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ABSTRACT
Energy theft is an old and multifaceted phenomenon affecting our
society on a global scale from both an operational as well as from
a monetary perspective. The relatively recent decentralisation of
the grid infrastructure with the integration of Distributed Renew-
able Energy Resources (DRES) in synergy with the widely adopted
demand-response business model, has undoubtedly broadened the
spectrum of attack surface enabling energy theft. Conventional
data-driven energy theft detection schemes have a strong depen-
dency on assessing the spatiotemporal patterns of SCADA mea-
surements aggregated at the Distribution System Operator (DSO)
or Transmission System Operator (TSO) with minimal considera-
tion of the intrinsic weather patterns related to individual DRES
deployments. Hence, theft scenarios instrumented by DRES owners
consuming the energy they produce (i.e., prosumers) can effectively
be stealthy and hard to spot. Therefore, in this work we introduce
a data-driven, SCADA-agnostic energy theft detection framework
explicit to DRES-based scenarios. We provide a comprehensive for-
malisation of a DRES-based theft attack model and further assess
the performance of our framework by utilising and relating freely
available third-party weather measurements with real solar and
wind turbine deployments in Australia and France. Evidently, our
proposed framework yields an energy theft detection accuracy rate
of over 98% with optimal computational costs. Thus, reasonably
addressing the highly demanding requirements of low-cost and
accurate real-time energy theft detection in modern power grids.
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1 INTRODUCTION
By virtue of global climate challenges, we witness a drastic shift
by regulators and grid operators towards the full integration of
distributed renewable energy sources (DRES) within modern smart
grids with intriguing application (e.g., virtual power plants). In
fact, a number of developed and developing nations target 100%
of energy generation to be resulted by DRES by 2040 (e.g., Swe-
den) and a 32% proportion to be achieved on average in the EU by
2030 [1]. Nonetheless, the practical operation of such deployments
entails a number of cybersecurity challenges that also transform
the way in which energy theft could be manifested. Energy theft
has been a traditional challenge, however, the refinement of the
grid’s business model and the relatively recent interconnection of
DRES deployments with the main grid has enabled the composition
of data-driven energy theft.

Numerous energy theft events are reported daily on a global scale
affecting a range of operational factors for our society including
safety and economy. For instance, non-technical losses caused by
energy theft amount to 1.4𝐵 GBP per annum in Brazil and for a
single energy provider in Canada such thefts cause an average
annual loss of 850 GWh converted as 55𝑀 GBP of financial loss [2].
Evidently, both energy and monetary losses from energy theft are

of paramount and timely importance, with direct implications to
the general public’s well-being as well as economy. Furthermore,
the continuous and evolving manifestation of such events justifies
the fact that current theft detection schemes employed by energy
providers are inadequate.

As energy theft underpinned by cyber-attacks increases, a mo-
mentum on the development of data-driven detection has been
observed within the wider research community. However, a sig-
nificantly small portion of detection solutions such as in [3, 4, 5]
considers the manifestation of energy theft from individual DRES
owners. Moreover, the dependence on historical consumption data
that can be tampered with by adversaries [4, 3] or unavailable data
in terms of supervisory control and data acquisition (SCADA) [5]
further restricts the reliability of these approaches in practical sce-
narios. In parallel, the aforementioned dependence on aggregated
consumption SCADA measurements is unable to capture the in-
trinsic environmental dynamics such as to relate generation values
with the actual weather conditions in a given DRES deployment [6].

Therefore, in this work we take a practical approach by firstly
proposing a generalised DRES-based adversary model and by sec-
ondly providing a data-driven detection solution framework con-
sidering weather dynamics. We go a step beyond current solutions
by removing any dependence from SCADA measurements and
by focusing largely on third-party and freely available measure-
ments. Thus, to tailor theft detection accuracy based on the explicit
properties related to generation and demand of individual DRES
deployments. In addition, we demonstrate that the introduced ap-
proach is applicable to large-scale wind-turbine and solar panel
DRES installations deployed in Australia and France.

In general, the contribution of this work is two-fold by providing:

(1) A formalised approach on describing DRES-based adver-
saries with the objective of energy theft. We demonstrate
the efficacy in which DRES owners (i.e., prosumers) can take
advantage of the current business model and steal energy.

(2) A novel, low-cost and generic energy theft detection frame-
work comprising of two algorithms; i) a SCADA-agnostic
DRES profiling method operating purely on third-party and
widely available weather measurements and ii) a classifica-
tion scheme relying on DRES profiling and able to classify
theft detection events. Evidently, the synergy of the two
components enables adaptive and highly accurate detection
with low computational overheads and aiding significantly
on reducing monetary loss.

The rest of this paper is structured as follows: Section 2 is ded-
icated on discussing related work whereas Section 3 provides a
description of the system and Section 4 presents the adversary
model for DRES-based energy theft attacks. Section 5 describes
the methodology underpinning the proposed detection framework,
while Section 6 discusses the datasets used within this work. Sec-
tion 7 depicts the evaluation methodology followed within our
experimentation and Section 8 discusses the results obtained. Fi-
nally, Section 9 concludes and summarises this paper.
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2 RELATEDWORK
In general, the data-driven approaches proposed for energy theft
detection can be classified based on the detection infrastructure into
two main categories: detecting theft attacks in the consumption
infrastructure and detecting them in the DRES infrastructure of
power grids.

The majority of the data-driven studies fall into the former cat-
egory, focusing on detection of theft attacks in the consumption
infrastructure of power grids. For instance, Punmiya et al. [7], Blaza-
kis et al. [8], Yao et al. [9], Sharma et al. [10] and Gunturi et al. [11]
employed energy consumption measurements to detect these theft
attacks. Punmiya et al. [7] proposed a gradient boosting detec-
tor and in the purpose of enhancing the detector’s performance;
the proposed approach relies on a feature engineering-based pre-
processing technique. However, the detector developed by Blazakis
et al. [8] is based on an adaptive network-based fuzzy inference
system, that for the first time have been applied in the field of en-
ergy theft attack detection. Yao et al. in [9] proposed a classification
energy theft detection scheme based on combined convolutional
networks and Paillier cryptosystem. An online unsupervised de-
tector called recursive transform learning is proposed in Shalini
et al. in [10] for detection of energy theft attacks dynamically in
the consumption infrastructure. The proposed detection algorithm
by Gunturi et al. in [11] employed tree based ensemble machine
learning models including categorical boosting, adaptive boosting,
light boosting, extreme-boosting extra trees and random forest to
detect energy thefts.

In addition to consumption measurements, Zheng et al. [12]
and Luya et al. [13] employed the measurements recorded by an
observer smart meter, installed to aggregate the sum of the con-
sumption measurements of a group of consumers over a certain
period. The proposed approach by Zheng et al. in [12] combined two
data-driven techniques, i.e., the maximum information coefficient
and the clustering technique by fast search and find the density
peaks, to detect these thefts. However, Luya et al. [13] proposed a
linear regression-based detector to detect theft attacks and estimate
the amount of the stolen energy.

Although the efficient results achieved by these detection ap-
proaches falling into this category in detecting theft attacks in con-
sumption infrastructures, such schemes assumed that the attackers
are not adaptive with the advanced smart grid infrastructures. As
a result, the amount of the energy loss for the utility providers
could increase dramatically, since detecting theft attacks in these
advanced properties of the modern grids, i.e., DRES, are neglected
in such detection mechanisms.

Nevertheless, there are a limited number of studies investigat-
ing energy theft detection in DRES infrastructures. Out of these,
Yuan et al. [3] employed the energy measurements generated by
solar panels and they proposed a theft detector based on a moving
time window and a least-squares approach. However, Krishna et
al. [4] employed the aggregated measurements from solar panels
and wind turbines based DRES installation. The detector developed
by Krishna et al. [4] is based on the auto-regressive integrated
moving average technique. More recently, besides the generated en-
ergy measurements, Ismail et al. [5] considered adoption of diverse
measurement sources including generated energy, solar irradiance

accessible from the weather stations, and SCADA to develop a
deep-learning-based theft detector. Although these works detect
theft attacks in the DRES infrastructure, the dependence on histori-
cal data or unavailable SCADA measurements further limiting the
reliability of such approaches in practical scenarios.

3 SYSTEM DESCRIPTION
We consider an end-to-end energy system consisting of a single
Transmission System Operator (TSO) connected with one or more
Distribution SystemOperators (DSOs) consisting of nodes equipped
with smart control, management, monitoring and metering tech-
nologies. The TSO is abstracted to a set of supply nodes 𝑅 including
DRES deployments and a set of high-voltage transmission buses
denoted as 𝑄 . It is assumed that one or more DSOs of the set
𝑃 = [𝑝1, .., 𝑝𝑛] interact with the TSO in discrete time intervals
and the energy supplied from the TSO to a given DSO on a discrete
time interval is denoted as the function 𝐸𝑠 (𝑡). Energy transmis-
sion and distribution is achieved via bidirectional power and data
communication flows through corresponding power system and
communication control and management components (e.g., actua-
tors, SCADA).

Each DSO in 𝑃 is defined by a total number of nodes 𝑁 and a set
𝑀 of medium/low voltage distribution buses. Nodes are categorised
into 𝐵 demand and 𝐴 supply nodes we refer to as consumers and
prosumers respectively where 𝐵 ⊂ 𝑁 and 𝐴 ⊂ 𝑁 . The energy
produced by a single prosumer of 𝐴 in the 𝑖𝑡ℎ DSO at a given
discrete time interval is mapped as the function 𝐸𝑟𝑖 (𝑡) whereas
the energy consumed by a single consumer over a time period in
the 𝑖𝑡ℎ DSO is represented by 𝐸𝑐𝑖 (𝑡). A prosumer is assumed to
be an individual or a group of individuals owning and managing a
DRES deployment (e.g., domestic solar panels) and can act both as
a consumer and a supplier of energy back to the DSO.

As discussed in [14], energy theft events cause energy losses that
can be described as the difference between the generated energy and
the energy consumed under normal conditions. Thus, we express
the cumulative energy loss experienced for a single DSO in time 𝑡
as:

𝐿 = Δ𝐸𝑠 (𝑡) + Δ
𝐴∑
𝑎=1

𝐸𝑟𝑎 (𝑡) − Δ
𝐵∑
𝑏=1

𝐸𝑐𝑏 (𝑡) +
𝑀∑
𝑚=1

𝑇𝐿𝑚 (𝑡) (1)

where Δ is the discrepancy in meter readings for reported and
actual measurements as caused by a single or more theft events
at time 𝑡 and 𝑇𝐿 refers to technical losses occurred due to physi-
cal constraints on transmission lines. Consequently, from a TSO
perspective the total energy loss in time 𝑡 is expressed as:

𝐿𝑇𝑆𝑂 =

𝑃∑
𝑖=1

𝐿𝑖 (𝑡) (2)

where 𝑃 is the total number of DSOs connected to the TSO.

4 ADVERSARY MODEL
The adversary model has an explicit focus on energy theft initiated
by generation meters installed on DRES deployments and managed
by prosumers. Thus, the primary assumption is that prosumers
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tamper generation meters and report erroneously back to their cor-
responding DSO. In order to reduce the complexity invoked within
our adversary model, we consider the DSO meters interacting with
edge DRES deployments to be secure. Thus, we rule out any dis-
crepancy in the measurement function for energy supplied from a
TSO to a DSO having Δ𝐸𝑠 (𝑡) = 0.

In addition, we assume that smart-meters strictly reporting en-
ergy consumption by a given consumer to the DSO are not tam-
pered. Therefore, discrepancies on the consumption reporting by
all consumers in a given DSO complies with: Δ

∑𝐵
𝑏=1 𝐸𝑐𝑏 (𝑡) = 0.

As mentioned, we particularly focus on tampering conducted on
individual meters reporting energy generation for a given DRES
deployment. Hence, we deduce that: Δ

∑𝐴
𝑎=1 𝐸𝑟𝑎 (𝑡) ≥ 0.

Given the above assumptions we re-express the DSO energy loss
as:

𝐿 = Δ
𝐴∑
𝑎=1

𝐸𝑟𝑎 (𝑡) +
𝑀∑
𝑚=1

𝑇𝐿𝑚 (𝑡) (3)

Based on equations (2) and (3), the energy loss for the TSO can be
approximated as follows:

𝐿𝑇𝑆𝑂 = Δ

{ 𝑃∑ 𝐴∑
𝐸𝑟 𝑖,𝑎 (𝑡)

}
+

𝑃∑ 𝑀∑
𝑇𝐿𝑖,𝑚 (𝑡) (4)

In order to cover a spectrum of tampering behaviour by a pro-
sumer we define four types of theft functions. All four functions
mimic practical fraudulent patterns in terms of reporting erroneous
generated energy back to the DSO. Many possibilities of such theft
functions exist and the herein models are distilled by observations
in literature [5, 15, 12]. Through our work we emulate attackers that
attempt to create manipulated reports either by retaining original
curve fluctuations and features or by generating new patterns [12].
From a modeling perspective, these are variables that partially or
completely amplify the reported energy timeseries signal as we
show next.

(1) Total Scaling Theft:

Δ𝐸𝑟 (𝑡) = 𝜂 (𝑡)𝐸𝑟 (𝑡) (5)

where {𝜂 ∈ R | 𝜂 > 1}).
(2) Partial Scaling Theft:

Δ𝐸𝑟 (𝑡) =
{
𝐸𝑟 (𝑡), 𝐸𝑟 (𝑡) ≥ 𝛽

𝛽, 𝐸𝑟 (𝑡) < 𝛽
(6)

where {𝛽 ∈ R | 𝛽 > min(𝐸𝑟 (1), 𝐸𝑟 (2), ..., 𝐸𝑟 (𝑇 )}
(3) Off-Peak Theft:

Δ𝐸 (𝑡) = 𝛾𝐸 (𝑡) (7)
where

𝛾 =

{
𝜂, 𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ]
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ] is the off-peak period, that is the peak
operating weather conditions for DRES.

(4) Replay Theft:

Δ𝐸𝑟 (𝑡) = max(𝐸𝑟 (1), 𝐸𝑟 (2), ..., 𝐸𝑟 (𝑇 )) (8)

In more detail, the total scaling theft in equation 5 considers the
scenario in which the aggregated generation measurements on time
𝑡 are tampered by an attacker. Tampering is based on an arbitrary
percentage denoted by 𝜂, which is adjustable (i.e., random rate
percentage). For instance, the attacker reports 150% of the actual
measurements when 𝜂 = 1.5. The partial scaling theft scenario
in equation 6 considers the case where an adversarial prosumer
tampers generation measurements whilst a particular threshold is
met. Hence, the prosumer sets a minimum reporting value (i.e., 𝛽)
for the DRES-based generation measurements sent to the DSO.

We also consider the case in which theft could be temporally
sporadic. Thus having discontinuous reporting of erroneous gener-
ation measurements during an off-peak period that relates with the
peak weather conditions in which the DRES operates. For instance,
the fraudulent prosumer reports 40% more power for a given time
period than what was actually generated during the peak solar
radiation of that period. Therefore, only measurements generated
during the peak operating conditions of DRES are scaled as shown
in equation 7. Finally, in the replay attack, the attacker only reports
the highest actual generation for the whole time duration 𝑇 .

5 METHODOLOGY
The data flow underpinning the proposed framework 1 is depicted
by the flowchart in Fig. 1. As shown, we incorporate two indepen-
dent but complementary methods handling DRES profiling and
anomaly classification. Building upon the work in [6] showing the
concrete profiling and prediction of energy generation using purely
geo-located weather features, we profile DRES installations using
third-party and widely available weather measurements. The in-
centive behind this approach is to remove from the full dependency
on SCADA-based measurements. Hence, we align with the realis-
tic scenario where no available measurements gathered by locally
placed sensors or the DRES SCADA systems exist. As depicted,
the SCADA-agnostic profiling component works in synergy with
a classification component that considers reported DRES energy
generation measurements as seen at the DSO level. Thus, to tailor
theft detection over individual DRES installations and back-track
potential fraudulent prosumers.

5.1 SCADA-agnostic DRES energy profiling
As shown in Fig. 1, the implemented DRES energy profiling compo-
nent accepts third-party weather measurements and it first employs
an automated pre-processing procedure. Following a series of data-
oriented tasks dealing with noisy and incomplete measurements,
the profiling component conducts an automated feature selection
process in which the most suitable statistical features are chosen
to compose a DRES energy generation profile. The trained model
based on the selected subset of features of the source DRES is then
used for all DRESs to profile their generated energy measurements.
Details of all the processes involved in the aforementioned descrip-
tion in terms of profiling are discussed below.

5.1.1 Data pre-processing: Within the pre-processing stage we fil-
ter our raw measurements by removing all the possible missing,

1Code andmetadata available onGithub:
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Figure 1: Data flows defining the proposed energy theft detection framework.

duplicated and inconsistent samples. Usually, third-party measure-
ments are largely inconsistent (out-of-range) due to various factors
ranging from environmental sensor reading and reporting errors
as well as REST-API pull failures. In this context, included com-
mon data sanitisation and normalisation approaches within an
automated pipeline in our prototype.

5.1.2 Data Encoding: The encoding process enables granular rep-
resentations from aggregated third-party time series Given that
aggregated measurements contain categorical time series, we en-
code them into numerical data via a binary encoder. In more detail,
we assign an integer value to each unique category of the original
categorical vector. Subsequently, for each integer-encoded category
we generate a binary vector and based on the majority of bit coding,
we generate an additional measurement vector.

Finally, we construct temporal views of our categorical mea-
surements using the measurement timestamps having hourly, daily
and monthly observations mapped with the aforementioned binary
encoded measurement vector.

5.1.3 Data selection: The developed data selection component is
underpinned by an automated feature selection mechanism such
as to identify an appropriate set of features from the encoded time-
series described earlier. As shown in Fig. 1, our component works in
coordinationwith themodel trained on the source DRES component
to obtain the optimal feature set, producing the best-fit prediction
model of the DRES generated power. In detail, the selection pro-
cess utilises i) Univariate feature selection (UFS), ii) Ranking-based
feature importance (FI) and iii) Wrapper-based recursive feature
elimination (RFE). The reason of using three feature selection al-
gorithms is to ensure that we compile the best combination of
meta-features. The importance of each of the fetures is compared
and chosen based on the F-score and the Pearson correlation coeffi-
cient as well as the random forest estimator.

5.1.4 Model training: The base DRES profiling model strongly
depends on the aforementioned feature selection process. Most
importantly, it is dynamically updated whilst new and improved
data feature combinations are provided by the selection process.
Through a repetitive feedback mechanism and the continuous up-
date of a boosting regressor we achieve an adaptive DRES energy
generation base profile.

In particular, we utilise the XGBoostR algorithm which is a clas-
sification and regression tree (CART) ensemble model using 𝐾 ad-
ditive functions. Thus, enabling prediction of the generated power
measurements of the DRES installations of DSO. In the proposed
prototype we minimise the regularised objective of the XGBoost
modelas defined in [16]:

L ( 𝑗) =
𝑇∑
𝑙
(
𝑦 (𝑡), 𝑦 (𝑡)

)
+

𝐾∑
Ω(𝑓𝑘 ) (9)

where 𝑦 (𝑡) and 𝑦 (𝑡) denote the actual and predicted power mea-
surements at time 𝑡 , 𝑙 is the loss function measuring the difference
between 𝑦 (𝑡) and 𝑦 (𝑡) and Ω denotes the model complexity for
avoiding over-fitting. We can express Ω(𝑓 ) as:

Ω(𝑓 ) = 𝜁𝑉 + 1
2
𝜆 | | 𝑤 | |2 (10)

where𝑉 is the number of predicted energy measurements,𝑤 is the
score of each measurement and 𝜁 and 𝜆 are constants controlling
the regularisation degree.

Since the XGBoostR model is trained in an additive manner,
Equation 9 can be expressed as:

L ( 𝑗) =
𝑇∑
𝑙

(
𝑦 (𝑡), 𝑦 (𝑡) 𝑗−1 + 𝑓𝑗

(
𝑥 (𝑡)

) )
+ Ω(𝑓𝑗 ) (11)

where 𝑥 (𝑡) is the input vector at 𝑡 and 𝑦 (𝑡) 𝑗 represents the power
measurement prediction of the 𝑡-th observation at the 𝑗-th iteration.

Within our implementation, second-order approximation is used
to optimise the objective, which can be simplified as follows:

4



L ( 𝑗) =
𝑇∑(

𝑔(𝑡) 𝑓𝑗
(
𝑥 (𝑡)

)
+ 1
2
ℎ(𝑡) 𝑓 2𝑗

(
𝑥 (𝑡)

) )
+ Ω(𝑓𝑗 ) (12)

where

𝑔(𝑡) = 𝜕𝑦̂ ( 𝑗−1) 𝑙
(
𝑦 (𝑡), 𝑦 (𝑡) 𝑗−1

)
(13)

and

ℎ(𝑡) = 𝜕2
𝑦̂ ( 𝑗−1) 𝑙

(
𝑦 (𝑡), 𝑦 (𝑡) 𝑗−1

)
(14)

The optimal hyper-parameters for the employedXGBoostRmodel
training process was obtained using a grid search technique return-
ing the appropriate values with the lowest prediction error.

5.1.5 Generated energy profiling: The generated energy measure-
ments of all DRES at the DSO are predicted using the trained XG-
BoostR as follows:

𝑦 (𝑡) =
𝐾∑
𝑓𝑘
(
𝑥 (𝑡)

)
(15)

where 𝑓 denotes an independent tree structure.
Due to the cumulative nature of the utilised XGBoostR, the pre-

dicted power measurements of the source DRES at step 𝑗 can be
calculated as follows:

𝑦 (𝑡) = 𝑦 (𝑡) 𝑗−1 + 𝑓𝑗
(
𝑥 (𝑡)

)
(16)

As discussed next, the resulted features are utilised within the
SVM-based classification process in order to detect fraudulent pro-
sumers.

5.2 SVM-based classification
A supervised SVM classifier is trained based on the predicted energy
measurements calculated using Equation (16) such as to provide a
binary prediction class for each of the prosumers in a given DSO
(i.e., fraudulent or not).

As shown in Fig 1, the first process within the implemented SVM-
based classification prototype deals with normalisation of the DRES
profiling output, which is subsequently used as input to the DSO’s
SVM training model. As explained next, the classification phase
is decomposed into specific processes in order to ensure unbiased
detection of fraudulent prosumers.

5.2.1 Data normalisation: Prior the training and classification stage
we employ a min-max normalisation technique to reconstruct the
processed measurements in the range of [0, 1]. Normalisation is
a crucial component within any statistical representation process
and particularly in our case we achieve to ensure testing and not
neglecting extremely small measurement values.

5.2.2 Model training: Following data normalisation, a model clas-
sifier is resulted by processing the training set to detect fraudulent
prosumers. Thus, the predicted energy measurements from Equa-
tion (16) are the input to a trained SVM model in such a way to
accommodate an optimal decision boundary for classifying DSO
prosumers. The optimal SVM hyperplane boundaries are obtained
by solving the following soft optimisation problem:

𝑚𝑖𝑛

( 1
2
| | 𝑤 | |2 +𝐶

𝑇∑
𝜉 (𝑡)

)
(17)

where 𝑤 denotes the weight vector, 𝐶 denotes the regularisation
parameter used to quantify the trade-off between the model’s com-
plexity and the classification error. Also, 𝜉 represents a slack vari-
able.

In order to select the most appropriate hyper-parameter values
with the highest training accuracy for the SVM model we employ a
grid search algorithm.

5.2.3 Theft detection: Once the SVM-based trainingmodel is achieved,
the binary classification of DSO prosumers to either being legit or
fraudulent is conducted.

The decision boundary function in our proposed implementation
is defined as:

𝑓 (𝑥) =
𝑇∑

(𝛼 − 𝛽)𝐾 (𝑥 (𝑡), 𝑦 (𝑡)) + 𝑏 (18)
where 𝑥 (𝑡) is the support vector, 𝑦 (𝑡) is the assessed power mea-
surement, 𝐾 is the kernel function. The 𝛼 and 𝛽 variables are the
Lagrange multipliers and 𝑏 is the regularisation parameter.

Due to the fact that all energy measurements have a non-linear
distribution, we employ a radial basis function (RBF) kernel defined
as:

𝐾
(
𝑥 (𝑡), 𝑦 (𝑡)

)
= 𝑒𝑥𝑝

(
− 𝛾

(
𝑥 (𝑡) − 𝑦 (𝑡)

)2) (19)

where where 𝑥 (𝑡) is the support vector, 𝑦 (𝑡) is the assessed
power measurement and 𝑔𝑎𝑚𝑚𝑎 is the kernel function parameter.

6 DATASET DESCRIPTION
Our evaluation is based on real measurements gathered by wind-
turbine and solar panel installations in Australia and France. In
particular, we utilise a dataset acquired from the La Haute Borne
wind farm located in Meuse, France 2 and a solar power dataset cap-
tured at the Ausgrid power network located in Sydney, Australia 3.

Table 1 depicts a summary of the aforementioned datasets. As
shown, the Engie wind datasets represents the daily generated
power measurements captured at a real installation of 4 wind tur-
bines for a duration of 11 months in 2017. In addition, the Ausgrid
solar data provides daily measurements captured for a period of 11
months from 300 rooftop solar panel installations.

Table 1: Datasets overview.

Dataset
Time

Window Location DRES
CapacityStart End Longitude Latitude

Engie
Wind

Jan
2017

Dec
2017 5.6013 E 48.4503 N 2050 kW

Ausgrid
Solar

Jul
2012

Jun
2013 151.2093 E 33.8688 S 1 kW

Within Table 1, we highlight longitude and latitude values since
they were critical for mining weather and environmental infor-
mation explicit to those areas. Hence, we extracted available mea-
surements such as output temperature, wind speed, humidity and
2Explore – ENGIE France Renewable Energy Open Data, Available: https://opendata-
renewables.engie.com/pages/home/
3Explore – Ausgrid Solar Home Electricity Data, Available:https://www.ausgrid.com.
au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
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pressure and assessed their ground truth by cross-validating across
multiple third-party and freely available APIs. In order to do that,
we collected data from the Dark Sky API [17], Weather Online
API [18] and Open Weather API [19] aligning with the same ob-
servational period as that of the generation measurements at the
Engie and Asugrid installations. Complementary to the aforemen-
tioned, we acquired additional output temperature andwind-related
measurements by the Nancy-Ochey weather station, which is ge-
ographically adjacent to the La Haute Borne wind farm. In total,
our third-party weather data, i.e., the obtained weather measure-
ments from freely available APIs, comprised of 53 weather and
environmental measurements, including numerical and categorical
readings such as wind measurements, humidity, pressure and cloud
cover within hourly sampling bins. For our evaluation group, all
our measurements seasonally (i.e., summer, autumn, spring, and
winter).

7 EVALUATION METHODOLOGY
The evaluation methodology employed within this work aims at
determining the suitability of the integrated data-driven theft de-
tection solution over diverse DRES deployments. The main focus
of which was placed on quantifying the detection performance and
also relating it with the corresponding computational costs. More-
over, we conduct a monetary meta-analysis assessing the potential
impact of the various synthetic thefts as well as the theft detection
gains from the DSO perspective.

7.1 Detection Performance
A thorough analysis was conducted such as to evaluate the detection
performed using the synergy of the SCADA-agnostic DRES energy
profiling and the SVM classifier discussed in Section 3.

The first phase consists of the SVM classifier training with input
from the SCADA-agnostic DRES power profiling output to compute
final predicted power for all DRES installations. In parallel, an
instance of the SVM component is trained based on the third-party
weather data measurements. Within our classification procedure,
we distributed the dataset so that 70% of it is for training and 30%
from each season as testing [20].

As already described in Section 3, we reach a binary detection de-
cision (i.e., fraudulent or legit) through comparing the two outcomes
of the aforementioned classification processes. Two classification
errors and one computational cost metric were also utilised to assess
the resulting classification models. The classification error metrics
are accuracy (ACC) and area under the curve (AUC), while we con-
sider the the time taken to obtain a decision as the computational
cost. The definitions of which are provided as follows.

(1) ACC: The ability to correctly differentiate the fraudulent
and legit measurements defined as:

𝐴𝐶𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (20)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 represent the true positives, true
negatives, false positives and false negatives, respectively.
𝑇𝑃 is the number of measurements correctly identified as
fraudulent, 𝑇𝑁 is the number of measurements correctly

identified as legit, 𝐹𝑃 is the number of measurements in-
correctly identified as fraudulent, and 𝐹𝑁 is the number of
measurements incorrectly identified as legit.

(2) AUC: Degree of the capability of distinguishing between
fraudulent and legit measurements defined as:

𝐴𝑈𝐶 =
1
2
( 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 ) (21)

(3) Computation time complexity:Time required by the SVM
prototype to produce a DRES classification of a given DSO𝑖 .

7.2 Theft scenarios
Due to the fact that the acquired datasets were the result of pro-
sumers that volunteered to provide their data we assume that all
measurements were legit and no fraudulent behaviour is present.
Hence, prosumers reported genuine generationmeasurements there-
fore the original data are considered as the ground truth. As pre-
sented in Section 5, we inject synthetic anomalies in our datasets
that conform to specific theft scenarios discussed in the literature.
Hence, we employ our developed energy theft functions, i.e., (defi-
nitions 5), ((6)), (7) and (8) in order to compose a dataset consisting
of both legitimate as well as fraudulent patterns. As depicted by
Table 2 the conducted evaluation methodology considers varying
theft proportions (i.e., fraudulent measurements) injected within
the actual dataset across a given DSO. Evidently, we stretch the
scaling parameters for both total and partial thefts within particular
boundaries such as to ensure that we create the most representative
realistic scenarios.

Table 2: Simulation parameters in theft scenarios.
Dataset Theft Scenario Parameter

Engie Wind

Total Scaling Theft 1.4 ≤ 𝜂 ≤ 7
Partial Scaling Theft 50 kW ≤ 𝛽 ≤ 100 kW

Off-Peak Theft 𝑟𝑎𝑡𝑒𝑑 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 15 m/s
Reply Theft 𝑇 = 24

Asugrid Solar

Total Scaling Theft 1.4 ≤ 𝛼 ≤ 7
Total Scaling Theft 0.005 kW ≤ 𝛽 ≤ 0.4 kW
Off-Peak Theft 11 𝑎𝑚 ≤ 𝑡 ≤ 3 𝑝𝑚
Reply Theft 𝑇 = 24

The mix theft scenario focuses on a randomly chosen subset
of measurements to simulate one of the four main scenarios. As
discussed in the literature, there exist many cases in which fraudu-
lent prosumers might apply different theft scenarios over different
time-periods to manipulate with their measurements [12].

8 RESULTS
8.1 Theft Detection Performance
The results of the theft detection framework proposed in 5 are illus-
trated in this section, while considering the discussed evaluation
methodology in 7 on the datasets specified in 6.

Using the SVM-based classification system proposed in 5.2, we
witness that the SVM-based classifier trained on the energy profil-
ing outperformed the classifier based on the third-party weather
data for with regard to the ACC and AUC scores in Engie wind
data as shown in Figs.2 and 3. In this case, total scaling theft results
in 5.9% higher score when we use predicted wind energy output
as a feature to train the SVM classifier, as compared to using the
third-party weather data. In addition, the performance of the model
based on third-party weather data significantly drops on the partial
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scaling theft scenario, with a margin of more than 13.16% compared
to the first case when it was trained on the energy profiling out-
put. Nonetheless, under the replay theft scenario, both classifiers
achieved high ACC score of 97.2% and AUC 99.6%. The nature of
the reply theft is behind this observed pattern of detection perfor-
mance. In the scenario of the replay theft, the fraudulent prosumers
over-report the maximum of the actual generation of the installed
DRES. This theft behavior shows a steady and repetitive distribu-
tion throughout the fraudulent energy measurements, that can be
unambiguously detected by the proposed SVM-based classification
prototype in both cases, i.e., either it is trained using the third-party
weather data, or the energy profiling.

Figure 2: ACC values of the Engie wind power data.

Figure 3: AUC values of the Engie wind power data.
For the Asugrid solar power measurements , during the same

procedures of our proposed evaluation methodology, the SVM-
based classification prototype trained on the energy profiling output
provided higher scores in detecting several theft scenarios, as shown
in Figs. 4 and 5. As evident from these figures, in the case when
the energy profiling output was used as an input feature, the SVM-
based classification prototype obtained an ACC of 89.1% and an
AUC score of 81.4% in detecting the mix theft. However, in detecting
the same theft scenario, the SVM-based classification prototype
trained on the third-party weather data maintained a lower score
(more than 6%) than the one trained on energy profiling output by
obtaining an ACC of 82.3% and an AUC score of 74.2%. Similarly, to
detect the total scaling theft, the SVM-based prototype trained on
the energy profiling output provided more than 2% higher results
than that trained on the third-party weather data. In detecting
replay theft, the both classifiers performed excellent scores of ACC
and AUC.

Figure 4: ACC values of the Asugrid solar power data.

Figure 5: AUC values of the Asugrid solar power data.

Overall, the SVM-based classification prototype trained on the
energy profiling output maintained the high ACC and AUC scores
in both the wind and solar power measurements. Therefore, we
can infer that the output of the SCADA-agnostic power profiling
prototypes (i.e., the energy profiling for the DRES) has an important
role to play in differentiating fraudulent prosumers. For more in-
sight, Fig. 6 presents the boxplots of predicted power measurements
and the actual generations for both legit and fraudulent prosumers.
It is evident, that the energy measurements proportion range for
legit prosumers was between 0 kW and the capacity of the DRES
installations, thus 2050 kW for wind and 1 kW for solar respectively.
However, the energy measurement proportion of the fraudulent
prosumer exceeded this range by the value of the manipulated
green energy units. Moreover, it is demonstrated that the predicted
power of the legit prosumers falls within 7% of actual generation,
whereas a significant difference between the predicted and actual
generated power can be observed for the fraudulent ones. There-
fore, the predicted power measurements for DRES can be used as a
useful feature for the proposed SVM-based classification prototype,
where prosumers are classified either as fraudulent or legit based
on their respective predicted energy measurements.

Fig. 7 depicts the results of the SVM-based classification proto-
type in both the proposed cases in terms of computational time
in our evaluation methodology. This analysis was performed us-
ing a 64-bit Windows operating system with Intel Core i7 (7𝑡ℎ
Gen) CPU with 12 GB RAM and 2.70 GHz clock cycle. The results
clearly indicate that the SVM-based classification prototype trained
on the energy profiling prototype output operates on a relatively
lower computational time than that on third-party weather data.
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Figure 6: Predicted and actual power generation of legit and
fraudulent prosumers in Engie and Ausgrid.

The reason behind this is the high dimensionality of the aggre-
gated third-party weather data, where the total number of selected
measurements was more than that output of the energy profiling
prototype, i.e., the predicted energy measurements. In the case of
the third-party weather data, the process of classifying such high
dimensional data requires computational complexity than that oc-
curring in low dimensional spaces, where the SVM-based classifier
only performs on the energy profiling output.

8.2 Monetary analysis
The density of the amount of the energy loss caused by the theft
attacks originally for theDSO in eachmonth of the year is illustrated
in Fig. 8. The amount of the energy losses in both wind and solar
data can be obtained using Equation (3). Fig.9 presents the amount
of the monetary cost caused by each individual theft scenario for the
whole of a year. These monetary costs are estimated by multiplying
the electricity price with the resulted total DSO energy loss in each
season. The France feed-in tariff (i.e., £7.40/kWh [21]) was applied
to the wind energy dataset, while the Ausgrid feed-in tariff (i.e.,
£0.051/kWh [4]) was applied to the solar energy dataset.

These figures indicate that the monetary cost for the utility
provider varied linearly with the amount of energy loss for both
the datasets. The spikes of the density curves in Fig.8 denote that
for the wind measurement, the highest concentration of the highest
energy loss was caused by the total theft scenario resulting in a
monetary cost of 31% for the providers. The same behaviour was
noticed in the solar measurement, where highest concentration of
the highest energy loss was cased by the reply thefts, resulting in
the largest amount of cost of 34.1% of the total monetary cost of
that year. As evident from these figures, the monetary costs can
reach an incredible level when large-scale DRES are manipulated,

Figure 7: Computational time comparison.

Figure 8: The density of the energy loss in wind and solar
energy data.

especially for the replay or the total scaling thefts. In such cases,
the fraudulent prosumer engaged in theft activities manipulate the
energy generation values measured by the generation metres en-
dowed with his/her DRES by increasing the number of green energy
measurements that are reversed to the energy grid. Consequently,
the energy losses increase by the discrepancy in this value, leading
the utility provider to overcharge.
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Figure 9: The amount of the monetary cost for the utility
providers.

In order to save such monetary costs incurred by the providers,
an accurate detection of the energy loss cased by energy thefts is
required in the first place. Fig.10 presents the saved cost provided by
our proposed detection framework. As evident from this figure, for
both wind and solar energy measurements, our framework saved
about 82 to 99 percent of the monetary cost through detection the
energy loss to large extent. The median value of the cost that can
be saved by the proposed detection framework of the total theft
scenario in the wind energy measurement is £7.80843𝑒+06, while in
the solar energy measurements is £60.0395. The estimate of saved
costs provided by the proposed framework is without including any
additional hardware equipment since the proposed framework is
completely data-driven, or utilizing additional measurements that
are directly unavailable to the utility providers that are only aware
of the DRES capacity.

9 CONCLUSION
Energy theft attacks pose a pressing issue that has resulted in
enormous non-technical energy and monetary losses to energy
providers at a global scale. The integration of DRES deployments
in modern energy grids in conjunction with the widely adopted
business model of demand-response have undoubtedly expanded
the energy theft attack surface. Conventional energy theft detec-
tion schemes heavily rely on the assessment of spatiotemporal
patterns from aggregated and commonly incomplete SCADA mea-
surements without considering the intrinsic weather or environ-
mental patterns related to a specific DRES deployment. Therefore,
in this paper we propose a data-driven SCADA-agnostic energy
theft detection framework explicitly to DRES-based scenarios. We
introduce a DRES-based theft attack model and further evaluate
the performance of our framework by utilizing freely available

Figure 10: The saved cost by the proposed framework in
wind and solar energy data.

third-party weather measurements over real solar and wind en-
ergy deployments in Australia and France respectively. Through
our evaluations based on energy profiling model and third party
weather data, we demonstrate that the proposed framework can
detect fraudulent prosumers with an overall average accuracy of
98% with relatively low computational costs. Hence, placing it as
a good and cost-effective candidate for future data-driven energy
theft detection schemes.
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