al., 1997), and 

biological function of proplastids as an undifferentiated chloroplast precursor (Mullet, 1988b). In 

support of the possibility, a proteome analysis of proplastids in Z. mays identified multiple ZmcpRNP 

orthologs present, including an AtcpSEBF orthologue (Majeran et al., 2012), the presence of cpSEBF 

and cp31A orthologues in rice etioplasts (von Zychlinski et al., 2005), and cp31A in tobacco 
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proplastids (Baginsky et al., 2004). As Lincomycin arrests plastid translation and cpRNPs have 

previously been detected in such a wide range of plastids, the cpRNP functional mRNA targets in 

these plastids would likely change depending on the plastids’ developmental status and needs. This 

may point at an unexplored role for cpRNPs in the control of developmental plastid transitions. 

However, an important caveat to the investigation for overlap between cpRNP-GFP and chloroplasts 

treated with Lincomycin is that, while Lincomycin may induce photobleaching and inhibit chlorophyll 

accumulation, the chloroplast itself still exists. Therefore chlorophyll autofluorescence is absent and 

cannot be used as a marker for chloroplasts- to circumvent this problem, a dye such as 

carboxyfluorescein diacetate could be used in future experiments to identify chloroplasts and make 

a more definitive study of chloroplast co-localisations in this condition.  

 The central message of this chapter is that the impact of cpRNPs extends beyond exclusively 

plastid-encoded mRNAs, and identifies that a mechanism likely to be at the heart of cpRNPs’ 

integration of environmental responses is the generation of phy- and TSS-derived isoforms. In turn, 

phy-directed mechanism hints at an even broader participation of cpRNPs in environmental sensing 

and inter-organellar (plastid-nuclear and potentially beyond) response co-ordination. Furthermore, 

results presented in this chapter highlight potential functional differences between members of the 

cpRNP family, including differing subcellular localisation, differential control of nuclear and plastidic 

mRNA targets, and differential temperature- and retrograde signal sensitivity. These findings are 

summarised in a working model for the influence of cpRNPs on photosynthetic processes (Figure 

3.23).  
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Chapter 4: Beyond Arabidopsis: Investigation into the functional conservation of cpRNPs between 

Arabidopsis and tomato. 

4.1. Introduction. 

 This chapter builds on evidence that Chloroplast RNA Binding Proteins (cpRNPs) are highly 

conserved in a range of crop plants beyond Arabidopsis, including both dicot and monocot species. 

The chapter also investigates a role for cpRNPs beyond the construction and maintenance of 

photosynthetic apparatus in the chloroplast to their potential roles in different types of plastids by 

evaluating their transcript accumulation profiles in different ripening stages of tomato fruits.  

 Phylogenetic analysis of cpRNPs has previously been conducted using the first RNA 

Recognition Motif (RRM) featured in the protein sequence (Ohta et al., 1995). This classified the 

then-identified Arabidopsis proteins Atcp29, Atcp31A, and Atcp33 into three subgroupings defined 

by sequence similarity. Orthologous cpRNPs had also been identified in the dicot species N. 

sylvestris, N. plumbaginifolia and S. oleracea, showing that cpRNPs were well conserved amongst 

dicot plants (Li and Sugiura, 1990; Schuster and Gruissem, 1991; Ye et al., 1991; Mieszczak et al., 

1992; Ohta et al., 1995). cpRNP orthologues were also been identified in the monocot Maize (Cook 

and Walker, 1992), and later in Barley (Churin et al., 1999). With the sequencing of the Arabidopsis 

genome further cpRNPs were identified (Tillich et al., 2009) bringing the total to 10 genes (Ruwe et 

al., 2011). Recently, orthologs of all ten Arabidopsis cpRNPs were described in rice (Wu et al., 2021), 

indicating that cpRNPs are widespread in crops and likely strongly conserved across higher plants. 

This chapter generates an updated phylogenetic tree of cpRNPs protein sequences using genomic 

information from available plants as a starting point to examine how widespread cpRNPs are 

conserved in context of exploring functions beyond the model plant Arabidopsis.  

cpRNPs are induced during de-etiolation (Schuster and Gruissem, 1991) and are critical to 

greening in this stage (Chapter 2, section 2.3.3), regulating multiple transcripts in the plastome 

(Tillich et al., 2009; Kupsch et al., 2012; Teubner et al., 2017). During de-etiolation, dark-grown 

etioplasts transition into photosynthetically active chloroplasts with a consequent increase in cpRNP 

transcripts and proteins (Smith, 1954; Armarego-Marriott et al., 2020). Yet, RNA processing activities 

are essential to determine which transcripts are selected for translation and expression as plastid 

proteins. Within developmental transitions, the proteome will undergo changes as the requirements 

for plastid functions will vary. Therefore, an investigation was conducted to evaluate whether 

cpRNPs are involved in the re-organization of the plastome-encoded transcripts necessary for non-

photosynthetic plastid transitions; this chapter speculates that cpRNPs have a role in regulating 



167 
 

plastid transition states beyond the regulation of chloroplast-encoded transcripts. Chloroplast-to-

chromoplasts transition will include changes in the protein complexes required in the chloroplast, 

with the disassembly of photosynthetic complexes and accumulation of ATP Synthase required at 

high levels in non-autotrophic but metabolically active chromoplasts (Piechulla et al., 1987; Livne 

and Gepstein, 1988). 

The tomato (Solanum lycopersicum) was selected as an established research model for 

evaluation of the developmental transition from chloroplast-to-chromoplast (Cheung et al., 1993). 

This chapter investigated the links between cpRNPs’ capacity for a global modulation of the 

plastome and the required reshuffling of the plastome transcripts accumulation. One of the 

associated pathways to chromoplast development, the carotenoid biosynthesis pathway, is highly 

active in chromoplasts for the production of red lycopene (Llorente et al., 2017) and was used as 

marker to follow the involvement of cpRNPs on chloroplast to chromoplast transition.  

The investigation into the cpRNPs’ role in the plastome regulation during plastid transitions 

examined SlcpRNPs transcripts abundance during different tomato ripening stages. Micro-Tom was 

used as model for ripening studies, and SlcpRNP31 was selected as a model based on bioinformatics 

studies. A transient silencing Virus Induced Gene Silencing (VIGS) strategy was then used to silence 

SlcpRNP31 and evaluate its impact on ripening progression and links to plastome transcripts 

accumulation. 
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4.2. Materials and Methods. 

4.2.1. Plant material and genotypes tested.  

 Two cultivars of Solanum lycopersicum (tomato) plants were used for experiments: Micro-

Tom and Money Maker. Micro-Tom plants were used to examine SlcpRNPs transcript accumulation 

during different fruit ripening stages, and Money Maker was the model selected by the BRACT 

Institute in our collaborative project to generate CRISPR-CAS knock out transgenic plants. The BRACT 

crop transformation facility has a long history working with the research community to provide crop 

transformation resources, including RNA-guided Cas9 to produce gene knockouts in wheat, barley, 

and tomato. For more information, see: (https://www.jic.ac.uk/research-impact/technology-

research-platforms/crop-transformation/). For transient Virus Induced Gene Silencing experiments a 

transgenic line DelilaRosea1 (Del/Ros1) (Orzaez et al., 2009) was used in collaboration with CRAG-

Barcelona Rodriguez-Concepcion Lab.  

 

4.2.2. Plant Growth Conditions.  

 Tomato plants were grown under standard greenhouse conditions (14h light, 27oC /10h 

dark, 24oC).  

 

4.2.3. Plant Harvesting.  

Micro-Tom experiments. Micro-tom fruits were selected from maturing plants grown at the Centre 

of Research for Agricultural Genomics (CRAG), Barcelona. Plants and fruits were made available by 

the Dr. Rodriguez-Conception Lab and were selected based on visual colour cues. To ensure selected 

fruits were in the correct ripening stage, RT-qPCR of ripening marker genes was performed (see 

Table 4.1).  

 

4.2.4. RNA Extraction and cDNA Synthesis.  

 RNA extraction was performed on lyophilized tissue by an automated system supplied by 

Promega® Maxwell® 16 LEV Plant RNA Kit according to manufacturer’s instructions. RNA was 

quantified using a NanoDrop 1000 spectrophotometer (Thermo Scientific) and checked for integrity 

by 1% agarose gel electrophoresis. To synthesise cDNA, a Thermo ScientificTM RevertAid First Strand 
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cDNA Synthesis Kit was used according to manufacturer’s instructions. Oligo dTs were used in the 

reaction.  

 

4.2.5. Quantitative RT-PCR Analysis.  

 RT-qPCR was performed using 10µl LightCycler480 SYBR Green I Master Mix (Roche), 0.6µl 

forward primer (300nM) and 0.6µl reverse primer (300nM), 1µl of 50ng template cDNA, and 7.8µl of 

water in a 20µl final reaction volume. Reaction was performed in a LightCycler 480 real-time PCR 

system (Roche), using the following thermal cycling program: 95oC for 10 min, followed by 45x cycles 

of 95oC for 10 sec, and 60oC for 30 sec. At least two technical replicates of each biological replicate 

were performed, and the mean values were used for further calculations. Results were analysed 

using Microsoft Excel. Results were normalised to the tomato ACT (Solyc04g011500) reference gene 

and relative gene expression was calculated as described in Pfaffl (2001). A full list of primers used is 

presented below in Table 4.1.  

  

Table 4.1. qPCR Primers used in this chapter for the examination of SlcpRNPs in fruit ripening stages 

and in examination of the impact of Slcp31 on the process of carotenogenesis.  

Solanum lycopersicum qPCR Primers 

Reference 
Gene 

SlACT_F CCTTCCACATGCCATTCTCC 

SlACT_R CCACGCTCGGTCAGGATCT 

R
ip

en
in

g 
M

ar
ke

r 
G

e
n

e
s SlE8_F AGCTGCAAGTTGGAGAGACACG 

SlE8_R CCGCATGGAGTTGGAAATTC 

SlACS2_F CGTTTGAATGTCAAGAGCCAGG 

SlACS2_R TCGCGAGCGCAATATCAAC 

SlPG2A_F ATGGCAATGGACAAGTATGGTG 

SlPG2A_R TTAAGGCCGTTGGTGCATC 

SlRIN_F GCTAGGTGAGGATTTGGGACAA 

SlRIN_R AATTTGCCTCAATGATGAATCCA 

To
m

at
o

 c
p

R
N

P
 G

en
es

 

Slcp28A_F GGGTACTGTATGATGGTGAGAC 

Slcp28A_R CATCCAATTCCACTCCATTGAG 

Slcp29A_F CTCACAGGAAGAAGCAGAGG 

Slcp29A_R CTCCCGTCGATTTCATATCCA 

SlcpSEBF_F TTCTTCTTACCAGGGAGGCA 

SlcpSEBF_R TTGCTCACTGAACAAGGTCTC 

Slcp31_F CTGATAGAAGTCGTGGATTCGG 

Slcp31_R CCTTCCATTGAGATCATAACGG 

Slcp33A_F TGATGGATCTCAAGTTGGAGG 

Slcp33A_R CACTCATTACTTGCCTTTCACC 

Slcp33B_F AGATGGAAAGGAACTGATGGG 
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Slcp33B_R AGTCATCTATGGCTCTTCAGG 

Slcp33C_F TGACGGAAAGGAATTTATGGGA 

Slcp33C_R TTCAGATGGTAGTTCTTGGGAC 

C
ar

o
te

n
o

id
 B

io
sy

n
th

es
is

 
P

at
h

w
ay
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en

es
 

SlPSY1_F GCCATTGTTGAAAGAGAGGGTG 

SlPSY1_R AGGCAAACCAACTTTTCCTCAC 

SlZDS_F GACCTGATCAGAAGACGCCA 

ZlZDS_R GCAGAAGCTTGCCTACCTGA 

SlLYCE_F GCCACAAGAACGAAAACGAC 

SlLYCE_R CGCGGAAAAATGACCTTATC 

SlCYCB_F TGGCAAGGGTTCCTTTCTTC 

SlCYCB_R AGTCATGTTTGAGCCATGTCC 

SlLYCB_F TTGTGGCCCATAGAAAGGAG 

SlLYCB_R GGCATCGAAAAACCTTCTTG 

 

4.2.6. Virus Induced Gene Silencing Experiments.  

Nucleic Acid Techniques.  

PCR for cloning, and colony screening experiments. Protocols were performed using 1µl GoTaq 

Green Master Mix, 1µl MgCl2 2.4µL dNTPs, 0.6µl of Forward and Reverse primers, 2.2µl template 

DNA, and 19.2µl water in a 30µl final reaction volume. Thermal cycling settings were determined by 

optimal primer melting temperatures and used a 72oC final extension temperature.  

Gateway Cloning. SlcpRNPs were PCR amplified from a mix of green, ripening and ripened Microtom 

tomato cDNAs and cloned in the Gateway pDONR207 vector through a BP reaction by Dr. Karine Prado 

(University of Edinburgh Halliday Lab). The subcloning of these constructs into a pTRV/DR/Gateway 

vector via the LR reaction was performed by myself at Dr. Rodriguez-Concepcion lab in the Centre of 

Research for Agricultural Genomics. Reactions were performed using recommendations by Invitrogen 

for Gateway Cloning.  

Bacterial transformation by heat shock. For cloning and plasmid amplifications, competent E. coli 

DH5α cells were used; for plant transformation experiments, Agrobacterium tumefaciens GV3101-

pMP90 was used. All competent cells were incubated on ice for 20 min after the addition of plasmid 

DNA.  

 For E. coli transformations a 42oC heatshock treatment was applied to cells for 1 min, and 

then moved to ice for 5 min. After this 900µL sterile LB was added and cells were incubated for 1hr 

at 37oC. Bacteria were then plated on a selection medium containing gentamycin. 

For A. tumefaciens a frost-thaw treatment was applied to cells by incubating cells in liquid 

nitrogen for 1 min, and then transferring them to ice for 5 mins. After this 900µl sterile YEB was 
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added and cells were incubated for 1hr at 28oC. Bacteria were then plated on a selection medium 

containing rifampicin (100 μg/ml) and gentamicin (10 μg/ml).  

Plasmidic DNA extraction. The resulting colonies were analysed via colony-PCR and positive colonies 

were used to inoculate LB medium (5ml) with the respective antibiotic. They were incubated at 37oC 

and 180rpm and left overnight. Grown cultures were spun at 13,000rpm in a centrifuge for 5 min 

and pellets collected. Plasmid DNA was extracted using a High Pure Plasmid Isolation kit (Roche®) 

according to manufacturer’s instructions.  

Plant Transformation. Tomato fruit agroinjection for VIGS experiments was performed as described 

in Orzaez et al (2009) and Fantini et al (2013). Constructs containing VIGS sequences to induce 

silencing of the Gene of Interest (GOI) and the anthocyanin over-accumulating genes Rosea 1 and 

Delila at the same time were injected into R/D fruits (Butelli et al., 2008). Successful silencing of 

Rosea1 and Delila removed the purple colouration caused by anthocyanin overaccumulation and 

acted as a visual reporter. These areas were marked and extracted for RNA isolation.  

 

4.2.7 CRISPR-CAS9 generation of stable silencing in transgenic tomato. 

 The CRISPR-Cas9 mediated silencing for Slcp29A lines was conducted using two guide RNAs. 

The generation of the transgenic lines was performed by the BRACT facility (Lawrenson et al., 2015). 

For further information, see (https://www.jic.ac.uk/research-impact/technology-research-

platforms/crop-transformation/). To verify that the target sequence in Money Maker tomatoes is 

the same was the published Slcp29A sequence, sequencing primers were designed and used. After 

the sequence was confirmed, primers were designed for use in screening the guide cut site. For a list 

of all primers used, see Table 4.2.  

 

 

Table 4.2. Primers used to sequence Slcp29A in Money Maker tomato plants, and screening primers 

Solanum lycopersicum Slcp29A CRISPR-Cas9 project primers 

Slcp29A sequencing primers 
Slcp29A_Sequencing_F TGCCACTTTGGCAATAAAGC 

Slcp29A_Sequencing_R GGGTGTCAATTTCTTTGCCGA 

Slcp29A guide target 
primers 

Slcp29A_Guide_Screening_F AACTCGGCGTCTTAGCAACA 

Slcp29A_Guide_Screening_R GTGCTGCAAATACTATAACAGGGC 

 

 

https://www.jic.ac.uk/research-impact/technology-research-platforms/crop-transformation/
https://www.jic.ac.uk/research-impact/technology-research-platforms/crop-transformation/
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4.2.8 Bioinformatic Analysis of cpRNPs’ conservation.  

 79 cpRNP sequences from H. vulgare, V. vinifera, M. truncatulata, Z. mayes, P. trichocarpum, 

S. tuberosum, O. sativa, G. max, S. lycopersicum, N. sylvestris, N. plumbaginifolia, and S. oleracea 

were sourced from putative and confirmed protein sequences listed in the eFP Tomato database 

(Waese et al., 2017) respective to 10 identified Arabidopsis cpRNP sequences. Sequences were 

aligned and a nonrooted, bootstrapped tree without distance corrections was conducted in MEGA X 

(Kumar et al., 2018). The evolutionary relationships of taxa were analysed by neighbour-joining 

(Saitou and Nei, 1987), and bootstrap consensus was calculated from 1000 replicates (Felsenstein, 

1985). The evolutionary distances were computed using the Poisson correction method (Zuckerkandl 

and Pauling, 1965). Tree data was exported and uploaded to Interactive Tree of Life (iTOL) (Letunic 

and Bork, 2019). Sequences were aligned in CLUSTAL W (http://www.ebi.ac.uk/clustalw) (Thompson 

et al., 1994). All accessions used are provided in Supplementary Table 4.1.  

 

4.2.9. Statistical analysis.  

Statistical analysis of the data was conducted in Microsoft Excel and R (Team, 2020) using 

One-Way ANOVA, Two-Way ANOVA, and TUKEY HSD post-hoc where appropriate testing at a 

significance level of 0.05.  
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4.3. Results: Investigating cpRNPs conservation across plant species.  

 The cpRNPs have been identified in multiple higher plant species, including spinach 

(Schuster and Gruissem, 1991), maize (Cook and Walker, 1992), barley (Churin et al., 1999), and rice 

(Wu et al., 2021). Ohta et al (1995) first showed the evolutionary relationships between N. 

plumbaginifolia, N. sylvestris, A. thaliana, S. oleracea, and Z. mays for three cpRNPs, demonstrating 

that the RNA-binding domain sequences for cp31, cp29, and cp33 were strongly conserved in three 

identified groups Groups-III based on amino acid similarity (Ohta et al., 1995). However, many more 

plant genomes have now been sequenced and are available for analysis. This chapter provides with 

an updated phylogenetic analysis and outlines additional subgroupings for the cpRNP family.  

 

4.3.1. cpRNPs are conserved across green plants.  

 To determine the evolutionary relationships between cpRNPs reported in newly sequences 

plant genomes, protein sequences were identified for cpRNPs as described on the ePlant database 

(Waese et al., 2017). A multiple sequence analysis in MEGA X (Kumar et al., 2018) was conducted to 

verify structural similarities. A neighbour-joining method was then used to generate an unrooted 

phylogenetic tree, from which evolutionary history could be inferred (See 3.2 Materials and 

Methods).  

The identified sequences included all 10 cpRNP sequences from Arabidopsis thaliana, 5 

sequences from Hordeum vulgare, 8 sequences from Vitis vinifera, 7 sequences from Medicago 

truncatulata, 6 sequences from Zea mays, 10 sequences from Poplar trichocarpum, 4 sequences 

from Solanum tuberosum, 7 sequences from Oryza sativa, 15 sequences from Glycine max, 7 

sequences from Solanum lycopersicum, 5 sequences from Nicotiana sylvestris, 2 sequences from 

Nicotiana plumbaginifolia, and 2 sequences from Spinacia oleracea. This tree, shown in Figure 4.1, 

indicates a wide conservation of cpRNPs between crop plants.   

 

All cpRNPs are present across monocot and dicot plants. A phylogenetics comparison previously 

classified cpRNP members into three subgroups (Groups I, II, and II) based on similarity in RNA-

binding domain I (Ohta et al., 1995). These subgroups are indicated in red (Group I), blue (Group II), 

and green (Group III) in Figure 4.1. Within these groups, members from N. sylvestris and Arabidopsis 

were found in all three groups. Based on these observations, Ohta et al (1995) predicted that 

chloroplast RNPs were therefore essential to chloroplast functions in dicot plants.  
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Now that additional genomes have been identified, as illustrated in Figure 4.1 cpRNPs can be 

seen to not be exclusive to dicot plants but widely present also in monocots like O. sativa (rice), Z. 

mays (maize), and H. vulgare (barley). Monocot RNPs have multiple members within two or more of 

the previously defined subgroups, indicating a strong orthologous evolutionary relationship across 

cpRNPs. The weakest grouping observed was for Atcp33A, for which bootstrap analysis was 57 when 

comparing to the other cp33A orthologues. This analysis shows that conservation of cpRNPs across 

both dicots and monocots may reflect their importance for chloroplast function. The phylogenetic 

analysis also shows that, as expected, cpRNPs in monocot plants rice, maize, and barley are more 

closely related to each other compared to dicot members.  

Interestingly, no orthologue of Atcp33A was reported in any monocot plants in eFP tomato 

(Waese et al., 2017). A subsequent BLAST search (data not shown) of the Arabidopsis cp33A protein 

sequence in O. sativa, Z. mays, and H. vulgare reported close sequence matches, indicating putative 

proteins as orthologous candidates for Hvcp33A, Oscp33A, and Zmcp33A in these organisms. 

Research has also experimentally confirmed the putative Oscp33A rice orthologue (Wu et al., 2021), 

Hvcp33C (Churin et al., 1999), indicating that cp33A is also strongly conserved in monocot plants.  

 

Subgroups I-III do not accurately describe all cpRNPs. Now that additional cpRNP members have 

been identified, the groupings described by Ohta et al (1995) using first RNA Recognition Motif no 

longer definitively describe all cpRNPs- Group I contains predominantly orthologues of AtcpSEBF and 

Atcp29A; Group II contains mostly 31-kDa molecular weight members and orthologs of Atcp31A; and 

Group III contains 33-kDa members similar to Atcp33A. Figure 4.1 shows that subgroupings can also 

be observed for proteins similar to Atcp28A, Atcp29C, Atcp29B, and for Atcp33C and Atcp33B 

together, supported by bootstrap values >80. The tree presented in Figure 4.1 was generated using 

whole protein sequences rather than the conserved RRM motif and so the subgroupings shown are 

only comparable as a guide, but nevertheless show support for the previous subgroupings and reveal 

additional subgroupings. 

Interestingly, cpRNPs identified in S. tuberosum were not found to be closely related to 

other cpRNP subgroupings despite previously being described as an orthologue of AtcpSEBF (Boyle 

and Brisson, 2001), and similarly unrelated was S. lycopersicum cp33B. This implies that cpRNPs in S. 

tuberosum are not as closely conserved and may have varied functionality. 
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4.3.2. Investigating sequence differences between paralogous cpRNPs. 

The previously reported phylogenetics analysis (Ohta et al., 1995) and phylogram shown in 

Figure 4.1, revealed the paralogous gene duplication of multiple cpRNPs, including cp29A and 

cpSEBF, and for cp31A and cp31B. Similar potential gene duplications can also be observed in 

multiple crop species, such as for multiple proteins for cpSEBF in P. trichocarpa and G. max, and Z. 

mays. Functional redundancy within the Arabidopsis cpRNP family was previously described 

between cp29A and cp31A during mutant phenotype analysis (Kupsch et al., 2012). 

To evaluate the differences between AtcpSEBF and Atcp29A and between Atcp31A and 

Atcp31B and how they may relate to function, a sequence analysis was performed. This was 

conducted using a pairwise sequence analysis via EMBOSS NEEDLE program (Madeira et al., 2019) on 

whole protein sequences and comparing results to protein domain function (Figure 4.2). cpRNP 

protein sequences contain the following domains: a chloroplast transit peptide that localises cpRNPs 

to the chloroplast; an acidic linker domain; and two RNA-Recognition Motifs that regulate RNA-

binding divided by a spacer domain (Ohta et al., 1995; Ruwe et al., 2011). An overall view of 

Arabidopsis protein sequences and their domains is shown in Figure 1.2 in Chapter 1, Section 1.3.2. 

Comparing Atcp29A and AtcpSEBF. Pairwise analysis reported a shared 65.2% amino acid identity 

between cp29A and cpSEBF, and a 71.2% amino acid similarity. The comparative sequence analysis 

showed minor differences in the chloroplast transit peptides, but that cp29A features a much longer 

RNA Recognition Motif 1 than cpSEBF (Figure 4.2), as well as a longer spacer domain.  

Comparing Atcp31A and Atcp31B. Pairwise sequence analysis reported a 205/329 (62.3%) identity 

and a 240/329 (72.9%) similarity between protein sequences between cp31A and cp31B. Differences 

between the sequences showed that cp31A has a longer chloroplast transit peptide than cp31B, 

accounting for 7aa. cp31A also contains a longer acidic domain than cp31B (Figure 4.2). 

Overall, the phylogenetics analysis presents an updated perspective on the conservation of 

cpRNPs between dicot and monocot species to show a strong evolutionary conservation that implies 

a conservation of function. This work builds on the subgroupings identified in Ohta et al (1995) and 

expands them, showing the need for additional subgroupings to categories all cpRNP proteins. This 

section also shows that the gene duplication of paralogous cp29 and cp31 variants contain notable 

sequence differences that will inform function.  
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4.4. Results: Investigating cpRNP functionality in plastid development in Solanum lycopersicum  

4.4.1. Tomato as a model to crop to investigate cpRNP role in plastid developmental transitions.  

cpRNPs are critical to light-induced plastid greening during de-etiolation, as demonstrated in 

Chapter 2, section 2.3.3. Greening responses involve the activation of multiple plastome transcripts 

to build the photosynthetic machinery; this process involves remodelling of the plastid from an 

etioplast to a chloroplast and points at the importance of cpRNPs in modulating processes necessary 

for, or related to, plastid transitions (Mullet, 1988a). Being global post-transcriptional modulators of 

the plastome encoded mRNAs (Kupsch et al., 2012; Teubner et al., 2017), cpRNPs may also be 

involved in subsequent plastid developmental transitions, such chloroplasts to chromoplasts, being 

well-placed to modulate the changes in processing and stabilization to allow translation of the 

appropriate transcripts required to promote ATP synthesis and halt the activity of the photosystems 

(Livne and Gepstein, 1988).  

The tomato, Solanum lycopersicum, is an ideal model crop to investigate chloroplast-to-

chromoplast transitions including the re-organization of the plastome genome (Cheung et al., 1993); 

additionally, it is a plant in which cpRNPs are strongly conserved (Figure 4.1). In addition, the tomato 

is one of the world’s most important fruit crops and one of the largest fruit horticultural crops with a 

market worth billions (FAO, 2019). Globally, tomato is also a key dietary source of provitamin A and 

antioxidants, produced in the plastidic carotenoid biosynthesis pathways (Klee, 2010). Maintaining 

tomato’s agricultural yields and product quality in view of changing climates will be important 

economically and nutritionally for many cultures due to the high sensitivity of commercial tomato 

cultivars to environmental changes (FAO, 2019; Van Ploeg and Heuvelink, 2005). 

 

Red light signalling pathways in Tomato are similar to Arabidopsis. Red light is an environmental 

input for tomato fruit development, and carotenoid accumulation (Schofield and Paliyath, 2005; 

Azari et al., 2010; Liu et al., 2015). Despite their evolutionary histories diverging c. 100 million years 

ago (Ku et al., 2000), phytochrome signalling pathways are similar between Tomato and Arabidopsis. 

Multiple phytochrome genes have been identified in tomato: phyA, phyB1, phyB2, phyE, and phyF 

(Hauser et al., 1997). SlphyA, as in Arabidopsis, is abundant in darkness and degraded in the light, 

and the SlphyB1, SlphyB2, SlphyE, and SlphyF are light-stable and abundant in the light (Hauser et 

al., 1997), contributing to the photomorphogenic development (Weller et al., 2000).  

Phytochromes in tomato are also tightly linked to the fruit ripening process (Piringer and 

Heinze, 1954) including the light-induced accumulation of carotenoids in fruits (Alba et al., 2000). 
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Notably, SlphyB1 and SlphyB2 are involved in regulating the timing of the fruit ripening transitions 

and have been linked to anthocyanin accumulation (Husaineid et al., 2007; Ernesto Bianchetti et al., 

2018). Other phy-directed mechanisms, such as the role of PHYTOCHROME-INTERACTING FACTORS 

(PIFs) are also conserved in tomato fruit to modulate fruit carotenoid biosynthesis (Llorente et al., 

2016). Fruit maturation is also driven by temperature inputs, in which elevated temperatures inhibit 

ripening by affecting carotenoid biosynthesis (Yoshida et al., 1984; Biggs et al., 1988), implying a link 

to phytochrome regulation and phyB activity as a thermosensor (Jung et al., 2016; Legris et al., 

2016).  

 

Plastid transitions in tomato. As previously mentioned, the tomato is a classical research model to 

investigate plastid transitions. During fruit ripening the plastids undergo extensive reorganisation, 

converting the photosynthetic chloroplasts to carotenoid-storing chromoplasts (Cheung et al., 1993). 

In addition, the genome of Solanum lycopersicum is fully sequenced genome and published (Sato et 

al., 2012), making it ideal to conduct genomic studies.  

Tomato fruits appear green in their immature and pre-breaker fruit stages due to their 

chlorophyll content; the bright red colouration of mature fruits is achieved through the 

accumulation of carotenoids (Egea et al., 2010). The accumulation of high levels of carotenoids is 

associated to extensive modifications in the plastids, including the breakdown of chlorophyll, 

disruption of the thylakoid membrane from chloroplasts to form new membranes that can 

accumulate carotenoids in chromoplasts (Rosso, 1968; Harris and Spurr, 1969a; Harris and Spurr, 

1969b). The transition also involves a decline in the expression of proteins involved in 

photosynthetic reactions (Piechulla et al., 1987; Livne and Gepstein, 1988) and adjustments in 

metabolism towards and energy consuming fruit. By the red ripe stage of fruit ripening, the plastids 

are almost exclusively chromoplasts (Egea et al., 2010). Real-time analysis of the transition indicated 

no new plastid generation, with all the chromoplasts deriving from pre-existing chloroplasts (Pyke 

and Howells, 2002; Waters et al., 2004; Egea et al., 2010). This transition is associated with a decline 

in photosynthesis-associated gene expression, and increments in the activity of different complexes 

such as ATPase during ripening (Livne and Gepstein, 1988). 

In Arabidopsis, cpRNPs are involved in adjusting plastid gene expression to light- and 

temperature-environmental stimuli (Chapter 2, sections 2.3.6, 2.6). Therefore, it is reasonable to 

suggest that cpRNPs’ regulation of the plastome may extend to the massive structural changes 

associated with the chloroplast-chromoplast transition, and the co-ordination with light and 

temperature cues.  
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Stages of tomato fruit ripening. Tomato fruit ripening occurs in four principle stages, starting with 

immature green (IG) fruits, characterised by cell expansion and an increase in weight. The second 

stage is the mature green (MG), when a fruit increases in size to its final mass, although this can vary 

enormously between cultivars and environmental influence (Gonzalez et al., 2007; Czerednik et al., 

2012). Approximately 2 days after entering the MG stage, the fruit begins an extensive metabolic 

reorganisation and enters the first of the fruit ripening stage into the Breaker or Orange stage (BR/O) 

in which chloroplasts begin to transition into chromoplasts and high carotenoid accumulation begins 

in concert with chlorophyll degradation. The final stage is of Ripening (RR), up to 10 days afterwards 

and marks the end of the transition and accumulation of chromoplasts (Ho, 1986). 

To investigate if cpRNPs in tomato can drive remodelling of the plastome in plastid transition 

stages, transcript accumulation of tomato cpRNPs was be measured during each fruit ripening stage, 

using a bioinformatics and experimental approach.  

 

4.4.2 Increasing cpRNP transcript abundance indicates they remain active in chloroplast-chromoplast 

transitions. 

 To begin addressing the role of cpRNPs in chloroplast-to-chromoplast transitions in tomato, 

an evaluation of cpRNPs’ transcript accumulation was conducted. This was conducted first using 

bioinformatics tools and corroborated by in vivo analysis of cpRNP transcript abundance during fruit 

ripening stages in tomato cultivar Micro-Tom (see 4.2 Materials and Methods).  

Bioinformatics analysis of SlcpRNP transcript abundance. The Tomato eFP database, a tool within 

the Bio-Analytic Resource for Plant Biology (BAR) (Waese et al., 2017), was used to investigate 

tomato cpRNP accumulation during different fruit ripening stages. This showed that transcript 

abundance of Slcp33A modestly increased during in S. lycopersicum cv Heinz 2-3cm fruits (Figure 4.3, 

panel A). However, no notable transcript accumulation was observed for other SlcpRNPs (data not 

shown). An analysis SlcpRNP transcript accumulation from microarray data set GSE108415 (Diretto 

et al., 2020) of plant fruits harvested in Mature Green, Orange, and Red Ripe (Breaker +10) ripening 

stages in Solanum lycopersicum (cultivar Money Maker) was also conducted (Figure 4.3, panel B). 

This revealed differential accumulation of Slcp28A, Slcp29A, Slcp31, Slcp33A, and Slcp33C, often 

showing reductions in accumulation in the Orange/Breaker, and Red Ripe/Breaker+10 stages 

compared to the Mature Green stages of the chloroplast-chromoplast transition. However, for 

Slcp33B, an increase was observed, and an increase for cp31 was observed between O and RR 

stages. This points at SlcpRNPs transcripts being differentially expressed during plastid transition and 
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may indicate functional specialisation in different plastid types and with potential impact in 

regulating the abundances of different plastome-encoded subunits of plastidic complexes.  

Experimental analysis of SlcpRNP transcript abundance in tomato fruits. To verify that Micro-Tom 

fruits were in the correct ripening stages, transcript abundance of ripening-associated marker genes 

E8, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2 (ACS2), and POLYGALACTURONASE 2 

(PG2A) were tested first (Supplementary Figure 4.2). Transcripts of these genes are expressed very 

low in the IG stage, modestly higher in the MG stage, and accumulation spikes dramatically in the O 

stage, followed by intermediate accumulation in the RR stage. All fruit samples used were confirmed 

for these transcript accumulation patterns. 

Transcript abundance of SlcpRNPs was examined in Micro-Tom fruits during different 

ripening stages (Figure 4.4) by RT-qPCR. This analysis showed differential accumulation of multiple 

SlcpRNPs during tomato fruit maturation. Slcp31, Slcp33A, and Slcp33B transcript abundances 

increased during the Orange (O) stage from the Mature Green (MG) stage, followed by a decrease in 

accumulation in the Red Ripe stage. For Slcp29A, accumulation significantly increased during the O 

phase, and increased again in the Red Ripe (RR) phase. Slcp33C showed reductions in transcript 

through all four ripening stages, with significant reductions reported from the Immature Green (IG) 

phase to the RR phase. However, while average transcript abundance showed a reduction from IG to 

RR stages for Slcp28A and SlcpSEBF, no significant differences between phases was reported. 

Overall, this analysis indicates Slcp29A, Slcp31, Slcp33A, and Slcp33B accumulation increases 

significantly during the chloroplast-chromoplast transition phase, pointing at a potential functional 

role for these cpRNPs in the remodelling of the plastids.  
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4.5. Results: Carotenogenesis as an indicator pathway of plastid transition in Solanum lycopersicum.  

 Carotenoids are C40 terpenoid isoprenoid compounds that are synthesised by photosynthetic 

organisms and are essential for photoprotection against excess light. They are the most abundant 

naturally occurring pigments in a yellow-to-red range in fruits and vegetables like oranges, tomatoes, 

carrots, and pumpkin (Bramley, 2002).  

Carotenoid Biosynthesis pathway. During the transition of chloroplasts-to-chromoplasts, the high 

accumulation of carotenoids begins. Carotenoid isoprenoids are synthesised in plastids via the 

methylerythritol phosphate (MEP) pathway, and are all derived from isopentenyl diphosphate (IPP) 

(Hirschberg., 2011), which is isomerized into dimethylallyl diphosphate (DMAPP), the substrate for 

GGPP synthase (GGPS) to synthesise geranylgeranyl diphosphate (GGPP), the precursor for 

phytoene, the first carotenoid in the biosynthetic pathway (Cunningham and Gantt, 1998; Okada et 

al., 2000). 

 The condensation of two GGPPs into phytoene is catalysed by phytoene synthase (PSY), a 

rate-limiting step among most organisms. Tomato contains three phytoene synthase genes, but only 

PSY1 is involved in fruit ripening (Fraser et al., 1999; Kachanovsky et al., 2012), demonstrated 

through mutation in PSY1 causing a yellow-flesh phenotype and absence of carotenoids in ripe fruits 

(Bird et al., 1991). Following the synthesis of phytoene, phytoene desaturase (PDS) and ζ‐carotene 

desaturase (ZDS) can convert phytoene into lycopene via ζ‐carotene desaturase as an intermediary 

(Moise et al., 2014). From lycopene, lycopene β‐cyclase (LYC-B) can produce β‐carotene, and 

lycopene ϵ‐cyclase (LYC-E) can produce δ‐carotene. α‐carotene is formed as a by-product from both 

reactions (Moise et al., 2014).  

 In the breaker fruit stage of ripening, the fruit begins to turn red with the accumulation of 

high levels of lycopene as chlorophyll concentration decreases. In this stage, MEP-isoprenoid gene 

expression increases together with carotenogenic genes such as PSY1 and PDS, demonstrating a 

transcriptional regulation of carotenogenesis (Pecker et al., 1992; Giuliano et al., 1993; Fraser et al., 

1994; Corona et al., 1996; Lois et al., 2000).  

 Carotenogenesis is therefore a metabolic pathway whose up-regulation is linked to the 

transition from chloroplasts to chromoplasts. An analysis of the status of carotenogenesis in cpRNPs 

would be an indirect measurement of the developmental transitions in plastids and the activity of 

the cpRNPs beyond chloroplasts.  
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4.5.2 Using Virus Induced Gene Silencing (VIGS) to silence cpRNPs during plastid transitions in 

tomato fruits.  

 Section 4.4, Figure 4.4 revealed that SlcpRNPs transcript abundance, including Slcp29A, 

Slcp31, Slcp33A, and Slcp33B, is significantly increased during plastid transitions, indicating a 

potential role in modulating plastid-encoded mRNAs that be involved in the disassembly of the 

photosynthetic apparatus and the up-regulation of ATP Synthesis in plastids. To address the 

contribution of cpRNP proteins to plastid transitions during fruit ripening, carotenogenesis was used 

as an indicator of the ripening and plastids status. An in planta Virus Induced Gene Silencing (VIGS) 

method was used to silence tomato cpRNP Slcp31 (Au - Velásquez et al., 2009). 

 Briefly, the RNAi silencing method utilises the bipartite Tobacco Rattle Virus to deliver a 

recombinant virus that carries a target gene sequence to be silenced. The virus spreads within the 

localised zone, and endogenous plant RNAi machinery silences all instances of the sequence through 

siRNAs and the RNA-induced silencing complex (RISC) machinery.  

 The VIGS method was performed in transgenic tomatoes that overexpress two transcription 

factors: Delila (Del), and Rosea1 (Ros1), involved in anthocyanin biosynthesis. Called Delila-Rosea1 

(DR1) tomatoes, these fruits turn purple when ripe due to overaccumulation of anthocyanins that 

mask the lycopene’s red colouration. The VIGS vectors contain both a sequence that silences Del and 

Ros1 expression and a site to allow cloning of the target sequence to trigger silencing of the 

candidate gene of interest. Therefore, the silenced areas can be visually followed by the absence of 

the intense purple colouration otherwise represented by the over-accumulated anthocyanins and 

can be extracted and examined for co-silencing of the gene of interest.  

 As a positive control, a construct that silences PHYTOENE DESATURASE (PDS) was also used. 

PDS encodes the second enzyme of the carotenoid biosynthesis pathway and its silencing results in 

yellow fruits devoid of carotenoids, and a pale phenotype in the silenced zone (Au - Velásquez et al., 

2009) (not shown). A table of the silencing constructs used is provided in the Materials and Methods 

(Section 4.5.2).  

In these tomatoes, the silencing of a gene involved in carotenoid accumulation is seen as a 

delayed-accumulation phenotype with colour differences in the fruit. If transiently-silenced SlcpRNPs 

impact plastome genes, including those related to photosynthetic functions and those for other 

complexes necessary in different types of plastids present during tomato fruit ripening therefore 

altering the fruit maturation process as a consequence, this alteration will be reflected in an altered 

transcript accumulation for carotenogenetic genes compared to non-silenced material.  
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VIGS-induced silencing of Slcp31. Of the samples treated, only enough tissue was available for RNA 

extractions of Slcp31-silenced fruits. A representative photo of the silenced tomatoes is shown in 

Figure 4.5 panel A. In the picture a delayed-ripening red-green phenotype in the target zone of 

silenced fruits can be observed. To verify the effect of silencing on ripening, and therefore on plastid 

transitioning, an examination of ripening-associated marker genes was performed at a 

transcriptomic level.  

Transcript abundance was determined for Ripening inhibitor (RIN), an essential regulator of 

fruit ripening that activates genes such as PSY1 and is induced after the Mature Green stage (Martel 

et al., 2011; Llorente et al., 2016), and for the gene E8, which encodes a dioxygenase enzyme that is 

induced at the onset of the ripening process in the ‘Orange’ phase (Lincoln et al., 1987; Penarrubia 

et al., 1992). Transcript abundance for both of these genes was significantly reduced in the cp31-

silenced fruits compared to unsilenced control fruits treated with empty vector pTRV (Figure 4.5, 

panel B), showing that the ripening process had been delayed.  

 Finally, transcript accumulation of Slcp31 was examined (Figure 4.5, panel C), showing a 

significant 50% decrease in transcript accumulation in the silenced region. To evaluate the impact 

that this would have on plastid transition-associated genes relevant to fruit ripening, genes in the 

carotenoid biosynthesis pathways were examined.   
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4.5.3. Investigating the effects of silencing Slcp31 on the Carotenoid Biosynthesis Pathway. 

As described in section 4.4.1, the carotenoid biosynthesis pathway is over-activated in 

chromoplasts compared to chloroplasts. This includes the accumulation of carotenoids with different 

functions, such as the carotenoids with photosynthetic roles vs the carotenoids with stronger 

antioxidant and human nutritional roles. A summary of the pathway is shown in Figure 4.6 panel A. 

The pathway involves the condensation of two GGPP molecules to form 15-cis-phytoene, catalysed 

by Phytoene Synthase (PSY) (Ruiz-Sola and Rodríguez-Concepción, 2012). Phytoene is then 

converted to all-trans-lycopene by desaturation and isomerization reactions catalysed by Phytoene 

Desaturase (PDS) and ζ-carotene Desaturase (ZDS). These reactions are catalysed by ζ-carotene 

Isomerase (ZISO) and Carotenoid Isomerase (CRTISO) respectively. This produces an all-trans-

lycopene which can then be transformed into δ-carotene or γ-carotene in a branching step through 

Lycopene ε-cyclase (LCYE) or Lycopene β-cyclase (LYCB or CYCB, wherein CYCB refers to 

chromoplast-associated isoforms involved in tomato fruit ripening) (Ruiz-Sola and Rodríguez-

Concepción, 2012).  

 The LYCE branch produces δ-carotene, which can undergo cyclization by LYCB or CYCB into 

chloroplast- or chromoplast-specific α-carotene. The final product of this is the xanthophyll lutein. 

The LYCB and CYCB cyclization of all-trans-lycopene produces γ-carotene. This product undergoes a 

subsequent plastid-specific cyclization again by LYCB or CYCB to produce β-Carotene, a precursor for 

the Xanthophylls Zeaxanthin, Violaxanthin, and Neoxanthin (Ruiz-Sola and Rodríguez-Concepción, 

2012).  

 The carotenoid biosynthesis pathway therefore contains chloroplast- and chromoplast-

specific pathways, as well as proteins contributing to both. Genes PSY1 and CYC-B were selected as 

chromoplast-specific genes; genes ZDS and LYC-E were selected as genes contributing to both 

pathways; and LYC-B was selected as a chloroplast-specific gene. If Slcp31 is important for plastid 

developmental transitions, its silencing may therefore lead to altered expression these genes in 

different ripening stages associated to different types of plastids.  

 

Silencing of Slcp31 repressed prevents the high upregulation of chromoplast-specific CYC-B. This 

analysis revealed down regulation of CYC-B in Slcp31-silenced fruits, showing a significant 3-fold 

reduction in transcript accumulation. Reductions were also observed in average PSY1 transcript 

levels, but statistical analysis was not significant. No reductions were observed in ZDS, LYC-E, or LYC-

B transcript abundances between control and silenced fruits. This analysis shows that Slcp31 is 



189 
 

important to the transition between chloroplasts and chromoplasts, with the impaired biosynthesis 

of lycopene, and a reduced accumulation of chromoplast-associated CYC-B transcripts. The data 

correlates with the green-red phenotype observed in Figure 4.5 panel A and the reduction of 

ripening marker genes RIN and E8 (Figure 4.5, panel B).  
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4.6. Results: CRISPR/Cas9-mediated knockout of Slcp29A.  

In November 2017, the BRACT crop transformation facility at the John Innes Centre accepted 

applications for collaboration to produce CRISPR-CAS9 transgenic tomato lines. Collaboration 

included the design of guide RNAs selection, construct assembly, transformation, and some initial 

screening for the CRISPR-CAS9 mutants.  

CRISPR-Cas9 is an adaptive immunity system found in prokaryotes, and is composed of a 

type II clustered, regularly interspaced, short palindromic repeats (CRISPR) interference system. The 

CRISPR loci encodes the Cas9 endonuclease that forms a complex with two short RNA molecules 

called CRISPR RNA (crRNA) and transactivating crNA (tracrRNA) that guide Cas9 to cleave a site. Jinek 

et al demonstrated that these two short RNAs can be replaced by a chimeric single guide RNA 

(sgRNA) made from functional sequences of crRNA and tracrRNA to guide the endonuclease into 

cleaving a directed target (Mali et al., 2013; Cong et al., 2013; Jinek et al., 2012). This method has 

been used to induce mutations and silencing in multiple crop plants, being used in rice, wheat, 

barley, and cabbage, and brassica (Shan et al., 2013; Lawrenson et al., 2015).  

In section 4.3.2, results show that SlcpRNPs Slcp29A, Slcp31, Slcp33A, and Slcp33B were 

significantly increased during Orange and Red Ripe fruit ripening stages, indicating a potential role 

for cpRNPs in the chloroplast-to-chromoplast transitions potentially participating in plastid 

reorganisation and development. Of these candidate cpRNPs, Slcp29A was selected in collaboration 

with BRACT for its increased accumulation in the latter two stages of fruit ripening (Figure 4.4).  

 

Generation of CRISPR-CAS silenced plants. Two sets of guides, shown in Figure 4.7, were designed 

with the BRACT collaborators to target the first exon of Slcp29A with no risk of off-target mutations. 

This would create an easily identifiable large deletion detectable by PCR screening. 

A single T-DNA construct was transformed into immature embryos and stable transgenic 

lines that contain targeted mutations regenerated through tissue culture. These mutations can then 

be detected in T0 plants that were screened and segregated to T1 and T2 generations to provide 

lines cis-genic lines that carry the mutation of interest in the target locus.  

T0 transformed plants were generated by BRACT collaborators. These plants included a 

transgene for kanamycin resistance, allowing for initial screening to confirm that T-DNA is present 

before any subsequent PCR screening to select mutant plants. Antibiotic-treated plantlets were 

dispatched to Lancaster University in February of 2020. However, the COVID-19 pandemic only 

allowed the collection of the seeds for future screening. 
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4.7. Discussion. 

4.7.1. Members of the Arabidopsis cpRNPs family are conserved across multiple dicot and monocot 

crop species.  

 Prior phylogenetic analysis of cpRNPs showed that cp29, cp31, and cp33 were conserved 

across dicot species including A. thaliana and N. sylvestris (Ohta et al., 1995). This analysis also 

hinted at conservation of cpRNPs in monocot species such as maize (Cook and Walker, 1992); 

presence of Hvcp31A, Hvcp31B, and Hvcp33A in barley (Churin et al., 1999), and orthologues of all 

ten Arabidopsis cpRNPs in rice (Wu et al., 2021). Phylogenetic analysis also described three 

subgroups of cpRNPs (Groups I-III) based on sequence similarity (Ohta et al., 1995); since this initial 

phylogenetic studies many more sequenced genomes and cpRNPs’ amino acid sequences became 

available.  

Using data published on the ePlant database from isolated and published cpRNPs as well as 

bioinformatically predicted cpRNPs (Waese et al., 2017), this chapter presented a new phylogenetic 

tree (Figure 4.1) which revealed a strong conservation of cpRNPs across monocots as well as dicots, 

spanning food crops such as maize, barley, rice, and tomato, to the trees like poplar and grape vines 

(Figure 4.1). While not a fully comprehensive study, since the ePlant database did not include cp33A 

orthologues identified in barley (Churin et al., 1999) and rice (Wu et al., 2021), and putative 

bioinformatically- identified cpRNPs in maize (Schnable et al., 2009), the new extended phylogenetic 

tree revealed a close evolutionary conservation of cpRNPs in Arabidopsis and multiple monocot and 

dicot species, indicating that cpRNPs’ function is critical to plant growth. Ultimately, cpRNPs’ 

conservation between monocots and dicots may point at a general contribution to the regulation of 

photosynthesis-related processes and plastid functions across higher plants.  

The previous phylogenetic analysis conducted by Ohta et al (1995) described Groups I, II, and 

III based on amino acid similarity in the highly conserved parts of the first RNA recognition motif in 

each sequence. This identified Arabidopsis cp29A, N. sylvestris cp29A and cp29B, N. plumbaginofolia 

cp30 and cp31 in Group I; Arabidopsis cp31A, Z. mays NBP, N. sylvestris cp28 and c31, and S. 

oleracea cp28 in Group II; and Arabidopsis cp33A and N. sylvestris cp33 in Group III. An updated 

version of the cladogram included H. vulgare cp31A and cp31B in Group II, and cp33A in Group III 

(Churin et al., 1999). Although the phylogenetic tree in this chapter differs in its constructed, instead 

using full length protein sequences with the intention of establishing if divergent parts of the protein 

could change the current groups’ classification, the results obtained indicated that the subgroups’ 

classification remained valid, but at the same time classified new cpRNPs within these groups. This 

included Arabidopsis cpSEBF’s addition to Group I, and Arabidopsis cp31B to Group II. Furthermore, 
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the new tree also revealed that cp28A, cp29C, cp29B, and cp33B/cp33C orthologues form distinct, 

undefined subgroups, and highlighting the need for additional subgroups beyond the three 

subgroups identified by the RRM-based subgroupings that could be described as Groups IV, V, VI, 

and VII.  

 Most of these subgroups contain only a single Arabidopsis cpRNP member, but there are 

instances of multiple cpRNPs in some subgroups. Atcp29A and Atcp29B are part of Group I, and 

Atcp31A and Atcp31B in part of Group II. These proteins have previously been identified as 

paralogous duplicates attributed to gene duplications (Tillich et al., 2009; Ruwe et al., 2011). 

Additional duplication events may also have occurred in multiple putative cp31 proteins in G. max, 

V. vinifera, and P. trichocarpa, and barley (Churin et al., 1999). Beyond phylogenetic groupings, a 

comparative sequence analysis between cpRNPs in Arabidopsis provided insights on potential 

functional differences between members. For example, Arabidopsis cp29A, a paralogue of cpSEBF, 

contains a longer chloroplast transit peptide, a longer RNA Recognition Motif (RRM), and a longer 

spacer domain between RRMs compared to cp29A (Figure 4.2). These differences in the RRM 

suggest that binding properties may vary between the two proteins with potential impact in target 

recognition. While published RIP-chip data for reporting the of cp29A mRNAs targets is available  

(Tillich et al., 2009), a similar study for SEBF has not been conducted, but could provide with insight 

into changes in binding specificity, preferential targets and joint/differential regulatory functions.  

The spacer domain is proposed to be involved in the prevention of non-specific interactions 

between discrete protein domains, but glycine-rich linkers are flexible and promote domain-domain 

interactions (Reddy Chichili et al., 2013). Compared to cpSEBF, the spacer domain in cp29A is rich in 

glycine and serine residues and bears three tandem repeats of a sequence (GSERGGGY) (Ohta et al., 

1995). This may indicate that the RRM domains of cp29A could interacting with each other in a way 

that the RRMs of cpSEBF cannot. These interactions could play a role in the differential affinity for 

RNA and/or the target specificity, or the capacity to respond to specific environmental stimuli.  

In addition, post-translational modifications may also be associated to variations in the 

cpRNPs’ structure and function. A phosphorylation site has been previously detected in the linker 

domain between RRMs of cp29A (Reiland et al., 2009), and phosphorylation sites have been 

connected to light sensitivity (Kleffmann et al., 2006) and RNA binding specificity (Loza-Tavera et al., 

2006; Okuzaki et al., 2019). The linker structural differences between different cpRNPs, such as 

cpSEBF and cp29A, may be relevant to control responsiveness to light or other environmental 

stimuli, and lead to non-redundant functions among the family members. Physiological data 

(Chapter 2) already points at a non fully-functional redundancy among cpRNPs such as cp31A and 
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SEBF, despite a joint contribution to a global greening response. Similar phenotypes may be 

associated to the regulation of common, as well as different, plastome transcripts (Chapter 2, Figure 

2.5), and further exploration of full genome targets under different environmental conditions will 

further address specificity and redundancy among family members and evaluate a combinatorial 

effect.  

The pairwise comparison of cp31A and cp31B in Figure 4.2 showed a longer acidic domain 

present in cp31A located between the chloroplast transit peptide and the first RRM. In this respect, 

cp31A’s longer acidic domain is also the longest of the Arabidopsis cpRNPs, followed by cp33A 

(Figure 1.1). An analysis of functional redundancy using cp31a and cp31b single and cp31a cp31b 

double mutants revealed functional redundancy between the two in the editing of plastome mRNA 

targets. Yet, some editing events depended required the presence of both cpRNPs (Tillich et al., 

2009), again pointing at a non fully-functional redundancy. The difference in the acidic linker domain 

may be involved in regulating cp31A’s differential binding specificity; while comparative structure-

function experimental studies have not been conducted, phosphorylation of acidic linker domains 

are also suggested to be involved in modulating cpRNP binding specificity (Lisitsky and Schuster, 

1995; Okuzaki et al., 2019). cp31A’s acidic domain contains Ser-phosphorylation sites (Reiland et al., 

2009), but pairwise alignments (Supplementary Figure 4.1) revealed that these sites are not present 

in cp31B, and cp31B is not reported as a phosphoprotein. Therefore, the absence of this acidic 

domain in closely related cpRNPs such as cp31B and cp31A may be related their differential 

sensitivity to stimulus and the fulfilment of specific functions.  

Alternatively, these functions could also involve protein-protein interactions (Li and Sugiura, 

1990). cpRNPs associate with a High Molecular Weight Complex (HMWC) that is involved in RNA 

processing and degradation in spinach (Hayes et al., 1996). HMWCs associated to cpRNPs conduct 

the 3’ processing of chloroplast mRNAs, including both site-specific endoribonucleases and PNPase-

like non-specific exoribonucleases. Biochemical evidence indicates that in the absence of cpRNPs, 3’-

end maturation of plastid mRNAs is prevented and the mRNAs are instead degraded (Hayes et al., 

1996). It is possible that the acidic linker domain is involved in mediating the protein:protein 

interactions within the cpRNPs and the components of these RNA processing complexes. While this 

possibility awaits investigation, it may explain the association of cpRNPs with multiple post-

transcriptional events including processing, splicing, and editing. 
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cpRNPs may be specific to green plants and have eukaryotic, not prokaryotic, origins.  

Chloroplasts and the photosynthetic apparatus are derived from cyanobacterial 

endosymbionts. Since cpRNPs are critical to chloroplast functions and greening, they may have 

evolved alongside photosynthesis in cyanobacteria, algae or in early plants. An investigation of 

cpRNP orthologues in the bryophyte Physcomitrella patens revealed 25 putative chloroplast RRM-

domain containing proteins (Uchiyama et al., 2018). Two of these RRM-containing proteins shared a 

>40% amino acid similarity to Arabidopsis cpRNPs cp28A, cp29B, and cp31B and were identified as 

the cpRNP-like PpRBP2a and PpRBP2b. Like Arabidopsis, both PpRBPs were cold-inducible at 4oC 

(Amme et al., 2006; Sarhadi et al., 2010), but a mutant phenotype analysis revealed no effect on 

mRNA processing or RNA editing. This showed that despite some structural similarity, P. patens 

cpRNPs may be functionally distinct (Uchiyama et al., 2018), and hint at a possible cpRNPs 

convergent evolution in the function of RRM domains after the appearance of land plants.  

 Furthermore, a published phylogenetic comparison of cpRNPs with RNPs from cyanobacteria 

revealed a greater sequence similarity of Arabidopsis cp29A and cp31A, and N. sylvestris cpRNPs to 

the eukaryotic heterogenous nuclear ribonuclearprotein (hnRNP) family than to older chloroplast 

ancestor cyanobacteria (Maruyama et al., 1999). hnRNPs are a diverse family of RNA Recognition 

Motif (RRM) and K homology (KH) domain-containing proteins that post-transcriptionally regulate 

nuclear RNAs through capping, pre-mRNA splicing, and polyadenylation (Burd and Dreyfuss, 1994). 

Maruyama et al (1999) therefore suggested that cpRNPs diverged from other eukaryotic RNA-

binding proteins to regulate the chloroplast genome and were not derived from a cyanobacterial 

ancestor, unlike much of the chloroplast proteome (Abdallah et al., 2000; Yagi and Shiina, 2014). This 

correlates with the multiple functional roles of cpRNPs in the post-transcriptional regulation of the 

plastome mRNAs, while the regulation of the cyanobacterial plastome is far less complex than the 

eukaryotic plastome (Yagi and Shiina, 2014). The cpRNPs’ divergence from other eukaryotic genes 

may have been part a mechanism for plants to moderate chloroplasts functional mRNAs in in higher 

green plants.  

 

4.7.2. cpRNPs are active in different plastids.  

 cpRNPs’ functions during de-etiolation are important for greening and are critical for the 

accumulation of plastome encoded photosynthetic mRNAs and nuclear-encoded photosynthesis-

associated mRNAs whose protein products are imported to the chloroplast (Schuster and Gruissem, 

1991; Churin et al., 1999). During red light-mediated de-etiolation, etioplasts, which lack chlorophyll, 
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differentiate into chloroplasts in 

response to light stimuli in a phy-

mediated pathway (Mullet, 1988a; 

Tepperman et al., 2006). Yet, the 

role for cpRNPs could extend to 

other plastid transitions, such as the 

transition of chloroplasts to 

chromoplasts in fruits. To gather 

initial evidence for this possibility, 

closely related cpRNP orthologues of 

Arabidopsis were selected for 

preliminary studies in Solanum 

lycopersicum, a model organism for 

addressing chloroplast-to-

chromoplast transition.  

 

During tomato fruit ripening, 

a change in colour is associated to 

transitions between different 

plastids. Green tomatoes 

accumulate chlorophyll in 

chloroplasts, while the high 

accumulation of red lycopene is 

linked to chromoplasts (Cheung et 

al., 1993). 7 cpRNP proteins have been identified in tomato, and they are closely conserved with 

Arabidopsis cpRNPs (Figure 4.1). During fruit ripening, phy-dependent light- and temperature-

sensitive pathways impact fruit ripening (Hauser et al., 1997; Alba et al., 2000; Weller et al., 2000; 

Llorente et al., 2016). Considering that the chromoplast transition is essential for fruit maturation 

and the accumulation of nutritious carotenoids in tomato fruits, dissecting the regulatory 

components involved in adjusting the plastid and nucleus transcriptomes that lead to the 

disassembly of photosynthetic apparatus and the changes in metabolic activities for chromoplast 

functions is of relevance.  
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Bioinformatic and experimental analysis of SlcpRNP transcript abundances showed 

significant increases in Slcp29A, Slcp31A, Slcp33A, Slcp33B during the Orange or Red Ripe stages 

compared to Immature and Mature Green stages, and higher levels of Slcp33C and Slcp28A in the 

green stages (Figures 4.3, 4.4) (Diretto et al., 2020). This suggests functional specialization of the 

cpRNPs during the ripening process, and therefore in plastid transitions. Differential accumulation of 

cpRNPs in Green stages may indicate a preferential function in chloroplast functions, and 

accumulation in the Orange stage may suggest a role in the dismantling of thylakoid photosynthetic 

apparatus to allow transition to chromoplasts. A presence of cpRNPs in the Red stage suggests a role 

in the regulation of chromoplast-specific processes such as carotenogenesis. Specialised roles for 

cpRNPs in integrating different environmental signals may allow the co-ordination of specific 

functions to environmental stimuli and the co-ordination of inter-organellular genome responses to 

pace the transitions and is worth exploring in future experiments. A summary of these findings is 

presented in Figure 4.8. 

A role for cpRNPs in a potential chromoplast-to-chromoplast transition is also supported by 

transient silencing experiments of Slcp31 that showed a delay in ripening with reduction in markers 

of ripening progression RIN and E8 (Penarrubia et al., 1992; Llorente et al., 2016). In addition, in 

silenced Slcp31 fruits, accumulation of SlCYC-B, a chromoplast associated gene for carotenoid 

biosynthesis was significantly lower (Figures 4.5, 4.6). This indirectly indicates that presence of 

Slcp31 may impact a fruit’s capacity to conduct plastid transitions. Based on their functions and 

identified targets, including PSI, PSII and ATPase plastid-encoded mRNAs, cpRNPs may be linked to 

the switch between active photosynthetic complexes in chloroplasts and the enhancement of the 

ATP synthase machinery required to drive the transition and to maintain a high metabolic activity in 

chromoplasts once the photosynthetic machinery is disassembled (Livne and Gepstein, 1988). In this 

respect, redirecting the types of messages that are stabilized in different plastids may be a key role 

for the cpRNPs to permit shifts in the active functions in different plastids.  

This chapter highlights novel possibilities and complex roles for cpRNPs in plastid 

developmental transitions and in different types of plastids, as cpRNPs are now observed to impact 

both de-etiolation during the etioplast-to-chloroplast transition in photomorphogenesis as well as in 

the chloroplast-chromoplast transitions during fruit ripening. Future characterisation of their role in 

modulating the plastome and integrating environmental signals in a developmental context may be 

of high interest to better understand not only photosynthesis, but also for fruit maturation, fruit 

nutritional content, and yield.  
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Chapter 5. General Discussion of Results. 

5.1. Novel mechanisms behind the photoreceptors’ modulation of greening and photosynthetic 

responses  

 The importance of photoreceptors to photosynthetic metabolism has been widely 

acknowledged for a long time, but beyond the modulation of PhANGS via nuclear transcriptional 

cascades, the involvement of photoreceptors in other mechanisms for the establishment and 

environmental adaptation of photosynthesis remains an active field of research. In particular, the 

role and mechanisms through which light photoreceptors contribute to the co-ordination of 

photosynthetic responses across multiple organelles is not fully understood.  

 Notably, photosynthesis requires the co-ordination of genes from two organelles, the 

nucleus and the chloroplast, for the construction and maintenance of photosynthetic apparatus (Soll 

and Schleiff, 2004). However, both genomes are subject to different levels and mechanisms of 

genomic control; the eukaryotic nuclear genome is regulated by a strong transcriptional influence, 

but the plastid genome, due to its prokaryotic origins, requires an important contribution of post-

transcriptional regulation (Deng et al., 1989; Shi et al., 2016).  

Light photoreceptors have recently been more tightly linked to the modulation of the 

plastome: studies on plastid transcripts accumulation have shown a contribution of the 

phytochrome and cryptochrome photoreceptor families in photoperiodic conditions (Michael et al., 

2008; Facella et al., 2017). Notably, Facella et al (2017) demonstrated a strong contribution of CRY2 

to the global modulation of the plastome under Long Day photoperiods, but the global role of phys 

had not been previously investigated. This thesis presents bioinformatic analyses of phyB’s role in 

the modulation of the plastome in Short Days (SD) (Mockler, 2007), showing a wide-spread impact 

over all plastid-encoded gene families (Griffin et al., 2020) (Chapter 2). This represents a marked 

extension of the known roles of phy in greening responses (Lifschitz et al., 1990).  

Yet, experimental data provided in this thesis shows that phyB is not only a major regulator 

of the plastome in SD conditions but also during de-etiolation, a stage during photomorphogenesis 

where the photosynthetic apparatus is assembled for the first time and where a plant has very active 

mechanisms of environmental adaptation to properly build and modulate photosynthesis 

(Armarego-Marriott et al., 2020) (Chapter 2, section 2.3). Furthermore, bioinformatics analysis 

conducted in this thesis showed that beyond the previously described transcriptional modulation of 

the plastome genes by phy-mediated, light-modulated components such as HEMERA (HMR) and the 

sigma factors that operate with the RNA polymerases (Oh and Montgomery, 2014; Qiu et al., 2019), 
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phyB also contributes to the modulation of plastid-encoded mRNAs through post-transcriptional 

mechanisms (Chapter 2, section 2.3). This discovery expands phyB’s contributions to a different 

level, showing a global role essential for the maturation of chloroplast encoded mRNAs, and vital for 

the production of photosynthetic proteins in the plastids (Deng et al., 1989; Griffin et al., 2020). 

One of the molecular components of the post-transcriptional pathways that phys regulate is 

the chloroplast RNA Binding Protein family (cpRNP) (Ye et al., 1991). The cpRNP protein family is 

capable of global binding to the plastid encoded mRNAs (Kupsch et al., 2012; Teubner et al., 2017), 

and evidence in Chapter 2, section 2.3.2 indicated that cpRNP expression is phyB-dependent. This 

thesis also provided with experimental evidence to show that cpRNPs contribute to the regulation of 

the plastome during de-etiolation, and that the defects in plastome-encoded transcripts 

accumulation observed in cprnp mutants contribute to the alterations in greening responses 

detected in mutant phenotypes (Chapter 2, section 2.3.2, section 2.3.7). The placement of post-

transcriptionally acting cpRNPs in a phyB-dependent signalling pathway that can deliver 

environmental signals perceived by the receptors to most of the genes encoded in the plastome 

represents an expansion in the previously defined mechanisms of phytochrome signalling to the 

chloroplast. 

 The thesis also examined which light signalling components may act with photoreceptors to 

transduce signals for the control of plastome-regulating proteins (Chapter 2, section 2.3.8). 

Examination of the bZIP transcription factor HY5, a downstream component of R-phys and B-crys 

cascades to the plastome (Wang et al., 2017), demonstrated that HY5 shares the light dependent 

modulation of plastome-encoded genes with R-phys- and/or B-crys (Griffin et al, 2020). Experimental 

data presented corroborated an effect on plastome transcripts by the hy5 mutation for the first 

time, as well as an effect of HY5 on the accumulation of cpRNP transcripts. The modulation of HY5 of 

the transcript levels of cpRNPs is supported by microarray analysis showing that cp31A accumulation 

is HY5-dependent (Ma et al., 2005); and genome wide chip experiments for HY5 point at a potential 

direct control by direct promoter binding to cpRNPs such cpSEBF (Jiao et al., 2007). Data gathered 

expands our understanding of the influence of HY5 over photosynthesis, extending it to novel 

components involved in the modulation of greening and which have an effect over the plastome 

encoded genes necessary to build photosynthesis. Furthermore, the involvement of B-crys in the 

regulation of the plastome and in the regulation of HY5 suggests further new avenues of 

investigation for the cpRNPs in blue light signalling pathways (Griffin et al., 2020).  

 The placement of cpRNPs in phyB signalling cascades, opened up the possibility of a wider 

range of environmental stimuli that are perceived and transduced by these components. In addition 
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to providing downstream components with a responsiveness to red light signals during de-etiolation 

(Quail, 2002; Tepperman et al., 2006), phyB is a sensor of photoperiodism and light intensity 

(Blázquez and Weigel, 1999; Loudet et al., 2008; Kaiserli and Chory, 2016), a temperature-sensor 

(Jung et al., 2016; Legris et al., 2016), and is involved in the communication between the plastids and 

the nucleus via anterograde and retrograde signals (Martín et al., 2016; Jiang et al., 2020). This thesis 

showed that as phyB signalling components, cpRNPs play an important role tuning greening and 

biomass accumulation responses to environmental conditions, with an important effect over 

photosynthesis (Chapter 2). Experimental evidence gathered further showed the potential of cpRNPs 

to co-ordinate photosynthesis across two genomes (Chapter 3). Their responsiveness at the level of 

transcript and/or protein accumulation to temperature, photoperiodism and activation of 

retrograde signals, together with their global modulatory capacity of plastid transcripts make them 

powerful components to deliver information to orchestrate environmental responsiveness of 

chloroplast metabolism, but also to respond to emitted chloroplastic signals.  

 

5.2. cpRNPs are key regulators of transcripts encoded in the plastome and in the nucleus and could 

synchronise photosynthesis to the environment.  

 Previously, cpRNPs have been described as regulators of plastid-encoded functions of 

photosynthesis (Tillich et al., 2009; Kupsch et al., 2012; Teubner et al., 2017). This thesis supports 

this model, demonstrating that during red-dependent de-etiolation, cpRNPs contribute to plastid-

encoded photosynthesis-associated processes, affecting mRNAs that encode for proteins involved in 

ATP Synthesis, NADH Dehydrogenase, PSI, and PSII processes (Chapter 2). However, this thesis also 

introduces multiple additional roles for cpRNPs, expanding our understanding of cpRNPs 

functionality (Chapter 2, Chapter 3, Chapter 4). 

In addition to linking cpRNPs to perception and transduction of multiple environmental 

conditions, an additional key role of phyB is mediation of cpRNP subcellular localisation by 

modulating the expression of different cpRNP isoforms via alternative transcriptional start sites 

(Ushijima et al., 2017). The data presented in this thesis demonstrates that phyB-mediated cpRNP 

isoforms with differential localisation does occur in planta, and localise to the nucleus in addition to 

the previously described chloroplast localisation. The alternative nuclear localisation extends the 

cpRNPs function to a role beyond the chloroplast, in this respect the data gathered in Chapter 3 

showed that transcript accumulation for Photosynthesis-associated, nuclear-encoded genes 

(PhANGs) is also altered cprnp mutants. Alterations include effects on subunits of the NADH 

Dehydrogenase (PSBQl2), and PSI (PSAN) that are counterparts to some of the plastome-encoded 
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transcripts (ndhF, ndhG, psaJ) for photosynthetic complexes also under cpRNPs regulation (Kupsch 

et al., 2012; Okuzaki et al., 2019).  

However, an effect of cpRNPs was also detected over the Light Harvesting Complexes 2 and 

1 (LHCII, LCHI), the Oxygen Evolving Complex (OEC), and photoprotection involved genes such as 

PSB27 and DEG1, which contribute to the light-intensity adaptations and turnover of PSII antenna 

protein D1 (Hou et al., 2015; Schuhmann and Adamska, 2012). This suggests that cpRNPs’ co-

ordination of photosynthesis could be wide-reaching, extending to both, the co-ordination of 

subunits of the photosystems across two genomes, but also the turnover and tuning of proteins 

associated to photosynthetic functions without a chloroplast-encoded component. 

Although the exact mechanism regarding how cpRNPs may act in the nucleus was not 

dissected here, the experimental evidence presented in this thesis supports a regulatory capacity for 

cpRNPs over both organelles that shows they bridge the nucleus-plastid divide, and are involved in 

inter-organellar communication for the regulation of photosynthetic processes and in a changing 

environment. The data gathered supports a wider influence of cpRNPs on photosynthesis; while a 

direct RNA binding has been demonstrated for cpRNPs in the plastome (Tillich et al., 2009; Kupsch et 

al., 2012; Teubner et al., 2020), it is yet to be determined how they modulate nuclear transcripts. A 

direct role for cpRNPs in the nucleus is supported by previously published research that identified 

nuclear STEP1, an alternative isoform of cp31A with an identical amino acid sequence to the phyB-

mediated cp31A (TSS_B) isoform (Kwon and Chung, 2004). This isoform was observed to bind to 

single-stranded G-rich DNA sequences characteristic of telomeres (Dionne and Wellinger, 1996), and 

provides a precedent of a potential nuclear role for cp31A in preventing the access of nucleases to 

single-stranded telomeric DNA and modulate telomere replication, protecting cells from apoptosis 

(Kwon and Chung, 2004). Although not investigated further in this thesis, this role may be related to 

cpRNP’s possible evolutionary similarity to the hnRNPs (Maruyama et al., 1999). 

Importantly, the effects over genes encoded in two organelles were not only light quality-

dependent, but extended to a temperature responsiveness. When grown in cold or warm ambient 

temperature conditions, nuclear- and plastome-encoded transcripts were differentially modulated in 

cprnp mutants, with cpRNP contribution changing in strength as well as in target specificity (Chapter 

2, section 2.6). Overall, this supports a potentially combinatorial role for multiple cpRNPs, in which 

they may all contribute to the regulation of photosynthesis, but different family members integrate 

responsiveness to multiple environmental signals. By each having a specific response and role linked 

to environmental cues, cpRNPs can effectively and differentially orchestrate proper photosynthetic 

responses, contributing to a more energy-efficient regulation. While the exact mechanism of how 
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temperature affects cpRNP function was not addressed in this thesis, some of the specificity may be 

modulated by post-translational modifications, as phosphorylation is involved in controlling cpRNP 

function in the cold (Okuzaki et al., 2019) and in the light (Lisitsky and Schuster, 1995), and 

phosphorylation sites have been identified in cp31A, cp29A, cp29B, cp33B, and cpSEBF (Reiland et 

al., 2009; Roitinger et al., 2015). However, whether this mechanism affects cpRNPs function in a 

wider range of environmental conditions and whether phosphorylation is linked to photoreceptors 

signals remains to be examined.  

Interestingly, the subcellular localisation of cpRNPs was also impacted by both temperature 

and retrograde signals. Therefore, the evidence suggests that by controlling alternative 

transcriptional start sites of the cpRNPs, phyB could deliver a wide range of stimuli to two genomes 

to properly adjust photosynthesis to external cues (Chapter 3, section 3.5). Although no 

experimental evidence was gathered to support this possibility, bioinformatic evidence indicates the 

presence of HY5 binding motifs in the cpRNP gene and promoter regions that control transcriptional 

start sites selection (demonstrated for cp31A in Supplementary Figure 5.1). This suggests that, once 

more, HY5 could be a phy signalling component involved in the generation of the cpRNPs isoforms 

with alternative subcellular localizations. This possibility awaits to be tested, as well as any potential 

direct impact of temperature and/or retrograde signals acting over HY5 binding sites to modulate 

the abundance of the cpRNPs in the chloroplast and the nucleus.  

 

5.3. cpRNPs are conserved across plant species and may have further roles in plastid functions. 

 A new phylogenetic tree presented in this thesis showed that cpRNPs are present as a family 

across monocot and dicots (Ohta et al., 1995), suggesting a strongly conserved evolutionary history 

(Chapter 4, section 3.2.1). The conservation of each cpRNP, including cpRNPs some generated 

through duplication events, is likely important for functional specialisation and may indicate only 

partial redundancy. Previous research has shown a complementary role for the paralogous cp31A 

and cp31B in both RNA binding and RNA editing over combinations of plastid-encode transcripts 

(Tillich et al., 2009); this thesis further shows that while cp29B, cpSEBF, and cp31A were all identified 

to contribute similarly to Red light-dependent plastome- and nuclear- transcript accumulation at 

22oC (Chapter 2, section 2.3.6, Chapter 3, section 3.4.2), further specialisation of each cpRNPs is 

illustrated by the cold-responsiveness of the target transcripts for cp31A. Furthermore, a potential 

role for cpSEBF in regulating greening and transcript accumulation in warm temperatures was 

described, and cp29B was observed to be RS-sensitive in low light. This suggests that each cpRNP can 

cover general functions in optimal conditions, but can also have highly specialised roles linked to the 



204 
 

essential requirements of photosynthesis under changing environments. Overall, this understanding 

can be used in the future to develop new toolkits for crop improvement mechanisms, but before this 

can be accomplished, further mechanistic insight into which processes are affected in response to 

which environmental conditions, and how these processes may be regulated by cpRNPs is needed.  

 Additionally, recent research has suggested that cpRNPs do not have cyanobacterial origins 

and may instead have descended from eukaryotic hnRNPs (Maruyama et al., 1999; Uchiyama et al., 

2018). This hypothesis indicates that cpRNPs’ function is not chloroplast- or prokaryotic organelle-

specific. Their proposed origin may have additional support by the evidence gathered in this study 

regarding dependence of photosynthesis-associated nuclear-transcript abundance on cpRNPs and 

the in-vivo evidence of their nuclear localisation. Bioinformatics studies conducted also indicate that 

cpRNPs may have roles in multiple subcellular compartments, including the cytoplasm (Chapter 3, 

section 3.3.2). While further exploration of other subcellular compartments functions awaits proper 

studies, what is clear is that cpRNPs are linked to the inter-organellar control of photosynthetic 

metabolism and greening responses.  

 Finally, the evidence gathered also suggests that cpRNPs are regulators of plastid transitions 

and have a wider role in different types of plastids. Using Solanum lycopersicum as a model research 

crop, this thesis reported potential links between cpRNPs and chloroplast-to-chromoplast transition 

(Rosso, 1968; Harris and Spurr, 1969a; Harris and Spurr, 1969b) (Chapter 4, section 4.5). This finding 

provides evidence that cpRNPs activity extends form the etioplast-to-chloroplast transition in de-

etiolation when the assembly of the photosynthetic apparatus occurs, to chloroplast-to-chromoplast 

transition in maturing fruits, which the disassembly of photosynthesis and maintenance of a high 

ATP metabolism are required (Livne and Gepstein, 1988). cpRNPs have also been detected in vivo in 

proplastids in maize and tobacco, and in rice etioplasts (Baginsky et al., 2004; von Zychlinski et al., 

2005; Majeran et al., 2012); this suggests that cpRNPs are rather plastidic proteins and not 

exclusively chloroplastic, despite their name. Their functions in different types of plastids and their 

links to the co-ordination of developmental and environmental transitions, for which the 

communication between the plastome and the nuclear genome remains highly important, awaits 

future study.  
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5.4. Conclusions.  

 This thesis expands our knowledge of the phy signalling cascades involved in the co-

ordination of plastid metabolism with the external environment and describes previously 

uncharacterized post-transcriptional events linked to plastome regulation and interorganellar 

(nuclear-chloroplastic) communication. The cpRNPs, as global controllers of post-transcriptional 

events in the chloroplast, have an essential role in greening and in the co-ordination of the plastome 

and nuclear gene expression for the proper assembly and environmental adjustment of the 

photosynthetic activities in the chloroplast. As a highly conserved protein family across higher 

plants, their characterization can deliver new toolkits to address regulation of photosynthesis across 

different subcellular organelles and to optimise photosynthetic outputs in a changing environment. 

 

Ultimately, the main conclusions of this thesis are: 

1. phy photoreceptors are master modulators for the expression of the plastome in response to 

R-light (Chapter 2). 

2. phys control nuclear genes involved in the plastome gene expression machinery, with a 

particular contribution to the modulation of RNA-binding proteins that act in the chloroplast and 

that are likely part of the post-transcriptional modulation of plastid mRNAs (Chapter 2). 

3. Amongst the families of RNA-binding proteins with a strong R-light modulation are the 

cpRNPs, which are shown to be essential to R-light mediated greening responses (Chapter 2). 

4. A novel role of master photomorphogenic factor HY5 has been identified as a light signalling 

component that incorporates signals from both R-phys and B-crys to control genes with a regulatory 

function in the expression of the plastome (Chapter 2). 

5. The cpRNPs, which are global post-transcriptional modulators of the plastome genes, are a 

part of a R-phys-HY5-cpRNP signalling cascade that delivers light signals to chloroplast-encoded 

genes for proper greening responses (Chapter 2). 

6. This R-phys-HY5-cpRNP pathway can not only deliver light quality signals, but a diverse range 

of environmental cues perceived by the phys to modulate photosynthesis, including light quality, 

quantity, and temperature (Chapter 2). 

7. Experimental evidence is provided to support a role of cpRNPs beyond the chloroplast, with 

the phyB-modulation of alternative transcriptional start site (TSS) selection as the mechanism 
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through which cpRNPs isoforms with alternative chloroplast-nucleus subcellular localisations are 

generated (Chapter 3). 

8. Reductions in photosynthesis-associated nuclear-encoded gene transcripts were reported in 

cprnp mutants, making cpRNPs a part of the co-ordination of nuclear- and plastid-encoded genes 

pathways involved in building and tuning photosynthesis in response to environmental changes 

(Chapter 3). 

9. cpRNPs are also sensitive to retrograde signals from the chloroplast. Retrograde signals affect 

both cpRNP subcellular localisation and accumulation of cpRNP transcripts and have been previously 

documented to modulate downstream cpRNP targets (Chapter 3).  

10. Conservation of cpRNPs across higher plants make them worth characterizing as part of the 

global efforts to generate new toolkits to maintain photosynthetic rates in crops under changing 

environments (Chapter 4). 
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cpRNP Organism Locus 
cp28A Arabidopsis (A. thaliana) AT1G60000 
cp29A Arabidopsis (A. thaliana) AT3G53460 
cp29B Arabidopsis (A. thaliana) AT1G01080 
cp29C Arabidopsis (A. thaliana) AT3G52150 
cp31A Arabidopsis (A. thaliana) AT4G24770 
cp31B Arabidopsis (A. thaliana) AT5G50250 
cp33A Arabidopsis (A. thaliana) AT3G52380 
cp33B Arabidopsis (A. thaliana) AT2G35410 
cp33C Arabidopsis (A. thaliana) AT4G09040 
cpSEBF Arabidopsis (A. thaliana) AT2G37220 
cp28A Barley (H. vulgare) (Predicted Protein) AK357470 
cp29C Barley (H. vulgare) (Predicted Protein) AK361812 
cp31 Barley (H. vulgare) (Predicted Protein) AK354155 

cp33B Barley (H. vulgare) (Predicted Protein) AK367276 
cpSEBF Barley (H. vulgare) (Predicted Protein) AK356209 
cp28A Barrelclover (M. truncatula) MTR_1g045510 
cp29B Barrelclover (M. truncatula) MTR_7G118230 
cp29C Barrelclover (M. truncatula) MTR_3G027140 
cp31 Barrelclover (M. truncatula) MTR_3G075500 

cp33A Barrelclover (M. truncatula) MTR_7G106440 
cp33B Barrelclover (M. truncatula) MTR_5G030020 
cpSEBF Barrelclover (M. truncatula) MTR_1G064230 
cp28A Grape (V. vinifera) (Uncharacterised Protein) VIT_05S0049G01930 
cp29B Grape (V. vinifera) (Uncharacterised Protein) VIT_15S0048G02560 
cp29C Grape (V. vinifera) (Uncharacterised Protein) VIT_13S0064G01430 
cp31 Grape (V. vinifera) (Uncharacterised Protein) VIT_14S0066G00140 
cp31 Grape (V. vinifera) (Uncharacterised Protein) VIT_17S0000G09680 

cp33A Grape (V. vinifera) (Uncharacterised Protein) VIT_08S0032G01180 
cp33B Grape (V. vinifera) (Uncharacterised Protein) VIT_02S0012G01420 
cpSEBF Grape (V. vinifera) (Uncharacterised Protein) VIT_08S0040G01760 
cp29C Maize (Z. mayes) GRMZM2G143870_P02 
cp31 Maize (Z. mayes) GRMZM2G011129_P01 

cp33B Maize (Z. mayes) GRMZM2G090271_P01 
cpSEBF Maize (Z. mayes) GRMZM2G158835_P01 
cpSEBF Maize (Z. mayes) GRMZM2G068715_P01 
cpSEBF Maize (Z. mayes) GRMZM2G042683_P01 
cp29B Poplar (P. trichocarpa) POPTR_014G105800 
cp29C Poplar (P. trichocarpa) POPTR_009G065900 
cp31 Poplar (P. trichocarpa) POPTR_012G090200 
cp31 Poplar (P. trichocarpa) POPTR_015G086500 

cp33A Poplar (P. trichocarpa) POPTR_006G202000 
cp33B Poplar (P. trichocarpa) POPTR_016G068300 
cp33C Poplar (P. trichocarpa) POPTR_001G141300 
cpSEBF Poplar (P. trichocarpa) POPTR_016G090700 
cpSEBF Poplar (P. trichocarpa) POPTR_006G127200 
cp28A Poplar (P. trichocarpa) (uncharacterised protein) POPTR_008G172100 
cp28A Potato (S. tuberosum) PGSC0003Dmg400002694 
cp33A Potato (S. tuberosum) PGSC0003DMg400037033 
cp33B Potato (S. tuberosum) PGSC0003DMg400030598 
cpSEBF Potato (S. tuberosum) m29041 
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cp29B Rice (O. sativa) LOC_OS08G02390 
cp29C Rice (O. sativa) LOC_OS09G10760 
cp31 Rice (O. sativa) LOC_OS09G39180 

cp33A Rice (O. sativa) LOC_OS02G57010 
cp33B Rice (O. sativa) LOC_OS04G50110 
cpSEBF Rice (O. sativa) LOC_OS07G43810 
cpSEBF Rice (O. sativa) LOC_OS03G25960 
cp28A Soybean (G. max) GLYMA. 10G134100 
cp28A Soybean (G. max) GLYMA.20G082800 
cp29B Soybean (G. max) GLYMA.16G018200 
cp29B Soybean (G. max) (Uncharacterised) GLYMA.19G260200 
cp29B Soybean (G. max) (Uncharacterised) GLYMA.07G049500 
cp29C Soybean (G. max) (Uncharacterised) GLYMA.15G271200 
cp29C Soybean (G. max) (Uncharacterised) GLYMA.08G151700 
cp31 Soybean (G. max) (Uncharacterised) GLYMA.04G190100 
cp31 Soybean (G. max) (Uncharacterised) GLYMA.06G175400 

cp33A Soybean (G. max) (Uncharacterised) GLYMA.03G202900 
cp33A Soybean (G. max) (Uncharacterised) GLYMA.19G200700 
cp33B Soybean (G. max) (Uncharacterised) GLYMA.01G017400 
cp33B Soybean (G. max) (Uncharacterised) GLYMA.09G205500 
cpSEBF Soybean (G. max) (Uncharacterised) GLYMA.10g058500 
cpSEBF Soybean (G. max) (Uncharacterised) GLYMA.13G145200 

cp28 Spinach (S. oleracea) P28644 
PSRP-2 Spinach (S. oleracea) P82277 
cp30 Tex-Mex Tobacco (N. plumbaginifolia) P49313 
cp31 Tex-Mex Tobacco (N. plumbaginifolia) P49314 
cp28 Tobacco (N. sylvestris) LOC104242583 

cp29A Tobacco (N. sylvestris) Q08935 
cp29B Tobacco (N. sylvestris) LOC104230517 
cp31 Tobacco (N. sylvestris) LOC104227036 
cp33 Tobacco (N. sylvestris) P19684 

cp28A Tomato (S. lycopersicum) SOLYC09G090960 
cp29A.1  Tomato (S. lycopersicum) SOLYC10G086150 

cp31 Tomato (S. lycopersicum) SOLYC03G111840 
cp33A Tomato (S. lycopersicum) SOLYC01G006940 
cp33B Tomato (S. lycopersicum) SOLYC08G076840 
cp33C Tomato (S. lycopersicum) Solyc04g074750 
cpSEBF Tomato (S. lycopersicum) SOLYC09G007850 
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To promote photomorphogenesis, including plastid development and metab-
olism, the phytochrome (phy) and the cryptochrome (cry) photoreceptors
orchestrate genome-wide changes in gene expression in response to Red (R)-
and Blue (B)-light cues. While phys and crys have a clear role in modulating
photosynthesis, their role in the coordination of the nuclear genome and the
plastome, essential for functional chloroplasts, remains underexplored. Using
publicly available genome datasets forWT and phyABCDE or cry1cry2Arabi-
dopsis seedlings, grown, respectively, under R- or B-light, we bioinformatically
analyzed the influence of light inputs and photoreceptors in the control of
nuclear geneswith a function in the chloroplast, andevaluated the role of phyB
in themodulation of plastome-encoded genes.We showgene co-induction by
R-phys and B-crys for genes with a chloroplastic function, and also apparent
photoreceptor-driven preferential responses. Evidence fromphyB inArabidop-
sis together with published evidence from CRY2 in tomato also supports the
participation of both photoreceptor families in the global modulation of the
plastome genes. To begin addressing how these light-sensors orchestrate
changes in an organellar genome, we evaluated their effect over genes with
potential functions in plastid gene-expression regulation based on their TAIR
annotation. Results indicate that both crys and phys modulate ‘plastome-regu-
latory genes’with enrichment in the contribution of crys to all processes and of
phys to post-transcription and transcription. Furthermore, we identified a new
role for HY5 as a relevant light-signaling component in photoreceptor-based
anterograde signaling leading to plastome gene regulation.

Introduction

Light is a vital environmental signal for plant develop-
ment and function. Both Red (R) and Blue (B) light, per-
ceived by the phytochromes (phys) and cryptochromes

(crys) photoreceptors, respectively, are essential wave-
lengths for photomorphogenesis including photosynthe-
sis and plastid development. As part of the greening
responses both photoreceptor families modulate chloro-
plast biogenesis, the assembly and maintenance of the

Abbreviations – accD, acetyl-CoA carboxylase; ATAB2, Arabidopsis translation of psaB 2; BPG2, Brz-insensitive pale green 2;
cDNA, complementary DNAs; Crys, cryptochromes; FDR, false discovery rate; GO, gene ontology; HY5, elongated hypocotyl
5; LFZ1, light regulated zing finger 1; mTERF, mitochondrial transcription termination factor; NCP, nuclear control of PEP;
ndh, NADH dehydrogenase; NEP, nuclear-encoded polymerase; PEP, plastid-encoded polymerase; PhANG, photosynthesis
associated nuclear genes (s); Phys, phytochromes; PPR, pentatricopeptide repeat; PRDA1, PEP-related development arrested
1; PSI/II, photosystem I/photosystem II; PSRPs, plastid specific ribosomal proteins; pTAC, plastid transcriptionally active chromo-
some; rbcL, rubisco large subunit; Rpl, large ribosomal protein; Rpo, RNA polymerase; Rps, small ribosomal protein; RRM, RNA
recognition motif; SD, short days; TPR, tetratricopeptide repeat; TPRS, tetratricopeptide domain-containing family.
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photosynthetic apparatus components, and the produc-
tion of photosynthetic pigments (Franklin and
Quail 2010).

Control of similar developmental pathways in
response to different light quality inputs is accomplished
via shared and independent signaling pathways (Wang
et al. 2017). Their co-action involves multiple mecha-
nisms including the use of common signaling intermedi-
ates and signal convergence downstream of the
receptor (Wang et al. 2017). Examples of such syner-
gisms and interactions include phytochrome and cryp-
tochrome co-regulation of master light-development
promoting transcription factors (Franklin and Quail
2010, Su et al. 2017). Such signaling cascades fine-
tune the activity and gene expression of photosynthe-
sis associated nuclear genes (PhANGs), including
subunits for photosystem I (PSI), photosystem II (PSII),
the carbon fixation reactions of the Calvin–Benson
cycle, the photosynthetic reduction/oxidation bal-
ance and energy production (ATPase) in response to
light quality and quantity inputs (Thum et al. 2000,
Oh et al. 2013).

However, the onset of functional chloroplasts
requires not only the activation of nuclear-encoded
genes, but also the regulation of the plastid genome
(Berry et al. 2013). As semi-autonomous organelles of
prokaryotic origin, chloroplasts maintain their own
genome and gene expression mechanisms. The chloro-
plast genome, known as the plastome, encodes for
approximately 120–130 genes including photosynthe-
sis-related genes and core components of the plastids’
transcription and translational machineries (Sato et al.
1999). Yet, during evolution, the majority of the genes
encoding for proteins with a function in the chloroplast
were transferred to the nucleus (Martin et al. 1998).
Modern chloroplasts are therefore organelles that
require the expression and coordination of two
genomes for proper functioning and require the import
of over 95% of their proteins that are nuclear-encoded
(Soll and Schleiff 2004). To ensure coordinated
responses across organelles, the plant cell utilizes
anterograde and retrograde signals to tune the expres-
sion of the genetic information encoded in these two
organelles, thereby ensuring the correct assembly and
stoichiometry of multiple chloroplast protein com-
plexes (mostly involved in photosynthesis), and the
accurate sensing and interpretation of light and devel-
opmental inputs (Singh et al. 2015).

Despite photoreceptor mutants affecting chloroplast
development, their individual and comparative contribu-
tions to the plastome gene expression have not been fully
addressed. Arabidopsis studies on mesophyll-expressed
phytochromes have shown phys regulate the expression

of the sigma factors that modulate plastid transcription
(Oh and Montgomery 2014). On the other hand, in
tomato, overexpression of CRY2 leads to a wide modula-
tion of the entire plastome, including light induction of
subunits of PSI, PSII and cytochrome b6f, and the
down-regulation of ribosomal protein transcripts (Facella
et al. 2017).

Control of plastome gene expression is complex,
including regulatory processes similar to both prokary-
otic and eukaryotic organisms (Barkan 2011). Plastome
transcription involves the activity of a nuclear-encoded
RNA polymerase (NEP) and a plastid-encoded RNA poly-
merase (PEP) (Del Campo 2009). Photoreceptor links to
the modulation of transcriptional processes in the chloro-
plast are illustrated by the NEP activity repression by
CRY2 (Facella et al. 2017), and the modulation by phys
and crys of several components required for PEP activity,
including the transcriptional co-factors sigma factors and
proteins, such as nuclear control of PEP (NCP), PEP-
related development arrested 1 (PRDA1) (Ohgishi et al.
2004, Qiao et al. 2013, Oh andMontgomery 2014, Yang
et al. 2019, Yoo et al. 2019), and HEMERA (HMR)/plastid
transcriptionally active chromosome complex 12
(pTAC12) (Pfalz et al. 2006, Chen et al. 2010). Yet, plas-
tid-encoded genes are generally organized into polycis-
tronic operons, and chloroplast transcription rates and
steady-state mRNA levels tend not to be comparable,
pointing at a broad impact of post-transcriptional regula-
tion in modulating the plastome gene expression (Deng
et al. 1989). Plastid mRNAs require extensive processing,
stabilization, editing and intron splicing before transla-
tion (Deng et al. 1989, Del Campo 2009), carried out
by nuclear-encoded (but chloroplast-localized) RNA-
binding proteins including the pentatricopeptide repeat
proteins (PPRs) and the tetratricopeptide domain-con-
taining family (TPRs) (Lamb et al. 1995, Ruwe et al.
2011). While the involvement of the photoreceptors in
the modulation of the activity of these RNA-binding pro-
teins has not been fully investigated, what is known is that
these RNA-dependent regulatory pathways are active
during chloroplast development and respond to light
quality inputs (Deng et al. 1989).

Chloroplast translation also has an important role in
rapidly shaping the plastid proteome in response to envi-
ronmental cues (Zoschke and Bock 2018). While the
plastome encodes for plastid rRNA and tRNA genes,
additional nuclear-encoded enzymes are involved in
translation-related processing and modifications, includ-
ing the aminoacyl-tRNA synthetases and 60% of the plas-
tid ribosomal proteins (RPs) (Yamaguchi and
Subramanian 2000). There is also evidence that dark/
light transitions reshape the plastids protein synthesis
rates, including the translation of plastid-encoded
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transcripts for photosynthetic subunits (Kim and Mullet
2003). In addition, some plastid-specific ribosomal pro-
teins (PSRPs) have been identified as light-sensitive
(Yamaguchi and Subramanian 2003) and the phys have
been reported to regulate ribosomal RNA processing
and the induction of rRNA accumulation during de-etio-
lation (Kim et al. 2012). CRY2, on the other hand, modu-
lates genes such as Arabidopsis translation of psaB2
(ATAB2) involved in translation of the plastome encoded
PSI and PSII mRNAs (Barneche et al. 2006).

Overall, the available evidence points at a potential
global role of the cryptochromes and the phytochromes
in coordinating the nuclear and the plastome gene
expression by targeting components, involved in the
plastome regulatory processes. In this paper, we bioinfor-
matically investigated whether similarly to CRY2, phyB is
also involved in delivering light signals for a broad mod-
ulation of the plastome gene expression. In addition, we
addressed the role of both photoreceptor families and
long hypocotyl 5 (HY5) in the light-induction of
nuclear-encoded genes with an annotated function in
the regulation of the plastome expression.

Materials and methods

Genomic datasets used

Publicly available genome-wide transcriptomic data sets
were used to generate all main figures. Datasets analyzed
include microarrays GSE31587 (Hu et al. 2013),
GSE62119 (Kawashima et al. unpublished data),
GSE58552 (He et al. 2015), and E-MEX-1299 (Michael
et al. 2008) for Arabidopsis seedlings at comparable
developmental stages. The GSE31587 dataset was gener-
ated using 4-day old WT and phyABCDE Arabidopsis
seedlings grown in darkness or under continuous Red
light (50 μmol m−2 s−1). The GSE62119 dataset was gen-
erated with 3-day old WT and hy5 grown under continu-
ous white light (no intensity data provided). The
GSE58552 dataset included 4.5 day-old WT and cry1-
cry2 grown in darkness or in continuous Blue light
(15 μmol m−2 s−1). The E-MEX-1299 dataset was gener-
ated using 7-day Col and phyB-9 null knock-out mutant
grown under short day (SD) conditions (8 h light 100
uE/16 h dark at 22�C-SD). Datasets GSE31587,
GSE62119 and GSE58552 generated cDNAs using
oligo-dT based technology, while the phyB dataset E-
MEX-1299 used random hexamer primers.

Statistical analysis of gene expression

Expression profiles were analyzed using Microsoft Excel
and R (R Core Team 2020). Significant differences on
gene expression ratios were analyzed with the package

GSALighning (Chang and Tian 2015, Chang 2020) and
the Mann–Whitney–Wilcoxon test for all genes, and
were adjusted using the Benjamini–Hochberg false dis-
covery rate (FDR) at the significance level of 0.05.

Gene ontology enrichment

Gene ontology (GO) enrichment information for GO
terms ‘biological processes’ and ‘cellular component’
against light modulated genes expressed in each dataset
were searched using Cytoscape version 3.8.0 (http://
www.cytoscape.org/) along with its plugin Bingo version
3.0.3 (Maere et al. 2005). Annotations and ontologies
were those released in April 2020. Hypergeometric test
was used with a Benjamini and Hochberg FDR correc-
tion at the significance level of 0.05 to determine the cat-
egories overrepresented. Only the 15 top categories
significantly overrepresented were considered in Fig. 1.
A cut off of log2 > 0.5 for differential expression was cho-
sen to take into account moderate responses. Lists of
genes were compared by using Venny2.1 (Oliveros
2007–2015). Only significant ratios by Mann–Whitney–
Wilcoxon adjusted with FDR were considered for GO
enrichment analysis.

Heatmap

The heatmap display in Fig. S1B was created with pheat-
map R package (R Core Team 2019, Kolde 2019). Results
were clustered according to Z-score.

Selection of genes lists used for chloroplastic
genome modulation functional categories

GO-term categories corresponding to chloroplast genome
regulatory mechanisms (GO:0009507), transcription
(GO:0006350), post-transcription (GO:0010608) or trans-
lation (GO:0006412) were selected using TAIR website
annotation. To ensure function in the chloroplast, overlap
with the GO term ‘chloroplast’ (GO:0009507) was verified
and the final gene sets were manually curated to remove
false positives. From these gene sets, wemanually identified
commonly occurring geneswith R/B light- or phy/cry-sensi-
tivity that were part of wider families/classes. Three families/
classes were selected for further examination in each one of
the general plastome regulatory categories. Gene lists were
manually curated for annotated members of the family that
also had a chloroplast function. Where appropriate, the
presence of specific functional domains was verified to cor-
roborate classification. Light sensitivity for the genes ana-
lyzed was established using WT data and an absolute
log2 ratio > 0.5 difference compared to dark datasets. This
cut off was selected aiming to pick strong and moderate
light responsiveness. After establishing light-sensitivity, sub-
sequent photoreceptor-dependency of these targets was
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calculated based on an absolute log2 ratio > 0.5. For each
category, only a log2 ratio > 0.5 validated bymultiple com-
parisons Wilcoxon test followed with FDR at 0.05 were
considered as significant. A χ2 test was used to evaluate
the significance of enrichment of mis-regulated genes in
each category and differentiate enrichment from random
observations. Statistical differences were defined as those
with a P-value of <0.05.

Results

Phytochromes and cryptochromes regulate
chloroplastic and photosynthesis-associated
biological processes at a genomic level in
Arabidopsis

In accordance with the extensive reprogramming of the
nuclear genome by the phytochrome and cryptochrome
photoreceptors during photomorphogenesis (Chen and
Chory 2011), multiple R/B light-responsive genes with a
functional role in chloroplast biogenesis and photosyn-
thetic metabolism have been identified in parallel with
the greening defects observable in the phy and cry
mutants (Ohgishi et al. 2004, Franklin and Quail 2010).
Nonetheless, no formal chloroplast function-focused
genome-wide study of the contribution of crys in Blue
light and phys in Red light has been conducted. The
availability of full genome data for young Arabidopsis
seedlings in comparable stages of development
(�4 day-old) grown under 15 μmol m−2 s−1 blue light
(B) (dataset GSE58552) (He et al. 2015) or
50 μmol m−2 s−1 red light (R) (dataset GSE31587) (Hu
et al. 2013) and defective in cry1cry2 or the five phyto-
chromes (phyABCDE), allowed us to explore their
respective global contribution to chloroplast functions.
Within the limitations of datasets obtained with different
methodologies, raw data curation parameters and differ-
ent level of variation among biological replicas, we sur-
veyed the role of the cryptochromes and phytochromes
in chloroplast metabolism and functions. We selected
genes with a log2 ratio > 0.5 gene expression difference
and validatedwith an FDR-adjustedmultiple comparison

Mann–Whitney–Wilcoxon test at P < 0.05 between the
WT and R-phyABCDE (3,218 genes out of 22 ,810 genes
evaluated, Fig. 1A) or B-cry1cry2 (4,327 genes out of
27,417 genes evaluated, Fig. 1B). GO-term biological
processes and cellular component analyses singled out
notable enrichment in chloroplastic and photosynthetic
functions for both receptors (Fig. 1A,B). The high number
of genes identified points at a broad role of both photore-
ceptor families in photosynthesis, the tuning of chloro-
plast metabolism and plastid organization. In addition,
the photoreceptors impact all the chloroplasts sub-com-
partments, as indicated by the cellular component data
(Fig. 1A,B). We singled out 1,188 genes common to both
datasets, likely representing genes co-regulated by R-
phys and B-crys (Fig. 1C). This gene subset is enriched
in functions including photosynthesis, light reactions,
plastid organization, light harvesting, electron transport
and regulation of photosynthesis, and likely illustrates
the adaptation of photosynthesis in higher plants to natu-
ral environments enriched in both wavelengths. How-
ever, the data also points at potential bifurcation of
signals that could derive in differential sensitivity of spe-
cific processes. Among the non-overlapping gene sets
for R-phy (2,030 genes) and B-cry (3,139 genes), we still
observe the presence of broad functional categories
potentially related to chloroplast functions such as ana-
tomical structure development and circadian and rhyth-
mic processes in the R-phy set and RNA modification,
plastid organization and biosynthetic processes in the
B-cry set (Fig. 1B). It is also apparent that there is a subset
of photosynthetic genes that are B-cry modulated, which
in the datasets analyzed did not overlap with the R-
regulation.

In summary, our study further emphasizes a genome-
wide role of phys and crys in the modulation of the chlo-
roplast and its metabolism, including genes whose prod-
ucts act in the chloroplast for the onset of photosynthesis,
plastid development and for the production of plastidic
essential metabolites. Both an imposed co-sensitivity to
R- and B-light mode of action and a light quality-depen-
dent bifurcation of functionalities are potential

(Figure legend continued from previous page.)
Fig. 1. GO-term analysis of biological processes and cellular component for phyABCDE in red (R) light (A) and cry1cry2 in blue (B) light shows significant
enrichment in the contribution of these receptors to photosynthesis and chloroplastic processes. GO-term genome-wide analysis of R-light activated
genes in WT vs the phyABCDE mutant (A) and B-light activated genes in WT vs cry1cry2 mutant (B) was conducted using the publicly available
datasets GSE31587 and GSE58552, respectively. (C) GO-term biological processes and cellular component categories evaluating phy and cry
photoreceptors co-targeting and individual contribution to light-up-regulated genes indicate an enrichment in photosynthesis and chloroplast
functions. In all panels, light up-regulated genes were defined by a log2 ratio > 0.5 difference with WT and statistical significance of gene expression
ratios was estimated with FDR adjusted multiple comparison Mann–Whitney–Wilcoxon at P < 0.05 (for details see Section 2). Hypergeometric test
was used with an FDR correction at the significance level of 0.05 to determine the categories overrepresented. Only the 15 top categories
significantly overrepresented were considered. The bar diagrams represent significant log10 of adjusted P-values and the number of genes evaluated
to estimate enrichment is indicated in brackets.
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mechanisms used by the photoreceptors in the building
of a functional chloroplast.

Beyond the nucleus: photoreceptors role in the
global regulation of the plastome gene expression

While the interpretation of light signals from both the
nuclear genome and the plastome is essential for chloro-
plast development, function and the onset of photosyn-
thesis, our understanding of the role of the light
photoreceptors in the global regulation of the plastome
gene expression mechanisms remains fragmented. The
plastome encodes for �80 genes for proteins involved
in: (1) the organellar gene expression machinery, such
as the large ribosomal proteins (rpl), the plastidic RNA
polymerase (rpo) and small ribosomal proteins (rps); (2)
photosynthesis and the electron transport chain includ-
ing subunits of the ATP synthase (atp), NADH dehydro-
genase (ndh), Cytochrome b6f complex (pet),
photosystem I (psa), photosystem II (psb) and rubisco
large subunit (rbcL); (3) hypothetical and uncharacterized
proteins (ycf). Recently, a key role for CRY2 in the modu-
lation of 58% of the genes encoded in the plastome was
described for tomato (Facella et al. 2017). In this study,
based on CRY2 over-expressing plants, authors reported
the CRY2-dependent positive modulation of 88% of the
plastome encoded subunits of PSII and PSI and the down-
regulation of most of the genes participating in translation
(Facella et al. 2017). No full investigation of the global
impact of the phys on the plastome-encoded gene
expression has been conducted to date. We addressed
this question by analyzing the effect of phyB in short days
(SD) (E-MEX-1299) (Michael et al. 2008). For transcrip-
tomic studies, the synthesis of complementary DNAs
(cDNAs) by reverse transcription from mRNA templates
is achieved by the use of oligo-dT complementary to
the poly-A tails of mature mRNAs or by random hexamer
priming technology. While both methodologies are effi-
cient for the quantification of nuclear mRNAs, in the case
of plastome-encoded mRNAs the links between poly-A
tails in chloroplast mRNAs and the degradation pathways
(Schuster et al. 1999) make the use of random hexamer
priming technology necessary. The genomic dataset E-
MEX-1299 for phyBwas the only one among the multiple
published phy transcriptomic studies for which we could
verify this requirement.

We checkedGO-term cellular component analyses for
the E-MEX-1299 dataset that phyB in SD shows enrich-
ment in plastid functions including PSII, PSII reaction
centers, photosynthetic membranes, and thylakoids
(Fig. S1A). We then evaluated the impact of phyB-SD
over 80 plastome transcripts abundances during the
course of the light (ZT4-ZT8) and dark (ZT12-ZT0)

periods using a log2 ratio > 0.5 difference between WT
and phyB. Further statistical validation for each timepoint
was not possible, as only average results for each time
point were provided for the dataset E-MEX-1299
(Michael et al. 2008) (Fig. 2). This analysis revealed that
phyB is required for the modulation of 55 out of the 80
genes evaluated (69%) in at least one time point during
the dark–light cycle. The analysis supports a wide impact
of phyB on the plastome expression that extends to the
accumulation of 24 out of the 40 plastome-encoded pho-
tosynthesis functioning genes, including the psb family
(Photosystem II), the psa family (Photosystem I), the ndh
family (NADH dehydrogenase complex) and the pet
genes (cytochrome b6f complex), as well as modulation
of genes involved in the plastome gene expression func-
tions such as rpl and rps encoding for the large and small
ribosomal protein gene families and rpo coding for the
plastid RNA polymerase subunits (Figs 2 and S1B).

In 53 out of the 55 genes with phyB contribution to
their transcript accumulation, phyB has a positive role.
We only identified two genes, accD (acetyl-CoA carbox-
ylase) and rbcL (rubisco large subunit), where phyB had
apparently exclusively negative modulatory activity
under the conditions tested. In the case of psbG (PSII),
rpoB (RNA polymerase), ycf6 (unknown) and petN (cyto-
chrome b6f), a mixed role for phyB between up- and
down-regulation was observed depending on the time
point analyzed (Figs 2 and S1B).

Interestingly, the effect of phyB is observed not only
during the illumination period, but extends broadly into
the dark cycle with 49 plastome genes (61.25% of the
set analyzed) dependent on phyB at least one time point
in the dark, including effects at dawn for 37 of the 80
genes studied (46.25%). An equal number of genes (37)
showed phyB-dependent modulation during the illumi-
nation period (ZT4–ZT12), including an effect at the ear-
liest time point measured (ZT4) in 27 of them (Figs 2 and
S1B). Closer inspection indicates that in SD, phyB does
not alter the timings of expression over the dark/light
cycle but has an effect on the relative transcript abun-
dance (Fig. S1B).

These preliminary observations point at a broad effect
of phyB in the expression of the Arabidopsis plastome
in the light and in the dark, similar in magnitude to the
effect described for CRY2 in tomato.

Phytochrome and cryptochromes are involved in
setting up the regulatory machinery for the
expression of plastome genes

Plastome gene expression involves processes that are
similar to both prokaryotic and eukaryotic organisms.
These mechanisms include transcription by a nuclear-
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encoded RNA polymerase (NEP) and a plastid-encoded
(PEP) RNA polymerase supported by transcriptional co-
regulators known as sigma factors (Berry et al. 2013), in
addition to extensive RNA processing (Ruwe et al.
2011) and translational control (Chotewutmontri and
Barkan 2016). All of these regulatory processes depend
on nuclear-encoded proteins imported by the plastids
(Del Campo 2009, Berry et al. 2013). However, plastid
mRNAs’ organization in polycistronic operons requires
extensive processing, stabilization, editing and splicing,
making post-transcriptional control a dominant process
in plastid gene regulation (Stern et al. 2010, Bar-
kan 2011).

The contribution of phys and crys to the light-depen-
dent modulation of the nuclear-encoded genes with reg-
ulatory activity over plastome gene expression is
illustrated by their control of genes encoding for subunits
of the plastid RNA polymerase (PEP), HEMERA (HMR)/
plastid transcriptionally active chromosome 12 (pTAC12)
(Chen et al. 2010, Yoo et al. 2019), the transcriptional co-
factors sigma factors that direct the PEP, and plastid-trans-
lation factors such as Brz-insensitive pale green 2 (BPG2)
and ATAB2 (Barneche et al. 2006, Kim et al. 2012, Oh
and Montgomery 2014).

However, the full extent of the regulatory networks and
functions orchestrated by the photoreceptors to deliver
environmental signals to the plastome has not been fully
explored. To begin addressing whether phys and crys
exert a broad control over plastome gene expression by
modulating the accumulation of transcripts for nuclear-
encoded genes, whose proteins act in the control of the
plastome gene expression, we conducted a GO-term bio-
logical function analysis based on the GO-term catego-
ries ‘transcription’ (GO:0006350), ‘post-transcription’
(GO:0010608), and ‘translation’ (GO:0006412) over-
lapped with the GO-term ‘chloroplast’ (GO:0009507)
(for more details see Material and methods). From these
subsets, those genes up-regulated (log2 ratio > 0.5) in

Fig. 2. phyB has a broad impact in chloroplast genome expression in short-
days (SD). Table representation of the plastome transcripts’ differential
accumulation in phyB compared to WT. Numbers indicate the phyB/WT
transcript ratio during a SD dark/light cycle. Color code illustrates gene
downregulation in blue (log2 phyB/WT < -0.5) and up-regulation in red
(log2 phyB/WT > 0.5). Plastome gene expression information was
obtained from the dataset E-MEX-1299 to calculate the ratios.
Chloroplast genome genes are organized by functional category: atp
(ATP synthase); ndh (NADH dehydrogenase); pet (cytochrome b6f
complex); psa (photosystem I); psb (photosystem II); rpl (50S ribosomal
proteins large subunits); rpo (RNA polymerase); rps (30S ribosomal
proteins small subunits) and ycf (hypothetical/unknown chloroplast ORFs).
The light period (ZT4-8) of the diurnal cycle is indicated with a white
rectangle and dark period (ZT12-0) in a gray rectangle.
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the WT in response to R-light dataset (GSE31587) or B-
light (dataset GSE58552) compared to darkness were
selected, and the contribution of phys and crys to the R-
and B-light response was evaluated by comparison
between WT and phyABCDE (Fig. 3A) or cry1cry2 (Fig.
3B). Statistical significance of the differential with WT
was established using an FDR-adjusted multiple compar-
ison Mann–Whitney–Wilcoxon at P < 0.05 (see Section
2). Results show that 9% (13 genes out of 141) in the tran-
scription category, 26% (11 genes out of 43) in post-tran-
scription, and 8% (21 genes out of 265) from the
translational category were R-phy dependent (Fig. 3A).
On the other hand, B-crys contributed to the modulation
of 30% (43 genes out of 141) in the transcription cate-
gory; 47% (20 genes out of 43) in the post-transcription
and 38% (101 genes out of 265) in the translational cate-
gory (Fig. 3B).

A closer inspection of the genes dependent on R-phys’
and B-crys’ modulation represented in each of the general
transcription, post-transcription and translation GO-term
biological function categories, showed enrichment in spe-
cific gene families/classes with an already described role
in plastid gene expression regulation. In the transcriptional
category, we identified members of the mitochondrial tran-
scription termination factor (mTERF) family, involved in
transcriptional initiation and termination (Kleine 2012);
the plastid transcription active chromosome (pTAC) class
of proteins involved in PEP activity (Pfalz et al. 2006, Chen
et al. 2010); and the sigma factors required for PEP promoter
recognition (Borner et al. 2015). In the post-transcriptional
category, we focused on the pentatricopeptide repeat-con-
taining domain (PPR) family, the RNA recognition motif
(RRM), and the tetratricopeptide repeat-containing domain
proteins (TPR) involved in chloroplastic RNA processing,
editing, cleavage, splicing and protection against degrada-
tion (Lamb et al. 1995, Ruwe et al. 2011). In the transla-
tional subgroup, we singled out the t-RNA ligases, the
large ribosomal proteins (RPL), and the small ribosomal pro-
teins (RPS) gene families (Yamaguchi and Subramanian
2000, Yamaguchi and Subramanian 2003, Berg et al.
2005) (Fig. 3).

For all the TAIR-annotated members of these specific
gene classes with a GO-term chloroplast overlap, we
evaluated the light responsiveness and photoreceptor
dependency. These were defined based on a log2
ratio > 0.5 difference with darkness and statistical sup-
port defined with multiple comparison Mann–Whitney–
Wilcoxon adjusted with FDR test at P < 0.05 (see Section
2). A χ2 test was used to evaluate the significance of
enrichment in light up-regulated genes from random
observations in each category at P < 0.05.

Within the transcription category, we identified 2
genes as R-phys dependent and 11 genes as B-crys

dependent out of the 30 analyzed mTERFs; of the 18
pTAC class genes evaluated, 3 were R-phys dependent
and all of themwere modulated by B-crys. Of the 6 sigma
factors, 4 were R-phys dependent and 5 of them B-crys
induced. (Fig. 3A,B). Statistical analysis of enrichment
within the light modulated genes in the transcriptional
category showed significance for the R-phy regulation
of the sigma factors and for the three gene families/classes
(sigma factors, mTERFs and pTAC) for B-crys.

Among the post-transcriptional regulation category,
out of the 181 members of the PPR category 28 genes
were R-phys modulated and 100 were B-crys dependent.
In the TPR domain-containing category of 31 members, 7
were R-phys dependent and 11 were B-crys controlled.
Within the 37 RRMs, 1 member was R-phys modulated
and 17 were B-crys up-regulated (Fig. 3A,B). Statistical
enrichment of light responsiveness was observed within
all families for the B-cry modulation and for R-phys in
the PPRs’ and TPRs’ cases.

In the translational activity category, out of the 12
tRNA ligases 1 R-phys dependent gene was detected vs
7 B-crys modulated genes. For the RPL, out of the 38
members, 3 were R-phys dependent and 20 were B-crys
dependent. For the 37RPS, 1 was found to be R-phys
dependent and 10 were B-crys modulated (Fig. 3A,B).
Statistical enrichment showed significance for the B-crys
modulation of the tRNA-ligase and RPL families (Fig. 3).

Globally, the results show a clear contribution of B-
crys to the modulation of a large number of genes with
potential function in different levels of the plastome
expression. This result highlights the crys potential to
orchestrate a whole range of plastome regulatory mecha-
nisms based on the control of the light-sensitivity of mul-
tiple members of the regulatory gene families singled out
in this study.

In the case of phys, while more moderate modulatory
effects were detected, we identified statistically signifi-
cant enrichment in the global category of post-transcrip-
tion. And, at the level of the specific gene families
analyzed, we detected enrichment in their contribution
to the R-induction of the sigma factors (transcription),
and PPRs and TPRs genes (post-transcription).

Anterograde signaling: HY5, a light signaling
component linking the photoreceptors to the
regulation of the plastome

The cry and phy photoreceptors share some signal trans-
duction mechanisms including the control of nuclear-
localized ‘master’ transcription factors that stimulate
large-scale changes in gene expression. The b-ZIP HY5
transcriptional modulator HY5 is one of such key B-and
R-light signaling components, with functions in
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Fig. 3. Phytochromes, cryptochromes and HY5 modulate the light induction of genes with potential functions in multiple aspects of plastome gene
expression. (A) Percentage of genes involved in plastome regulatory processes and R-light up-regulated (red bars) or R-up-regulated in a
phytochrome-dependent manner (dark red). Light modulation was calculated comparing to the dark response using a log2 ratio > 0.5 difference.
Phytochrome contribution was estimated by comparing WT to the phyABCDE response. Significant differences on gene expression ratios were
conducted by FDR-adjusted multiple comparison Mann–Whitney–Wilcoxon test at the significance level of 0.05. Statistical significance for enrichment
was conducted with a χ2 test at P < 0.05 (see Section 2). Transcript information was obtained from the GSE31587 dataset. (B) Percentage of light-
induced genes involved in plastome regulatory processes and B-light up-regulated (blue bars) or B-up-regulated in a phytochrome dependent manner
(dark blue bars). Light modulation was estimated as described in (A) and cryptochrome contribution calculated using the dataset for cry1cry2
(GSE58552). Statistical significances for differences on gene expression ratios and enrichment were conducted as described in (A). (C) Percentage of
light-induced genes involved in plastome regulatory processes and B or R-light up-regulated and light up-regulated and dependent on HY5. Light up-
regulation was calculated as described in panel (A). HY5 dependence was calculated relative to the WT response used the hy5 data from GSE62119.
Statistical significances for differences on gene expression ratios and enrichment were conducted as described in (A). For all panels numbers in

(Figure legend continues on next page.)
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chloroplast development, plastid metabolism and the
transcriptional control of light-responsive genes that act
in the chloroplast (Osterlund et al. 2000, Wang et al.
2017), roles further corroborated by our GO-term biolog-
ical function analysis for hy5 (Fig. S2). Previous studies
have also provided with evidence to support the involve-
ment of HY5 in the regulation of the plastome gene
expression. Specifically, HY5 participates in the light
modulation of the plastid transcriptional co-regulator
SIG5 (Mellenthin et al. 2014, Belbin et al. 2017) and the
light-regulated zinc finger 1 (LFZ1) with functions in early
chloroplast development and in the coordination of the
light-regulated translational activation of chloroplast
mRNAs (Chang et al. 2008). However, no global evalua-
tion of the involvement of HY5 in the regulation of genes
whose protein products could impact the expression of
the plastome has been conducted to date.

We investigated at a genome level whether HY5 could
act as a relevant anterograde signaling component
involved in delivering light cues to the plastome by con-
trolling the expression of nuclear genes (identified previ-
ously) potentially involved in chloroplast genetic
machinery control. For the study, we used the genomic
dataset GSE62119 generated for 3-day old hy5 and WT
seedlings grown under continuous white light (Kawa-
shima et al., unpublished data) to examine the contribu-
tion of HY5 to the light induction of the genes
previously classified in the general functional categories
of chloroplast transcription, post-transcription and trans-
lation as well as for the specific gene families singled
within each one (Fig. 3). Light modulation was estab-
lished by a log2 ratio > 0.5 compared to darkness, and
statistical differences between WT and hy5 evaluated
by FDR-adjusted multiple comparison Mann–Whitney–
Wilcoxon at P < 0.05.

HY5 showed a contribution ranging from �10 to 30%
of the light modulation of the genes included in the gen-
eral categories with 23 genes in chloroplast transcription
category, 12 in post-transcription and 24 in the transla-
tional category (Fig. 3C). Within the specific gene fami-
lies evaluated, HY5 participated in the light up-
regulation of the transcripts of 3 mTERFs, 5 pTACs and
5 sigma factors with potential to participate in transcrip-
tion of the plastome. Statistical analysis showed HY5 sig-
nificant enrichment in the modulation of the pTAC and
sigma factors. The possibility of a HY5 contribution to
the light-dependent transcript accumulation of 25 PPRs,
4 TPRs and 3 RRMs in the post-transcriptional category

(Fig. 3C) and in the translation category 2, tRNA ligase
genes and 3 RPSs deserves further study.

These results illustrate that HY5 could be part of the
nuclear transcriptional cascades connecting the environ-
mental signals perceived by the light photoreceptors to
the control of nuclear-encoded genes whose protein
products act over the plastome (Fig. 4). Notably, the iden-
tification of HY5 light-modulation of RNA binding pro-
teins (Fig. S2) with function in the chloroplast illustrates
a previously underestimated capacity to act in the post-
transcriptional control of plastome gene expression. The
future characterization of these HY5-dependent genes
would be of interest in relation to their biological function
in plastid gene expression and light-signaling cascades.

(Figure legend continued from previous page.)
brackets indicate total number of genes analyzed in each category. Numbers at the top of the graphs indicate the number of genes light modulated and
the number dependent on the photoreceptors (A, B) or HY5 (C). Statistical significance for enrichment by χ2 test at P < 0.05 is indicated with an asterisk.

Fig. 4. Working model for the phytochrome and cryptochrome
photoreceptors and HY5 involvement in the regulation of the plastome.
Schematic representation of the activity of the phys, crys and HY5 in
modulating the expression of the plastome. Photoreceptors target-specific
subsets of nuclear encoded genes whose protein products have a
functional role in the chloroplast transcriptional, post-transcriptional, and
translational processes. HY5 may play a central role as a photoreceptor
signaling component with capacity to integrate light information for the
modulation of genes that act in the transcriptional and post-transcriptional
modulation of the plastome. Full lines represent statistically significant
enrichment in the links between the photoreceptors or HY5 and the
modulation of light-dependent genes in the indicated processes or specific
gene families (see Section 2). Dotted lines represent based on a noticeable
number of genes, the possibility of a contribution of HY5 or photoreceptor
to the light-dependent induction that deserves further study.
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Discussion

The phy and cry photoreceptors exert an important role
in chloroplast biogenesis and plastid metabolic gene
expression. Yet, their contribution towards building a
functional chloroplast by coordinating the nuclear
genome and the plastome remains underexplored.

In this work, we conducted genome-wide GO-term
biological processes and cellular component analyses
to show that in Arabidopsis thaliana, both phys and crys
share a global role in the regulation of genes whose pro-
tein products act in the chloroplast to build a functional
organelle and orchestrate photosynthesis (Ohgishi et al.
2004, Hu et al. 2013). Our focused analysis provides evi-
dence that although R-phys and B-crys co-regulate 1,188
genes in chloroplastic processes, independently they tar-
get an even larger number of genes (2,030 R-phys; 3,139
B-crys) whose functions remain enriched in chloroplast
processes (Fig. 1).

While in our studies the apparent contribution of B-
crys is larger than the R-phys, we need to acknowledge
limitations for a fully comparative analysis, derived from
datasets obtained under different experimental condi-
tions and the potential under-estimation of the number
of R-sensitive and R-phy-dependent genes. However,
our study is in agreement with previous studies on the
importance of both photoreceptor families for photosyn-
thesis (Ohgishi et al. 2004, Hu et al. 2013), and shows
that crys and phys share an important global role in the
regulation of genes whose protein products act in the
chloroplast to build a functional organelle. In addition,
we provide evidence of a cooperative gene co-targeting
mode of action as well as bifurcation of functionalities
in a light quality dependent manner for the regulation of
chloroplastic processes (Figs. 1 and 4). It would be of
interest to further investigate light-specific responses
such as the R-phys role in circadian and rhythmic pro-
cesses and the B-crys involvement in RNA metabolism
and plastid organization.

The involvement of both photoreceptor families in
building a functional chloroplast is observed not only at
the level of nuclear genes with a chloroplastic related
function, but on the global modulation of the plastome.
Previous studies on tomatoes overexpressing CRY2 had
established that 58% of the plastomeORFs are controlled
by this photoreceptor in a light-dependent manner in
long days (Facella et al. 2017). While multiple transcrip-
tomic datasets had been generated for phys, the require-
ment of using random hexamer priming to measure the
abundance of plastome-encoded genes was only met
by a study of phyB in SD. Oligo-dT-based technologies
suffer from the limitation derived from polyA-tails in plas-
tid transcripts association to degradation pathways

(Schuster et al. 1999). Despite the specific photoperiodic
environment used to evaluate the phyB effects over the
plastome, the results show that its contribution is global,
and comparable in magnitude to the impact of CRY2 in
long days. Out of the 80 plastome genes analyzed, 55
showed a phy-dependent modulation in at least one time
point of the cycle (Fig. 2). Interestingly, the role of phyB
was not restricted to photosynthetic genes or to the light
period. This contrasts to the effect of CRY2 on plastome-
encoded photosynthesis-associated genes in long days,
with only the exception of psbN and petD. This broad
effect of phyB over the dark/light cycle extends to the
genes from the chloroplast genetic machinery, affecting
expression of RPL and RPS and subunits of the plastid-
encoded polymerase. Only a few genes provided some
indication of a potential phyB role as a negative modula-
tor of plastid gene expression, including accD (acetyl
CoA carboxylase) and rbcL (rubisco large subunit).
Another interesting observation is that no alterations in
timings of transcript accumulation were detected in phyB
compared to WT, consistent with observations of the
effect of phyB over the regulation of nuclear genes.
Withal, our analysis highlights a broad role of phyB in
delivering light signals to the plastome that was not previ-
ously described. In future experiments, it would be of
interest to contrast the effects of crys and phys under
comparable monochromatic and photoperiodic condi-
tions, to dissect their relative contributions and whether
preferential light quality responses of the plastome are
necessary to build a functional chloroplast.

This co-regulation of crys and phys of chloroplastic
processes is also observed in the modulation of nuclear
genes whose protein products act in the chloroplast,
including those with an annotated function in GO-term
biological processes in transcriptional, post-transcrip-
tional, and translational control of the plastome (Fig. 4).
Our analysis of the B-crys showed a statistically signifi-
cant enrichment in the light-modulation of genes across
all the three general functional categories (Fig. 3). This
statistical significance was also maintained for the B-crys
contribution to the light modulation of the singled-out
gene families/classes derived from these general catego-
ries and with clear links to the plastome genetic machin-
ery control.

Thus, our results reinforce the view of crys as master
modulators of the plastome gene expression and suggest
a mechanistic basis for the wide regulatory capacity
observed for CRY2 (Facella et al. 2017). Future studies
should address the mode of action of the members of
the gene families identified here, whose specific contri-
butions would extend the CRY2 involvement beyond
the transcriptional control of the plastome (Tsunoyama
et al. 2004, Pfalz et al. 2006, Chen et al. 2010).
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Despite the limitations of the phy datasets analyzed,
we also identified R-phys modulation of genes with
potential function in the different levels of plastome regu-
lation. Due to the presence of only duplicate replicates
for R-WT samples with a potential wider biological varia-
tion, we acknowledge the possibility of an underestima-
tion of the R-light responsiveness and the contribution
of phys to the response. Nonetheless, we identified R-
light sensitive genes across all the chloroplast genome
regulatory processes andwithin the specific gene families
studied. In particular, R-phys sensitive genes were part of
the transcriptional and post-transcriptional categories,
pointing also at an extended regulatory capacity of the
receptor. Statistical enrichment for the pTAC class of tran-
scriptional regulators and the contribution to the up-reg-
ulation in R- of the sigma factors, further emphasizes the
importance of phys in plastome transcriptional control.
Yet, the statistical enrichment detected for the GO-term
post-transcriptional category together with the identifica-
tion of 36 R-controlled genes encoding for chloroplastic
RNA binding proteins (PPRs and TPRs) indicate that one
of the regulatory mechanisms orchestrated by R-phys
may be the post-transcriptional modulation of chloro-
plast gene expression, an area unexamined in the light-
signaling field. Post-transcriptional regulation is widely
accepted as a mechanism with deep impact in the plas-
tome expression (Ruwe et al. 2011). RNA-binding pro-
teins may therefore be key signaling components in
delivering environmental information perceived by the
photoreceptors to the plastome-encoded proteome. This
is broadly supported from studies in spinach where
despite the transcriptional activity of chloroplasts being
similar in red, yellow and white light-adapted plants,
expression of PSI and PSII proteins differed in red light,
hinting at an important role for post-transcriptional activ-
ity in light quality responsiveness (Deng et al. 1989).

The environmental input of the photoreceptors to
translation of the plastome has been much less explored,
beyond the phys and crys modulation of BPG2 (Kim et al.
2012) and of ATAB2 (Barneche et al. 2006). We have
identified a clear link between the crys and the regulation
of chloroplastic ribosomal proteins genes, whose future
evaluation would be of interest.

To begin understanding how the phys and crys set up
their signaling cascades to coordinate nucleo-chloro-
plastic light responses, we investigated whether HY5, a
transcription factor controlling photosynthetic gene
expression (Fig. S2), had an effect on the light-modulation
of nuclear genes whose protein products could act at the
level of the plastome gene expression. We observed reg-
ulation of 59 genes by HY5 across the chloroplast tran-
scription, post-transcription and translational categories.
Our study extends the already described contribution of

HY5 to the plastome transcriptional control by sigma fac-
tors (Mellenthin et al. 2014) to the light modulation of
pTAC protein genes.

Although not statistically significant, we observed a
contribution of HY5 to the light up-regulation of 29
RNA binding proteins (25 PPRs, 4 TPRs). This suggests
that HY5 could be an important signaling components
linking the crys and phys to the post-transcriptional mod-
ulation of the plastome (Fig. 4). HY5 links to translational
activity were also observed with 24 light-HY5 dependent
genes potentially linked to this process including a small
number of tRNA ligases Small Ribosomal Protein genes.

Thus, our bioinformatics studies indicate that HY5 is
an important photoreceptor signaling component with
capacity to integrate the phys’ and crys’ perceived light
cues and transmit them to the chloroplast genome (Fig.
4). Through HY5, the phys and crys could orchestrate
from the nucleus a wide set of plastome controlling
mechanisms for the coordination of nucleo-chloroplastic
light responses. Further characterization of HY5 func-
tions will corroborate this possibility.
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Fig. S1. PhyB has a broad impact on chloroplastic pro-
cesses and plastome gene expression under short
days (SD).

Fig. S2.GO-term analysis of biological process and cellu-
lar component for hy5 in white light (WL) shows signifi-
cant enrichment in the contribution of HY5 to
chloroplastic processes and ribosomal and ribonucleo-
protein complexes.
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