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Abstract  

Molecular electronics is a versatile test bed for investigating nanoscale thermoelectricity 

and for contributing to the design of new low-cost and eco-friendly organic 

thermoelectric materials. This thesis presents theoretical results which aid this design 

process, firstly through demonstrating the optimisation of thermopower in self 

assembled monolayers based on the pressure applied to the molecules, and secondly 

through a novel method of predicting thermoelectric properties based on experimental 

𝐼 − 𝑉 curves. This thesis provides a brief introduction to the theoretical tools used, 

starting in chapter 2 with density functional theory and its implementation in the 

SIESTA code, which enables Hamiltonians and ground state wavefunctions for 

molecules and junction interfaces to be found.  Subsequently in chapter 3 the theoretical 

basis for calculating electronic and heat transport is described, including Green’s 

function methods for obtaining the transmission coefficient of semi-infinite leads 

connected to a scattering region. The second tool is the quantum transport code 

GOLLUM. To introduce this approach, in chapter 3 I present solutions of Green’s 

functions for infinite and semi-infinite chains and the transmission coefficient equation 

which forms the theoretical basis of this code.  

Chapter 4 is the first results chapter in this thesis, which demonstrates a major potential 

advantage of creating thermoelectric devices using self-assembled monolayers (SAMs).  

Two anthracene based SAMs terminated with thioacetate are investigated: 9,10- di(4-

(ethynyl)phenylthioacetate), and 1,5- di(4-(ethynyl)phenylthioacetate. I demonstrate 

that the thermoelectric properties of such molecular devices can be controlled by taking 

advantage of their mechanical flexibility, more specifically by tuning the optimum 

power via the applied pressure which alters the molecules’ tilt angle 𝜃.  Through 
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systematic theoretical simulations, I show how varying 𝜃 increases the conductance 𝐺 

while decreasing thermopower 𝑆, ultimately achieving the optimum power 𝑃 = 𝐺 S2 at 

𝜃 ≈ 65. Excellent agreement has been obtained between my simulations and 

experimental measurements using conductive Atomic Force Microscopy (AFM) for 

both SAMs.    

The thermoelectric properties of SAMs fabricated from thiol terminated molecules were 

measured by my collaborators, with a modified AFM system, and the conformation of 

the SAMs was controlled by regulating the loading force between the organic thin film 

and the probe, which changes the tilt angle at the metal-molecule interface. The 

thermopower shift versus the tilt angle of the SAM was tracked and showed that changes 

in both the electrical conductivity and Seebeck coefficient combine to optimise the 

power factor 𝑃 at a specific tilt angle. This optimisation of thermoelectric performance 

via applied pressure is confirmed through the use of my theoretical calculations and is 

expected to be a general method for optimising the power factor of SAMs. 

In chapter 5, I address the question of whether the Seebeck coefficient of a single 

molecule or SAM can be predicted from a measurement of  𝐼 − 𝑉 curves. If so, then the 

experimentally more difficult task of creating a set-up to measure their thermoelectric 

properties could be avoided, thus saving a significant amount of cost and effort. My 

theoretical approach begins by making a fit to measured 𝐺 − 𝑉 curves using three fitting 

parameters, denoted 𝑎, 𝑏 and 𝑐, hence I refer to this method as ‘ABC’ theory. Then 

predicts a maximum value for the magnitude of the corresponding Seebeck coefficient. 

This is a useful material parameter, because if the predicted upper bound is large, then 

the material would warrant further investigation using a full Seebeck measurement 

setup. On the other hand, if the upper bound is small, then the material would not be 
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promising and this much more technically demanding set of measurements would be 

avoided.  

Histograms of predicted Seebeck coefficients from the ‘𝐴𝐵𝐶’ theory are compared with 

histograms of directly measured Seebeck coefficients using a Scanning Tunnelling 

Microscope (STM) device. This is done for six SAMs of anthracene-based molecules 

with different anchor groups including pristine thioether, pristine thioacetate, pristine 

pyridine and a mixture of thioether and pyridine. I show that excellent agreement is 

found in each case, both when using all three parameters 𝑎, 𝑏 and 𝑐 in the fitting 

procedure, and also when the number of parameters is reduced to two by setting 𝑐 = 0. 
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Chapter 1 

 

 

1.Introduction 

 

1.1 Molecular electronics and thermopower 

 

Since Moore’s law was first proposed in 1965, thousands of studies have been carried 

out to seek ways to continue this historical trend. Over time, the length scale of such 

studies has become smaller and smaller, and is now focused on the nano or molecular 

scale [1]. The crucial challenges, both theoretical and experimental, in this area are the 

fabrication of devices at the sub-10 nm scale and the exploration of their properties. 

A reduction in the size of electronic components was proposed in 1974, when Aviram 

and Ratner suggested the substitution of silicon chips by molecules [2]; their idea 

provided the foundation for the field of molecular electronics. Since then, the efforts of 

experts from many disciplines combining experiment and theory has vastly expanded 

the field. A significant achievement has been the development of computational and 

modelling tools to obtain theoretical results which closely match experimental 

measurements. Meanwhile, the latest experimental techniques, such as scanning 

tunnelling microscopy (STM) break junctions [4], allow the investigation of the 

electronic properties of a single molecule. 

During the past couple of decades, the theory of molecular-scale electronics has 

advanced significantly, in part by comparing prediction of material-specific transport 

codes, such as SMEAGOL and GOLLUM [5,6] with state-of-the-art experiments. 

Notable examples include studies of transport through long conjugated wires [7-10]  
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graphene nanoribbons and graphene break junctions [11-25]. These studies have 

revealed the crucial role played by conformation [26,27] and connectivity [28-30] in 

determining the electrical conductance of single molecules. 

 More recently, theories of phonon transport at the nanoscale [31,32] have been 

generalised to describe phonon transport at the molecular scale [33-35]. These studies 

highlight the role of electrodes in controlling phonon scattering at interfaces and 

suggests that exploration of alternative electrode materials such as platinum, palladium 

or even iron [36,37] may be a fruitful route to controlling the flow of heat at the 

molecular scale. In a more exotic direction, the use of superconducting electrodes is 

now being explored, in which superconducting interference effects associated with 

Andreev scattering [38-42] coexist with quantum interference effects associated with 

frontier orbitals in molecular-scale junctions [43,44].  

As well as explorations of electrical and thermal conductance, there has been much 

progress in understanding the thermoelectrical properties of single-molecule junctions 

[45-48], stimulated in part by reports of high Seebeck coefficients of order 161 μVK−1  

for PEDOT:PSS organic films [49]. In this regard, thermoelectricity in fullerenes and 

nanotubes has led to the observation that the sign of the Seebeck coefficient in fullerenes 

and nanotubes can be switched by pressure, strain and inter-molecular interactions [50-

55]. Interestingly, many of the quantum interference effects observed and predicted in 

single-molecule junctions are now being scaled up into self-assembled monolayers [56-

58], leading to new thin-film materials whose room-temperature transport properties are 

controlled by quantum effects. These development suggest that the field of single 

molecule electronics has a tremendous future for the design of new functional materials. 
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1.2 Thesis outline 

 

In this thesis, I present the main equations and theoretical tools that constitute the 

foundation of these projects. In chapter 2, density functional theory as a method for 

solving the Schrödinger equation is reviewed. The Hohenberg-Kohn theorems [59] and 

the Kohn-Sham ansatz [60] are described. The functional forms of the exchange and 

correlation energy in the local density approximation [61] and the generalized gradient 

approximation [62] are explained. Finally, the SIESTA code [63] is introduced, along 

with some fine details of the calculations, such as the use of pseudopotentials and finite 

basis sets.  

Next, in chapter 3, I discuss single particle charge transport through molecules by 

introducing quantum transport theory, with some examples of how to calculate the 

transmission coefficient for different systems using the Hamiltonian and Green’s 

functions.   

This is followed by my first results chapter which investigates optimising the power 

harvested by anthracene based molecular junctions by controlling the applied pressure. 

This study is a result of a collaboration between chemists from Imperial College 

London, experimental physicists from Lancaster University and myself in Lancaster. 

Two anthracene-based SAMs have been synthesised with thioacetate (ASc) as an 

anchor group: 9,10- di(4-(ethynyl)phenylthioacetate), and 1,5-di(4-

(ethynyl)phenylthioacetate).  The two SAMs differ by the connectivity of the 

anthracene cores to the backbone of the molecules. In this work, I demonstrate that the 

thermoelectric properties such as thermopower 𝑆 and conductance 𝐺 can be tuned to 

achieve an optimum power factor 𝑃 = 𝐺 S2. The optimum power can be reached by 
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varying the applied pressure, in other words, changing tilt angle 𝜃.  Through systematic 

theoretical simulations, I demonstrate how the tilt angle 𝜃 is a pivotal factor in 

increasing both the conductance 𝐺 and thermopower 𝑆 and ultimately achieving the 

optimum power 𝑃 = 𝐺 S2 at tilt angle 𝜃 ≈ 65𝑜. An excellent agreement has been 

obtained between my simulations and the STM measurements for both SAMs.     

Chapter 5, the second results chapter, is also a result of a collaboration between chemists 

from Imperial College London, experimental physicists from Lancaster University and 

myself. Here I answer the question of whether one could predict the Seebeck coefficient 

of a SAM or single molecule simply from an experimental 𝐼 − 𝑉 curve. If so, then the 

experimentally more difficult task of creating a set-up to measure their thermoelectric 

properties could be avoided, meaning a significant amount of efforts and cost could be 

saved.  

Although this work is a collaboration, the whole study is a theoretical approach since 

all that is needed from the experiment is an 𝐼 − 𝑉 curve. This chapter presents a novel 

strategy for predicting an upper bound to the Seebeck coefficient of single molecules or 

SAMs, from measurements of their 𝐺 − 𝑉 characteristics. My theoretical approach 

begins by making a fit to measured 𝐺 − 𝑉 curves using three fitting parameters, denoted 

𝑎, 𝑏, 𝑐. In this work, histograms of predicted Seebeck coefficients of the ‘𝐴𝐵𝐶’ theory 

are compared with histograms of the directly measured Seebeck coefficients from a 

Scanning Tunnelling Microscope STM device. These histograms, along with standard 

deviations 𝜎, are obtained for six different SAMs, formed from anthracene-based 

molecules with different anchor groups including pristine thioether, pristine thioacetate, 

pristine pyridine and a mixture of thioether and pyridine.  



5 

 

I also discuss the case when the three parameters 𝑎, 𝑏, 𝑐 of the ‘𝐴𝐵𝐶’ theory are reduced 

to only two (𝑎 and 𝑏) by setting 𝑐 to be zero. In both cases an excellent agreement is 

reached with the experiment results.   

Finally, in chapter 6, I present the conclusions of this thesis and discuss future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

1.3 Bibliography 

 

1.         Leon, S. J., Bica, I., & Hohn, T. (1998). Linear algebra with applications (Vol. 

6). Upper Saddle River, NJ: Prentice Hall. 

2. Visions for a molecular future. S J van der Molen et al  Nat. Nano 8 385 (2013) 

2. Molecular rectifiers. A. Aviram, and M.A. Ratner, Chemical physics letters, 

29(2), 277-283. (1974) 

3. Basic concepts of quantum interference and electron transport in single-

molecule electronics. C.J. Lambert, Chemical Society Reviews, 44(4), 875-888 

(2015) 

4. Single-molecule quantum-transport phenomena in break junctions. P. Gehring, 

J. Thijssen and H.S.J van der Zant, Nat. Rev. Phys. 1 381 (2019) 

5. Spin and molecular electronics in atomically generated orbital landscapes. AR 

Rocha, VM García-Suárez, S Bailey, C Lambert, J Ferrer, S Sanvito, Phys.Rev. 

B 73 (8), 085414 (2006) 

6. GOLLUM: a next-generation simulation tool for electron, thermal and spin 

transport. Jaime Ferrer, Colin J Lambert, Víctor Manuel García-Suárez, D Zs 

Manrique, D Visontai, L Oroszlany, Rubén Rodríguez-Ferradás, Iain Grace, 

SWD Bailey, Katalin Gillemot, Hatef Sadeghi, LA Algharagholy, New Journal 

of Physics 16 (9), 093029 (2014) 



7 

 

7. Single-molecule electrical studies on a 7 nm long molecular wire, GJ Ashwell, 

B Urasinska, C Wang, MR Bryce, I Grace, CJ Lambert, Chemical 

communications, 4706-4708 (2006) 

8.  Bias-driven conductance increase with length in porphyrin tapes. Edmund 

Leary, Bart Limburg,  Sara Sangtarash, Asma Alanazy, Iain Grace, Katsutoshi 

Swada, Louisa J. Esdaile, Mohammed Noori, M. Teresa González, Gabino 

Rubio-Bollinger, Hatef Sadeghi,  Nicolás Agrait, Andrew Hodgson, Simon J. 

Higgins, Colin J. Lambert, Harry L. Anderson and Richard J. Nichols,  J.  Am. 

Chem. Soc. 140 (40), 12877-12883 (2018) 

9.  The conductance of porphyrin-based molecular nanowires increases with length. 

N Algethami, H Sadeghi, S Sangtarash, CJ Lambert, Nano Letters 18 (7), 4482-

4486 (2018) 

10. Structure‐Independent Conductance of Thiophene‐Based Single‐Stacking 

Junctions Wenjing Hong, Xiaohui Li; Qingqing Wu; Jie Bai; Songjun Hou; 

Wenlin Jiang; Chun Tang; Hang Song; Xiaojuan Huang; Jueting Zheng; Yang 

Yang; Junyang Liu; Yong Hu; Jia Shi; Zitong Liu; Colin Lambert; Deqing 

Zhang, Angewandte Chemie International Edition 59 (8), 3280-3286 (2020) 

11. A Mechanically Tunable Quantum Dot in a Graphene Break Junction. Caneva 

Sabina, Hermans Matthijs, Lee Martin, García-Fuente Amador, Watanabe 

Kenji, Taniguchi Takashi, Dekker Cees, Ferrer Jaime, SJ Herre, Gehring Pascal. 

Nano Letters 20, 4924 (2020) 



8 

 

12. Exchange interactions from a nonorthogonal basis set: From bulk ferromagnets 

to the magnetism in low-dimensional graphene systems. L Oroszlány, J Ferrer, 

A Deák, L Udvardi, L Szunyogh, Phys. Rev. B 99 (22), 224412 (2019) 

13. Mechanically Controlled Quantum Interference in Graphene Break Junctions. 

Sabina Caneva, Pascal Gehring, Víctor M García-Suárez, Amador García-

Fuente, Davide Stefani, Ignacio J Olavarria-Contreras, Jaime Ferrer, Cees 

Dekker, Herre SJ van der Zant,  Nature Nanotechnology 13  1126 (2018) 

14. Spin signatures in the electrical response of graphene nanogaps. Víctor M 

García-Suárez, Amador García-Fuente, Diego J Carrascal, Enrique Burzurí, 

Max Koole, Herre SJ van der Zant, Maria El Abbassi, Michel Calame, Jaime 

Ferrer,  Nanoscale 2018,10, 18169 (2018) 

15. Effects of antidots on the transport properties of graphene nanoribbons. XH 

Zheng, GR Zhang, Z Zeng, VM García-Suárez, CJ Lambert Physical review b 

80 (7), 075413 (2009) 

16. Quantum interference in graphene nanoconstrictions. Pascal Gehring, Hatef 

Sadeghi, Sara Sangtarash, Chit S. Lau, Junjie Liu, Arzhang Ardavan, Jamie H. 

Warner, Colin J. Lambert, G. Andrew. D. Briggs, Jan A. Mol, Nano Letters 16 

(7), 4210-4216 (2016) 

17. Spin signatures in the electrical response of graphene nanogaps. Víctor M 

García-Suárez, Amador García-Fuente, Diego J Carrascal, Enrique Burzurí, 

Max Koole, Herre SJ van der Zant, Maria El Abbassi, Michel Calame, Jaime 

Ferrer, Nanoscale 2018,10, 18169 (2018) 



9 

 

18. Spin-state dependent conductance switching in single molecule-graphene 

junctions. Enrique Burzurí, Amador García-Fuente, Victor García-Suárez, 

Kuppusamy Senthil Kumar, Mario Ruben, Jaime Ferrer, Herre SJ Van Der Zant, 

Nanoscale 10 (17), 7905-7911 (2018) 

19. A study of planar anchor groups for graphene-based single-molecule electronics. 

S Bailey, D Visontai, CJ Lambert, MR Bryce, H Frampton, D Chappell, J. 

Chem. Phys. 140 (5), 054708 (2014) 

20.  Theory of the arrangement of cells in a network. CJ Lambert, DL Weaire, 

Metallography 14 (4), 307-318 (1981) 

21. Anchor groups for graphene‐porphyrin single‐molecule transistors. Bart 

Limburg, James O. Thomas, Gregory Holloway, Hatef Sadeghi, Sara 

Sangtarash, Jonathan Cremers, Akimitsu Narita, Klaus Müllen, Colin J. 

Lambert, G. Andrew D. Briggs, Jan Mol, and Harry L. Anderson, Advanced 

Functional Materials 28 (45), 1803629 (2018) 

22. Robust graphene-based molecular devices. Maria El Abbassi, Sara Sangtarash, 

Xunshan Liu, Mickael Lucien Perrin, Oliver Braun, Colin J. Lambert , Herre 

Sjoerd Jan van der Zant, Shlomo Yitzchaik, Silvio Decurtins, Shi-Xia Liu, Hatef 

Sadeghi and Michel Calame,  Nature Nanotechnology 14 (10), 957-961 (2019) 

23. Low-frequency noise in graphene tunnel junctions. Pawel Puczkarski, Qingqing 

Wu, Hatef Sadeghi, Songjun Hou, Amin Karimi, Colin J. Lambert, G. Andrew 

D. Briggs and Jan A. Mol, ACS Nano 12 (9), 9451-9460 (2018) 

24. Bottom-up synthesis of nitrogen-doped porous graphene nanoribbons. Rémy 

Pawlak, Xunshan Liu, Silviya Ninova, Philipp D’Astolfo,  Carl Drechsel,  



10 

 

Robert Häner, Silvio Decurtins, Hatef Sadeghi, Colin J. Lambert, Ulrich 

Aschauer, Shi-Xia Liu, and Ernst Meyer, J. Am. Chem. Soc. 142 (29), 12568-

12573 (2020) 

25. Hexagonal-boron nitride substrates for electroburnt graphene nanojunctions. H 

Sadeghi, S Sangtarash, C Lambert, Physica E: Low-dimensional Systems and 

Nanostructures 82, 12-15 (2026) 

26. Conformation dependence of molecular conductance: chemistry versus 

geometry. C. M. Finch, S. Sirichantaropass, S. W. Bailey, I. M. Grace, V. M. 

Garcia-Suarez, C. J. Lambert, J. Phys.: Condensed Matter 20 (2), 022203 (2007) 

27. Turning the Tap: Conformational Control of Quantum Interference to Modulate 

Single‐Molecule Conductance. Feng Jiang, Douglas I. Trupp, Norah Algethami, 

Haining Zheng, Wenxiang He, Afaf Alqorashi,  Chenxu Zhu, Chun Tang, 

Ruihao Li, Junyang Liu, Hatef Sadeghi, Jia Shi, Ross Davidson, Marcus Korb, 

Alexandre N. Sobolev, Masnun Naher, Sara Sangtarash, Paul J. Low, Wenjing 

Hong, Colin J. Lambert, Angewandte Chemie 131 (52), 19163-19169 (2019) 

28. Connectivity dependence of Fano resonances in single molecules. AK Ismael, I 

Grace, CJ Lambert, Phys.l Chem. Chem. Phys. 19 (9), 6416-6421 (2017) 

29. Searching the hearts of graphene-like molecules for simplicity, sensitivity, and 

logic. Sara Sangtarash, Cancan Huang, Hatef Sadeghi, Gleb Sorohhov, Jürg 

Hauser, Thomas Wandlowski, Wenjing Hong, Silvio Decurtins, Shi-Xia Liu, 

Colin J LambertJ. . Am. Chem. Soc. 137 (35), 11425-11431 (2015) 



11 

 

30. A magic ratio rule for beginners: a chemist's guide to quantum interference in 

molecules. CJ Lambert, SX Liu, Chemistry–A European Journal 24 (17), 4193-

4201 (2018) 

31. Phonon-mediated thermal conductance of mesoscopic wires with rough edges. 

A Kambili, G Fagas, VI Fal'ko, CJ Lambert Phys. Rev. B-Condensed Matter 60 

(23), 15593-15596 (1999) 

32. Cross-plane enhanced thermoelectricity and phonon suppression in 

graphene/MoS2 van der Waals heterostructures. H Sadeghi, S Sangtarash, CJ 

Lambert 2D Materials 4 (1), 015012 (2016) 

33. Suppression of phonon transport in molecular Christmas trees. M Famili, I 

Grace, H Sadeghi, CJ Lambert, ChemPhysChem 18 (10), 1234-1241 (2017) 

34. Functionalization mediates heat transport in graphene nanoflakes, Haoxue Han, 

Yong Zhang, Zainelabideen Y Mijbil, Hatef Sadeghi, Yuxiang Ni, Shiyun 

Xiong, Kimmo Saaskilahti, Steven Bailey, Yuriy A Kosevich, Johan Liu, Colin 

J Lambert, Sebastian Volz, Nature Communications  7 11281 (2016) 

35. Thermal transport through single molecule junctions. N. Mosso, H. Sadeghi, A. 

Gemma, S. Sangtarash, C. Lambert, and B. Gotsmann, Nano Letters 19 (11) 

7614-7622 (2019) 

36. Single-channel conductance of H2 molecules attached to platinum or palladium 

electrodes. VM García-Suárez, AR Rocha, SW Bailey, CJ Lambert, S Sanvito, 

J Ferrer, Phys. Rev. B 72 (4), 045437 (2005) 



12 

 

37. Optimized basis sets for the collinear and non-collinear phases of iron. VM García-

Suárez, CM Newman, CJ Lambert, JM Pruneda, J Ferrer, J.  Phys.: Condensed 

Matter 16 (30), 5453 (2004) 

38. Boundary conditions for quasiclassical equations in the theory of 

superconductivity. CJ Lambert, R Raimondi, V Sweeney, AF Volkov, Phys. 

Rev. B 55 (9), 6015 (1997) 

39. Andreev reflections and magnetoresistance in ferromagnet-superconductor 

mesoscopic structures, VI Fal’Ko, CJ Lambert, AF Volkov, Journal of 

Experimental and Theoretical Physics Letters 69 (7), 532-538 (1999) 

40. Andreev scattering, universal conductance fluctuations and phase periodic 

transport. VC Hui, CJ Lambert Europhysics Letters 23 (3), 203 (1993) 

41. Superconductivity-induced phase-periodic transport in nanoscale structures. M 

Leadbeater, CJ Lambert, Phys.l Rev. B 56 (2), 826 (1997) 

42.  Quantum resonances of weakly linked, mesoscopic, superconducting dots. CJ 

Lambert, A Martin, J. of Phys.: Condensed Matter 6 (16), L221 9 (1994) 

43. Quantum interference and nonequilibrium Josephson currents in molecular 

Andreev interferometers. NL Plaszkó, P Rakyta, J Cserti, A Kormányos, CJ 

Lambert, Nanomaterials 10 (6), 1033 (2020) 

44. Magic number theory of superconducting proximity effects and Wigner delay 

times in graphene-like molecules. P. Rakyta, A. Alanazy, A. Kormányos, Z. 

Tajkov, G. Kukucska, J. Koltai, S. Sangtarash, H. Sadeghi, J. Cserti and C.J. 

Lambert, J. Phys. Chem C 123 6812 (2019) 



13 

 

45. Enhancing the thermoelectric figure of merit in engineered graphene 

nanoribbons. H Sadeghi, S Sangtarash, CJ Lambert, Beilstein Journal of 

nanotechnology 6 (1), 1176-1182 (2015) 

46. High-performance thermoelectricity in edge-over-edge zinc-porphyrin 

molecular wires. M Noori, H Sadeghi, CJ Lambert Nanoscale 9 (16), 5299-5304 

(2017) 

47. Thermoelectric Properties of 2, 7-Dipyridylfluorene Derivatives in Single-

Molecule Junctions. Gilles Yzambart, Laura Rincón-García, Alaa A. Al-Jobory, 

Ali K. Ismael, Gabino Rubio-Bollinger, Colin J. Lambert, Nicolás Agraït, 

Martin R. Bryce, J. Phys.Chem. C 122 (48), 27198-27204 (2018) 

48. Thermoelectricity in vertical graphene-C 60-graphene architectures. Q Wu, H 

Sadeghi, VM García-Suárez, J Ferrer, CJ Lambert, Scientific reports 7 (1), 1-8 

(2017) 

49.  Improvement of the Seebeck coefficient of PEDOT: PSS by chemical reduction 

combined with a novel method for its transfer using free-standing thin films. 

Massonnet, N., Carella, A., Jaudouin, O., Rannou, P., Laval, G., Celle, C., & 

Simonato, J. P.,  Journal of Materials Chemistry C, 2(7), 1278-1283 (2014) 

50. Molecular design and control of fullerene-based bi-thermoelectric materials, 

Laura Rincón-García, Ali K. Ismael, Charalambos Evangeli, Iain Grace, Gabino 

Rubio-Bollinger, Kyriakos Porfyrakis, Nicolás Agraït, and Colin J. Lambert, 

Nature Materials, 15, 289–293 (2016) 

 



14 

 

51. Strain-induced bi-thermoelectricity in tapered carbon nanotubes. L.A.A. 

Algharagholy, T. Pope, and C.J. Lambert, J. Phys. Condens. Matt. 30 105304 

(2018) 

52. Does a Cyclopropane Ring Enhance the Electronic Communication in 

Dumbbell-Type C60 Dimers? La Rosa, A.; Gillemot, K.; Leary, E.; Evangeli, 

C.; González, M. T.; Filippone, S.; Rubio-Bollinger, G.; Agraït, N.; Lambert, C. 

J.; Martín, N., J. Org. Chem. 79 (11), 4871-4877 (2014) 

53. Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular 

junctions. Sara Sangtarash, Hatef Sadeghi and Colin J. Lambert, Phys Chem 

Chem Phys 20, 9630 - 9637 (2018) 

54. Oscillating chiral currents in nanotubes: A route to nanoscale magnetic test 

tubes. CJ Lambert, SWD Bailey, J Cserti, Phys. Rev. B 78 (23), 233405 (2008) 

55. Thermoelectricity in vertical graphene-C 60-graphene architectures. Q Wu, H 

Sadeghi, VM García-Suárez, J Ferrer, CJ Lambert, Scientific reports 7 (1), 1-8 

(2017) 

56. Quantum interference mediated vertical molecular tunneling transistors. 

Chuancheng Jia, Marjan Famili, Marco Carlotti, Iain M. Grace, Yuan Liu, Peiqi 

Wang, Ziying Feng, Yiliu Wang, Mengning Ding, Jian Guo, Xiang Xu, Yu 

Huang, Ryan C. Chiechi, Colin J. Lambert and Xiangfeng Duan, Science 

advances 4 (10), eaat8237 (2018) 

57. Self-assembled molecular-electronic films controlled by room temperature 

quantum interference. Marjan Famili, Chuancheng Jia, Xunshan Liu, Peiqi 

Wang, Iain M. Grace, Jian Guo, Yuan Liu, Ziying Feng, Yiliu Wang, Zipeng 



15 

 

Zhao, Silvio Decurtins, Robert Häner, Yu Huang, Shi-Xia Liu, Xiangfeng Duan 

and Colin J. Lambert, Chem 5 (2), 474-484 (2019) 

58. Scale-up of room-temperature constructive quantum interference from single 

molecules to self-assembled molecular-electronic films. Xintai Wang, Troy L. 

R. Bennett, Ali Ismael, Luke A. Wilkinson, Joseph Hamill, Andrew J. P. White, 

Iain M. Grace, Tim Albrecht, Benjamin J. Robinson, Nicholas J. Long, Lesley 

F. Cohen and  Colin J. Lambert, J. Am. Chem. Soc. 142 (19), 8555-8560 (2020) 

59. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Physical review, 

136(3B), B864. (1964) 

60. Self-consistent equations including exchange and correlation effects. W. Kohn 

and L.J. Sham, Physical review, 140(4A), A1133. (1965) 

61. Self-interaction correction to density-functional approximations for many-

electron systems. J.P. Perdew, J. P. and A. Zunger, Physical Review B, 23(10), 

5048. (1981) 

62. Generalized gradient approximation made simple. J.P. Perdew, K. Burke, and 

M. Ernzerhof, Physical Review letters, 77(18), 3865. (1996) 

63. The SIESTA method for ab initio order-N materials simulation. J.M. Soler, E. 

Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, 

Journal of Physics: Condensed Matter, 14(11), 2745. (2002) 

 

 

 



16 

 

Chapter 2  

 
 

2. Density Functional Theory 

 

This chapter presents the formalism behind density functional theory (DFT) along with 

general details of the DFT code SIESTA which is used in all the electronic structure 

calculations in this thesis. These calculations represent the first step of the procedure to 

obtain the electron transport properties of the molecule. However, since the Hamiltonian 

extracted is only of the isolated molecule, it still has to be connected to semi-infinite 

leads which in theory produces an infinite problem. This second step will be discussed 

in detail in the following chapter. 

 

  

2.1 Introduction 

DFT is frequently used by scientists in the fields of physics and chemistry for 

investigating the ground-state characteristics of interacting multiple particle systems 

such as atoms, molecules and crystals. Through DFT, the many-body system is 

transformed into one that consists of non-interacting fermions within an effective field. 

Put differently, it is possible to describe the electronic characteristics of a system with 

multiple interacting particles as a function of the system’s ground-state density [1, 2]. 

The significance of DFT was affirmed in 1998 with the decision to present Walter Kohn 

with the Nobel Prize in Chemistry for his role in developing density functional theory. 

The DFT methodology has good reliability and is applicable to various different 

molecular systems, where a large body of literature including articles and books has 
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described the principles and applications of DFT in great detail  [1-6]. The foundation 

of DFT was the Thomas-Fermi model that was developed in the 1920s, which described 

the fundamental steps required for obtaining the density functional for overall energy 

on the basis of wave functions [1, 6-8]. This model was enhanced by Hartree, Dirac, 

Fock and Slater approximately 40 years after the work published by Thomas and Fermi. 

DFT itself was subsequently established by the Hohenberg-Kohn theorems and the 

Kohn-Sham technique [1, 3, 4, 7-11].  

The primary objective of this chapter is to briefly introduce DFT and to describe the 

main formalism as an approach for determining a solution to the non-relativistic 

multiple-particle time-independent Schrödinger equation (TISE). This allows us to in 

principle determine the characteristics of a system with multiple electrons by utilising 

functionals of the electron density. The DFT code ‘SIESTA’ will also be briefly 

summarised, as it is employed frequently throughout this work as a theoretical tool for 

optimising the molecular structures. 

 

2.2 The Schrödinger Equation and Variational Principle 

 

It is possible to describe a general, non-relativistic system with multiple particles using 

the time-independent Schrödinger equation: 

 𝐻𝛹𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2, … , �⃗⃗�𝑀) = 𝐸𝑖𝛹𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2, … , �⃗⃗�𝑀)      (2.1) 

In this equation, 𝐻 denotes the Hamiltonian operator of a system comprised of 𝑁 

electrons and 𝑀 nuclei, and describes the interaction between particles. 𝛹𝑖 represents 

the wave function of the system’s 𝑖th  state, with energy 𝐸𝑖. This system’s Hamiltonian 

operator can then be written in the form of a sum of five terms shown by [2, 3, 12]: 
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(2.2) 

 

where 𝑖 and 𝑗 label the N electrons, 𝑛 and 𝑛′ run over the 𝑀 nuclei within the system, 

𝑚𝑒 and 𝑚𝑛 denote the mass of the electron and nucleus respectively, and e and 𝑍𝑛 

describe the electron and nuclear charge, respectively. Furthermore, 𝑟𝑖⃗⃗⃗  and �⃗⃗�𝑛 denote 

the respective positions of the electrons and nuclei, while ∇i
2 denotes the Laplacian 

operator which in Cartesian coordinates is defined as  

𝛻𝑖
2 =

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2 

In equation (2.2), the first two terms, 𝑇𝑒 and 𝑇𝑛  denote the kinetic energy of electrons 

and nuclei respectively. The remaining three terms represent the potential component 

of the Hamiltonian. The attractive electrostatic interaction between the nuclei and 

electrons is defined by 𝑈𝑒𝑛. The electron-electron interaction, 𝑈𝑒𝑒 and nuclear-nuclear 

interaction, 𝑈𝑛𝑛,  describe the repulsive component of  the potential [1, 3, 6, 9, 13].  

It is possible to apply the Born-Oppenheimer approximation, also known as the clamped 

nuclei approximation, where the nuclei are regarded as being fixed in position. This is 
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justified since approximately 99.9% of the atom’s total mass is condensed within the 

nucleus (for instance, the weight of a hydrogen nucleus is around 1,800 times greater 

compared to an electron).  In such a situation, when the treated atoms’ nuclei are fixed, 

they have no kinetic energy and will play no further role in the complete wave function. 

This assumption implies that the Hamiltonian is reduced to a simpler form, defined as 

the electronic Hamiltonian 𝐻ele, which it is possible to rewrite according to the fixed 

nuclear picture as [1, 3, 6, 13-15]:  
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where 𝑈nn represents a constant.  For the given system, the Schrödinger equation for 

‘clamped-nuclei’ is 

                      𝐻𝑒𝑙𝑒𝛹𝑒𝑙𝑒 = 𝐸𝑒𝑙𝑒𝛹𝑒𝑙𝑒                                             (2.4) 

where 𝛹ele is dependent on the coordinates of the electrons only, with the nuclear 

component only entering parametrically. Hence, the overall energy 𝐸total is calculated 

by summing  𝐸ele and the constant nuclear repulsion term: 

    𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑒𝑙𝑒 + 𝑈𝑛𝑛             (2.5) 
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In itself, a wave function is not a physically observable quantity. However, its modulus 

squared, in the form  

|𝛹(𝑟1, 𝑟2, … , 𝑟𝑁)|
2𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑁               (2.6) 

determines the probability that electrons 1,2, … ,𝑁 will be detected in the volume 

elements dr⃗1 dr⃗2… . . dr⃗N. Since electrons cannot be distinguished, the probability 

cannot change if the coordinates of two given electrons (in this case 𝑖 and 𝑗) are 

interchanged [12]: 

|𝛹(𝑟1, 𝑟2, … 𝑟𝑖, 𝑟𝑗 , … , 𝑟𝑁)|
2
= |𝛹(𝑟1, 𝑟2, … 𝑟𝑗 , 𝑟𝑖, … , 𝑟𝑁)|

2
          (2.7) 

 

Because electrons are fermions with a half spin, it follows that 𝛹 is anti-symmetric in 

terms of the swapping of the spin and spatial coordinates of two given electrons: 

𝛹(𝑟1, 𝑟2, … 𝑟𝑖, 𝑟𝑗 , … , 𝑟𝑁) = −𝛹(𝑟1, 𝑟2, … 𝑟𝑖, 𝑟𝑗 , … , 𝑟𝑁)           (2.8) 

Based on the probability interpretation of the wave function, it is convenient to choose 

the integral of equation (2.6) over the complete range of all variables is equal to one. 

This implies that the likelihood that an N-electron will be found at any point in space 

must be precisely unity,   

∫…∫|𝛹(𝑟1, 𝑟2, … , 𝑟𝑁)|
2

𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑁 = 1    (2.9) 

A wave function that satisfies equation (2.9) is considered to be normalised.  

Due to the fact that the Schrödinger equation cannot be solved precisely, numerous 

theories have been proposed to find approximate solutions, beginning with Hartree, 

Hartree-Fock and others.  

The majority of such theories were founded on a significant theoretical principle defined 

as the variational principle of the wave function [1, 2, 5, 6, 12].  



21 

 

In simple terms, this principle guides the process of searching for solutions by utilising 

appropriate trial wave functions 𝛹Tri. The principle is beneficial for studying the ground 

state, but offers minimal benefit for studying excited states. In cases where the state of 

the system is  𝛹Tri, the energy’s expectation value is calculated as [1, 3, 6, 9]: 

〈𝐸𝑇𝑟𝑖〉 =
∫𝛹𝑇𝑟𝑖 𝐻 𝛹𝑇𝑟𝑖 

∗ 𝑑𝑟

∫𝛹𝑇𝑟𝑖  𝛹𝑇𝑟𝑖
∗  𝑑𝑟

  (2.10) 

equation (2.10) contains the variational principle. The variational principle states that 

the energy expectation value of any 𝛹Tri (trial wave function) represents an upper bound 

to the actual ground-state energy. Where ΨTri is normalised on the basis of equation 

(2.9), and ΨTri is equal to the ground state (ΨTri = ΨGS), this implies ETri equates to the 

precise ground state energy EGS, which means that equation (2.10) can now be rewritten 

for the ground state as:  

〈𝐸𝐺𝑆〉 = ∫𝛹𝐺𝑆 𝐻 𝛹𝐺𝑆 
∗ 𝑑𝑟  (2.11) 

Thus, the normalised ΨTri  can indicate that either ETri > EGS or ETri = EGS. Hence, the 

optimal selection of 𝛹Tri is the one where the 𝐸Tri is minimised [3, 4, 6]. 

 

2.3 The Hohenberg-Kohn Theorems 

DFT is founded on the theorems of Hohenberg and Kohn, who in 1964 validated the 

use of the electron density 𝑛( 𝑟 ⃗⃗⃗) for calculating ground state energy [6,10, 17, 18]:  

According to Theorem (1), the electron density can be uniquely calculated for an 

interacting multiple particle system that has an applied external potential 𝑉ext( 𝑟 ⃗⃗⃗). This 

implies that it is possible to use the density 𝑛( 𝑟 ⃗⃗⃗) rather than the potential as a function 

that uniquely characterises the system. Specifically, the ground state density 𝑛𝐺𝑆( 𝑟 ⃗⃗⃗), 
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provides a unique determination of the potential up to an arbitrary constant [6, 10, 17, 

19].  

According to Proof (1), which was originally presented by of Hohenberg and Kohn, the 

theorem has been proven for densities whose ground states are non-degenerate, where 

the proof was elementary and by contradiction  [17].  Two differing external potentials 

𝑉ext( 𝑟 ⃗⃗⃗) (1)and 𝑉ext( 𝑟 ⃗⃗⃗) (2) are considered that differ by more than a constant and 

produce an identical ground state density 𝑛GS( 𝑟 ⃗⃗⃗). It is evident that the potentials relate 

to different Hamiltonians, namely 𝐻ext[( 𝑟 ⃗⃗⃗)] (1) and 𝐻ext[( 𝑟 ⃗⃗⃗)] (2), which generate 

unique wave functions, namely Ψext[( r ⃗⃗⃗)] (1) and 𝛹ext[( 𝑟 ⃗⃗⃗)] (2) .  

As the ground state is identical, using the variational principle, which indicates that a 

wave function does not exist with less energy than that of 𝛹ext[( 𝑟 ⃗⃗⃗)] (1) for 

𝐻ext[( 𝑟 ⃗⃗⃗)] (1), we have: 

                       〈𝐸(1)〉 = ∫𝛹(1) 𝐻(1) 𝛹(1)
∗  𝑑𝑟 <  ∫𝛹(2) 𝐻(2) 𝛹(2)

∗  𝑑𝑟      (2.12) 

When the ground-state is non-degenerate, and as a result the two Hamiltonians’ ground 

state densities are exactly the same, equation (2.12) is transformed to:  

∫𝛹(2) 𝐻(1) 𝛹(2)
∗  𝑑𝑟 = ∫𝛹(2) 𝐻(2) 𝛹(2)

∗  𝑑𝑟
⏞            

〈𝐸(2)〉

+ 

                                          ∫{[𝑉𝑒𝑥𝑡( 𝑟 )](1) − [𝑉𝑒𝑥𝑡( 𝑟 )](2)} 𝑛𝐺𝑆( 𝑟 ⃗⃗⃗) 𝑑𝑟 

(2.13) 

When the labels in equation (2.13) are exchanged, this gives: 
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∫𝛹(1) 𝐻(2) 𝛹(1)
∗ 𝑑𝑟 = ∫𝛹(1) 𝐻(1) 𝛹(1)

∗  𝑑𝑟
⏞            

〈𝐸(1)〉

+ 

                                        ∫{[𝑉𝑒𝑥𝑡( 𝑟 )](2) − [𝑉𝑒𝑥𝑡( 𝑟 )](1)} 𝑛𝐺𝑆( 𝑟 ⃗⃗⃗) 𝑑𝑟 

        (2.14) 

The addition of equation (2.13) to equation (2.14) yields 

〈𝐸(1)〉 + 〈𝐸(2)〉 <  〈𝐸(2)〉 + 〈𝐸(1)〉         (2.15) 

which evidently reveals a contradiction. Hence, the proof of the theorem has been 

shown by reductio ad absurdum. 

A variational ansatz is provided by Theorem 2 to obtain 𝑛( 𝑟 ⃗⃗⃗); in other words, it 

searches for the 𝑛( 𝑟 ⃗⃗⃗) which causes the energy to be minimised. Put differently, it 

implies that a universal functional can be defined for the energy, 𝐸[𝑛( 𝑟 ⃗⃗⃗)]. The 

particular system’s precise ground state energy represents the global minimum value of 

this functional, and the density 𝑛( 𝑟 ⃗⃗⃗) which causes the functional to be minimised is 

the precise ground state density  𝑛GS( r ⃗⃗⃗) [1, 6, 10, 17, 19]. 

According to Proof (2), the first theorem indicates that the system’s overall energy is a 

functional of the density  𝑛(𝑟 ⃗⃗⃗) and is formulated as 

       𝐸𝑡𝑜𝑡𝑎𝑙[𝑛( 𝑟 ⃗⃗⃗)] = 𝑇𝑖𝑛𝑡[𝑛( 𝑟 )] + 𝑈𝑒𝑒[𝑛( 𝑟 )]⏟      
=𝑧𝑒𝑟𝑜,   𝑓𝑜𝑟 

𝑛𝑜𝑛−𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 
𝑠𝑦𝑠𝑡𝑒𝑚

⏞                   

𝐹𝐻−𝐾[𝑛( 𝑟 )]

+ ∫𝑉𝑒𝑥𝑡( 𝑟 )  𝑛( 𝑟 ) 𝑑𝑟 
(2.16) 

In equation (2.16) the first two terms ( 𝐹H−K[𝑛( 𝑟 )])  represent the kinetic energy (𝑇int) 

and electron-electron interaction energy (𝑈ee), which are treated in the same manner for 

the entire system.  Therefore 𝐹H−K[𝑛( 𝑟 )] is considered a universal functional that has 
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been defined as the ultimate goal of density functional theory [12]. If the assumption is 

made that the system is in the ground state, the energy can be uniquely defined based 

on the ground state density  𝑛GS( r ⃗⃗⃗): 

                      〈𝐸𝐺𝑆〉 = 〈𝐸[𝑛𝐺𝑆( 𝑟 )]〉 = ∫𝛹𝐺𝑆 𝐻𝐺𝑆 𝛹𝐺𝑆
∗  𝑑𝑟              (2.17) 

On the basis of the variational principle, the ground state energy, corresponding to the 

ground state density, represents the minimum energy and it follows that all other 

densities will yield increased energy:  

         〈𝐸𝐺𝑆〉 = 〈𝐸[𝑛𝐺𝑆( 𝑟 )]〉 = ∫𝛹𝐺𝑆  𝐻𝐺𝑆 𝛹𝐺𝑆
∗  𝑑𝑟     <  ∫𝛹 𝐻 𝛹∗  𝑑𝑟         

                                                  = 〈𝐸[𝑛( 𝑟 )]〉    = 〈𝐸〉 

  (2.18) 

After the functional 𝐹H−K[𝑛( 𝑟 )] has been determined, the overall energy (equation 

(2.16) ) can be minimised with respect to variations in the density function, which 

facilitates the process of precisely identifying the system’s ground state characteristics. 

(It is important to consider that in the majority of practical calculations, the ground state 

energy will be found by direct minimisation, but this can be achieved using the less 

complex process according to Kohn-Sham). 

 

2.4 The Kohn-Sham Method and Self-Consistent Field  

It was observed by Kohn and Sham that the theorems of Hohenberg and Kohn can be 

applied to systems that are either interacting or non-interacting. One of the benefits of 

a non-interacting system compared to an interacting system is that it is easier to find the 

ground-state energy in the former. They developed a method to take advantage of this 
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to circumvent the issue of multiple interacting particles. This forms the basis of density 

functional theory. 

In 1965, Kohn Sham proposed one of the benefits of the non-interacting system 

compared to the interacting system is that it is easier to find the ground-state energy in 

the former. In 1965, Kohn and Sham [11] proposed that the system’s original 

Hamiltonian could be substituted with an effective Hamiltonian (𝐻eff) of a non-

interacting system in an effective external potential 𝑉eff( 𝑟 ), which generates the 

identical ground state density found in the original system.  As there is no definitive 

method by which this is calculated, the Kohn-Sham technique is regarded as an ansatz, 

but the process of solving it is much less complex compared to the interacting problem. 

The foundation of the Kohn-Sham technique is the Hohenberg-Kohn universal density 

functional [6, 9, 10, 20]: 

 𝐹𝐻−𝐾[𝑛( 𝑟 ⃗⃗⃗)] = 𝑇𝑖𝑛𝑡[𝑛( 𝑟 )] + 𝑈𝑒𝑒[𝑛( 𝑟 )]                    (2.19) 

In contrast to (2.16), the Kohn-Sham ansatz 𝐹K−S[𝑛( 𝑟 ⃗⃗⃗)], for the energy functional is 

formulated as 

FK−S[n( r ⃗⃗⃗)] = Tnon[n( r⃗ )] + EHart[n( r⃗ )] + ∫Vext( r⃗ )  n( r⃗ ) dr⃗ + Exc[n( r⃗ )] 

                                                                                 (2.20) 

where 𝑇non denotes the non-interacting system’s kinetic energy, which differs from that 

of 𝑇int  (for the interacting system) from equation (2.16), and 𝐸Hart represents the 

classical self-interaction or electrostatic energy of the electron gas, which is related to 

the density 𝑛( 𝑟 ). The fourth term, 𝐸xc, is the exchange-correlation energy 

functional, and is formulated as 
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      𝐸𝑥𝑐[𝑛( 𝑟 )] = 𝐹𝐻−𝐾[𝑛( 𝑟 )] −
1

2
∫
𝑛( 𝑟1 )𝑛( 𝑟2 )

|𝑟1 − 𝑟2|
𝑑𝑟1𝑑𝑟2

⏞                
𝐸𝐻𝑎𝑟𝑡[𝑛( 𝑟 )]

− 𝑇𝑛𝑜𝑛[𝑛( 𝑟 )] 

           

  (2.21) 

It is possible to trivially cast the first three terms of equation (2.20) into functional form. 

In contrast, 𝐸xc does not have a precise functional form. In recent years, researchers 

have focused their efforts on searching for ever improving approximations to 𝐸xc. 

Presently, the functionals are capable of investigating and predicting the physical 

characteristics of a broad range of molecules and solid-state systems. For the latter three 

terms in equation (2.20), functional derivatives are taken for the purpose of constructing 

the effective individual particle potential 𝑉eff( r⃗ ): 

𝑉𝑒𝑓𝑓( 𝑟 ) = 𝑉𝑒𝑥𝑡( 𝑟 ) +
𝜕𝐸𝐻𝑎𝑟𝑡[𝑛( 𝑟 )]

𝜕𝑛( 𝑟 )
+
𝜕𝐸𝑥𝑐[𝑛( 𝑟 )]

𝜕𝑛( 𝑟 )
                     (2.22) 

Subsequently, the obtained potential can be used to generate the single particle 

Hamiltonian,  

𝐻𝐾−𝑆 = 𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓           (2.23) 

Through the use of this Hamiltonian, the Schrödinger equation is transformed into: 

[𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓]𝛹𝐾−𝑆 = 𝐸𝛹𝐾−𝑆                     (2.24) 

Equation (2.24) is known as the Kohn-Sham equation. The ground state density 

𝑛GS
K−S( 𝑟 ) corresponds to the ground state wave function 𝛹GS

K−S, which accordingly 

causes the Kohn-Sham functional to be minimised subject to the orthonormalization 

constraints  ⟨Ψi|Ψj⟩ = δij [1, 4, 14, 21].  

To solve the Kohn-Sham equation in density functional theory, a self-consistent field 

process is used. To illustrate this, assume for sake of argument that it is possible to 
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precisely determine the functionals 𝐸Hart and 𝐸xc. The problem then becomes the 

inability to calculate 𝑉eff without knowing the right ground state density, which cannot 

be derived from the Kohn-Sham wave functions prior to solving equation (2.2.9) using 

the right 𝑉eff. Hence, a Self-Consistent Field (SCF) cycle is conducted to enable this 

circular problem to be solved [3, 12, 22] as illustrated in Figure 2.1.  
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Figure 2.1 Flowchart of the self-consistent DFT cycle. 

 

As shown in Figure 2.1, the initial stage involves the generation of the pseudo-potential, 

discussed further in section 2.8, which is representative of the electrostatic interaction 

 

Yes No 
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that occurs between the valance electrons and nuclei and core electrons. This is followed 

by the formation of the necessary basis set using a specified energy cutoff that is 

introduced to the basis set; this stage enables the density functional quantities to be 

expanded.  

Evidently, if the density is identified, the energy functional is completely determined. 

A trial electronic density 𝑛initial (𝑟) is proposed as a provisional estimate. This 

provisional estimate is used for calculating the quantity 

                                    𝐺 = 𝐸𝐻𝑎𝑟𝑡[𝑛
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑟)] + 𝐸𝑥𝑐[𝑛

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑟)]                (2.25) 

This is followed by the calculation of 
∂𝐺

∂𝑛initial (𝑟)
 as well as the effective potential 𝑉eff. 

The latter is used for solving the Kohn-Sham equation (2.24), by specifying the electron 

Hamiltonian. After being obtained, the Hamiltonian is then diagonalised to give the 

wavefunctions 𝛹K−S, which in turn determine the new electron density 𝑛new(r⃗) . 

Ideally, this 𝑛new(r⃗) will be nearer to the actual ground state density. 

In terms of self-consistency, if this new modified electron density 𝑛new(r⃗) is in 

numerical agreement with the density 𝑛initial (r⃗) used for constructing the Hamiltonian 

when the SCF cycle began, then the end of the loop has been reached. The loop is then 

exited and all the intended converged quantities are calculated, including the overall 

energy, the electronic band structure, and density of states.  Alternatively, if the 

aforementioned density 𝑛new(r⃗) is not in agreement with the initial density 𝑛initial (r⃗), 

a new input density is generated and a further SCF cycle is initiated in which a new 

Hamiltonian that is dependent on the input density is generated and after diagonalisation 

the output density is computed. The process continues until self-consistency is verified  

[3, 17, 23].  
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The Kohn-Sham method demonstrates that it is possible to precisely map a complex 

system comprised of many interacting particles onto a basic series of non-interacting 

particle equations when the exchange correlational functional has been determined. 

Nevertheless, as we do not precisely know the exchange-correlation functional, some 

approximation is necessary.    

 

2.5 The Exchange-Correlation Functional 

Although DFT is a proven approach with high reliability, the kinetic energy functional 

and exchange-correlation functional are still approximations. Extensive research has 

been conducted with the aim of determining expressions for such functionals that 

exhibit good reliability. The exchange-correlation functional approximations that are 

most frequently used are the Local Density Approximation (LDA), which is purely 

dependent on the density, as well as the more complex Generalised Gradient 

Approximation (GGA), which incorporates the density’s derivative and additionally 

includes data pertaining to the environment, implying that it is semi-local.  

 

2.6 Local Density Approximation (LDA) 

According to the Kohn-Sham approach, it is possible to calculate the functional 𝐸xc 

within a homogenous electron gas for the purpose using this less complex system to 

approximate the true many body particle problem [11]. It was shown by Kohn-Sham 

that if a system’s density varies only gradually, the 𝐸xc functional at point 𝑟 can be 

considered to act in a uniform density. Hence, one can represent the  𝐸xc functional via 

a uniform electron gas 𝐸xc
homo[𝑛( 𝑟 )] that has a density 𝑛( 𝑟 ). Generally, the LDA is 

not applicable for systems in which interactions between electrons are dominant.  
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Using the LDA assumption – i.e. assuming that the density remains constant within the 

local region surrounding any given position – the exchange-correlation functional has 

the form [6, 12]: 

 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛( 𝑟 )] = ∫𝐸𝑥𝑐

ℎ𝑜𝑚𝑜[𝑛( 𝑟 )]𝑛( 𝑟 )𝑑𝑟                (2.26) 

It is possible to divide the exchange-correlation energy 𝐸xc
homo[n( r⃗ )] into two separate 

terms, namely the exchange 𝐸x
homo[n( r⃗ )] and the correlation energies 𝐸c

homo[n( r⃗ )] : 

 

Exc
homo[n( r⃗ )] = Ex

homo[n( r⃗ )] + Ec
homo[n( r⃗ )]               (2.27) 

The determination of the exchange terms is performed using an analytical approach; it 

is widely recognised and has been included in multiple textbooks (see [6, 12]) 

resulting in 

𝐸𝑥
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] = − 

3

4
 (
3𝑛( 𝑟 )

𝜋
)1/3               (2.28) 

Although, it is not possible to obtain the correlation energy (𝐸c
homo[𝑛( r⃗ )]) using an 

analytical approach, a precise determination can be made utilising numerical 

techniques. The most frequent and precise technique was developed by Ceperly and 

Alder (CA) [24] which uses quantum Monte Carlo simulations. Monte Carlo 

simulations can be interpreted in various different ways; for instance, the most 

frequently adopted approach was proposed by Perdew and Zunger (PZ), who succeeded 

in fitting the numerical data to an analytical expression, which yielded [25,26]:  
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𝐸𝑐
ℎ𝑜𝑚𝑜[𝑛( 𝑟 )] =

=

{
 

 
−0.048 + 0.031 𝑙𝑛(𝑟𝑜) − 0.0116 𝑟𝑜 + 0.002 𝑙𝑛(𝑟𝑜)     𝑖𝑓 𝑟𝑜 < 1

     
  

                −
0.1423

(1 + 1.9529 √𝑟𝑜 + 0.3334 𝑟𝑜
                                       𝑖𝑓 𝑟𝑜 > 1

}
 

 

 

 (2.29) 

where 𝑟𝑜 denotes the average radius of the electrons within the homogenous electron 

gas, and is given by (
3

4π𝑛
)
1/3

. 

The LDA is a basic and widely-recognised functional with significant power, and is 

regarded as being accurate for carbon and graphene nanotubes or in situations where 

there are no rapid changes in the electronic density. It is anticipated that atoms with d 

and f orbitals will exhibit larger errors. There are certain shortcomings associated with 

this functional; for instance, the band gap in insulators and semi-conductors is generally 

not precise and the error is larger (between 0.5 and 2eV or 10-30%). Hence, it is 

recommended that better functionals are sought [25, 27, 28]. 

 

2.7 Generalized Gradient Approximation (GGA) 

Although all systems are treated by LDA as being homogenous, this is not usually the 

case in reality. To account for this situation, the LDA can be extended further by 

incorporating the density’s derivative information within the exchange-correlation 

functionals. This can only be achieved by incorporating the gradient as well as the 

higher spatial derivatives of the overall charge density (|∇n( r⃗ )|, |∇2n( r⃗ )|, …) within 

the approximation. This type of functional is defined as the generalised gradient 

approximation (GGA). In this situation, the exchange aspect of the functional does not 

have a closed expression, which means it must be calculated in combination with 

correlation contributions utilising numerical techniques. Identical to the LDA, there are 
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multiple parameterisations for the exchange-correlation energies within the GGA [29-

32].  

 

The following section will present a discussion on the functional form that was proposed 

by Perdew, Burke and Ernzerhof (PBE) [29]. This parameterisation includes two 

separate expressions, where the first is the exchange Ex
GGA[n( r⃗ )] and is formulated as: 

 

Ex
GGA[n( r⃗ )] = ∫n( r⃗ ) Ex

homo[n( r⃗ )] Fx(s)dr⃗ ,                    (2.30) 

 

Fx(s) = 1 + κ −
κ

(1+μs2)/κ
  

 

where  Fx(s) is defined as the enhancement factor, κ = 0.804, μ = 0.21951  and s =

|∇n( r⃗ )/2ksn( r⃗ )| denotes the dimensionless density gradient, where ks = √
4 kT−F

πao
  

and kT−F =
(12/π)1/3

√rs
 represents the Thomas-Fermi screening wavenumber, while the 

local Seitz radius is defined as  rs. 

 

The second expression denotes the correlation energy Ex
GGA[n( r⃗ )] and is formulated 

as: 

 

Ec
GGA[n( r⃗ )] = ∫(Ec

homo[n( r⃗ )] + χ [n( r⃗ )])dr⃗ ,        (2.31) 

  

χ [n( r⃗ )] =
e2

ao
 γ ln (1 +

β

γ
 t2  

1+At2

1+At2+A2t4
) ,  
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A =
β

γ
 [ e

(
Ec
homo[n( r⃗⃗ )]

γ
)−1

 ]−1     

              

where γ = (1 − ln(2)/π2, t = |∇n( r⃗ )/2kT−Fn( r⃗ )| is an additional dimensionless 

density gradient, β = 0.066725,  and a0 =
ℏ

me2
 . 

 

The two most frequently utilised approximations for approximating the exchange-

correlation energies within the DFT are GGA and LDA. Various additional functionals 

also exist, which extend beyond GGA and LDA. A robust theory demonstrating these 

validity does not generally exist. The determination is based on tests conducted on the 

functional for a range of different materials across a broad scope of systems, the results 

of which are compared with experimental data proven to have good reliability.  

 

2.8 SIESTA  

For the purpose of this thesis, all DFT calculations were performed using the SIESTA 

(Spanish Initiative for Electronic Simulations) package. It is used for obtaining the 

relaxed geometry of the given structures as well as to perform calculations to explore 

their electronic characteristics. SIESTA is a self-consistent density functional theory 

code that enables efficient calculations to be performed using norm-conserving pseudo-

potentials and linear combination of atomic orbital (LCAO) basis sets  [33]. Additional 

theoretical information regarding the SIESTA code and what it enables can be found in 

[34, 35]. DFT simulations can be performed in two distinct modes, namely a standard 

self-consistent field diagonalisation technique used for solving the Kohn-Sham 

equations and a second technique in which a modified energy functional is directly 
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minimised [36]. The following sections will present a description of specific 

components of SIESTA as well the process by which they are implemented in the code.   

 

2.9 The Pseudo-Potential Approximation  

This section briefly introduces the notion of pseudo-potentials. A given system’s 

physical characteristics are dependent on a highly effective description of the valence 

electron distribution.  Any electron within an atom is defined as being either core or 

valence. Nevertheless, for a given system that comprises a significant number of atoms 

that contain complex potentials, any investigation of its electronic properties will be 

lengthy and will require a large computer memory. The introduction of an 

approximation defined as a pseudo-potential or effective potential allows the number of 

electrons included within the simulation to be reduced.  This is aimed at replacing the 

complex effects of the motion of the non-valence electrons (core electrons) of an atom 

and nucleus via a pseudo-potential. It follows from the assumption that the core 

electrons play no role in chemical bonding, are spatially localised around the nucleus, 

and have wavefunctions which only weakly overlap with those of core electrons from 

adjacent atoms. Due to the fact that overlap only occurs between valence electron states 

in the majority of systems, they are the only electrons to play a role in the formation of 

molecular orbitals. Hence, it can logically be assumed that it is possible to remove the 

core electrons and substitute them with a pseudo-potential. This enables the coulombic 

potential term for the core electrons within the Schrödinger equation to be replaced by 

a modified effective potential term. The pseudo-potential approximation was firstly 

proposed by Fermi in 1934 and Hellmann in 1935 [35-38].  

 

http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
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Chapter 3 

 

 

3.Quantum Transport and Green's Functions Method 

 

Chapter 2 described density functional theory, which can be used to calculate the 

electronic structure of an isolated molecule. The next step is to connect this isolated 

molecule to semi-infinite leads and compute the probability of transmission through the 

system. This is achieved by using the Green's function scattering formalism, which I 

describe in this chapter and is which used in the rest of this thesis. This method is based 

on scattering theory along with Green's function methods to describe the electric and 

thermoelectric properties of nanosized systems sandwiched between a number of 

macroscopic sized metal electrodes.  

 

3.1 Introduction 

This chapter will begin by briefly summarising the Landauer formula. Subsequently, I 

will explain the most basic formula of a retarded Green’s function for a tight binding 

chain in one dimension.  After this, I will show how the periodicity of this lattice can 

be broken at an individual site and demonstrate that the Green’s function has a direct 

relationship with the transmission coefficient 𝑇(𝐸), throughout the scattering region. 

The techniques demonstrated on these basic systems will subsequently be employed for 

deriving the transmission coefficient of mesoscopic conductors of arbitrarily 

complicated geometry. The approach described in this chapter is based on the 

assumption that the charge carriers have minimal interaction, inelastic processes are not 

present and the temperature is zero.  
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The objective of molecular electronics is to understand the electrical characteristics of 

molecular junctions, where a molecule (or structure that is adequately small) binds to 

bulk electrodes to enable ballistic transport to occur via its energy levels.  In comparison 

to the strengths of the bonds between electrodes or molecules, the strength of the 

coupling between leads and molecules is generally low, which induces a process of 

scattering from the electrode to the molecule and vice versa.  As the system is not 

periodic, the band structure (as calculated for instance by DFT) no longer describes the 

electronic properties effectively. Consequently, to increase understanding of the process 

of scattering in the molecular bridge and the electrode junction, a more general approach 

is required. This can be accomplished via the Green’s function formalism.  

 

3.2 Landauer Formula 

The Landauer formula [1, 2] is the conventional method of describing transport 

phenomena within ballistic mesoscopic systems and can be applied to phase coherent 

systems in which an individual wave function is sufficient for the electronic flow to be 

described. It establishes a relation between the mesoscopic sample’s conductance and 

the transmission characteristics of electrons that pass through the sample.  In a later 

section of this chapter, the approach used for calculating the transmission characteristics 

will be presented. 
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Figure 3.1: A mesoscopic scatterer linked to contacts with ballistic leads. 𝜇𝐿 and 𝜇𝑅 

represent the chemical potential of the left and right contacts, respectively. 

 

In the case where the scatterer is hit by an incident wave packet from the left, the 

probability that it will be transmitted to the right is 𝑇 = |�⃗�|
2
= �⃗��⃗�

∗
, whereas the 

probability of reflection is 𝑅 = |�⃗⃖�|2 = �⃗⃖��⃗⃖�
∗
. As incident electrons have to be either 

transmitted or reflected, probability conservation suggests 𝑅 + 𝑇 = 1. 

Initially, assume we have a mesoscopic scatterer that has connections to a pair of 

contacts, which act as ideal ballistic leads (Figure 3.1) connected to electron reservoirs, 

where inelastic relaxation processes can take place. [3]. The chemical potentials of the 

reservoirs exhibit slight differences (𝜇𝐿 > 𝜇𝑅 ⟹ 𝜇𝐿 − 𝜇𝑅 = 𝛿𝐸 = 𝑒𝛿𝑉 > 0), which 

will cause the electrons to be driven from the left to the right reservoir.  I will first 

present a discussion of a solution for a single open channel (i.e., in which only a single 

electron is permitted to move in a specific direction).  

 

In order for the current in this type of system to be calculated, we begin with an 

analysis of the incident electric current (𝛿𝐼𝑖𝑛) produced by the chemical potential 

difference: 
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𝛿𝐼𝑖𝑛 = 𝑒𝑣𝑔
𝜕𝑛

𝜕𝐸
𝛿𝐸 = 𝑒𝑣𝑔

𝜕𝑛

𝜕𝐸
 (𝜇𝐿 − 𝜇𝑅)        (3.1) 

where 𝑒 denotes the electronic charge, 𝑣𝑔 represents the group velocity of wave packets 

in the lead, and 𝜕𝑛/𝜕𝐸 stands for the density of states (𝐷𝑂𝑆) per unit length in the lead 

in the energy window described by the contacts’ chemical potentials: 

  

𝐷𝑂𝑆 =
𝜕𝑛

𝜕𝐸
= 2(

𝜕𝑛

𝜕𝑘
 
𝜕𝑘

𝜕𝐸
)             (3.2) 

Spin degeneracy is accounted for by a factor of 2. In one dimension,𝜕𝑛 𝜕𝑘⁄ = 1
2𝜋⁄  and 

𝜕𝑘
𝜕𝐸⁄ = 1/ℏ𝑣𝑔 . This allows equation (3.1) to be simplified to 

 

𝛿𝐼𝑖𝑛 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
𝛿𝑉        (3.3) 

where 𝛿𝑉 denotes the voltage related to the chemical potential mismatch. According to 

equation (3.3), it is evident that if there is no scattering region, a quantum wire with a 

single open channel has a conductance of  2𝑒
2

ℎ⁄  , which equates to around 77.5 μS 

(thus implying a resistance of 12.9 kΩ). This quantity is reasonable as it can generally 

be found on the circuit boards of electrical equipment used in daily life.  

If a scattering region is now considered, the current that collects in the right contacts 

(𝛿𝐼𝑜𝑢𝑡) is: 

 

𝛿𝐼𝑜𝑢𝑡 = 𝛿𝐼𝑖𝑛 𝑇 =
2𝑒2

ℎ
 𝑇 𝛿𝑉 ⟹

𝛿𝐼𝑜𝑢𝑡

𝛿𝑉
=
2𝑒2

ℎ
 𝑇 = 𝒢        (3.4) 
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This is the renowned Landauer formula, which relates the mesoscopic scatterer’s 

conductance (𝒢) with the transmission probability (𝑇) of the electrons that pass through 

that scatterer. As it describes the conductance of the linear response regime, it only 

applies for bias voltages that are small, 𝛿𝑉 ≈ 0. The formulation must be revised for a 

larger bias, and this is not included in the scope of this work.  

Büttiker generalised the Landauer formula for cases involving multiple open channels 

[2]. In such cases, the sum of all the transmission amplitudes replaces the transmission 

coefficients, which describes electrons that enter via the left contact and then reach the 

right contact. Hence, equation (3.3) (the Landauer formula) for the open channels is 

transformed into: 

𝛿𝐼𝑜𝑢𝑡

𝛿𝑉
= 𝒢 =

2𝑒2

ℎ
∑|𝑡𝑖𝑗|

2
=
2𝑒2

ℎ
𝑇𝑟𝑎𝑐𝑒 (𝑡𝑡ϯ)

𝑖𝑗

        (3.5) 

 

where �⃗�𝑖𝑗 denotes the transmission amplitude that describes scattering from the left 

lead’s  𝑗𝑡ℎ channel to the right lead’s 𝑖𝑡ℎ channel. After the transmission amplitudes 

have been defined, it is then possible for the reflection amplitudes �⃗⃖�𝑖𝑗 to be introduced, 

which describe the processes of scattering from the left lead’s 𝑗𝑡ℎ channel to the same 

lead’s 𝑖𝑡ℎ channel. The combination of reflection and transmission amplitudes enables 

an object known as the 𝑆 matrix to be defined, which establishes a connection between 

states entering from the left lead to the right lead, and vice versa: 

 

    𝑆 = (�⃖� 𝑡
𝑡 𝑟

)                      (3.6) 
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Here, �⃖� and 𝑡 describe electrons entering from the left, whereas those entering from the 

right are described by  𝑟  and 𝑡. As suggested by equation (3.5), �⃖�, 𝑡, 𝑟 and 𝑡 are matrices 

when multiple channels are considered and may have increased complexity (such as 

when a magnetic field is present). It is demanded by charge conservation that the 𝑆 

matrix must be unitary: 𝑆𝑆ϯ = 𝐼, where 𝐼 is the identity matrix. The 𝑆 matrix is a critical 

component of scattering theory.  It is not only beneficial for describing transport within 

the linear response regime, but is also applies to other problems such as adiabatic 

pumping [4]. 

 

 

3.3 Thermoelectric coefficients 

 

The discovery of the Seebeck, Peltier and Thompson effects at the beginning of the 19th 

century established the connections between heat, current, temperature and voltage. The 

production of electrical current as a result of temperature difference is described by the 

Seebeck effect, while the cooling or heating of a conductor that carries current are 

described by the Thompson and Peltier effects. [5]. It is possible to consider a more 

general system in which the temperature difference is ∆𝒯 and there is a potential drop 

∆𝑉 throughout the system, which causes the flow of both heat currents and charge.   

To determine expressions for the thermoelectric coefficients of a device with two 

terminals, the generalised Landauer-Büttiker formulae will be demonstrated for both 

the heat (𝒬) and charge (𝐼) and currents within the linear basis and temperature regime. 

The system is comprised of a scattering region that has connections to two leads, which 

are themselves connected to a pair of electron reservoirs. The definitions of these 
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reservoirs are based on the chemical potential  𝜇𝐿 and 𝜇𝑅, temperature 𝒯𝐿 and 𝒯𝑅, as 

well as the Fermi distribution function [5]: 

 

𝑓𝑖 (𝐸) = (1 + 𝑒
𝐸−𝜇𝑖
𝑘𝐵𝒯𝑖 )

−1

        (3.7) 

Based on the assumption that the connection between the reservoirs and leads is 

established in such a manner that scattering does not occur at their interface, it can be 

stated that the cause of all the scattering effects is the central scattering region. It is 

possible to write the right moving charge current of an individual k-state emerging from 

the left reservoir on the basis of the number of electrons per unit length 𝑛, Fermi 

distribution 𝑓𝐿, group velocity 𝜈𝑔 as well as the scattering region’s transmission 

coefficient 𝑇(𝐸). (Here, the probability of transmission is represented by 𝑇(𝐸) and the 

temperature is denoted by 𝒯).  

 

  𝐼𝑘
+ = 𝑛𝑒𝜈𝑔(𝐸(𝑘)) 𝑇(𝐸(𝑘))  𝑓𝐿(𝐸(𝑘))                           (3.8) 

Hence, it is possible to find the overall charge current from the right moving states by 

summing across all positive 𝑘 states and then transforming this into the integral form, 

where 𝑛 =  1/𝐿 for the electron density and 𝜈𝑔 =
1

ℏ
 
𝜕𝐸(𝑘)

𝜕𝑘
. 

 

𝐼𝑘
+ =∑𝑒 

1

𝐿
 
1

ℏ
 
𝜕𝐸(𝑘)

𝜕𝑘
 𝑇(𝐸(𝑘)) 𝑓𝐿(𝐸(𝑘)) =

𝑘

 ∫
2𝑒

ℎ
 𝑇(𝐸)

+∞

−∞

𝑓𝐿(𝐸) 𝑑𝐸        (3.9) 

In a similar way, for the left moving states, we obtain:  
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𝐼𝑘
− = ∫

2𝑒

ℎ
 𝑇(𝐸)

+∞

−∞

𝑓𝑅(𝐸) 𝑑𝐸       (3.10) 

Hence, one can write the overall right moving current as:  

 

𝐼 = 𝐼+ − 𝐼− = 
2𝑒

ℎ
∫  𝑇(𝐸)
+∞

−∞

(𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)) 𝑑𝐸       (3.11) 

Equation (3.11) represents the Landauer-Büttiker formula.  

An analogous derivation can be performed for the heat current (alternatively, energy 

current) of the identical system by beginning with the relation 𝒬 = 𝐸𝑛𝜈𝑔  instead of 𝐼 =

𝑛𝑒𝜈𝑔. The outcome is comparable to the previous result, but includes two additional 

energy terms: 

𝒬 = 𝒬+ − 𝒬− = 
2

ℎ
∫  𝑇(𝐸)
+∞

−∞

((𝐸 − 𝜇𝐿)𝑓𝐿(𝐸) − (𝐸 − 𝜇𝑅)𝑓𝑅(𝐸)) 𝑑𝐸 

where   

𝑓𝐿(𝐸) =

[
 
 
 

1 + 𝑒

𝐸−𝜇−
∆𝜇
2

𝑘𝐵(𝒯+
∆𝒯
2
)

]
 
 
 
−1

,     𝑓𝑅(𝐸) =

[
 
 
 

1 + 𝑒

𝐸−𝜇+
∆𝜇
2

𝑘𝐵(𝒯−
∆𝒯
2
)

]
 
 
 
−1

 

 

  and   

  𝜇𝐿 =  𝜇 +
∆𝜇

2
, 𝜇𝑅 =  𝜇 −

∆𝜇

2
 

In the linear-response regime, the electric current I and heat current 𝑄̇   passing through 

a device is related to the voltage difference ∆𝑉 and temperature difference ∆ 𝒯 by 

Buttiker, Imry, Landauer, et al. [6-9]. Therefore, both currents are related to the 
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temperature and potential differences through the thermoelectric coefficients 𝐺, 𝐿,𝑀, 

and 𝐾 [10, 11]:                

(
𝐼

𝑄̇ 
) = (

𝐺 𝐿
𝑀 𝐾

)(
∆𝑉
∆𝒯

)           (3.12) 
 

The thermoelectric coefficients 𝐿 and 𝑀, in the absence of a magnetic field, are related 

by the Onsager relation:    

𝑀 = −𝐿𝒯               (3.13) 
                                                                    

where 𝒯 is temperature. By rearranging these equations, the current relations can be 

expressed in terms of the measurable thermoelectric coefficients, electrical resistance 

𝑅 =  1/𝐺, thermopower  𝑆 = −∆𝑉 ∆𝒯⁄  , Peltier coefficient Π, and the thermal constant 

𝑘: 

(
∆𝑉

𝑄̇ 
) = (

1

𝐺
−
𝐿

𝐺
𝑀

𝐺
𝐾 −

𝐿𝑀

𝐺

)(
1
∆𝒯

) = (
𝑅 𝑆
𝛱 −𝐾

)(
1
∆𝒯

)           (3.14) 

                 

The thermopower 𝑆 is defined as the potential drop due to a temperature difference in 

the absence of an electrical current: 

𝑆 = −(
∆𝑉
∆𝒯

)
𝐼=0

=
𝐿

𝐺′
 

           (3.15) 

 

The Peltier coefficient 𝛱 is defined as the heat transferred purely due to the charge 

current in the absence of a temperature difference: 

𝛱 = (
𝑄̇ 

𝐼
)
𝛥𝒯=0

=
𝑀

𝐺
= −𝑆𝒯 

        (3.16) 
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Finally the thermal conductance 𝑘 is defined as the heat current due to the temperature 

drop in the absence of an electric current: 

𝑘 = −( 𝑄̇
 

∆𝒯
)
𝐼=0

= −(1 +
𝑆2𝐺𝒯

𝑘
) 

(3.17) 

 

Therefore, the evaluation of 𝑆 or 𝛱 gives an idea of how well the device will act as a 

heat driven current generator or a current driven cooling device. 

An additional quantity, the thermoelectric figure of merit, 𝑍𝒯 [12, 13] can also be 

defined in terms of these measurable thermoelectric coefficients: 

𝑍𝒯 =
𝑆2𝐺𝒯

𝑘
 (3.18) 

From classical electronics, 𝑍𝒯 is derived by finding the maximum induced temperature 

difference produced by an applied electrical current in the presence of Joule heating. 

Let's consider a current carrying conductor placed between two heat baths with 

temperatures 𝒯𝐿 and 𝒯𝑅, and electrical potentials 𝑉𝐿 and 𝑉𝑅 respectively. The 

thermoelectric figure of merit can be defined by finding the maximum induced 

temperature difference of the conductor due to an electrical current. Defining 𝑄̇   as the 

gain in heat from bath 𝐿 to 𝑅, then from equation (3.14) we have 

𝑄̇ = 𝛱 𝐼 − 𝑘𝛥𝒯   (3.19) 
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This heat transfer will cause the left bath to cool and the right bath to heat, with a result 

that 𝛥𝒯 increases. The amount of Joule heating can be expressed as 𝑄̇ 𝐽 = 𝑅𝐼2, which is 

proportional to the electrical resistance and the square of the current. This Joule heating 

will also affect the temperature difference induced by the heat transfer, and therefore in 

the steady state case: 

where, 𝑅/2 is the sum of two parallel resistances (internal and external resistance). 

After rearranging this, the temperature difference is 

𝛥𝒯 =
1

𝑘
(𝛱 𝐼 −

𝑅 𝐼2

2
) 

     

(3.21) 

This expression shows how the temperature difference depends on the current. To find 

the maximum temperature difference, the derivative of equation. (3.21) with respect to 

the electric current is taken: 

𝜕∆𝒯

𝜕𝐼
=
𝛱 − 𝐼𝑅

𝑘
= 0 

                       (3.22) 

 

Finally, by writing back  𝐼 = Π /𝑅 and substituting equation (3.16) into equation (3.22), 

for the maximum of the temperature different we obtain: 

(∆𝒯)𝑚𝑎𝑥 =
𝛱2

2𝑘𝑅
=
𝑆2𝒯2𝐺

2𝑘
                (3.23) 

 

(∆𝒯)𝑚𝑎𝑥

𝒯
=
𝑆2𝒯2𝐺𝒯

2𝑘
=
1

2
𝑍 

  (3.24) 

 

 

𝛱 𝐼 − 𝑘𝛥𝑇 =
𝑅 𝐼2

2
  (3.20) 
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yielding a dimensionless number that can be used to characterize the 'efficiency' of a 

molecular device. 

 

3.4 Scattering in One Dimension 

Prior to explaining the generalised methodology, it is beneficial to examine how the 

scattering matrix for a basic one-dimensional structure can be calculated. This will 

enable the methodology to be clearly described.  As Green’s functions will be employed 

as part of the derivation, the Green’s function form for a basic one-dimensional 

discretised lattice will firstly be discussed (Section 3.4.1) followed by the calculation of 

the scattering matrix of a one-dimensional scatterer (Section 3.4.2). 

 

3.4.1 Perfect One-Dimensional Lattice 

The following section will include a discussion on the Green’s function form of a basic 

infinite one-dimensional chain that has on-site energies (𝜀𝑜) as well as hopping 

parameters (−𝛾), as illustrated in Figure 3.2. 

 

 

 

Figure 3.2: Tight-binding approximation of a one-dimensional periodic lattice with 

on-site energies 𝜀𝑜 and couplings −𝛾. 

The Hamiltonian for this system, in matrix form, has the on-site energies (𝜀𝑜) along the 

diagonal, as well as the hopping components (−𝛾 ) along the first off-diagonal:  
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                    𝐻 =

(

 
 
 
 
 

•
•
0
0
0
0
0
0

     

•
•
•
0
0
0
0
0

  

0
•
𝜀𝑜
−𝛾∗

0
0
0
0

  

0
0
−𝛾
𝜀𝑜
−𝛾∗

0
0
0

  

0
0
0
−𝛾
𝜀𝑜
−𝛾∗

0
0

  

0
0
0
0
−𝛾
𝜀𝑜
•
0

  

0
0
0
0
0
•
•
•

    

0
0
0
0
0
0
•
•

  

)

 
 
 
 
 

                                 (3.25) 

In the tight-binding approximation and substituting equation (3.25) as well as the wave 

function into the Schrödinger equation (𝐸 − 𝐻)𝛹(𝑧) = 0, we obtain: 

 

(

 
 
 
 
 

•
•
•
•
•
•
•
•

        

•
•

−𝛾∗

0
0
0
•
•

  

•
•

(𝐸 − 𝜀𝑜)
−𝛾∗

0
0
•
•

  

•
•
−𝛾

(𝐸 − 𝜀𝑜)
−𝛾∗

0
•
•

  

•
•
0
−𝛾

(𝐸 − 𝜀𝑜)
−𝛾∗

•
•

  

•
•
0
0
−𝛾

(𝐸 − 𝜀𝑜)
•
•

  

•
•
0
0
0
−𝛾
•
•

        

•
•
•
•
•
•
•
•

  

)

 
 
 
 
 

(

 
 
 
 
 

 

•
•

𝛹(𝑧−1)

𝛹(𝑧)

𝛹(𝑧+1)

𝛹(𝑧+2)

•
•

 

)

 
 
 
 
 

=

(

 
 
 
 
 

•
•
0
0
0
0
•
•

 

)

 
 
 
 
 

           (3.26) 

The Schrödinger equation can now be written out for row 𝑧 of the Hamiltonian as 

               −𝛾∗𝛹(𝑧−1) + (𝐸 − 𝜀𝑜)𝛹(𝑧) − 𝛾𝛹(𝑧+1) = 0                              (3.27) 

Therefore, in order for any function 𝛹(𝑧) to be a wave function, it is only necessary for 

it to satisfy the Schrödinger equation (equation (3.27)).  In the context of this perfect 

lattice, the wave function is in the form of a propagating Bloch state (equation (3.28)), 

which is normalised by its group velocity (𝑣𝑔) so it carries unit current flux. After 

substituting this into equation (3.27) (assuming 𝛾 = 𝛾∗, in other words, if 𝛾 is real), it 

produces the famous one-dimensional dispersion relation (equation (3.29)): 

 

       𝛹(𝑧) =
1

√𝑣𝑔
𝑒𝑖𝑘𝑧                           (3.28) 

       𝐸 = 𝜀𝑜 − 2𝛾 𝑐𝑜𝑠 𝑘               (3.29) 
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where the quantum number (𝑘) generally defined as the wavenumber is introduced. The 

retarded Green’s function ℊ(𝑧, 𝑧′) has a close association with the wave function and 

actually represents a solution for an equation that has a strong similarity to that of the 

Schrödinger equation:  

 

(𝐸 − 𝐻) ℊ(𝑧, 𝑧′) = 𝛿(𝑧,𝑧′)   ⇒

−𝛾∗ℊ(𝑧 − 1, 𝑧′) + (𝐸 − 𝜀𝑜) ℊ(𝑧, 𝑧
′) − 𝛾 ℊ(𝑧 + 1, 𝑧′) = 𝛿(𝑧,𝑧′)

}                    (3.30) 

where 

𝛿(𝑧,𝑧′) = 1,         𝑖𝑓 𝑧 = 𝑧′  

𝛿(𝑧,𝑧′) = 0,         𝑖𝑓 𝑧 ≠ 𝑧′ 

In physical terms, the retarded Green’s function, ℊ(𝑧, 𝑧′) describes a system’s response 

at a specific point 𝑧 caused by an excitation at a point 𝑧′. It is intuitively expected that 

this excitation generates a pair of waves, which travel outwards from the excitation 

point, which have amplitudes of ℬ and 𝒟, as illustrated in Figure 3.4. 
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Figure 3.3: A schematic illustration the retarded Green’s function structure for an 

infinite one-dimensional lattice. 

 

As a result of an excitation at 𝑧 = 𝑧′, waves are propagated left and right (blue modes 

are open channels), which have amplitudes of ℬ  and 𝒟, respectively, whereas the 

decaying modes are represented by the red colour.  

Mathematically, these waves are 

 

                                      ℊ(𝑧, 𝑧′) = {
𝒟 𝑒𝑖𝑘𝑧 ,            𝑧 > 𝑧′

ℬ 𝑒−𝑖𝑘𝑧,          𝑧 < 𝑧′
                              (3.31) 

Equation (3.30) is satisfied at each point by this solution, apart from 𝑧 = 𝑧′. For this to 

be resolved, it is necessary for the Green’s function to be continuous (equation (3.32)), 

so the two are equated at 𝑧 = 𝑧′: 

 

 

𝓑 𝓓 

Left decaying 

Imaginary part > 0 

Right decaying 

Imaginary part < 0 

Left moving 

Negative group velocity 

Right moving 

Positive group velocity 

𝑧 = 𝑧′ 

Excitation point Ζ 
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            [ℊ(𝑧, 𝑧′)]𝐿𝑒𝑓𝑡 = [ℊ(𝑧, 𝑧′)]𝑅𝑖𝑔ℎ𝑡                           (3.32) 

      ℬ𝑒−𝑖𝑘𝑧
′
= 𝒟𝑒𝑖𝑘𝑧

′
                            (3.33) 

      ℬ = 𝒟𝑒2𝑖𝑘𝑧
′
                                             (3.34) 

Substitution of equation (3.34) into the Green’s functions (equation (3.31) generates:  

 

ℊ(𝑧, 𝑧′) = {
𝒟 𝑒𝑖𝑘𝑧                                              ,        𝑧 ≥ 𝑧′

𝒟𝑒2𝑖𝑘𝑧
′
𝑒−𝑖𝑘𝑧 = 𝒟𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘(𝑧

′−𝑧),        𝑧 ≤ 𝑧′
                 (3.35) 

When equation (3.35) is rewritten, a beneficial symmetry is revealed:  

 

ℊ(𝑧, 𝑧′) = {
𝒟𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘(𝑧−𝑧

′),                𝑧 ≥ 𝑧′

𝒟𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘(𝑧

′−𝑧),        𝑧 ≤ 𝑧′
 

 

After noting that the complex exponent’s power is consistently positive it is possible to 

write the last equation as:  

                                        ℊ(𝑧, 𝑧′) = 𝒟𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘|𝑧

′−𝑧|,           ∀𝑧                           (3.36) 

From equation (3.30) for 𝑧 = 𝑧′,  one obtains 

𝒟𝑒𝑖𝑘𝑧
′
=

1

𝑖ℏ𝑣𝑔
 

where 𝑣𝑔 is the group velocity, given by 

𝑣𝑔 =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
=
2𝛾𝑠𝑖𝑛𝑘

ℏ
 

It is interesting to compare this result with the Green’s function in the continuum case, 

where 𝐻 can be written as −
ℏ2

2𝑚
𝛻2, or −

ℏ𝑣𝑔

2𝑘
𝛻2 (where 𝑣𝑔 = 

ℏ𝑘

𝑚
 denotes the group 

velocity), and the Green’s function (equation (3.36)) can be substituted in, thus giving 

                               (𝐸 +
ℏ𝑣𝑔

2𝑘

𝜕2

𝜕𝑧2
) (𝒟𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘|𝑧

′−𝑧|) = 𝛿(𝑧,𝑧′)                            (3.37) 
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If this function is integrated over a minimal distance, focused on 𝑧′, that has width 2𝜔+, 

it is found that:  

∫ (𝐸 +
ℏ𝑣𝑔

2𝑘

𝜕2

𝜕𝑧2
) (𝒟𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘|𝑧

′−𝑧|)
𝑧′+𝜔+

𝑧′−𝜔+
𝑑𝑧 = 1      (3.38) 

𝒟𝑒𝑖𝑘𝑧
′

(

 
 
𝐸∫ 𝑒𝑖𝑘|𝑧

′−𝑧| 𝑑𝑧
𝑧′+𝜔+

𝑧′−𝜔+

⏞            
=𝒁𝒆𝒓𝒐

+∫
ℏ𝑣𝑔
2𝑘

𝜕2

𝜕𝑧2
𝑒

𝑖𝑘|𝑧′−𝑧|

 𝑑𝑧
𝑧′+𝜔+

𝑧′−𝜔+

)

 
 
= 1     (3.39) 

𝒟𝑒𝑖𝑘𝑧
′
(
ℏ𝑣𝑔
2𝑘

𝜕

𝜕𝑧
𝑒

𝑖𝑘|𝑧′−𝑧|

)

𝑧′−𝜔+

𝑧′+𝜔+

= 𝒟𝑒𝑖𝑘𝑧
′
(
ℏ𝑣𝑔
2𝑘

𝑖𝑘𝑒

𝑖𝑘|𝑧′−𝑧|

)

𝑧′−𝜔+

𝑧′+𝜔+

= 1      (3.40) 

𝒟𝑒𝑖𝑘𝑧
′ ℏ𝑣𝑔
2𝑘

2𝑖𝑘 = 1⟹ 𝒟𝑒𝑖𝑘𝑧
′
=

1

𝑖ℏ𝑣𝑔
      (3.41) 

Therefore, it is possible to write the retarded Green’s function as:  

 

ℊ𝑅(𝑧, 𝑧′) =
1

𝑖ℏ𝑣𝑔
𝑒𝑖𝑘|𝑧−𝑧

′|       (3.42) 

where the group velocity is determined by differentiating the dispersion relation and is 

written as:  

𝑣𝑔 == 
ℏ𝑘

𝑚
      (3.43) 

This shows that the discrete and continuum Green’s function have the same form, 

provided one uses the appropriate group velocities in each case. 

The literature provides a more comprehensive derivation [3, 14, 15]. Additionally, it is 

important to note that a different solution to this problem also exists. The solution 
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discussed above is the retarded Green’s function, denoted ℊ𝑅(𝑧, 𝑧′). The advanced (also 

known as source) Green's function, ℊ𝐴(𝑧, 𝑧′), is a solution that has equal validity: 

 

ℊ𝐴(𝑧, 𝑧′) =
−1

𝑖ℏ𝑣𝑔
𝑒−𝑖𝑘|𝑧−𝑧

′| =
𝑖

ℏ𝑣𝑔
𝑒−𝑖𝑘|𝑧−𝑧

′|         (3.44) 

As opposed to the retarded Green’s function that describes waves moving outward from 

the point of excitation (𝑧 = 𝑧′), the advanced Green’s function describes two waves 

moving in an inward direction, which then disappear at the point of excitation. In the 

context of the current thesis, the retarded Greens function will be used and for simplicity 

the superscript  𝑅 will be dropped. 

Thus, ℊ(𝑧, 𝑧′) =ℊ𝑅(𝑧, 𝑧′).  

Since the likelihood that an electron will propagate between two points on this optimal 

lattice (i.e. the transmission coefficient) is unity when its energy is between (𝜀𝑜 − 2𝛾) 

and (𝜀𝑜 + 2𝛾), the system offers minimal benefits in this case. Nevertheless, if a certain 

flaw is generated in the lattice, it will serve as a scatterer and modifications will be made 

to the transmission coefficient.  

  

3.4.2 One-Dimensional Scattering Solution 

The following section will consider two one-dimensional tight-binding semi-infinite 

leads linked with a coupling element (−𝛼). The on-site potentials (𝜀𝑜) and hopping 

elements (−𝛾) of both leads are the same. However, although it appears to be simple, 

the system is of great interest because it is it is possible to reduce one-dimensional 

setups back to this topology. Taking this into account, obtaining analytical solutions for 

the reflection and transmission coefficients would be highly beneficial.  
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Figure 3.4: Tight-binding model of a one-dimensional scatterer connected to one-

dimensional leads. 

 

First we define the Hamiltonian which consists of an infinite matrix, 

         𝐻 =

(

 
 
 
 
 

•

•

0

0

0

0

0

0

     

•

•

−𝛾∗

0

0

0

0

0

  

0

−𝛾

𝜀𝑜
−𝛾∗

0

0

0

0

  

0

0

−𝛾

𝜀𝑜
−𝜶∗

0

0

0

  

0

0

0

−𝜶

𝜀𝑜
−𝛾∗

0

0

  

0

0

0

0

−𝛾

𝜀𝑜
−𝛾∗

0

  

0

0

0

0

0

−𝛾

•

•

    

0

0

0

0

0

0

•

•

  

)

 
 
 
 
 

= (
𝐻𝐿

𝑉𝑐
†
𝑉𝑐
𝐻𝑅
) 

        (3.45) 

 

 

 

where 𝐻𝐿 and 𝐻𝑅 refer to the Hamiltonian’s leads, which are the semi-infinite 

equivalents of the Hamiltonian demonstrated in equation (3.7), while 𝑉𝑐 represents the 

coupling parameter. For a real 𝛾, the dispersion relation that corresponds to these leads 

is given by equation (3.29), and the group velocity by equation (3.43): 

𝐸(𝑘) = 𝜀𝑜 − 2𝛾 𝑐𝑜𝑠 𝑘                                 (3.46) 

and 

𝑣𝑔 =
1

ℏ

𝜕𝐸

𝜕𝑘
         (3.47) 

To determine the scattering amplitudes, the system’s Green’s function should be 

calculated, which is defined by 
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(𝐸 − 𝐻)𝐺 = 𝐼 ⟹  𝐺 = (𝐸 − 𝐻)−1                     (3.48) 

If the energy E equals the Hamiltonian H, it is singular. For such an issue to be 

avoided and circumvented, the logical step is to take the limit:  

 

𝐺∓ = 𝑙𝑖𝑚
𝜂⟶0

(𝐸 − 𝐻 ∓ 𝑖𝜂)−1         (3.49) 

where  𝜂 is a small positive number and 𝐺− (𝐺+) denotes the retarded (advanced) Green's 

function. For the purpose of the current thesis, only the retarded Green’s functions will 

be used and therefore the negative sign will be selected. Equation (3.42) shows the 

retarded Green’s function for an infinite one-dimensional chain that has identical 

parameters  

ℊ𝑚𝑙 =
1

𝑖ℏ𝑣𝑔
𝑒𝑖𝑘|𝑚−𝑙|      (3.50) 

where 𝑚 and 𝑙 label the sites of the chain. To determine a semi-infinite lead’s Green’s 

function, it is necessary for suitable boundary conditions to be introduced. In this 

example, it is a semi-infinite lattice, so the chain must end at a specific point (𝑖𝑜), 

indicating that every point for which  𝑖 ≤ 𝑖𝑜 is missing. This can be accomplished via 

the introduction of a wave function to the Green’s function, which enables this condition 

to be represented mathematically.  In this instance, the wave function is given as:  

 

 𝛹𝑚𝑙
𝑖𝑜 = −

𝑒𝑖𝑘(2𝑖𝑜−𝑚−𝑙)

𝑖ℏ𝑣𝑔
          (3.51) 

The Green’s function is obtained by summing (3.50) and (3.51) ( ℊ𝑚𝑙 = ℊ𝑚𝑙
∞ +𝛹𝑚𝑙

𝑖𝑜 ), 

which yields the following at the boundary (𝑚 = 𝑙 = 𝑖𝑜 − 1): 
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ℊ𝑖𝑜−1,𝑖𝑜−1 = −
𝑒𝑖𝑘

𝛾
      (3.52) 

If the example of decoupled leads is considered (𝛼 = 0), the system’s overall Green’s 

function is basically represented by the decoupled Green’s function:   

ℊ =

(

 
 
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾 )

 
 
= (

ℊ𝐿 0
0 ℊ𝑅

)      (3.53) 

If the interaction is then activated (𝛼 ≠ 0), then in order to obtain the coupled system’s 

Green’s function 𝐺  to be obtained, Dyson’s equation is employed:   

 

𝐺 = (ℊ−1 − 𝑉)−1                           (3.54) 

where the operator 𝑉 that describes the interaction linking the pair of leads takes the 

form 

𝑉 = (
0 𝑉𝑐

𝑉𝑐
† 0

) = (
0 𝛼
𝛼∗ 0

)      (3.55) 

Equation (3.54) shows the solution to Dyson’s equation, which is 

𝐺 =
1

𝛾2𝑒−2𝑖𝑘 − 𝛼2
(
−𝛾𝑒−𝑖𝑘 𝛼

𝛼∗ −𝛾𝑒−𝑖𝑘
)      (3.56) 

All that remains is that the reflection (�⃖�) and transmission (𝑡) amplitudes should be 

calculated using the Green’s function from equation (3.56). This is achieved with the 

Fisher-Lee relation [3, 16], which establishes a relationship between the scattering 

problem’s scattering amplitudes and the problem’s Green’s function.  In this case, the 

Fisher-Lee relations determine that:   

�⃖� = 𝐺1,1𝑣𝑔 − 1                                 (3.57) 
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and 

𝑡 = 𝐺1,2𝑣𝑔𝑒
𝑖𝑘                                       (3.58) 

The above amplitudes are related to particles moving from the left.  If particles entering 

from the right are considered, then analogous expressions could be derived from the 

transmission (𝑡) and reflection (𝑟) amplitudes. 

As we now have the complete scattering matrix, the Landauer formula (equation (3.4)) 

can be used for the purpose of calculating the zero-bias conductance.  It is possible to 

generalise the process employed for finding this analytical solution for a one-

dimensional scatter’s conductance to geometries with increased complexity. Hence, the 

steps can be briefly summarised as follows:  

1. The initial step involves the calculation of the Green’s function that describes 

the leads’ surface sites.  

2. The overall Green’s function when a scatter is present is determined using the 

Dyson’s equation.  

3. The Fisher-Lee relation yields the scattering matrix from the Green’s function.  

4. Then, the zero-bias conductance can be determined according to the Landauer 

formula.  

In section 3.5, it will be shown that the setup described here, although it appears to be 

simple, is in fact relatively general, due to the fact that it is possible to reduce all kinds 

of scattering regions back to the example of a pair of one-dimensional leads by 

employing a method known as decimation.  

3.5 Generalisation of the Scattering Formalism 

 

This section will demonstrate a generalised method that can be used for transport 

calculations based on the approach proposed by Lambert et al., described in [5,17-18]. 
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This has similarities to the aforementioned approach. The first step is to compute the 

surface Green’s function of crystalline leads, followed by the introduction of the 

decimation technique for the purpose of reducing the scattering region’s dimensionality. 

The last step is to recover the scattering amplitudes by using a generalisation of the 

Fisher-Lee relation.   

 

3.5.1 Hamiltonian and Green's Function of the Leads 

Firstly, it is necessary to provide an accurate definition of a lead. It is generally an object 

with perfect crystallinity that serves as an optimal wave-guide for the transportation of 

excitations between reservoirs and the scattering region.  This section will review a 

general semi-infinite crystalline electrode with arbitrary complexity.  Due to the 

crystalline nature of the leads, the Hamiltonian’s structure is a generalisation of the one-

dimensional electrode represented in equation (3.25). 

 

 

 

 

 

 

Figure 3.5: Schematic representation of semi-infinite generalised leads. States described 

by the Hamiltonian 𝐻𝑜 are linked by a generalised hopping matrix 𝐻1. The direction 𝑧 is 

defined to be parallel to the chain axis. A label 𝑧 can be assigned to every slice. 

Rather than site energies, a Hamiltonian exists for every repeating layer of the bulk 

electrode (𝐻𝑜), as well as a coupling matrix that describes the hopping parameters 

between adjacent layers (𝐻1).  

 

H0 H0 H0 

Ζ 
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This system has a Hamiltonian as follows:  

 

𝐻 =

(

 
 
 
 
 

•
•
0
0
0
0
0
0

     

•
•

𝐻1
†

0
0
0
0
0

  

0
𝐻1
𝐻𝑜

𝐻1
†

0
0
0
0

  

0
0
𝐻1
𝐻𝑜

𝐻1
†

0
0
0

  

0
0
0
𝐻1
𝐻𝑜

𝐻1
†

0
0

  

0
0
0
0
𝐻1
𝐻𝑜

𝐻1
†

0

  

0
0
0
0
0
𝐻1
•
•

    

0
0
0
0
0
0
•
•

  

)

 
 
 
 
 

      (3.59) 

where 𝐻𝑜 and 𝐻1 are generally complex matrices and the only limitation is that the full 

Hamiltonian (𝐻) must be Hermitian. In this section, the initial objective is for the 

Green’s function of this type of lead to be calculated for general 𝐻1 and 𝐻𝑜. For the 

Green’s function to be calculated, it is necessary for the Hamiltonian’s spectrum to be 

calculated by finding a solution for the lead’s Schrödinger equation: 

                      𝐻1
†𝛹(𝑧−1) +𝐻𝑜𝛹(𝑧) + 𝐻1𝛹(𝑧+1) = 𝐸𝛹(𝑧)                       (3.60) 

 

where 𝛹(𝑧) represents the wave function that describes the layer 𝑧. The assumption is 

made that the system is infinitely periodic but only in the 𝑧 direction; hence, it is 

possible to represent the on-site wave function 𝛹(𝑧) in Bloch form; this comprises a 

product of a propagating plane wave as well as a wave function  (𝛷(𝑘)), which exists 

perpendicular to the direction of transport (𝑧). If the dimensions of the layer 

Hamiltonian (𝐻𝑜) are 𝑀 ×𝑀 (i.e., it comprises M site energies and corresponding 

hopping elements), then the perpendicular wave function (𝛷(𝑘)), will possess 𝑀 degrees 

of freedom and assumes the form of a 1 × 𝑀 dimensional vector. Therefore, the wave 

function 𝛹(𝑧) is 
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                                           𝛹(𝑧) = √𝑛(𝑘)𝑒
𝑖𝑘𝑧𝛷(𝑘)                           (3.61) 

where 𝑛𝑘 denotes an arbitrary normalisation parameter. If this is substituted into 

equation (3.60), this yields: 

                                 (𝐻𝑜 + 𝑒𝑖𝑘𝐻1 + 𝑒−𝑖𝑘𝐻1
†)𝛷(𝑘) = 𝐸𝛷(𝑘)                          (3.62) 

                              𝐻(𝑘)𝛷(𝑘) = 𝐸𝛷(𝑘) 

𝐻(𝑘) = 𝐻𝑜 + 𝑒𝑖𝑘𝐻1 + 𝑒−𝑖𝑘𝐻1
†
 

In general, for a band structure of this type of problem to be found, values of 𝑘 would 

be selected and then the eigenvalues would be calculated [𝐸 = 𝐸𝑙(𝑘)], where 𝑙 =

1,2, … ,𝑀 is the band index. For every 𝑘 value, the eigenvalue problem will have 𝑀 

solutions, and thus, 𝑀 energy values.  Consequently, if multiple values are selected for 

𝑘, the process of constructing a band structure is comparatively straightforward.  

The opposite approach is taken for scattering problems; rather than determining the 𝐸 

values at a specific 𝑘, the values of 𝑘 are found at a specific 𝐸. For this to be achieved, 

a root-finding technique could have been adopted, but this would have necessitated 

significant computational work as the wave numbers generally have high complexity. 

Rather, an alternative eigenvalue problem is written down where the energy is the input 

and the wave numbers are generated after the introduction of the function 

                                 𝜃(𝑘) = 𝑒−𝑖𝑘𝑧𝛷(𝑘) → 𝛷(𝑘) = 𝑒𝑖𝑘𝑧𝜃(𝑘)                                (3.63) 

which is then combined with equation (3.62): 

(
−𝐻1

−1(𝐻𝑜 − 𝐸)

𝐼

   
−𝐻1

−1𝐻1
†

0

)(
𝛷(𝑘)

𝜃(𝑘)
) = 𝑒𝑖𝑘 (

𝛷(𝑘)

𝜃(𝑘)
) 

     (3.64) 

 

Given a layer Hamiltonian (𝐻𝑜) that has dimensions of 𝑀 ×𝑀, equation (3.64) will 

produce 2𝑀 eigenvalues (𝑒𝑖𝑘𝑙) and eigenvectors (𝛷(𝑘𝑙)) with magnitude 𝑀. These states 
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can then be sorted into four categories based on whether they are propagating or 

decaying, in addition to whether they are moving to the left (𝑧 ⟶ −∞) or to the right 

(𝑧 ⟶ ∞). A state is considered to be propagating when it has a real 𝑘𝑙 value. Where the 

wave number has a positive imaginary part, it is defined as a left decaying state, whereas 

if the imaginary part is negative, it is defined as a right decaying state. The sorting of 

propagating states is based on the state’s group velocity, which is given by 

𝑣𝑔
𝑘𝑙 =

1

ℏ

𝜕𝐸𝑘,𝑙
𝜕𝑘

      (3.65) 

A positive group velocity (𝑣𝑔
𝑘𝑙) indicates that the state is right propagating, and it is left 

propagating otherwise. This sorting is summarised in Table 3.1.  

 

Table 3.1: Sorting the eigenstates into left and right propagating or decaying states 

based on the wave number and group velocity. 

 Left Right 

Decaying 𝐼𝑚(𝑘𝑙) > 0 𝐼𝑚(𝑘𝑙) < 0 

Propagating 𝐼𝑚(𝑘𝑙) = 0, 𝑣𝑔
𝑘𝑙 < 0 𝐼𝑚(𝑘𝑙) = 0, 𝑣𝑔

𝑘𝑙 > 0 

 

For simplicity, the wave numbers (𝑘𝑙) belonging to the left propagating/decaying set of 

wave numbers will now be represented by �̅�𝑙, while the right propagating/decaying 

wave numbers will still be simply 𝑘𝑙. Hence, 𝛷(𝑘𝑙) denotes a wave function related to 

the “right" state, whereas  𝛷(�̅�𝑙)
 is linked to the “left" state. It should be noted that if 𝐻1 

can be inverted, the number (𝑀) of left and right moving states must be exactly the 

same.  It is evident that when 𝐻1 is singular, it is not possible to construct the matrix in 

equation (3.64) as it is dependent on 𝐻1 being inverted. Nevertheless, any of the various 
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available techniques can be employed for this problem to be resolved.  In the first [18], 

a decimation approach is employed so that an effective, non-singular  𝐻1 can be created. 

A different method of solving this problem could involve populating a singular 𝐻1 with 

small random numbers, which would introduce an explicit numerical error.  This is a 

plausible approach as the size of the numerical error introduced could be as small as the 

numerical error introduced by decimation. An alternative solution is to rewrite equation 

(3.64) in such a way that it is not necessary to invert  𝐻1: 

 

(
−(𝐻𝑜 − 𝐸)

𝐼

   
−𝐻1

†

0

)(
𝛷(𝑘)

𝜃(𝑘)
) = 𝑒𝑖𝑘 (

𝐻1

0

   
0

𝐼
) (

𝛷(𝑘)

𝜃(𝑘)
)       (3.66) 

However, the process of solving this generalised eigen-problem leads to increased 

computational expense. All of the abovementioned techniques are relatively effective 

when attempting to tackle the problem involving a singular 𝐻1 matrix, while the same 

applies to the condition stipulating that the number (𝑀) of left and right moving states 

must be identical, regardless of whether 𝐻1 is singular or not. 

For a given choice of 𝑘, the solutions to the eigen-problem equation (3.62) will generate 

an orthogonal basis set; nevertheless, whereas for a given 𝐸, an orthogonal set of states 

is generally not formed by the eigenstates (𝛷(𝑘𝑙)) acquired by solving the eigen-problem 

(equation (3.64)). This has particular importance due to the fact that the non-

orthogonality must be addressed in the construction of the Green’s function. Hence, it 

is essential the duals are introduced to 𝛷(𝑘𝑙) and 𝛷(�̅�𝑙)
 in such a manner that they 

conform to 

                                           �̃�(𝑘𝑖)
† 𝛷(𝑘𝑗)

= �̃�(�̅�𝑖)
† 𝛷(�̅�𝑗)

= 𝛿𝑖𝑗                              (3.67) 

The generalised completeness relation this yields is: 
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                                      ∑ �̃�(𝑘𝑙)
† 𝛷(𝑘𝑙) = ∑ �̃�(�̅�𝑙)

† 𝛷(�̅�𝑙)
= 𝐼𝑀

𝑙=1
𝑀
𝑙=1          (3.68) 

After the entire set of eigenstates at a given energy has been obtained, the Green’s 

function can firstly be calculated for the infinite system and subsequently, if suitable 

boundary conditions are satisfied, for the semi-infinite leads at their surfaces. Due to 

the fact that the Schrödinger equation is satisfied by the Green’s function when 𝑧 ≠ 𝑧′, 

the Green’s function can be built up from the combination of the eigenstates 𝛷(𝑘𝑙) and 

𝛷(�̅�𝑙)
: 

ℊ(𝑧, 𝑧′) =

{
 
 

 
 ∑𝛷(𝑘𝑙)𝑒

𝑖𝑘𝑙(𝑧−𝑧
′) 𝜔𝑘𝑙

†

𝑀

𝑙=1

, 𝑧 ≥ 𝑧′

∑𝛷(�̅�𝑙)
𝑒𝑖�̅�𝑙(𝑧−𝑧

′) 𝜔�̅�𝑙

†

𝑀

𝑙=1

, 𝑧 ≤ 𝑧′

     (3.69) 

where the 𝑀-component vectors 𝜔𝑘𝑙 and 𝜔�̅�𝑙
 are to be ascertained. It should be noted 

that the structure of this equation is similar to that of equation (3.31), while the degrees 

of freedom in the transverse direction are also included within the vectors 𝛷(𝑘) and 𝜔𝑘.  

The next step focuses on obtaining the 𝜔 vectors. Similar to Section 3.4.1, it is known 

that equation (3.69) has to be continuous at 𝑧 = 𝑧′and must satisfy the Green’s function 

equation (equation (3.30)).  

 

The expression for the first condition is: 

 

∑𝛷(𝑘𝑙)𝜔𝑘𝑙

† =∑𝛷(�̅�𝑙)
𝜔�̅�𝑙

†

𝑙=1

𝑀

𝑙=1

       (3.70) 

while the second is: 
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∑[(𝐸 − 𝐻𝑜)𝛷(𝑘𝑙)𝜔𝑘𝑙

† + 𝐻1𝑒
𝑖𝑘𝑙𝜔𝑘𝑙

† + 𝐻1
†𝛷(�̅�𝑙)

𝑒−𝑖�̅�𝑙𝜔�̅�𝑙

† ]

𝑀

𝑙=1

= 𝐼 

 

∑[(𝐸 − 𝐻𝑜)𝛷(𝑘𝑙)𝜔𝑘𝑙

† + 𝐻1𝛷(𝑘𝑙)𝑒
𝑖𝑘𝑙𝜔𝑘𝑙

† + 𝐻1
†𝛷(�̅�𝑙)

𝑒−𝑖�̅�𝑙𝜔�̅�𝑙

† + 𝐻1
†𝑒−𝑖𝑘𝑙𝜔𝑘𝑙

†

𝑀

𝑙=1

− 𝐻1
†𝑒−𝑖𝑘𝑙𝜔𝑘𝑙

† ] = 𝐼 

∑[𝐻1
†𝛷(�̅�𝑙)

𝑒𝑖�̅�𝑙𝜔�̅�𝑙

† − 𝐻1
†𝛷(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙

† ]

𝑁

𝑙=1

+∑[(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

𝛷(𝑘𝑙)𝜔𝑘𝑙

† = 𝐼 

Additionally, it is known from the Schrödinger equation (equation (3.62)) that: 

 

∑[(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

𝛷(𝑘𝑙) = 0       (3.71) 

These yield 

∑𝐻1
† [𝛷(�̅�𝑙)

𝑒𝑖�̅�𝑙𝜔�̅�𝑙

† + 𝛷(𝑘𝑙)𝑒
−𝑖𝑘𝑙𝜔𝑘𝑙

† ]

𝑁

𝑙=1

= 𝐼      (3.72) 

Next, the dual vectors defined in equation (3.67) are used. The multiplication of 

equation (3.72) by �̃�(𝑘𝑝) yields 

 

∑�̃�(𝑘𝑝)
†

𝑀

𝑙=1

𝛷(�̅�𝑙)
𝜔�̅�𝑙

† = 𝜔𝑘𝑝

†
      (3.73) 

Likewise, multiplication by �̃�(�̅�𝑝)
†

 produces 
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∑�̃�(�̅�𝑝)
†

𝑀

𝑙=1

𝛷(𝑘𝑙)𝜔𝑘𝑙

† = 𝜔�̅�𝑝

†
       (3.74) 

Utilising the continuity equation (3.70) along with equations (3.73) and (3.74), the 

Green's function equation (3.72) becomes 

 

∑∑𝐻1
† (𝛷(�̅�𝑙)

𝑒−𝑖�̅�𝑙�̃�(�̅�𝑙)
† − 𝛷(𝑘𝑙)𝑒

−𝑖𝑘𝑙�̃�(𝑘𝑙)
† )

𝑀

𝑝=1

𝑀

𝑙=1

𝛷(�̅�𝑝)
𝜔�̅�𝑝

† = 𝐼       (3.75) 

Hence, it follows that 

 

∑[𝐻1
† (𝛷(�̅�𝑙)

𝑒−𝑖�̅�𝑙�̃�(�̅�𝑙)
† − 𝛷(𝑘𝑙)𝑒

−𝑖𝑘𝑙�̃�(𝑘𝑙)
† )]

−1
𝑀

𝑙=1

= ∑𝛷(�̅�𝑝)
𝜔�̅�𝑝

† = ∑𝛷(𝑘𝑝)𝜔𝑘𝑝

†

𝑀

𝑝=1

𝑀

𝑝=1

 

      (3.76) 

This immediately yields expressions for 𝜔𝑘
†
: 

 

    𝜔𝑘
† = �̃�(𝑘)

† 𝜈−1                            (3.77) 

where  𝜈 is defined as: 

 

𝜈 =∑𝐻1
† (𝛷(�̅�𝑙)

𝑒−𝑖�̅�𝑙�̃�(�̅�𝑙)
† − 𝛷(𝑘𝑙)𝑒

−𝑖𝑘𝑙�̃�(𝑘𝑙)
† )

𝑀

𝑙=1

      (3.78) 
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In equation (3.77), the wave number (𝑘) denotes both left and moving states. The 

substitution of equation (3.77) into equation (3.69) produces the Green’s function of an 

infinite system: 

ℊ𝑧,𝑧′
∞ =

{
 
 

 
 ∑𝛷(𝑘𝑙)𝑒

𝑖𝑘𝑙(𝑧−𝑧
′)�̃�(𝑘𝑙)

† 𝜈−1
𝑀

𝑙=1

, 𝑧 ≥ 𝑧′

∑𝛷(�̅�𝑙)
𝑒𝑖�̅�𝑙(𝑧−𝑧

′)�̃�(�̅�𝑙)
† 𝜈−1

𝑀

𝑙=1

, 𝑧 ≤ 𝑧′

       (3.79) 

To obtain the Green’s function for a semi-infinite lead, a wave function must be added 

to the Green’s function so that the boundary conditions at the lead’s edge can be 

satisfied, similar to the one-dimensional example. In this case, the boundary condition 

stipulates that the Green’s function must disappear at a particular place ( 𝑧 = 𝑧𝑜). For 

this to be achieved, 

 

△= − ∑ 𝛷�̅�𝑙
𝑒𝑖�̅�𝑙(𝑧−𝑧𝑜)�̃�(�̅�𝑙)

†  𝛷(𝑘𝑝)𝑒
𝑖𝑘𝑝(𝑧𝑜−𝑧)�̃�(𝑘𝑝)

†

𝑀

𝑙,𝑝=1

𝜈−1    (3.80) 

is simply added to the Green's function, equation (3.79): ℊ = ℊ∞ +△. This produces 

the surface Green’s function for a semi-infinite lead moving left:  

 

ℊ𝐿 = (𝐼 − ∑ 𝛷(�̅�𝑙)
𝑒−𝑖�̅�𝑙  �̃�(�̅�𝑙)

†  𝛷(𝑘𝑝)𝑒
𝑖𝑘𝑝  �̃�(𝑘𝑝)

†

𝑀

𝑙,𝑝=1

)𝜈−1      (3.81) 

and moving right: 

 



73 

 

ℊ𝑅 = (𝐼 − ∑ 𝛷(𝑘𝑙)𝑒
𝑖𝑘𝑙  �̃�(𝑘𝑙)

†  𝛷(�̅�𝑝)
𝑒−𝑖�̅�𝑝  �̃�(�̅�𝑝)

†

𝑀

𝑙,𝑝=1

)𝜈−1    (3.82) 

Hence we have a flexible approach that can be used to calculate the surface Green’s 

functions (equations (3.81) and (3.82)) for a semi-infinite crystalline electrode by 

utilising the numeral method in equation (3.64). In the following step, this is applied to 

a scattering problem. 

 

3.5.2 Effective Hamiltonian of the Scattering Region 

It was demonstrated in Section 3.4.2 that for a coupling matrix between surfaces of 

semi-infinite leadss, it is possible to use the Dyson equation (3.54) for calculating the  

Green’s function of a scatterer. Nevertheless, in general, the scattering region is not 

simply described as a coupling matrix between the surfaces. Hence, using the 

decimation technique for reducing the Hamiltonian to this type of structure is 

advantageous [19-20]. Although different techniques have been proposed [21- 22], for 

the purposes of the current thesis, the decimation technique will be used.   

First, the Schrödinger equation is again considered: 

 

∑𝐻𝑖𝑗𝛹𝑗 = 𝐸𝛹𝑖

𝑗

       (3.83) 

If the  𝑑𝑡ℎ degree of freedom in the system is separated from equation (3.83), we have 

𝐻𝑖𝑑𝛹𝑑 +∑𝐻𝑖𝑗𝛹𝑗 = 𝐸𝛹𝑖   ,

𝑗≠𝑑

            𝑖 ≠ 𝑑       (3.84) 

Next, the component 𝛹𝑑 can be examined utilising the latter equation where 𝑗 = 𝑑; 
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𝐻𝑑𝑑𝛹𝑑 +∑𝐻𝑑𝑗𝛹𝑗 = 𝐸𝛹𝑑

𝑗≠𝑑

       (3.85) 

According to equation (3.85) 𝛹𝑑 can be expressed as:  

𝛹𝑑 =∑
𝐻𝑑𝑗𝛹𝑗

𝐸 − 𝐻𝑑𝑑
𝑗≠𝑑

       (3.86) 

If equation (3.86) is then substituted into equation (3.84), this yields: 

∑[𝐻𝑖𝑗 +
𝐻𝑖𝑑𝐻𝑑𝑗

𝐸 − 𝐻𝑑𝑑
]

𝑗≠𝑑

𝛹𝑗 = 𝐸𝛹𝑖  ,       𝑖 ≠ 𝑑          (3.87) 

Hence, equation (3.87) can be considered an effective equation in which the number of 

degrees of freedom is lowered by one in comparison to equation (3.83). Therefore, a 

new effective Hamiltonian (�̃�) can be introduced as 

�̃�𝑖𝑗 = 𝐻𝑖𝑗 +
𝐻𝑖𝑑𝐻𝑑𝑗

𝐸 − 𝐻𝑑𝑑
   (3.88) 

This refers to the decimated Hamiltonian that is created via basic Gaussian elimination.   

A noteworthy aspect of this decimated Hamiltonian is that it is highly dependent on 

energy, which is therefore very suited to the technique described in the last section [20]. 

If the decimation technique were not applied, the Hamiltonian that describes the overall 

system would be expressed as 

                                    𝐻 = (

𝐻𝐿 𝑉𝐿 0

𝑉𝐿
† 𝐻𝑠𝑐𝑎𝑡𝑡 𝑉𝑅

0 𝑉𝑅
† 𝐻𝑅

)         (3.89) 

where 𝐻𝐿 and 𝐻𝑅 refer to the semi-infinite leads, 𝐻𝑠𝑐𝑎𝑡𝑡 represents the scatterer’s 

Hamiltonian and 𝑉𝐿 and 𝑉𝑅 denote the coupling Hamiltonians, which connect the 

original scattering region with the leads.  After implementing the decimation method, 

an effective equivalent Hamiltonian is produced: 
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                                                       𝐻 = (
𝐻𝐿 𝑉𝑐

𝑉𝑐
† 𝐻𝑅

)           (3.90) 

where 𝑉𝑐 represents an effective coupling Hamiltonian, which thus describes the entire 

scattering process.  

Next, the identical steps used in the one-dimensional case can be applied employing the 

Dyson equation (equation (3.54)). Therefore, the surface Green's functions (equations 

(3.81) and (3.82)) as well as effective coupling Hamiltonian from equation (3.90) 

describe the Green’s function for the entire system: 

𝐺 = (
ℊ𝐿
−1 𝑉𝑐

𝑉𝑐
† ℊ𝑅

−1
)

−1

= (
𝐺00 𝐺01
𝐺10 𝐺11

)         (3.91) 

 

 

 

3.5.3 Scattering Matrix 

We can now proceed to calculating the scattering amplitudes. Based on the assumption 

that states are normalised to transport unit flux, a generalisation of the Fisher-Lee 

relation [16, 18, 23] provides the transmission amplitude from the left to the right lead 

in the form   

𝑡ℎ𝑙 = �̃�(𝑘ℎ)
† 𝐺𝑅𝐿

ℎ𝑙𝜈𝐿
ℎ𝑙𝛷(𝑘𝑙) √|

𝜐ℎ
𝜐𝑙
|      (3.92) 

where 𝛷(𝑘ℎ) and 𝛷(𝑘𝑙) represent right moving state vectors in the right and left leads 

respectively, and 𝜐ℎ and 𝜐𝑙 denote the corresponding group velocities. In a similar 

manner, the reflection in the left lead is:  
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�⃖�ℎ𝑙 = �̃�(�̅�ℎ)
† (𝐺𝐿

ℎ𝑙𝜈𝐿
ℎ𝑙 − 𝐼)𝛷(𝑘𝑙) √|

𝜐ℎ
𝜐𝑙
|         (3.93) 

where 𝛷(�̅�ℎ)
 𝛷(𝑘𝑙) respectively represent a left moving and right state moving vector 

in the left lead.  In both instances, 𝜈𝑔𝐿 stands for the 𝜈 operator that equation (3.78) 

defines for the left lead.  

Likewise, the scattering amplitudes for particles moving from the right can be defined:  

 

𝑡ℎ𝑙 = �̃�(�̅�ℎ)
† 𝐺𝐿𝑅

ℎ𝑙𝜈𝑅
ℎ𝑙𝛷(�̅�𝑙)

 √|
𝜐ℎ
𝜐𝑙
|         (3.94) 

          𝑟ℎ𝑙 = �̃�(𝑘ℎ)
† (𝐺𝑅

ℎ𝑙𝜈𝑅
ℎ𝑙 − 𝐼)𝛷(�̅�𝑙)

 √|
𝜐ℎ
𝜐𝑙
|     (3.95) 

which are equivalent to the previous two equations, with the switching of left and right 

in the notation.  

This allows a scattering matrix to be constructed and, by utilising the Landauer formula 

(equation 3.5) described in Section 3.1, the conductance can be calculated. Since this 

method applies for any selection of Hamiltonians 𝐻0, 𝐻1 and 𝐻scatt, it is highly general.  
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Chapter 4  

 
 

4.Optimised Power Harvesting in Anthracene-Based SAMs Junctions  

 

4.1 Introduction 

The work in this chapter was carried out in collaboration with the group of Prof. 

Nicholas Long (Department of Chemistry, Imperial College London), who synthesised 

the anthracene molecules and Dr. Benjamin Robinson (Physics Department, Lancaster 

University), who conducted the experiments. In this Chapter I will present our joint 

experimental and theoretical work on “Optimised Power Harvesting in Anthracene-

Based SAMs Junctions”, and the results presented here were published in the following 

paper: 

“Optimised power harvesting by controlling the pressure applied to molecular junctions”  

Xintai Wang, Ali Ismael, Ahmad Almutlg, Majed Alshammari, Alaa Al-Jobory, Abdullah 

Alshehab, Troy L. R. Bennett, Luke A. Wilkinson, Lesley F. Cohen, Nicholas J. Long, 

Benjamin J. Robinson and Colin Lambert  

 

4.2 Motivation 

A major potential advantage of creating thermoelectric devices using self-assembled 

molecular layers is their mechanical flexibility. Previous reports have discussed the 

advantage of this flexibility from the perspective of facile skin attachment and the 

ability to avoid mechanical deformation [1, 2]. In this work, I demonstrate that the 

thermoelectric properties of such molecular devices can be controlled by taking 
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advantage of their mechanical flexibility. The thermoelectric properties of self-

assembled monolayers (SAMs) fabricated from thiol terminated molecules were 

measured with a modified atomic force microscopy (AFM) system, and the 

conformation of the SAMs was controlled by regulating the loading force between the 

organic thin film and the probe, which changes the tilt angle at the metal-molecule 

interface. I tracked the thermopower shift versus the tilt angle of the SAM and showed 

that changes in both the electrical conductivity and the Seebeck coefficient combine to 

optimise the power factor at a specific angle. This optimisation of thermoelectric 

performance via applied pressure is confirmed through the use of my theoretical 

calculations and is expected to be a general method for optimising the power factor of 

SAMs. 

 

4.3 Introduction 

In this chapter, two anthracene based molecules are investigated: 9,10-di (4-

(ethynyl)phenylthioacetate) anthracene and 1,5-di(4-(ethynyl)phenylthioacetate) 

anthracene. Both molecules were synthesised at Imperial College London. The two 

molecules differ by the connectivity (i.e. 1-5 and 9-10). For the sake of the simplicity, 

I shall refer to them as 1 and 2 in the rest of this chapter. Figure. 4.1 shows the chemical 

structure of molecules 1 and 2. 

 

 



82 

 

 

 

 

 

 

 

 

Figure 4.1. Chemical structures of molecules 1 and 2 studied in this chapter.  1 (9,10-

di(4-(ethynyl)phenylthioacetate) anthracene and 2 (1,5-di(4-

(ethynyl)phenylthioacetate) anthracene.  

The thermoelectric properties of such molecular devices can be controlled by taking 

advantage of their mechanical flexibility. The thermoelectric properties of self-

assembled monolayers (SAMs) fabricated from thiol terminated molecules were 

measured with a modified AFM system, and the conformation of the SAMs were 

controlled by regulating the loading force between the organic thin film and the probe, 

which changes the tilt angle at the metal-molecule interface. 

Using the density functional code SIESTA [8], the optimum geometries of the isolated 

molecules 1 and 2 were obtained by relaxing the molecules until all forces on the atoms 

were less than 0.01 eV / Å as shown in Figure (4.2) [6-9]. A double-zeta plus 

polarization orbital basis set was used along with norm-conserving pseudopotentials.  

An energy cut-off of 250 Rydbergs defined the real space grid and the local density 

approximation (LDA) was chosen for the exchange correlation functional. I also 
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computed results using GGA and found that the resulting transmission functions were 

comparable with those obtained using LDA [10, 11].   

 

 

 

 

 

 

 

 

Figure 4.2. Fully relaxed isolated molecules 1 and 2. Key: C = grey, H = white, O = 

red, S = yellow (synthesis reported [12, 13]).  

 

4.4 Product Rule 

 

In this section, I will demonstrate how the Product Rule (PR) that was recently reported 

by Lambert and Lui [13] applies to these molecules. This method can predict the value 

of the conductance (high or low) without calculating transmission.  Lambert and Liu 

state five conditions that must be satisfied in order for the product rule to work: 

1. Weak coupling: The studied molecule should weakly couple to the electrodes, 

otherwise it loses its physical properties and the Product Rule is broken.     

1    2    side-view    
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2.  Locality: The current should flow from one reservoir to another through the studied 

molecule. These reservoirs are known as the source and drain.  

3. Connectivity:  The locations that the current enters and leaves the studied molecule.   

4. Mid-gap transport (Highest occupied molecular orbital (HOMO) - lowest occupied 

molecular orbital (LUMO)): The energy E of electrons flowing through the molecule 

is located in the vicinity of the centre of the HOMO–LUMO gap and therefore transport 

takes place in the co-tunnelling regime. In other words, transport is usually “off-

resonance”. 

5. Phase coherence: It is an intuitive picture shows the electricity flow when the 

previous conditions are satisfied. 

To better understand the of the Product Rule, I shall apply it to a simple molecule, 

naphthalene (C10H8). Figure 4.3 shows that the naphthalene molecule has 10 carbon 

atoms. The PR requires two contact points, one to allow the current to enter the lattice 

and another to exit (I refer to them as a source and drain respectively, as shown in the 

top panel of Figure. 4.3).    
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Figure 4.3: a: Fully optimised structure of naphthalene. b: Wavefunction plots of 

naphthalene: HOMO (Highest Occupied Molecular Orbital, LUMO (Lowest Occupied 

Molecular Orbitals), HOMO-1 and LUMO+1 along with their energies.    

 

a 

EF = -2.40 eV 

HOMO  E = - 4.95 eV  

HOMO-1  E = -5.71 eV 

LUMO  E = -1.46 eV 

LUMO+1  E = -0.64 eV 

eV 

drain 

source 

 

b 
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I apply the PR for 3 different connectivities (i.e. 3 choices of source and drain, as shown 

in the first column of Table 4.1) and in each case consider three regions.  Region 1 

covers the HOMO-1 and HOMO, region 2 covers the HOMO and LUMO, and region 

3 covers the LUMO and LUMO+1 (see the last three columns of Table 4.1). Usually, 

the wavefunction plots show two colours, in this case red and blue; for simplicity I refer 

to the red as positive (+) and blue as negative (–). Based on the sign of the wavefunctions 

at the source and drain positions, either constructive (c) or destructive (d) constructive 

quantum interference for each region can be predicted. These are shown in Table 4.1. 

 

 

Table 4.1: Product Rule applied to a naphthalene molecule for three different 

connectivities: 1-5, 1-6 and 1-10. PR applies on three regions: reg.1, reg.2 and reg.3, 

(red colour is +ive, blue -ive, c=constructive, d=destructive, H: HOMO, H-1: HOMO-

1, L: LUMO, L+1: LUMO+1, G: Conductance). 

Contact point H-1 H L L+1 
G 

reg.1 

G 

reg.2 

G 

reg.3 

Case 1   (1,6) 
+ 

-5.71 eV 

+ 

- 4.95 eV 

- 

-1.46 eV 

- 

-0.64 eV 
d c d 

Case 2   (1,5) 
+ 

-5.71 eV 

- 

- 4.95 eV 

- 

-1.46 eV 

+ 

-0.64 eV 
c d c 

Case 3  (1,10) 
+ 

-5.71 eV 

- 

- 4.95 eV 

+ 

-1.46 eV 

- 

-0.64 eV 
c c c 

   

How the PR works: first we choose our source and drain then we look at the colours 

of the wavefunctions at those points. For example, let us choose the source to be 1 and 
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the drain to be 6 (see Figure. 4.3a). For the HOMO the colours are blue and blue (at 

sites 1 and 6), and blue is -ive, so we multiply -ive by -ive and the outcome is +ive (− ×

 − =  +). For the LUMO the colours are red and blue (1 and 6) and the multiplication 

outcome is -ive (+ × − =  −). The product rule states that different signs mean 

constructive quantum interference (CQI), whereas same signs mean destructive 

quantum interference (DQI). So in this case we expect constructive QI.      

Now, by applying the PR to the naphthalene molecule with 1-6 connectivity one can 

notice two cases of DQI for regions 1 and 3, and one case of CQI for region 2. In 

contrast, connectivity 1-5 yields two cases of CQI and one DQI, while 1-10 connectivity 

yields three cases of CQI. 

In this example, I chose 3 connectivities, however, due to the symmetry of naphthalene 

molecule choosing other connectivities would yield the same results. In other words, 5-

10 connectivity resembles (=) 1-6, 1-5 = 6-10, 1-10 = 5-6 and so on.  Table 4.1 

summarises the PR of the naphthalene molecule for three different connectivities. 

 

4.5 Frontier orbitals of molecules 1 and 2 

In order to apply the PR discussed in section 4.4 to molecules 1 and 2 I show the HOMO, 

LUMO, HOMO-1 and LUMO+1 wavefunctions in Figures 4.4 and 4.5. 
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Figure 4.4: a: Fully optimised conformation of 1. b: Wavefunction plots of 1 for HOMO 

(Highest Occupied Molecular Orbitals), LUMO (Lowest Occupied Molecular Orbitals), 

HOMO-1 and LUMO+1 along with their energies.    

 

 

 

 

b 

LUMO+1 E=-1.95 eV HOMO-1 E=-5.31 eV 

LUMO E=-3.11 eV HOMO E=-4.62 eV 

EF=-3.93 eV 

a 
1  
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Figure 4.5: a: Fully optimised conformation of 2. b: Wavefunction plots of 2 for HOMO 

(Highest Occupied Molecule Orbitals), LUMO (Lowest Occupied Molecule Orbitals), 

HOMO-1 and LUMO+1 along with their energies.    

b 

LUMO+1 E=-1.95 eV HOMO-1 E=-5.01 eV 

LUMO E=-3.13 eV HOMO E=-4.59 eV 

EF=-3.706 eV 

a 
2 
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Information from Figures 4.4 and 4.5 is then listed in Tables 4.2 and 4.3 along with the 

results of applying the product rule. Constructive quantum interference is predicted in 

the HOMO-LUMO gap (region 2) for both molecules. 

Table 4.2: Product Rule of 1. PR applies on three regions: reg.1, reg.2 and reg.3, (red 

colour is +ive, blue -ive, c=constructive and d=destructive).  

Molecule H-1 H L L+1 
G 

reg.1 

G 

reg.2 

G 

reg.3 

1 - - + - d c c 

Energy -5.31 eV -4.62 eV -3.11 eV -1.95 eV EF=-3.93 eV 

 

Table 4.3: Product Rule of 2. PR applies on three regions: reg.1, reg.2 and reg.3, (red 

colour is +ive, blue -ive, c=constructive and d=destructive).  

Molecule H-1 H L L+1 
G 

reg.1 

G 

reg.2 

G 

reg.3 

2 - - + - d c c 

Energy -5.01 eV -4.59 eV -3.13 eV -1.95 eV EF=-3.706 eV 

       

 

4.6 Binding energy of molecules on Au-substrate   

To calculate the optimum binding distance between thiol anchor groups and Au (111) 

surfaces, I used DFT and the counterpoise method [3], which removes basis set 

superposition errors (BSSE) [4]. The binding distance d is defined as the distance 

between the gold surface and the S terminus of the thiol group. Here, compound 1 is 

defined as entity A and the gold electrode as entity B. The ground state energy of the 

total system is calculated using SIESTA and is denoted EAB
AB. The energy of each entity 



91 

 

is then calculated in a fixed basis, which is achieved using ghost atoms in SIESTA. 

Hence, the energy of 1 in the presence of the fixed basis is defined as EA
AB and the energy 

of the gold as EB
AB. The binding energy (BE) is then calculated using the following 

equation:  

We then considered the nature of the binding depending on the gold surface structure. 

We calculated the binding to a Au pyramid on a surface with the 𝑆 atom binding at a 

‘top’ site and then varied the binding distance 𝑑. Figure 4.6 (left) shows that a value of 

𝑑 =  2.4 Å gives the optimum distance, at with a binding energy of approximately -0.8 

eV. As expected, the thiol anchor group binds favourably to under-coordinated gold 

atoms.   

 

 

 

 

 

 

Figure 4.6. Example binding energy plot of 1, for thiol anchor Au-S (left), with its 

idealised ad-atom configuration at the Au lead interface Au-S. Key: C = grey, H = white, 

S = light yellow, Au = dark yellow. 

 

 Binding Energy = EAB
AB − EA

AB − EB
AB               (4.1) 
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4.7 Optimised DFT Structures of Compounds in their Junctions 

Using the optimised structures and geometries for the compounds obtained as described 

in section 4.1, I again employed the SIESTA code to calculate self-consistent optimised 

geometries, ground state Hamiltonians and overlap matrix elements for each metal-

molecule-metal junction. Leads were modelled as 625 atom slabs. The optimised 

structures were then used to compute the transmission curve for each compound. The 

DFT optimised geometri es are shown in Figure 4.7. Note: there is a tilt angle range for 

each compound, which is presented in section 4.8.    

 

 

 

 

 

Figure 4.7. Optimised structures of molecules 1 and 2. Tilt angle (side-view) 

 

4.8 The tilt angle (𝛉)  

In this section, I determine the tilt angle 𝜃 of each compound on a gold substrate, which 

corresponds to the experimentally measured most-probable break-off distance. Table 

4.4 shows a range of tilt angles calculated from the film thickness for each molecule. 

Break-off distance values suggest that compound 1 tilts with angle 𝜃 ranging from 57𝑜 

to 61𝑜 and compound 2 from 55𝑜 to 63𝑜, as shown in Figure 4.8.  

 

θ 

2    1    side-view    



93 

 

Table 4.4: Experimental break-off distance and equivalent theoretical tilt angle (𝜃) 

Compound 

Experimental 

film thickness 

(nm) 

Experimental 

film roughness 

(nm) 

Equivalent 

experimental 

tilt angle (𝜃) 

Equivalent 

theoretical tilt 

angle (𝜃) 

1 1.12 0.43 57𝑜-61𝑜 57𝑜-61𝑜 

2 1.19 0.09 55𝑜-63𝑜 55𝑜-63𝑜 

 

 

 

 

 

 

Figure 4.8. Optimised structures of molecules 1 and 2. 

 

4.9 Beyond the optimised tilt angle (𝜽)  

After finding the optimised tilt angle for molecule 1 and molecule 2, these angles were 

varied by up to 80𝑜 when measuring the conductance, and up to 70𝑜 for Seebeck 

measurements. The difference between 𝐺 and 𝑆 tilt angles arose from the need to heat 

up the tip during the Seebeck measurements. The theory models the increase in the tilt 

angle up to 85𝑜 , as shown in Figure 4.9.     

2    

θ 

1    
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Figure 4.9. Schematic illustrations of modelling an increase in the tilt angle (pressure 

model). 

 

4.10 DFT Calculations 

In the following transport calculations, the ground state Hamiltonian and optimized 

geometry of each compound was obtained using density functional theory (DFT) [12]. 

The local density approximation (LDA) exchange correlation functional was used along 

with double zeta polarized (DZP) basis sets and norm conserving pseudo potentials. The 

real space grid was defined by a plane wave cut-off of 250 Ry. The geometry 

optimization was carried out to a force tolerance of 0.01 eV/Å. This process was 

repeated for a unit cell with the molecule between gold electrodes where the optimized 

distance between Au and the thiol anchor group was found to be 2.4 Å. From the ground 

state Hamiltonian, the transmission coefficient, the room temperature electrical 

θ 

Optimised junction     
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conductance 𝐺 and Seebeck coefficient 𝑆 were obtained, as described in the sections 

below. Although we model here the properties of a single molecule in the junction, other 

studies [13] have shown that the calculated conductance of a SAM differs only slightly 

from that of single molecules. 

Gollum 2 computes the zero-voltage thermo-electric properties of the junction as a 

function of temperature. Such properties include the Peltier Coefficient, the Thermal 

conductance, the Thermopower, the Seebeck Coefficient and the Figure of Merit.  

Important improvements now enable the user to calculate those spin-dependent thermo-

electric properties over a temperature sweep or an energy sweep based upon the Fermi 

Energy, and under the assumption of charge-spin separation or non-separation. 

Gollum starts from a mean-field Hamiltonian provided either by the user or by an 

outside material-specific DFT code. It then computes the scattering matrix and its 

related transport properties. When finite voltages are applied to the electrodes, they 

change the distribution of incoming and outgoing electrons and therefore the underlying 

Hamiltonian.  

 

4.11 Transport calculations  

The transmission coefficient curves 𝑇(𝐸), obtained using the Gollum [55] transport 

code, were calculated for molecules 1 and 2 based on the pressure model (see Figure. 

4.9). The HOMO resonance is predicted to be pinned near the Fermi level of the 

electrodes for the two molecules 1 and 2, however, I set the Fermi level to be in the mid 

gap at approximately 0.5 eV (black dashed line), as shown in Figures 4.10 and 4.11.  
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Figure 4.10. Zero bias transmission coefficient 𝑇(𝐸) of molecule 1 as a function of 

pressure. The tilt angle varies from approximately 55𝑜 (red curve, light pressure) to 

80𝑜. (The blue arrow points towards heavy pressure; for clarity, not all curves are 

shown).  

 

 

 

 

 

 

Figure 4.11. Zero bias transmission coefficient 𝑇(𝐸) of molecule 2 as a function of 

pressure. The tilt angle varies from approximately 55𝑜 (red curve, light pressure) to 

80𝑜. (The blue arrow points towards heavy pressure; for clarity, not all curves are 

shown).  

 



97 

 

Figures. 4.10 and 4.11 above show a linear relation between the tilt angle 𝜃 and the 

transmission coefficient 𝑇(𝐸), meaning the more pressure applied the higher the 

conductance obtained.   

 

4.12 Seebeck Coefficient Calculations 

After computing the electronic transmission coefficients 𝑇(𝐸) for the two molecules, 

thermoelectric properties such as their Seebeck coefficient 𝑆 were computed. 

To calculate the Seebeck coefficient of 1 and 2 molecular junctions, it is useful to 

introduce the non-normalised probability distribution 𝑃(𝐸) defined by 

where 𝑓(𝐸) is the Fermi-Dirac function and 𝒯(𝐸) are the transmission coefficients and 

whose moments 𝐿𝑖 are denoted as follows 

where 𝐸𝐹 is the Fermi energy. The Seebeck coefficient 𝑆, is then given by  

where 𝑒 is the electronic charge. 

Figures. 4.12 and 4.13 show the thermopower 𝑆 evaluated at room temperature for 

different energy ranges 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 as a function of pressure.  

 𝑃(𝐸) = −𝒯(𝐸)
𝑑𝑓(𝐸)

𝑑𝐸
 

               

(4.2) 

 𝐿𝑖 = ∫𝑑𝐸𝑃(𝐸)(𝐸 − 𝐸𝐹)
𝑖 

               

(4.3) 

 𝑆(𝑇) = −
1

|𝑒|𝑇

𝐿1
𝐿0

               (4.4) 
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Figure 4.12. Seebeck coefficient 𝑆 of molecule 1 as a function of pressure. The tilt angle 

varies from approximately 55𝑜 (red curve, light pressure) to 80𝑜. (The blue arrow points 

towards heavy pressure; for clarity, not all curves are shown).  

 

 

 

 

 

 

Figure 4.13 Seebeck coefficient S of molecule 2 as a function of pressure. The tilt angle 

varies from approximately 55𝑜 (red curve, light pressure) to 80𝑜. (The blue arrow points 

towards heavy pressure; for clarity, not all curves are shown).  
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Figures. (4.12) and (4.13) above show a clear decrease in the Seebeck coefficient 𝑆 with 

increased tilt angle 𝜃, meaning the more pressure is applied the lower the Seebeck 

coefficient obtained. This is the opposite behaviour to the transmission coefficient (see 

Figures. (4.10) and (4.11) above).     

 

4.13 Mechanical Gating Charge Transport in Molecular Junctions 

In this section, the 𝐼 − 𝑉 curves were calculated for each tilt angle for both molecules 1 

and 2 as shown in Figure 4.14. The next step is to divide 𝐼 by 𝑉 to obtain 𝐼/𝑉 for 1 and 

2 as shown in Figure 4.15. 

 

 

 

 

 

 

Figure 4.14. Current transport in molecular junctions 1 and 2. Current plotted versus 

bias voltage for 1 and 2 (left and right respectively).  

 

 

 

 

Figure 4.15. 𝐼/𝑉 plotted versus bias voltage for 1 and 2 (left and right respectively).  
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4.14 2-D Histogram 

In this section 2-D histograms have been generated for both 1 and 2. Figure 4.16 shows 

how the tilt angle varies with the applied bias voltage for 1 and 2.  These plots indicate 

that molecule 2 is more sensitive to the bias voltage than molecule 1. Finally, Figure 

4.16 shows a two-dimensional of 𝐼/𝑉 plotted versus the bias voltage for both 1 and 2. 

 

 

 

 

Figure 4.16. Two-dimensional visualization of  𝐼/𝑉 versus bias voltage for 1 and 2.  

 

4.15 Theory Versus Experiment  

As mentioned above, this work is a joint study between theory and experiment. In this 

section, I will make comparisons between theory and experiment for some electronic 

and thermoelectric properties including conductance 𝐺, the conductance ratio 
𝐺1

𝐺2
, 

Seebeck coefficient 𝑆, Power factor 𝑃 and charge transport.  

 

 

 

1 2 



101 

 

4.16 Conductance 𝐆 

Figures 4.17 and 4.18 present theoretical calculations of the transmission coefficient 

𝑇(𝐸), for 1 and 2, and show how 𝑇(𝐸), increases with increased tilt angle 𝜃. Here, the 

conductance is calculated using the Landauer formula. Figure. 4.17 shows how 𝐺 

changes with increasing θ.       

Figure. 4.17 also shows a comparison between the DFT-predicted conductance (brown-

circle), and measured conductance (red-circle), by AFM for SAM 1.  Since the number 

of molecules contacting the probe increases with increasing loading force (tilt angle 𝜃) 

[50, 51], our collaborators calibrated the measured conductance at different loading 

force approximately 57𝑜 ,  65𝑜 , 70𝑜 𝑎𝑛𝑑 80𝑜.  It is worth mentioning, experimentalists 

calibrated the measured conductance to the single molecular scale. Figure. 4.17 proves 

my simulations to predict the measurement trend very well.   

For SAM 2, conductance measured at different loading force 

approximately 57𝑜 ,  65𝑜 , 70𝑜 𝑎𝑛𝑑 80𝑜. Again, my simulations predict the 

measurement trend as shown in Figure. 4.13.  A clear enhancement in electrical 

conductivity is observed as the tilt angle increases. The experimental measurements 

were made at four different tilt angles for 1 and five for 2 (excluding vdW gap), and 

are compared with DFT simulations over a range of tilt angles (see Figures 4.17,4.18). 

My simulations reveal a gradual enhancement in electrical conductance with increasing 

tilt angle, which is in excellent agreement with the measurements shown in Figures. 

4.17 and 4.18.   

 



102 

 

 

Figure 4.17. Electrical conductance of SAM of molecule 1 at different tilt angles 𝜃, 

including a comparison between theory and experiment. 

 

Figure 4.18. Electrical conductance of SAM of molecule 2 at different tilt angles 𝜃, 

including a comparison between theory and experiment. 

 

 

2 
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4.17 The Conductance Ratio 
𝑮𝟏

𝑮𝟐
 

The Magic Ratio Theory (MRT) [52-54], provides an intuitive way to predict the 

conductance ratio of molecular junctions with different connectivities to a large 

conjugated π system.  MRT predicts that the conductance ratio 
𝐺1

𝐺2
 of SAMs 1 and 2, 

should be approximately 16, in agreement with recent experiments [45].  

                                                

                  

 

 

Figure 2.19. A lattice of sites representing anthracene. The connectivity table of 

anthracene. 

Figure. 4.20 is a plot of experimentally measured and theoretically predicted values of 

𝐺1

𝐺2
 at different tilt angles. Theory predicts that the conductance ratio is ~16 when SAMs 

are in their natural form (tilt angle, 𝜃 ≈ 55𝑜), and decreases slightly (to ~14) as the tilt 

angle is increased (brown-circles). The experimental results exhibit a similar decreasing 

trend in this ratio versus the tilt angle, but with a larger decrease in the intensity (18.5-

10, red-circles). This reduction in the conductance ratio is due to enhancement of 

intermolecular interactions that arise because of the larger loading force applied by the 

tip, which acts to quench the conductance ratio between the two SAMs.    

 

 

1
2 3
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Figure 4.20. Conductance ratio between SAMs of molecule 1 and molecule 2 at 

different tilt angle. 

4.18 Seebeck Coefficient   

The third comparison to be made is for the Seebeck coefficient 𝑆. Theoretical 

simulations predict a decrease in S when the tilt angle 𝜃 increases as shown in Figures. 

4.21 and 4.22 above. The Seebeck coefficient of the SAMs were measured using a 

thermoelectric force microscopy (ThEFM) system, (for more detail see [38]).  

Figures. 4.21 and 4.22 show a clear decrease in the Seebeck coefficient as the tilt angle 

increases for SAMs of 1 and 2. The DFT calculations exhibit a smooth reduction of the 

Seebeck value and an increase in conductance with increasing 𝜃 for both SAMs, which 

agrees with the measured experimental trends.    



105 

 

 

 

 

 

 

 

 

Figure 4.21. Seebeck coefficient of SAM of 1 at different tilt angles. 

 

 

 

 

 

 

Figure 4.22 Seebeck coefficient of SAM of 2 at different tilt angles. 

4.19 Power Factor 

The fourth parameter to be compared is the power factor of the molecular junction, 

defined as 𝑃 = 𝐺 S2, which is calculated for SAMs of 1 and 2 at different tilt angles 

both experimentally and theoretically as shown Figures. 4.23 and 4.24. At low tilt 

angles (SAMs in their native form, with a tilt angle of 𝜃 = 55𝑜), the power factor is 
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limited by the electrical conductance of the junction, 𝐺, whereas at high tilt angles 

(where the SAMs are compressed by the probe), the power factor is limited by the 

Seebeck coefficient 𝑆.  

At intermediate the tilt angles (𝜃 = 65𝑜) the power factor is optimised. Figures 4.23 

and 4.24 show that as the angle increases from approximately 55𝑜 to 80𝑜, the 

transmission coefficient at the Fermi energy (and hence the conductance 𝐺) increases, 

but the slope at the Fermi energy (and hence the Seebeck coefficient 𝑆) decreases. Since 

the power factor is a product of 𝐺 and 𝑆2, there is a competition between these two 

opposing trends and an optimum angle at which the product is maximised. The crucial 

point is that pressure (tilt angle) can be used to tune the power factor, which we expect 

to be a generic property of SAMs. The precise value of the optimum angle, will of 

course depend on the chemical makeup of the monolayer and can only be obtained 

through a detailed DFT simulation.  
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Figure 4.23. The experimentally measured and theoretical predicted power factor of a 

SAM of molecule 1.  

 

 

 

 

 

 

 

Figure 4.24. The experimentally measured and theoretical predicted power factor of a 

SAM of molecule 2  
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4.20 Charge Transport  

The final parameter to be compared is the charge transport of the molecular junction. 

Figure 4.25 shows that charge transport at finite biases through the SAMs is also 

sensitive to the tilt angle.  Increasing the applied pressure leads to a higher conductance 

and this behaviour is present at finite biases in Figure 4.25 both experimentally and 

theoretically.  

 

 

 

 

 

 

Figure 4.25. Mechanical gating of charge transport in molecular junctions. Two-

dimensional visualization of 𝐼/𝑉 versus bias voltage for SAMs of 1 and 2. The top 

panels (a-b) are DFT calculations, while the lower panels (c-d) are experimental results. 

 

4. 11 Conclusions  

In this chapter, I have demonstrated that both the Seebeck coefficient 𝑆 and electrical 

conductivity 𝐺 of anthracene-SAM-based thermoelectric junctions can be effectively 

tuned through variation of an external applied pressure on two different molecular 

wires 1 and 2. Furthermore, I show that the power factor 𝑃 of these systems can be 
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optimised through controlling the tilt-angle 𝜃 between a monolayer and its underlying 

substrate, with the application of ‘intermediate’ levels of pressure demonstrating the 

highest power factors. This work not only increases our understanding of how thermal 

voltages can be conducted through ultra-thin film materials, but also opens the way 

towards new methods of optimising the thermoelectrical performance of organic 

devices through controlling the conformation of their self-assembled monolayers. I am 

currently examining the tilt-angle dependence of electrical conductivity and Seebeck 

coefficient of SAMs formed from molecules with different structures to probe whether 

altering the molecule-substrate interface can achieve higher power factors. 
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Chapter 5   

 

 

5. ABC Theory of Molecular-Scale Thermoelectricity 

 

5.1 Introduction 

The following work was carried out in collaboration with the group of Professor. 

Nicholas Long (Department of Chemistry, Imperial College London), who synthesised 

the anthracene molecules and Dr. Benjamin Robinson (Physics Department, Lancaster 

University), who conducted the experiments. In this chapter, I will present our joint 

experimental and theoretical work on the Molecular-scale thermoelectricity, and the 

results presented here were published in the following paper: 

“Molecular-scale thermoelectricity: as simple as ‘ABC’”  

Ismael, A., Al-Jobory, A., Wang, X., Alshehab, A., Almutlg, A., Alshammari, M., Grace, 

I., Bennett, T.L., Wilkinson, L.A., Robinson, B.J. and Long, N.J., 2020. Nanoscale 

Advances, 2(11), pp.5329-5334.  

 

The Seebeck coefficient or thermopower 𝑆 of a nanojunction or of a material is defined 

as S =  −∆V/∆T, where ∆𝑉 is the voltage difference between the two electrodes when 

a temperature difference ∆𝑇 is established between them. My goal was to find a new 

strategy for predicting the Seebeck coefficient at the molecular scale from a simple 

measured 𝐼 − 𝑉 curve. This approach could save significant amount of efforts and costs. 

In this chapter, I am going to describe this method in more detail. I will introduce the 

curve fitting procedure on an 𝐼 − 𝑉 characteristic and link that to the Taylor expansion 

[1]. From the parabola shape (the outcome of the fitting procedure), I determine the 3 
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constants 𝑎, 𝑏 and 𝑐, which form the ABC theory.  I will mathematically prove that 

𝐼(𝑉, 𝑎, 𝑏, 𝑐) = 𝐼(𝑉, 𝑎, −𝑏, 𝑐), which means the ABC theory predicts the magnitude of 

the coefficient 𝑏. Put differently, the ABC theory cannot predict the sign of the Seebeck 

coefficient, because it can only predict the magnitude of the coefficient 𝑏. I will also 

demonstrate the effect of the parameter c on the predicted Seebeck coefficient values. 

Finally, I will test the ABC theory results against the direct scanning tunnelling 

microscope (STM) measured Seebeck coefficient.    

 

5.2 Motivation 

If the Seebeck coefficient 𝑆 of single molecules or self-assembled monolayers (SAMs) 

could be predicted from measurements of their conductance-voltage (𝐺 − 𝑉 ) 

characteristics alone, then the experimentally more difficult task of creating a set-up to 

measure their thermoelectric properties could be avoided.   This work highlights a novel 

strategy for predicting an upper bound to the Seebeck coefficient of single molecules or 

SAMs, from measurements of their 𝐺 − 𝑉 characteristics. The theory begins by making 

a fit to measured 𝐺 − 𝑉 curves using three fitting parameters, denoted 𝑎, 𝑏 and 𝑐. This 

‘𝐴𝐵𝐶’ theory then predicts a maximum value for the magnitude of the corresponding 

Seebeck coefficient. This is a useful material parameter, because if the predicted upper 

bound is large, then the material would warrant further investigation using a full 

Seebeck-measurement setup. On the other hand, if the upper bound is small, then the 

material would not be promising and this much more technically demanding set of 

measurements would be avoided. Histograms of predicted Seebeck coefficients are 

compared with histograms of measured Seebeck coefficients for six different SAMs 
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formed from anthracene-based molecules with different anchor groups. These 

histograms and are shown to be in excellent agreement.   

5.3 Studied Molecules 

 

In this chapter, 6 anthracene-based molecules were selected, the chemical structures of 

which are shown in Figure 5.1. These systems demonstrate both positive and negative 

Seebeck coefficients and were selected to compare their measured STM Seebeck values 

to those predicted by the ABC model. Note that Molecules 3 and 4 were studied in the 

previous chapter. 

 

 

 

 

 

 

Figure 5.1: Structures of studied anthracene-based molecular wires. 1, 2, 3 and 5 

correspond to the 7,2ʹ connectivity, while 4 and 6 correspond to the 1,5ʹ connectivity 

around the central anthracene core. These molecules also differ in the anchor groups 

through which they bind to a terminal electrode, with the binding groups denoted as 

follows; 1 = PySMe, 2 = 2Py, 3 and 4 = 2SAc, 5 and 6 = 2SMe.  

 

From Figure 5.1 one can see that there are two connectivities: molecules 1, 2, 3 and 5 

correspond to the 7,2ʹ connectivity, whereas molecules 4 and 6 correspond to the 1,5ʹ 
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connectivity around the central anthracene core. These 6 molecules also differ in the 

anchor groups through which they bind to a terminal electrode, with the binding groups 

denoted as follows; 1 = PySMe, 2 = 2Py, 3 and 4 = 2SAc, 5 and 6 = 2SMe.  

5.4 ABC Theory 

 

My starting point is the Landauer-Buttiker theory of phase-coherent transport, which 

utilises the transmission coefficient, 𝑇(𝐸) describing the propagation of electrons of 

energy 𝐸 from one electrode to the other via a single molecule or a SAM. A large body 

[35, 36] of experimental evidence suggests that when a molecule is placed between two 

metallic electrodes, the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) adjust themselves, such that the Fermi energy 

𝐸𝐹 of the electrodes lies within the HOMO-LUMO gap of the molecule. Furthermore, 

DFT simulations often reveal that the logarithm of the transmission function is a smooth 

function of energy near 𝐸𝐹 and therefore it is reasonable to approximate 𝑇(𝐸) by a 

Taylor expansion of the form 

                                𝑙𝑛 𝑇(𝐸) = 𝑎 + 𝑏(𝐸 − 𝐸𝐹) + 𝑐(𝐸 − 𝐸𝐹)
2                      (5.1) 

 

 In what follows, the coefficients 𝑎, 𝑏, 𝑐 of this ‘ABC’ theory will be determined by 

fitting the above expression to measured low-voltage conductance-voltage curves, 

under the assumption that 𝑎, 𝑏 and 𝑐 do not change with voltage. Information about 

𝑇(𝐸)  has been extracted from experimental measurements previously.[37, 38] ABC 

theory is aimed at describing off-resonance transport, since this is the most common 

case in molecular junctions and self-assembled monolayers. Of course, by applying an 

electrostatic or electrochemical gate, one could move transport towards resonance, but 
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this is not relevant from the point of view of identifying thermoelectric materials. Our 

approach also applies to non-symmetric junctions, as demonstrated by molecule 1, and 

is not limited to the wide band approximation. In fact, equation (5.1) can describe many 

molecular junctions, but it could fail at high bias, because the proposed I − 𝑉 fitting 

assumes that 𝐼 − 𝑉 curves are symmetric and therefore it should not be applied to 

junctions exhibiting strong rectification. However, it should be noted that the Seebeck 

effect is a low bias phenomenon, because typical values of the Seebeck coefficient are 

in the range of microvolts per Kelvin.  

To acquire this fitting, we measure the current versus voltage at 𝑀 different locations 

(labelled 𝑗) across a SAM. At each location, the current 𝐼𝑒𝑥𝑝
𝑗 (𝑉𝑖) is measured at a series 

of 𝑁 voltages labelled 𝑉𝑖 between −1 V and +1 V, where 𝑁 is typically several hundred. 

The corresponding conductance is defined to be 𝐺𝑒𝑥𝑝
𝑗 (𝑉𝑖) = 𝐼𝑒𝑥𝑝

𝑗 (𝑉𝑖)/𝑉𝑖 . For each 

location 𝑗, we then computed the mean square deviations 

 

                         𝜒𝑗 
2(𝑎, 𝑏, 𝑐) =

1

𝑁
∑ [𝐺(𝑉𝑖, 𝑎, 𝑏, 𝑐) − 𝐺𝑒𝑥𝑝

𝑗 (𝑉𝑖)]
2

𝑁
𝑖=1                  (5.2) 

In this expression, 𝐺(𝑉𝑖, 𝑎, 𝑏, 𝑐) = 𝐼(𝑉𝑖, 𝑎, 𝑏, 𝑐)/𝑉𝑖 where 𝐼(𝑉𝑖, 𝑎, 𝑏, 𝑐) is the theoretical 

current obtained from the Landauer formula: 

                  𝐼(𝑉, 𝑎, 𝑏, 𝑐) = (
2𝑒

ℎ
)∫ 𝑇(𝐸, 𝑎, 𝑏, 𝑐)𝑑𝐸 [𝑓𝑙𝑒𝑓𝑡(𝐸) − 𝑓𝑟𝑖𝑔ℎ𝑡(𝐸)]

∞

−∞
           (5.3) 

where 𝑓𝑙𝑒𝑓𝑡(𝐸)  and  𝑓𝑟𝑖𝑔ℎ𝑡(𝐸) are the Fermi distributions of the left and right leads, 

with Fermi energies 𝐸𝐹 ±
𝑒𝑉

2
 respectively, 𝑒 is the electronic charge, ℎ is Planck’s 

constant and 𝑇(𝐸) is the transmission coefficient of equation (5.1).  The parameters 
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𝑎, 𝑏, 𝑐 were then varied to locate the minimum of 𝜒𝑗 
2(𝑎, 𝑏, 𝑐). The resulting values of 

𝑎, 𝑏, 𝑐 are denoted 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗. From these fitted values, we obtained the predicted Seebeck 

coefficient for location 𝑗 from the formula [30] 

𝑆𝑗 = −
𝐿1(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗)

|𝑒|𝑇𝐿0(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗)
             (5.4) 

where  

𝐿𝑛(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗) = ∫ 𝑑𝐸(𝐸 − 𝐸𝐹)
𝑛

∞

−∞

𝑇𝑒𝑙(𝐸) (−
𝜕𝑓(𝐸, 𝑇)

𝜕𝐸
)             (5.5) 

 

and 𝑓(𝐸) = 1/[exp (𝐸 − 𝐸𝐹)/𝑘𝐵𝑇 + 1] is the Fermi distribution.  

To demonstrate the validity of this ‘ABC’ theory, we then formed a histogram of these 

predicted values and compared these with histograms of experimentally measured 

Seebeck coefficients. In fact, we found that in all cases, 𝑐 was small and in many cases 

setting 𝑐 = 0 yielded an acceptable fit.  

It should be noted that ABC theory cannot predict the sign of the Seebeck coefficient, 

because it can only predict the magnitude of the coefficient 𝑏 (see section 5.8). To 

illustrate this point, note that at low-enough temperatures, the current 𝐼 due to a source-

drain bias voltage 𝑉, and the Seebeck coefficient 𝑆 are given by 

𝐼 =  
2𝑒

ℎ
∫ 𝑇(𝐸)𝑑𝐸
𝐸𝐹+

𝑒𝑉
2

𝐸𝐹−
𝑒𝑉
2

             (5.6) 

𝑆 ≈ −𝛼|𝑒|𝑇 (
𝑑 𝑙𝑛𝑇(𝐸)

𝑑𝐸
)
𝐸=𝐸𝐹

     
            (5.7) 
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where 𝛼 is the Lorentz number 𝛼 = (
𝑘𝐵

𝑒
)
2 𝜋2

3
 = 2.44 𝑥 10 − 8 𝑊𝛺𝐾−2 , 𝑒 is the 

electronic charge and 𝑇 is the temperature.  

This yields for the low-bias electrical conductance 𝐺, 

𝐺 = 𝐺0𝑒
𝑎             (5.8) 

Assuming that an adequate fit can be obtained with 𝑐 = 0, integration of equation (5.6) 

yields 

𝐺 =
𝐼

𝑉
= 𝐺0𝑒

𝑎
𝑠𝑖𝑛ℎ 𝑦

𝑦
 ,         𝑤ℎ𝑒𝑟𝑒     𝑦 =

𝑏𝑒𝑉

2
             (5.9) 

which reduces to equation (5.8) in the limit 𝑉 → 0. Alternatively, if 𝑐 is non-zero, by 

differentiating equation (5.6) one could fit to the differential conductance 

1

𝐺0

𝑑𝐼

𝑑𝑉
= 𝑒

[𝑎+𝑐
𝑉2

4
]
𝑐𝑜𝑠ℎ (𝑏

𝑉

2
)            (5.10) 

 

In section 5.4, it is demonstrated that the current 𝐼(𝑉, 𝑎, 𝑏, 𝑐) in equation (5.3) is an even 

function of 𝑏. This is also evident in the low-temperature equations (5.9) and (5.10), 

since   
sinh𝑦

𝑦
 and cosh 𝑦 are even functions of 𝑦. Therefore, a fit to these formulae cannot 

determine the sign of 𝑏, because in equation (5.2), 𝜒𝑗 
2(𝑎, 𝑏, 𝑐) = 𝜒𝑗 

2(𝑎, −𝑏, 𝑐). In other 

words, if a minimum of 𝜒𝑗 
2(𝑎, 𝑏, 𝑐) is found for a particular value of 𝑏, then there will 

also be a minimum at −𝑏. 

From equations (5.7) and (5.1), this fitting yields the modulus of the Seebeck coefficient 

via the relation 
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|𝑆| = −𝛼|𝑒||𝑏|𝑇            (5.11) 

If 𝑆 is a random variable, then the average of |𝑆| is greater than or equal to the average 

of 𝑆. Therefore, from the average of |𝑆|, ABC theory yields an upper bound for the 

average Seebeck coefficient. 

Equations (5.6) to (5.10) are valid at low temperatures only. At finite temperatures, the 

exact formula (5.3) is used to perform the fitting. In what follows, by simultaneously 

measuring both current-voltage relations and Seebeck coefficients, we demonstrate that 

‘ABC’ theory indeed predicts an upper bound for the Seebeck coefficient from 𝐼 − 𝑉 

curves. 

 

5.5 Proof that 𝑰(𝑽, 𝒂, 𝒃, 𝒄) = 𝑰(𝑽, 𝒂, −𝒃, 𝒄) 

In this section, I am going to demonstrate a mathematical proof to show that  

 𝐼(𝑉, 𝑎, 𝑏, 𝑐) = 𝐼(𝑉, 𝑎, −𝑏, 𝑐).   

From equations (5.1) and (5.3) above.  

𝐼(𝑉, 𝑎, 𝑏, 𝑐) = (
2𝑒

ℎ
)∫ 𝑑𝑥𝑒(𝑎+𝑏𝑥+𝑐𝑥

2) 
∞

−∞

[
1

𝑒
𝑥−𝜈
𝑘𝐵𝑇 + 1

−
1

𝑒
𝑥+𝜈
𝑘𝐵𝑇 + 1

]      (5.12) 

where 𝑥 = 𝐸 − 𝐸𝐹 and 𝜈 = 𝑒𝑉/2. ie 

𝐼(𝑉, 𝑎, 𝑏, 𝑐) = (
2𝑒

ℎ
)∫ 𝑑𝑥𝑒(𝑎+𝑏𝑥+𝑐𝑥

2) 
∞

−∞

[
𝑒
𝑥+𝜈
𝑘𝐵𝑇 − 𝑒

𝑥−𝜈
𝑘𝐵𝑇

[𝑒
𝑥−𝜈
𝑘𝐵𝑇 + 1] [𝑒

𝑥+𝜈
𝑘𝐵𝑇 + 1]

]     (5.13) 

After making the substitution 𝑦 = −𝑥 and replacing 𝑏 by – 𝑏, equation (5.12) 

becomes 

𝐼(𝑉, 𝑎, −𝑏, 𝑐) = (
2𝑒

ℎ
)∫ (−𝑑𝑦)𝑒(𝑎+𝑏𝑦+𝑐𝑦

2) 
−∞

+∞

[
1

𝑒
−𝑦−𝜈
𝑘𝐵𝑇 + 1

−
1

𝑒
−𝑦+𝜈
𝑘𝐵𝑇 + 1

] 
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i.e. 

𝐼(𝑉, 𝑎, −𝑏, 𝑐) = (
2𝑒

ℎ
)∫ 𝑑𝑦𝑒(𝑎+𝑏𝑦+𝑐𝑦

2) 
+∞

−∞

[
𝑒
𝑦+𝜈
𝑘𝐵𝑇

𝑒
𝑦+𝜈
𝑘𝐵𝑇 + 1

−
𝑒
𝑦−𝜈
𝑘𝐵𝑇

𝑒
𝑦−𝜈
𝑘𝐵𝑇 + 1

] 

i.e.                  

𝐼(𝑉, 𝑎, −𝑏, 𝑐) = ∫ 𝑑𝑦𝑒(𝑎+𝑏𝑦+𝑐𝑦
2) 

+∞

−∞

[
𝑒
𝑦+𝜈
𝑘𝐵𝑇 − 𝑒

𝑦−𝜈
𝑘𝐵𝑇

[𝑒
𝑦+𝜈
𝑘𝐵𝑇 + 1][𝑒

𝑦−𝜈
𝑘𝐵𝑇 + 1]

]     (5.14) 

Since equations (5.13) and (5.14) are identical, this completes the proof and 

demonstrates that only |𝑏| can be predicted by ABC theory. 

 

5.6 Curve Fitting 

 

In this study, our experimental collaborators gathered several hundred 𝐼 − 𝑉 curves for 

each molecule utilising an STM device, and then applied the fitting procedure to 

calculate the modulus of the corresponding Seebeck coefficients. Figure 5.2 shows an 

example of a single 𝐼 − 𝑉 curve.  

It  can be perform data fitting interactively using the MATLAB Basic Fitting tool, or 

programmatically using MATLAB functions for fitting. Here in this chapter the 

function that has been used is 𝜒2 fit.  

The first step in the curve fitting procedure is to divide the current 𝐼 by the voltage 𝑉 to 

obtain the ratio 𝐼/𝑉 which gives the finite-voltage conductance 𝐺. When obtaining  𝐼/𝑉 

a spike occurs at 𝑉 = 0 as the ratio tends to infinity, as shown in Figure 5.3. After 

eliminating the spike close to zero voltage (red-dashed rectangle), the resulting 𝐺 − 𝑉 

curve is smooth, as shown in Figure 5.4. The next step is to make a fit to this data, using 
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the ABC theory described in detail in section 5.4. Figure 5.5 shows an example of a 

comparison between experimental data and the fitted curve from ABC theory. This 

process is applied to each individual 𝐼 − 𝑉 curve of the 6 molecules in this study.   

  

 

 

 

 

 

 

Figure 5.2: Example of an experimental 𝐼 − 𝑉 curve.  

 

  

 

 

 

 

 

Figure 5.3: Example 𝐺 − 𝑉 curve; the spike occurs due to dividing by zero. 
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Figure 5.4: Example of a smooth 𝐺 − 𝑉 curve after deleting the spike close to zero volts.    

 

 

 

 

 

 

 

 

 

Figure 5.5: Example of a comparison between experimental values of 𝐺/𝐺0 versus 

voltage 𝑉(blue-circles) and the fitted curve from ABC theory (red-solid line).     

 

 

 Fitted curve 
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5.7 Experimental Data (𝑰 − 𝑽 Characterisation)  

Molecular conductance was characterized by conductive AFM (cAFM). Single 

molecule equivalence values were calculated by dividing the total conductance by the 

number of molecules in the junction. The number of molecules contacted by the probe 

was estimated by taking contact area between the sample and probe and dividing by the 

occupation area of a single molecule derived from Quartz Crystal Microbalance (QCM). 

The contact area between sample and probe was estimated by the Hertzian model: 

r = (F × R ×
1

Y 
)
1
3 

1

Y
=
3

4
× (

1 − v1
2

E1
+
1 − v2

2

E2
) 

where 𝑟 is the contact radius, 𝐹 the loading force from probe to sample, 𝑅 the radius of 

the probe (~18 𝑛𝑚 from the supplier), 𝑣1 and 𝑣2 the Poisson ratio of the material, 𝐸1 

and 𝐸2 the Young’s Modulus for probe (~ 100 𝐺𝑃𝑎) and SAMs (~10 𝐺𝑃𝑎). 

The electrical transport properties of the SAMs were characterized using a custom 

cAFM system. The cAFM setup is based on a multi-mode8 AFM system (Bruker 

nanoscience). The bottom gold substrate was used as the source, and a 𝑃𝑡/𝐶𝑟 coated 

probe (Spark 70𝑃𝑡, 𝑁𝑢𝑛𝑎𝑛𝑜 𝐿𝑡𝑑) was used as the drain. The force between probe and 

molecule was controlled at 2 𝑛𝑁, as this force is strong enough for the probe to penetrate 

through the water layer on the sample surface but not too strong so as to destroy the 

molecular thin film. The driven bias was added between the source and drain by a 

voltage generator (Aglient 33500𝐵), the source to drain current was amplified by a 

current pre-amplifier (𝑆𝑅570, Stanford Research Systems), and the characteristics of 

the sample was collected by the computer.  
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In this study, nearly a thousand 𝐼 − 𝑉 characteristic curves were collected for each 

molecule, examples of which are shown in Figures 5.6-5.11.  

 

 

 

 

 

 

 

 

Figure 5.6: 𝐼 − 𝑉 curves obtained from STM device of molecule 1. 

 

 

 

 

 

 

 

 

Figure 5.7: 𝐼 − 𝑉 curves obtained from STM device of molecule 2. 
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Figure 5.8: 𝐼 − 𝑉 characterisation experimental curves obtain from STM device of 

molecule 3. 

 

 

 

 

 

 

Figure 5.9: 𝐼 − 𝑉 characterisation experimental curves obtain from STM device of 

molecule 4. 
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Figure 5.10: 𝐼 − 𝑉 characterisation experimental curves obtain from STM device of 

molecule 5. 

 

 

 

 

 

 

 

Figure 5.11: 𝐼 − 𝑉 characterisation experimental curves obtain from STM device of 

molecule 6. 
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5.8 Applying the Curve fitting procedure 

 

After demonstrating the curve fitting procedure in section 5.6. Here, I present an 

example of fitting to an 𝐼 − 𝑉 characteristics curve for each molecule. This fitting was 

achieved using the MATLAB routine ‘FIT’ to find the minimum of 𝜒𝑗 
2(𝑎, 𝑏, 𝑐), defined 

in equation (5.2). 

 

 

 

 

 

 

 

Figure 5.12: A comparison between experimental values of log (𝐺/𝐺0) versus voltage 

𝑉 (blue-circles) obtained from STM and the fitted curve from ABC theory (red-solid 

line) for molecule 1.     
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Figure 5.13: A comparison between experimental values of log (𝐺/𝐺0) versus voltage 

𝑉(blue-circles) and the fitted curve from ABC theory (red-solid line) for molecule 2.      

 

 

 

 

 

 

 

 

Figure 5.14: A comparison between experimental values of log (𝐺/𝐺0) versus voltage 

𝑉(blue-circles) and the fitted curve from ABC theory (red-solid line) for molecule 3.      
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Figure 5.15: A comparison between experimental values of log (𝐺/𝐺0)  versus voltage 

𝑉(blue-circles) and the fitted curve from ABC theory (red-solid line) for molecule 4.      

 

 

 

 

 

 

 

Figure 5.16: A comparison between experimental values of log (𝐺/𝐺0) versus voltage 

𝑉(blue-circles) and the fitted curve from ABC theory (red-solid line) for molecule 5.      
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Figure 5.17: A comparison between experimental values of log (𝐺/𝐺0) versus voltage 

𝑉(blue-circles) and the fitted curve from ABC theory (red-solid line) for molecule 6.    

 

5.9 Histograms of Seebeck coefficients  

Experimental measurements provide histograms for molecules 1-6 (green histograms 

of Figures 5.18-5.23). By applying the fitting process on each 𝐺 − 𝑉 curve and using 

equation (5.4), we obtain the Seebeck coefficient values. From that data, a histogram 

has been generated for each molecule (red histograms of Figures 5.18-5.23), from the 

𝐼 − 𝑉  experiment data (see Figures 5.11-5.16). It is worth mentioning that the ‘ABC’ 

model predicts the absolute value of the Seebeck histogram |𝑆| (see section 5.7), 

whereas experimentally-measured Seebeck histograms can be positive or negative as 

shown in the green histograms of Figures 5.18-5.23. To compare theory predicted 

Seebeck histograms against experimentally-measured Seebeck histograms the absolute 

value has been taken for the experimental results (yellow histograms). Figures 5.18-
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5.23 show a comparison between the experiment and theory predicted histograms of |𝑆| 

(yellow and red histograms).      

 

 

 

 

 

Figure 5.18: Experimentally derived and predicted ABC theory histograms along with 

their Gaussian and folded fit curves (black- and blue-solid lines) for 1 (green 

experiment, yellow absolute experiment and red absolute theory).     

 

 

 

 

Figure 5.19: Experimentally derived and predicted ABC theory histograms along with 

their Gaussian and folded fit curves (black- and blue-solid lines) for 2 (green 

experiment, yellow absolute experiment and red absolute theory).     
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Figure 5.20: Experimentally derived and predicted ABC theory histograms along with 

their Gaussian and folded fit curves (black- and blue-solid lines) for 3 (green 

experiment, yellow absolute experiment and red absolute theory).         

 

 

 

 

 

Figure 5.21: Experimentally derived and predicted ABC theory histograms along with 

their Gaussian and folded fit curves (black- and blue-solid lines) for 4 (green 

experiment, yellow absolute experiment and red absolute theory).     
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Figure 5.22: Experimentally derived and predicted ABC theory histograms along with 

their Gaussian and folded fit curves (black- and blue-solid lines) for 5 (green 

experiment, yellow absolute experiment and red absolute theory).     

 

 

 

 

 

Figure 5.23: Experimentally derived and predicted ABC theory histograms along with 

their Gaussian and folded fit curves (black- and blue-solid lines) for 6 (green 

experiment, yellow absolute experiment and red absolute theory).     

 

Figures 5.18-5.23 show that the experimental and predicted histograms are in qualitative 

agreement. To make a quantitative comparison, I first computed the average |𝑆| 

(denoted |𝑆𝐴𝐵𝐶|) from the red histograms and compared this with the average |𝑆| 

(denoted |𝑆𝐸𝑥𝑝|) from the yellow histograms. These values are shown in Figure 5.25, 

for each of the 6 molecules. This plot demonstrates strong overlap between 
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experimental and ABC-theory values, clearly demonstrating the predictive ability of 

ABC theory.  My aim is to compare theory with experiment and since the experimental 

histograms are fitted to a single Gaussian, I follow the same approach for the theoretical 

histograms. There are two peaks in the theoretical histograms of Figures 5.21 and 5.22. 

For molecule 5 these occur at |𝑆| = 32.7 and |𝑆| = 41.8. Taking the average of these 

yields |𝑆| = 37.2 which is very close to our quoted value for the most-probable |𝑆| (ie 

|𝑆| = 37.3). Similarly, for molecule 4 these occur at |𝑆| = 11.4 and |𝑆| = 24.3 taking 

the average of these yields |𝑆| = 17.8, which is close to our quoted value (|𝑆| = 17.5). 

Therefore, fitting to a single Gaussian provides an adequate prediction for |𝑆| for the 

studied molecules. 

 

 

 

 

 

Figure 5.24 Experimental and ABC-theory predictions for average of the magnitudes of 

Seebeck coefficients < |𝑆| > (yellow- and red-circles respectively). 

 

The averages in Figure 5.24 were obtained by making a Gaussian fit to the 

experimentally-measured (green) histograms, as is common practice in the literature.  If 

each of the green histograms of measured values of 𝑆 is assumed to approximate a 

Gaussian distribution of the form 
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𝑝(𝑆) =
𝑒−(𝑆−𝑆0)

2/2𝜎2

√2𝜋𝜎2
 

    (5.15) 

 

where 𝑆0 is the average of 𝑆,  and 𝜎 is the standard deviation, then < 𝑆 >=

∫ 𝑑𝑆 𝑆 𝑝(𝑆)
∞

−∞
= 𝑆0 and < (𝑆 − 𝑆0)

2 >= ∫ 𝑑𝑆 (𝑆 − 𝑆0)
2 𝑝(𝑆)

∞

−∞
= 𝜎2.  

This means that measured values of |𝑆| possess a folded Gaussian distribution of the 

form 𝑓(|𝑆|) = 𝑝(|𝑆|) + 𝑝(−|𝑆|). i.e. 

𝑓(|𝑆|) =
𝑒− (|𝑆|−𝑆0)

2/2𝜎2 + 𝑒−(|𝑆|+𝑆0)
2/2𝜎2

√2𝜋𝜎2
     (5.16) 

or equivalently 

𝑓(|𝑆|) =
𝑒−(|𝑆|−𝑆0)

2/2𝜎2[2 𝑐𝑜𝑠ℎ (
𝑆𝑆0
𝜎2

)]

√2𝜋𝜎2
     (5.17) 

 

For |𝑆0| < 𝜎, 𝑓(|𝑆|) has a maximum at |𝑆| = 0, whereas for |𝑆0| > 𝜎, the maximum 

occurs at |𝑆| ≠ 0. The blue curves in Figures 5.18 – 5.23 show a fit of this function to 

each of the red histograms. The black curves show plots of the corresponding Gaussian 

distributions. For the experimental averages corresponding to the yellow points in 

Figure 5.25 and for the ABC-predicted averages corresponding to the red points in 

figure 5.25, the average was computed by fitting a folded Gaussian 𝑓(|𝑆|) to the 

histogram of predicted values of |𝑆| and then using the formula 

< |𝑆| >= ∫ 𝑑𝑆 |𝑆| 𝑓(|𝑆|)
∞

0
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Figure 5.25. Standard deviations 𝜎 obtained from experiment and predicted ABC theory 

data (yellow- and red-circles). 

 

Figure 5.25 shows a comparison between the resulting 𝜎 values for each of the 

molecules, obtained by fitting equation (5.16) to the red histograms and by fitting 

equation (5.15) to the green histograms. This shows that qualitative information about 

the widths of the distributions can also be obtained from ABC theory. Figure 5.25 shows 

similar results for the ABC standard deviations 𝜎𝐴𝐵𝐶 and the experimental 𝜎𝐸𝑥𝑝 for most 

molecules, whereas there is a larger difference for molecules 1 and 2. To address this 

point, I shall calculate the mean square deviation  𝜒 and compare it to the standard 

deviation 𝜎 in the next section. 

 

5.10 Mean Square Deviations 𝝌 Versus Standard Deviations σ 

Distributions of the root mean square deviations 𝜒𝑖 (see equation. 5.2) from each 

individual 𝐺 − 𝑉 fit (𝑖), for the 6 molecules, are shown in Figure 5.26.  The mean values 

⟨𝜒⟩ of these values of 𝜒𝑖 are shown in Table 5.1 for each molecule. Fitting parameter 

⟨𝜒⟩ is an indicator of the accuracy of the predicted value of |𝑆| made by ABC theory.   
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Figure 5.26: Distributions of root mean square deviations (𝜒) from individual 𝐺 − 𝑉  

fits for molecules 1-6. 
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Table 5.1: A comparison between the differences in standard deviations between 

theory and experiment (∆σ), and the average root mean square deviations ( ⟨𝜒⟩) from 

𝐺 − 𝑉 fits. 

Molecule ∆𝜎 =  𝜎𝐴𝐵𝐶  −  𝜎𝐸𝑥𝑝  ⟨𝜒⟩ 

1 7.71 4.0E-03 

2 12.97 1.5E-02 

3 0.75 6.0E-05 

4 -3.26 1.0E-04 

5 4.23 2.3E-03 

6 7.47 2.5E-03 

   

This shows that molecule 2 has the largest root mean square deviations ⟨𝜒⟩ = 1.5 ×

 10−2 and this corresponds to the largest difference  ∆𝜎 = 𝜎𝐴𝐵𝐶 − 𝜎𝐸𝑥𝑝. between 

standard deviations of the theory and experiment. Similarly, molecule 1 has the next 

highest value of ⟨𝜒⟩ and the next highest value of ∆σ. Molecule 3 has the lowest value 

of ∆σ and the lowest value of ⟨𝜒⟩. This correlation between  ⟨𝜒⟩ and ∆σ is shown more 

clearly in Figure 5.26 and demonstrates that the fitting parameter ⟨𝜒⟩ is an indicator of 

the accuracy of the predicted value of |𝑆| made by ABC theory.   

 

5.11 Parameter 𝒄  

 

In this section, I compare predicted Seebeck coefficients generated when the parameter 

𝑐 is set to zero, with the values obtained when 𝑐 is allowed to be non-zero. For the 

purpose of a comparison Table 5.2 is created, where I choose 10 (𝐼 − 𝑉) characteristic 

curves out of nearly a thousand curves for each molecule 1-6. A curve fitting procedure 

is applied and the Seebeck coefficient is generated in two cases: when the parameter 𝑐 

is set to zero and when 𝑐 is allowed to be non-zero (𝑐 = 0 and 𝑐 ≠ 0).    
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Table 5.2 Absolute ABC predicted theory Seebeck coefficients |S| (μV/K) in two 

cases 𝑐 = 0 and 𝑐 ≠ 0 for 10 (𝐼 − 𝑉) characteristic curves for each molecule 1-6 

(numbers in parentheses when 𝑐 ≠ 0), and experimental Seebeck coefficients.  

          M 

𝐼 − 𝑉curve 

1 

|𝑆𝐴𝐵𝐶  | 

2 

|𝑆𝐴𝐵𝐶  | 

3 

|𝑆𝐴𝐵𝐶  | 

4 

|𝑆𝐴𝐵𝐶  | 

5 

|𝑆𝐴𝐵𝐶  | 

6 

|𝑆𝐴𝐵𝐶  | 

1 
4.1 

(3.6) 

7.0 

(6.9) 

15.6 

(15.2) 

21.3 

(21.0) 

25.4 

(25.2) 

32.5 

(32.0) 

2 
4.5 

(4.1) 

6.7 

(6.5) 

16.2 

(15.9) 

21.2 

(20.9) 

25.6 

(25.4) 

32.4 

(31.8) 

3 
4.6 

(4.2) 

7.1 

(6.9) 

16.0 

(15.7) 

20.5 

(20.2) 

25.5 

(25.3) 

32.7 

(32.4) 

4 
4.2 

(3.7) 

7.2 

(7.0) 

15.9 

(15.6) 

21.5 

(21.2) 

25.8 

(25.6) 

32.6 

(32.3) 

5 
4.1 

(3.6) 

7.5 

(7.4) 

16.1 

(15.8) 

20.6 

(20.3) 

25.9 

(25.7) 

32.5 

(32.2) 

6 
4.4 

(3.9) 

7.4 

(7.3) 

16.2 

(15.9) 

20.7 

(20.4) 

25.5 

(25.3) 

32.7 

(32.4) 

7 
3.8 

(3.4) 

7.0 

(6.9) 

16.1 

(15.8) 

20.8 

(20.5) 

25.3 

(25.1) 

32.2 

(31.8) 

8 
4.3 

(3.8) 

7.8 

(7.6) 

16.0 

(15.7) 

20.9 

(20.6) 

25.2 

(25.0) 

32.3 

(32.0) 

9 
4.2 

(3.7) 

7.4 

(7.3) 

16.2 

(15.9) 

21.1 

(20.8) 

25.9 

(25.7) 

32.6 

(32.3) 

10 
4.5 

(4.1) 

7.7 

(7.6) 

15.8 

(15.5) 

20.4 

(20.1) 

26.0 

(25.8) 

32.5 

(32.2) 

|𝑆𝐸𝑥𝑝 | 3.0 5.0 14.5 19.5 24.0 29.7 

 

Table 5.2 shows that allowing 𝑐 to be non-zero improves the agreement with 

experiment, though the improvement is rather slight. 
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By comparing the results of the two cases (𝑐 = 0 and 𝑐 ≠ 0), one can notice that the 

difference between them ∆|𝑆| =  |𝑆𝑐=0| − |𝑆𝑐≠0| is the smallest for 2 and the average 

difference is 0.14, whereas ∆𝑆 is the largest for 1 (0.46). The biggest and smallest ∆𝑆 

of the studied molecules (1-6), can be explained by the 𝐼 − 𝑉 characterisation curves of 

the studied molecules (see Figures 5.6-5.10). It is clear that the dispersion current (𝐼) 

of 2 is the smallest among the 6 dispersions, whereas, the dispersion current (𝐼) of 1 is 

the largest as shown Figures (5.6-5.10).      

In Table 5.3 the average of the absolute Seebeck coefficient of nearly a thousand 𝐼 − 𝑉 

characteristic curves has been taken for each molecule in two cases (𝑐 = 0 and 𝑐 ≠ 0). 

Table 5.3: Absolute theoretical Seebeck coefficient |S| (μV/K) of nearly a thousand 

(𝐼 − 𝑉) characteristics curve in two cases when (𝑐 = 0) and (𝑐 ≠ 0) alongside the 

absolute experimental Seebeck coefficient. 

M |𝑆𝐸𝑥𝑝 | 
|𝑆𝐴𝐵𝐶  |  

(𝒄 = 0) 

|𝑆𝐴𝐵𝐶  |  

(𝒄 ≠ 0) 

1 3.0 4.5 3.8 

2 5.0 7.5 7.2 

3 14.5 16.5 15.7 

4 19.5 21.0 20.0 

5 24.0 25.5 25.0 

6 29.7 32.5 31.5 

 

It is worth mentioning that in the above analysis, absolute Seebeck coefficients have 

been calculated by fitting to 𝐺 − 𝑉   curves rather than 𝐼 − 𝑉 curves.  In the next section, 

I show a comparison between the results obtained from 𝐼 − 𝑉 fits and 𝐺 − 𝑉 fits for 
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twelve different sets of 𝐼 − 𝑉 measurements and demonstrate that the results are 

comparable.    

5.12  (𝑰 − 𝑽) Fit Versus (𝑮 − 𝑽) Fit 

 

The above results are obtained from fitting to 𝐺 − 𝑉  curves (see curve fitting section 

(5.6)). In this section, I choose 12 (𝐼 − 𝑉) characterisation curves (two for each 

molecule) and directly apply the fitting procedure to each 𝐼 − 𝑉 curve to find the 

coefficients 𝑎, 𝑏, 𝑐 that are used to calculate the absolute Seebeck coefficient. Table 5.4 

shows a comparison between absolute Seebeck coefficients obtained from different 

fitting to 𝐺 − 𝑉 to those obtained from fitting to 𝐼 − 𝑉. Clearly, the two fits 𝑆𝐺−𝑉 𝑓𝑖𝑡 

and  𝑆𝐼−𝑉 𝑓𝑖𝑡   are comparable.     
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Table 5.4: Absolute Seebeck coefficient |S| (μV/K) obtained from two fits,  (𝐺 − 𝑉) 

and (𝐼 − 𝑉). 

Molecule Sample (𝐼 − 𝑉curve) |𝑺𝑮−𝑽 𝒇𝒊𝒕| |𝑺𝑰−𝑽 𝒇𝒊𝒕| ∆|𝐒| 

1 1 2.0 2.6 0.6 

1 2 1.9 2.7 0.8 

2 3 3.8 4.1 0.3 

2 4 2.6 3.2 0.6 

3 5 2.2 2.8 0.6 

3 6 2.1 2.6 0.5 

4 7 7.6 8.0 0.1 

4 8 1.0 1.5 0.5 

5 9 3.2 3.7 0.5 

5 10 3.6 4.6 1.0 

6 11 3.1 3.8 0.7 

6 12 2.1 2.5 0.4 
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5.13 Conclusion 

 

By making simultaneous measurements of the Seebeck coefficients and conductance-

voltage characteristics of SAMs formed from six anthracene-based molecules with 

different anchor groups, I have demonstrated that ‘ABC’ theory allows for the 

prediction of magnitudes of Seebeck coefficients by making fits to measured 

conductance-voltage relations using three fitting parameters, denoted 𝒂, 𝒃 and 𝒄. This 

is advantageous because it means that by measuring the 𝑮 − 𝑽 characteristics of single 

molecules or SAMs, their potential for high-performance thermoelectricity can be 

assessed without the need for experimentally derived Seebeck coefficients. In addition 

to this, if measurements of the latter are available, then ‘ABC’ theory can be applied as 

a consistency check between the two sets of measurements. The theory presented within 

this work represents an important step forward in the study of molecular 

thermoelectrics, greatly easing accessibility of the field to those without access to the 

specialist equipment usually needed to perform such complex thermal measurements. 
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Chapter 6 
 

6. Conclusion and Future Work 

 

6.1 Conclusion 

In this thesis, I have presented the main equations and tools which provide the 

foundation for my work, including the Schrödinger equation, density functional theory 

(DFT), and the SIESTA package which implements DFT and solves these equations. I 

have also introduced single particle transport theory, which is based on the Hamiltonian 

and Green’s functions, and have given some example calculations to demonstrate its 

use. These concepts are reported in chapters 2 and 3, respectively.  

Chapter 4 is the first result chapter in this thesis, where I started by investigating how 

to optimise power harvesting by controlling the pressure applied to anthracene-based 

molecular junctions. Herein, I used the tilt angle 𝜽 as a key parameter for seeking the 

optimum power. In this chapter, two anthracene-based SAMs were explored. Both are 

terminated with thioacetate (ASc), however they differ by the connectivity. SAM-1 is 

9,10-Di(4-(ethynyl)phenylthioacetate), whereas SAM-2 is 1,5-Di(4-

(ethynyl)phenylthioacetate).  I have demonstrated that the thermoelectric properties of 

such molecular devices can be controlled by taking advantage of their mechanical 

flexibility, more specifically tuning the optimum power via the applied pressure (tilt 

angle 𝜽).    

Through systematic theoretical simulations, I showed how the tilt angle 𝜃 plays a role 

as a pivotal parameter in increasing the conductance 𝐺 and decreasing the thermopower 
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𝑆 and ultimately achieving the optimum power 𝑃 = 𝐺 S2 at tilt angle of approximately 

𝜃 ≈ 65°. An excellent agreement has been achieved between my simulations and the 

experimental measurements for both SAMs.   

In chapter 6, my second result chapter, I confronted the question of whether the Seebeck 

coefficient of a junction can be predicted from a simple measured 𝑰 − 𝑽 curve.  I 

explained the advantages of making such a prediction. One benefit could be that the 

experimentally more difficult task of creating an experimental set-up to measure their 

thermoelectric properties could be avoided. 

In this chapter, I presented a novel strategy for predicting an upper bound to the Seebeck 

coefficient of single molecules or SAMs, from measurements of their 𝐺 − 𝑉 

characteristics. I demonstrated a curve fitting procedure, which begins by making a fit 

to measured 𝐺 − 𝑉 curves using three fitting parameters, denoted 𝑎, 𝑏,  and 𝑐. I 

explained the relation between the Taylor expansion and the transmission coefficient. I 

referred to this method as the ‘ABC’ theory.  

‘𝐴𝐵𝐶’ theory predicted a maximum value for the magnitude of the corresponding 

Seebeck coefficient. This is a useful material parameter, because if the predicted upper 

bound is large, then the material would warrant further investigation using a full 

Seebeck measurement setup. On the other hand, if the upper bound is small, then the 

material would not be promising and this much more technically demanding set of 

measurements would be avoided.  

Histograms of predicted Seebeck coefficients of the ‘𝐴𝐵𝐶’ theory were compared 

against histograms of the directly measured Seebeck coefficients from the Scanning 
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Tunneling Microscope STM device. Furthermore, the standard deviations σ obtained 

from experiment and predicted ‘𝐴𝐵𝐶’ theory for six different SAMs, formed from 

anthracene-based molecules with different anchor groups including: pristine thioether, 

pristine thioacetate, pristine pyridine and a mixture of thioether and pyridine. These six 

SAMs are mixture of two different connectivities mainly 1-5 or 9-10.  

Finally, I discussed the case when the three parameters 𝑎, 𝑏, 𝑐 of the ‘𝐴𝐵𝐶’ theory were 

reduced to two (only 𝑎 and 𝑏) by setting 𝑐 to be equal to zero.  A comparison was made 

between the two cases (c=0 and c ≠0) by checking both against the STM experiment 

results and excellent agreement was found.   

The theory presented within this work represents an important step forward in the study 

of molecular thermoelectric, greatly increasing the accessibility of the field to those 

without access to the specialist equipment usually needed to perform such complex 

thermal measurements. 

 

6.2 Future work 

 

One very interesting direction of research would be employing the ABC theory for 

searching for high-performance thermoelectricity materials. Searching for high-

performance thermoelectricity materials can be assessed without the need for 

experimentally derived Seebeck coefficients. Moreover, if measurements of the latter 

are available, then ‘ABC’ theory can be applied as a consistency check between the two 

sets of measurements. 
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The optimum power harvesting of SAMs or single molecule discussed in this study is 

very promising, however there are still number of open questions. For example, the 

effect of the anchor group. 

 


