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Abstract

Earthquakes induced by human activities present a unique set of challenges to the sta-

tistical modeller. Relative to tectonic earthquakes, the recorded number of induced

earthquakes can be very small, while interventions to better record and prevent these

earthquakes make the use of stationary models either statistically inefficient or in-

appropriate. On the other hand, the human activity causing seismicity is often well

documented and can be a valuable resource that is not available in the tectonic set-

ting.

This thesis focuses on how to model anthropogenic earthquakes while making best

use of the limited available data. This research provides three main contributions to

statistical seismology, each motivated by the induced earthquakes in the Groningen

gas field.

Firstly, we consider the link between earthquake locations and gas extraction, using

a state-of-the-art, physically-motivated model as our baseline. We investigate model

simplifications to ensure parsimony of the baseline model and explore model extensions

that assess the statistical evidence for additional physical characteristics that are not

currently represented.

Secondly, we consider how to include developments to the earthquake detection net-

work when modelling earthquake magnitudes. We develop a method for selecting a
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time-varying threshold above which the earthquake catalogue may be considered com-

plete. This allows small magnitude events, unused by existing analyses, to contribute

to our understanding of the largest events.

Finally, we turn our focus to aftershock activity and the Epidemic Type Aftershock

Sequence (ETAS) model. The use of this model is widespread, but the conventional

formulation represents a narrow model class with strong parameter dependence and

assumes independent and identically distributed magnitudes. We introduce a repa-

rameterisation and two extensions of the conventional ETAS model, along with effi-

cient inference procedures, which alleviate these issues.
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Chapter 1

Introduction

1.1 Motivation

Statistical seismology is the study of earthquakes as a stochastic phenomenon. This

approach to earthquake modelling is both useful and necessary because the physical

processes that cause earthquakes are highly complex. These processes cannot be ob-

served or modelled at the necessary scale and precision for seismicity to be effectively

modelled deterministically. Taking a more descriptive, statistical approach permits

modelling using the noisy, incomplete knowledge that is available.

Much of the literature in statistical seismicity was developed for earthquakes caused

by the motion of the Earth’s tectonic plates. The catalogues of earthquakes used

to construct these models consist of many, large magnitude earthquakes that are

observed on an expansive spatio-temporal region. We are interested in modelling

induced earthquakes, which are caused by human activity. While these are related

to tectonic earthquakes, they present their own unique set of modelling issues and

opportunities.

1
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Catalogues of induced earthquakes are typically much smaller than those of tectonic

earthquakes. They are smaller in terms of the number of earthquakes, the magnitude

of those earthquakes and the region on which they are observed. Smaller data sets

make estimating model parameters and comparison of models more difficult, because

there is less information on which to base these decisions. Smaller magnitude events

are also more difficult to discern from background vibrations, making them harder

to measure and locate. A smaller observation window increases the importance of

boundary effects and measurement errors. When modelling induced earthquakes we

are not in a data-rich setting, and so making the most of the available data and expert

knowledge is of paramount importance.

Models for tectonic earthquakes often assume that the system being modelled has

settled to a steady state. Changes to this system caused by human behaviour are

rapid on a geological time-scale. Steady state models for induced earthquakes are

therefore rarely appropriate and models for non-stationary behaviour are required.

This presents a modelling challenge in a low-data setting, but presents an opportunity

from the application perspective; with the correct intervention there is potential to

prevent earthquakes by changing the human activity that is causing them, rather than

only defending against them.

This ability to alter the earthquake generating process can lead to greater non-

stationarity in the data. Following one or more large earthquakes the generating

process is likely to be changed in an attempt to prevent further such events, based on

the available data. These changes might be single or multiple, synchronous or asyn-

chronous. Their effect on seismicity might be smooth or sudden, instantaneous or

lagged, or only have a cumulative effect. Making good, data-driven decisions on how

to intervene requires high quality detection systems. Improvements to these systems

over time are therefore likely to increase the ability to detect small earthquakes. This
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will result in further non-stationarity in the catalogue through an improvement in

both the quality and quantity of earthquake observations within the record of seismic

activity. Separating the developments in the earthquake generating and detection

processes is a challenge that is not faced when modelling tectonic earthquakes.

One substantial advantage when modelling induced earthquakes is that the human

activity which causes the earthquakes is often reliably recorded. When combined

with geological expertise, these records can be used to measure or estimate covariates

relevant to the earthquake generating process. These covariates are rarely available

in the tectonic setting and can help to complement the small amount of data in the

earthquake catalogue itself.

There are two main purposes for modelling induced seismicity. The first is to develop

understanding of the process that is generating earthquakes. The second is to draw on

this understanding to forecast earthquakes under different scenarios. Each of these,

in their own way, allows informed decision making on which actions or interventions

should be taken in order to keep seismic hazard at an acceptable level.

Modelling induced earthquakes presents many challenges. Some of these are unique

to a particular application and require solutions tailored to that application. Other

challenges are common to all earthquake catalogues and could be adapted to similar

data structures in other applications. This thesis presents solutions to several prob-

lems motivated by earthquakes caused by gas extraction in the Netherlands. The

remainder of this chapter gives the context for these problems and then describes the

thesis structure.
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1.1.1 A brief history of the Groningen gas field

At its time of discovery in 1959, the Groningen gas field was the largest in the world.

Today it remains the largest natural gas field discovered in Europe and among the top

ten worldwide (TNO, 2017). It was estimated that the field initially contained close to

3000 billion cubic metres (bcm) of gas. Extraction of this gas commenced in 1963 and

by the beginning of 2015, 2115bcm of gas had been extracted from the field - around

75% of the initial volume (van Thienen-Visser and Breunese, 2015). This extraction

is operated by the Dutch Petroleum Society (Nederlandse Aardolie Maatschappij,

NAM), a joint venture between Royal Dutch Shell and Exxon Mobil.

The Groningen field is located in the north-east of the Netherlands. It is situated in

the geological region named the Groningen high. This region is tectonically inactive

and does not experience earthquakes caused by the motion of the Earth’s tectonic

plates. Following extraction of gas from the field, concerns were raised about the

possibility of induced earthquakes; earthquakes caused by human activity. Since 1986

the region has been monitored for the presence of low magnitude seismic events that

might occur as a result of the gas extraction. The network of geophones used for this

monitoring is owned and maintained by the Royal Netherlands Meteorological Insti-

tute (KNMI). This network extends across the Netherlands but repeated investment

in, and improvement of, the network were made in the Groningen region in order to

better detect and understand induced earthquakes around the Groningen gas field.

These improvements mean that this region of the Netherlands now has the highest

resolution geophone network globally.

The first recorded earthquake in the the Groningen region occurred in 1991. To date,

the largest recorded event occurred on the 16th of August 2012, with a local magnitude

of 3.6ML. While this is not a large magnitude in relation to tectonic seismic events,

these induced events occur at shallow depths which, combined with the soft surface
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soil in the area, lead to housing damage (van Thienen-Visser and Breunese, 2015).

The gas from the Groningen field was used extensively both within the Netherlands

and as an export to Germany, Belgium and Northern France. Within these regions

adaptations were made to the majority of domestic and industrial gas appliances to

account for the relatively low calorific value of gas from the Groningen field (NAM,

2017; TNO, 2017). This meant that switching to gas from another source was a

prohibitively expensive option and extraction from the site was expected to continue

until around 2080 subject to safety and the recommendations of the state supervision

of mines (TNO, 2017).

Further earthquakes in the years that followed lead to cap on total annual extraction

from the Groningen field. In addition, changes were made to the method of gas

extraction in an attempt to extract more evenly across the field and through the year

in an attempt to mitigate the negative effects of gas extraction. Magnitude 3.4 events

occurring in January 2018 and May 2019 contributed to the decision to move away

from Groningen gas and transition to using more costly imported gas. The initial

deadline for this transition was then accelerated so that from 2022 gas will only be

extracted from the field to supply extreme demand caused by the most severe seasonal

weather.

The mechanism linking gas extraction to induced seismicity is highly complex and not

well understood. The central aim of this thesis is to contribute to the understanding

of this relationship and the models that are used to describe it. The original purpose

of this was to allow informed decision making when selecting between a set of future

gas extraction scenarios. This understanding is useful even when production is ter-

minated, because in the years that follow gas will continue to redistribute within the

reservoir and potentially cause further seismic events.
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1.1.2 Geology of the Groningen gas field

The Groningen gas field is located on the Groningen High, a region that is fault-

closed and lies within a tectonically stable block. The gas reservoir is located at a

vertical depth that varies from 2.6-3.2km below surface level, in the Rotliegend layer

as shown in Figure 1.1.1. The fault closures around the field prevent movement of gas

out of the region, while a perfect top seal for the reservoir is provided by a layer of

Zechstein salt above (NAM, 2016a). The Rotliegend reservoir is composed of porous

sandstone and claystone. The pore space in the structure of this rock layer is filled

with gas emanated from the carboniferous layer below. The thickness of the porous

Rotliegend layer varies across the field, from its thinnest of 140m in the south-south-

east to thickest of 300m in the north-north-west of the field. As well as varying in

thickness, the composition of the layer also changes from predominantly sandstone to

predominantly claystone along this gradient, as shown in Figure 1.1.2. The porosity

of the sandstone rock is high while in the claystone it is low. The composition and

thickness of the reservoir partly determine the potential for compaction of the porous

layer on the removal of gas from its pore space. This is pertinent because pore pressure

depletion and the resulting compaction of the reservoir are thought to be drivers of

the seismicity observed in the Groningen region (NAM, 2016a).

Other reservoirs have been been observed with greater levels of compaction than seen

in Groningen without any earthquakes being induced (Davison et al., 2010). Earth-

quakes occur because the Groningen reservoir contains a great many pre-existing

faults. These faults are cracks in the reservoir rock structure that pre-date gas ex-

traction and are thought to be necessary for induced seismicity to occur. In excess

of 1700 faults have been interpreted in the Groningen field as a part of the adden-

dum to the 2013 Winingsplan Groningen (van Elk et al., 2013). Of the faults in the

Groningen reservoir, 707 are included within the static and dynamic reservoir models
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Figure 1.1.1: Schematic cross-section through the Groningen field indicating the main

stratigraphic intervals. Source: TNO (2017)

Figure 1.1.2: Lithostratigraphic subdivision of the Rotliegend in the Groningen area.

Source: NAM (2016a)
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of Shell. The selection of these faults was justified by the discarded faults adding

geometric detail but not contributing significantly to seismic risk at the scale being

considered. Even with this up-scaling, it is currently not computationally feasible to

include all 707 of these faults in geomechanical models of the reservoir. Simplifications

of this fault structure are used in the geomechanical models, with ongoing work to

lessen these simplifications. It should be noted that at the resolution of the available

data it is not possible to assign earthquakes to individual faults. These limitations

to a deterministic, physical model for induced earthquake activity further motives a

statistical approach to this problem.

1.1.3 From gas extraction to induced earthquakes

Gas is extracted from the Groningen reservoir via 258 wells, which are located across

the field as 22 production clusters. The gas at each of these wells comes from a

common connected source. As gas is removed at wells, the remaining gas will move

from areas of high to low concentration and equalise the pressure gradient caused

by extraction. However, due to hydraulic resistance across the reservoir this pressure

equalisation is far from instantaneous (van Thienen-Visser and Breunese, 2015).

The pore pressure in the reservoir is the pressure of the gas that is located in the

pore space of its rocky structure. Localised and field-wide reduction of pore pressure

are problematic. This is because the layers of rock and soil above the reservoir are

held in place by a combination of the normal force provided by the reservoir structure

and the pore pressure of the gas within that structure. As gas is removed from the

reservoir the pore pressure reduces because the number of molecules per unit volume

is decreased. The resultant force causes compaction of the reservoir structure until

the forces are again balanced. As an illustration of this concept, consider letting air

out of a balloon. The pressure inside the balloon reduces while the air pressure on the
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outside of the balloon remains constant. This net force causes the balloon to contract

until the forces are once again in balance.

This analogy also introduces the idea of elastic deformation; the balloon is able to

stretch and compress, subject and proportional to the forces exerted upon it. Such

elastic deformations are often assumed when constructing physics-based models for

induced seismicity. An associated concept is the bulk modulus of a material. This

gives the relative change in volume of the material per unit of compressive force exerted

upon it. In the Groningen reservoir, it has been argued that pressure depletion brings

about compaction in two ways; not only does it cause the net force on the reservoir

but it is also thought to reduce the bulk modulus of the composite material. In other

words, the reservior compacting is thought to make it more susceptible to further

compaction (Bourne and Oates, 2017a).

This compaction alone is not necessarily problematic. Much of the 900 km2 area of

the Groningen field has historically experienced subsidence due to the compaction of

the overburden, comprised of the layers above the reservoir. This means that building

methods and interventions are already used and available in the area to cope with

compaction and the resulting subsidence. It is the pre-existing faults which present a

danger.

When compaction occurs in the reservoir, as opposed to the overburden, additional

shear stresses are placed across the pre-existing faults within this layer. Initially these

are accommodated by static friction and the walls of the fault remain in place. When

these stresses become large enough to overcome the static friction, the fault will slip,

releasing energy and causing an induced earthquake (van Thienen-Visser and Bre-

unese, 2015). While this general process is widely agreed upon, the specifics of how

this happens are not well understood. Additionally, there is not agreement upon which

reservoir properties and features of the extraction scheme that are most important
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drivers of induced earthquake activity. For example, Bourne et al. (2014) and Bourne

and Oates (2017a) argue in favour of seismicity being dependent on compaction while

van Thienen-Visser et al. (2016) provides a counter-argument, favouring seismicity

being dependent on pressure depletion. Despite this lack of understanding and agree-

ment, predictions of subsidence and seismic hazard must be produced. These must be

provided to regulators for a proposed production plan and must be updated and plans

be amended as extraction proceeds (van Thienen-Visser and Breunese, 2015).

1.1.4 Shell seismic risk analysis

Extraction of gas from the Groningen field has in the past been an essential component

of the Dutch economy and continues to be an important reserve for times of crisis. It

is widely agreed that this process has led to induced earthquakes in the Groningen

region, but the specifics of this process are not well understood.

While operating and eventually closing the Groningen gas field, Shell and NAM are

invested in minimising the risk associated with the production of natural gas. The

production plans of NAM include predictions of the subsidence and seismicity caused

by the proposed gas extraction and the associated the hazards and risks. The mod-

elling and assessment of risks are covered in greater technical detail in the Technical

Addendum to the Winningsplan. This large document is split into sections covering

methods for: planning gas production, forecasting and reducing seismic risk NAM

(2016a); subsidence modelling NAM (2016b); hazard assessment NAM (2016c); risk

assessment NAM (2016d) and damage assessment NAM (2016e).

A schematic diagram of the risk assessment procedure is shown in Figure 1.1.3. The

process begins by forecasting pressure depletion and compaction for three levels of

production, at each level considering two production distributions across the reser-

voir. This gives six possible production scenarios for risk comparison. These models
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Figure 1.1.3: Schematic diagram of seismic risk assessment procedure after modelling

of pressure depletion and reservoir compaction.

for pressure depletion and compaction of the reservoir then feed into the probabilistic

forecasting, under each production scenario, of seismic events within the reservoir.

These forecasts are then translated into the effects seen at surface level through the

use of ground motion prediction equations (GMPEs). These ground motions, along

with the density of population and development across the region, are used to cal-

culate the risk and hazard profiles of each production scenario. The assessment of

production scenarios can therefore be seen as a modular exercise, with each com-

ponent interchangeable with another method that performs the same function and

provides as output the required inputs of future modelling stages.

This framework is adaptable to changes in internal structure but also can affect ex-

ternal change. As a result of the first Winningsplan published in 2013, action was

taken in 2014 to reduce the risk associated with induced seismic activity. Production

was then reduced and redistributed within the field, with dramatic reductions in the

areas with greatest compaction (van Thienen-Visser and Breunese, 2015). This action

followed from the theory, later published in Bourne et al. (2014), that the amount of

seismic energy that can be released in an earthquake is an exponential function of the

cumulative compaction of the reservoir.
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This thesis aims to provide improvements for the first component of this work-

flow: modelling the number, magnitude, mechanism and location of induced earth-

quakes.

1.2 Thesis outline

This thesis has two primary aims. The first of these is to improve the understanding

of the process by which earthquakes are induced in the Groningen gas field through

examination, comparison and deconstruction of existing models. The second aim is

to improve these models in terms of their ability to represent reality and in terms of

their statistical properties.

Chapter 2 introduces and describes in detail the data that are available for modelling

earthquakes in the Groningen gas field. Features of both the data and the collection

process are discussed.

Chapter 3 introduces the relevant theory on stochastic point processes and extreme

value theory that provide the building blocks of the statistical models used in this

thesis. In particular Poisson, self-exciting and marked point processes are described

along with the peaks-over-threshold and point process approaches to univariate ex-

treme value modelling. Also introduced are current approaches to modelling induced

and tectonic earthquakes, with a focus on statistical approaches.

In Chapter 4 earthquake locations are considered in isolation from their magnitudes.

A physical hybrid model of earthquake locations is deconstructed to identify important

features that it captures in the earthquake generating process, and features it fails to

capture that present potential areas for improvement.

In Chapter 5 the development of the earthquake detection network in Groningen

is considered. A statistical approach is developed for estimating the time-varying
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magnitude threshold above which all earthquakes are detected. The benefits of using

these additional small magnitude events when modelling large magnitude event is

demonstrated using both simulated and Groningen data.

In Chapter 6 takes the popular epidemic type aftershock sequence (ETAS) model

for aftershocks and proposes a reparameterisation and extension of the model. The

reparameterisation simplifies inference by rendering the parameters near-orthogonal

while increasing flexibility in the model. The extension provides a simple way to

move the ETAS model beyond the assumption of independent, identically distributed

magnitudes and allows interaction between earthquakes.

Chapter 7 concludes this thesis with a summary of the contributions that have been

made, a discussion of the shortcomings of the presented models, and opportunities

for future work.



Chapter 2

Data

2.1 Outline

This chapter will introduce the data available for modelling earthquake activity in

the Groningen region. The earthquake catalogue used in this thesis is publicly avail-

able from the Royal Dutch Meteorological Institute, (KNMI, 2020). The data on gas

extraction and subsidence were provided by Shell and are available as part of pub-

lished technical reports, e.g. Bourne and Oates (2017b). Supplementary information

concerning the development of the earthquake detection and the gas production net-

works were also provided by Shell. These datasets will be outlined in Sections 2.2 -

2.4, where descriptions are given on both the information recorded and how this was

collected or constructed. Following this, Section 2.5 provides an exposition of the key

features of these data sets.

14
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2.2 Earthquake catalogue

The earthquake catalogue is freely available from the Royal Dutch Meteorological

Institute KNMI (2020). It details the location, time and magnitude of all recorded

earthquakes across the European Netherlands since the 5th of December 1991.

Earthquake locations are given by Northing-Easting pairs in the RD coordinate sys-

tem. Earthquake locations are stated to be accurate to within 500m. This has previ-

ously been interpreted as locations having isotropic standard errors of 250m (Bourne

and Oates, 2015). The RD coordinate system is a planar projection of the European

Netherlands and the areas of land and sea around its borders. The errors in location

incurred because of this projection are up to 0.25m, which are inconsequential as com-

pared to the measurement error. In addition to planar locations, earthquake depths

are available but these measurements have low resolution compared to the depth of

the reservoir. Earthquakes within the Groningen field are therefore all assigned a

nominal depth of 3km and so earthquake locations are represented as points on a

plane.

Each recorded earthquake has an associated magnitude. This is a measure of the

energy released by the seismic event and is reported in units of local magnitude

(ML) to one decimal place. Local magnitude is a logarithmic scale used to measure

earthquake severity. It is important to note that an earthquake can only be included

in the catalogue if it is of sufficiently large magnitude for its location to be determined.

This requires that the earthquake to be detected by three or more geophones. The

magnitude of completion for a given region and period is the smallest magnitude

seismic event that can be detected at any location or time within that interval. The

magnitude of completion therefore varies in space and time according to the number,

location and quality of geophones within the interval.
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The magnitude of completion for the Groningen gas field is a property that must

be estimated. It is widely accepted that since 1995 a conservative estimate of the

magnitude of completion in the Groningen region is 1.5ML. Since then significant

investment in the geophone network has lead to an increased ability to detect small

magnitude events, reducing the magnitude of completion. The time at which this was

reduced and the value that is was reduced to are disputed. Statistical analyses of the

Groningen catalogue are therefore typically performed only using events of magnitude

1.5ML or greater to avoid the bias induced by incorrectly assuming that the catalogue

is complete.

Figure 2.3.1 shows the locations of town- and city-centres and the locations of all ob-

served earthquakes in the period 1991-2015. The magnitude of each observed earth-

quake is indicated by the area of the circle representing it. The highest density regions

of earthquakes and population are aligned, which makes induced earthquakes in the

region a particular concern.

2.3 Static covariates

2.3.1 Fault structure

The fault structure of the reservoir was determined using tomography (also known

as seismic imaging) and can be separated into closing faults and internal faults. Gas

cannot move across closing faults, which represent the perimeter of the gas field and

determine its spatial extent. A polygonal approximation of the perimeter of the

gas field is shown in Figure 2.3.1. Internal faults are cracks in the rock structure

of the reservoir and are represented by sets of connected line segments. The 707

internal faults that are included in the static and dynamic reservoir models of the

2013 Winningsplan Groningen van Elk et al. (2013) are shown in Figure 2.3.1. It
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can be seen that these major faults are not evenly distributed throughout the field,

being more heavily concentrated in the south, with a band running NW-SE across

the field.

This set of faults was chosen by expert opinion to be a representative and influential

collection of faults. However, the selection is not exhaustive and this is for two reasons.

Firstly, the fractal nature of faulting means that there will always be faults smaller

than the resolution of the chosen imaging technique. It is thought that the failure of

several of these undetectable faults could cause an earthquake that is not attributable

to any of the larger, detected faults. Secondly, the computational intensity of the

reservoir models limits the scale at which faults can be included while maintaining

reasonable computation times. The threshold for fault inclusion is therefore somewhat

arbitrary but should ideally be as low as possible within the constraints of the available

measurement and modelling techniques.

2.3.2 Reservoir thickness and topographic gradient

The initial thickness of the reservoir, measured in metres, is given on a 500×500 metre

grid across the reservoir. The topographic gradient of the reservoir is the gradient

of the upper surface of the reservoir, and is provided on the same 500×500 metre

grid. Topographic gradient is a dimensionless scalar value giving the absolute value

of the steepest gradient at each point in the reservoir. The top surface of the reservoir

is measured by tomography, from which the spatial gradients used to calculate to

topographic gradient are obtained by finite differencing methods.

The topographic gradient and initial reservoir thickness are static reservoir properties,

they do not change over time, and are plotted in Figure 2.3.2.
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Figure 2.3.1: Locations of towns and cities around the Groningen field, shown by red

triangles. [Left] Locations of active production clusters shown as blue circles. Major

mapped faults shown in grey. [Right] Locations of all Earthquakes since 1995 shown

as grey circles with areas proportional to magnitude.
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Figure 2.3.2: [Left] Thickness of Rotliegend reservoir in metres. [Right] Topological

gradient, the gradient of the upper surface of the Rotliegend reservoir.
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2.4 Extraction covariates

Information on how gas extraction impacts the reservoir is also available in the form

of gridded covariate data. The spatial grid on which these covariates are available is

the same as for the static covariates. Temporally, these values are reported at each

location, interpolated based on model output to the start of each year or to the start

of each week.

Extraction covariates are outputs of physics-based reservoir models which interpo-

late and infer values on a regular grid, based on irregularly spaced measurements of:

pressures at well-heads, surface-level displacements, and seismic images of the reser-

voir’s top surface. The scale of errors on these covariates is unknown, but is likely

to be large, and is frequently disregarded. Bourne and Oates (2017a) acknowledges

the spatial uncertainty in both earthquake location and covariate value by selecting

the level of spatial smoothing in the covariate to optimise predictive performance.

What follows is a brief description of four possible covariates and their methods of

estimation.

Pressure depletion (Bar): Pressure in the reservoir pore space is measured at

well-heads at infrequent, irregular intervals. The MoRes finite element reservoir model

interpolates these values to return pressure estimates at 3 dimensional points within

the reservoir (NAM, 2016b). These estimates are based on strong modelling assump-

tions about reservoir properties and are aggregated vertically and then laterally inter-

polated to give estimates on a regular lattice. Smoothing is applied to these lattices

before use as a covariate.

Compaction (Metres): Compressibility of the reservoir, which is assumed to be

temporally constant but spatially varying, is estimated on a 2500m grid using surface
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displacement measurements and estimated pressure depletion. Estimates of com-

paction are achieved on a 500 metre grid by multiplying the pressure depletion grids

by the compressibility grid and then smoothing. For further details see Bierman et al.

(2015).

Strain Thickness (Metres): The vertical integral of strain over the thickness of

the reservoir at a given point. When there is only vertical strain this reduces to

compaction, otherwise it is the product of compaction and the topographic gradient.

Topographic gradient is the absolute value of the slope of the reservoir’s upper sur-

face, as measured using seismic imaging. To avoid over-fitting based on this image a

smoothing is usually applied. For further details see Bourne and Oates (2015).

Incremental Coulomb stress (Bar): The additional stress placed along a fault

by compaction across the fault. For steeply dipping faults, the confining stress will

be small as compared to shear stress. In this case incremental coulomb stress will be

equal to a material constant multiplied by vertical strain (compaction per unit original

length) multiplied by topographic gradient. Again smoothing is used to avoid over-

fitting to the seismic image.

The pressure depletion and the resulting derived values of compaction, strain thick-

ness and incremental Coulomb stress were initially only available aggregated to an

annual scale. Later a weekly version of pressure depletion was made available, which

presented issues that were not present in the aggregated data. These issues stem

from the historically variable extraction of gas to supply a strongly seasonal demand.

This presents as large amounts of gas being extracted during the winter months and

relatively little during the summer. During the period of high extraction pockets of

low pressure are created which gas then moves into, equalising the pressure gradi-

ent during the summer months. This leads to localised but extensive pore pressure
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increases in the weekly data. How these areas of ‘pressure-up’ should be related to

earthquake activity is not well understood.

2.5 Exploratory analysis

2.5.1 Outline

The aim of this section is to provide an exploratory analysis of the Groningen earth-

quake catalogue in order to improve familiarity with the available data and identify po-

tential challenges developing models for this earthquake catalogue. This exploratory

analysis has been decomposed to consider spatial, temporal and magnitude features

separately.

As mentioned in Section 2.2 the magnitude of completion is not constant through

the observation period. This complicates the interpretation of many aspects of the

exploratory analysis, because not all events below the magnitude of completion are

recorded and therefore a naive use of all data will result in biased conclusions. To

demonstrate this, several of the following analyses are presented for all events since

1995, irrespective of their magnitudes, and also for events since 1995 which exceed a

conservative threshold magnitude of 1.5ML. This choice of threshold follows Bourne

and Oates (2017a) and Dost et al. (2012), where the magnitude of completion is taken

to be 1.5ML in the Groningen field for this period.

2.5.2 Exploratory spatial analysis

Following from Figure 2.3.1, which showed the location of events of all magnitudes,

we begin our exploratory analysis with a simple investigation of the spatial density of

events throughout the Groningen region. Figure 2.5.1 shows Gaussian kernel density

estimates of the spatial distribution of seismic events for all events since 1995 and those
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exceeding magnitude 1.5ML. Most earthquakes occur in the north-west of the gas field

with some evidence of another intensity mode in the south-west. The earthquakes in

the south tend to be smaller and this second mode is less distinct when considering

events above magnitude 1.5ML.
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Figure 2.5.1: Contour plots of the spatial earthquake density estimated using: [left]

all events since 1995, [right] all events with magnitude of at least 1.5ML since 1995.

Although these plots show the spatial variability in the observed earthquake density

through the field, they do not indicate whether these peaks in earthquake activity

would be surprising if events were located at random across the gas field. As a mea-

sure of how unusual such a point pattern would be under complete spatial randomness,

we look at Ripley’s K-function (described fully in Section 3.1.4) as a measure of spa-

tial clustering. This function describes the expected number of further events within

a distance r > 0 of an arbitrary event in the process. Figures 2.5.2 shows the K-

function estimates using the observed point patterns of all events and those above the

1.5ML threshold. For values of r that are above 200 m, the estimated K-function of

both point patterns exceeds the simulation envelope calculated under the assumption

of complete spatial randomness. This indicates that there are a greater number of
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events within a short distance of each other than would be expected under this very

simple model, confirming the initial appearance of clustering. Failure to accept com-

plete spatial randomness is unsurprising, but gives justification for investigating other

models which might better describe the clustering of events. This might be through

the use of either spatially inhomogeneous Poisson processes, self-exciting processes or

a combination of the two.
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Figure 2.5.2: Estimated Ripley K-function for observed data as compared to simu-

lation envelope for 99 realisations of complete spatial randomness: [upper] all events

since 1995 and [lower] events with magnitude of at least 1.5ML since 1995. Left and

right plots show function estimates over short (800m) and moderate (8km) distances

relative to the size of gas field.

To introduce a temporal component to the exploratory analysis, a first question of
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interest is whether or not the intensity of events is changing in the same way through

time at all locations. In order to test this, we consider a simple division of the

field separating the two high density regions seen previously in Figure 2.5.1. This

is shown in Figure 2.5.3, with the spatial modes separated by the line y = 73500 −

0.6x. The density of events in each of these regions through time is also shown in

Figure 2.5.3.

A Monte Carlo test was carried out to test the null hypothesis that the earthquake

intensity in each of these regions is changing in the same way through time. Each

earthquake was labelled as belonging to one of the two high density regions. Under

the null hypothesis, that each region is developing in the same way through time,

estimates of the temporal intensity should remain valid under permutation of these

labels.

The integrated squared error between temporal density estimates f(t) and g(t) on the

time interval [tmin, tmax] is

ISE(f, g) =

∫ tmax

tmin

[f(t)− g(t)]2dt. (2.5.1)

The integrated squared error was used as a measure of discrepancy between the tem-

poral earthquake densities in each of the high density regions, which were each scaled

to have unit integral over the observation period. The integrated squared error of the

observed intensity estimates, shown in Figure 2.5.3, was compared to those obtained

from 10,000 random permutations of the region labels. The probability of an inte-

grated squared error at least as large as that observed was 0.005, strongly suggesting

that the intensity of events changes differently though time depending on location.

Although the significance of this difference will depend on the chosen time-frame and

measure of discrepancy, this provides motivation for further work investigating the

way in which spatial location interacts with changes in intensity through time.
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Figure 2.5.3: [Left] Splitting of field into two high density regions HDR1 and HDR2.

[Right] Temporal event density estimates for HDR1 and HDR2 through time.

2.5.3 Exploratory temporal analysis

In the same way that the exploratory spatial analysis began by considering the distri-

bution of earthquakes over the region, we begin the temporal analysis by considering

their distribution through time. Figure 2.5.4 shows a histogram of the number of

events per year, which gives a simple first visualisation. While the rate of events

above the magnitude of completion of 1.5ML is potentially constant over time, the

overall rate of events appears to be increasing through time. Two points are of note

here. Firstly that the catalogue up until March 2017 is used in this exploratory anal-

ysis, which explains the low event counts for 2017. Secondly, annual aggregation of

event counts is motivated by the seasonal nature of gas extraction but the division

into calendar years is an arbitrary choice. From this plot we can see that the total

event count increases more dramatically over time than that of the largest events; that

is likely through a combination of smaller events being detected more consistently as

the sensor network developed and because small events occur with higher relative

frequency.

Rather than aggregating events by year, in Figure 2.5.5 a smoothed intensity estimate

for each dataset is considered instead. These are obtained using Gaussian kernel den-
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sity estimation and show a similar structure whether including or excluding small

magnitude events. Added to each plot are 95% simulation intervals for the estimated

intensity if the event rate were truly constant over the entire period. The observed

intensity estimates are both systematically below the simulation interval at the start

of the period and above at the end of the period. This indicates that the intensity of

earthquakes is increasing through time at both large and small magnitudes, though

this change is more apparent when considering all events than only those above mag-

nitude 1.5ML.

An artefact of this density estimation method is that the intensity estimates will

be lower at the beginning and end of the estimation interval, because the events that

might have occurred just before or after the interval do not contribute to the intensity

estimate. This edge effect could somewhat be overcome by using a density estimate

that uses boundary reflection methods (Silverman, 1986), but since our focus here is

on the values relative to a homogeneous process this is not strictly necessary.
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Figure 2.5.4: Histogram displaying the number of earthquakes each year since 1995.

In addition to the trend in intensity through time, the inter-arrival time between

events is of interest as an indicator of the degree of temporal clustering or regular-

ity. In such comparisons, the homogeneous Poisson process is typically used as a

comparator and has exponentially distributed inter-arrival times. To compare these
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Figure 2.5.5: Estimated intensity of events through time. Red lines indicate the 95%

simulation intervals under the assumption of constant intensity. [Left] All events since

1995. [Right] Events since 1995 of at least magnitude 1.5ML.

distributions, the observed inter-arrival times were first standardised to have mean

one. The quantiles of these standardised intervals were then compared to those of

the standard exponential distribution. This is shown in Figure 2.5.6. We consider

only events above magnitude 1.5ML in this plot, as the increasing capability to detect

small earthquakes leads to identification of clustering behaviour that is actually an

artefact of the detection method.
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Figure 2.5.6: Quantile-quantile plot of standardised observed interval lengths against

standard exponential distribution. Solid line shows y = x, dashed lines give 95%

simulation envelope.



CHAPTER 2. DATA 28

From Figure 2.5.6 we can see that the observed quantiles deviate significantly from

an exponential distribution. The largest quantiles are larger than expected and the

smallest are smaller than expected, which is consistent with temporal clustering of

events. The idea of temporal clustering has the intuitive appeal that in the context

of earthquakes it may be interpreted physically as aftershocks, earthquakes that are

triggered by another recent earthquake. However this is not the only possible ex-

planation, the increasing intensity over time seen in Figure 2.5.4 would also induce

clustering, though of a different type.

If the mainshocks could be well modelled as a homogeneous Poisson process, so that

the overall intensity was constant, then Figure 2.5.6 could be used to estimate the

proportion of aftershocks within the data. Assuming that delays between a main-

and aftershocks are small compared to the time between mainshocks, long inter-event

intervals would consist mainly of the intervals between main-shocks. Since these follow

an exponential distribution for a homogeneous Poisson process, the upper quantiles

of the inter-event time distribution would therefore form a straight line on the right

of the QQ-plot. The quantile at which this line begins would give an estimate of the

proportion of events which are aftershocks (Ferro and Segers, 2003).

In Figure 2.5.6, there appears to be three rather than two straight line sections. There

are several possible models which may yield such an interval distribution, for example

a combination of a clustered point process and a background intensity that changes

gradually over time. This suggests that inhomogeneous and self-exciting process mod-

els are both worth further investigating in the context of Groningen earthquakes.

2.5.4 Exploratory magnitude analysis

In addition to exploring the spatial and temporal structure of event occurrences, we

can also look at the structure of the marks associated with these events. In the
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assessment of seismic risk, being able to model accurately the markings of events as

well as their locations is of great importance. This is because the mark associated with

each event denotes the magnitude of the earthquake, indicating the amount of energy

released and therefore to some extent the potential of the event to cause damage at

surface level.
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Figure 2.5.7: Gaussian kernel density estimates of magnitude distributions using all

events (black) and only those of at least magnitude 1.5ML (red).

Figure 2.5.7 shows kernel density estimates of the magnitude distributions of all

recorded events since 1995, and the subset of those which reached at least magnitude

1.5ML. The Gutenberg-Richter law is a widely used descriptive model for magnitudes

of seismic events. It states that in any given earthquake catalogue, the number of

events N of magnitude of M or greater is given by

N = 10a−bM , (2.5.2)

for some constants a and b specific to the region and period. The term 10a is a

normalising constant equal to the total number of events in the catalogue Ntotal.

Reworking equation (2.5.2) to be in terms of probabilities and natural logarithms, the
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magnitude survivor function F̄M(m) is

F̄M(m) =
N

Ntotal

= 10−aN = (10−b)m = e−βm, (2.5.3)

where β = b loge 10. This is the survivor function of an exponential distribution and

so the Gutenberg-Richter law can be restated as magnitudes following an exponential

distribution.

In many earthquake catalogues, the distribution of magnitudes deviates from an ex-

ponential at both the small and large magnitudes. At the lower end this is usually

because the network of geophones lacks the sensitivity to detect small events and so

under-counts as compared to the Gutenberg-Richter model. At the higher end, the

deviation occurs because the maximum potential energy that can be stored within a

region before an earthquake occurs has some finite limit. This effectively means that

there is a maximum magnitude of earthquake which can be observed, whereas there

is no upper limit on the tail of the exponential distribution (Vere-Jones, 2010).

In Figure 2.5.7, we can see that for events of at least magnitude 1.5ML, the mono-

tonic decreasing form of the Gutenberg-Richter model seems as though it may be

appropriate. When using the entire catalogue, however, the density estimate becomes

uni-modal. This is likely due to events with small magnitudes typically being missed

by the detection network. A change in this behaviour over time can be seen in Fig-

ure 2.5.8; small magnitudes events are detected more often in the later part of the

observation period, following improvements to the sensor network.

Figure 2.5.8 also demonstrates that the censoring of small magnitude events is not of

a simple ‘cut-off’ form; some events below the magnitude of completion are detected.

These low magnitude events are increasingly detected at later times, which may be a

result of continued/changing gas production or else due to the increasing sensitivity

of the geophone network. It is thought that all earthquakes of this magnitude 1.5ML
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Figure 2.5.8: Magnitudes of earthquakes through time. Red line indicates the mag-

nitude of completion used by Bourne and Oates (2017a) for this period, 1.5ML.

or greater have been recorded in the Groningen region since 1995. The non-standard

censoring of this non-stationary process means that seismicity models for the Gronin-

gen region are typically fitted using only events of at least magnitude 1.5ML. This

avoids biasing in the resulting parameter estimates by using incomplete data but at

the cost of only using 27% of the available data, resulting in parameter estimates with

greater uncertainties.

Figure 2.5.7 provides high-level evidence in support of the Gutenberg-Richter law be-

ing a suitable model for the magnitude distribution in the Groningen region above the

nominal magnitude of completion. We therefore investigate the appropriateness and

the goodness-of-fit of this exponential model to events large enough to be completely

recorded.

As a first step, we consider whether the distribution of large magnitudes remains

constant through time. Since the intensity of events is increasing over time, when

making this assessment we do not split the Groningen catalogue into equal time

intervals but rather into 6 consecutive intervals that each containing the same number
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of events. This helps to ensure that our ability to identify the form of the magnitude

distribution is similar in each interval.

Figure 2.5.9 shows, for each of the 6 time intervals, Gaussian kernel density estimates

for the conditional distribution of magnitudes exceeding 1.5ML using two techniques.

In the first approach, only events exceeding 1.5ML are used to construct the density

estimate, using the boundary reflection technique of Silverman (1986) to account for

edge effects. This approach avoids the inclusion of data below the stated magnitude

of completion but also assumes that the density is symmetric about the boundary.

This is inconsistent with the monotonically decreasing Gutenberg-Richter model and

may be causing the flattening of density estimates near the boundary value of 1.5ML.

The second approach includes events below 1.5ML when estimating the conditional

distribution above 1.5ML. If many events are missing below the boundary, this risks

introducing a bias that reduces density estimates near the boundary.

Comparing the density estimates in Figure 2.5.9, including events below the magni-

tude threshold seems to cause less distortion than the boundary reflection method; the

density estimates for each interval using the second method retain an exponential-like

trend close to the threshold magnitude. This suggests that 1.5ML is a conservative

estimate for the magnitude of completion for the period since 1995, or that only a

small proportion of events just below this level are censored. Using either method,

the estimated magnitude distributions are in good agreement with one another across

all time intervals, indicating that above 1.5ML magnitudes follow the same distribu-

tion over time. We therefore have evidence that while the proportion of all recorded

events that are above the threshold is decreasing through time, the distribution of

events conditional on being above this threshold remains constant.

The Gutenberg-Richter law asserts not only that the exceedances follow the same

distribution through time, but that this is an exponential distribution. To assess this
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Figure 2.5.9: Gaussian kernel density estimates of the magnitude distribution in each

of six consecutive intervals, conditional on events exceeding magnitude 1.5 ML. [Left]

Density estimate excluding events below magnitude 1.5ML with boundary correction.

[Right] Density estimate including events below magnitude 1.5ML.

assumption we use a quantile-quantile plot for magnitudes exceeding 1.5ML, shown

in Figure 2.5.10. Issues arise here due to many sample quantiles taking the same

value because the magnitude data is reported to only one decimal place. Therefore,

both a standard (red) and a corrected (blue) tolerance interval are shown in Fig-

ure 2.5.10. The standard tolerance interval shows the typical range for quantiles of

unrounded exponential data. The corrected tolerance interval show similar ranges

but for exponential data that have been rounded to one decimal place. Including

rounding explains some, but not all, of the additional probability mass around the

threshold magnitude as compared to an exponential distribution. This is indicated

by the greater coverage of the data by the rounding-corrected interval as compared

to the standard exponential interval.

Taken collectively, these exploratory plots indicate that the Gutenberg-Richter model

provides a reasonable starting point for modelling Groningen earthquake magnitudes

but that further investigations in which rounding of the observations is properly ac-

counted for are also warranted.



CHAPTER 2. DATA 34

0 1 2 3 4 5 6

0
1

2
3

4
5

Theoretical quantiles

O
bs

er
ve

d 
Q

ua
nt

ile
s

Figure 2.5.10: Quantile-quantile plot of standardised threshold exceedances against

standard exponential distribution. 95 % tolerance intervals for standard exponential

and rounded standard exponential quantiles are shown in red and blue respectively.

2.5.5 Review

While by no means exhaustive, this exploratory analysis has revealed many features

of the data and answered several of the most pressing question regarding its mod-

elling.

After exploratory analysis we have found that the spatial intensity of events is in-

homogeneous. This was confirmed by considering the probability, under complete

spatial randomness, of the originally apparent clustering of large magnitude events in

the north-west of the field and the secondary cluster of smaller events in the south-

west, by way of the Ripley K-function. The intensity of recorded events was also

found to be increasing through time, with the additional possibility of temporal clus-

tering which requires further investigation. Furthermore, the two high density regions

of recorded earthquake activity appear to have intensity functions that are changing

differently through time.
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An exploratory analysis of the earthquake magnitudes revealed issues relating to the

censoring of small magnitude events throughout the observation period. This cen-

soring is incomplete and varies through time, caused by the increasing sensitivity of

the geophone network. The apparent change in modal magnitude is perhaps also

an artefact of improved detection of small magnitude events because the conditional

distribution of magnitudes exceeding 1.5ML appears to be stationary. Despite this

stationarity, the Gutenberg-Richter law has limitations when modelling these large

magnitude events, assigning lower probability than one night expect to magnitudes

close to the threshold value.



Chapter 3

Literature review

3.1 Point process models

3.1.1 Overview

Point processes are a special case of stochastic processes. As such, they can be de-

scribed by a collection of scalar- or vector-valued random variables Y = {Y1, . . . , YN}.

Both the elements of Y and the number these elements N = |Y| are random. Each

element of Y represents a point in some mathematical space, typically this obser-

vation window W will be either all or a subset of Rd for d ≥ 1. One realisa-

tion of such process is a collection of point locations in the observation window

y = {y1, . . . , yn} ∈ W n.

Point processes are useful models for localised events which occur across space, time or

both. Point process models have been used in forestry, epidemiology and neuroscience,

and form the basis for a popular class of earthquake models. This section aims to give

a brief introduction to important examples of point processes, building from simple to

specialised models. Further details on point process theory are given in Cox and Isham

36
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(1980), while Diggle (1983) covers statistical analysis of point process data.

3.1.2 Poisson point processes

Homogeneous Poisson processes A homogeneous Poisson process (HPP) is the

simplest type of point process; in a HPP the event locations and their count, N(W ) =

|{Yi ∈ Y : Yi ∈ W}|, are both random. In a HPP events are located independently of

one another and uniformly at random across W . The intensity of the point process λ

determines the expected number of events per unit volume in W .

Consider events occurring only in time so that W = R. In this case, it is usual

to relabel the elements of Y so that event indices impose a temporal ordering and

Y1 ≤ · · · ≤ YN . The history of the point process at time t is the set of events that

occur up to time t and is denoted by Ht = {Yi : Yi ≤ t}. The intensity of the Poisson

process, λ > 0, gives the expected number of events in the process per unit time. The

HPP with intensity λ on R can be defined by the conditions that for all t ∈ W , as

δ → 0+:

P (N(t, t+ δ) = 1|Ht) = λδ + o(δ); (3.1.1)

P (N(t, t+ δ) > 1|Ht) = o(δ); (3.1.2)

P (N(t, t+ δ) = 0|Ht) = 1− λδ + o(δ). (3.1.3)

It follows from conditions (3.1.1) - (3.1.3) that:

• The waiting time until the next event from an arbitrary time t, Tt ∼ Exp (λ);

• The intensity and waiting time distribution do not depend on the history of the

process;

• The counting measure N(A) on A ⊂ R is distributed Pois (λ|A|), where |A| is

the Lebesgue measure of A;
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• For disjoint sets A,B ⊂ W , N(A) and N(B) are independent.

These properties allow us to specify a HPP by giving one or more of the following

properties: the intensity for every point in W , the distribution of inter-event times,

or the joint distribution of the counting measure N on all subsets of W .

Inhomogeneous Poisson processes The HPP can be generalised by allowing the

intensity of events to vary as a function of time or covariates. This results in an

inhomogeneous Poisson process (IHPP) with intensity function λ(t) : W → R+
0 . This

intensity function is defined as the instantaneous rate of events at t, i.e.,

λ(t) = lim
δ→0+

E
[
N(t, t+ δ)

δ

]
. (3.1.4)

The survivor function of the waiting time Tt retains an exponential form but with

a rate parameter that now depends on both the starting point t and the intensity

function. Define the integrated intensity function on a set A as

Λ(A) =

∫
A

λ(a)da

and as Λ(a, b) on open intervals of the form (a, b). Then the survivor function of Tt

has the form

F̄Tt(τ) = P (Tt ≥ τ) = exp{−Λ(t, t+ τ)}.

It follows that an IHPP, also satisfies the memoryless property and has indepen-

dent event counts on disjoint subsets. However, for an IHPP the distribution of

the counting measure N(A) depends on the set A that is being considered, where

N(A) ∼ Pois (Λ(A)).

Time rescaling theorem Through a transformation of the time axis it is possible

to transform between Y1, an IHPP with known intensity λ(t) : R+ → R+, and Y2, a
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HPP on R+ with unit rate. The transformation from Y1 to Y2 is given by

Y2 = τλ(Y1) ··= {Λ(0, Yi) : Yi ∈ Y1}. (3.1.5)

While the reverse the transformation from a HPP with unit rate Y2 to Y1, an IHPP

with known intensity λ(t) : R+ → R+,is

Y1 = τ−1
λ (Y2) ··=

{
Λ−1(0, Yi) : Yi ∈ Y1

}
, (3.1.6)

where Λ−1(0, y) is the value of t which solves Λ(0, t) = y.

The transformation (3.1.5) is provided by the time rescaling theorem (Brown et al.,

2002) and can be used to assess the fit of an IHPP model to a point pattern; the

observed point pattern is transformed using the fitted intensity function and the

properties of the transformed pattern can be compared to those of a homogeneous

Poisson process. For example, the inter-event time distribution can be compared to an

Exp (1) distribution. The reverse transformation (3.1.6) gives can be used to simulate

a one dimensional IHPP by transforming a HPP.

Random thinning and superposition In a random thinning of a point process,

each event is either retained in the process or removed with some stated probability.

A randomly thinned Poisson process remains a Poisson process. If the original process

has intensity λ1(t) and each point is retained with probability p(t), then the thinned

process has intensity λ2(t) = λ1(t)p(t). This result gives a second method of gener-

ating IHPPs with intensity function λ2(t): first simulate a HPP with rate λ1(t) = m

where m ≥ λ2(t) for all t, then retain each event in this process with probability

p(t) = λ2(t)/m.

A related operation on point processes is superposition, where events from two or

more point processes are combined into a single point process. The superposition of

independent Poisson processes remains a Poisson processes and the resulting intensity
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is given by the sum of the component intensities. A limit theorem exists for point

process superposition, which states that for a set of k suitably well-behaved, non-

Poisson processes the process formed by their superposition, after sufficient scaling,

converges to a Poisson process as k →∞ (Cox and Isham, 1980). This theorem helps

to explain the wide applicability of Poisson processes to natural phenomena, which

can often be thought of as the superposition of many sub-processes.

Spatial and spatio-temporal Poisson processes The definitions and proper-

ties of Poisson processes can be extended to spatial and spatio-temporal observation

windows. For models in two or more dimensions, the interval specification of the

point process becomes less useful because each inter-event distance corresponds to a

set of possible locations and points which are at a similar distance from a particular

location are not necessarily close to one another. The intensity specification remains

valid for point processes in more than one dimension, with slight alterations to the

definition.

For a spatial point process on W ⊂ R2 the intensity function at x ∈ R2 is

λ(x) = lim
ε→0+

E
[
N(b2(x, ε))

|b2(x, ε)|

]
, .

where where bd(x, r) = {s ∈ Rd : |s− x| < r} is the d-dimensional ball centred at x

of radius r.

The spatial analogue of the waiting time is the radial contact distance, Rx. This is

the the `2-distance from planar location x to the nearest event. The radial contact

distance Rx has distribution function:

P (Rx ≤ r) = 1− exp {−Λ(b2(x, r))} . (3.1.7)

When the Poisson process is homogeneous with rate λ, the distribution (3.1.7) no

longer depends on location x and simplifies to R ∼ Exp (λπr2).
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For a spatio-temporal process on W ⊂ R2×R the intensity function at (x, t) ∈ R2×R

is defined using a space-time cylinder surrounding that location:

λ(x, t) = lim
ε,δ→0+

E
[
N(b2(x, ε)× (t, t+ δ))

|b2(x, ε)× (t, t+ δ)|

]
.

For spatio-temporal processes, the waiting time distribution is defined by aggregating

events over spatial dimensions at each time point and the radial contact distance by

aggregating over time. Note that this does not preserve orderliness of the process

because multiple events can occur at the same location in space or time following

aggregation of the point process.

Inference for Poisson processes Let y = {y1, . . . , yn} be a point pattern on

observation window W , from which a parametric Poisson process intensity function

λ(w; θ) : W → R+
0 is to be inferred, where the parameters θ are in some specified

parameter space. The event count and event locations are independent for a Poisson

process. Therefore, the likelihood function for θ is

L(θ;y) = P (N(W ) = n|θ)
n∏
i=1

P (Yi = yi|θ) ,

=
Λ(W ; θ)n exp{−Λ(W ; θ)}

n!

n∏
i=1

λ(yi; θ)

Λ(W ; θ)
,

= (n!)−1 exp{−Λ(W ; θ)}
n∏
i=1

λ(yi; θ); (3.1.8)

where Λ(W ; θ) =
∫
W
λ(w; θ)dw. The corresponding log-likelihood is

`(θ;y) =
n∑
i=1

{log λ(yi; θ)} − log(n!)− Λ(W ; θ). (3.1.9)

The parameters θ of the intensity model can be estimated by maximum-likelihood or

Bayesian inference. For maximum likelihood estimation, closed form estimators can

only be obtained for very simple intensity functions and so numerical optimisation

routines are required. Similarly, in a Bayesian analysis conjugate prior distributions
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are not available except in the simplest of cases and Markov chain Monte Carlo

(MCMC) methods must be used to estimate the posterior distribution of θ.

One difficulty that can arise when fitting such models is the computational cost when

evaluating the integral Λ(W ; θ). If this integral does not have a closed form then

numerical integration is required at each step of the optimisation or Markov chain.

This can be very costly depending on complexity of the intensity model and the shape

of the observation window. Another difficulty is that point pattern data sets are often

small, making the intensity parameters difficult to estimate precisely. A Bayesian

approach to modelling can ease this problem if domain specific knowledge can be used

to help constrain parameter values through the choice of prior distribution.

3.1.3 Generalisations of the Poisson process

3.1.3.1 Renewal Processes

Renewal processes generalise the interval specification of homogeneous Poisson pro-

cesses in one dimension. For a one-dimensional HPP, the intervals between events

are independent and identically distributed exponential random variables (Cox and

Isham, 1980). Renewal processes generalise this to allow independent intervals with

some other distribution function G.

The dispersion of G controls the degree of regularity or clustering in the process.

If G is less dispersed than the exponential density then the renewal process will

be more regular than a Poisson process. If the dispersion is larger, then the interval

lengths in the renewal process are more irregular, leading to clustering of events in the

process. Renewal processes encompass Poisson processes but allow greater flexibility

in clustering behaviour. However, intervals lengths remain independent and the model

does not easily extend to higher dimensional spaces.
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3.1.3.2 Linear self-exciting processes

The intensity function definition of a point process (3.1.4), can be generalised to allow

dependence on the history of the process, so that

λ(t|Ht) = lim
δ→0+

1

δ
E [N(t, t+ δ)|Ht] .

Poisson process intensities are independent of their history, and renewal process in-

tensities at time t depend only on the instant before t. Self-exciting processes extend

this dependence to allow some or all previous events to influence the intensity at time

t. A non-negative background intensity µ(t) is supplemented by contributions to the

integrated intensity by each previous event. The amount by which the integrated

intensity is increased by each previous event is denoted by r0 ≥ 0, which gives the

expected number of further events triggered by each event. The allocation of this

additional intensity over time is determined by the kernel function, w(τ), which is

defined on τ ≥ 0 and integrates to 1 over this support. The amount and allocation of

additional intensity determines the level of clustering within the process.

A linear self-exciting process has an intensity function of the form

λ(t;Ht) = µ(t) +
∑
Yi≤t

r0w(t− Yi). (3.1.10)

This intensity function can be viewed as the superposition of N + 1 IHPPs. Each

component represents one cause of events; the background intensity and each of the

N events themselves. The process can be therefore be seen as a composite arrival and

branching process, where each event generates a Poisson number of offspring. The

expected number of offspring per event, r0, must be below 1 for the process to be

sub-critical and have stable long-term properties.

The intensity specification of self-exciting processes allows the extension of the model

to spatial and spatio-temporal supports. Self-exciting processes can be made more
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flexible by allowing µ(t), r0 or w(τ) to depend on covariates. In the modelling of

earthquakes, self-exciting models provide a way of jointly modelling earthquakes and

aftershock activity.

3.1.3.3 Doubly stochastic point processes

The final extension of a Poisson process treats the intensity as a random func-

tion. These point processes are called doubly stochastic point processes or Cox pro-

cesses.

Let {Λ(t)} be a real-valued non-negative stochastic process of preassigned structure,

with history at time t given by HΛ
t = {Λ(τ) : τ < t}. Then the complete intensity

function of the doubly stochastic Poisson process is:

λ(t;Ht,HΛ
t ) = lim

δ→0+

1

δ
E
[
N(t, t+ δ) | Ht,HΛ

t

]
= λ(t).

Unlike the realisation of the events from the point process, the realisation of the inten-

sity function is not typically observed. Cox processes therefore belong to the class of

latent models and, depending on the specification of {Λ(t)}, are capable of represent-

ing a variety of complex intensity functions. A common form is to suppose that the

log intensity is a Gaussian process (Baddeley, 2008). The flexibility of these models

means that very large datasets, repeated observations or strong prior knowledge are

required to constrain the model.

3.1.3.4 Multi-type and marked processes

All previous examples of point processes have considered events to consist only of a

location in space, time or both. Covariate information is often available on the events

themselves, as well as on the observation window. To distinguish between these, event

covariates are described as marks. A marked point process has one or more marks
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assigning to each event. These marks could be external covariates or they could be

used to extend point process models. For example, integer valued marks can be used

to allow multiple events to occur at the same location, where the mark denotes event

multiplicity. Multi-type point processes can be modelled by using categorical marks

denote the type of each event. This allows, for example, within-type clustering but

between-type independence.

3.1.4 Measures of clustering

To determine if models that allow clustering are appropriate for an observed point

pattern requires a method to measure the observed degree of clustering. This mea-

surement can then be compared to the expected behaviour of a Poisson process to

give evidence of relative clustering or regularity in the pattern.

The second order intensity function describes the level of clustering of events in a

point process. For a point process on W ⊂ R2 and arbitrary locations x1, x2 ∈ W the

second order intensity function is given by

λ2(x1, x2) = lim
δ,ε→0+

{
E[N(b2(x1, δ))N(b2(x2, ε))]

|b2(x1, δ)||b2(x2, ε)|

}
.

The second order intensity function lacks the easy physical interpretation of the first

order intensity function. For this reason the reduced second moment function, or

Ripley K-function, was introduced. For a stationary, isotropic and orderly process

with intensity λ, the function λ2 depends on x1 and x2 only through the distance

between them, r = |x1 − x2|. The Ripley K-function is then

K(s) = 2πλ−2

∫ s

0

λ2(r)rdr. (3.1.11)

The K-function has a physical interpretation as the expected number of further events

within distance s of an arbitrary event, per unit intensity. At small distances this
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function will therefore have relatively high values for clustered patterns, and low for

regular ones. To make this comparison a homogeneous Poisson process is used as a

benchmark, with K(s) = λπs2.

The physical interpretation of the K-function suggests a means of its estimation from

a point pattern. The K-function may be estimated by first estimating the intensity

and then finding the sample mean number of further events within distance s of an

arbitrary event. When considering a finite observation window this estimate should

be corrected for the bias caused by not observing events outside that window. Let

dij be the distance between events i and j. Also let wij be the proportion of the

circumference of the circle centred at event i of radius dij that is contained in the

window. An edge corrected estimate for the Ripley K-function is then:

K̂(s) =
1

λ̂n

n∑
i=1

∑
j 6=i

wijI{dij ≤ s},

where λ̂ is an estimate of the intensity λ and n is the number of events within the

window. Baddeley et al. (2000) and Marcon and Puech (2009) later considered gen-

eralisations of the K-function to inhomogeneous processes. The second order in-

tensity function and K-function may be extended to spatio-temporal point process.

Definitions and techniques for estimating these extensions are detailed in Dorai-Raj

(2001).

3.2 Extreme value methods

3.2.1 Overview

The usual aim of statistical modelling is to closely represent the centre of a probability

distribution or the typical values of a stochastic process. Standard statistical methods

were developed with this aim in mind, but in many applications it is not typical values
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that are of interest. Rather, it is the particularly high or low extreme values that are

of interest. A model is therefore required for the tails rather than the body of the

probability distribution. It is not appropriate to use standard modelling approaches in

these settings because they are driven primarily by the large number of non-extreme

observations.

Extreme value methods provide statistically rigorous models for the tails a probabil-

ity distribution or random process. These models are fitted exclusively to, or with

strong emphasis on, data from the tail of the distribution. They are therefore not

compromised by the abundance of central values in the observed data. Extreme value

models also provide a principled way of extrapolating beyond the observed levels of

the process. This is justified by deriving asymptotic models for extremal behaviour

and then using these models as approximations for the behaviour at high but finite

levels of a process.

The ability to extrapolate is particularly important when models are being used to

assess hazard and risk, which are strongly influenced by the extremal properties of

both the damage and protective mechanisms. As such, extreme value methods have

been used widely in areas where risk estimation is important, including: finance,

hydrology, and process control (Coles, 2001). To date, the use of these methods

within seismology has been limited.

This section provides an overview of the asymptotic motivation for commonly used

univariate extreme value models and their estimation.

3.2.2 Block maxima approach

Let X1, . . . , Xn be a sequence of independent, identically distributed (i.i.d.) random

variables with unknown distribution function F . Define the maximum of this sequence
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to be Mn = max(X1, . . . , Xn). The distribution function of Mn is then given by

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x)

= Pr(X1 ≤ x) . . .Pr(Xn ≤ x)

= {F (x)}n.

The distribution function of Mn could be estimated by constructing an estimator F̂

for F , but this approach is highly sensitive to changes in the estimated distribution

function F̂ . An alternative approach is to consider the distribution function of Mn as

the length of the sequence X1, . . . , Xn grows. Unfortunately, the distribution of Mn

converges to a point mass on the upper end point of F :

Mn → xF as n→∞ where xF = sup {x : F (x) < 1}.

This issue can be overcome by obtaining a sequence of linear transformations on Mn

that result in a non-degenerate limit distribution. Define M∗
n to be

M∗
n =

Mn − bn
an

,

for sequences of constants an > 0 and bn ∈ R, which stabilise the location and scale

of M∗
n to avoid the degeneracy of its distribution as n increases. The Extremal Types

Theorem (Fisher and Tippett, 1928) states that if these sequences of normalising

constants exist, then as n→∞:

P
(
Mn − bn
an

≤ x

)
→ G(x), (3.2.1)

where G is distribution function of a Fréchet, Gumbel or negative Weibull random

variable. These distributional forms are united in a single parameterisation by the

Unified Extremal Types Theorem. The resulting generalised extreme value (GEV)

family of distribution functions has the form

G(x) = exp

{
−
[
1 + ξ

x− µ
σ

]−1/ξ

+

}
, (3.2.2)
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where x+ = max(x, 0), σ ∈ R+ and µ, ξ ∈ R. The parameters µ, σ and ξ have

respective interpretations as location, scale and shape parameters. Positive values of

ξ correspond to a Fréchet distribution and a heavy upper tail. When ξ = 0 the GEV

is equivalent to a Gumbel distribution and has an exponential upper tail. Negative

values of ξ correspond to a negative Weibull distribution, which is light tailed and

has a finite upper end point.

A linear transformation of a GEV random variable remains within the GEV family

but has different parameter values; this means that the if the distribution of M∗
n can

well approximated by a GEV distribution then so can the distribution of Mn. This

result motivates the use of the GEV distribution as an asymptotic model for finite

sample maxima, analogous to the central limit theorem motivating a Gaussian model

for finite sample means.

To estimate the parameters of the GEV distribution, the observed sequenceX1, . . . , Xn

is separated into m blocks of equal length as in Figure 3.2.1. The sample maxima

in each of these blocks may be treated as an approximate sample from the GEV dis-

tribution of interest and used to estimate its parameters in a frequentist or Bayesian

framework.

3.2.3 Peaks over threshold

An alternative approach to modelling extremal behaviour uses all observations that

exceed some suitably high threshold u. This approach can make use of more of the

available data when multiple extreme events occur within a single block, as shown in

Figure 3.2.1, and can also be used when data are not regularly sampled.

To derive an asymptotic model for this type of data, let X1, . . . , Xn be a sequence of
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Figure 3.2.1: Simulated daily data. Red crosses show the values in an annual maxima

extreme value analysis. Red line indicates threshold value u = 3.0, all exceedances of

which are used in a peaks over threshold or point process approach to extreme value

analysis.

i.i.d. random variables with common distribution function F . Let

Nn(x) =
n∑
i=1

I{Xi > anx+ bn},

where the normalising constants an and bn satisfy the conditions of limit (3.2.1) and

I{A} is an indicator of event A. This random variable counts the exceedances of anx+

bn among the sequence X1, . . . , Xn. Since the Xi are i.i.d. random variables,

Nn(x) ∼ Binom (n, 1− F (anx+ bn)) . (3.2.3)

Taking logs of the limiting result (3.2.2), we know that

n logF (anx+ bn)→ logG(x).

Applying a first-order Taylor expansion to the left hand side and then negating gives

that, for all values of x,

n [1− F (anx+ bn)]→ − logG(x) =

[
1 + ξ

x− µ
σ

]−1/ξ

+

. (3.2.4)
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It follows from (3.2.3) and (3.2.4) that as n→∞ the exceedance count

Nn(x)→ N(x), where N(x) ∼ Pois

([
1 + ξ

x− µ
σ

]−1/ξ

+

)
.

Additionally, for values of x > u:

P (Xi > anx+ bn|Xi > anu+ bn)→ logG(x)

logG(u)
= 1−Hu(x),

where

Hu(x) =


1−

[
1 + ξ x−u

σu

]−1/ξ

+
if ξ 6= 0,

1− exp
(
−x−u

σu

)
if ξ = 0.

(3.2.5)

The distribution function (3.2.5) defines a generalised Pareto random variable with

parameters for the threshold u ∈ R, scale σu ∈ R, and shape ξ ∈ R of the distribution.

The shape parameter is equal to that of the corresponding GEV distribution for block

maxima and does not depend on the choice of threshold. The scale parameter is

dependent on the choice of threshold and is linked to that of the corresponding GEV

distribution by σu = σ + ξ(u − µ) . Additionally, the threshold stability property of

the GPD (Davison and Smith, 1990) states that if X − u|X > u ∼ GPDu(σu, ξ) then

for a higher threshold v, X − v|X > v ∼ GPDv(σu + ξ(v − u), ξ).

The GPD family has three sub-classes depending on the vale of ξ.

• If ξ < 0 then the GPD is heavy-tailed and X − u|X > u is Pareto distributed

with scale parameter σu/ξ and shape parameter 1/ξ.

• If ξ = 0 then the GPD has an exponential tail and X−u|X > u is exponentially

distributed with expectation 1/σu.

• If ξ < 0 then the GPD has a light tail and the distribution has a finite upper

end point xG = u− σu/ξ.

The limit (3.2.5) motivates the use of the GPD as a model for the exceedances of

a high threshold u. This model does not depend on the generating distribution F ,
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and so is widely applicable. After choosing a threshold value, exceedances of this

level may be treated as approximate samples from a GPD and used to estimate its

parameters.

3.2.4 Point process representation

A further generalisation of the extreme value model is to consider exceedances of a

high threshold u as a point process and to examine the properties of this process as

the number of observations becomes large and the threshold approaches xF .

Let X1, . . . , Xn be a sequence of independent random variables with common distri-

bution function F . Assume that the conditions for the limit distribution (3.2.1) hold

and define the sequence of point processes P1, P2, . . . on [0, 1]× R where

Pn =

{(
i

n+ 1
,
Xi − bn
an

: i = 1, . . . , n

)}
. (3.2.6)

This sequence converges to a non-degenerate, inhomogeneous Poisson process P as

n→∞. Large values of Xi are retained in P , while small values are normalised to a

common value bl. The limit process P has intensity function

λ(t, x) =
1

σ

[
1 + ξ

x− µ
σ

]−1−1/ξ

+

, (3.2.7)

on (t, x) ∈ [0, 1]× [bl,∞). The link to the peaks over threshold model can be seen by

considering regions of the form A = (t1, t2)× [u,∞). The integrated intensity function

on such regions is

Λ(A) =

∫ ∞
u

∫ t2

t1

λ(t, x) dt dx = (t2 − t1)

[
1 + ξ

(
u− µ
σ

)]1/ξ

+

.

The Poisson distribution for the total exceedance counts (3.2.3) can be shown by

considering (t1, t2) = (0, 1). This limit process also demonstrates the independence

and identical distribution of exceedance sizes, which correspond to the generalised

Pareto survivor function (3.2.5).
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Parameters of the extreme value model can be estimated by assuming that the Poisson

process limit holds exactly above some high threshold u. Standard estimation methods

for parametric point process intensities may then be used to fit the extreme value

model to an observed point pattern.

Extreme value models are often reported in terms of the distribution for annual max-

ima. This can be easily incorporated into the point process model by introducing a

scaling factor m into the intensity function (3.2.7);

λ(t, x) =
m

σm

[
1 + ξ

x− µm
σm

]−1−1/ξ

+

. (3.2.8)

The resulting parameter estimates are equivalent to the GEV parameters for annual

maxima if m is chosen to be the duration (in years) of the data. If m is chosen to be

the number of threshold exceedances then the parameter estimates are equivalent to

those of the corresponding GPD. For any value of m the resulting parameter estimates

are not dependent on the choice of threshold u. The point process formulation is

therefore particularly useful when the threshold, size or rate of exeedances change

over time.

3.2.5 Inference for extreme value models

Each of the extreme value models can be fitted in a likelihood or Bayesian framework,

with a frequentist approach being most common. Closed forms are not available for

the maximum likelihood estimators in any of these models and so to find estimates

numerical optimisation routines are required. When the shape parameter ξ > −1/2

the maximum likelihood estimators are asymptotically Gaussian in the number of

block maxima or threshold exceedances (Smith, 1985). This property holds in the

majority of physical applications of extreme value models and allows standard confi-

dence interval construction using the delta method or the profile deviance function.
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The case where ξ ≤ −1/2 corresponds to an upper tail that is very short and the

estimators converge at a greater rate.

Bayesian modelling requires a prior distribution to be specified on the model parame-

ters. Conjugate priors do not exist for these models and so Markov chain Monte Carlo

(MCMC) methods are required for inference. A Bayesian approach can therefore be

computationally costly, but does allow expert knowledge of the process to be included

through the choice of prior. This can be highly beneficial to inference in the low data,

extreme value setting. Bayesian methods also provide natural estimation of parameter

uncertainty, avoiding the theoretical complications of maximum likelihood.

A detailed description of the frequentist inference procedure for each of these models

is given in Coles (2001), and the Bayesian analogues in Coles and Tawn (1996) and

Sharkey and Tawn (2017).

In each of these models the threshold value, or equivalently block length, must be

chosen. This choice presents a trade-off between bias and variance. A low threshold

risks the asymptotic model being valid for only a portion of the data used, biasing

parameter estimates. Conversely, a high threshold reduces the amount of available

data and provides lower precision estimates of the parameters. There are no exact

methods for choosing the threshold value. Diagnostics used to guide this choice are

usually based on demonstrating deviation from the limit distribution and are reviewed

in Scarrott and MacDonald (2012).
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3.3 Earthquake modelling

3.3.1 Overview

The are a great many models for seismicity in either space or time, with far fewer

spatio-temporal models available. A reason for this is the large computational cost

of fitting and implementing spatio-temporal models and the relatively small amount

of information available to fit these. Earthquake models may be descriptive or con-

ceptual. Descriptive models aim only to capture the important properties of the

earthquake catalogue, while conceptual models aim to describe the process generat-

ing the earthquakes. The mechanics of geological systems are not fully understood

and so all models must fall somewhere between these two extremes. Appropriately

combining a descriptive model with physical insights is therefore a key component of

statistical seismicity modelling.

Point process models of seismicity can range from purely descriptive to very conceptual

depending on the intensity specification. Epidemic type aftershock sequence (ETAS)

point process models are toward the descriptive end of this scale and are widely

used to model tectonic earthquakes (Zhuang et al., 2012). These models are special

cases of the self-exciting processes introduced in Section 3.1.3.2 and will form the

focus of Section 3.3.2. Following this, Section 3.3.3 considers physically motivated

statistical models specific to the Groningen field, which aim to explain as well as

describe earthquake occurrences.

3.3.2 Epidemic Type Aftershock Sequence models

Labelling earthquakes as foreshocks, mainshocks and aftershocks is not a straight-

forward task, even retrospectively, and remains open area of research (van Stiphout

et al., 2012; Benali et al., 2020). ETAS models draw inspiration from epidemiology
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and avoid the need for this classification. Instead, all earthquakes are treated equally.

Each earthquake has the potential to trigger further earthquakes and the propensity

to do so is determined by its magnitude.

The initial ETAS model of Ogata (1988) is a temporal marked point process model

for earthquake occurrences times and their magnitudes. In this model, each event

represents a time-magnitude pair Yi = (Ti,Mi) for i = 1, . . . , N and the history of the

process includes the marks as well as times of previous events; Ht = {Yi = (Ti,Mi) :

Ti ≤ t}. The point pattern and associated marks are modelled independently, with

marks assumed to be i.i.d. with probability density function f(m). This magnitude

distribution is often taken to be the Gutenberg-Richter model,

f(m) =

 β exp{−β(m−m0)} for β > 0 and m ≥ m0,

0 otherwise,
(3.3.1)

where m0 is the minimum event magnitude. The Gutenberg-Richter model is equiva-

lent to an Exp (β) density translated by m0, where earthquakes with magnitudes less

than m0 are considered too small to cause a hazard or to induce further earthquakes.

When this magnitude model is used, Yi ∈ W × (m0,∞) where W ⊆ R.

The intensity function of the ETAS model is given in equation (3.3.2). This inten-

sity is a superposition of a background process with constant rate, µ, and intensity

contributions from the previous events depending on their times ti and magnitudes

mi;

λ(t;Ht) =

[
µ+

∑
i:ti<t

κ(mi)h(t− ti)

]
, (3.3.2)

where κ and h are functions defined as follows.

The productivity function κ(m) is a function giving the expected number of events

that are triggered directly by an earthquake of magnitude m. The expected number

of triggered events is dependent on the triggering event magnitude through a relation
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of the form:

κ(m) =

 A exp{α(m−m0)} for m ≥ m0 and A ≥ 0,

0 otherwise.

The allocation function h(t) is a probability distribution describing the time delay

between triggering and triggered events. The time delays until these aftershocks are

usually described by the Omori-Utsu law. When modelling the temporal intensity

of aftershocks t time units after a main-shock, λ(t), for the large Nobi earthquake of

1891, Omori (1894) found that a relation of the form:

λ(t) =
K

(t+ c)
I{t > 0} for c,K ≥ 0, (3.3.3)

provided a good fit to the observations. This was later generalised by Utsu (1957),

who suggested that the decay through time could vary across catalogues and proposed

a relation of the form

λ(t) =
K

(t+ c)p
I{t > 0} for c,K ≥ 0 and p ≥ 0. (3.3.4)

This relationship is known as the Omori-Utsu or modified Omori law. It was shown

by Utsu et al. (1995) to describe many aftershock sequences and that the temporal

decay in intensity was independent of the magnitude of the initial earthquake.

The temporal ETAS model was extended to space and time in Ogata (1998). The

intensity function of this process is given in equation (3.3.5), where x ∈ R2. This

model allows for a spatially varying background intensity µ(x) and also for the spa-

tial distribution of triggered events to depend on the magnitude and location of the

triggering earthquake through the spatial kernel g(x,m). Again, the magnitudes are

assumed to be independent of time, location and cause of event. This formulation

gives the model

λ(x, t,m|Ht) = f(m)

[
µ(x) +

∑
i:ti<t

κ(mi)h(t− ti)g(x− xi,mi)

]
. (3.3.5)
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The ETAS model is now well studied, both in theory and in practice. This model and

its extensions are commonly used to describe tectonic seismicity. A review of further

extensions to the ETAS model is given in Zhuang et al. (2011). These extensions

include models for µ(x) using splines, Gaussian processes, and adaptive piecewise-

constant functions (Kolev and Ross, 2020; Molkenthin et al., 2020; Ogata, 2011).

Models with spatially varying kernels and magnitude parameters have also been pro-

posed. Such model extensions are only feasible for large earthquake catalogues. The

ETAS model is not the only descriptive model of seismicity available. Zhuang et al.

(2011) reviews alternative models, with references to more detailed descriptions.

3.3.3 Physics-based modelling

3.3.3.1 Elastic thin-sheet models

Physics-based seismicity models must be developed in the context of the geological

structures and the mechanism driving seismicity in a particular study region. In this

review, we therefore focus on the elastic thin-sheet models for the Groningen reservoir

developed in Bourne and Oates (2017a). These models build upon previous work in

Bourne et al. (2014) by incorporating additional assumptions about reservoir proper-

ties to better link the gas extraction and earthquake processes. In Bourne and Oates

(2017a), the reservoir is modelled as a porous, elastic, thin sheet which deforms due

to the observed pore pressure depletion. This deformation causes additional stress on

a heterogeneous network of faults, which each have some initial stress state. When

the combined initial and added stress exceeds a critical value, the faults will slip

and release the stored potential energy as an earthquake. Several inhomogeneous

Poisson process models are constructed to describe resulting spatio-temporal inten-

sity of induced earthquakes based on variations in the assumptions about reservoir

properties.
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The simplest form of the model considers a uniform pressure change within an homo-

geneous, isotropic, linear-elastic reservoir of infinite extent, which contains a network

of pre-existing faults with i.i.d. initial stresses. Since the reservoir is assumed to be

linear-elastic, the additional stresses acting on faults are proportional to pressure de-

pletion. Under this model a fault will slip and cause an earthquake after a pressure

depletion of ∆p if its initial stress C was within m∆p of its critical stress ccrit, where

m is a material constant. In this way, induced earthquakes correspond to those faults

with the highest initial stresses. The fraction of faults which fail at a particular level

of reservoir depletion therefore depends on the upper tail of the initial stress distribu-

tion. This initial stress distribution is unknown, but extreme value theory provides

an asymptotically motivated form for its tail.

If C is the random initial stress on a particular fault and u is a high quantile of the

initial stress distribution, then C−u|C > u ∼ GPDu(σ, ξ) provides an asymptotically

motivated model for extreme initial stresses. Since a fault fails if it has initial stress

within m∆p of ccrit, the probability of failure is

Pf = P (C +m∆p ≥ ccrit)

= P (C ≥ ccrit −m∆p|C > u)P (C > u)

=


(
1 + ξ

σ
(ccrit −m∆p− u)

)−1/ξ

+
P (C > u) if ξ 6= 0,

exp
{
− 1
σ
(ccrit −m∆p− u)

}
P (C > u) if ξ = 0.

Fault failure probabilities are derived in a similar way for cases where the properties

of the reservoir are less restricted; these allow for heterogeneous reservoir thickness

and for there to be pre-existing vertical offsets across faults. Using these failure

probabilities, a Poisson point process for extreme threshold failures may be specified.

The intensity function λ(t) at time t for this process can be expressed in terms of the
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fault failure probability:

λ(t) = ρh
∂Pf
∂t

= ρh
∂Pf
∂(∆p)

∂(∆p)

∂t
,

where ρ is the volume density of faults and h is reservoir thickness.

This type of intensity function was constructed for a range of reservoir models, the

properties of which are detailed in Table 3.3.1. In these models the bulk modulus

of the reservoir may be homogeneous or may vary laterally, the deformation of the

reservoir may be elastic or plastic (elastic deformation models are based on pressure

depletion while plastic deformation models are based on vertical compaction), and the

failure probability may respond to depletion or compaction in a linear, exponential or

generalised Pareto relationship.

Heterogeneity

Model Geometric Elastic Covariate Pf response

Homogeneous None None None Constant

PT None None Pressure Depletion Linear

EPT None None Pressure Depletion Exponential

CT None X Compaction Linear

ECT None X Compaction Exponential

EST X X Strain Exponential

GPST X X Strain Generalised Pareto

Table 3.3.1: Reservoir models considered by Bourne and Oates (2017a)

Each of these models were fitted to the earthquake catalogue for the Groningen reser-

voir. To avoid the issues associated with incomplete earthquake detection, the models

were fitted using events of magnitude 1.5ML or greater in the period between 1995
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and 2017. The models were fitted in a Bayesian framework using independent uni-

form prior distributions for the parameters. Exponential prior distributions were also

considered, and achieved the same model rankings as the uniform prior.

For evaluation of the models, the data were split into training and test periods. The

division between these was taken as the 1st of January 2012, to match with the five

year predictions required for the Groningen production plans. The models were then

evaluated by likelihood- and simulation-based testing. For likelihood-based testing,

the posterior predictive distribution of the likelihood of the test data was calculated

for each model in Table 3.3.1. These distributions were then used for model compar-

ison, where models with larger modal values and small variability about this value

are preferred. Simulation testing was also performed, to compare the properties of

catalogues simulated under each fitted model to in the test and training portions of

the catalogue. These properties included the temporal intensity of events, and the

spatial distribution of events.

The likelihood-based testing revealed the following order of model performances using

the same model codes as in Table 3.3.1, where A < B and A ≤ B show strong and

weak preferences for model B over model A:

PT < homogeneous < CT < EPT < ECT < GPST ≤ EST.

Simulation testing revealed that the exponential and generalised Pareto trend models

were better able to describe the temporal developments in earthquake intensity. It also

revealed that strain-based models were better able describe the spatial distribution

of seismic events, which gives some reasoning for the observed ordering of events.

The exponential strain model (EST), was selected to be the preferred model because

of its parsimony and slightly better performance in the likelihood testing. From

the relative performance of these models, Bourne and Oates (2017a) conclude that
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there is strong evidence for including the inhomogeneous reservoir properties when

modelling seismicity. Further, it was suggested that additions to the model might

include stress-transfer within the reservoir, the possibility of self-excitation of the

point process and covariate dependent event magnitudes. Later model developments

(Bourne and Oates, 2017c; Bourne et al., 2018; Bourne and Oates, 2020) investigate

these additional features using the exponential trend intensity model, or one of similar

derivation, for mainshocks.

The effects of long-term gas extraction or cessation of extraction are the same under

each of these models. Reducing or stopping production would reduce the rate of

earthquakes, but not stop them entirely, because pore pressure would continue to

change across the reservoir as spatial pressure gradients equalise. The effect of long-

term gas production is that fault failures will begin on faults that are in the body

of the initial stress distribution, rather than the tail. The failure trend would then

be expected to fall from exponential to linear (Bourne and Oates, 2017a) and so the

model would over-predict seismicity. This is not necessarily negative, but could lead

to the implementation of overly conservative production plans.

3.4 Recent work on Groningen seismicity

We conclude this chapter by giving a brief overview of the breadth of current research

topics that focus on the Groningen gas field and the earthquakes that occur there.

The induced earthquakes in the Groningen gas field have received much and varied

attention by the statistical seismology community in recent years. The reasons for

this are at least threefold; the detection of earthquakes in this region is second to

none, providing a world-leading earthquake catalogue in terms of completeness; the

high quality covariate information on gas extraction presents new opportunities that

are not present when modelling tectonic earthquakes; and finally, the possibility for
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human intervention in the earthquake generating process means that work in this area

has a potentially huge impact.

There is continuing research to further improve the completeness of the earthquake

catalogue in the Groningen region as well as the quality of the covariate information,

which describes how the gas field is changing due to gas extraction. This has led to

active research in signal processing to better detect earthquakes from the background

vibrations of the Earth’s surface (Paap et al., 2020; Waheed et al., 2020) and in

remote sensing to better measure the compaction of the gas field (Hol et al., 2018;

Hadi Mehranpour et al., 2020).

Physics-based statistical models continue to be a popular approach to modelling

the times, locations and magnitudes of induced earthquakes (Dempsey and Suckale,

2017; Richter et al., 2020; Smith et al., 2020). The application of machine learning

techniques is a novel approach to this same task, which is taken by Limbeck et al.

(2021).

Finally, a major focus of research regarding the Groningen gas field is to characterise

the earthquake magnitudes in the region. This is particularly important in assessing

the risk posed to buildings overlying the gas field. Attention is often given to esti-

mating the largest possible earthquake within the region or the largest earthquake

expected during a given time interval, with a workshop having been dedicated to

addressing these challenges (Zöller and Holschneider, 2016). A recent treatment of

this problem is given by Beirlant et al. (2019) who compare a range of approaches.

Estimating these largest magnitudes links closely with the extreme value techniques

introduced earlier in this chapter; Shcherbakov et al. (2019) uses associated methods

to address this same problem in the tectonic setting.
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Covariate-based models for

induced earthquake locations

4.1 Introduction

4.1.1 Induced earthquakes

Catalogues of earthquakes induced by human activity differ in several important ways

from those caused by the motion of the Earth’s tectonic plates. Induced earthquake

catalogues are typically composed of fewer, smaller earthquakes that occur closer to

the Earth’s surface. Their proximity to the surface means that they pose a hazard

to infrastructure despite their relatively small magnitudes because their effect is dis-

persed over a smaller spatial extent. Appropriate modelling of earthquake occurrences

and magnitudes is foundational to the appropriate protection of infrastructure against

seismic hazards. When modelling either type of seismicity it is common to assume

that earthquake counts and locations may be modelled separately from their magni-

tudes (Zhuang et al., 2011). Here, we focus on models for the locations and counts of

64
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induced earthquakes.

In the tectonic setting, the earthquake generating process is often modelled as hav-

ing reached steady-state. Fluctuations from this are then attributed to aftershock

activity: earthquakes that are triggered by slip rather than drift of tectonic plates.

The combination of large catalogue sizes and the assumption of temporal stationarity

facilitate the use of highly flexible semi-parametric occurrence models for tectonic

earthquakes (Kolev and Ross, 2020; Molkenthin et al., 2020). When modelling in-

duced earthquakes, the steady-state assumption is rarely appropriate because the

human activity that causes earthquakes changes over time. Additionally, the small

number of earthquakes available in catalogues of induced seismicity makes the use of

such highly flexible models particularly challenging.

Despite the above challenges, specific opportunities exist that are accessible only in

the context of induced earthquakes. Notably, the seismic process is driven by human

actions, and so if these have been sufficiently monitored then there is the potential

to include these actions as covariates within an earthquake model. The small size of

the earthquake catalogue necessitates a structured modelling approach. This addi-

tional model structure can be beneficial as it can allow us to focus on interpretable

model forms that can increase our understanding of the earthquake triggering pro-

cess, relative to a purely descriptive modelling approach. Increased understanding

is important here, because it can potentially support informed intervention into the

human activities that are driving the earthquake activity.

4.1.2 Motivation and aims

This research focuses on earthquakes that are induced by extraction of natural gas

from the Groningen gas field. This gas field lies approximately 3 km below a densely

populated region in the north-east of the Netherlands that does not experience any
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other form of seismic activity (NAM, 2016a; van Thienen-Visser et al., 2016). As a re-

sult, the structures overlying the gas field were not designed to withstand such events.

Understanding the link between gas extraction and the locations of induced earth-

quakes is therefore important for at least two reasons. Firstly, it can help to inform

which areas should be prioritised when retrofitting buildings to withstand induced

earthquakes. Secondly, it allows investigation of whether the number or location of

earthquakes could be influenced by following different gas extraction scenarios.

The ground and structures above the gas field are collectively known as the overbur-

den. The overburden is supported by the reservoir, which is comprised of porous rock

where the pore space is filled with natural gas. The overburden is supported by both

the structural integrity of the porous rock and also by the pressure exerted by the

gas within the pore space. Extracting gas reduces the pressure in the pore space and

increases the load on preexisting faults within the reservoir structure. When the shear

force on these faults becomes sufficiently large to overcome static friction the fault

will slip, releasing the potential energy as an induced earthquake (van Thienen-Visser

and Breunese, 2015; Bourne and Oates, 2017c).

Detailed information on gas extraction from the Groningen field is available along

with other key reservoir properties (Bourne and Oates, 2017b). Such covariate in-

formation is rarely available in the tectonic setting and is central to the modelling

approach for small catalogues of induced earthquakes. Rather than considering very

flexible model forms, parsimonious parametric models can be constructed based on

the physical process that is causing earthquakes. This model structure supports lim-

ited earthquake data within a physically motivated framework, which can be adapted

to answer questions of interest about the earthquake generating process.

Bourne and Oates (2017a) developed such a physically-motivated point process model

for earthquakes within the Groningen gas field. In this chapter, we take this as our
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baseline model with two primary aims. Firstly, we assess the parsimony of the base-

line model. We do so by considering in turn each component in the baseline point

process intensity function and exploring its relative importance to model fit. Sec-

ondly, we incorporate a range of additional physical and mathematical features into

the baseline model, for example a lagged effect of gas extraction or spatially varying

model parameters. We investigate whether incorporating these additional features

of the earthquake generating process into the baseline model leads to significant im-

provements in model fit. This modelling addresses questions of practical and scientific

interest. Specifically, we assess whether there is sufficient evidence to suggest answer

the following questions:

• Is there spatial variation in the parameters of the baseline model?

• Does the level of smoothing applied to the gas extraction activities limit the

baseline model?

• Is there a temporal lag or spatial displacement between gas extraction and

induced earthquake activities?

• Does the gas extraction rate influence the resulting induced earthquake count?

Full descriptions are given in Chapter 2 for the available covariates on gas extraction

when answering these questions.

4.1.3 Outline

The rest of this chapter is organised as follows: Section 4.2 introduces covariate-based

point process models and describes the baseline model; Section 4.3 gives descriptions

of model simplifications and extensions that will be investigated; Section 4.4 gives the

results and a discussion of fitting these models; Section 4.5 summarises our findings

and proposes potentially fruitful areas of further research.
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4.2 Background

4.2.1 Point process models for earthquakes

A point process is a stochastic process that provides a statistical model for the count

and locations of localised events within a fixed region. As such, point processes are

frequently used as a stochastic model for earthquake epicentres. Poisson processes are

one of the simplest, most well studied and most widely used point process models.

A Poisson process, defined on a region A, may be defined completely by its intensity

function λ(x) : A → [0,∞). The number of point events in the process and their

locations on A are random. The number of events on A is denoted by N(A) and

follows a Poisson distribution where the expected event count is equal to the intensity

function integrated over A:

N(A) ∼ Poisson(Λ(A)) where Λ(A) =

∫
x∈A

λ(x)dx.

Each event in a Poisson process is located independently of all other events and of

the event count. The locations of events within a particular realisation of the point

process are distributed over A in proportion to the intensity function λ. Throughout,

X = {Xi : i = 1, . . . , N} denotes the event locations in a stochastic point process,

where Xi ∈ A and N ∈ R+
0 . The observed point pattern on A, which is a particular

realisation of the point process, will be denoted by x = {x1, . . . , xn}.

Point process models can be fitted to an observed point pattern using standard meth-

ods from either frequentist or Bayesian inference. In either case, it is usual to select

a flexible parametric or semi-parametric model for the intensity function and to esti-

mate the vector of parameter values θ for λ(x; θ) under the chosen framework. In a

similar manner to generalised linear modelling, covariate effects may be incorporated

into the intensity function; an equivalent of the link function may be used to ensure

that the non-negativity condition on λ is not violated by the inclusion of covariates.
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Letting z denote one or more covariates that are measured on A, the intensity function

may then be specified as λ(x; θ, z). The corresponding integrated intensity function

on the entire region is given by

Λ(A; θ, z) =

∫
x∈A

λ(x; θ, z)dx.

The likelihood function for a Poisson process with intensity function λ(x; θ, z) and

integrated intensity function Λ(A; θ, z) is then given by

L(θ;x, z) = Pr(N(A) = n ∩X = x|θ, z)

= Pr(N = n|θ, z)
n∏
i=1

Pr(Xi = xi|θ, z)

=
Λn(A; θ, z) exp{−Λ(A; θ, z)}

n!

n∏
i=1

λ(xi; θ, z)

Λ(A; θ, z)
.

The log-likelihood of the Poisson process is therefore given by

`(θ;x, z) = − log(n!)− Λ(A; θ, z) +
n∑
i=1

log λ(xi; θ, z).

For particularly simple choices of the intensity function it is possible to find the maxi-

mum likelihood estimator for θ analytically or to specify a conjugate prior distribution

for θ. For most parametric forms for λ that are useful in practice, numerical optimi-

sation routines or Markov chain Monte Carlo methods must be used to estimate the

parameter values.

Specifying a Poisson process thorough its intensity function allows the same modelling

framework to be used for point patterns observed on regions A of one, two or many

dimensions. In the context of the Groningen earthquakes, the region A is the spatial

extent of the gas field, W ⊂ R2, over the time interval (0, tmax), so that A = W ×

(0, tmax). Earthquakes are then described as point events (x, t) in three dimensions,

where x represents the planar location and t represents occurrence time.
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4.2.2 Baseline intensity model

We use the physically motivated Poisson process model developed in Bourne and

Oates (2017a) as our baseline model. This model was derived based on the physics

of the gas extraction process and a thin-sheet approximation of the reservoir struc-

ture to describe vertical reservoir compaction due to gas extraction. Based on weak

assumptions about the initial distribution of stresses on pre-existing faults within

the reservoir, a covariate-driven intensity model was derived based on the additional

stresses applied to these faults due to gas extraction.

The baseline model was constructed based on the earlier observation in Bourne et al.

(2014) that the earthquake count (per unit reduction in reservoir volume) increases

exponentially with cumulative reservoir compaction. The covariates z in the resulting

intensity function are c(x, t), the cumulative compaction until time t at location x,

and ċ(x, t) = d
dt
c(x, t) the instantaneous compaction at time t and location x. Con-

sider a small spatial extent around a point x ∈ W in which reservoir compaction is

approximately constant and denote this region by B(x, δ) = {x′ ∈ W : ||x−x′||2 < δ}

for δ > 0. By letting |B(x, δ)| be the spatial area of B(x, δ), the observed relationship

between compaction and earthquake counts leads to an integrated intensity function

of the form:

Λ(B(x, δ)× (0, t);β, z) = β0|B(x, δ)|c(x, t) exp{β1c(x, t)}, (4.2.1)

where β = (β0, β1) is a vector of model parameters to be estimated. To ensure

non-negativity of the corresponding intensity function, it is required that β0 ≥ 0

and β1 ≥ −maxA c(x, t). It is useful to consider the integrated intensity function

on regions of this form because covariate values are given annually on a spatial grid

with fine spatial resolution. The integrated intensity over W × (0, t) can then be

well approximated by a temporal interpolation of the cumulative covariate value in
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each pixel to time t and then summing expressions of the form (4.2.1) over all pixels.

The integrated intensity function (4.2.1) corresponds to an intensity function of the

form:

λ(x, t;β, z) = β0ċ(x, t)[1 + β1c(x, t)] exp{β1c(x, t)}. (4.2.2)

The later modelling approach Bourne and Oates (2017a) uses an intensity function

of the same form but using strain thickness, the product of reservoir compaction

and the topographic gradient of the reservoir surface, in place of compaction. In

their approach, the strain thickness covariate is spatially smoothed using an isotropic

Gaussian kernel where the bandwidth is chosen to optimise model performance.

Work done by Shell subsequent to the initial development of this material has re-

sulted in further changes to the covariates used during model fitting (Bourne et al.,

2018). There has been a shift to using the smoothed incremental Coulomb stress

(ICS) in place of smoothed strain thickness. The ICS is the product of compaction,

topographic gradient and a spatially variable reservoir property (a poroelastic mod-

ulus) that describes the proportion of reservoir compressibility attributable to each

of the reservoir rock structure and remaining gas pressure. When constructing the

incremental Coulomb stress covariate, three properties are selected to optimise model

performance: the largest fault offset, as a proportion of reservoir thickness, on which

induced earthquakes can occur (termed the maximum fault throw); the value of the

poroelastic modulus; and the bandwidth of the spatial smoothing kernel. In the most

recent implementation, uncertainty in these values is reflected within a Bayesian infer-

ence framework. This is a thorough but computationally expensive approach that is

not suitable for the exploratory nature of the work presented in this chapter; namely

to investigate a wide range of physical processes which might improve the model

formulation.
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In this research we address the above developments by select the smoothing length

scale σ applied to gas extraction covariates as part of our inference procedures. To

emphasise this, we denote (for example) the cumulative ICS at location x ∈ W and

time t ∈ (0, tmax) by s(x, t;σ). The model extensions that we consider here are already

extensive in number and complexity, and so to limit the computational intensity of

this exploratory work we use the incremental Coulomb stress for fixed values of the

maximum fault throw and poroelastic modulus.

4.3 Alternative models

4.3.1 Approach outline

We have two aims when developing alternative forms for the intensity function λ:

firstly to determine which mathematical components of the physically motivated in-

tensity model (4.2.2) are most important to model fit, and secondly to investigate

whether there are physical features that could be included to improve the intensity

model. This section is therefore divided into an investigation of sub-models to ad-

dress the former question and model extensions to address the latter. Here, we discuss

model motivations and formulations while the results of fitting these models to the

Groningen earthquake catalogue are presented in Section 4.4.

Table 4.3.1 gives the intensity function corresponding to each model, while Table A.1.1

in Appendix A.1 gives the corresponding integrated intensity function for an individual

spatial pixel. The baseline model introduced in Section 4.2.2 is described by model

B0 in each of these tables.
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4.3.2 Model simplifications

A Poisson process model with intensity of the form (4.2.2) was proposed by Bourne

and Oates (2017a) for earthquake locations in the Groningen gas field. Up to pro-

portionality, this intensity function has three terms: the instantaneous covariate rate,

a linear term in the cumulative covariate and an exponential term in the cumulative

covariate. Since the model was derived based on physical considerations, we aim to

assess the importance of each of these terms to the overall model fit. To do this we

consider four sub-models.

The first sub-model that we consider, S1 in Table 4.3.1, has an intensity proportional

to the smoothed topographic gradient of the upper surface of the gas field, g(x). Since

this covariate does not change in time, the model does not allow for any temporal

variation in earthquake locations and counts. This is a deliberately over-simplified

model that we do not expect to perform well. The purpose of including this model is

to provide a comparison for the second sub-model, S2 in Table 4.3.1. This is again

a very simple model, where earthquake intensity is proportional to the ICS. This is

likely a more meaningful model as it allows the changes in gas extraction over time

to be represented. Models S1 and S2 represent the most parsimonious inclusion of

covariates within the point process intensity.

We also consider the two sub-models, S3 and S4, formed by respective elimination of

the exponential and linear terms from the intensity function. This is motivated by

the the linear term providing a first order approximation to the exponential term for

small covariate values. If this approximation is good then this may allow a more par-

simonious representation of the intensity function. Otherwise, these models provide

a means to assess the relative contributions of these two terms to the overall model

fit.
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Evaluation and comparison of these models is somewhat complicated by the small

number of observed events. Additionally, these sub-models are not formally nested

within the baseline model B0. This means that likelihood ratio tests are not ap-

propriate. For these reasons we do not split the earthquake catalogue into training

and evaluation sets. Instead, we use the AIC as a metric to reward goodness-of-fit

while penalising model complexity. Other metrics or information criteria such as the

BIC might also have been considered. In this exploratory work it is preferable to

identify potentially promising model forms to then be put forward for more thorough

examination, and so the less conservative AIC metric is used for model comparison

(Pawitan, 2001). In subsequent discussions comparing model performance, we deem

a better fitting model to be one with a lower AIC value.

4.3.3 Model extensions

In addition to understanding the most important components of the baseline model,

we want to investigate whether the inclusion of a range of additional physical features

into the intensity function might improve model fit.

Spatial variation in model parameters. The first feature we investigate is whether

there is spatial variability in the model coefficients; that is, we wish to investigate

whether the effect of gas extraction on induced seismicity is the same throughout the

gas field. There are two spatial modes of earthquake activity within the gas field,

as shown in Figure 4.3.1. A question of interest is therefore whether the seismicity

in these two regions is better described by a unified model or two distinct mod-

els. As an exploratory approach to this problem we use a simple linear partitioning

of the gas field into lower and upper regions, each containing one mode of earth-

quake activity. We allow distinct coefficients in the parametric intensity function

between regions but maintain a shared smoothing scale across the entire gas field.
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Model λ(x, t|β, σ)

S1 β0g(x;σ)

S2 β0ṡ(x, t;σ)

S3 β0ṡ(x, t;σ)[1 + β1s(x, t;σ)]

S4 β0ṡ(x, t;σ) exp{β1s(x, t;σ)}

B0 β0ṡ(x, t;σ)[1 + β1s(x, t;σ)] exp{β1s(x, t;σ)}

E1 (β0Ix∈WL
+ β1Ix∈WU

)ṡ(x, t;σ)

E2 β0ṡ(x, t;σ)[1 + β1s(x, t;σ)] exp{β1s(x, t;σ)}Ix∈WL
+

β2ṡ(x, t;σ)[1 + β3s(x, t;σ)] exp{β3s(x, t;σ)}Ix∈WU

E3 β0ṡ(x, t;σ1)[1 + β1s(x, t;σ2)] exp{β1s(x, t;σ2)}

E4 β0[β2ṡ(x, t;σ) + (1− β2)ṡ(x, t− 1;σ)][1 + β1s(x, t;σ)] exp{β1s(x, t;σ)}

E5 β0ṡ(x, t;σ)s(x, t;σ)α−1[α + β1γs(x, t;σ)γ] exp{β1s(x, t;σ)γ}

E6 β0 [ṡ(x, t;σ)(1 + β1s(x, t;σ)) + β2s(x, t;σ)s̈(x, t;σ)]×

exp{β1s(x, t;σ) + β2ṡ(x, t;σ)}

Table 4.3.1: Intensity functions for sub-models (S1-S4), the baseline model (B0)

and model extensions (E1 - E6). The topographic gradient is denoted by g(x),

while s(x, t;σ) denotes the cumulative incremental Coulomb stress smoothed using

an isotropic Gaussian kernel with standard deviation σ. The first and second tem-

poral derivatives of cumulative ICS are given by ṡ(x, t;σ) and s̈(x, t;σ). Regions WL

and WU for models E1 and E2 are defined in Section 4.3.3.
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Figure 4.3.1: Field outline with superposed Gaussian kernel density estimate of spatial

earthquake distribution. The red line shows the line y = 735000− 0.6x, which is used

to separate lower and upper modes of earthquake activity.

Formally, we partition the gas field into lower and upper regions, W = WL ∪ WU ,

where WU = {(x, y) = w ∈ W : y > ax + b} and WL = W \ WU for a = −0.6

and b = 735000. Alternative partitioning methods are of course possible, but we

limit ourselves here to testing sensitivity to the choices of a and b which separate the

spatial modes of earthquake activity. This restriction to the boundary forms can be

motivated by the principle of parsimony; more complex boundary forms are no less

arbitrary than a linear division unless they have a sound physical motivation, for ex-

ample using sealing faults across which gas pressure gradients can not equalise. Since

this type of fault information is not available, we proceed with the simplest form of

boundary. We investigate the advantages of this approach for the baseline model and

also for the intensity model that is proportional to ICS, which are respectively named

models E1 and E2 in Table 4.3.1.

Rate smoothing. The second type of model extension we investigate is related to

the smoothing of the rate and cumulative ICS covariates. It has been shown in the

context of kernel density estimation that the optimal kernel bandwidths for estimation

of a function and its derivative are not the same (Ramsay, 2006). This suggests that
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Figure 4.3.2: Maps of expected event counts under the fitted baseline model for years

2005-2007. Observed event locations are overlaid.

for an intensity function that includes both a covariate and its cumulative value, using

a single smoothing level might be sub-optimal in both cases. We therefore investigate

whether selecting separate smoothing parameters for ICS and cumulative ICS can

provide a better representation of these covariates and improve model performance.

This is represented by model E3 in Table 4.3.1.

Lag and displacement effects. The next proposed model extensions arise from

observed discrepancies between the fitted baseline model and the observed earthquake

locations. The number and location of events observed in each year are shown against

the fitted baseline model in Figures A.2.1 and A.2.2 of Appendix A.2. The observed

events appear to be displaced relative to peaks in the fitted intensity. This is high-

lighted in Figure 4.3.2 which focuses on the years 2005-2007. Spatially, events appear

to surround peaks in intensity rather than occurring at the apex. The years 2005 and

2006 demonstrate this, particularly around the northern mode of earthquake activity.

There also appears to be several observed events in regions with low expected counts

that were higher in the previous time period. This potential lagged effect can be

observed for events in the south-west of the field in 2007.

The above observations may correspond to two physical phenomena that may not have
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been properly represented in the model. Firstly, there may be some delay between gas

extraction causing an increase in ICS and this presenting as induced seismicity. This

has important implications, particularly when trying to establish whether changes in

gas extraction methods are effective in influencing the number or location of induced

earthquakes. If there is a time lag then it will take longer for these changes to become

apparent. Secondly, earthquakes may be triggered not at peak values of ICS but

where the spatial gradient of this covariate is large. This might suggest that induced

earthquake activity could be decreased by extracting gas more equally across wells to

reduce spatial stress gradients.

To investigate the evidence for a lagged effect, we replace the current incremental

Coulomb stress in the intensity function by a weighted combination of the current

value and the value one year previously. The relative weight given to the current and

previous covariate values is determined as a part of model fitting. This is model E4

in Table 4.3.1.

To investigate the clustering of events around (but not directly upon) the peaks of

the fitted intensity, we fit a model in which incremental Coulomb stress values are

raised to a fractional power. This has the effect of flattening peaks in the intensity

function so that more intensity is allocated to areas surrounding the peak. Since it

is not clear whether this should be applied to the ICS, cumulative ICS or both, we

use a model form which allows for each of these possibilities. Model E6 of Table 4.3.1

considers a fractional power transformation applied to both the instantaneous and

cumulative covariates, where the same or different exponents may be applied to each

covariate.

Effect of extraction rate. Under the baseline model the rate at which gas is ex-

tracted does not influence the total number of earthquakes triggered; this is influenced
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only by the total amount of gas extracted. This is known as a film-rate effect : it is the

total amount of gas extracted and not the time frame over which extraction occurs

that determines the total amount of induced seismic activity. In contrast, we con-

sider a non-film-rate effect model, where the total number of induced events depends

on the rate at which gas is extracted. If there is evidence for such a non-film-rate

model, this clearly has important repercussions when deciding between different gas

extraction plans; it determines whether scenarios with greater extraction rates should

be viewed negatively. To incorporate this into the baseline model we include both

the cumulative and instantaneous ICS within the exponential term of the integrated

intensity function. This model is described as E9 in Table 4.3.1.

Summary. By fitting the proposed sub-models we establish which terms within

the baseline intensity function are most important to model fit. This may allow a

more parsimonious representation of the baseline model and will certainly increase

understanding of this model.

The proposed model extensions aim to identify or exclude future areas of model devel-

opment. This is done through the use of simple statistical tests to establish the merit

of including additional physical features within the baseline intensity model. The

physical features that we investigate include spatial variation in model parameters,

a time-lag between gas extraction and induced seismicity, displacement of induced

earthquakes from the area of greatest stress and the extraction rate impacting the

total number of induced earthquakes.
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4.4 Results

4.4.1 Outline

For each model simplification or extension the resulting AIC value relative to the

baseline model B0 is given in Table 4.4.1 along with the maximum likelihood esti-

mate and standard error of the associated smoothing parameter, σ. Interpretation

and discussion of the results are organised as follows: Section 4.4.2 addresses the

choice of smoothing parameter, σ; Section 4.4.3 addresses model simplifications; and

Section 4.4.4 addresses model extensions.

4.4.2 Covariate smoothing

Our first finding based on Table 4.4.1 is that the estimated smoothing parameter

does not differ significantly across models. It should be noted that for all models the

standard error of the estimated smoothing scale σ is large and the point estimate is

close to the lower boundary of the parameter space, where σ = 0. Under none of

the models does the smoothing of the covariate produce a significant improvement in

model fit when tested at the 5% level. The standard errors of the estimated smoothing

parameter are included in the table to illustrate this point, but should be interpreted

with caution since the sample size on which they are based is small and the point

estimate to which they pertain is close to the boundary of the parameter space. This

finding suggests that it is not necessary to separately optimise the smoothing scale for

each model and that, for the range of models considered, optimising the smoothing

scale does not significantly improve model fit.
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Model ∆AIC β̂ [std error] σ̂ [std error]

S1 160.30 0.33 [2.3×10−2] 49 [750]

S2 119.87 9.6×10−2 [6.6×10−3] 252 [213]

S3 76.98 (7.0×10−4, 21.8) [2.0×10−6, 1.5] 228 [157]

S4 -0.82 (4.0×10−3, 0.45) [7.3×10−4, 2.0×10−2] 407 [250]

B0 0.00 (2.4×10−3, 0.36) [2.0×10−4, 1.2×10−2] 484 [273]

E1 94.15 (5.3×10−2, 0.12) [8×10−3, 9.5×10−3] 251 [216]

E2 -27.83 (2.8×10−3, 2.7×10−1, 2.6×10−3, 3.8×10−1) 511 [401]

— — [6.5×10−4, 2.8×10−2, 2.7×10−4, 1.4×10−2] —

E3 9.93 (±14) (3.1×10−3, 0.33) (487, 484)

— — [3.7×10−4, 1.4×10−2] [674, 223]

E4 5.86 (±12) (3.3×10−3, 0.33, 0.59) 489 [210]

— — [4.3×10−4, 1.5×10−2, NA] —

E5 3.88 (2.4×10−3, 0.36, 0.95) 494 [271]

— — [2.0×10−4, 1.1×10−2, 1.3] —

E6 1.58 (2.5×10−3, 0.36, 1.1×10−5) 126 [320]

— — [1.3×10−4,7.4×10−3, 2.0×10−6] —

Table 4.4.1: Summaries of fitted sub-models (S1-S4), baseline model (B0) and model

extensions (E1 - E6). The second and third columns give the numerically maximised

log-likelihood value and the change in AIC relative to the baseline model. The fourth

and fifth columns give point estimates for the model parameters and covariate smooth-

ing scales; approximate standard errors are given in square brackets.
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4.4.3 Model reductions

When considering model reductions, the sub-models S1-S3 each resulted in a worse

model fit relative to the baseline model. This is to be expected, particularly for

models S1 and S2, which were deliberate oversimplifications. Within the sequence of

sub-models S1-S3 we have increasing goodness of fit. The improvement of S2 over S1

demonstrates what might reasonably be expected: that including information on gas

extraction over time leads to a better model of induced seismicity than using only the

topographic gradient, which is a reservoir property that does not change over time.

The improvement when moving from S2 to S3 then demonstrates that the number

and location of induced earthquakes is not influenced only by gas extraction (through

the ICS) but also depends on the cumulative amount of gas that has been extracted.

Finally, the lower AIC value of model S4 over S3 shows that this dependence on the

cumulative ICS is better described by an exponentially increasing trend than by a

linear approximation to this trend.

It should be noted that model S4, which removes the linear term from the baseline

intensity function, provides a slight improvement in model fit over the baseline model

B0. Model S4 improves parsimony in terms of the expression for the intensity function,

but leads to more complicated interpretation of the model parameters. This is because

under S4 both β0 and β1 scale the integrated intensity function, as can be seen in

Table A.1.1 of Appendix A.1. Since the improvement in model fit by S4 is modest, we

choose to develop our model extensions on the baseline model B0 and prioritise the

desire for ease of interpretation and physical derivation over the desire to use strictly

the most parsimonious model.
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4.4.4 Model extensions

The majority of the proposed model extensions did not provide a significant improve-

ment to model fit. In particular, it should be noted that the models E3 and E4 had

maximised log-likelihood values that were less than that of the baseline model B0,

which they extend; this is counter-intuitive but is explained as follows. These models

respectively extend the baseline model by including separate smoothing parameters or

a lag between gas extraction and induced seismicity. The decrease in the maximum

log-likelihood value for these models can be attributed to the integrated intensity

function for these models not having a closed form. This necessitates the use of nu-

merical integration to calculate the integrated intensity term of their log-likelihoods.

From the available information, the cumulative ICS value is known for each spatial

pixel on the first of January each year. Since the evolution of ICS within each year

is not known, the mean of the initial and final values is used to construct an approx-

imation of the integrated intensity. Bounds on the likelihood value can be obtained

by using the initial or final value of ICS within each year, these bounds correspond

to a step change in cumulative ICS at the end or beginning of each year. The AIC

values for models E3 and E4 are less than or greater than that of the baseline model

B0, depending on which approximation to the integral is used. There is therefore

not enough information available using these covariate grids to definitively establish

whether including either separate smoothing parameters or a lag between gas extrac-

tion improves the model of induced seismicity. However, when using the numerical

integration scheme under which the AIC is reduced, the size of the reduction is mod-

est. This suggests that these features do not influence strongly the induced seismic

activity.

Model E5 considered raising either the cumulative or instantaneous ICS value to a

fractional power, in order to address the observation that earthquakes cluster around
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peaks in the fitted baseline intensity, rather than occurring at the peaks. This model

did not reduce the AIC relative to the baseline model. This is perhaps because such

flattening of peaks in the intensity function is also achievable through increasing the

length scale of the smoothing kernel. This could be further explored by investigating

models which include the spatial gradient of the covariates, d
dx
s(x, t;σ) or d

dx
ṡ(x, t;σ),

in some way.

Model E6 investigated whether there was significant evidence that the ICS rate in-

fluenced the total number of induced earthquakes. From the available data, there

was insufficient evidence to suggest a non-film-rate effect. It should be noted that

there were some difficulties when fitting of this model, due to the presence of second

derivative of cumulative ICS within the intensity function. This covariate is difficult

to obtain accurately due to the coarse temporal resolution of the cumulative ICS data,

which might be a limiting factor in assessing this modelling approach. Additionally,

the second derivative of ICS is negative in many locations and periods (roughly cor-

responding to areas or periods where where the gas depletion slows down). This

presented problems when ensuring non-negativity of the fitted intensity everywhere

on A. In principle, this can be achieved through constraints on the coefficient val-

ues β, but this caused the numerical optimisation routines used to fit the model to

fail. To work around this issue, we approximated the model by taking the pointwise

maximum of zero and the intensity term that depends on s̈(x, t;σ) (the term given in

square brackets) at each time and location to ensure non-negativity. Then numerical

integration was used to calculate the integrated intensity term of the log-likelihood.

Alternative methods of ensuring non-negativity were also investigated, where s̈(x, t;σ)

was replaced by |s̈(x, t;σ)| or max{s̈(x, t;σ), 0}; neither approach led to a significant

reduction in AIC.

The models E1 and E2 allow the model parameters to vary spatially across the gas
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field while maintaining the same model forms as S1 and B0. Both model extensions

led to reduced AIC values relative to their equivalent spatially constant models. In

particular, the extension of the baseline model to have separate parameters in the

north-east and south-west of the gas field, E2, was the only model extension to pro-

vide a marked improvement in model fit over the baseline model. This suggests that

the two spatial modes of earthquake activity within the gas field are responding differ-

ently to gas extraction. The sensitivity of this finding was tested by considering four

alternative boundary lines that separated the to modes of intensity. Maps of annual

expected earthquake counts under this model are given in Figures A.2.3 and A.2.4 of

Appendix A.2.

The improvement of this simple spatial model over the baseline suggests that a more

in-depth investigation might be worthwhile, for example, variations of the baseline

model with parameters that vary smoothly over space. This will require a careful

balance between achieving flexibility in the model form and the ability to fit the model

using the limited available data. Our linear partition clearly leans toward the latter

consideration but serves as motivation for a model using either a physically motivated

reservoir partitioning or smoothly varying parameters as further work.

4.5 Conclusions and further work

The first aim of this work was to establish which sub-components of the baseline inten-

sity function were the most important drivers of model fit. Through the investigation

of four sub-models, we found that the terms concerning the ICS and exponential trend

in cumulative ICS are the main contributors to model fit. The linear term in cumula-

tive ICS is dominated by the exponential term to the extent that a small improvement

in model fit may be achieved by removing the linear term from the intensity function.

However, removing this term complicates the interpretation of model parameters since
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this leads to both β0 and β1 scaling the integrated intensity function.

The second aim of this work was to investigate a range of extensions to the baseline

intensity model. The extensions investigated were selected based on physical phenom-

ena that might be missing from the model, or mathematical transformations motivated

by potential shortcomings of the baseline model. From the data used, there is insuf-

ficient evidence to conclude that there is a lagged effect of ICS on induced seismicity

or that this can be better described by using some fractional power of ICS. There is

also insufficient evidence to conclude that model fit can be significantly improved by

using separate smoothing levels, either within or across the models considered.

It does, however, appear that the relationship between induced seismicity and ICS

is not constant across the gas field. This finding was tested using a simple linear

partitioning of the gas field to separate modes of earthquake activity. The finding

was not highly sensitive to the choice of boundary line, however, the use of a linear

form for the boundary lacks a physical basis and was chosen for reasons of parsimony.

A potentially fruitful area of further work might therefore be to investigate models

that rely on a physically motivated partitioning of the gas field (for example using

sealing faults across which pressure gradients can not easily equalise), or indeed a

model where parameters vary smoothly over space. The challenge in each of these

cases will be striking a balance between model complexity and the small number of

available data.

We identified that induced events appear to cluster around modes of fitted intensity

in the baseline model, but that model fit can not be significantly improved by using

a power transformation of the ICS. In future work, this phenomenon could be further

investigated by including the spatial gradient of ICS within the intensity or integrated

intensity function - although how best to include this covariate is not obvious. Another

route to extending the work here would be to use covariates on a finer temporal grid,
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for example using weekly or monthly values. This would have the benefit of allowing

variations in gas extraction within each year to be represented within the models and

might allow first and second temporal derivatives of ICS to be better represented.

However, using monthly values comes with an increased computational burden and

leads to extensive issues related to ensuring non-negativity of the fitted intensity. For

example, seasonal or reduced gas extraction can lead to areas of “pressure-up” as gas

pressure equalises across the field resulting in widespread areas where the ICS rate is

negative.

One model extension which is not considered in this work is the inclusion of aftershock

activity, such as within an epidemic type aftershock sequence model (Ogata, 1988,

2011). While this was considered by Bourne et al. (2018), we were unable to replicate

such a model extension without imposing strong constraints on aftershock parameter

values. There are a range of issues associated with fitting this type of aftershock

model, such as the likelihood function having locally flat regions, being costly to

evaluate and difficulty in separating parameter effects (Veen and Schoenberg, 2008;

Schoenberg, 2013; Ross, 2016). In this work we have restricted focus to models for

independent events but in Chapter 6 of this thesis we go some way to addressing these

issues.



Chapter 5

Inference for extreme earthquake

magnitudes accounting for a

time-varying censoring process

5.1 Introduction

5.1.1 Aims and motivation

The observational nature of environmental data can lead to challenges during statisti-

cal modelling and inference. In particular, improved measurement of an environmental

process within a dataset should be acknowledged as part of any inference. Failing to

do so leads to biased inference, while including data based only on the initial qual-

ity of measurements is overly conservative, leads to inefficient inference, and makes

financial investment into the measurement process redundant. We consider how to

include changing data quality in an extreme value analysis where low data quality is

present as the partial censoring of rounded data. Here and throughout, censored data

88
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are values that are missing-not-at-random (Little and Rubin, 2019). This chapter is

motivated by the modelling of earthquake catalogues, but results in a method that

is applicable more widely where these data features are present. This new threshold

selection method should also be of value in more general extreme value analyses.

5.1.2 Earthquake data

Earthquakes are recorded if their locations and magnitudes can be inferred from

ground vibrations at sensor locations; this requires an earthquake to be detected by

multiple sensors. An earthquake is detected or missed depending on its magnitude and

location relative to the sensor network. A low sensitivity network of sensors therefore

leads to the partial or complete censoring of small magnitude seismic events. As the

network is extended or upgraded over time the censoring of small events is reduced. It

is usual in earthquake catalogues for magnitudes to be reported to one decimal place;

this data feature is often overlooked during statistical analyses (Marzocchi et al.,

2019). Using these rounded, incomplete observations we seek to understand the tail

behaviour of the magnitude distribution.

Since 1991 the Groningen region of the Netherlands has experienced induced earth-

quakes. These seismic events are caused by gas extraction and have relatively small

magnitudes compared to tectonic events. However, they also occur at much shallower

depths than their tectonic equivalents. This means that for equal magnitudes they

pose a greater hazard than their tectonic counterparts because their impact is spread

over a smaller spatial extent. These small earthquakes are therefore both hazardous

and difficult to detect. This has led to continued investment in the geophone network

around the Groningen gas field to increase detection of small earthquakes and to better

understand earthquake activity in the region. Estimating high quantiles of the mag-

nitude distribution, and quantifying their uncertainty, is instrumental to appropriate
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design and improvement of buildings to withstand these earthquakes.

5.1.3 Magnitude of completion

The magnitude of completion mc is the lowest magnitude above which all earthquakes

are certain to be recorded in a given area and time interval. The magnitude of

completion therefore depends on the density and sensitivity of the sensor network as

well as the local geology. When a sensor network changes substantially over time t,

the magnitude of completion in that region can be considered as a function of time,

denoted mc(t). The magnitude of completion is not a quantity that can be determined

experimentally, it must be inferred from the set of observed event magnitudes.

Existing methods for statistical estimation of a constant mc use parametric or non-

parametric methods to detect deviations from the assumed monotonicity of the magni-

tude distribution (Mignan and Woessner, 2012). Parametric methods typically assume

an exponential magnitude distribution, based on the empirical magnitude-frequency

relationship of Gutenberg and Richter (1956). Heuristic techniques are used to detect

deviations from this model based on maximum curvature, goodness-of-fit, or param-

eter stability.

Several methods exist to estimate a spatially varying magnitude of completion (Wiemer

and Wyss, 2000; Mignan et al., 2011). In contrast, little attention has been given to

estimating a changing magnitude of completion over time. Where it has been con-

sidered, focus has been on temporary increases in mc(t) due to residual vibrations

following large earthquakes (Woessner and Wiemer, 2005; Utsu et al., 1995). Long-

term changes in mc(t) have been considered by assuming a constant value within a

pre-determined temporal partitioning (Hutton et al., 2010) or a locally constant value

estimated using a rolling window (Mignan and Woessner, 2012).
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5.1.4 Extreme value methods

To specify a model for earthquake magnitudes we adapt a model from extreme value

theory. An asymptotic argument justifies the use of the generalised Pareto distribu-

tion (GPD) to model the excesses of a continuous random variable over a suitably

chosen threshold, under weak assumptions on the distribution of that random variable

(Pickands, 1975). The distribution function of a random variable Y that follows a

GPD, given that it is above the threshold u, is

F (y;σ, ξ) =

 1− [1 + ξ(y − u)/σ]
−1/ξ
+ for ξ 6= 0, y ≥ u,

1− exp[−(y − u)/σ] for ξ = 0, y ≥ u;
(5.1.1)

where the shape parameter ξ ∈ R, scale parameter σ > 0 and y+ = max(0, y). The

distribution is exponential when ξ = 0, heavy-tailed when ξ > 0 and decays to a

finite upper end point y+ = u − σ/ξ when ξ < 0 (Davison and Smith, 1990). The

GPD generalises the Gutenberg-Richter model, in which magnitudes are independent

and identically distributed (i.i.d.) exponential random variables, by allowing greater

flexibility in the tail behaviour of the distribution.

Standard extreme value modelling deals with i.i.d. data, observed at regular inter-

vals without rounding or censoring. The standard approach is to select a constant

threshold u that is a fixed, high quantile of the empirical distribution. Heuristic meth-

ods are used to select an appropriate quantile, see Scarrott and MacDonald (2012)

for a review. These methods can be based on the stability of parameter estimates,

goodness-of-fit measures, or the mean threshold exceedance size (Coles, 2001). When

interest lies in estimating a particular extreme value property, such as the shape pa-

rameter, an alternative strategy is to select the threshold that optimises inference for

that property (Danielsson et al., 2001).

Using a constant threshold is inefficient when the data distribution changes over time.

This type of change is likely to alter the quantile value above which a GPD is ap-
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propriate and cause the GPD parameters to change over time. To avoid this issue,

quantiles can be estimated locally as a function of time and a global decision can be

made on which quantile to use as a time-varying threshold u(t) (Eastoe and Tawn,

2009; Northrop and Jonathan, 2011).

5.1.5 Shortcomings of current methods

Estimating the magnitude of completion and selecting an extreme value threshold

are closely linked problems. Both aim to select a value (possibly time-varying) above

which a probability model is appropriate. Standard methods from either setting do

not meet our modelling needs, for the reasons that follow.

Methods assuming an exponential magnitude distribution are problematic for two

reasons. Firstly, an exponential tail model can lead to bias and false confidence in

quantile estimates. Coles and Pericchi (2003) demonstrated in a hydrological context

the benefits of using the encompassing generalised Pareto model to properly represent

uncertainty in the tail shape. Secondly, the exponential distribution does not account

for rounding of the data, resulting in biased parameter estimates (Marzocchi et al.,

2019; Rohrbeck et al., 2018). Failing to acknowledge this rounding can therefore also

cause bias in threshold selection.

Methods to select a static threshold are also unsuitable for our problem. To obtain

precise estimates of the GPD parameters and high quantiles, as much data as possible

should be used in the analysis. However, this must be balanced by the need to

represent model uncertainty and avoid bias from incorrectly including small magnitude

events. This bias has two sources: using either data values for which the extreme value

model does not apply or values that are below the magnitude of completion at the

time of their occurrence. The optimal choice of time-varying threshold is therefore

v(t) = max{mc(t), u(t)}. Methods for selecting a static modelling threshold v are
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inefficient when the true threshold varies with time; the static threshold must satisfy

v ≥ maxt v(t) and so excludes viable data from the analysis.

Finally, current approaches to selecting or estimating time-varying thresholds are also

unsuitable for our problem; methods for estimating mc(t) consider only a small portion

of the data at once, while the selection of u(t) by a local quantile approach is impeded

by the temporal development of the censoring process.

5.1.6 Contributions and outline

In this chapter we develop an automated method to select a dynamic threshold for

rounded GPD data. This is, to our knowledge, the first time that data rounding has

been considered during threshold selection. Our proposed threshold selection method

uses as much data as possible while guarding against the use of values where a tail

model is not appropriate or observations are not complete. This threshold choice

leads to more precise estimation of high magnitude quantiles, properly represents

their uncertainty, and can also suggest how the magnitude of completion changes

over time. The selection method is developed for earthquake data, but the core idea

of the method can be applied to extreme value threshold selection more generally.

We demonstrate, via simulation, the benefits of including additional, small magni-

tude events in an extreme value analysis to both parameter recovery and return level

estimation. We go on to select dynamic thresholds for partially censored earthquake

catalogues and investigate the impact of this threshold when estimating high quantiles

of the magnitude distribution.

This chapter is structured as follows. Section 5.2 describes the Groningen earthquake

catalogue that motivates the proposed methodology, the model for observed magni-

tudes, and the novel inference for the underlying parameters. Section 5.3 demonstrates

the benefits of including small magnitude events into an extreme value analysis. Sec-
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tion 5.4 introduces our proposed method of threshold selection. The method is applied

to simulated earthquake catalogues in Section 5.5 and to the Groningen catalogue in

Section 5.6. Concluding remarks are given in Section 5.7.

5.2 Motivating data and model formulation

5.2.1 Data description

We study the induced earthquakes in the Groningen region of the Netherlands from

January 1st 1995 to December 31st 2019. Compared to tectonic earthquakes, these are

close to the surface and can cause damage despite their relatively small magnitudes.

This has led the Royal Dutch Meteorological Institute (KNMI) to invest heavily in

the earthquake detection infrastructure in the Groningen region. Over time, more and

better sensors have been added in the region to increase the detection and reporting

of small earthquakes. The resulting earthquake catalogue is publicly available and

magnitudes are reported in units of local magnitude (ML) to one decimal place (KNMI,

2020).

Figure 5.2.1 shows Groningen earthquake magnitudes against both occurrence time

and earthquake index, along with smoothed estimates of their mean using a gen-

eralised additive model with cubic-spline basis. Assuming that magnitudes are i.i.d.

(which is supported by the exploratory analysis in Appendix B.1 for Groningen earth-

quakes exceeding 1.5ML) and that departures from this are due to the partial cen-

soring of small magnitude events, the reduction in mean magnitude indicates that

fewer small magnitude events were censored at later times. It is unclear whether this

change in detection was sudden or gradual. The KNMI report that mc(t) ≤ 1.5ML

for the entire period (Dost et al., 2012). Paleja and Bierman (2016) and Dost et al.

(2017) used a fixed temporal partitioning and conclude that for the period 2014-09-
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24 to 2016-09-27 the magnitude of completion was likely to be below 1.0ML. Since

sensors have not been removed from the network, this suggests that the magnitude of

completion should be less than or equal to this in the period following their analysis

(i.e. to 2020 in Figure 5.2.1).

Figure 5.2.1: Full Groningen earthquake catalogue, with magnitudes reported in ML

and smoothed mean estimate; shown using natural- [left] and index-times [right].

5.2.2 Data model and inference

This section introduces our notation and data model for threshold selection and in-

ference on extreme earthquake magnitudes. We define an earthquake catalogue to

be the set of n recorded time-magnitude pairs {(ti, xi) : i = 1, . . . , n} where the

recorded magnitudes x = (x1, . . . , xn) are given rounded to the nearest 2δ (δ > 0) and

the event times t = (t1, . . . , tn) are each within the observation interval (tmin, tmax).

The unrounded magnitudes associated with each event are represented by the vector

y = (y1, . . . , yn). An event (ti, xi) therefore corresponds to an earthquake of magni-

tude yi ∈ (xi − δ, xi + δ] that occurred at time ti and that was not censored.

Recall from Figure 5.2.1 that earthquake intensity is not constant over the observation

period. To separate exposition of our threshold selection method from estimation of

this temporally-varying earthquake rate, we map each event time to its correspond-

ing index. This transforms event times t from an irregular sequence on the natural
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timescale t to a regular sequence τ on the index scale τ , where observed events occur

at τ = 1, . . . , n. A modelling threshold v(τ) is then specified for the transformed

observation period τ ∈ (0, τmax) and the threshold values at each event time are

given by the vector v = (v(1), . . . , v(n)) = (v1, . . . , vn). The threshold function v(τ)

and threshold vector v will be initially treated as known until threshold selection is

discussed in Section 5.4.

The probability α(τ, y) that an event is detected by the sensor network and included

in the earthquake catalogue is an unknown function of its time and magnitude. It

is expected that for the Groningen catalogue α(τ, y) is a non-decreasing function in

each of τ and y; larger or later earthquakes are more likely to be detected. We make

two assumptions on α(τ, y): firstly that observation is complete above the modelling

threshold, so that α(τ, y) = 1 for y ≥ v(τ); secondly that censoring begins gradually

so that for all τ , α(τ, y) ≈ 1 when y ∈ [v(τ) − δ, v(τ)]. This allows rounded mag-

nitudes within δ of the modelling threshold to be included during inference without

constructing a full model for the censoring process.

In constructing our model for magnitudes exceeding v(τ), we assume that the un-

rounded magnitudes y may be modelled as i.i.d. GPD random variables (Y1, . . . , Yn)

with parameters θ = (σu, ξ) when they exceed a constant, lower threshold of u <

minτ v(τ)− δ. Formally, we assume Yi−u|Yi > u ∼ GPD(σu, ξ). Since events exceed-

ing v(τ) are never censored, excess magnitudes of v(τ) may also be modelled using

a GPD but with threshold dependent scale parameters σvi = σu + ξ(vi − u), so that

Yi − vi|Yi > vi ∼ GPD(σvi , ξ).

When using this probability model to construct a likelihood function for the GPD

parameters, rounded magnitudes xi should contribute only if the latent value yi > vi.

Events with xi > vi + δ, should certainly contribute to the likelihood function and

events with xi < vi − δ certainly should not. When |xi − vi| < δ it is uncertain
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whether yi > vi and whether event i should contribute to the likelihood. Each event

is therefore weighted in the log-likelihood by wi = Pr(Yi > vi|xi,θ), the probability

that it truly exceeds v(τ). This is equivalent to using the expected likelihood over all

possible unrounded magnitude vectors. The resulting log-likelihood function for the

the parameters θ = (σu, ξ) of F , the GPD (5.1.1) is:

`(θ|x,v) =
n∑
i=1

wi log Pr(Xi = xi|Yi > vi,θ)

=
n∑
i=1

wi log Pr(max(vi, xi − δ) < Yi < xi + δ|θ) (5.2.1)

=
n∑
i=1

wi log [F (xi + δ − vi;σvi , ξ)− F (max(vi, xi − δ)− vi;σvi , ξ)] ,

where

wi =
Pr(max(vi, xi − δ) < Yi < xi + δ|θ)

Pr(xi − δ < Yi < xi + δ|θ)

=
F (xi + δ − u;σu, ξ)− F (max(vi, xi − δ)− u;σu, ξ)

F (xi + δ − u;σu, ξ)− F (xi − δ − u;σu, ξ)
. (5.2.2)

The maximum likelihood estimate θ̂ can be found using numerical optimisation of

this function. Confidence intervals may be obtained based on asymptotic normality,

but this approximation can be poor for the estimated shape parameter ξ̂ and quantile

values. To avoid this and to ensure that confidence bounds on σ̂u are positive, we use

a parametric bootstrap approach to describe parameter uncertainty, as described in

Appendix B.2.

5.3 Motivating the inclusion of small magnitudes

5.3.1 Simulation study overview

Here we show that using a non-constant threshold to include additional, small mag-

nitude earthquakes in an extreme value analysis can be beneficial to both parameter
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and quantile estimation. We compare three approaches to inference on 1000 simulated

earthquake catalogues that have a known, stepped threshold. Each catalogue is sim-

ulated by first generating 1000 latent magnitudes as independent GPD exceedances

of u = 1.05ML with parameters θ = (σu, ξ) = (0.4, 0.1). Each event i = 1, . . . , 1000

is censored if τi ≤ 500 and yi < 1.65ML. The retained magnitudes are then rounded

to the nearest 2δ = 0.1ML, resulting in a catalogue of the form shown in Figure 5.3.1

(left). The size of the retained catalogue depends on the simulated magnitudes, and

so varies between catalogues.

A GPD model is fitted to each of the simulated catalogues by maximising the log-

likelihood (5.2.1) under each of three approaches. The first, conservative approach

to inference uses only exceedances of the flat modelling threshold v(τ) = 1.65ML for

0 ≤ τ ≤ 1000. The second approach uses exceedances of the stepped threshold where

v(τ) = 1.65ML for 0 ≤ τ ≤ 500 and v(τ) = 1.05ML for 500 < τ ≤ 1000. The number

of data points used by the stepped approach will be at least as large as by the con-

servative approach. A third approach, possible in simulation but not practice, is also

considered. In this third approach, additional earthquakes are simulated above the

conservative level to extend the simulated catalogue until the number of exceedances

of 1.65ML matches the number of events used by the stepped approach. A GPD

model is then fitted to the extended set of earthquakes that exceed 1.65ML.

We compare the three approaches to inference in terms of parameter and quantile

estimation. The conclusion of each comparison can differ because of the non-linear

relationship between GPD parameters and quantiles, which are also sensitive to small

changes in the estimated shape parameter ξ. Parameter estimates are compared using

their bias and variance over the 1000 simulated catalogues. To be able to compare

quantile estimates across modelling thresholds we consider the conditional quantiles

above the conservative threshold level, using conditional return levels. The conditional
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p-quantile above some magnitude c > u is the magnitude yp,c that satisfies

Pr(Y ≤ yp,c|Y > c) = p.

Letting ζc = Pr(Y > c|Y > u) = 1 − F (c;θ), where F is the distribution function

(5.1.1), yp,c can be expressed as a function of θ:

yp,c(θ) =

 u+ σu
ξ

(
(ζcp)

−ξ − 1
)

for ξ 6= 0,

u+ log(ζcp) for ξ = 0.
(5.3.1)

An alternative representation of conditional quantiles, more in-keeping with the ex-

treme value approach, is the m-event conditional return level above c. This can be

found by setting p = 1 − 1/m in equation (5.3.1) and interpreted as the magnitude

exceeded (on average) by one in every m events that exceed c. We compare point esti-

mates and confidence intervals of conditional return levels under the three approaches

to inference.

5.3.2 Simulation study results

Figure B.4.1 in Appendix B.4 shows the sampling distribution of parameter estimates

and an error decomposition under each approach to inference. The stepped threshold

is best for parameter estimation, with the smallest bias and variance of the three

approaches. The mean squared error of the stepped estimator is 9.6 times smaller

than that of the conservative estimator, mainly due to its increased precision. For

comparison, artificially extending the earthquake catalogue gives a reduction factor of

only 4.2. In this example, each small magnitude event added by lowering the threshold

is more than twice as valuable to parameter estimation than an additional observation

above the conservative level.

Figure 5.3.1 (right) shows the conditional return levels for magnitudes above c =

1.65ML under each approach. Point estimates are qualitatively similar in each case,
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Figure 5.3.1: [Left] Simulated catalogue structure: events are censored (grey dots)

if in the first 500 and below 1.65ML. For this catalogue, the conservative threshold

(dashed red line) includes 181 events, while the stepped threshold (solid black line) in-

cludes 582 events. [Right] Magnitude conditional return level estimates in ML against

return period in number of earthquakes exceeding 1.65ML. Point estimates and 95%

confidence intervals are given under conservative, extended and stepped approaches

to inference, along with the true values.

but confidence intervals are narrowed by using the stepped rather than constant

threshold. Confidence intervals are further narrowed by artificially extending the

observation period. This is because of the additional large values in the extended

data, which have a strong influence over the estimated return levels (Davison and

Smith, 1990).

These results show clearly the benefits for parameter and quantile inference that can

be achieved by using a dynamic modelling threshold to include additional small mag-

nitude events in an extreme value analysis. Using a conservative constant threshold

leads to wasteful inference and the squandering of these potential gains.
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5.4 Threshold selection

5.4.1 Overview

In practice, the true modelling threshold v(τ) is always unknown. To choose between

potential thresholds, we must define what it means for one threshold to be preferred

over another. A generalised likelihood ratio test is not appropriate for this comparison

because it compares nested models on the same data, rather than comparing the same

model on nested data (Wadsworth and Tawn, 2012; Wadsworth, 2016).

To select a model that is robust to sampling variability, v(τ) should include as much

data as possible in the model and therefore be chosen to be as low as possible. How-

ever, selecting v(τ) < max(u(τ),mc(τ)) for any 0 < τ < τmax will cause bias in the

fitted model, making it incapable of obtaining an asymptotically consistent estima-

tor of the true parameter values. The best choice of v(τ) is therefore the threshold

that includes the most data while maintaining a good agreement between observed

threshold exceedances and the fitted GPD.

For i.i.d. continuous valued data, the distributional agreement with a probability

model can be assessed graphically by using a PP- or QQ-plot and adding tolerance

intervals to show expected behaviour under that model. Alternatively, the distribu-

tional fit can be summarised using a metric, such as the Anderson-Darling or Cramer-

von Mises distances (Laio, 2004). Both graphical- and metric-based approaches can

be adapted for data y that are independent and continuous valued, but which do

not have a shared distribution. This is achieved by using the probability integral

transform and the fitted distribution to transform the data to have a shared marginal

distribution before using methods for i.i.d. data to produce plots or metric values

(Heffernan and Tawn, 2001).

We further adapt these methods to handle both rounded data and parameter un-
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certainty, before showing how they can be used to inform selection of a modelling

threshold. In doing so, we transform to standard Exponential margins because this

distribution is central within the GPD family and follows the precedent of Heffernan

and Tawn (2001). Alternative marginal distributions could be used; we additionally

consider PP-plots, which correspond to the special case of uniform margins.

5.4.2 Graphical assessment

The observed magnitudes x that exceed v(τ) do not have a shared marginal distri-

bution when v(τ) is non-constant and they are not continuous-valued due to their

rounding. This presents challenges when trying to create a PP- or QQ-plot for ex-

ceedances of the modelling threshold v(τ). Firstly, constructing these plots using

rounded values can lead to many probabilities or quantiles of equal value and the

plots being difficult to interpret. The second challenge relates to observed, rounded

values close to the modelling threshold, {xi : |xi − vi| < δ, i = 1, . . . , n}; it is not

known which, or how many, of these events satisfy yi ≥ vi and so should be included

when constructing the plot.

To overcome these challenges we use simulation to construct Monte Carlo confidence

intervals for the sample quantiles (or probabilities) of the unrounded threshold ex-

ceedances transformed onto shared exponential margins. The process is described

in Appendix B.3 and leads to a modified plot with two sets of intervals; tolerance

intervals show the expected variability of sample quantiles (or probabilities) under

the fitted model while confidence intervals show the uncertainty about the observed

sample quantile values. Confidence and tolerance intervals that do not overlap suggest

that the distribution of the rounded exceedances is not coherent with the fitted GPD

model.

Examples of such PP- and QQ-plots are shown in Figure 5.4.1. These use the simu-
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lated catalogue shown in Figure 5.3.1 (left) and constant modelling thresholds of v(τ)

= 1.85ML and 1.15ML. For this catalogue, exceedances of a flat threshold should

be consistent with a GPD model only if that threshold is of 1.65ML or greater. For

the higher threshold v(τ) = 1.85ML, the confidence intervals on sample probabilities

and quantiles overlap with the tolerance intervals, indicating that exceedances of this

threshold are consistent with the fitted GPD model. For the lower threshold v(τ)

= 1.15ML this is not the case, with the large sample quantiles bigger than expected

under the fitted model. Notice the shape of the tolerance intervals in Figure 5.4.1;

the largest deviations from the line y = x are expected at central probabilities in the

PP-plots and at the largest quantiles of the QQ-plots. This feature is important in

Section 5.4.3 where we propose metrics to summarise these plots.

5.4.3 Metric-based assessment

Using a metric rather than a graphic to assess the distributional coherence of modelled

and observed threshold exceedances facilitates the comparison of many thresholds. We

therefore aim to summarise the PP- and QQ-plots using metrics that reward accurate

estimation of the magnitude distribution function. An unbiased estimate results in

a plot that covers the line y = x, while a precise estimate results in plots that are

stable between sampled values for the mle θ̂ and unrounded data y. Our approach

to creating a metric that summarises these plots is novel in its design, which rewards

large sample sizes through their effect to increase the precision of the distribution

estimate.

We propose four metrics to summarise deviation from the line y = x in PP- and QQ-

plots using the mean absolute distance and mean squared distance in what follows.

The calculation of these metrics is described below for a single sampled vector of

threshold exceedances on exponential margins z̃. Let d0 be the realised metric value
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Figure 5.4.1: PP-plots [left] and QQ-plots [right] for threshold exceedance sizes

shown on Exp(1) margins for constant modelling thresholds v(τ) = 1.85ML [top]

and v(τ) = 1.15ML [bottom]. 95% tolerance intervals are shown as grey regions,

while 95% confidence intervals on each probability or quantile are shown as vertical

lines. These are coloured red (blue) where the confidence interval is entirely above

(below) the tolerance interval.
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for an arbitrary dataset using one of the four methods, and d = EY ,θ̂|x,v(d0) be the

expected value of d0 over the joint distribution of Y , θ̂|x,v, thus accounting for the

rounding and parameter uncertainties that are represented by the confidence intervals

of Figure 5.4.1. We select a modelling threshold by minimising d and investigate which

choice of d0 is best. Here the expected values of the metrics are calculated by a Monte

Carlo approximation.

Smaller values of each metric are preferable, with large values caused by the quantiles

of the fitted model being either highly uncertain or incoherent with the observed

data. Minimising these metrics provides a new approach to threshold selection, which

rewards thresholds that give low sampling variability and small bias in the resulting

estimator. The remainder of this section covers the calculation of these metrics, while

Section 5.5 explores their relative performance on simulated data.

In the following, z̃(i) is the ith parametric-bootstrapped vector of threshold exceedances

transformed onto exponential margins for independent, replicated samples i = 1, . . . , k.

An algorithm to obtain these is given in Appendix B.3. Also let H(i)(y) : R+ → [0, 1]

and Q(i)(p) : [0, 1]→ R+, respectively, be the empirical distribution function and the

sample quantile function of z̃(i) for i = 1, . . . , k. The sample quantile functions are

defined as linear interpolations of the points
{(

j−1
ñ(i)−1

, z̃
(i)
(j)

)
: j = 1, . . . , ñ(i)

}
, where

ñ(i) is the length of z̃(i) and z̃
(i)
(j) is the jth order statistic of z̃(i).

The quantile based distance metrics d(i)(q, 1) and d(i)(q, 2) summarise the expected

deviation in the QQ-plot of z̃(i) from the line y = x at a set of m ∈ N+ equally spaced

evaluation probabilities {pj = j/(m+1) : j = 1, . . . ,m}. The two metrics respectively

give the mean absolute distance and mean squared distance between model and sample

quantiles over the set of evaluation probabilities. They are given by

d(i)(q, 1) =
1

m

m∑
j=1

| − log(1− pj)−Q(i)(pj)|
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and

d(i)(q, 2) =
1

m

m∑
j=1

(− log(1− pj)−Q(i)(pj))
2.

In a PP-plot the variance of deviations from the line y = x is greatest when pj = 0.5

and shrinks to 0 as pj approaches 0 or 1. In the PP-based metrics we therefore weight

the sum of the deviations to account for large discrepancies being less surprising for

central probabilities. The metrics d(i)(p, 1) and d(i)(p, 2) are therefore calculated using,

respectively, the weighted-absolute and weighted-squared errors:

d(i)(p, 1) =
1

m

m∑
j=1

[(
pj(1− pj)√

n(i)

)−1/2 ∣∣pj −H(i)(− log(1− pj))
∣∣]

and

d(i)(p, 2) =
1

m

m∑
j=1

[(
pj(1− pj)√

n(i)

)−1/2 (
pj −H(i)(− log(1− pj))

)2

]
.

These deviations are again measured at m equally spaced evaluation probabilities

denoted by p1, . . . , pm. In the quantile-based metrics the weighting is handled implic-

itly by choosing equally spaced evaluation probabilities, which gives dense evaluation

where discrepancies from y = x are expected to be small and sparse evaluation where

they are expected to be large. In this way, the weights reflect the width of the tolerance

intervals in Figure 5.4.1.

Uncertainties in the estimated GPD parameters, the size of the exceedance set and the

values of the unrounded exceedances should all be accounted for when using a metric

to select a modelling threshold. This can be achieved by calculating the distance

metrics for each of k realisations of the vector z̃, where each uses one of k bootstrap

parameter estimates of θ̂. The expected metric values over these realisations are

denoted by d(a, b), where a ∈ {p, q} and b ∈ {1, 2}. The expected distance metric

d(q, 1) is defined as:

d(q, 1) =
1

k

k∑
i=1

d(i)(q, 1),

with the other expected distance metrics defined similarly.
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5.4.4 Minimisation procedure

To select the most appropriate threshold, the threshold parameters which minimise the

selected metric d must be found. Standard, gradient-based optimisation procedures

are not well suited to this task because the censoring mechanism can cause multiple

local minima and the Monte Carlo evaluation leads to local roughness over parameter

values. When using a simple parametric form for the threshold, such as a constant

or stepped threshold (where the change location is known), a simple grid search can

be used to overcome these issues and find the threshold parameters that minimise

the metrics. For more complex threshold forms, with a higher dimensional parameter

space to optimise over, a grid search becomes prohibitively expensive.

To find the threshold parameter set for more complicated thresholds we explore the

threshold parameter space in a more principled manner. To do this we use Bayesian

optimisation (Snoek et al., 2012) as implemented in the ParBayesianOptimization R

package (Wilson, 2020). The optimisation procedure begins by evaluating d at a small

initial collection of randomly chosen parameter vectors within a bounded search space.

Based on the resulting metric values, future evaluation points are selected sequentially

as the parameter vector with the greatest expected reduction in d as compared to the

current best value. This search method balances evaluations between parts of the

parameter space where the metric is known to have low values and parts where it is

most uncertain.

Bayesian optimisation is a heuristic search method but has been shown in other ap-

plications to find good parameter combinations using a relatively small number of

function evaluations (Shahriari et al., 2015). To establish its suitability in our setting

we compared Bayesian optimisation to a grid search for two sub-problems; catalogues

with a flat threshold and catalogues with a stepped threshold with known change

location. In both cases Bayesian optimisation performed favourably compared to grid
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search, selecting thresholds close to the true value at a lower computational cost.

We do not claim that Bayesian optimisation is the best method for optimising the

proposed metrics over threshold parameters, only that it appears to be an efficient

method of finding good thresholds.

5.5 Threshold selection on simulated catalogues

5.5.1 Simulation study overview

We consider the performance of the proposed threshold selection metrics on a col-

lection of simulated data sets with either constant or stepped threshold forms. This

simulation study illustrates the effectiveness of our method and establishes which of

the distance metrics proposed in Section 5.4 is best.

We attempt to select the most appropriate threshold from a set of candidate thresh-

olds. Two censoring types (hard and phased) are considered for magnitudes that are

below the modelling threshold. For hard censoring, all simulated continuous magni-

tudes below the modelling threshold are undetected. In phased censoring the detection

probability of each event, α(yi, vi) = exp(−λ[vi − yi]+), decreases as the simulated

continuous magnitude falls further below the threshold, as controlled by the parame-

ter λ > 0. The particular choices of exponential decay and the value of λ are arbitrary

but were chosen to reflect, in a broad sense, the censoring observed in the Gronin-

gen earthquake catalogue. Note that either of these censoring types can result in

some rounded magnitudes that are below the threshold even though their simulated

continuous values are above the threshold.
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5.5.2 Constant threshold, hard censoring

We first use the four proposed metrics to select a constant threshold for 1500 simulated

i.i.d. GPD exceedances of the constant threshold v(τ) = 0.32ML, hard-censored below

v(τ) and rounded to the nearest 0.1ML. We first consider the metrics for a single

dataset. Expected metric values are calculated at the 41 equally spaced, constant

candidate thresholds shown in Figure 5.5.1. The candidate threshold selected by

minimising d(q, 1) is the closest threshold on the grid to the true value. This metric

also appears to provide the most clearly defined minimum, indicating that it penalises

both thresholds that are too low and too high. All four metrics show clear increases

in metric value for candidate thresholds that are too low, but not when the candidate

threshold is too high. The probability-based metrics do not increase greatly when the

candidate threshold is too high, and so fail to adequately reward the inclusion of valid

events with smaller magnitudes. This is presumably because they do not sufficiently

penalise the increased uncertainty in the estimated parameters when using a higher

threshold.

When selecting a constant threshold, the standard approach is to exploit the well-

established property that the GPD shape parameter is invariant to threshold choice

(Coles, 2001). Point estimates and 95% confidence intervals for ξ were obtained using

exceedances of each candidate threshold, accounting for the rounding of observations.

The confidence intervals for ξ overlap for all candidate thresholds above 0.275ML,

and so by the parameter stability method any greater threshold is also valid. The

thresholds chosen by our proposed method are therefore consistent with the parameter

stability method, but are preferable in that the selected thresholds are not below the

true level. Our proposed selection method is also more general; it allows comparison

of many non-constant thresholds without the need for subjective and time-consuming

interpretation of parameter stability plots.
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Figure 5.5.1: Flat threshold selection on a simulated catalogue. Top row: expected

mean absolute [left] and expected mean squared [right] QQ-distances against threshold

value. Bottom row: expected PP-distance metrics based on absolute [left] and squared

[right] errors against threshold. Selected and true thresholds are indicated by solid

black and dashed red lines.
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Figure 5.5.2: Sampling distribution of threshold selection methods for quantile-based

metrics over 500 simulated catalogues with constant threshold and hard censoring.

The true threshold is shown by a dashed red line and the root mean squared error

(RMSE) for each method is given in plot titles.

Figure 5.5.2 presents the sampling distribution and RMSE of the thresholds selected

from the candidate set by each of the QQ-based metrics over 500 replicated datasets,

simulated as previously described. The thresholds chosen by the PP-based metrics

are shown in Figure B.4.2 of Appendix B.4 and are frequently much higher than the

true value, resulting in higher RMSE values of 0.34 for d(p, 1) and 0.12 for d(p, 2).

The metric d(q, 1) has the lowest RMSE and so appears to be the best of the proposed

metrics in this case. All metrics have a tendency to overestimate the threshold value;

this is likely to be attributable to the hard censoring process. We therefore also

consider the performance of each metric using catalogues with phased censoring.

5.5.3 Constant threshold, phased censoring

To assess the performance of each metric on simulated catalogues with phased cen-

soring, we consider the thresholds selected by each metric for each of 500 simulated

catalogues. For each catalogue, 2400 i.i.d. GPD exceedances of 0ML were simulated.

Each exceedance was retained with probability α(yi, vi), as defined in Section 5.5.1

with v(τ) = 0.32ML and λ = 7. This combination of simulated catalogue size and
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censoring parameter gave an average catalogue size of 1500 recorded values, similar

to those in Section 5.5.2.

The resulting RMSEs in threshold selection over these 500 catalogues were: 0.06 for

d(q, 1), 0.08 for d(q, 2), 0.35 for d(p, 1), and 0.12 for d(p, 2). For all metrics the RMSE

is slightly increased compared to hard censoring, as threshold selection is made more

difficult by the retention of some events that are truly below the threshold. As with

hard censoring, the metrics d(p, 1) and d(p, 2) were prone to selecting conservative

threshold values and d(q, 1) resulted in the lowest RMSE. Unlike for hard censoring,

the sampling distributions of selected thresholds now cover the true threshold values,

this is shown in Figure B.4.4 of Appendix B.4. Similar selection properties for each

metric were seen when considering more complex threshold forms and so further ex-

position is limited to the metric d(q, 1), and we subsequently refer to d = d(q, 1).

5.5.4 Non-constant threshold selection

Here catalogues are simulated by generating 4000 i.i.d GPD exceedances of 0ML and

censoring (either hard or phased) based on a threshold with v(τ) = 0.83ML for 0 <

τ ≤ 2000 and v(τ) = 0.42ML for 2000 < τ ≤ 4000, see Figure 5.5.3 where λ = 7.

We considered threshold selection behaviour over 500 earthquake catalogues simu-

lated using the above change-point threshold for each of hard and phased censoring.

Note that the number of retained events and the threshold change location τ ∗ within

these will vary between simulations because they both depend on the simulated event

magnitudes and on how many of these are retained. However, in each case the true

value of τ ∗ is known.

For each simulated catalogue we selected a threshold of the form v(τ) = v(1) for
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Figure 5.5.3: Example simulated catalogues with hard censoring [left] and phased

censoring [right] for stepped thresholds of (v(1), v(2)) = (0.83,0.42), shown as a red

line, and phasing parameter λ = 7.

0 < τ ≤ τ ∗ and v(τ) = v(2) for τ ∗ < τ < τmax, where the threshold parameters

(v(1), v(2), τ ∗) are unknown. Threshold parameters were selected using the Bayesian

optimisation method of Section 5.4.4 to minimise the metric d. The sampling distribu-

tion of the errors in the selected threshold parameters are shown in Figure 5.5.4, where

it can be seen that our threshold selection method regularly recovers the non-constant

modelling threshold to within δ/2 of it true value.
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Figure 5.5.4: Marginal sampling distributions of errors in the selected values of v(1)

(left), v(2) (center) and τ ∗ (right) for 500 simulated catalogues with change-point type

thresholds and hard (top row) or phased (bottom row) censoring.
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Specific findings vary by censoring type. For hard censoring, as would be expected,

the threshold levels v(1) and v(2) are rarely selected to be below the true values. The

error distribution of τ ∗ has, in both cases, a mode close to 0 but with large variance.

As expected, the sampling variability of the error in each parameter is larger for

phased censoring than for hard censoring, though it is reassuring to see that the

distributions of selected threshold parameters are now centered on the true values.

This demonstrates that the tendency to select threshold values too high for catalogues

with hard censoring is a consequence of the censoring mechanism, not a bias in the

selection method.

5.6 Application to Groningen earthquakes

5.6.1 Validating data model for Groningen catalogue

We compare GPD and exponential models for Groningen earthquake magnitudes.

Rohrbeck et al. (2018) and Marzocchi et al. (2019) demonstrated the importance of

acknowledging rounding of observations, and so this is accounted for within the infer-

ence for both models. We focus on earthquakes exceeding the constant conservative

threshold of 1.45ML, subsequently referred to as vC . This is the magnitude of comple-

tion stated by the KNMI (Dost et al., 2012), adjusted to account for rounding.

Both the GPD and exponential models assume that magnitudes are i.i.d.; this is

supported by our exploratory analysis of the Groningen catalogue above 1.5ML in

Appendix B.1. The two models may be compared by considering the sampling distri-

bution of the estimated shape parameter under a GPD model, because the exponential

model is a special case of the GPD where ξ = 0. Fitting a GPD to the 311 exceedances

of vC leads to point estimates of (σ̂1.45, ξ̂) = (0.448,−0.018) with respective 95% boot-

strap confidence intervals of (0.399, 0.501) and (−0.147, 0.086). Since the confidence
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interval for ξ covers 0, the exponential model cannot be discounted at the 5% sig-

nificance level using only exceedances of vC . A second method of comparison is to

fit both an exponential and GPD model to exceedances of vC and, appealing to the

asymptotic distribution of the MLE, perform a likelihood ratio test. This produces a

likelihood ratio of 1.04 and associated p-value of 0.214, leading us to draw the same

conclusion in both comparisons: that there is insufficient evidence to conclude that

the Groningen magnitudes deviate from the Gutenberg-Richter law when using only

exceedances of vC .

However, if an exponential magnitude model is assumed then the uncertainty about

ξ is ignored. This has the effect of dramatically, but artificially, narrowing the con-

fidence intervals on the estimated magnitude quantiles, as shown in Figure B.4.3 of

Appendix B.4. The potential repercussions of ignoring this uncertainty are described

in detail in Coles and Pericchi (2003). A GPD model should therefore be used for

the underlying magnitudes, to properly represent this uncertainty when selecting a

modelling threshold for the Groningen gas field.

If the rounding of observations had been ignored in the fitting of the GPD model,

the point estimates of the GPD parameters would be (σ̂1.45, ξ̂) = (0.453,−0.027)

with respective standard errors of (0.039, 0.066). The parameter estimates are not

significantly different to those using the correct likelihood because the small number

of threshold exceedances means that parameter uncertainty obscures the bias induced

by neglecting to account for rounding.

Finally, in Figure 5.6.1 we check that the fitted GPD model is consistent with the

empirical distribution of exceedances of 1.45ML through the use of the modified QQ

and PP plots introduced in Section 5.4.2. Since the tolerance intervals and confidence

intervals overlap for both the sample quantiles and sample probabilities, we conclude

that a GPD model is appropriate for Groningen earthquake rounded magnitudes
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Figure 5.6.1: Modified PP (left) and QQ (right) plots for Groningen magnitudes

exceeding 1.45ML under the GPD model. Grey regions show 95% tolerance intervals

while vertical lines show 95% confidence intervals on sample probabilities / quantiles.

All confidence intervals overlap with the associated tolerance intervals.

exceeding 1.45ML.

5.6.2 Parametric threshold forms

Now we select thresholds of two parametric forms for the Groningen catalogue and

explore the results of the subsequent inference. The first is a constant threshold,

v(τ) = v, where the level v is to be chosen. This will allow us to assess the level of

conservatism in the conventional modelling threshold where v = 1.45ML. The second

form is a sigmoid-type threshold v(τ) = vR + (vL− vR)Φ ([µ− τ ]/ς) , with parameters

(vL, vR, µ, ς) ∈ R3 × R+ and where Φ is the standard Gaussian distribution function.

This extends the idea of the change-point threshold to accommodate smooth change

in the threshold value centred on µ. The threshold parameters may be interpreted

as follows. The left and right asymptotic levels of the threshold are given by vL and

vR, µ is the index-time at which the threshold takes the value (vL + vR)/2, and ς

controls how rapidly the threshold changes about µ, with ς → 0 corresponding to a

step change. In the context of the Groningen catalogue we expect that vR < vL.
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5.6.3 Threshold selection

5.6.3.1 Constant threshold

A grid search was used to find the flat threshold that minimises the metric d, as shown

in Figure 5.6.2. There are two local minima at v = 0.85ML and v = 1.07ML, the

latter being the global minimum. For thresholds greater than 1.07ML, including the

conservative threshold of 1.45ML, the metric values are increasing as not all viable

data are utilised. For thresholds less than 0.85ML the metric also increases as the

validity of the tail model breaks down. The small peak between these minima is

likely attributable to the reduction of the mc over time. In Figure 5.2.1 we saw

that fewer small magnitude events are censored at later times. The minimum at

1.07ML uses less data to achieve good distributional agreement for the entire period,

while the minimum at 0.85ML compromises on the distributional agreement at early

times to retain a larger proportion of the data. As the threshold is lowered between

magnitudes 0.95ML and 0.85ML, enough additional data are added to more than

compensate for the reduced goodness-of-fit in the early part of the observation period

and so the metric value reduces. Since the global minimum corresponds to the more

conservative threshold, we select 1.07ML as our constant modelling threshold.

5.6.3.2 Sigmoid threshold

Bayesian optimisation was used to find the sigmoid threshold parameters (vL, vR, µ, ς)

that minimise the metric d, where the search space was constrained to the region

[0.4, 1.7]2 × [200, 1100] × [1, 500]. For an initial set of 20 randomly selected thresh-

old parameter combinations, d was evaluated. A further fixed budget of 100 metric

evaluations was allocated and the thresholds with the smallest metric value retained

for further inspection. To assess the sensitivity of the selected threshold to the set

of initial evaluation points, this was repeated for five initial parameter combination
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Figure 5.6.2: [Left] Grid search to minimise d(q, 1) over threshold values v. Metric

values are shown on log-scale and vertical lines mark the edges of magnitude rounding

intervals. [Right] Point estimates (solid lines) and 95% confidence intervals (dashed

lines) for the conditional return levels for exceedances of 1.45ML, using the conserva-

tive (black) and selected thresholds (red). Sample conditional return levels are shown

in blue.

sets.

The thresholds with the lowest values of d based on each initialisation are shown

in Figure 5.6.3 (left). The selected threshold values at the ends of the observation

interval appear to be stable across initialisations, but the transition between these

levels is not. Further investigation supports the stability of the end levels; the blue and

turquoise thresholds have significantly greater metric values than the other thresholds,

suggesting that these initialisations had too few evaluations to explore beyond a local

minimum. These conclusions are consistent with the simulation study of Section 5.5.4,

illustrating that threshold levels are more easily estimated than the change between

those levels.

A second Bayesian optimisation was performed, fixing the end levels of the sigmoid

threshold to the those shared by the best performing thresholds in the previous opti-

misation, namely (vL, vR) = (1.15, 0.76). This reduces the dimension of the parameter

space and simplifies the optimisation task. Using the same procedure as for the un-
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Figure 5.6.3: Selected sigmoid thresholds using Bayesian optimisation from 5 ran-

dom initial parameter sets. [left] Optimising over all thresholds parameters. [centre,

right] Optimising over (µ, ς) and fixing (vL, vR) = (1.15, 0.76) on index- (centre) and

natural- (right) timescales. Colours are comparable only between centre and right

plots. Dashed horizontal lines show the conservative threshold value. Important dates

relating to the development of the Groningen seismic detection network are shown as

vertical lines: (A) development begins, (B) first additional sensors activated, (C)

upgrade complete.

constrained optimisation, the resulting selected thresholds from each initialisation are

shown in Figure 5.6.3 (centre). Upon repeated Monte Carlo evaluation of the met-

ric value for each of these thresholds, there is insufficient evidence to select one over

the others. When transformed onto the natural time scale, as shown in Figure 5.6.3

(right), the selected thresholds are all consistent with the known dates at which sen-

sor installation occurred. This shows that from the earthquake catalogue alone our

method is able to detect the starting and ending threshold levels and the period

in which it changed. However, we cannot identify precisely the way in which the

threshold changed during the installation period. This is not a major setback, since

between the most and least conservative of the chosen thresholds (turquoise and red

in the centre and right panels of Figure 5.6.3) the expected number of observations

above the threshold differs by only 50 earthquakes. We fitted the GPD model using

each of these five threshold functions, reaching similar conclusions, and so present
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further results for only the turquoise threshold.

5.6.3.3 Threshold comparison

We compare the conservative, selected constant, and selected sigmoid thresholds,

which are referred to as v̂C , v̂ and v̂S respectively. Comparisons are made on: the

expected metric value, the number of events used to fit the GPD model, the estimated

GPD parameter values, and the estimated return levels.

Metric evaluations are subject to Monte Carlo noise and so the metric value was eval-

uated 100 times for each threshold. The mean metric value and 95% Monte Carlo

noise intervals were calculated to be: 0.091 (0.088, 0.096) for v̂C , 0.054 (0.053, 0.055)

for v̂, and 0.041 (0.039, 0.043) for v̂S. This suggests that the model fit using v̂S fits

the observed data best, with v̂ being preferred over v̂C . These improvements in model

fit may be attributable to the increased data usage of the selected thresholds. The

threshold v̂C is at the edge of a rounding interval and so utilises 311 threshold ex-

ceedances in the resulting model. For thresholds v̂ and v̂S, the rounding of magnitudes

means that the exact number of exceedances is unknown. The expected number of

exceedances under the fitted magnitude models are 629 and 702 for v̂ and v̂S, respec-

tively. By using either of the selected thresholds, we have more than doubled the size

of usable catalogue as compared to the conservative threshold.

Figure 5.6.4 (left) shows the estimated parameter values under the fitted GPD model

using each threshold. The uncertainty in both parameters is reduced when using v̂

rather than v̂C , and further reduced when using v̂S. To give a sense of scale in this

reduction, we can calculate the number of additional exceedances of v̂C to which they

are equivalent, under the assumption that the standard error of parameter estimates

scales with exceedance count n as n−1/2. In doing this, the additional 318 and 391

small magnitude earthquakes included by, respectively, using v̂ or v̂S are equivalent
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to 363 or 509 additional events above v̂C . Therefore, point-for-point, the small mag-

nitude earthquakes are at least as valuable as additional data above vC for parameter

estimation.

When modelling exceedances of v̂ or v̂S the respective point estimates and 95% confi-

dence intervals for the shape parameter are -0.084 (-0.168, -0.017) and -0.069 (-0.144,

-0.008). Using exceedances of v̂ or v̂S leads to only 0.5% or 1.5% of the sampling

distribution for ξ̂ being above 0. This provides empirical evidence that the Groningen

magnitude distribution has a finite upper endpoint, unlike the conventional Guten-

berg Richter magnitude model. This dramatic conclusion could not be reached using

the smaller dataset exceeding v̂C , where 33% of the sampling distribution for ξ̂ lay

above 0.

Similar conclusions can be reached by using likelihood ratio tests to compare Expo-

nential and GPD models for exceedances each of vC , v̂ and v̂S; the respective p-values

are 0.78, 0.046, and 0.064. By using more of the available data, we have increased our

ability to discern between an exponential model and the observed magnitude distribu-

tion. The conclusions that can be drawn from this test are in agreement with, but are

less strong than, those of the previous comparison: a Gutenberg Richter magnitude

model is likely inferior to a GPD. The discrepancy in conclusion strength between the

two comparisons is likely due to the asymptotic assumptions of the likelihood ratio

test not being met by our finite sample size.

The estimated conditional return levels above 1.45ML are shown using each threshold

in Figure 5.6.4 (right). The estimated return levels are similar when using v̂ and v̂S,

but confidence intervals for large return periods are narrower when using v̂S. In either

case, the return levels have both smaller point estimates and uncertainties by using

our threshold selection method than when using the conservative threshold. This is an

important finding when deciding what measures to take when designing or retrofitting
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Figure 5.6.4: Bootstrap GPD parameter estimates based on exceedances of the con-

servative (black), flat (red) and sigmoid (blue) thresholds [left]. Estimated return

levels in ML and 95% confidence intervals for magnitudes exceeding 1.45ML [right].

earthquake defences for buildings.

5.7 Discussion / Conclusion

This chapter introduced a principled method to select a time-varying modelling thresh-

old for an extreme value analysis. The effectiveness and value of using this method

to include additional, less extreme events in the analysis were demonstrated through

simulation studies. Although the method was developed in the context of earthquake

catalogues, and to accommodate the additional challenges to inference that these

pose, the core of our method is applicable to extreme value threshold selection more

generally and we anticipate it having a much broader impact.

Using the new threshold selection method, we have been able to identify the period

in which the Groningen sensor network was being improved by using the earthquake

catalogue alone. Our threshold selection method more than doubled the usable size

of the Groningen earthquake catalogue compared to using the conservative threshold

given by the KNMI, whilst also improving model fit. This has several important

implications beyond the direct improvement to statistical inference.
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The use of these additional small magnitude earthquakes leads to greater precision

in the estimates of high magnitude quantiles, which is potentially a huge benefit

by reducing the cost of designing, constructing or retrofitting earthquake defences.

Following threshold selection, a Bayesian modelling approach would allow quantile

uncertainty to be included naturally when designing defences against natural hazards

(Coles and Tawn, 1996; Fawcett and Green, 2018; Jonathan et al., 2021) and estimates

with greater precision can reduce the cost required to provide protection with equiv-

alent confidence. The gain we have made in the efficiency of statistical inference can

be translated to a tangible economic benefit of using the additional data recorded by

improving the censor network. The more efficient use of the available data has allowed

us to conclude, for the first time based on empirical evidence alone, that Groningen

earthquake magnitudes are likely to have a light-tailed distribution. Using the conser-

vative threshold level this conclusion could only have been achieved by waiting many

years to observe additional large magnitude earthquakes. Finally, using a less conser-

vative modelling threshold provides a return on the substantial investment into the

earthquake detection network around the Groningen gas field. When a non-constant

threshold is selected, the added value of the network improvements is exploited fully

and the subsequent modelling threshold can also offer insights into the reduction of

mc over time.

A limitation of the work is that the computational effort required to select a modelling

threshold is relatively high. We do not view this as a large drawback since threshold

selection must be performed only once through the modelling process. An area for

further development would be to investigate alternative, exact methods to optimise the

expected selection metric over the threshold parameters. One possible extension to our

approach would be to adapt the data model to account for magnitude measurement

error causing events to be recorded within incorrect rounding intervals. Another,
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more ambitious, extension might consider a selection of spatio-temporal threshold

function to describe spatial variability as well as the temporal evolution of event

detection. Finally, an extensive comparison of our proposed and standard extreme

value threshold selection methods would be a valuable piece of further work, given its

critical importance in extreme value methods.



Chapter 6

Improving and extending the

ETAS formulation

6.1 Introduction

6.1.1 The ETAS model

The epidemic-type aftershock sequence (ETAS) model describes marked, clustered

point processes. In the simplest form of the ETAS model, each event is a time-mark

pair (t,m) where typically t ∈ (0, tmax) and m ∈ R+. A single realisation of the point

process is then a collection of n ∈ N0 = N ∪ {0} such pairs {(ti,mi) : i = 1, . . . , n},

where the number of events n is a random variate. The ETAS model was developed for

earthquake catalogues by Ogata (1988), but has since found applications in finance,

the natural- and social-sciences (Reinhart, 2018). In the context of seismicity, the

ETAS model can be used descriptively or predictively. Descriptive modelling can

be used to address questions of scientific interest about the earthquake generating

process, while predictive modelling can inform earthquake defence policies that help

125
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to safeguard against future hazards.

A point process model can be defined by its intensity function, which determines the

expected number of events in the process and how those events are located across

time or space. In the ETAS model this intensity function is increased locally after

each event, resulting in a clustered point process. The size of the additional intensity

contribution from each event is determined by the value of its mark, where larger

mark values are expected to yield a larger number of additional events. In the con-

text of seismicity modelling, each event represents an earthquake and the associated

mark represents its magnitude. In this way, each event in an ETAS point process

may be considered as either a background or triggered event; background events are

attributable to the initial intensity component and triggered events are attributable

to an intensity component caused by a previous event. Within the standard ETAS

model, event magnitudes are independent of one another and of event type. As with

background events, triggered events provide an additional intensity contribution and

so can also trigger further events. The ETAS model may therefore be interpreted as

either the superposition of point processes or as a branching process.

In the simplest form of the ETAS model, background events come from a Poisson pro-

cess with constant intensity µ. This intensity is then augmented by each of the events,

indexed by i, according to their magnitude and occurrence time. The magnitude pro-

ductivity function κ : R→ R+
0 determines the expected number of events triggered at

a given magnitude. The probability density function h : R+ → R+ characterises the

delays between triggering and triggered events. The resulting conditional intensity

function depends on the history of the process at time τ , Hτ = {(ti,mi) : ti < τ} and

is parameterised by the vector θ = (µ, θκ, θh). Specifically, the conditional intensity λ
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at time τ is defined as:

λ(τ |Hτ ; θ) = µ+
∑
i:ti<τ

κ(mi; θκ)h(τ − ti; θh). (6.1.1)

In seismological applications of the ETAS model the most common parametric forms

for κ and h are the empirical earthquake ‘laws’ which will be introduced in Sec-

tion 6.3.1. Broadly, these forms for κ and h impose that the increment in intensity

following each event should increase with the magnitude of the event and should di-

minish with time since that event. The first contribution of this chapter is to show

that these empirical earthquake laws may be represented by the single, encompassing

model provided by the generalised Pareto distribution (GPD). We show that using

this encompassing model better represents epistemic uncertainty (by broadening the

class of models which can be represented) and increases the statistical efficiency of

parameter inference.

6.1.2 Magnitude modelling

In the standard ETAS formulation, event marks are modelled as an independent

component of the point process. That is, marks are modelled as independent and

identically distributed (i.i.d.) random variables with a common probability density

function f(m;ψ).

Within the seismology literature, previous studies have investigated the validity of

earthquake magnitudes being identically distributed, i.e., that there is a single mag-

nitude distribution for all earthquakes. These studies rely on ‘declustering’ the earth-

quake catalogue into mainshock and aftershock events and then testing for differences

in the distributions of the two samples (Stallone and Marzocchi, 2019). This clustering

is frequently done using a window- or distance-based approach following the events of

largest magnitude, in which case mainshocks and aftershocks are not coherent with
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the complex triggering structure of the ETAS model (Varini et al., 2020). An alter-

native approach to declustering is to use point estimates of the ETAS parameters to

perform a model-based stochastic declustering (Zhuang et al., 2002). This approach

yields, for each event, a probability distribution that gives the probability that the

event is attributable to each of the previous earthquakes or is a background event.

This stochastic declustering respects the branching structure of ETAS point processes

and gives some measure of the uncertainty on the the estimated cluster allocation.

However, this approach importantly fails to capture the joint uncertainty across all

events or to include the additional uncertainty arising from the ETAS parameters

themselves being estimated.

There have also been previous investigations into the assumed independence between

earthquake magnitudes (Gulia et al., 2018; Stallone and Marzocchi, 2019; Cai et al.,

2021). These rely on the previously mentioned declustering methods and so suffer from

the same limitations. Additionally, attention is often restricted to dependence between

the magnitudes of the main-shock and largest aftershock within each identified cluster.

This focus may be motivated by mathematical convenience or else by an empirical

relation known as B̊ath’s law (B̊ath, 1965), which relates these quantities. However,

this approach fails to use all available data and the motivation based on B̊ath’s law

is unsound; B̊ath’s law can been shown to arise as an artefact of the window-based

declustering method when magnitudes are truly i.i.d. (Lombardi, 2002; Helmstetter

and Sornette, 2003).

A different dependence structure was investigated by Chavez-Demoulin et al. (2005),

who incorporated auto-regressive dependence into a financial application of the ETAS

model. In this setting, events correspond to financial losses exceeding a given threshold

and marks give the size of this exceedance. The event times are modelled using an

ETAS point process, modified so that each mark has a generalised Pareto conditional
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distribution (as given in equation (6.3.6)) when the value of the previous mark is

known. The scale parameter of this conditional distribution is linked to the previous

mark so that Mi|Mi−1 = mi−1 ∼ GPD(exp{a + bmi−1}, ξ), where a, b and ξ are

parameters to be estimated. This is a relaxation of the assumption that marks are

i.i.d. under the standard ETAS model that leads to marginal mark distributions that

are not within the GPD family.

A third dependence structure, which addresses the branching structure of the ETAS

process, was investigated by Žugec (2019). Their approach assumes that the marginal

distribution of all magnitudes can be described by a single exponential distribution.

The dependence between the magnitudes of triggering and triggered events is incorpo-

rated through the use of a Farlie - Gumbel - Morgenstern copula, constrained to only

allow positive dependence. This dependence structure has the benefit of preserving

the marginal magnitude distributions and respecting the branching structure of the

ETAS process. However, the choice of copula used to model dependence does not

allow magnitudes to be dependent at extreme levels, allowing only ‘near’ extremal

independence (Ledford and Tawn, 1997). Additionally, Žugec (2019) presents only

theoretical results for their model and does not provide an inference method with

which to fit their model to an observed earthquake catalogue.

In Section 6.4 we introduce an alternative relaxation of the i.i.d. mark assumption.

This is designed to ensure that: dependence is based on the branching structure of

the process, rather than the temporal ordering of events; the marginal mark distribu-

tions are in the GPD family; and strong dependence at extreme magnitudes may be

represented. We begin Section 6.4 by introducing an extension of the ETAS model

to allow separate magnitude distributions for background and triggered events. This

is based on the estimated branching structure of the ETAS process and accounts for

all sources of uncertainty within this model. We then consider a further extension by
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allowing dependence between the magnitudes of triggered events and the magnitude

of the event that triggered them. We present inference methods for each model. These

methods allow for simple hypothesis tests on the presence of each of these magnitude

features, while properly reflecting uncertainties within the ETAS paradigm.

6.1.3 Bayesian ETAS modelling

When fitting the ETAS model to an observed catalogue of earthquakes, one must

estimate the parameter vectors θ and ψ that describe the point process intensity

λ(t; θ) and magnitude distribution f(m;ψ). Direct maximisation of the likelihood

function is the most common approach to parameter estimation for the ETAS model.

This approach is described in Section 6.2.1. There are three main issues with the direct

approach to inference for the standard ETAS model. Firstly, parameter uncertainty is

difficult to propagate into earthquake forecasts. This means that in many cases only

the point estimates of parameters are retained (Ogata, 1988; Veen and Schoenberg,

2008). This is a particular issue when the model is used to predictively simulate

an ensemble set of futures to aid decision-making; using only point estimates will

lead to an overly narrow set of possible outcomes being represented. Secondly, the

likelihood function requires numerical maximisation. Direct numerical maximisation

is unreliable for the ETAS likelihood because the parameters are not orthogonal, the

likelihood function can have multiple modes and local regions may be almost flat

(Veen and Schoenberg, 2008). These features also mean that measures of parameter

uncertainty based on asymptotic standard errors can be unsuitable or unreasonable.

Finally, each evaluation of the likelihood for the ETAS model is computationally

expensive, and this becomes the increasingly prohibitive factor as the number of events

in the observed catalogue grows. This final issue can be compensated for through

use of the expectation-maximisation algorithm introduced by Veen and Schoenberg
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(2008). An additional, fourth issue arises when the i.i.d. magnitude assumption is

relaxed: the likelihood becomes intractable making evaluation, and therefore direct

maximisation, of the likelihood function impossible.

The aforementioned challenges presented by the ETAS likelihood motivate a Bayesian

approach to modelling. This avoids reliance on asymptotic results for parameter un-

certainty and makes propagating these uncertainties into predictions straightforward.

It also offers the possibility to incorporate expert knowledge into the fitting procedure,

which could be particularly helpful when modelling point processes with relatively few

observed events. Fitting the ETAS model in a Bayesian framework requires Markov

Chain Monte Carlo (MCMC) sampling methods, which makes it more computation-

ally challenging than a frequentist approach. However, this cost can be greatly reduced

through the use of the Gibbs sampling scheme introduced by Ross (2016).

Ross (2016) interprets the ETAS model as a branching process and introduces a latent

vector to describe the branching structure. This vector defines the graph represen-

tation of triggering and triggered events and is described fully in Section 6.2. In-

troducing this branching vector facilitates inference for the ETAS model by allowing

alternate estimation of the branching structure and ETAS parameters. This provides

a method of probabilistically declustering earthquake sequences that fits naturally

into the Bayesian paradigm. The approach was shown to reduce dependence between

groups or ‘blocks’ of the ETAS parameters and was shown experimentally to reduce

the cost of evaluating the likelihood function. A remaining issue, which we address

through our proposed reparameterisation in Section 6.3, is that parameters remain

highly dependent on one another within these blocks.
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6.1.4 Contributions and chapter outline

We first show that the earthquake laws used in Ross (2016) and many other applica-

tions of the ETAS model are restricted forms of the generalised Pareto distribution.

We reformulate the ETAS intensity in terms of this model, which reduces within-

block parameter dependence and leads to more efficient inference. The reformulation

properly accounts for both model-uncertainty and parameter-uncertainty, leading to

conclusions and predictions that are more robust.

We then propose two extensions of the ETAS model that build explicitly on its rep-

resentation as a branching process. Our first extension allows distinct magnitude

distributions for background and triggered earthquakes. The second extension al-

lows magnitudes of triggered earthquakes to be dependent on the magnitude of the

triggering event. These extensions allow simple, structured tests for the additional

magnitude properties that could not be included in the ETAS model when taking a

direct approach to fitting the model.

The temporal ETAS model (Ogata, 1988) has many extensions, including those which

allow a variable background rate and those which model events over space and time

(Ogata, 2011; Kolev and Ross, 2020). The ideas presented in this paper extend readily

to these settings and so for simplicity of exposition we restrict our attention to the

temporal ETAS model.

The rest of this chapter is set out as follows. In Section 6.2 we outline in detail both

the direct and latent variable inference procedures for the ETAS model. We identify

the source of the efficiency gain that was demonstrated numerically by Ross (2016)

and calculate the order of this efficiency gain. In Section 6.3 we propose a more general

parameterisation of the empirical laws that are commonly used for the productivity

function, delay and magnitude distributions. The proposed extension broadens the
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class of models that can be represented within the ETAS framework and aims to make

inference more efficient by reducing the dependence within groups of parameters. In

Section 6.4, we introduce two extensions to the standard ETAS magnitude model

and describe estimation procedures for these extensions. The first extension utilises

the latent branching structure in an ETAS point process to allow distinct magnitude

distributions for background and triggered events. The second extension moves be-

yond the assumption of independence to allow triggered magnitudes to depend on the

magnitude of their triggering event. Section 6.5 demonstrates the benefits of these ap-

proaches using simulated earthquake catalogues. Finally, Section 6.6 gives concluding

remarks and suggests areas for further work.

6.2 Estimation of ETAS parameters

6.2.1 Direct estimation: ETAS as a point process

Use of the ETAS model requires estimation of the parameter vectors θ and ψ of the

intensity function λ(τ ; θ) and mark distribution f(m;ψ). This section describes how

these parameter vectors can be estimated for the standard ETAS formulation (with

i.i.d. magnitudes) using a direct point process representation. This is accomplished

using a single, observed catalogue of n events y = (y1, . . . , yn) = ({t1,m1}, . . . , {tn,mn}),

which is a realisation of the marked point process Y = (Y1, . . . , YN) where each ele-

ment of Y is a time-magnitude pair and the number of events N is random. In order

to be included in the catalogue, event magnitudes must exceed a minimum value of

m0 and must occur before the end of observation at time tmax. The support for each

element of Y is therefore the time-magnitude window [0, tmax]× [m0,∞).

To find the joint posterior distribution of θ and ψ, we first require the likelihood

function πY |θ,ψ(y). The corresponding log-likelihood has the same form as that of an
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inhomogeneous Poisson process with independent marks and the history-dependent

intensity function from expression (6.1.1), namely:

log πY |θ,ψ(y) =
n∑
i=1

log f(mi;ψ)−
∫ tmax

0

λ(τ |Hτ ; θ)dτ +
n∑
i=1

log λ(ti|Hti; θ). (6.2.1)

The log-likelihood (6.2.1) is separable in θ and ψ and so these vectors may be estimated

separately. We focus in this section on estimation of θ, which is the more challenging

aspect when magnitudes are independent and identically distributed. Expression

(6.2.2) gives the log-likelihood of θ in expanded form, whereH(τ ; θh) is the distribution

function associated with the aftershock delay density h(τ ; θh).

log πY |θ(y) =− µtmax −
n∑
i=1

κ(mi|θκ)H(tmax − ti|θh)

+
n∑
i=1

log

µ+
∑
j:tj<ti

κ(mj|θκ)h(ti − tj|θh)

 . (6.2.2)

There is no conjugate form for this model and so Monte Carlo methods are required to

obtain approximate samples from the posterior distribution. The standard and most

direct approach is to use a random walk Metropolis algorithm to do so; Ross (2016)

describes how this can be implemented for the ETAS model. As with likelihood-

based inference, this approach suffers from the local flatness of the likelihood and

strong, complex parameter dependence pointed out by Veen and Schoenberg (2008).

The direct approach to inference requires a large number of evaluations of the log-

likelihood (6.2.2). Each evaluation is an O(n2) operation due to double summation

in the final term, which makes the sampling algorithm very slow for even moderately

sized catalogues. These issues can be alleviated by instead considering the ETAS

model as a branching process.
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6.2.2 Latent estimation: ETAS as a branching process

Self-exciting point processes such as the ETAS model may be interpreted as branching

processes (Kirchner, 2017). These processes can be represented as a graph, where

events are nodes and directed edges connect an event to those that it triggers. This

branching structure produces a collection of trees, which are unobserved but can be

modelled by a latent n-vector, B = (B1, . . . , Bn). Element i of this vector, Bi ∈

{0, 1, . . . , i− 1}, is equal to zero if event i is a background event (that is not triggered

by a previous event) and otherwise gives the index the triggering event. The branching

vector therefore identifies the set of any ‘child’ events triggered by each ‘parent’ event

i ∈ 1, . . . , n, which we index by the sets Ci = {j ∈ {i+ 1, . . . , n} : bj = i}.

Figure 6.2.1 shows the graph representation and associated branching vector B of a

toy example from the ETAS model, where Y1, . . . , Y7 are a temporally ordered set of

events. The ‘root’ of each tree is formed by a background event. In this example

there are three trees initiated by the background events Y1, Y2 and Y5. The example

shows that an event may directly trigger zero, one, or multiple further events, as

demonstrated by the child sets C2 = ∅, C1 = {3} and C3 = {4, 6}. Note that triggered

events may in turn trigger further triggered events, as demonstrated by Y3. Finally,

notice that triggering and triggered events are not necessarily consecutive or even

contiguous in time. This is because events can trigger multiple further events and

distinct trees can overlap in time. These effects can be seen in the toy example where

Y6 is separated in time from its triggering event Y3 by both the background event Y5

and also by Y4, another child event of Y3.

An alternative approach to estimation of the ETAS parameters utilises this branch-

ing process interpretation and in particular the latent branching vector, B. This

method was proposed by Veen and Schoenberg (2008) and brought to the Bayesian

setting by Ross (2016). In this approach, the conditional intensity function (6.1.1)
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Figure 6.2.1: Graphical representation of a toy example from the ETAS model with

branching vector B = (0, 0, 1, 3, 0, 3, 5). Note that an event may trigger multiple fur-

ther events, that event sequences may overlap temporally, and that both background

and triggered events may trigger further events. Each event Yi = (Ti,Mi) represents

a time-magnitude pair where T1 < T2 < . . . < T7.

can be regarded as the superposition of n + 1 Poisson process intensities. These

Poisson processes are indexed 0, . . . , n, with intensity functions λ0, . . . , λn such that

λ(τ |Hτ ; θ) =
∑n

i=0 λi(τ |yi; θ). Each Poisson process represents one source of seis-

micity: the background events, those triggered by the first earthquake, by the second

earthquake and so on. The intensities of these Poisson processes, λ0 to λn, are defined

as:

λi(τ |Hτ ; θ) =


µ if i = 0 and τ ≥ 0,

κ(mi; θκ)h(τ − ti|ti; θh) if i ∈ {1, . . . , n} and τ > ti,

0 otherwise.

(6.2.3)

Under this interpretation, the branching vector B specifies to which Poisson compo-

nent of the ETAS process each event belongs. Given B, the full ETAS point pro-

cess is simply the superposition of independent Poisson processes and the conditional

log-likelihood given B is the sum of Poisson process log-likelihoods. By defining

y0 = (t0,m0) = (0, 0) and letting ybi = (tbi ,mbi) denote the parent of event i, the
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conditional ETAS log-likelihood given B is:

log πY |θ,B(y)

=
n∑
i=1

{
log λbi(ti; θ)−

∫ tmax

0

λi(τ)dτ

}
=

n∑
i=1

{log κ(mbi |θκ)h(ti − tbi |θh)} − µtmax −
n∑
i=1

{κ(mi|θκ)H(tmax − ti|θh)}. (6.2.4)

The conditional log-likelihood (6.2.4) no longer contains a double summation and so

is much less costly to evaluate than the full likelihood (6.2.1). This reduced com-

putational cost motivates a conditional approach to estimation of πθ|Y . This can be

done by using a Metropolis-within-Gibbs sampler to alternately draw samples from

the conditional posteriors πB|Y,θ(b) and πθ|Y,B(θ) at the present value of the other pa-

rameter set. Implementing this sampler then requires a tractable form for πB|Y,θ(b).

This distribution has a particularly simple form if the priors on each Bi are pair-wise

independent and discrete uniform on their respective supports. This choice of prior

can be motivated by the inter-event times and magnitudes being unknown a priori.

In that case:

πB|Y,θ(b) =
n∏
i=1

πBi|Y,θ(bi) where πBi|Y,θ(bi) =
λbi(ti;Hti, θ)∑i−1
j=0 λj(ti;Hti, θ)

. (6.2.5)

6.2.3 Benefits of the latent estimation approach

The computational benefits of the latent estimation approach were demonstrated

empirically by Ross (2016). Here, we make some further comments to clarify the

source of this improvement.

To sample values from πθ|Y (θ), the direct estimation procedure requires one O(n2)

evaluation of the full log-likelihood at each step in the Markov chain. The latent

estimation procedure requires, at each step in the Markov chain, one evaluation of

the conditional likelihood πθ|Y,B(θ) and one sample from πB|Y,θ(b). From expression
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(6.2.4), it is evident that evaluating πθ|Y,B(θ) is an O(n) operation. To draw the

full vector B from this conditional posterior, we must sample each of its n elements.

Sampling the element Bi draws a sample from a discrete distribution with i possible

outcomes; this is an O(i) operation (Walker, 1977) that must be done for each of

the n earthquakes. Sampling the full vector B is therefore an O(log(n!)) operation.

Therefore, for large n, sampling the branching vector from πB|Y,θ(b) is the most costly

operation when obtaining each sample from the posterior distribution of θ. Sam-

pling from πθ,B|Y (θ, b) by the latent variable method is therefore also an O(log(n!))

operation, which has been reduced from O(n2) by the direct method.

This conditional estimation approach has two further benefits. The first is that sam-

pling B alongside θ provides a stochastic declustering of the catalogue as part of

the model fitting process. This declustering allows the branching structure to be

estimated while fully accounting for parameter uncertainty. Being able to estimate

the branching structure then permits generalisations of the ETAS model that are

based on its representation as a branching process. The second benefit of the ap-

proach is that parameter vector θ can be decomposed into the near-orthogonal blocks

θ = (µ, θκ, θh) that may be updated separately (Ross, 2016). These blocks are exactly

orthogonal if all aftershock activity is within the observation period, meaning that

H(tmax − τ |θh) = 1 for all τ ∈ [0, tmax) (Schoenberg, 2013).
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6.3 Extreme value reparameterisation of empirical

laws

6.3.1 Empirical laws

The functions κ, h and f are usually chosen to coincide with empirical ‘laws’ from

the seismology literature (Hainzl and Christophersen, 2017). The productivity func-

tion κ(mi;K, a), is frequently chosen to be an exponentially increasing function of

magnitude above some fixed threshold magnitude u:

κ(mi;K, a) = K exp{a(mi − u)}Imi>u, (6.3.1)

where K, a ≥ 0 and IA is an indicator function of the event A. The threshold u is

typically taken to be the magnitude of completion, above which all earthquakes are

recorded in the catalogue. The modified-Omori law is typically used for the aftershock

delay distribution h(τ ; c, p). This is a heavy tailed, power-law distribution that decays

more slowly than an exponential distribution:

h(τ ; c, p) = (p− 1)cp−1
(

1 +
τ

c

)−p
Iτ>0, (6.3.2)

where c > 0 and p > 1. The (truncated) Gutenberg-Richter law is used for the mag-

nitude distribution f(m; β). This is a shifted and truncated exponential distribution

with rate parameter β > 0. The support of the distribution is truncated to be in the

range (mmin,mmax) where mmax ≤ ∞, resulting in the density:

f(m; β) =
β exp{−β(m−mmin)}

1− exp{−β(mmax −mmin)}
Immin≤m≤mmax . (6.3.3)

There are two main issues that arise from using these empirical laws in the point

process intensity model (6.1.1).

When using the modified Omori law (6.3.2), the delay distribution is constrained to

be heavy tailed. This means that each event influences the intensity at all future times



CHAPTER 6. IMPROVING AND EXTENDING THE ETAS FORMULATION140

and that this influence decays very slowly. The modified-Omori law is restrictive in

that it does not allow the influence to decay rapidly or to have a finite extent. The

second issue with using this empirical law is that its heavy-tailed nature can lead

to a large proportion of the intensity from each event being placed outside of the

observation window. This increases dependence between the ETAS parameter blocks

{µ}, {K, a} and {c, p} and makes inference more challenging.

There are also issues with the choice of the Gutenberg-Richter magnitude model.

Firstly, if mmax =∞ then the fitted magnitude distribution will always be unbounded,

which is not physically reasonable. Secondly, if mmax < ∞ then there exists some

greatest possible magnitude but the density is discontinuous there, because the distri-

bution is constrained to have an exponential form. This form of constraint has been

shown in other environmental applications to result in underestimation of the severity

of the largest events (Coles et al., 2003). When a maximum magnitude is used, it is

estimated through a separate extrapolation and the point estimate is used, ignoring

crucial uncertainty about the events with greatest potential to cause damage (Kijko

and Singh, 2011; Beirlant et al., 2019).

6.3.2 Proposed parameterisation

We propose alternative parametric forms for the functions κ, h, and f , which maintain

or extend the class of functions which can be represented by the model. The proposed

forms remove the restrictions placed on the shape and upper endpoint of both the

delay and magnitude distributions, while dramatically reducing dependence within

parameter blocks.

Productivity function. The productivity function κ links the magnitude of an

event to the expected number of additional events that it triggers. In the latent
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approach to inference, the parameters of κ are estimated conditional on knowing the

branching vector B. As discussed in Section 6.2, when B is known the ETAS process

can be decomposed into n + 1 independent, inhomogeneous Poisson processes. The

observed event counts of these processes, {Ni = |Ci| : i = 0, . . . , n}, are independent

observations from a Poisson generalised linear model, where the linear predictor is a

function of the parent magnitude.

With this interpretation, the productivity function in expression (6.3.1) can be rewrit-

ten as the generalised linear model where the parameters K and a are to be estimated:

Ni ∼ Poisson(κ(mi)), where

κ(m;K, a) = elog(K)+a(m−m0) = e(log(K)−am0)+am. (6.3.4)

This view of the productivity function highlights that the effect of magnitude on

productivity is described relative to the threshold magnitude m0. The intercept term

in model (6.3.4) involves both K and a, which can result in strong dependence between

these parameters and poor mixing when MCMC is used to sample from their joint

posterior. To alleviate this issue, we can centre the magnitude effect at the mean

observed magnitude m̄:

κ(mi;K, a) = elog(C)+a(mi−m̄), (6.3.5)

where C = K exp{a(m̄−m0) > 0 and a > 0.

In model (6.3.5) the interpretation of a is unchanged from the previous model but the

parameter C now represents the expected aftershock productivity of a mean magni-

tude event. The parameters C and a have distinct interpretations in relation to the

observed counts. This reparameterisation reduces dependence between the parameters

in the same way as centring a linear model and should lead to more efficient MCMC

sampling behaviour. One slight disadvantage is that the interpretation of C is now
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catalogue dependent. However, sampled parameter values may be back-transformed

onto the original parameter space to avoid this issue.

Delay distribution and Magnitude distribution. For both the delay distribu-

tion and the magnitude distribution, we propose the use of the generalised Pareto

distribution. This two parameter distribution is commonly used in extreme value

theory as an asymptotically motivated model for the distribution of exceedances of a

threshold u (Coles, 2001). Under mild regularity conditions, the density function of

a random variable (X − u|X ≥ u) ∼ GPDu(σ, ξ) is given by:

fX−u|X>u(x− u;σ, ξ) =


1
σ

(
1 + ξ(x−u)

σ

)− 1
ξ
−1

+
ξ 6= 0, x ≥ u;

1
σ

exp
(
−x−u

σ

)
ξ = 0, x ≥ u;

0 otherwise;

(6.3.6)

where x+ = max(x, 0). The shape parameter ξ ∈ R controls the tail decay behaviour

while the scale parameter σ > 0 describes the typical size of excesses. When ξ > 0,

the distribution is a heavy tailed power-law distribution, when ξ = 0 the distribution

is exponential, and when ξ < 0 the distribution has a finite upper endpoint at xmax =

u− σ
ξ
. Expression (6.3.6) gives the standard parameterisation of the generalised Pareto

distribution, in which the parameters σ and ξ are correlated. Chavez-Demoulin and

Davison (2005) introduced a parameterisation of the generalised Pareto distribution

using the alternative scale parameter ν = σ
1+ξ

:

fX−u|X>u(x− u; ν, ξ) =


1+ξ
ν

(
1 + ξ(1+ξ)(x−u)

ν

)− 1
ξ
−1

+
ξ 6= 0, x ≥ u;

1
ν

exp
(
−x−u

ν

)
ξ = 0, x ≥ u;

0 otherwise.

(6.3.7)

Under this parameterisation, the parameters ν and ξ are orthogonal when ξ > −1/2

and if ξ < 0, the upper endpoint of the distribution is xmax = u− ν[ξ(1 + ξ)]−1.

The modified-Omori and Gutenberg-Richter laws of models (6.3.2) and (6.3.3) can
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each be seen as restricted forms of the generalised Pareto distribution with thresholds

u = 0 and parameters (νt, ξt) and (νm, ξm), respectively. The modified-Omori law of

aftershock delay times is a power-law distribution and so is equivalent to the distribu-

tion GPD0(νt = c
p−1

(1 + 1
p−1

), ξt = 1
p−1

), constrained so that ξt > 0. Similarly, when

mmax = ∞, the Gutenberg-Richter law is a special case of the GPD0(νm = 1
β
, ξm)

distribution constrained so that ξm = 0. In the case where ξm < 0 the GPD provides

a similar model to the truncated Gutenberg-Richter law, but with the added benefit

of the density function being continuous at mmax.

The previously described empirical law models are all nested within the generalised

Pareto model. This means that using a generalised Pareto distribution in place of

each empirical law will allow a broader class of models to be represented and better

represent epistemic uncertainty. Additionally, the orthogonal representation of the

generalised Pareto distribution (6.3.7) is likely to improve inference because of more

efficient MCMC sampling. The empirical laws being nested within the GPD model

allows this to be demonstrated by imposing parameter restraints on the the more flex-

ible model and comparing the sampling efficiency under each parameterisation.

6.3.3 Comparing parameterisations

In this section, we compare the properties of MCMC chains for estimating the ETAS

model parameters under two parameterisations. As described in the previous section,

the conventional parameterisation of the ETAS model θconv = (µ,K, a, c, p) is based

on empirical ‘laws’, uses a power-law distribution for the aftershock delay distribution

and describes the effect of magnitude on aftershock productivity relative to a threshold

magnitude. The novel proposed parameterisation θprop = (µ,C, a, νt, ξt) centres the

effect of magnitude on productivity at the mean magnitude and uses the encompassing

generalised Pareto distribution for aftershock delay distribution. To compare the
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models fairly, the parameters of the GPD are constrained so that ξt > 0. This ensures

that the two parameterisations represent the same class of models, namely those with

heavy tailed waiting-time distributions. By imposing this restriction there is a one-

to-one mapping g between the two parameterisations so that

θprop = g(θconv) =

(
µ, K exp{a(m̄−m0)}, a, c

p− 1

(
1 +

1

p− 1

)
,

1

p− 1

)
and

θconv = g−1(θprop) =

(
µ, C exp{a(m0 − m̄)}, a, νt

ξt(1 + ξt)
, 1 +

1

ξt

)
.

We base our comparison of the two parameterisations on two properties of the MCMC

chain: recovery of the the true parameter values from a simulated catalogue and

efficient exploration of the parameter space. Effective parameter recovery is indicated

by the posterior mode being close to the true parameter values and the posterior

being concentrated around that true value. Efficient exploration of the parameter

space by an MCMC chain is indicated by a moderate acceptance probability during

Metropolis steps and sampled parameter values having auto-correlation functions that

decay quickly as the lag increases.

Parameter recovery can be evaluated visually by overlaying true parameter values on

contour plots of the univariate or bivariate marginal posteriors of each parameter.

Good parameter recovery is then indicated by the combination of tightly spaced con-

tours and the posterior probability density being high at the true value. This can be

summarised numerically by using the mean squared error (MSE) across all sampled

parameter values from their joint posterior distribution.

The exploration of the parameter space or ‘mixing’ of an MCMC chain can be mea-

sured using the effective sample size of each parameter chain. The sampled parame-

ter values obtained using a Metropolis-Hastings MCMC scheme are usually positively
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auto-correlated; a chain of s sampled values therefore conveys less information about

the posterior distribution than would s independent samples from that posterior.

The effective sample size gives the number of independent samples to which the auto-

correlated MCMC chain is equivalent and a greater effective sample size is therefore

preferable (O’Hagan and Forster, 2004).

Let θ̃i denote the s-vector of sampled values for the ith parameter of the ETAS model

under a particular parameterisation and represent the lag-j sample auto-correlation

of θ̃i by acf(θ̃i, j). The effective sample size of the vector θ̃i is then defined to be

ESS(θ̃i) =
s

1 + 2
∑k

j=1 acf(θ̃i, j)
,

where in this expression k is the lag beyond which the sum of all auto-correlations

is negligible. The MSE and ESS are useful tools for comparing two MCMC schemes

on the same parameter space but are not particularly useful when comparing MCMC

schemes that are implemented on separate parameter spaces. In particular, it is not

meaningful to compare the MSE for posterior samples of θconv and θprop because these

distances are calculated on different parameter spaces. To avoid this issue, both chains

can be transformed onto a single parameter space and the ESS can then be compared.

When proposing a new parameterisation of an existing model, the comparison is often

made on the parameter space of the original model by applying g−1 to posterior

samples of θprop. However, when the mapping onto the original parameter space is

non-linear, this transformation can alter the auto-correlation of the transformed chain

and the resulting ESS of transformed chain.

To address the above issues we begin by comparing the chains on both the conven-

tional and proposed parameter spaces. We additionally compare the chains using a

third, more meaningful representation. This representation is a collection of physical

properties of the earthquake process that would be measurable were the branching
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structure known. We do this because when fitting the ETAS models it is usually

physical proprieties such as these that are of interest, rather than the model param-

eters themselves. We consider the recovery and mixing of the collection of physical

properties described in the following paragraph, each of which can be calculated from

a vector of sampled parameter values under either parameterisation.

The first property we use is already present in each parameterisation: the seeding rate

µ. The second property we consider is h, the distribution of aftershock delay times.

We investigate h through its 10th, 50th and 90th percentiles, which we denote by h10, h50

and h90. The third property we consider is the magnitude-productivity relationship,

κ. We consider this relationship through the expected number of aftershocks triggered

by events with magnitudes equal to the 10th, 50th and 90th sample percentiles. We

denote these expected aftershock counts by κ10, κ50 and κ90. This gives a vector of

physically meaningful properties that we would like to be able to recover from an

observed catalogue: θphys = (µ, h10, h50, h90, κ10, κ50, κ90).

6.3.4 Demonstration on simulated catalogue

6.3.4.1 Description of simulated catalogue

To compare parameterisations, we consider a simulated earthquake catalogue on the

time window [0, 2000] and magnitude range [3,∞). This catalogue has the con-

ventional ETAS parameters θconv = (µ,K, a, c, p) = (0.2, 0.2, 1.5, 0.5, 2) and mag-

nitude parameters ψ = (νm, ξm) = (0.42, 0). The catalogue has n = 863 events

and is displayed in Figure 6.3.1. The mean magnitude of the simulated catalogue

is m̄ = 3.43 and so the simulation parameters in the proposed parameterisation are

θprop = (µ,C, a, νt, ξt) = (0.2, 0.38, 1.5, 1, 1). The model parameters were estimated

from this catalogue using a Metropolis-within-Gibbs sampling scheme as described in

Section 6.3 with independent flat priors and each of the θconv and θprop parameterisa-
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Figure 6.3.1: Simulated earthquake catalogue of 863 events used to compare θconv and

θprop parameterisations of the ETAS model.

tions. In this section, we compare the resulting chains of sampled ETAS parameters

and branching vectors from each parameterisation of the model.

6.3.4.2 Estimation of ETAS parameters

Marginal distributions. Figure 6.3.2 summarises, for each parameterisation θconv

and θprop, the sampled values from the approximate joint posterior of the ETAS

parameters. The plots on the diagonal show histograms of the univariate marginal

posteriors, while the off-diagonal plots give contour plots and correlations for the pair-

wise marginal posterior distributions, where orange dots indicate the true parameter

values. These plots reveal several important points.

Firstly, from the contour plots of Figure 6.3.2, we see that by using the θprop param-

eterisation the posteriors are better conditioned: the contours of pair-wise marginal

distributions are elliptical around the modes and the posterior distributions are less

concentrated at the edges of the parameter space. This is particularly apparent for the

parameters of the delay distribution h. Secondly, the correlation within the parameter

blocks controlling κ and h are both reduced by the reparameterisation. The corre-

lations between the parameter blocks {µ, θκ, θh} have been increased, but recall that
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Figure 6.3.2: Contour plots of pair-wise marginal posterior distributions of ETAS

parameters θ using the θconv and θprop parameterisations. True parameter values are

indicated by orange dots.

these blocks of parameters are conditionally independent given the branching vector.

Since these parameter blocks are updated conditional on both the other blocks and

the branching vector, this should not impede effective inference. Finally, in the θconv

parameterisation the posterior modes of the background event rate µ and the produc-

tivity intercept parameter K are misaligned with the true values; respectively these

parameters are over- and under-estimated relative to their true values. This issue

appears to be reduced for µ and C when the θprop parameterisation of is used.

Within-block parameter recovery. Figure 6.3.3 focuses on the posterior distri-

butions of θκ and θh under each parameterisation. As discussed in Section 6.3.3, each

posterior is shown on both its original parameter space and transformed onto the

alternative parameter space.

Under both parameterisations the intercept, a, and gradient terms, K or C, of the
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Figure 6.3.3: Estimated posterior distributions using samples from the θprop (orange)

and θconv (blue) parameterisations. Both parameter spaces are shown and true values

are given by black crosses.

magnitude-productivity relationship κ are overestimated. This suggests that this is a

feature specific to this simulated catalogue. On both parameter spaces, the contours

of θκ are wider and have a less steeply angled major axis for the θprop chain than for

the θconv chain. These properties reflect, respectively, the better exploration of the

parameter space of a and the reduced dependence between parameters when using

the θprop chain. This results in the the posterior density being greater at the true

value for the θprop chain than the θconv chain in both parameter spaces.

The parameters of the aftershock delay distribution h are poorly recovered by the

θconv chain but successfully by the θprop chain, which has a posterior mode close to

the true values in each parameter space. Each chain appears to explore its native

parameter space more effectively than the transformed space, but the θconv chain does

not well-explore heavy-tailed delay distributions (which correspond to large values of

ξt or small values of p) as effectively as the θprop chain does in either space. This

could be related to the over-estimation of the background rate µ by the θconv chain:

long-term aftershock activity is being attributed to the background process because
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RRMSE µ a K C c p νt ξt h10 h50 h90 κ10 κ50 κ90

θconv 117 71 143 112 2954 1066 181 515 202 130 442 9 11 18

θprop 99 71 136 110 835 300 253 435 166 245 202 8 10 21

Table 6.3.1: Element-wise relative root mean squared errors (×103) of θconv, θprop and

θphys for MCMC chains on the θprop and θprop parameter spaces.

heavy-tailed delay distributions are not being properly explored.

To compare parameter recovery across the joint distribution of all parameters, we

calculate the relative root mean squared errors (RRMSE) of each chain on each pa-

rameter space. If {θ̃1, . . . , θ̃m} is a set of m sampled s-dimensional parameter vectors

from the posterior of θ, given data simulated with true parameter values θ∗, then the

RRMSE is given by:

RRMSE({θ̃1, . . . , θ̃m}, θ∗) =
s∑
i=1

√√√√ 1

m

m∑
j=1

(
θ̃ji − θ∗i
θ∗i

)2

.

This metric gives a combined measure describing how close to, and concentrated

about, the true parameter values are the sampled parameter vectors. Smaller values

of the metric therefore represent more accurate and precise parameter recovery. On

the θconv parameter space, the θconv chain had a RRMSE of 4.350 and the θprop chain

had a RRMSE of 1.442. On the θprop parameter space, the θconv chain had a RRMSE

of 0.995 and the θprop chain had a RRMSE of 0.969. In each parameter space the

RRMSE is smaller for the θprop chain and so we conclude that overall, this chain is

better able to recover the simulation parameters. The RRMSE values are decomposed

into the contributions from each parameter in Table 6.3.1, from which it appears that

most benefit comes from the improved estimation of the delay distribution h.

In addition to recovering the underlying model parameters, we would also like to

be able to recover the physical quantities θphys, which would be measurable if the
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Figure 6.3.4: Posterior distributions of physically meaningful quantities θphys using

estimated using samples from the θprop (orange) and θconv (blue) parameterisations.

Upper plots show the 10th, 50th and 90th percentiles of the aftershock delay distribu-

tion. Lower plots show expected aftershock count at the 10th, 50th and 90th percentiles

of the empirical magnitude distribution. True quantiles shown as dashed lines.
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ESS µ a K C c p νt ξt h10 h50 h90 κ10 κ50 κ90

θconv 1173 2451 1820 1573 516 478 551 413 1994 1103 419 1800 1635 1198

θprop 462 2212 827 593 813 622 343 372 2376 394 471 798 643 449

Table 6.3.2: Element-wise effective sample sizes of θconv, θprop and θphys for MCMC

chains of 10,000 sampled values on the θprop and θprop parameter spaces.

true branching vector was known. Figure 6.3.4 shows the posterior distributions for

quantiles of κ and h, based on the θconv and θphys chains, with the true values overlaid.

The posterior modes for the θprop chain are closer to the true θphys values and, for all

but the median of h, the posterior density is greater at the true value for the θprop

chain. For all but h10, the θprop posteriors have heavier right tails indicating that they

better explore less optimistic regions of the parameter space, where triggered events

form a greater proportion of the catalogue and can occur much later than their parent

event. These effects are combined in the RRMSE values for each quantile, which are

given in Table 6.3.1. According to the RRMSE values, the θprop chain better recovers

all of the physical properties θphys except for h50 and κ90.

Effective sample sizes. The effective sample size of each parameter in each pa-

rameter space is given in Table 6.3.2. For all parameters and all quantities, except

h10 and h90, the effective sample size of the θconv chain exceeds that of the θprop chain.

This is surprising given that, based on the marginal plots considered previously, it ap-

peared that the θprop chain was better exploring most parameter and quantile spaces.

This might be explained by the ESS being a measure of local dependence within the

chains; the θconv chain has weaker local dependence but this does not ensure the chain

moves around the entire parameter space efficiently. The low ESS relative to chain

lengths highlights the difficulty in efficiently sampling from the joint posterior of the

ETAS parameters.



CHAPTER 6. IMPROVING AND EXTENDING THE ETAS FORMULATION153

6.3.4.3 Branching vector recovery and mixing.

In addition to facilitating the estimation of the ETAS parameters θ, the conditional

approach to inference also allows the branching structure B to be estimated as part

of the inference procedure. The recovery of the true branching vector and proper

representation of uncertainty in the estimated vector was not considered by Ross

(2016). In this section, we introduce plots to diagnose branching vector recovery

graphically and to assess effective mixing of the sampled chains of branching vector.

We then use these to compare the performance of the θconv and θprop chains.

We begin by considering the marginal posterior of a single branching vector element

Bi for a range of values of i. For a given event index i, this is a probability mass

function (pmf) giving the posterior probability that event i was triggered by each

previous earthquake, Pr(Bi = j) for j ∈ {1, . . . , i−1}, or comes from the background

process (i.e. Pr(Bi = 0)). The majority of probability mass will usually be allocated

to recent previous events or the background process because the delay function h is

monotonically decreasing over time. For large values of i there are many values of

j (which have low probability mass) separating the most likely sources of event i,

which can make reading the pmf difficult. To rectify this issue we therefore display

Pr(Bi = 0) at i instead of at 0, so that the background process is the rightmost bar

in the pmf. Figure 6.3.5 shows these posterior distributions along with trace-plots for

a selection of events using each chain. The branching elements B51, B81 and B199 are

shown, which have true values of b51 = 45, b81 = 0 and b199 = 0.

From Figure 6.3.5 we can see that some events (such as event 199) are classified as

a background event with high probability, while others (such as event 51) are more

likely to be triggered events. Additionally, events which are labelled as triggered with

a high probability might be attributable to a few recent events with high probability,

as with event 81, or this might be split more evenly between many previous events, as
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Figure 6.3.5: Trace plots and posterior pmfs for branching vector elements B51, B81

and B199. The θconv chain is shown on the left and the θprop chain on the right. The

branching elements have true values of b51 = 45, b81 = 0 and b199 = 0.
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Figure 6.3.6: Proportion of sampled Bi values equal to the true value in the θconv

(left) and θprop (right) chains.

with event 51. The interaction of the event magnitude and delay time can also be seen

in these plots: considering event 51, we see that the most likely parent is not always

the previous event and the triggering probability does not decrease monotonically

with lag. Comparing the plots between parameterisations, it can be seen that for all

three events, the θprop chain samples a greater proportion of bi values for which |i− bi|

is large. This again indicates that this chain better explores heavy-tailed distributions

for h.

Since the catalogue is simulated, we know the true branching vector and can use this

to assess the estimation of each element under each model parameterisation. To do

this, we can consider the proportion of samples for which each branching element

was correctly identified. This is shown in Figure 6.3.6. From this we can see that

the source of each event is not equally easy to identify; some events are allocated

correctly with high probability while others with very low probability. By considering

the event-wise difference in the probability of correct allocation we can compare the

two parameterisations; the correct parent is chosen on average 2% more often by the

θconv chain, suggesting that this better recovers the true branching structure.

We can also assess the mixing of the branching vector chains by looking at the propor-
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Figure 6.3.7: Proportion of updates at which each branching vector element was

unchanged for the θconv chain (left) and θprop chain (right). Branching vector elements

that change on less than 5% of updates are highlighted in red.

tion of updates of each branching element at which its value was unchanged. A high

proportion of unchanged values indicates that either the chain is not mixing well or

that the event is clearly attributable to a single source. Such events are highlighted in

red in Figure 6.3.7, which shows the proportion of updates for which each branching

element is unchanged for each of the θconv and θprop chains. By comparing these we

can identify some common structures that are features of the data, such as the events

around index 250 that cannot be attributed to a single source with high probability.

This is contrasted by the number of highlighted elements, which is much lower for

the θprop chain. This indicates that many of the elements of B were not mixing well

using the θconv parameterisation, rather than it being the case that these events have

a clear source.

Summary. Combining the previous findings we can see that the θconv chain recovers

the true branching structure well. However, the chain does not mix as well as the θprop

chain and does not reflect the full uncertainty about the branching structure. In this

way it suffers, to a lesser extent, from the limitations of a deterministic declustering

that were discussed in Section 6.1. This is likely linked to the chain not exploring
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heavy-tailed aftershock delay distributions well. If heavy-tailed delay distributions are

not being explored, then a greater proportion of probability mass will be allocated

to branching elements corresponding to recent events or the background process.

This in turn leads to overconfidence about which previous event was the parent event,

overestimation of µ, and the consequent underestimation of K because of the negative

correlation between these two parameters. This means that conclusions based on the

θconv parameterisation risk under representing the possibility of long-term dependence

in earthquake occurrences rates and overestimate the baseline level of seismicity.

Note that the conclusions here are based on a catalogue for which the delay distri-

bution was truly a power-law distribution (ξt > 0). This class of distribution can

be represented by both parameterisations and the less general θconv parameterisation

can only represent these heavy-tailed distributions. The proposed parameterisation

was constrained to this class of models to facilitate comparison. More generally the

proposed parameterisation is also able to represent delay distributions that are expo-

nentially decreasing over time or that have a finite upper end point (where ξt ≤ 0).

We have seen that the restricted θprop parameterisation better explores the space of

heavy-tailed models. Further to this, the unconstrained θprop parameterisation is able

to account for models that cannot be represented in the conventional framework. The

unconstrained model would therefore represent model uncertainty more comprehen-

sively in resulting the conclusions.

6.4 Extensions of the magnitude model

6.4.1 Dual magnitude extension

In the standard formulation of the ETAS model, introduced in Section 6.1, the marks

associated with each event are assumed to be i.i.d. with a common probability density
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function f(m;ψ). Our first proposed extension to the magnitude model is to allow

marks to be drawn independently from one of two possible distributions. Events from

the background process have mark distribution f0(m;ψ0); these are the events that

are attributable to the intensity component λ0(t) and whose corresponding branching

vector element is zero. All remaining events are triggered; they are attributable to

one of the previous events and have a separate mark distribution that we denote by

f1(m;ψ1). The combined vector of magnitude parameters is now given by ψ = (ψ0, ψ1)

and must be estimated from the observed, marked point pattern together with the

ETAS parameters and branching vector. Estimation of these parameters is simple

when the branching vector B is known, since the distribution to which each magnitude

belongs is also known.

In the i.i.d. mark formulation of the ETAS model, the mark distribution may be

estimated independently of the intensity parameters θ and branching vector B. To fit

the dual magnitude model, the magnitude parameters must be estimated jointly with

the intensity parameters and the branching vector as ψ0 and ψ1 are not identifiable

without knowledge of B. We therefore extend the Metropolis-within-Gibbs sampling

scheme for the standard formulation to include the parameter blocks ψ0 and ψ1;

each block of parameters {µ, θκ, θh, B1, . . . , Bn, ψ0, ψ1} is updated in each iteration

conditional on the values of all other blocks. Assuming independent, flat priors on the

magnitude parameter blocks, the conditional posterior of the magnitude parameters

is

π(ψ|Y, θ, B) =
∏
i:bi=0

f0(mi|ψ0)
∏
i:bi>0

f1(mi|ψ1). (6.4.1)

Under the dual magnitude model, the conditional log-likelihood (and therefore the

conditional posterior) of the ETAS intensity parameters θ in expression (6.2.4) remains

unchanged. With dual magnitude distributions, the elements of the branching vector

B remain independent of one another, but the conditional posteriors are changed from
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those in expression (6.2.5). This is because the observed magnitude mi now carries

information on whether Bi = 0 or Bi > 0. This modification leads to the magnitude-

based weights in the conditional posterior of each branching vector element (6.4.2).

These weights impart the additional information carried by the magnitudes and are

obtained in Appendix C.1.

Pr(Bi = bi|Y, θ, ψ) =
i · fmin(1,bi)(mi|ψ)

f0(mi|ψ0) + (i− 1)f1(mi|ψ1)

λbi(ti|Hti, ti, θ)∑i−1
j=0 λj(ti|Hti, ti, θ)

. (6.4.2)

This dual magnitude model permits simple testing of the hypothesis that background

and triggered events have different mark distributions through the use of Bayes factors.

When f0 and f1 are nested, this becomes particularly simple because the standard

ETAS formulation is then nested within the dual magnitude model. The evaluation

can then be made directly using the values sampled from the posterior distribution

of ψ.

6.4.2 Correlated magnitude extension

Our second proposed extension to the magnitude model allows for triggered mag-

nitudes to be dependent on the magnitude of the event that triggers them. This

dependence is modelled using a bivariate copula. This extension may be applied sep-

arately or together with the dual magnitude extension. In this section we outline the

more general, combined model extension. In the following, we respectively denote

the marginal distribution and probability density functions of background event mag-

nitudes by F0(m;ψ0) and f0(m;ψ0), respectively. The corresponding functions for

triggered events are denoted by F1(m;ψ1) and f1(m;ψ1). Correlated magnitudes may

be introduced with a single distribution by fixing f0 = f1. We begin by describing the

dependence model in detail before explaining how this alters the inference procedure

from that of the dual magnitude extension. We introduce here an extension to the

ETAS model in which magnitudes are not independent and where the magnitudes of
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background and triggered events have separate distributions. A first-order Markov

dependence structure is imposed on the graphical representation of the ETAS pro-

cess. Under this dependence model, the magnitudes of events in the same tree are

dependent on one another and the magnitudes of events in separate trees are inde-

pendent. Additionally, events that are in the same tree but that are not adjacent

to one another are conditionally independent given the magnitudes of their adjacent

events: their ‘families’. Formally, the family of event i = 1, . . . , n is indexed by the

set Fi = Ci = {j ∈ {i + 1, . . . , n} : bj = i} when event i is a background event and

when event i is a triggered event then the family also includes the parent event of

event i so that Fi = Ci ∪ {bi}.

To give a concrete example of this Markov dependence structure, we return to the toy

example in Figure 6.2.1. In this example, the magnitude of event Y2 is independent

of the magnitudes of both of Y5 and Y7 because they belong to a different tree. The

magnitudes of events Y1, Y3, Y4 and Y6 are all dependent on one another because they

are in the same tree. However, given the magnitude of Y3 is M3 = m3 the remain-

ing magnitudes are pair-wise conditionally independent. This Markov dependence

structure means that the joint density of all magnitudes may be written in terms of

only marginal densities and bivariate joint densities. For the toy example we have

that

f(m1, . . . ,m7|B,ψ)

= f(m1,m3,m4,m6|B,ψ)f(m2|B,ψ)f(m5,m7|B,ψ)

=
∏

i∈{1,2,5}

{f0(mi|ψ0)} f(m3|m1, ψ)f(m4|m3, ψ)f(m6|m3, ψ)f(m7|m5, ψ)

=
∏

i∈{1,2,5}

{f0(mi|ψ0)} f(m1,m3|ψ)

f0(m1|ψ0)

f(m3,m4|ψ)

f1(m3|ψ1)

f(m3,m6|ψ)

f1(m3|ψ1)

f(m5,m7|ψ)

f0(m5|ψ0)
, (6.4.3)

where the first two equalities follow from the independence between trees and condi-

tional independence within trees. The final equality expresses the conditional densities
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as the ratio of joint and marginal densities. Similarly, the conditional density of a

single magnitude may also be written using only marginal densities and bivariate joint

densities, as follows for M3 in the toy example:

f(m3|m1,m2,m4, . . . ,m7, B, ψ) = f1(m3|ψ1)
∏

j∈F3={1,4,6}

f(mj,m3, ψ)

f1(m3|ψ1)
. (6.4.4)

This Markov dependence structure can be achieved while preserving the marginal

magnitude distributions of background and triggered events by using a copula to

construct the joint distribution f(·, ·|ψ) of triggering and triggered magnitudes from

their marginal distributions. A d-dimensional copula C : [0, 1]d → [0, 1] is a multi-

variate distribution function with uniform margins; it is used to ‘couple’ or link d ≥ 2

marginal distributions to give a joint distribution (Joe, 2014). The use of a copula al-

lows the joint density of triggered and triggering magnitudes to be represented as the

product of the marginal densities and the copula density. When d = 2 and the copula

function C is parameterised by ρ, the copula density is given by c(u, v; ρ) = ∂2C(u,v;ρ)
∂u∂v

.

The joint density of two magnitudes Mi and Mj may therefore be expressed as

f(mi,mj|ψ, ρ) = c(F (mi|ψ), F (mj|ψ)|ρ)f(mi|ψ)f(mj|ψ),

where f(mi|ψ) is either f0(mi|ψ0) or f1(mi|ψ1), depending on whether event i is a

background or triggered event, and F (mi|ψ) is used equivalently. The conditional

distribution of Mi given Mj may be written as the product of the copula density and

a single marginal density:

f(mi|mj, ψ, ρ) = c(F (mi|ψ), F (mj|ψ)|ρ)f(mi|ψ).

The joint and conditional distributions (6.4.3) and (6.4.4) may therefore be expressed

as the product of marginal densities and bivariate copula densities.

Here, we use a bivariate Gaussian copula to link the marginal distributions of triggered

and triggering magnitudes. The Gaussian copula defines the dependence between
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triggering and triggered magnitudes when each is transformed to have a standard

Gaussian marginal distribution. The copula has a single parameter ρ ∈ [−1, 1] that

defines the correlation between these transformed variables. The effect of the param-

eter ρ on the copula can be understood by considering three cases: if the magnitude

of a triggering event is in a high quantile of its distribution and ρ > 0 then the trig-

gered magnitude is likely to also be in a high quantile of its distribution; if ρ < 0

then the triggered magnitude is likely to be in a low quantile; finally if ρ = 0 then

the two magnitudes are independent. This choice of copula has the practical benefit

that associated conditional distributions can be found in closed form and with relative

ease. This copula also has the benefit of being able to represent independence, posi-

tive or negative association, or extremal dependence between large magnitude events

depending on the value of ρ (Ledford and Tawn, 1997).

Incorporating Markov dependence into the ETAS model using a Gaussian copula

extends the vector of magnitude parameters, which is now ψ = (ψ0, ψ1, ρ). By fixing

ρ = 0, event magnitudes can be made independent and the correlated magnitude

ETAS model reduces to the dual magnitude extension.

Conditional posterior distribution of the magnitude parameters. To fit the

correlated magnitude model, we again extend the Metropolis-within-Gibbs sampling

scheme to include the correlation parameter ρ. To do this, we require the conditional

posteriors under the correlated magnitude model for each of: the magnitude param-

eters, πψ|Y,B,θ; the branching vector, πB|Y,ψ,θ and the ETAS parameters, πθ|Y,B,ψ. To

define these conditional posteriors, we introduce the indicator variables di = I{bi > 0}

for i = 1, . . . , n, which give the index of the magnitude distribution associated with

each event. We also define gi = Φ−1(Fdi(mi)) to be the magnitude of event i trans-

formed to have a standard Gaussian marginal distribution, which has distribution

function Φ and density function φ.
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Appendix C.2 derives the conditional posterior of the magnitude parameter vector

when using independent flat priors on each parameter. The resulting conditional

posterior of the magnitude parameter vector is

πψ|Y,B,θ =
∏
i:bi=0

f0(mi|ψ0)
∏
i:bi>0

{
φ

(
gi − ρgbi√

1− ρ2

)
f1(mi;ψ1)

φ(gi)

}
. (6.4.5)

The joint conditional posterior in (6.4.5) allows all magnitude parameters to be up-

dated as a block using a single Metropolis step within the MCMC sampling scheme.

This block can be further decomposed to sample from the conditional posteriors of

ψ0, ψ1 and ρ sequentially. Sampling from these smaller parameter blocks can improve

mixing in the Metropolis component of the MCMC scheme and (when particularly

simple magnitude distributions are used) may permit direct sampling from the con-

ditional posteriors.

Conditional posterior distribution of the branching vector. When event

magnitudes are i.i.d., the conditional posterior πB|Y,θ,ψ can be factorised into terms

corresponding to each event. The elements of the branching vector remained con-

ditionally independent with dual magnitude distributions, given the magnitudes of

each event. However, when correlation between magnitudes is introduced, elements

of the branching vector are no longer conditionally independent given only Y, θ and

ψ. However, we note that during the Metropolis-within-Gibbs sampling for the dual

magnitude model, each element of B is sampled separately. This does not require

the conditional distribution of the full branching vector, only the distribution of

Bi|Y,B−i, θ, ψ; where B−i = {Bj : j 6= i}. In a similar way as in the earlier case

when magnitudes were independent, we can find the conditional posterior of Bi but

now also conditioning on all other elements of B. This distribution has a closed form

which is given in Appendix C.3.
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Conditional posterior distribution of the ETAS parameters. The conditional

distribution πθ|Y,B,ψ is unchanged by the introduction of correlated magnitudes. We

now have closed forms for all required distributions to implement a Metropolis-within-

Gibbs sampler for the joint posterior πθ,B,ψ|Y . In this scheme each parameter block

is sampled from its conditional posteriors (either directly or using a Metropolis step)

given the current value of all other parameter blocks. The block structure for the

correlated, dual magnitude model is {µ, θκ, θh, ψ0, ψ1, ρ, B1, B2, . . . , Bn}.

6.5 Application of extended ETAS models to sim-

ulated catalogues

6.5.1 Dual magnitude extension

Section 6.4.1 introduced the dual magnitude extension of the ETAS model and de-

scribed a Bayesian approach to inference for this model extension. In this section we

use a simulated catalogue with dual magnitudes to demonstrate that the proposed

inference method is able to recover the true parameter values used in the simula-

tion. We also consider a second simulated catalogue, which has i.i.d. magnitudes,

to investigate how estimation of the branching vector B and the magnitude distri-

bution f are impacted by the false assumption of either a single or dual magnitude

distribution.

6.5.1.1 Simulated catalogue with dual magnitude distribution

We consider a catalogue of earthquakes simulated on the time-magnitude interval

[0, 50000]× (3,∞) which has true ETAS parameters θprop = (µ, C, a, νt, ξt) = (0.02,

0.2, 0.1, 0.1, 0.1) and magnitude parameters ψ = (νm0, ξm0, νm1, ξm1) = (0.6, 0, 0.1,

0). The catalogue contains n = 1205 earthquakes of which 239 are triggered events
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Figure 6.5.1: Marginal posterior distributions of ETAS parameters θprop given a dual

magnitude earthquake catalogue, estimated using a dual magnitude model (blue) or

single magnitude model (orange). True parameter values are shown as dashed lines -

note that the true value of ξm0 = ξm1 = 0.

and where the mean magnitude is m̄ = 1.99. Both the dual magnitude and the single

magnitude ETAS models were fitted to this catalogue using the θprop parameterisation,

as outlined in Section 6.4; the former allows us to demonstrate recovery of the true

parameters while the latter illustrates the bias that can occur from failure to account

for dual magnitudes.

ETAS parameter recovery. Figure 6.5.1 shows the estimated marginal posterior

distribution for each of the ETAS parameters θprop. For each of the ETAS parameters

the true values are recovered well, falling within the 95% highest posterior density

regions. Differences between true and estimated values of µ, C and a here are due to

properties of the particular simulated catalogue and the marginal posteriors of these

parameters are robust to mis-specification of the magnitude model. The parameters of

the delay distribution, νt and ξt, are also well recovered from the simulated catalogue

by both chains, but their marginal posterior distributions are more sensitive to mis-

specification of the magnitude model.

Magnitude distribution recovery. Figure 6.5.2 shows the marginal and joint

posterior distributions of the magnitude parameters estimated using a dual or single

magnitude model along with the true values; for the dual magnitude model these
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have been separated by event type. From these plots, we can see that the magnitude

parameters for both the background and triggered events have been successfully re-

covered, as they are close to the posterior modes. We can also see that by falsely

assuming a single magnitude distribution, the single scale parameter is estimated to

be between those of the background and triggered distributions, while the single shape

parameter is greater than that of either component distribution. Since the posteriors

for background and triggered event magnitude parameters have very little overlap,

we can conclude from these plots that the dual magnitude model is the more ap-

propriate for this catalogue. While it is reassuring that we are able to recover the

magnitude distribution of each event type, the aim of modelling is typically to es-

timate the combined distribution of all events. This combined distribution depends

on each component magnitude distribution and also on the proportion of each event

type.

In order to compare fitted and observed magnitude distributions we use return level

plots for background, triggered and all magnitudes. The r-event magnitude return

level mr (with an associated return period of r events) is the quantile of the magnitude

distribution that is exceeded in expectation once every r events. A return level plot

shows, typically on a log-log scale, the return level against the return period. A

return level plot allows assessment of model fit which emphasises the most extreme

magnitudes by overlaying the fitted, empirical and (for simulated data) true return

levels.

Figure 6.5.3 shows return level plots for the background event magnitudes, triggered

event magnitudes and the combined magnitude distribution. Posterior mean and

point-wise 95% credible intervals are shown for the fitted return levels along with the

empirical values. Note that the empirical return levels for background and triggered

events are obtained using the true branching vector, which is known only because
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Figure 6.5.2: Marginal (left and centre) and joint (right) posterior distributions of

magnitude parameters based on a simulated dual magnitude earthquake catalogue.

Distributions are shown by event type under a dual or single magnitude model: dis-

tributions shown in black and red correspond to background and triggered event

magnitude parameters in the dual magnitude model, (νm0, ξm0) and (νm1, ξm1). Dis-

tributions shown in orange correspond to the mis-specified single magnitude distribu-

tion parameters (νm, ξm). True parameter values are indicated by dashed lines / blue

points.
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Figure 6.5.3: Return level plots for background magnitudes (left), triggered mag-

nitudes (centre), and all magnitudes (right). Point-wise posterior means and 95%

credible intervals for return levels are indicated by solid blue lines for the dual magni-

tude model and dashed orange lines for the single magnitude model. Empirical return

level estimates are shown as points and true return levels as dotted lines.
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this is a simulated catalogue. In recorded earthquake catalogues, only the combined

empirical distribution would be known. In these plots we can see that for the dual

magnitude posteriors, shown in blue, the empirical return levels are within the relevant

credible regions and point estimates are close to the true values. This is not the case

when a single magnitude distribution is falsely assumed. In that case, the fitted return

levels of the combined magnitude distribution, shown in orange, are overestimated for

events with long return periods; assuming a single magnitude distribution leads to

inflation of the fitted return levels.

Inflated estimates for high return levels is not unique to this simulated catalogue,

but are to be expected when fitting a single generalised Pareto distribution to data

that truly comes from a mixture of generalised Pareto distributions. This effect can

be linked to the fact that the generalised Pareto distribution is not sum stable; the

weighted sum of two GPD random variables does not have a generalised Pareto dis-

tribution apart from in the trivial cases where all weight is allocated to one of the

variables or where the parameters of the two distributions are equal. This means that,

in general, the magnitude mixture distribution cannot be represented using the single

magnitude model. This results in the parameter biases observed in Figure 6.5.2. The

fitted scale parameter compromises between that of the background and triggered

events, depending on their proportions and to compensate for this the shape param-

eter is overestimated. Since return levels are strongly driven by the shape parameter,

particularly for long return periods, this leads us to the conclusion that falsely assum-

ing a single mark distribution will inflate the estimated return levels. This reasoning

suggests why this overestimation can be expected to occur across catalogues and gives

further motivation for the use of our dual magnitude model extension, so as to avoid

drawing overly conservative conclusions.
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Figure 6.5.4: Posterior proportions of triggered events (left) and correctly allocated

elements of B (right), based the dual magnitude (blue) and single magnitude (orange)

models. Dashed lines represent perfect recovery.

Branching vector recovery. Figure 6.5.4 shows, for both a single and dual magni-

tude model, the posterior distributions for the proportion of triggered events and for

the proportion of elements of B that are correctly recovered. This simulated catalogue

has a low seeding rate and so has relatively few overlapping aftershock sequences. This

means that a large proportion of events are correctly identified with high probability

under both models - even when a single magnitude distribution is falsely assumed.

Despite this, both properties of the branching vector are better recovered by the dual

magnitude model, which has a posterior root mean squared error in the true pro-

portion of triggered events of 0.30%, as compared to 0.42% for the single magnitude

model. The dual magnitude model also better recovers the true proportion of trig-

gered events: the posterior proportion of B correct has both a greater expectation

and lower variance when using the dual magnitude model. We can also consider the

recovery of the branching vector through the posterior probability that each branch-

ing element is allocated correctly. For events with different probabilities under each

model, using the dual magnitude model leads to an average increase of 2.5% in the

probability of correct allocation.

In all, we may therefore conclude that when there are truly two magnitude distri-
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butions, we can effectively recover the ETAS, magnitude and branching parameters

from a simulated catalogue using the proposed inference method. We have also shown

that by acknowledging the two magnitude distribution within the inference procedure

over-estimation of large return levels in the combined magnitude distribution can be

avoided and estimates the branching structure can be improved.

6.5.1.2 Simulated catalogue with i.i.d. magnitudes

We also consider a simulated catalogue which has i.i.d. magnitudes. We aim show that

when a dual magnitude model is used the parameters and distributions of magnitudes

for background and triggered events are not significantly different from either one

another or that obtained using the true, single magnitude model. We also investigate

how falsely assuming a dual magnitude model impacts the estimation of the branching

structure.

We use a catalogue that is simulated using the same parameters as in the previous

simulated catalogue, but now with a single magnitude distribution with parameters

ψ = (νm, ξm) = (0.4, 0). This simulated catalogue contains n = 1206 earthquakes of

which 240 are triggered events and where the mean magnitude is m̄ = 1.89. Again,

both the dual magnitude and single magnitude ETAS models were fitted to this

catalogue using the θprop parameterisation. As can be seen in Figure 6.5.5, the ETAS

intensity parameters were again successfully recovered under each model specification

and so we focus attention on the magnitude model and the branching vector.

Magnitude distribution recovery. Figure 6.5.6 shows the marginal and joint pos-

terior distributions of the magnitude parameters estimated under each model. There

is substantial overlap between the posterior distributions of the magnitude parameters

for background and triggered events, suggesting that the additional model complexity

from allowing separate magnitude distributions is not necessary. Additionally, each
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Figure 6.5.5: Marginal posterior distributions of ETAS parameters θprop given an

earthquake catalogue with i.i.d. magnitudes, estimated using a dual magnitude model

(blue) or single magnitude model (orange). True parameter values are shown as

dashed lines.

of these posterior distributions has substantial overlap with that of the single magni-

tude model parameters, showing that we have still been able to recover the underlying

magnitude distribution for this simulated catalogue, despite the magnitude model be-

ing over-parameterised and unnecessarily flexible. This comparison is formalised by

Figure 6.5.7, which shows joint posteriors for the difference between parameters of

the background magnitudes (νm0, ξm0), triggered magnitudes (νm0, ξm0) and a single

magnitude distribution (νm, ξm). Since the origin lies within the 95% highest poste-

rior density regions in each of these plots we have demonstrated that our ability to

recover the magnitude parameters for each event type was not impaired by the model

over-specification and that we can conclude that a single magnitude distribution is

sufficient for this catalogue.

Figure 6.5.8 shows the estimated, empirical and true magnitude return level plots

based on this single magnitude catalogue for background, triggered and all event

magnitudes. Note that the credible intervals for background and triggered magnitude

return levels would overlap if overlaid and that the point estimates and credible regions

for the combined and single magnitude return levels are very similar. These features

provide another route to the previous conclusion that a single magnitude distribution

is sufficient and is not distorted by fitting the over-specified dual magnitude ETAS
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Figure 6.5.6: Marginal (left and centre) and joint (right) posterior distributions of

magnitude parameters shown by event type under a dual or single magnitude model

fitted to a catalogue with i.i.d. magnitudes. Distributions shown in black and red

correspond to background and triggered event magnitude parameters in the over-

specified dual magnitude model, (νm0, ξm0) and (νm1, ξm1). Distributions shown in

orange correspond to the single magnitude distribution parameters (νm, ξm). True

parameter values are indicated by dashed lines/ blue points.

model. This is in contrast to the previous conclusion from Figure 6.5.8, where falsely

assuming a single magnitude distribution lead to overestimation of high return levels

of the combined magnitude distribution.

Branching vector recovery. In Figure 6.5.9 we again consider the posterior pro-

portion of events that are triggered and that are allocated to the correct parent

process when using a single or dual magnitude model, this time for a catalogue with

i.i.d. magnitudes. From this we can see that both models have very similar posterior

distributions: fitting a model with two magnitude distributions does not detrimentally

impact our ability to recover the branching structure. For the events which have a

different probability of correct allocation under the two models, the expected increase

in probability of correct allocation under the dual magnitude model is only 0.006%.
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Figure 6.5.7: Joint posterior distributions of the difference in magnitude parameters

for: (left) background and triggered events in the dual magnitude model, (centre)

background events in the dual magnitude model and all events in the single magnitude

model, (right) triggered events in the dual magnitude model and all events in the single

magnitude model. 95% highest posterior density regions are shown in red and the

origin is shown as a blue dots.
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Figure 6.5.8: Return level plots for background magnitudes (left), triggered magni-

tudes (center), and all magnitudes (right) fitted using a catalogue with i.i.d. mag-

nitudes. Point-wise posterior means and 95% credible intervals for return levels are

indicated by lines: shown in solid blue for the dual magnitude model and dashed

orange for the single magnitude model. Empirical return levels are shown as points

and true return levels as dotted lines.
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Figure 6.5.9: Posterior proportions of triggered events (left) and correctly allocated

elements of B (right), based the dual magnitude (blue) and single magnitude (orange)

models and a simulated catalogue with i.i.d. magnitudes. Dashed lines represent

perfect recovery.

6.5.1.3 Summary

In this section we have demonstrated that our proposed inference procedure for the

dual magnitude ETAS model is capable of recovering the ETAS, magnitude and

branching parameters the proposed model extension. We have also shown that falsely

assuming a single magnitude distribution inflated the estimated return levels for our

simulated catalogue and have provided an outline argument for why this can be ex-

pected to occur more generally. We have shown that, conversely, the fitted magnitude

distribution is robust to the false assumption of a dual magnitude model and also that

simple testing procedures may be used to select between the dual and single magnitude

ETAS models. In this case we used highest density posterior regions to inform our

model selection but alternative approaches may have been used, for example Bayes

factors or Bayesian model averaging (Gelman et al., 2013). Using these alternative ap-

proaches is less straightforward due to the conditional approach to inference; sampled

joint posterior values are required but only conditional posterior values are calculated

as part of the MCMC sampling scheme.
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6.5.2 Correlated magnitude extension

Section 6.4.2 introduced an extension to the ETAS model in which the magnitudes of

triggered events were allowed to depend on the triggering event magnitude through

the introduction of a Gaussian copula. In this section, we demonstrate that the

inference methods presented in Section 6.4.2 for the correlated ETAS model are able

to recover the true values of the ETAS parameters, the magnitude parameters and the

branching vector. We show that this is the case for a catalogue with either correlated

or independent magnitudes. We also investigate how estimation of the branching

vector B and the model parameters θ and ψ are impacted when magnitudes are

assumed falsely to be independent.

In this section we use two simulated earthquake catalogues. The first simulated cat-

alogue has independent magnitudes, so that ρ = 0, while the second has positive

magnitude dependence with ρ = 0.6. We shall subsequently refer to these as the inde-

pendent catalogue and the correlated catalogue. Both catalogues are simulated using

the same ETAS parameters θprop = (µ,C, a, νt, ξt) = (0.02, 0.21, 0.1, 0.1, 0) and dual

marginal magnitude distributions with parameters ψ \ {ρ} = (νm0, ξm0, νm1, ξm1) =

(0.6, 0, 0.1, 0). Both the independent catalogue and correlated catalogue are simulated

on the time-magnitude interval [0, 50000]× (1.5,∞).

The dual-magnitude and correlated-magnitude ETAS models are both fitted to each

of simulated catalogues using the conditional Bayesian inference approach described

in Section 6.4.2. The remainder of this section compares the resulting estimates of

the model parameters and branching vector.

6.5.2.1 Simulated catalogue with dual, independent magnitudes

ETAS and marginal magnitude parameter recovery. Figure 6.5.10 shows the

marginal posterior distributions of the ETAS parameters θprop given the indepen-
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dent catalogue, obtained using the dual and correlated ETAS models. Figure 6.5.11

shows equivalent plots for the magnitude parameters ψ. From these plots we can see

that both the dual magnitude model and the correlated magnitude model are able

to recover the ETAS parameters and the parameters of the marginal magnitude dis-

tributions for background and triggered events. The posterior distributions are very

similar under each model, which suggests that the greater flexibility afforded by the

correlated ETAS model is not adversely impacting the estimation of the other model

parameters.

The true correlation between triggered and triggering magnitudes in this catalogue

is ρ = 0 and so the dual magnitude model recovers this parameter trivially. The

posterior mode of ρ is close to zero under the correlated ETAS model, demonstrating

that when the correlated model is applied to independent magnitudes it is capable of

recovering that independence. Additionally, the posterior distribution of ρ using the

correlated model is not entirely concentrated at 0, as it is under the dual model. This

indicates that models with weak dependence (e.g. ρ ≈ 0.1) are not implausible based

on information conveyed by the independent catalogue. A risk-assessment using the

dual magnitude model makes a hard assumption of independence and would therefore

ignore all possibility of positive dependence, which can result in under-estimation of

the largest earthquake magnitudes in the region and interval under assessment. A risk

assessment based on the fitted correlated model would incorporate this possibility of

mild positive dependence and should therefore be the preferred approach.

Branching vector recovery. Figure 6.5.12 shows plots summarising the recovery

of the branching structure of the independent catalogue when using the dual and

correlated ETAS models. The posterior distribution of the proportion of the branching

vector that is correctly identified is similar under each model. Both models are able to

recover the true proportion of events, with the dual magnitude model giving a lower
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Figure 6.5.10: Marginal posterior distributions of ETAS parameters θprop given an

earthquake catalogue with dual magnitudes, estimated using a dual magnitude model

(blue) and correlated magnitude model (purple). True parameter values are shown

by vertical lines.
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Figure 6.5.11: Marginal posterior distributions of magnitude parameters ψ given a

earthquake catalogue with dual magnitudes, estimated using a dual magnitude model

(blue) and correlated magnitude model (purple). True parameter values are shown

by vertical lines.
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Figure 6.5.12: Posterior proportions of triggered events (left) and correctly allocated

elements of B (right), based the dual magnitude (blue) and correlated magnitude (or-

ange) models for a simulated catalogue with dual magnitudes. Vertical line represent

true proportion of triggered events.

RMSE of 0.0030 compared to 0.0153 for the correlated model. This difference RMSE

is due to slight over-estimation of the proportion of triggered events by the correlated

ETAS model.

6.5.2.2 Simulated catalogue with dual, correlated magnitudes

ETAS and magnitude parameter recovery. Figure 6.5.13 shows the marginal

posterior distributions of the ETAS parameters θprop given the correlated catalogue,

under the dual and correlated ETAS models. Figure 6.5.14 shows equivalent plots for

the magnitude parameters ψ. From these plots we can see that, as for the independent

catalogue, both models are able to recover the ETAS parameters and the parameters

of the marginal magnitude distributions for background and triggered events. There

are some notable differences in the posteriors of νm1 and ξm1 between the two models,

which we explore further using the ratio of root mean squared errors (RMSE) for each

parameter under the correlated and dual models.

The elementwise ratios of RMSEs for the magnitude parameters are (1.03, 0.93, 1.03,

0.81, 0.07). This indicates that while the marginal scale parameters are slightly better
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recovered by the dual model, this is more than offset by the marginal shape parame-

ters, which are better recovered by the correlated magnitude model. The small value,

0.07, for the ratio of RMSEs for ρ should not be surprising; under the dual magnitude

model ρ is effectively fixed at zero, making it impossible to recover the true correlation

parameter ρ = 0.6. This should not discount the fact that the correlation parameter

is accurately recovered by the correlated ETAS model with a RMSE of 0.044. As pre-

viously mentioned, falsely assuming independence of magnitudes can lead to overly

optimistic assessments of the most extreme future magnitudes.

For the correlated catalogue, the RMSE of the marginal shape parameters is reduced

when using the correlated (as opposed to the dual) ETAS model. This is because this

model can fully utilise the additional information imparted by these correlations. To

gain an intuition for this, consider (X1, X2) following a bivariate normal distribution

with standard Gaussian margins and correlation ρ. When the dependence between

X1 and X2 is ignored the standard deviation of X1 is 1, but when the dependence

is acknowledged this reduces to
√

1− ρ2. Acknowledging correlation reduces the

standard deviation by a factor of
√

1− ρ2. Additionally, (Genest et al., 1995) showed

that, when taking a step-wise approach to copula estimation by first estimating the

marginal distributions, the estimated marginal distributions will be unbiased even

when the copula is misspecified. Combining these two results, we might expect the

RMSE of the marginal parameters, which combines the bias and standard deviation

of their posterior distributions, to decrease by a factor of approximately
√

1− 0.62 =

0.8 when dependence in the correlated catalogue is acknowledged. Since there are

two parameters in each marginal magnitude distribution, we cannot know a priori

how this reduction will be attributed between those parameters. In this example,

it appears that acknowledging dependence mainly benefits estimation of the shape

parameters.
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Figure 6.5.13: Marginal posterior distributions of ETAS parameters θprop given an

earthquake catalogue with correlated magnitudes, estimated using a dual magnitude

model (blue) and correlated magnitude model (purple). True parameter values are

shown by vertical lines.
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Figure 6.5.14: Marginal posterior distributions of magnitude parameters ψ given an

earthquake catalogue with correlated magnitudes, estimated using a dual magnitude

model (blue) and correlated magnitude model (purple). True parameter values are

shown by black vertical lines.

The ratio of RMSEs for the 50th, 90th and 99th quantiles of the background and trig-

gered magnitude distributions are (0.98,1.03, 0.98) and (0.92, 0.93, 0.67) respectively.

This indicates that acknowledging the correlation makes little difference to the esti-

mation of low and moderate magnitude quantiles but greatly improves estimation of

large aftershock magnitudes.

Branching vector recovery. In Figure 6.5.15 we consider again the posterior dis-

tributions for proportion of events that are triggered and the proportion that are

allocated to the correct parent process; these distributions are examined when apply-

ing the dual or the correlated magnitude ETAS models to the correlated catalogue.
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Figure 6.5.15: Posterior proportions of triggered events (left) and correctly allocated

elements of B (right), based the dual magnitude (blue) and correlated magnitude

(orange) models for a simulated catalogue with correlated magnitudes. Vertical line

represent true proportion of triggered events.

Both models are able to recover the true proportion of triggered events, with the

correlated model resulting in a smaller posterior variance and reduces the RMSE by

a factor of 0.84 relative to the dual model, which falsely assumes that magnitudes are

independent. Additionally, the expectation of the posterior proportion of the branch-

ing vector correct is increased when correlation is accounted for, while the variance

of this posterior is slightly reduced. These effects combine to reduce the RMSE by a

factor of 0.88 on the posterior proportion of B correctly allocated, as compared to the

dual model. This demonstrates that the correlation between event magnitudes can

be used to better estimate the branching structure of the point process, even when

a large proportion of the branching structure can already be clearly identified when

using the overly simplified dual model.

6.5.2.3 Summary

In this section we have demonstrated that, when magnitudes are truly independent,

inference based on our correlated magnitude ETAS model is capable of identifying

this. Testing for magnitude dependence is simple and equivalent to testing ρ = 0
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against ρ 6= 0 under our correlated ETAS model. Additionally, we showed that fitting

the correlated ETAS model to such a catalogue (rather than the true, dual magni-

tude model) does not prevent recovery of the ETAS parameters, marginal magnitude

parameters or branching vector.

We have also shown that when magnitudes are truly dependent, our conditional

Bayesian inference for the correlated ETAS model is capable of recovering the de-

gree this dependence in addition to the ETAS, marginal magnitude and branching

parameters. When magnitudes are truly dependent and independence is falsely as-

sumed, then θprop, ψ0 and ψ1 may still be well estimated. However, making this false

assumption is detrimental to the estimation of both ρ and B. This gives particular

cause for concern. In simulated catalogues the true values of B and ρ are known but in

recorded earthquake catalogues B and ρ are latent quantities, which must be inferred

and cannot be measured directly. This makes validation of the independence assump-

tion difficult and violations of the assumption more likely to go undetected.

Unlike the i.i.d. or dual magnitude ETAS models, the correlated ETAS model is

capable of representing the possibility of weak magnitude dependence that cannot

be excluded based the simulated dual-magnitude catalogue. Ignoring this potential

dependence in a risk analysis can to lead to underestimation of the true risk. (This is

analogous to the underestimation of risk when assuming that a marginal magnitude

distribution has a shape parameter exactly equal to zero when its credible interval

contains both positive and negative values.) An assessment of risk based on the

correlated magnitude model therefore more comprehensively reflects the epistemic

uncertainty about whether earthquake magnitudes are truly independent.
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6.6 Conclusions and further work

This chapter has focused on the Epidemic Type Aftershock Sequence model, which is

used pervasively in the statistical modelling of both induced and tectonic earthquakes.

In this final section, we summarise the contributions made by this chapter and outline

potential areas for further work.

We first showed that the empirical laws that are conventionally used as components

of the ETAS model are each nested within the generalised Pareto distribution. This

led us to propose an orthogonal reparameterisation of the ETAS model in which

each of these empirical laws is replaced by the encompassing GPD and the relation-

ship between earthquake magnitudes and aftershock productivity is centred at the

mean observed magnitude. This reparameterisation allows greater representation of

model uncertainty by extending the representable class of ETAS models relative to

the conventional parameterisation. Through simulation we showed that, even when

constrained to the empirical-law model space, our reparameterised ETAS model leads

to more efficient parameter inference, better exploration of heavy-tailed distributions

and more accurate recovery of the latent branching structure.

The second contribution of this chapter was to introduce two extensions of the ETAS

model, with dual and correlated magnitudes. These extensions were developed to

ensure that their necessity over the standard ETAS model, with i.i.d. magnitudes,

could be easily tested. Care was also taken to ensure that that a range of dependence

strengths could be represented by our formulation of the correlated ETAS model

(at both moderate and extreme values) and to ensure that the marginal magnitude

distributions remained within the GPD family.

Efficient methods of conditional Bayesian inference were developed for both the dual-

and correlated-magnitude ETAS models. We demonstrated that both the presence
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and absence of these additional features can be identified through the use of simulated

catalogues and considered, for the first time, the recovery of the latent branching

structure of the ETAS model. Through these simulations we found that the addi-

tional model complexity does not impede inference when it is not required. Where

non-identical margins or correlation are truly present, incorporating these into the

inference lead to improved estimation of the branching structure and magnitude pa-

rameters.

There are many ways in which the new methodology and models presented in this

chapter may be taken further. This chapter has focused on the temporal ETAS

model with homogeneous background rate µ. This simplifies the exposition of our

proposed methodology and models but this is likely to be overly simplified for direct

use as a model for earthquake catalogues, as we saw in Chapter 2. A first extension

might therefore consider a temporally varying background rate, estimated using a

parametric or semi-parametric model. This would allow these models to be applied

to induced earthquake catalogues, in which the seeding rate cannot reasonably be

assumed constant because of changes in the human activity driving the seismicity.

Care will be required to ensure that the background intensity model is sufficiently

flexible to capture variations in the background event rate, but not so flexible as to

obscure aftershock activity.

A second, and more challenging piece of further work would be to develop analogous

extensions to the ETAS model in the spatio-temporal setting. This presents several

challenges. Firstly, the dimensions of both the observation and parameter spaces

are increased while the number of available data remains fixed. This could lead to

less precise estimation of model parameters or require stronger prior distributions

to be used to guide inference. Secondly, edge effects occur if additional intensity

is allocated outside of the observation region and this is not accounted for during
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inference. These edge effects have been shown to be highly influential on the estimated

ETAS parameters (Schoenberg, 2013). These effects are easily handled in the one-

dimensional temporal setting but calculating the amount of intensity allocated outside

of a spatio-temporal region with an irregular spatial boundary would be a significant

challenge.

A final piece of further work might consider how dual or correlated event magnitudes

within the ETAS model influence the distribution of the largest magnitude in a given

period, referred to as Mmax(t1, t2) where t1 < t2 are the start and end of the period.

This quantity is of particular interest in a seismological setting as it is often used to

inform policy decisions relating to earthquake defences. Estimation of Mmax(t1, t2)

from an earthquake catalogue has been considered for i.i.d. magnitudes (Shcherbakov

et al., 2019). Properties related to Mmax have also been considered for ETAS-type

models used in financial applications; for example through the distribution of the

sum or maximum of i.i.d. marks when the point process parameters are known (Bas-

rak et al., 2019; Žugec, 2019). What has not been established is how a mixture of

magnitude distributions or dependence between earthquake magnitudes will impact

these results. Theoretical or simulation based approaches to understanding this effect

would be valuable further work.



Chapter 7

Conclusions and further work

In this final chapter, we summarise the contributions to the area of statistical seismic-

ity that result from Chapters 4 - 6 of this thesis. We outline potential developments

to each of these works individually and also comment on how these may be drawn

together in future research.

In Chapter 4, we investigated simplifications and extensions to a state-of-the-art,

physically motivated model for induced earthquake locations in the Groningen gas

field, which we took as our baseline model. Model simplifications were motivated by a

desire for parsimony in the statistical description of earthquake locations, while model

extensions were proposed based on the addition of a range of physical characteristics

that were not included in the baseline model.

From this work we found that, based on the available data, there was insufficient

evidence to suggest that many of these model alterations provided a significant im-

provement to model fit. However, there was one notable exception to this finding:

allowing the parameters of the baseline model to take different values in the upper

and lower regions of the gas field resulted in a marked improvement to the baseline

186
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model. In our model extension, spatial variability was permitted through a simple,

linear partitioning of the gas field by dividing the field in such a way as to separate

two modes of earthquake activity.

Although the improvement in model fit was not found to be overly sensitive to the

choice of boundary line, the choice of a linear form for the boundary was arbitrary -

as would have been any other division of the gas field that was not based on physical

properties. Further work might investigate variations of the baseline model where

parameters are allowed to vary smoothly over space, for example through the use

of thin-plate splines. The challenge in successfully doing so will be balancing model

flexibility against the small size of the Groningen earthquake catalogue.

In Chapter 5, we considered the development of the sensor network for detecting

earthquakes in the Groningen gas field. In particular, we considered how investment

in this network impacted the detection of small magnitude events and developed a

method to select a time-varying threshold above which to model the magnitude dis-

tribution of earthquakes. This allowed small earthquakes, which would not have been

detected at the start of the catalogue, to be included within the inference procedure

thus reducing uncertainty in the estimated magnitude return levels as compared to a

standard modelling approach.

When applying our threshold selection method to the Groningen earthquake catalogue

we found that the constant threshold that is currently used as standard is overly con-

servative. Using the additional information provided by small magnitude earthquakes

allowed us to conclude, for the first time based on empirical evidence alone, that the

magnitude distribution of Groningen earthquakes has a finite upper end point.

This work and its conclusions have generated interest from stakeholders for the Gronin-

gen gas field. This interest lies both in the demonstrable return on investment this
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gives for the developments to the sensor network and also in the implications about

the magnitude return levels. The work presented in Chapter 5 prompted further work

from Shell to investigate whether the measurement scale used to record earthquakes

influences the selected threshold and resulting conclusions about the extreme value

properties of the magnitude distribution. This work is inspired by Wadsworth et al.

(2010), where Box-Cox transformations are used to represent the uncertainty in the

measurement scale that leads to the most efficient extreme value analysis. Prelimi-

nary results from this further work suggest that the conclusions of Chapter 5, made

on the local magnitude scale, are robust to moderate transformations of the chosen

measurement scale.

There are many other possible avenues of additional further work leading from the

methodology developed in Chapter 5. This work introduced a new method for se-

lecting a time-varying threshold for a univariate extreme value analysis. This was

motivated and explored in the case where observation is incomplete below the mod-

elling threshold, but the method is applicable more generally. An important piece of

further work would therefore be to perform an extensive simulation study to assess

how the method compares to other approaches for selecting a time-varying thresh-

old.

The method we have presented focuses the temporal evolution of earthquake detection.

A second extension would be to develop a method to select a threshold that varies over

space instead of or as well as over time, basing this on the same underlying principle of

quantifying deviation from a fitted GPD model. This development is important since

the spatial element in the development of the sensor network has not been accounted

for in this first work.

In Chapter 6 we considered a reparameterisation and two extensions of the ETAS

model for earthquakes and aftershock activity. We showed that inference for the
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standard ETAS model could be improved while broadening the class of models that

can be represented; this was achieved by centring the effect of earthquake magnitudes

on aftershock productivity and by using generalised Pareto distributions in place of

the empirical laws conventionally used to describe the aftershock-delay and magni-

tude distributions. We also introduced two extensions to the ETAS model: the dual

magnitude extension, which allows background and triggered events to have distinct

magnitude distributions, and the correlated magnitude extension which allows for

dependence between triggered and triggering magnitudes. Each of these model exten-

sions respects the complex branching structure of ETAS earthquake catalogues and

efficient, conditional approaches to inference were developed for each extension.

A limitation in the current work is that we have restricted attention to the one dimen-

sional case where background events come from a homogeneous Poisson process. The

reparameterisation of the standard ETAS model could be extend readily to spatio-

temporal point patterns with non-constant background rates, and could be of im-

mediate practical benefit when fitting ETAS models to earthquake data from the

Groningen field and beyond.

In order to be properly applied to catalogues of induced earthquakes, the model ex-

tensions must also be extended to accommodate a non-constant rate of background

events. Translating the ETAS model extensions to this more general setting is con-

ceptually simple, but will likely present practical difficulties in distinguishing between

temporal (or indeed spatial) variability in the background event rate from clusters of

aftershock activity. This same problem arises for the standard ETAS model when a

flexible background intensity component is used and this identifiability issue is only ex-

acerbated when catalogue sizes are small. Applying these model extensions to induced

earthquake catalogues will likely be challenging without imposing strong assumptions

on the form of the background event intensity to ensure sufficient smoothness in space
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and/or time. Catalogues of tectonic earthquakes, where temporal stationarity may

reasonably be assumed, might provide a suitable starting point for extensions of this

type.

A final area of further work based on Chapter 6 would be to investigate the effects

of a dual magnitude distribution or correlated earthquake magnitudes on the esti-

mated values for the largest earthquake in a stated space-time interval, Mmax. This

quantity is often of interest when planning earthquake defences and is dependent on

all components of the ETAS model: the rate of background events, the recent event

history, aftershock productivity, and of course the distribution and dependence struc-

ture of earthquake magnitudes. Because of these complex dependencies, Mmax is best

estimated though the use of Monte Carlo simulations. It would be a worthwhile un-

dertaking to conduct a thorough investigation on how estimates of Mmax are changed

when, for example, dual or dependent magnitudes are truly present but are neglected

in the modelling framework.

In addition to extending the work of each chapter of this thesis individually, there is

also much further work that could be done to unite the methods and models developed

in Chapters 4-6 of this thesis.

The work in Chapters 4 and 5 of this thesis could be combined to allow the use

of later, small magnitude events when modelling earthquake locations. This addi-

tional information might materially alter the conclusions in Chapter 4 about which

additional physical processes are detectable using the available data. The increased

quantity of usable data might also facilitate the fitting of more complicated location

models, such the proposed extension with smoothly varying parameters. When com-

bining location modelling with selection of a variable magnitude threshold, it will be

important to proceed with great care because lowering the magnitude of completion

will also increase the apparent rate at which events occur. A sensible starting point
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for this work might be to first extend the models of Chapter 4 to consider the mark

distribution as an additional dimension to the observation window and to allow the

mark intensity to also vary according to a suitable covariate.

A limitation of the model extensions presented in Chapter 6 is the restriction of focus

to the case where background events come from a homogeneous Poisson process with

rate µ. This restriction was made to facilitate the presentation and implementation

of these new model extensions, but in theory could be relaxed to allow parametric

or semi-parametric modelling of the intensity of background events, such as those

investigated in Chapter 4. This presents the additional challenge of selecting an ap-

propriate level of smoothness in the intensity function of background events so that it

may capture medium and long-term variation in the rate of background events with-

out masking any short-term aftershock activity. A first attempt at this might assume

a known background event rate, which could be estimated by spatially aggregating

the fitted intensity of the baseline model from Chapter 4. Given this point estimate

of baseline intensity, estimates of the ETAS, magnitude and branching parameters

could be estimated from the observed catalogue. This might give a good starting

point from which to relax the assumption that the background intensity is fixed and

known.

Further work on modelling induced seismicity is not limited to modifications or ex-

tensions of the work presented in Chapters 4-6. The ETAS model is the dominant

statistical model for aftershock activity, but when this model is used to augment a

covariate-driven model of background events, such as those investigated in Chapter 4,

it leads to inconsistent treatment of background and triggered events. The Poisson

process describing background events is driven by the gas extraction process but the

counts, locations and magnitudes of ETAS aftershocks are dependent on gas extraction

only though the magnitude and locations of those background events. This is because



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 192

in the ETAS model earthquakes augment the intensity of the point process, rather

that the covariate surface that is thought to be driving earthquake activity.

An alternative model formulation could be developed around a covariate-driven inten-

sity model in which each earthquake may bring about further seismic events by locally

altering the covariate values in the surrounding area and at subsequent times. This

could reflect, for example, the additional stresses on the reservoir structure caused by

that earthquake. The way in which the covariate surface is altered by seismic events

should be chosen carefully, based on the form of the intensity model, to lead to a

physically sensible local increase the covariate-driven intensity surface. Some initial

ideas and discussions of this modelling approach are outlined Appendix D.1.

The main benefit of this type of combined model formulation for background and

triggered events would be the increased coherence of the modelling framework for these

two event types; each occurs when stresses across fault planes are increased beyond

some critical value and this commonality should ideally be reflected in the point

process model. However, such a combined model is not without its own challenges.

The model would suffer from similar computational challenges to the direct fitting of

the standard ETAS model, which could no longer be alleviated by a decomposition into

simpler model components given a latent branching vector. There would also be the

additional challenge of ensuring that changes to the covariates caused by earthquakes

are coherent with subsequent, measured values of the covariates. These challenges

could make implementation and application of such a combined aftershock model

challenging.

At this point we hope that it is evident that the statistical modelling of earthquake

activity is anything but straightforward. This modelling task is made yet more chal-

lenging in the setting of induced earthquakes, due to the small amount of available

data and the variations in human activity that are driving earthquake occurrences.
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This thesis has made several contributions to better our understanding and modelling

of induced earthquakes, and toward overcoming some of the associated challenges.

As evidenced by the further work proposed in this chapter, many new questions and

challenges about the modelling of induced earthquakes have been uncovered as the

work in this thesis developed. In this way, statistical seismology remains an fecund,

important and promising area for future research.
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Model Λ(B(x, δ)× (0, t)|β,σ)

S1 β0|B(x, δ)|g(x;σ)

S2 β0|B(x, δ)|s(x, t;σ)

S3 β0|B(x, δ)|s(x, t;σ)[1 + β1
2
s(x, t, ;σ)]

S4 β0|B(x, δ)|β−1
1 exp{β1s(x, t;σ)}

B0 β0|B(x, δ)|s(x, t;σ) exp{β1s(x, t;σ)}

E1 (β0|B(x, δ) ∩WL|+ β1|B(x, δ) ∩WU |)s(x, t;σ)

E2 β0|B(x, δ) ∩WL|s(x, t;σ) exp{β1s(x, t;σ)+

β2|B(x, δ) ∩WU |s(x, t;σ) exp{β3s(x, t;σ)

E3 numerical integration required

E4 numerical integration required

E5 β0|B(x, δ)|s(x, t;σ)α exp{β1s(x, t;σ)γ}

E6 β0|B(x, δ)|s(x, t;σ) exp{β1s(x, t;σ) + β2ṡ(x, t;σ)}

Table A.1.1: Integrated intensity functions for sub-models (S1-S4), the baseline model

(B0) and model extensions (E1 - E6). The topographic gradient is denoted by g(x),

while s(x, t;σ) denotes the cumulative incremental Coulomb stress smoothed using an

isotropic Gaussian kernel with standard deviation σ. The first and second temporal

derivatives of ICS are given by ṡ(x, t;σ) and s̈(x, t;σ). Regions WL and WU for models

E1 and E2 are defined in Section 4.3.3.
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A.2 Maps of annual expected earthquake counts

The following pages show maps of the annual expected earthquake counts on a

500×500 m grid over the Groningen gas field, under the fitted baseline model B0

and the fitted model extension E2.
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Figure A.2.1: Observed and expected event counts in each year (1995-2006) under

the fitted baseline model B0.
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Figure A.2.2: Observed and expected event counts in each year (2007-2016) under

the fitted baseline model B0.
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Figure A.2.3: Observed and expected event counts in each year (1995-2006) under

the fitted model extension E2.
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Figure A.2.4: Observed and expected event counts in each year (2007-2016) under

the fitted model extension E2.



Appendix B

Supplementary materials to

Chapter 5

B.1 Assessing i.i.d. assumption for Groningen earth-

quakes

B.1.1 Connection to main text

This appendix supports the claim made in Sections 5.2 and 5.6 of the main text

that Groningen earthquakes exceeding 1.45ML may be modelled as independent and

identically distributed.

B.1.2 Exploratory analysis

Here we examine the validity of the assumption, common to both GPD and exponen-

tial models, that magnitudes are i.i.d. above 1.45ML. In the case of continuous-valued

data that are completely observed, this assumption implies that inter-arrival times of

threshold exceedances should approximately follow an exponential distribution. Due

201
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Figure B.1.1: Frequency plots of the number of earthquakes exceeding 1.45ML that

separate earthquakes exceeding exceeding 1.65ML (left), 1.75ML (centre), and 1.85ML

(right) for the Groningen earthquake catalogue. Observed frequencies (black lines)

fall within the 95% confidence intervals under the fitted models (grey lines).

to incomplete observation below 1.45ML and the transformed time scale, we instead

consider the inter-arrival times of events exceeding magnitude c ≥ vC measured in

terms of the number of events with magnitudes between 1.45ML and c. If events are

i.i.d. then these inter-arrival times are geometrically distributed. It is important to

investigate a range of values for c, since lower values lead to more (shorter) observed

interval lengths but these are more concentrated about 0 making assessment of the

geometric distribution more difficult. This trade-off can seen by considering the edge-

cases: if c = 1.45ML then each interval is of length 0, and if c is between the second

and third largest observed magnitudes then there is a single observed interval.

The empirical distributions of interval lengths in the Groningen catalogue are shown in

the panels of Figure B.1.1 for exceedances of c = 1.65ML, 1.75ML, and 1.85ML. These

are consistent with the 95% confidence interval for the fitted geometric distribution

at each value of c. The same conclusion was found for 1.55ML < c < 2.25ML. Events

larger than this show mild evidence of clustering, but overall this suggests that it is

reasonable to model magnitudes as i.i.d. above c = 1.45ML.
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B.2 Bootstrap datasets and parameter estimates

B.2.1 Connection to main text

This section supports the material presented in Section 5.2 of the main text. To

represent the sampling variability in the maximum likelihood estimate θ̂ associated

with the log-likelihood (5.2.1) of the main text we take a parametric bootstrapping

approach. This appendix describes the simulation of bootstrap catalogues and how

they may be used to obtain bootstrap estimates of θ̂. Bootstrap parameter estimates

of this type are used throughout the main text.

B.2.2 Generating bootstrapped data-sets

B.2.2.1 Threshold exceedances and a point process

In bootstrap realisations of the earthquake catalogue, the number, timing and mag-

nitudes of events exceeding v(τ) are all variable. In an alternate catalogue, events

remain within the transformed observation interval (0, τmax) but no longer form a

regularly spaced sequence. Rather, the events in the region Av = {(τ, y) : 0 ≤ τ ≤

τmax, y ≥ v(τ)}, as shown in Figure B.2.1, are approximated by a Poisson process.

The Poisson process intensity on Av is determined by the GPD parameters θ and λu,

where λu is the expected number of events exceeding u ≤ min0<τ<τmax v(τ) per unit

τ (Coles, 2001). Since it is assumed that no censoring occurs on Av and that the

underlying magnitude distribution is identical over t, it follows that λu is constant

over τ because time has been transformed so that earthquakes occur at a constant

rate. The resulting intensity function on Av is:

λ(τ, y) =
λu
σu

[
1 + ξ

y − u
σu

]1/ξ−1

+

for (τ, y) ∈ Av. (B.2.1)
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Figure B.2.1: Threshold exceedances as point process.

Bootstrap catalogues of earthquakes with magnitudes exceeding v(τ) can be obtained

as realisations from the point process with intensity function (B.2.1) using the esti-

mated parameters θ̂. We first describe how to generate such bootstrap catalogues

and then how these can be used to obtain bootstrap estimates of θ̂.

B.2.2.2 Simulating the exceedance count

The first step in generating a bootstrap catalogue is to sample the number of events

that occur on Av. The number of events on Av is Poisson distributed with expecta-

tion

Λ(Av) =

∫
Av

λ(τ, y) dτ dy, (B.2.2)

which must be estimated from the observed catalogue. This is complicated by the

rounding of observed magnitudes x to the nearest 2δ. Recall that for borderline events

{xi ∈ x : |xi − vi| < δ} it is not known whether or not the corresponding unrounded

magnitudes exceed v(τ) and place those events on Av. Therefore nv, the observed

event count on Av, is unknown and must itself be estimated.

Given the rounded magnitudes x = (x1, . . . , xn) and the estimated GPD parameters
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(σ̂u, ξ̂), events i = 1, . . . , n each exceed their magnitude threshold and are on Av

independently with probability wi as defined in expression (5.2.2) of the main text.

Uncertainty in the observed event count due to magnitude rounding can be included

in the generation of bootstrap sample sizes by simulating a value mv for nv, as the

sum of n independent Bernoulli random variables with expectations w1 to wn.

This simulated value for the observed event count can be used as a point estimate

Λ̂(Av) = mv for Λ(Av). Since Λ̂(Av) is an estimate of based on a single observed

count, it is important to also include uncertainty in the inferred value of Λ(Av) when

generating bootstrap catalogue sizes. This can be done using a bootstrapped value

for the value of the estimator Λ̂(Av). Since inference is based on a single Poisson

count, the bootstrap estimator Λ̃(Av) is obtained simply as a sampled value from the

Poisson(Λ̂(Av)) distribution.

Finally, the event count ñ to be used for the bootstrapped catalogue can be sampled

from a Poisson(Λ̃(Av)) distribution. Doing so properly represents rounding, estima-

tion and sampling uncertainties in the bootstrapped event counts.

B.2.2.3 Simulation of event times

Having simulated the exceedance count ñv, the times τ̃ = (τ1, . . . , τñv) of the events

on Av can sampled according to the marginal temporal intensity λ(τ). The marginal

temporal intensity is found by integrating the joint intensity (B.2.1) over magnitudes.

Noticing that λ(τ, y) is proportional to the GPD density, λ(τ) can be stated in terms

of the GPD survivor function F̄ (y;σ, ξ) = [1 + ξy/σ]
−1/ξ
+ to give:

λ(τ) =

∫ ∞
v(τ)

λ(τ, y) dy = λuF̄ (v(τ)− u;σu, ξ) for 0 ≤ τ ≤ τmax. (B.2.3)

Sampling exceedance times from this intensity can be achieved through reverse appli-

cation of the time-rescaling theorem (Brown et al., 2002). In general, this will require
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numerical integration and can be computationally intensive. Depending on the form

of v(τ) more efficient methods may be available. When v(τ) is a step function the

step-wise integral of the temporal intensity has a simple form and event times can

be simulated very efficiently; the ñv events are allocated independently to steps with

probability proportional to the temporal intensity integrated over each step. Events

are then be located uniformly at random within their allocated step. When a more

complex form is used for v(τ), alternative sampling approaches may reduce the com-

putational cost of sampling event times. For example, exact samples may be obtained

through rejection sampling and approximate samples by approximating v(τ) as a step

function.

B.2.2.4 Conditional simulation of event magnitudes

The magnitude of each event in the bootstrap catalogue may then be simulated con-

ditional on its occurrence time. Given a simulated occurrence time τ̃ ∈ (0, τmax),

the conditional magnitude intensity for magnitudes exceeding v(τ̃) is simply the

GPD density function with shape parameter ξ and time-dependent scale parameter

σ(τ̃) = σu + ξ(v(τ̃)− u):

λ(y|τ̃) =
λ(τ̃ , y)

λ(τ̃)
=

1

σ(τ̃)

[
1 + ξ

y − v(τ̃)

σ(τ̃)

]−1/ξ−1

+

, for y ≥ v(τ̃). (B.2.4)

This allows easy simulation of magnitudes ỹ = (ỹ1, . . . , ỹñv) conditional on their

occurrence times τ̃ , by generating random variates from the appropriate GPD. The

simulation of a bootstrap earthquake catalogue is completed by rounding these to the

nearest multiple of 2δ, to obtain x̃ = (x̃1, . . . , x̃ñv). Note that in a bootstrap catalogue

ỹi > ṽi for i = 1, . . . , ñv, but following rounding it is possible that some of the x̃i are

below their associated threshold value. The simulation of bootstrapped datasets is

summarised in Algorithm 1, where σ̂(τ̃) = σ̂u + ξ̂(v(τ̃)− u).
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Algorithm 1: Simulation of GPD data with variable threshold and rounding.
Result: A bootstrapped dataset of rounded GPD observations x̃, based on the

threshold function v(τ), observations x and parameter estimates θ̂.

Sample mv as the sum of independent Bernoulli(wi) realisations where i = 1, . . . , n ;

Sample the estimate of Λ(Av), Λ̃(Av) from the Poisson(mv) distribution;

Sample the bootstrap number of exceedances ñv from the Poisson(Λ̃(Av))

distribution;

for i = 1 to i = ñv do

sample ui from a Uniform(0,1) distribution;

find the bootstrap occurrence time τ̃i which satisfies∫ τ̃i

0
λ(τ ; σ̂u, ξ̂, v(τ)) dτ = uiΛ̂(Av);

sample the bootstrap magnitude exceedance z̃i from the GPD(σ̂(τ̃i), ξ̂)

distribution;

calculate the bootstrap latent magnitude ỹi = v(τ̃i) + z̃i;

round ỹi to the nearest 2δ to get the rounded bootstrap magnitude x̃i (which

may be less than v(τ̃i)).

end
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B.2.3 Generating bootstrap maximum likelihood estimates

In the bootstrapped earthquake catalogues, some magnitudes x̃ may be less than their

respective threshold values. However, unlike in the original catalogue, each of the

corresponding unrounded magnitudes ỹ exceeds the respective modelling threshold.

Therefore, an unweighted log-likelihood should be used when obtaining bootstrap

maximum likelihood estimates. Letting ṽi = v(τ̃i) and σṽi = σu + ξ(ṽi − u), the

unweighted log-likelihood function is

`(θ|x̃, ṽ) =
ñv∑
i=1

log [F (x̃i + δ − ṽi;σṽi , ξ)− F (max(ṽi, x̃i − δ)− ṽi;σṽi , ξ)] .

The maximum likelihood estimates resulting from a collection of bootstrap catalogues

can be used to represent the sampling uncertainty of the original maximum likelihood

point estimate θ̂. This is done in the main text when calculating confidence intervals

on parameter values, conditional quantiles and return levels. The bootstrap parameter

estimates are also used in the construction of adapted PP and QQ plots and when

evaluating metric values.

B.3 Sampling standardised threshold exceedances

B.3.1 Connection to main text

This appendix describes how to sample a vector z̃ of unrounded threshold exceedances

transformed to have a common Exp(1) marginal distribution. This used in Sections 5.3

- 5.6 of the main text and requires: a single bootstrap estimate θ̃ of the estimated

GPD parameters θ̂ (obtained as described in Appendix B.2), the n-vector of rounded

observations x and the corresponding threshold vector v. The process for sampling a

single vector z̃ is described and is formalised in Algorithm 2.
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B.3.2 Sampling unrounded threshold exceedances

It is unknown which, if any, of the borderline values {xi ∈ x : |xi−vi| < δ} correspond

to unrounded values yi ∈ y that exceed the modelling threshold v(τ). The first step

in sampling z̃ is therefore to sample the set I that exceed the modelling threshold.

This is done by simulating independent Bernoulli trials for each event i = 1, . . . , n

with success probabilities wi = Pr(Yi > vi|xi, θ̂) as defined in equation (5.2.2) of the

main text. The vector z̃ will therefore have a randomly sampled length m̃ = |I| ≤ n,

where the distribution of m̃ depends on x,v and θ̃.

The unrounded magnitude values for events in I are then simulated from their con-

ditional distribution given: their rounded values, the estimated GPD parameters and

that they are threshold exceedances. Letting F be the GPD distribution function as

in Equation (5.1.1) of the main text, the required conditional distribution function of

Yi|xi,θ, Yi ≥ vi is given by:

GYi|xi,θ,Yi≥vi(y) =


0 for y < bi,

F (y−u;θ)−F (bi−u;θ)
F (xi+δ−u;θ)−F (bi−u;θ)

for bi ≤ y ≤ xi + δ,

1 for y > xi + δ,

(B.3.1)

where i ∈ I and bi = max(xi−δ, vi) is the smallest value above the modelling threshold

that results in the rounded observation xi. The sampled values are combined to create

ỹ, an m̃-vector of continuous-valued sampled threshold exceedances. Note that the

length of this vector is a random variate when there are one or more borderline values.

By repeated simulation using k bootstrap parameter estimates {θ̃(1), . . . , θ̃(k)}, the

resulting vectors of unrounded exceedances {ỹ(1), . . . , ỹ(k)} reflect uncertainty about

both the GPD parameter values and the number of threshold exceedances.
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B.3.3 Transformation onto common margins

When v(τ) is non-constant, the elements of ỹ are random variates from the GPD

family, but they do not share a common set of parameters. To resolve this issue, the

probability integral transform can then be used to give each element of ỹ an Exp(1)

marginal distribution using its fitted GPD parameters. This results in a vector z̃ of

standardised, sampled exceedances of the modelling threshold v(τ). The bootstrap

simulation of one such vector is formalised in Algorithm 2.

Note that the transformation onto exponential margins is dependent on the estimated

GPD parameters. The effect of parameter uncertainty on this transformation is rep-

resented across bootstrap catalogues by transforming each collection of bootstrapped

threshold exceedances {ỹ(1), . . . , ỹ(k)} using their respective bootstrapped parameter

estimates {θ̃(1), . . . , θ̃(k)}. This yields a set of k sampled vectors of threshold ex-

ceedances on exponential margins, {z̃(1), . . . , z̃(k)}. As with ỹ, the length of z̃ is a an

m̃-vector and so is a random variate when there are one or more borderline events in

x.

These sampled vectors of standardised threshold excesses can be used to calculate

expected metric values or to construct modified PP- and QQ-plots, as in Figures 5.4.1

and 5.6.1 of the main text. In those plots, the variability between the empirical

quantiles (or probabilities) of each {z̃(1), . . . , z̃(k)} is shown by the confidence intervals

on sample quantile values (or probabilities). The expected range of values for each

sample quantile (or probability) is shown by the tolerance intervals. The uncertainty

in the number of threshold exceedances is also incorporated when calculating the

tolerance intervals; they are constructed using k sets of Exp(1) random variates of

lengths dim z̃(1), . . . , dim z̃(k).
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Algorithm 2: Simulation of standardised threshold exceedance sets.

input : A bootstrap estimate θ̃ = (σ̃, ξ̃) of the GPD parameters, the n-vector of

rounded observed values x, and their corresponding thresholds v.

output: A vector z̃ of length m̃ ≤ n of sampled unrounded values, transformed to

have an Exp(1) distribution under the fitted model.

for i = 1 to n do

calculate wi = Pr(Yi > vi|xi, θ̃), the probability that each rounded observation

corresponds to an unrounded value on Av, as in Equation (3) of the main text;

end

Generate n independent Uniform[0,1] random variates u1, . . . , un ;

Sample the indexing set of events that are on Av, I = {i ∈ (1, . . . , n) : ui ≤ wi} and

let m̃ = |I| ;

Store the elements of I in the vector β = (β1, . . . , βm̃) so that ỹβi > vβi for

i = 1, . . . , m̃ and initialise ỹ and z̃ as vectors of length m̃;

for j = 1 to m̃ do

Let a = βj ;

Sample the jth unrounded exceedance ỹj from its conditional distribution

GYa|x=xa,θ=θ̃,Ya≥va,(y) as in equation (B.3.1) ;

Let θ̃va = (σ̃ + ξ̃(va − u), ξ̃) be the bootstrapped GPD parameters for

exceedances of va;

Transform ỹj onto Exp(1) margins under this fitted model by letting F be the

GPD distribution function (1) in the main text and setting

z̃j = − log
[
1− F

(
ỹj − va; θ̃va

)]
.

end
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B.4 Supplementary figures

The following pages of this appendix contains supplementary figures relating to Chap-

ter 5 of this thesis.
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Figure B.4.1: Sampling distribution of threshold selection methods for PP-based met-

rics over 500 simulated catalogues with constant threshold and hard censoring. The

true threshold is shown by a dashed red line and the root mean squared error (RMSE)

for each method is given in plot titles.

0.1 0.2 0.3 0.4 0.5 0.6

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

σ̂u

ξ̂

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●
●●

●

●

● ●
●

●

●●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●●●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●
● ● ●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●●
●

●

●●
●

●

●●

●
●

●
●

●

●●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

● ●
●

●

●●● ●
●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●
●

● ●●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

+

+

Conservative
Extended
Stepped
True

bias2(σ̂u) bias2(ξ̂) Var(σ̂u) Var(ξ̂)
0.000

0.002

0.004

0.006

0.008 Conservative
Extended
Stepped

Figure B.4.2: [Left] Plot of maximum likelihood estimates of GPD scale and shape

parameters for 1000 simulated catalogues obtained using a conservative, stepped and

extended approach. [Right] Plot of mean squared error decomposition for maximum

likelihood estimates by each approach. The error is decomposed into squared bias and

variance terms for each of the GPD parameters, with variance terms having larger

contributions.
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Figure B.4.3: [left] Bootstrap maximum likelihood estimates for GPD parameters for

Groningen magnitudes above 1.45ML assuming GPD (black) and exponential (red)

models. [right] Resulting conditional return level plot with return period measured

in number of events exceeding 1.45 ML.
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Figure B.4.4: Sampling distribution of threshold selection methods for QQ-based (top

row) and PP-based (bottom row) metrics over 500 simulated catalogues with constant

threshold and phased censoring. The true threshold is shown by a dashed red line

and the root mean squared error (RMSE) for each method is given in plot titles.



Appendix C

Supplementary materials to

Chapter 6

C.1 B conditional posterior, dual magnitude model

In the dual magnitude ETAS model there are two magnitude distributions: one for

background events and another for triggered events. Each magnitude M1, . . . ,Mn

remains independent of all other magnitudes, as in the standard ETAS model. How-

ever, introducing type-dependent magnitudes means that each element of the branch-

ing vector, Bi, is no longer independent of its corresponding magnitude, Mi for

i = 1, . . . , n. This is because the observed magnitude of event i, mi, carries in-

formation to discern whether Bi = 0 or Bi > 0 when the two magnitude distributions

are not equal. Conversely, knowing that bi = 0 or bi > 0 is informative about the

likely values of Mi.

Let f0(m;ψ0) and f1(m;ψ1) denote, respectively, the probability density functions

for magnitudes of background events and triggered events, where ψ = (ψ0, ψ1) is

the vector of all magnitude parameters. Additionally, define di = min(1, bi) to be the
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index of the magnitude distribution to which event i belongs, where i = 1, . . . , n.

The conditional posterior for the full branching vector πB|Y,θ,ψ(b) may still, as for

the standard ETAS model, be written as the product of element-wise conditional

posteriors:

πB|Y,θ,ψ(b) = Pr(B = b|Y, θ, ψ) =
n∏
i=1

Pr(Bi = bi|Y, θ, ψ). (C.1.1)

In particular this means that the elements of the branching vector may be updated

sequentially as part of the Gibbs sampling scheme used to fit the dual magnitude

ETAS model. The element-wise conditional posteriors that constitute the product

terms in equation (C.1.1) are less simple than in the case of i.i.d. magnitudes, but

still have a closed form, which we derive presently.

Let Hi = {Yj ∈ Y : j = 1, . . . , i− 1}, be the history of the point process up to event i

for i = 1, . . . , n. The conditional posterior for a single element of the branching vector

does not depend on events {Yi+1, . . . , Yn} and so

Pr(Bi = bi|Y, θ, ψ) = Pr(Bi = bi|Hi, Yi, θ, ψ)

= Pr(Bi = bi|Hi, Ti,Mi, θ, ψ).

Applying Bayes’ rule and the law of total probability, we have that

Pr(Bi = bi|Y, θ, ψ) =
f(mi|Bi = bi,Hi, Ti, θ, ψ)Pr(Bi = bi|Hi, Ti, θ)∑i−1

j=0 fI{j>0}(mi|ψI{j>0})Pr(Bi = j|Hi, Ti, θ)
.

We may simplify the terms of both the numerator and denominator as follows. Con-

sider the first term of the numerator, f(mi|Bi = bi,Hi, Ti, θ, ψ). Since the branching

element Bi is known, we know that Mi has density function fdi(m;ψdi). Therefore

conditioning of the remaining terms Hi, Ti and θ contribute no further information

about the distribution of Mi and these may be dropped. Now consider the second
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term of the numerator, Pr(Bi = bi|Hi, Ti, θ, ψ). Since the Mi is unknown the mag-

nitude parameters ψ are not informative about Bi and may be dropped from the

conditioning. Similar arguments apply to the denominator and so

Pr(Bi = bi|Y, θ, ψ) =
fdi(mi|ψdi)Pr(Bi = bi|Hi, Ti, θ)∑i−1

j=0 fI{j>0}(mi|ψI{j>0})Pr(Bi = j|Hi, Ti, θ)

=
fdi(mi|ψdi) λbi(ti;Hi, θ)

[∑i=1
k=0 λk(ti;Hi, θ)

]−1

∑i−1
j=0 fI{j>0}(mi|ψI{j>0})λj(ti;Hi, θ)

[∑i−1
k=0 λk(ti;Hi, θ)

]−1 .

The term in square brackets in the denominator may be brought out of the summation

over j to cancel with the term in square brackets in the numerator to give

Pr(Bi = bi|Y, θ, ψ) =
fdi(mi|ψdi) λbi(ti;Hi, θ)∑i−1

j=0 fI{j>0}(mi|ψI{j>0})λj(ti;Hi, θ)
.

Separating the normalising constant in the denominator into terms where j = 0 and

where j > 0, since λ0(ti,Hi, θ) = µ for all i = 1, . . . , n, we find that

Pr(Bi = bi|Y, θ, ψ) =
fdi(mi|ψdi) λbi(ti;Hi, θ)

µf0(mi;ψ0) + f1(mi;ψ1)
∑i−1

j=1 λj(ti;Hi, θ)
, (C.1.2)

for i = 1, . . . , n, where the summation in the denominator is defined to be 0 when

i = 1.

Expression (C.1.2) is similar to that found in (Ross, 2016) for i.i.d. magnitudes, but

the probability mass function is now weighted to reflect the additional information

that is conferred by the magnitude of event i about whether Bi = 0 or Bi > 0. Indeed,

it is clear to see that when f0(m) = f1(m), the conditional branching posterior (C.1.2)

reduces to that of the i.i.d. case:
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λbi(ti;Hi, θ)∑i−1
j=0 λj(ti;Hi, θ)

.

We can therefore draw the vector B directly from its conditional posterior as part of

a Metropolis-within-Gibbs scheme, by drawing each element B1, . . . , Bn according to

its conditional posterior distribution, as given by expression (C.1.2). Note that for

each event i = 1, . . . , n the denominator terms in expression (C.1.2) are normalising

constants for the probability mass function, taking the same value for each potential

parent process bi = 0, . . . , i − 1. Since sampling from this posterior distribution

requires the probability mass function only up to a constant of proportionality, these

denominator terms need not be calculated explicitly for each value of bi.

C.2 ψ conditional posterior, correlated magnitudes

In the correlated magnitude ETAS model, triggering and triggered events may have

distinct marginal magnitude distributions, which are coupled using a Gaussian copula.

This extends the vector of magnitude parameters to ψ = (ψ0, ψ1, ρ). The elements of

ψ give parameters of the marginal distributions for background and triggered events

as well as ρ, the correlation of triggered and triggering magnitudes when transformed

onto standard Gaussian margins.

In the following, let f0(m;ψ0) and f1(m;ψ1) denote the marginal magnitude distri-

butions of background and triggered events and φ(m) denote the standard Gaus-

sian density. Let the corresponding cumulative distribution functions be denoted by

F0(m|ψ0), F1(m|ψ1) and Φ(m). Finally, define di = min(1, bi) to be the index of the

magnitude distribution to which event i belongs, where i = 1, . . . , n.

Note that if the branching vector B is known, then the graphical representation of the

point pattern as a collection of trees is also known. The likelihood of the magnitude
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parameters given the magnitudes in a single tree may be calculated by multiplying the

marginal density of the root magnitude (which corresponds to a background event) by

the conditional densities of each triggered magnitude in the tree given the distribution

and value of its parent, working from root to leaves. Since magnitudes in separate trees

are independent, the likelihood of the magnitude parameters given all magnitudes is

the product of such expressions over all trees. This combined likelihood may be written

most clearly by collecting terms for background (root) and triggered (non-root) events.

The conditional posterior of the magnitude parameters, assuming improper uniform

priors, is then given by

πψ|Y,B,θ(ψ) =
∏
i:Bi=0

f0(mi;ψ0)
∏
i:Bi>0

f(mi|mbi , bi, bbi , ψ), (C.2.1)

where the terms of the second product are the conditional densities of triggered events,

given the magnitude, index and marginal distribution of the corresponding parent

events, in addition to the magnitude parameters. We can express this conditional

density in terms of the marginal and copula densities.

To simplify notation, we will consider a parent-child magnitude pair pair of events

(mp,mc) so that 1 ≤ p < c ≤ n and bc = p. These magnitudes are transformed from

their marginal distributions fdp(m;ψ) and fdc(m;ψ) onto standard Gaussian margins

to give (gp, gc). (Note that since event c is a child of event p we therefore know that

bc = p and dc = 1.) The transformation onto standard Gaussian margins can be

achieved by application of the probability integral transform, where

gp = Φ−1 ◦ Fdp(mp;ψ) and gc = Φ−1 ◦ Fdc(mc;ψ). (C.2.2)

Then the conditional density that we require is

f(mc|mp, bp, bc = p, ψ) = f(gc|gp, bc = p, ψ)

∣∣∣∣ dgc
dmc

∣∣∣∣
= f(gc|gp, bc = p, ψ)

[
φ ◦ Φ−1 ◦ Fdc(mc;ψ)

]−1
fdc(mc;ψ).
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By our choice of Gaussian copula linking the marginal distributions of triggering and

triggered events it follows that Gc|gp, bc = p, ψ ∼ N(ρgp, 1− ρ2) and therefore

f(mc|mp, bp, bc = p, ψ)

= φ

(
Φ−1 (Fdc(mc;ψ))− ρΦ−1

(
Fdp(mp;ψ)

)√
1− ρ2

)[
φ ◦ Φ−1 ◦ Fdc(mc;ψ)

]−1
f1(mc;ψ)

= φ

(
gc − ρgp√

1− ρ2

)
fdc(mc)

φ(gc)
.

We can therefore rewrite the conditional posterior of the magnitude parameters (C.2.1)

in terms of the observed magnitudes transformed onto standard Gaussian margins.

These transformed magnitudes are denoted by {gi = Φ−1(Fdi(mi;ψ)) : i = 1, . . . , n}

and the conditional posterior of the magnitude parameter vector is:

πψ|Y,B,θ(ψ) =
∏
i:Bi=0

f0(mi;ψ0)
∏
i:Bi>0

{
φ

(
gi − ρgbi√

1− ρ2

)
f1(mi;ψ1)

φ(gi)

}
. (C.2.3)

Using this conditional posterior distribution, the magnitude parameters ψ may be up-

dated within the Gibbs sampling scheme used to fit the correlated ETAS model.

C.3 B conditional posterior, correlated magnitudes

In the ETAS model with correlated magnitudes, the elements of the branching vector

are no longer conditionally independent of one another given the ETAS and mag-

nitude parameters θ and ψ. This makes the conditional posterior distribution for

the full branching vector intractable. However, during the Metropolis-within-Gibbs

sampling used to fit the model, each element of B is updated separately. Updating

a single branching element Bi requires only the distribution of Bi|Y,B−i, θ, ψ (up to

proportionality) where B−i = {Bj ∈ B : j 6= i} is the branching vector B without its

ith element. Fortunately, the conditional posterior of each branching element given
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the rest of the branching vector, θ and ψ may be obtained in a closed form, which is

derived in this appendix.

As in Appendix C.2, we begin by simplifying the conditioning on subsequent events

{Yi+1, . . . , Yn}. We may drop dependence on subsequent events which are not directly

triggered by event i, but we must retain those ‘child’ events directly triggered by

event i. These child events are denoted by the set YCi = {Yj ∈ Y : j ∈ Ci} where

Ci = {j ∈ {i+ 1, . . . , n} : Bj = i}. This gives

Pr(Bi = bi|Y, θ, ψ,B−i) = Pr(Bi = bi|Hi, Yi, YCi , θ, ψ,B−i). (C.3.1)

Applying Bayes’ rule and and the law of total probability to bring focus onto the joint

conditional distribution of {Mi,MCi} we have that

Pr(Bi = bi|Y, θ, ψ,B−i) =

f(mi,mCi |Bi = bi,Hi, Ti, TCi , θ, ψ,B−i)Pr(Bi = bi|Hi, Ti, TCi , θ, ψ,B−i)∑i−1
j=0 f(mi,mCi |Bi = j,Hi, Ti, TCi , θ, ψ,B−i)Pr(Bi = j|Hi, Ti, TCi , θ, ψ,B−i)

. (C.3.2)

We will consider each of the numerator terms and the denominator of equation (C.3.2)

individually.

In the following, let φ(g) and Φ(g) be the standard Gaussian probability density and

cumulative distribution functions. Also let f0(m) and f1(m) be the marginal proba-

bility density functions of background and triggered magnitudes with corresponding

distribution functions F0(m) and F1(m). Finally, let g(i,j) = Φ−1(FI{j>0}(mi)) be

the magnitude of event i transformed onto standard Gaussian margins assuming the

corresponding branching element Bi = j, where 0 ≤ j < i ≤ n.
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The first numerator term in equation (C.3.2) may be written as

f(mi,mCi |Bi = bi,Hi, Ti, TCi , θ, ψ,B−i)

= f(mi,mCi |Bi = bi,Mbi , ψ,Bbi , BCi)

= f(mi|Bi = bi,Mbi , Bbi , ψ)
∏
c∈Ci

f(mc|Mi, Bi = bi, Bc = i, ψ)

=

[
φ

(
g(i,bi) − ρg(bi,bbi )√

1− ρ2

)
f1(mi)

φ
(
g(i,bi)

)]I(bi>0)

[f0(mi)]
I(bi=0)×

∏
c∈Ci

{
φ

(
g(c,i) − ρg(i,bi)√

1− ρ2

)
f1(mc)

φ
(
g(c,i)

)} . (C.3.3)

The second numerator term in equation (C.3.2) may be written as

Pr(Bi = bi|Hi, Ti, TCi , θ, ψ,B−i) = Pr(Bi = bi|Hi, Ti, θ) =
λbi(ti;Hi, θ)∑i−1
k=0 λk(ti;Ht, θ)

.

(C.3.4)

By similar arguments used to obtain (26) and (27), the denominator of equation

(C.3.2) is equal to:

i−1∑
j=0


[
φ

(
g(i,j) − ρg(j,bbj )√

1− ρ2

)
f1(mi)

φ
(
g(i,j)

)]I(j>0)

[f0(mi)]
I(j=0)×

∏
c∈Ci

{
φ

(
g(c,i) − ρg(i,j)√

1− ρ2

)
f1(mc)

φ
(
g(c,i)

)} λj(ti;Hi, θ)∑i−1
k=0 λk(ti;Hi, θ)

}
. (C.3.5)

The conditional posterior πBi|Y,B−i,θ,ψ(bi) may be obtained by combining expressions (C.3.3),

(C.3.4) and (C.3.5). When this is done, the summations indexed by k in (C.3.4) and

(C.3.5) cancel to give, up to proportionality:
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Pr(Bi = bi|Y, θ, ψ,B−i) ∝

[
φ

(
g(i,bi) − ρg(bi,bbi )√

1− ρ2

)
f1(mi)

φ
(
g(i,bi)

)]I(bi>0)

[f0(mi)]
I(bi=0)×

∏
c∈Ci

{
φ

(
g(c,i) − ρg(i,bi)√

1− ρ2

)
f1(mc)

φ
(
g(c,i)

)}λbi(ti;Hi, θ) . (C.3.6)

Using this conditional posterior distribution, the elements of the branching vector

B1, . . . , Bn may be sequentially updated within the Gibbs sampling scheme used

to fit the correlated ETAS model. As was noted in Appendix C.1, this requires

πBi|Y,θ,ψ,B−i(bi) only up to a constant of proportionality, and so the normalising denom-

inator term (C.3.6) (which for a given event i = 1, . . . , n is equal for all bi = 0, . . . , i−1)

need not be evaluated.

Note that when ρ = 0 the conditional posterior of each branching element C.3.6

simplifies to

Pr(Bi = bi|Y, θ, ψ,B−i) ∝ fI(bi>0)

(
mi;ψI(bi>0)

)∏
c∈Ci

{f1(mc)}λbi(ti;Hi, θ)

∝ fI(bi>0)

(
mi;ψI(bi>0)

)
λbi(ti;Hi, θ),

which is the corresponding expression for the dual magnitude model. As noted previ-

ously, this further simplifies to the standard ETAS model when the same distribution is

used for magnitudes of background and triggered events so that f0(m;ψ0) = f1(m;ψ1)

for all m.



Appendix D

Supplementary materials to

Chapter 7

D.1 Outline for combined covariate and aftershock

model

D.1.1 Connection to main text

In Chapter 7, one suggestion given for further work was to develop a combined model

for induced earthquakes and aftershocks inspired by the ETAS model. In this sug-

gested model, earthquakes do not induce further events by altering the point process

intensity function directly, but instead by altering the covariates (such as incremental

Coulomb stress) which feed into a parametric intensity model. In this appendix we

give some initial thoughts to motivate such a model and consider how a model of this

type might be constructed.

224
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D.1.2 Motivation

To describe clustering of observed events in the Groningen earthquake catalogue, the

epidemic type aftershock sequence (ETAS) model can be used. The intensity function

for this point process has two components: a background intensity that changes in

space and time based on gas extraction and additional intensity that is added around

each past event. The background intensity is currently modelled as a function of the

stress state of the reservoir. The additional intensity is allocated isotropically about

the past events, where the amount of added intensity is an increasing function of event

magnitude and a decreasing function of both distance and time since the event.

An issue with this model is that the occurrence of background and triggered events are

treated differently. The background event intensity is driven by the stress state of the

reservoir, but the additional aftershock intensity does not depend on the stress state

of the reservoir at all. Here we describe a model in which all seismic activity is driven

by the stress state of the reservoir. We propose to achieve this by having earthquakes

increase the stress state around previous events, and therefore indirectly increase the

point process intensity function, rather than increasing the intensity function around

past events directly.

In this appendix we explore a few simple forms for how the additional stress might

be allocated over the space and time around each event. We compare these sugges-

tions based on their implications for the intensity function. We then state the generic

likelihood function for the proposed model, without restricting to one choice of ad-

ditional strain allocation, and discuss its potential issues. When giving an outline of

this combined aftershock model, we consider a background intensity function where

earthquake count increases exponentially with cumulative stress c, which motivates
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an intensity model of the form:

λ1(x, t) = ċ(x, t)β0(1 + β1c(x, t)) exp(β1c(x, t)), (D.1.1)

where c(x, t) is the cumulative stress at location x and time t caused by gas extraction,

ċ(x, t) is the stress rate caused by gas extraction and (β0, β1) are model parameters to

be estimated. Where it clarifies exposition, the explicit dependence of the covariates

on location and time will be dropped, so that equation (D.1.1) is equivalent to:

λ1 = ċβ0(1 + β1c) exp(β1c). (D.1.2)

D.1.3 Suggested model

D.1.3.1 Description

We suggest that rather than previous earthquakes directly adding to the intensity

function, that they should instead add to the covariate that is driving seismic activity

in the region of the event. This will contribute to the intensity through the same

model as the stress caused by gas extraction, providing a model that is more cohesive

and coherent with the physical process that is thought to be driving earthquake

activity.

In the proposed model, the intensity function from equation (D.1.1) would be replaced

by:

λ2 = ṡ(x, t,Ht)β0(1 + β1s(x, t,Ht)) exp(β1s(x, t,Ht)) (D.1.3)

where s(x, t,Ht) is the total stress, which is a function of location (x), time (t)

and now also depends on previous earthquakes (Ht). The total stress s(x, t,Ht) is

composed of the stress caused by gas extraction c(x, t) and and the stress caused by

previous earthquakes σ(x, t,Ht):

s(x, t,Ht) = c(x, t) + σ(x, t,Ht). (D.1.4)
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The total stress rate ṡ(x, t,Ht) is the sum of the stress rates from extraction and

previous earthquakes:

ṡ(x, t,Ht) = ċ(x, t) + σ̇(x, t,Ht). (D.1.5)

Figures D.1.1 and D.1.2 graphically present the differences in dependence structure

between the current ETAS model and the proposed combined model. In the ETAS

model, induced events and aftershocks form separate model components, while under

the combined model these are modelled together.

Figure D.1.1: Schematic of ETAS model inputs, component models, and outputs.

Figure D.1.2: Schematic of combined model inputs, component models, and outputs.
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D.1.3.2 Modelling assumptions

In Sections D.1.6 and D.1.7 we will propose functional forms for the total addi-

tional stress at location x and time t caused by all previous earthquakes earthquake

σ(x, t,Ht). We then discuss the implications of these forms on the point process

intensity function. In doing so, we will make the following assumptions:

1. The additional stress from all previous earthquakes is small relative to the cu-

mulative stress caused by gas extraction, σ(x, t,Ht)� c(x, t). This means that

the cumulative total stress is approximated well by the cumulative stress from

gas extraction:

s(x, t,Ht) ≈ c(x, t). (D.1.6)

2. The total additional stress is the sum of contributions from all of the previous

earthquakes. The size of the contribution from the ith event should depend the

proximity of its space-time location (xi, ti), as well as that event’s magnitude

mi. The form of this dependence is common to all earthquakes so that

σ(x, t,Ht) =
∑
i:ti<t

f(x− xi, t− ti,mi) (D.1.7)

for some function f : R2×R+×[Mc,Mmax]→ R+, where the Mc is the magnitude

of completion of the catalogue and Mmax is the upper end point of the magnitude

distribution.

3. The effects of distance, time and magnitude on additional stress are independent,

so that

f(x, t,m) = σx(x)σt(t)σm(m). (D.1.8)

where σx : R2 → R+, σt : R+ → R+ and σm : [Mc,Mmax]→ R+.
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D.1.3.3 Intensity function

Under the assumptions D.1.6 to D.1.8, we may rewrite the intensity function for the

proposed model in equation (D.1.3) as:

λ2 = (ċ+ σ̇)β0(1 + β1(c+ σ)) exp(β1(c+ σ))

≈ (ċ+ σ̇)β0(1 + β1c) exp(β1c)

= ċβ0(1 + β1c) exp(β1c) + σ̇β0(1 + β1c) exp(β1c)

= ċβ0(1 + β1c) exp(β1c)+

β0(1 + β1c) exp(β1c)
∑
i:ti<t

σx(x− xi)σm(m−mi)σ̇t(t− ti) . (D.1.9)

The similarities differences between the proposed and ETAS models are apparent

from inspection of this intensity function. As in the ETAS model, we have a baseline

intensity driven by gas extraction (the first term in equation (D.1.9)) and additional

contributions to the intensity function from previous events (the second term in equa-

tion (D.1.9)). However, in the combined aftershock model, the allocation of additional

intensity through space is controlled by the amount of added stress at that distance

and the allocation of additional intensity through time is controlled by the added

stress rate.

A second difference from the ETAS model is that, under the combined aftershock

model, additional intensity contribution from an earthquake is dependent on the cu-

mulative stress in the area surrounding (and time period following) that event. This

means that the expected number of aftershocks produced by an earthquake of known

magnitude will be greater if that event occurs occurs in a region or at a time where

the cumulative stress is higher. This follows from the logic that in areas of higher

stress a greater number of faults are close to slipping and so a given increase in stress

(whether caused by gas extraction or other earthquakes should result in a greater num-

ber of induced earthquakes in these areas, as compared to areas with lower stresses.
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A model that includes this property is highly desirable, because it is leads to a co-

herent description of the physical process which triggers both background events and

aftershocks.

An additional benefit of the combined model form is that it leads to low aftershock

productivity in regions or time periods with low cumulative stresses. This may help

to mitigate against window- and edge-effects. This is because additional aftershock

intensity will be better contained within the spatial extent of the gas field if the

cumulative stresses in the area surrounding the field are comparatively low.

D.1.4 Likelihood function

In order to fit the proposed model, whether by maximum likelihood or Bayesian in-

ference, the likelihood of the parameters of the model will have to be repeatedly

calculated. Since the proposed model is still a Hawkes process, the overall form of

the likelihood function is similar to that of the ETAS model. Let the parameters

determining σx, σt and σm be represented by the vector ψ, and let θ = (β0, β1,ψ) be

the vector of all parameters in the proposed model. For a catalogue of earthquakes

Y = {(xi, ti,mi) : i = 1, . . . , n)} occurring in the spatial region A and time period

[0, T ], which we call the observation window W = A × [0, T ], and given the extrac-

tion related stresses on this window c, then the likelihood function for the combined

aftershock model is:

`(θ|x, t,m, c) =
n∑
i=1

log (λ2(xi, ti|Hti ,θ, c))−
∫
A

∫ T

0

λ2(ξ, τ |Hτ ,θ, c)dτdξ. (D.1.10)

The double integral in this expression can be decomposed into two double integrals,

respectively describing the expected event count from gas extraction and aftershocks.
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Specifically,

Λ(W ) =

∫
A

∫ T

0

λ2(ξ, τ |Hτ ,θ, c)dτdξ

=

∫
A

∫ T

0

ċ(ξ, τ)β0(1 + β1c(ξ, τ)) exp(β1c(ξ, τ))dτdξ +∫
A

∫ T

0

β0(1 + β1c(ξ, τ)) exp(β1c(ξ, τ))
∑
i:ti<τ

σx(ξ − xi)σ̇t(τ − ti)σm(mi)dτdξ

=

∫
A

β0 [c(ξ, T ) exp(β1c(ξ, T ))− c(ξ, 0) exp(β1c(ξ, 0))] dξ +∫
A

∫ T

0

β0(1 + β1c(ξ, τ)) exp(β1c(ξ, τ))
∑
i:ti<τ

σx(ξ − xi)σ̇t(τ − ti)σm(mi)dτdξ

(D.1.11)

The first of the double integrals has (by design) a closed form in time, but still requires

numerical integration over space. The second double integral must be evaluated nu-

merically over both time and space. If all parameters are updated together then this

integration will have to be performed at each evaluation of the log-likelihood, which

will be computationally very demanding.

If parameters are updated sequentially as part of an MCMC scheme then by storing

the value of integrals that are unchanged by the update we can reduce the compu-

tational burden of evaluating the log-likelihood. To clarify this point we can rewrite

equation (D.1.11) as

Λ(W ) = β0

∫
A

[c(ξ, T ) exp(β1c(ξ, T ))− c(ξ, 0) exp(β1c(ξ, 0))] dξ +

β0

n∑
i=1

{
σm(mi)

∫
A

σx(ξ − xi)
∫ T

ti

(1 + β1c(ξ, τ)) exp(β1c(ξ, τ))σ̇t(τ)dτdξ

}
.

(D.1.12)

In this form we can see that in order to update β0 or the parameters of σm, no

additional numerical integration is required. When updating β1 or the parameters of

σx, then numerical integration is only required in two dimensions. It is only when
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updating the parameters of σt that numerical integration over space and time will

be required. Exploiting this structure might lead to significant reductions to the

computational burden of evaluating the combined model.

D.1.5 Condition for sub-criticality

As with the ETAS model, the proposed model can be viewed as a branching process.

In order for this process to be sub-critical, the expected number of aftershocks per

triggering event must be strictly less than one. Let g(m) denote a probability density

function that represents the distribution of earthquake magnitudes. We will assume

here that this distribution is independent of the stress state at the location of the event.

This simplifying assumption can later be relaxed if the combined model improves upon

the ETAS model with the same assumptions.

Conditional on the location and time of the triggering event, the expected number of

aftershocks from a triggering event is:

E [Nafter|x, t] =

=

∫ ∞
0

∫
A

∫ T

0

β0(1 + β1c(ξ, τ)) exp(β1c(ξ, τ))σx(ξ − x)σ̇t(τ − t)σm(m)g(m)dτdξdm

= E [σm(M)]

∫
A

∫ T

0

β0(1 + β1c(ξ, τ)) exp(β1c(ξ, τ))σx(ξ − x)σ̇t(τ − t)dτdξ.

To get the unconditional expectation, we would need to integrate the product of this

conditional expectation and the probability of an event occurring at each point over

the observation window:

E [Nafter] =

∫
A

∫ T

0

E [Nafter|ξ, τ ]
λ2(ξ, τ)

Λ(W )
dτdξ. (D.1.13)

To ensure sub-criticality of the branching process, it is required that E [Nafter] < 1.

This condition that is much more difficult to verify than that for the ETAS model,

which can be found by a similar derivation and is stated in Žugec (2019).
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D.1.6 Parametric forms for the temporal change in stress

Figure D.1.3 shows six possibilities for how additional stress might be allocated over

time following an earthquake. Each black curve shows a suggested additional stress

allocation, and the additional stress rate associated with each of these is shown in

red. It is the red curves that show the additional stress rate which will impact the

intensity function, and which should be the focus here.

The first option, in Figure D.1.3a, is an immediate step change in stress. This is

likely not reasonable because it implies a delta function peak in the stress rate, adding

an infinite peak to the intensity at the instant of the triggering event but leaving it

otherwise unchanged. The second option, in Figure D.1.3b is a more gradual transition

to the higher stress state. The stress is initially loaded slowly before reaching some

maximum loading rate, after which the loading rate decreases as the final stress state

is approached. This leads to the additional intensity peaking at some time after

the event and then diminishing again so that the intensity is not effected at long lead

times. Figure D.1.3c shows a similar change in the stress state, an increase to plateau,

but with a stress rate that is initially high and then reduces as the stress reaches its

maximum. This option provides the closest analogue to the ETAS model.

Options four through to six, in Figures D.1.3d - D.1.3f, all suppose that at very long

times after an event, the stress state is unchanged by the occurrence of the event.

This causes these models to have a common deficiency in that they all require the

stress state to decrease, which requires the stress rate to become negative. This has

the effect of reducing the intensity function, possibly after some delay. This does

not match with the idea that earthquakes should cause more seismic activity in the

future, not less.

It seems that the additional stress function shown in Figure D.1.3c is the one that
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(a) (b)

(c) (d)

(e) (f)

Figure D.1.3: Proposed forms for additional stress (black) and stress rate (red) as

functions of time.
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is most similar to current practice, but that Figure D.1.3b may also be a feasible

option. One possible parameterisation of this function in figure D.1.3c would take the

stress rate to be the normalised upper-half of a Gaussian distribution, and the stress

function be its integral. If φ(·) is the density function of standard Gaussian random

variable and Φ(·) is its cumulative distribution function, then the additional stress and

stress rate functions are controlled by one parameter ς and are stated below.

σ̇t(t) = 2φ

(
t

ς

)
for t ≥ 0 and ς > 0. (D.1.14)

σt(t) = 2ς

(
Φ

(
t

ς

)
− 0.5

)
for t ≥ 0 and ς > 0. (D.1.15)

Following feedback from Shell on these model forms, it was suggested that if additional

stress rate varied according to an inverse power law in time, then this would be

consistent with the rate and state friction model. Motivated by this and the parallels

that this form gives to the current modelling approach, we might process by a more

flexible version of the inverse power law model. For example could describe the

additional stress rate using a generalised Pareto density function and the additional

stress by its cumulative density function.

D.1.7 Parametric forms for the spatial change in stress

In the previous section, we considered several functional forms for how additional

stress might be allocated through time. In this section we will consider how additional

stress might be allocated over space. As a fist step we will consider the additional

stress to be isotropic, so that it is a function of distance from a point source, the

location of a previous event. Figure D.1.4 shows several potential functional forms

for additional stress as a function of distance from the triggering earthquake. Over

space, unlike for time, it is the amount of additional stress that impacts the intensity
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function not the stress rate.

In the first function, shown in Figure D.1.4a, the stress is increased equally at all

distances. In the second function, shown in Figure D.1.4b, the stress is increased

equally but only within a fixed radius. The first of these does not seem sensible,

because we would expect that the additional stress should be negligible at very large

distances. The second seems more reasonable but we would also expect that additional

stress to be a smooth, decreasing function of distance. The second function does

not satisfy either of these, as it is piece-wise constant and contains a discontinuity.

Figures D.1.4c and D.1.4d present functional forms for the additional stress which

lead to intensity responses that are similar to the ETAS model. In these functions,

additional stress is a continuous function of distance and is strictly decreasing when the

additional stress is non-zero. At very large distances these functions respectively allow

the additional stress to either be very small or zero. Both of these functional forms

would be possible if the additional stress were allocated over space proportional to a

generalised Pareto density. The functions presented in Figures D.1.4e and D.1.4f have

additional stress peak some distance away from the previous event and then deplete as

distance increases beyond this value. At very short distances these models respectively

leave the stress unchanged or reduce stress. A justification for the decentralised

additional stress might be that earthquakes releases some local stress which is either

expressed in the earthquake or passed on to neighbouring faults.

Of these options, the generalised Pareto form seems like the least controversial choice

as it is the most similar in structure to the currently used ETAS model. Following

discussions with Shell, it was advised that a heavy-tailed generalised-Pareto allocation

of the additional stress over space is consistent with the idea of previous events causing

elastic dislocations within the reservoir. The generalised Pareto form seems to provide

a sensible model for initial development of a combined aftershock model.
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(a) (b)

(c) (d)

(e) (f)

Figure D.1.4: Proposed forms for additional stress as a function of distance x.
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D.1.8 Parametric forms for the effect of magnitude on addi-

tional stress

In the previous sections, we considered how additional stress is added through space

and time. Another question of interest is how the magnitude of an earthquake im-

pacts the total amount of additional stress that it causes. This is the purpose of the

function σm. Since both σx and σt are density functions, these both integrate to one

over their respective supports and the total additional stress from an earthquake is

completely controlled by σm. Figure D.1.5 shows six suggestions for the form of this

function.

If small magnitude earthquakes are not thought to add to the local stress state then

there may be a threshold involved in the relationship; this is included in models shown

in red in Figure D.1.5. This type of threshold is assumed in the ETAS model, where

the threshold is chosen to be equal to the magnitude of completion but it could equally

be chosen as a greater magnitude. Indeed, this will be the case in the latter portion of

the Groningen catalogue since the magnitude of completion has been reduced. Above

this chosen threshold level, increasing magnitude could change the stress state in a

number of ways. Magnitude might have no effect as in Figure D.1.5a, a linear effect

as in Figure D.1.5b, or exponential effect on the total additional stress as in Figure

D.1.5c.

The exponential increase seems most sensible, since magnitudes are measured on a

logarithmic scale. Since magnitude is a measure of the energy released by an earth-

quake and stress has units Nm−2 = Jm−3 it seems reasonable that a ten-fold increase

in the energy released would lead to a ten-fold increase in additional stress. As with

the other model components, using a generalised Pareto form here rather than an

exponential would allow for more flexibility, in particular it can account for the pos-
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sibility of a sub-exponential relationship, which may arise if not all energy that is

released is propagated as additional stress.

A similar energy based argument could be used in support support an inverse power-

law style of decay of additional stress with distance. If this set amount of stress is

dissipated radially, then it would seem reasonable that it decrease in an inverse-square

or inverse-cube relation to distance. Again, this can be generalised by using an inverse

power-law, which would allow the power to be selected as part of model fitting, or

using a generalised Pareto form which allows more localised allocation.

Following discussions with Shell, we were advised that an exponentially increasing

form for σm is equivalent to the constant stress drop model for slipping faults. For

this reason and the similarities to the ETAS model it would be prudent to initial

develop a model using an exponential form. At a later point the need for a more

flexible model could be investigated.

D.1.9 Summary

This appendix has introduced some initial ideas about the form and implementa-

tion of a ETAS-style model which provides a coherent treatment for the source of

both induced earthquakes and their aftershocks. While the combined modelling ap-

proach for all earthquakes is conceptually appealing, the resulting model is likely to

presents many of the same challenges as direct estimation of the ETAS model: highly

correlated parameters, issues with numerical optimisation routines, and a likelihood

function that is computationally expensive to evaluate. Additionally, this combined

aftershock model requires extensive use of numerical integration, which further in-

creases computational burden, and the model is not amenable to the conditional

inference approaches which facilitate estimation of the ETAS model.
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(a) (b)

(c)

Figure D.1.5: Proposed forms for the relationship between magnitude and total ad-

ditional stress. Additional stress added by events above the magnitude of completion

Mc (black) or some higher magnitude u (red).
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It is for the reasons listed above that we have chosen not to develop this model

further, instead to focus on extending and improving inference for the ETAS model

in Chapter 6 of this thesis. We present these initial ideas here in the hope that they

might be informative to anyone aiming to develop a similar model in the future.
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