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Breaking the Mould: 

Achieving High Volume Production Output with Additive Manufacturing 

 

Abstract  

Purpose: To examine a discrepant industrial case that demonstrates how to achieve economies 

of scale with additive manufacturing (AM), thereby expanding the scope of AM beyond high-

variety, customised production contexts. 

Design/methodology/approach: Abductive reasoning is applied to analyse a case of using 

AM to compete with conventional production, winning a contract to supply 7,700,000 products. 

Comparing this case to existing theories and contemporary practices reveals new research 

directions and practical insights.   

Findings: Economies of scale were realised through a combination of technological innovation 

and the adoption of operations management practices atypical of AM shops (e.g. design for 

volume, low-cost resource deployment, and material flow optimisation). The former improved 

AM process parameters in terms of time, cost, and dependability; the latter improved the entire 

manufacturing system, including non-AM operations/resources. This system-wide 

improvement has been largely overlooked in the literature, where AM is typically viewed as a 

disruptive technology that simplifies manufacturing processes and shortens supply chains.    

Originality/value: It is empirically shown that an AM shop can achieve economies of scale 

and compete with conventional manufacturing in high-volume, standardised production 

contexts.  
 

Keywords: Additive manufacturing, Economies of scale, 3D printing, COVID-19 

Paper type: Impact pathways  
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1. Introduction 

Additive Manufacturing (AM), commonly known as 3D printing (3DP), overcomes 

conventional manufacturing constraints, such as inventory buffers and tooling requirements, 

through its distinctive “general purpose” manufacturing capability (Hedenstierna et al., 2019). 

It has the potential to rapidly produce an almost unlimited range of products. Yet despite these 

attractive characteristics, the anticipated revolutionary impact of AM on manufacturing 

operations and supply chains (e.g. Brennan et al., 2015; Frank et al., 2019; Ghobadian et al., 

2020) has not occurred for most products and industries. 

AM has traditionally achieved commercial success in prototyping and other high-variety, 

low-volume applications where its flexibility to customise output has compared favourably to 

conventional manufacturing approaches. There are also recent examples of high-variety, high-

volume applications of AM (e.g. Eyers et al., 2021). However, AM has made no real insurgence 

into low-variety, high-volume mass manufacturing contexts, as this requires the cost efficiency 

to repeat that so often characterises conventional manufacturing. In this paper we explore how 

a combination of technological and operational innovation allowed a firm employing AM to 

directly compete with conventional manufacturing during the COVID-19 pandemic in a high-

volume, standardised production context.  

The unique flexibility and responsiveness capabilities of AM have contributed to 

overcoming the global shortage in personal protective equipment (PPE) during COVID-19 

(Tareq et al., 2021). As conventional supply chains buckled in the early stages of COVID-19 

(Van Hoek, 2020), hospitals turned to AM for a range of PPE requirements, and we were able 

to study how 3DP firms responded. One firm, Photocentric, stood out from numerous offerings 

of 3D-printed PPE by supplying millions of printed face shields to the National Health Service 

(NHS) in England. It became a key partner commissioned by the UK Government during 

COVID-19 together with 33 other UK manufacturers, most of which used conventional 

manufacturing technologies (UK Government, 2020). Exceptionally, the company 

demonstrated the potential of AM to achieve economies of scale, widely perceived to be a 

considerable shortcoming of AM (Baumers and Holweg, 2019) that has limited the scope of its 

application and prevented its growth for decades (Ghobadian et al., 2020). This discrepant case 

runs counter to the extant literature and most current commercial applications of AM, leading 

to novel insights. Unpacking Photocentric’s success may therefore unlock the barriers to 

growth for AM more generally. Hence, this study asks: 

(1) How did Photocentric achieve economies of scale in AM?  

(2) What does this mean for the future of AM practice and research? 
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2. Background 

As COVID-19 spread around the world in early 2020, we witnessed numerous AM technology 

applications that sought to address local PPE shortages. Motivated by a desire to better 

understand what this meant for the management of operations and supply chains, we initiated 

interviews with companies producing PPE via AM. Most companies were making small 

quantities of PPE for local hospitals and other healthcare facilities; Photocentric was different.  

Photocentric quickly scaled up to enable 3DP production levels that were comparable with 

conventional manufacturing, but with competitive pricing to secure the government contract. 

A specially designed ‘print farm’ factory, fitted out with 45 Magna printers operating 24/7, 

capable of printing 50,000 components a day, was built in three weeks to supply the NHS with 

7,700,000 face shields. This case perplexed us because the company appeared to be pushing 

the boundaries of AM and defying the logic of previous studies that had concluded the ‘sweet 

spot’ for AM was in offering variety and customisation, not high-volume standardisation. 

Would contemporary practice prove theory wrong?   

 

3. Methodology 

A discrepant case like Photocentric – that contradicts existing theory and therefore falsifies it 

– has great pay-off for theory development, where its sharply contrasting characteristics are 

particularly relevant (Voss et al., 2002). We explore how Photocentric succeeded and the 

implications for AM practice. As we start from a discrepant empirical observation, abductive 

reasoning is applied whereby empirical evidence is used to refine existing theory, propose new 

theory, and outline future research directions (Mantere and Ketokivi, 2013). The cross-

sectional case analysis, using all the interviews that formed a larger study, helped to identify 

the uniqueness of the Photocentric case and the associated contrasting characteristics (Voss et 

al., 2002).  

Evidence specific to Photocentric was collected via multiple semi-structured online 

interviews with the Managing Director (MD) and triangulated with secondary data from the 

company’s published documents and other industry sources. All interviews were conducted by 

two interviewers and guided by interview protocols agreed by all members within the research 

team. The interviews were transcribed by the interviewers before detailed analysis was 

performed by the whole team. Data analysis was centred around identifying contrasting 

characteristics, with findings confirmed with the MD. Following the query of ‘how’, we 

identified two main interconnected drivers that differentiated Photocentric from other 
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companies: (1) technological innovation, and (2) the application of operations management 

practices atypical for AM, as discussed next.  

 

4. How did Photocentric Succeed in Providing Economies of Scale with AM? 

 

4.1 Technological Innovation 

AM encapsulates a multitude of different process technologies that all fabricate parts from a 

3D model. The technology behind Photocentric employs ‘Daylight Photo Printing’ (DPP) using 

light from conventional Liquid Crystal Displays (LCD) to cure many liquid photopolymer resin 

layers to quickly form a 3D-printed part. This technological innovation enables process 

performance improvements in time, cost, and dependability, which would not have been 

possible with other similar AM technologies. Paul Holt, the firm’s MD, commented on how 

DPP enhances the performance of the printing process in three key dimensions: 

• Reduced unit processing times: “LCDs had the benefit of being scalable. In simple terms, 

we could do [large] areas while others did [small, individual] dots”. LCD screens flash an 

entire layer instead of a single point, which significantly reduces the print/process time, and 

this was a critical element that enabled Photocentric to economically compete with 

conventional mass-manufacturing technology (e.g. injection moulding).  

• Reduced direct cost: “Photocentric’s 3D printers use LCD screens from mobiles, televisions 

and tablets, making them more affordable than SLA/DLP [stereolithography apparatus/ 

digital light processing] technologies, but offering the same quality”. Cost reduction enables 

new markets for AM where products are not restricted to the niche, high-value domains 

commonly perceived in the AM literature (Ghobadian et al., 2020).   

• Increased dependability: “The key to [over 90% utilisation] is the TV screen. TVs don’t break. 

They go on and on…You don’t expect to come home and your TV stops working, but you 

would expect a digital light projector or a laser to be out of focus or to burn out”. The risk 

of build failure increases with the number of build layers, which means that increases in 

build volume are limited because, at a certain point, the costs of build failure will outweigh 

the gains of build volume (Baumers and Holweg, 2019). DPP enhances the dependability of 

printing operations, addressing the problem of failure costs that have inhibited AM’s ability 

to scale up in terms of machine utilisation.  

 

These technology-enabled operational advantages allowed Photocentric to quickly respond 

to critical demand, not only via commonly-known design flexibility (without tooling 
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constraints) but also via the possibility of instant availability and the rapid scaling-up of volume, 

in comparison to conventional manufacturing. The MD explained: “The obvious answer was 

to use [conventional] injection moulding and make them [face shields] in the UK. But PPE 

wasn’t being made in the UK and there weren’t any tools…The answer had to be printing. The 

way to do it of course was to make more of the [Magna] printers...Almost exactly three months 

ago, we designed the first one [face shield]. It shows how quickly you can start your 

business…We are on [design] iteration 25. That’s the joy of 3D printing. You just iterate to 

make something better, if you can make it perform better, have less material or print better, 

you can do it. If you can find little things, you just change all the time without cost”. The first 

box of face shields was sent to the NHS within a week from scratch, including the time required 

for product design, consultation, and optimisation (product and process). 

 

4.2. Adopting Operations Management Practices Atypical to AM 

While DPP provided Photocentric with a unique technical edge, technological innovation does 

not automatically lead to success. In many 3DP firms there is typically limited emphasis on 

operational issues such as material flow or operational procedures that go beyond the core (AM) 

manufacturing process. To provide high volume at low cost, Photocentric had to radically 

change their AM shop design and management in terms of volume provision, the deployment 

of resources, and the optimisation of material flow. A craft shop was transformed into a 

manufacturing system within three weeks, including building a production line, automating 

post-processing, and developing production control software.   

 

4.2.1 Design for Volume 

AM companies producing PPE mostly operated in a distributed fashion, using widely 

recognised designs. For example, many organisations (e.g. 3DP bureaus) and individuals 

printed face shields from an open-source design in small quantities. This created significant 

problems, as stated by the MD: “Everyone was using different materials assembled in multiple 

sites. That’s not the answer”. In theory, if there are enough individuals (e.g. a collaborative 

3DP bureau) supplying an item then they eventually offset the speed/volume constraint of a 

technology, thereby providing an aggregated high volume. But such a practice offers no 

consistency in terms of quality assurance over the actual outcome, let alone over the costs for 

individuals. The MD stated: “They’ll [3DP bureaus] make you a face shield but they’ll probably 

charge you about £15 [for one unit] because that’s a fair price for the one-off effort, the price 

of the resin and the amortisation of the equipment”. In other words, there are no economies of 

scale.  
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Photocentric developed their own design tailored for DPP and optimised the printing process. 

This enabled a significant improvement in print speed, from 20 minutes per item to 57 seconds 

per item, which was critical to achieving production volumes. As illustrated by the MD: “We 

went back to look at the [open-source] design. It was obviously designed for their own FDM 

[fused deposition modelling] printers, not for LCD. The design is inextricably linked to the 

printing process; unless you optimise it, it just isn’t worth doing as it’s just too slow. We could 

only place four of the FDM items on a bed while we could do 210 items on ours. So, we’ve 

moved two orders of magnitude larger. We optimised the product to the process”. The strategy 

for Photocentric has always been to achieve high volumes at low cost, which provided them 

with a unique capability to design both product and process to achieve economies of scale.  

 

4.2.2 Low-Cost Resource Deployment 

Photocentric’s competitive pricing was rooted in their in-house supply of both focal and 

facilitating resources. As the MD pointed out: “We made the printers, we made the resin, and 

then we made the parts. That’s actually the only deal you can have if you want to compete with 

injection moulding”. Both material costs and resources/machines that are tailored for the 

product become critical when cost-efficiency is a competitive criterion. For example, AM 

material prices were high in the past because of a high degree of material specificity to certain 

AM processes (mandated by the machine manufacturer). Photocentric’s capability to build 

their own equipment and materials also allowed for the rapid scaling and tailoring of resources. 

The MD explained how expanding the machine size to increase output was suboptimal once 

the alignment with other resources (e.g. human operators) was considered: “I went for a very 

large screen when I first started. The first printer that I made for mass manufacture was 98 

inches in diameter and I subsequently went down to the 40-inch format. However, it was 

Magna’s 24-inch format that was the only production-effective size. Actually, the first thing 

you have to tackle is how it will work with the human. Even though we’ll have completely 

automatic processing, we won’t automate removing platforms from printers because it’s not 

cost-effective”.  

In addition to optimising the focal resource (e.g. the Magna printer), the prompt and 

effective deployment of facilitating resources (e.g. post-processing, and production control 

software) was also an important element. AM machines alone do not deliver a final product or 

component part (Eyers et al., 2018), and many supporting operations/resources from 

conventional manufacturing remain relevant (Thürer et al., 2021). Photocentric clearly 

recognised this, as highlighted by the MD: “We put in some automatic post-processing system 
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which we developed for the face shields project. So, some washing, some conveyorised post-

processing, with a custom module to flip the [3D-printed] parts over. And we got into a very 

nice regular part pattern that made a quarter of a million [units] a week”. 

 

4.2.3 Material Flow Optimisation 

To fulfil the volume of the NHS contract, Photocentric purpose-built the print farm and hired 

60 new staff. This required rethinking the facility layout to improve flow. This is not a typical 

problem in AM operations that deal with small-scale production. As emphasised by the MD: 

“The idea of mass manufacturing means you have to have a totally different look at it [AM]. I 

mean everything was different…We had to work out how to put them [45 Magna printers] 

together to go and work effectively because previously we were just doing what everyone else 

does, which is to take a print, have a wash station, and have a cure station”. Simultaneously, 

they needed to install a new planning and control system to maintain a smooth workflow across 

resources. The MD added: “We developed software to control the printers. If you’ve got one 

printer, it’s dead easy. You just wait until it finishes, go in, and refill it. But if you’ve got 45 of 

them, you need a control system. So, we’ve developed our own control software”.  

In this sense, as the operation grew, Photocentric encountered some of the challenges of 

conventional manufacturing. The MD stated: “The elements that we’ve tracked through our 

manufacturing system, we can see where the efficiencies and inefficiencies are… They [printers] 

all went green or red. When they go red, obviously it’s time to change so we are not burning 

them. And then we installed a QR [quick response] code system to track raw materials through 

to finished parts so we could check and track our parts for quality reasons”. A main innovative 

aspect was the continuous tracking and tracing of both products/materials and 

resources/processes; the latter was particularly essential for maintaining a high level of 

dependability in a multi-printer facility.    

 

5. Rethinking AM Practice and Research 

AM has traditionally achieved commercial success in prototyping and other high-variety 

applications where its flexibility to customise output has compared favourably to conventional 

manufacturing approaches. Our study extends the application domain of AM further. 

Combining technological innovation with the adoption of operations management practices 

that are not commonly applied in AM shops allowed Photocentric to realise the seemingly 

impossible – creating economies of scale to compete with conventional manufacturing. This 

opens up new pathways for AM practice and research, as briefly discussed below. 
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The extant literature (e.g. Baumers and Holweg, 2019; Ghobadian et al., 2020) has 

identified three main issues that prohibit economies of scale for AM compared to conventional 

manufacturing: (1) the print speed is too slow for standard items to be produced in high volumes; 

(2) the cost of build failures prevents maximising machine capacity utilisation and throughput; 

and, (3) the volume/quantity advantage vanishes (or is disrupted) if a new print cycle or 

machine is added, as this introduces additional operational costs. Our discrepant case suggests 

that the first two issues can be addressed by new technologies that enable sufficient 

improvements in speed and dependability. Speed can be further enhanced by using multiple 

machines simultaneously. The risk of build failures also reduces (and consequently 

dependability increases) as the size of the machine reduces – a shop with many small machines 

is more dependable than one with fewer (but larger) ones. These aspects however appear to 

worsen the third issue above as they increase the number of machines. However, as exemplified 

by the Photocentric case, additional operational costs become less relevant once sufficient 

volume is produced. For example, even if materials are not produced in-house, volume still 

enables bulk pricing. This leads to the following research issues: 

I. What other viable markets can be identified for high-volume AM?  

II. How should a high-volume AM shop be configured, considering the trade-offs between 

speed, dependability, and operational costs? 

 

The literature often argues that advanced manufacturing technologies such as AM will lead 

to a breakthrough in the performance frontier, providing a viable alternative to conventional 

manufacturing technologies or practices (e.g. Frank et al., 2019, Ghobadian et al., 2020). But 

advanced manufacturing technology is often just an enabler. How the technology is applied 

and managed is what constrains the disruptive power. For example, Ghobadian et al. (2020) 

argued that AM has the potential to lead Lean Manufacturing to its ‘final frontier’, whereas we 

have found that lean principles were a distinctive enabler of an effective AM mass production 

system at Photocentric. This qualitative empirical evidence extends recent survey literature that 

found a correlation between lean and Industry 4.0 implementations (Tortorella and Fettermann, 

2018; Rossini et al., 2019). It highlights that lean and Industry 4.0 implementations may not 

always be separated or occur sequentially. Rather, they can occur concurrently, specifically 

when technology is produced in-house meaning it can be adjusted to meet operational needs. 

Our evidence further suggests that AM works side-by-side with conventional manufacturing; 

thus, the challenges and best practices of conventional manufacturing remain relevant. The MD 

commented on what a difference a system, including non-AM facilitating operations/processes, 
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can make as it improves: “When we started, we had lots of peaks and troughs, and failures in 

everything such as a fire in one of the conveyors from parts getting stuck … probably everything 

that could go wrong did! Now it’s just consistent. You don’t really see the change happening. 

We are now at an efficiency of over 90% on productivity and we have optimised processing 

waste and machine utilisation”. Following this discussion, two more research issues emerge: 

III. How should the design of the product, production process(es), and supply chain be 

adapted to reflect the specific requirements of high-volume AM? 

IV. What operational issues must be resolved when integrating AM and conventional 

manufacturing operations?  

 

Most fundamentally, our case questions one of the main assumptions about the competitive 

positioning of AM – that it is only an economic solution in high-variety contexts. The empirical 

evidence suggests AM can achieve economies of scale if appropriate technologies and 

management practices are employed. This requires us to rethink the application of AM, where 

the advantages of the technologies can be leveraged contingent on the market requirements. 

Finally, other research issues of relevance to the wider application of AM include: 

V. Is high volume the only way forward if AM is to enter its growth phase? Or are there 

alternative, divergent futures or operational pathways for one-off/low-volume AM 

customisers and mass AM producers?  

VI. How can existing operations management theories and practices be adapted or further 

developed to support the growth of AM applications?   

 

6. Conclusions 

This paper has reported on a discrepant case of industrial practice – an AM shop that realised 

economies of scale and supplied millions of face shields to the NHS in the UK at the onset of 

the COVID 19 pandemic. This contrasts the prevailing view in the literature that the 

competitive advantage of AM is variety (the flexibility to customise) not volume (the cost-

efficiency to repeat).  The key to achieving high volume production with AM is a combination 

of technological and operational innovation. The latter is often overlooked for AM, where the 

assumption is this disruptive technology simplifies manufacturing processes and shortens 

supply chains. The case also highlights that the competitive advantage of the technology may 

well depend on whether the product and the manufacturing process are designed to leverage its 

strengths.  
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A main limitation of our study is that Photocentric is a single case creating a simple product. 

Future research could explore whether the results can be replicated with more complex 

geometries or whether this first requires further technological and/or operational innovations. 

Finally, as the need for PPE eased, Photocentric stopped supplying to the NHS and started to 

focus on new challenges. Around this time, we observed how PPE sourcing behaviour was 

creating a bullwhip effect. Future research could explore how the ability of AM to quickly scale 

down when compared to conventional manufacturing (and supply chains) can attenuate this 

dynamic phenomenon. 
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