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Modeling the Device Behavior of Biological and Synthetic Nanopores with Reduced Models
Reprinted from: Entropy 2020, 22, 1259, doi:10.3390/e22111259 . . . . . . . . . . . . . . . . . . . . 67

Michael A. Wilson and Andrew Pohorille
Electrophysiological Properties from Computations at a Single Voltage: Testing Theory with
Stochastic Simulations
Reprinted from: Entropy 2021, 23, 571, doi:10.3390/e23050571 . . . . . . . . . . . . . . . . . . . . . 93

Robert S. Eisenberg
Maxwell Equations without a Polarization Field, Using a Paradigm from Biophysics
Reprinted from: Entropy 2021, 23, 172, doi:10.3390/e23020172 . . . . . . . . . . . . . . . . . . . . . 113

Salvatore M. Cosseddu, Eunju Julia Choe and Igor A. Khovanov
Unraveling of a Strongly Correlated Dynamical Network of Residues Controlling the
Permeation of Potassium in KcsA Ion Channel
Reprinted from: Entropy 2021, 23, 72, doi:10.3390/e23010072 . . . . . . . . . . . . . . . . . . . . . 135

Subin Sahu and Michael Zwolak
Diffusion Limitations and Translocation Barriers in Atomically Thin Biomimetic Pores
Reprinted from: Entropy 2020, 22, 1326, doi:10.3390/e22111326 . . . . . . . . . . . . . . . . . . . . 159

Tzyy-Leng Horng
Review and Modification of Entropy Modeling for Steric Effects in the Poisson-Boltzmann
Equation
Reprinted from: Entropy 2020, 22, 632, doi:10.3390/e22060632 . . . . . . . . . . . . . . . . . . . . . 185

Mitja Drab, Ekaterina Gongadze, Veronika Kralj-Iglič and Aleš Iglič
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Preface to ”Physics of Ionic Conduction in Narrow
Biological and Artificial Channels”

This is a book about ion channels. It has been written mostly by physical scientists and

mathematicians, even though the most widespread and important manifestation of ion channels is

in biology, where they are essential to life in all its forms. How do non-biologists get involved in such

investigations? Everyone will have their own particular story but, for ourselves, it was the heady

combination of scientific curiosity, a wish to contribute to the fundamental understanding of natural

phenomena that clearly have crucially important applications, and the realisation that some of our

physics knowledge and expertise might be relevant.

The key properties underlying ion channel function are those of conductivity and selectivity –the

ability to select between different kinds of ions, allowing the favoured species to pass easily while

blocking others. It is now appreciated that an understanding of this selective conduction requires

physics, and that the physics of biological ion channels has a great deal in common with that of

artificial nanopores. We came to realise that, in each case, there are intriguing analogies with the

physics of electrons in quantum dots. Although the ability to predict the function of a channel from

its structure remains elusive, recent advances have brought us tantalisingly close to a fundamental

theory of ionic permeation, based on the statistical physics of ions within the channel.

The book provides a collection of cutting-edge papers on ionic permeation through narrow

water-filled channels, both biological and artificial, reprinted from a recent Special Issue of Entropy.

The invited authors were selected as being leading scientists in the field with whose work we

were already familiar. In some cases they are our past or present collaborators, or collaborators

of collaborators, in what is quite a specialised scientific area. The book describes the statistical

physics of the permeation process, mathematical aspects, modelling by molecular dynamics, and

experiments. The time is ripe for bringing together these mutually complementary approaches. We

hope and believe that they will facilitate major breakthroughs in understanding, enabling the design

of nanopores to meet particular technological requirements as well as improvements in drug design.

August 2021

Peter V E McClintock, Dmitry G. Luchinsky

Editors
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“There is plenty of room at the bottom”

Richard Feynman

The permeation of ions through narrow water-filled channels is essential to life and of
rapidly growing importance in technology. Reaching an understanding of the mechanisms
underlying the permeation process requires an interdisciplinary approach, where ideas
drawn from physics are of particular importance and have brought encouraging progress
in recent years. This introduction sets into context the several ground-breaking papers
presented in the Entropy Special Issue on “The Physics of Ionic Conduction in Narrow
Biological and Artificial Channels”.

Understanding, predicting and optimising the ionic selective transport properties of
nanopores remains a critical challenge, both to nanotechnology and to biophysics. The last
few decades have witnessed substantial progress in the analysis of such transport based on
the use of a variety of experimental, numerical, and theoretical methods. Indeed, it would
require several books to do full justice to the current state of the art in the field.

In some cases, the crystal structures (e.g., those of potassium, sodium, and calcium
voltage-gated channels) have been discovered. This has provided invaluable insight,
but has also thrown into sharp relief the structure–function problem: how to predict the
conduction/selectivity properties of a known structure; or, conversely, how to design a
structure with the required properties. A reliable solution to the problem promises to open
new horizons in terms of pharmaceutical applications and the improved fabrication of
solid-state nanopores for the sensing of molecules, desalination, DNA sequencing, and the
other developments that together are marking a new era in nanotechnology.

Novel numerical methods and computer hardware now enable microsecond-long
simulations of systems with hundreds thousands of atoms and the exploration of polar-
isable and quantum mechanical force fields. They provide unprecedented capabilities
for reaching an understanding of experimental data and for the development of novel
devices and techniques. Theoretical advances not only underlie many developments in
molecular dynamics, including enhanced sampling and advanced force fields, but are also
opening up new research frontiers and shedding fresh light on a number of longstand-
ing problems such as binding probabilities, knock-on mechanisms of conduction, gating,
electric double-layers, and local dielectric permittivity, just to mention a few.

It is now appreciated that selective conduction in biological ion channels has a great
deal in common with that in artificial nanopores. In each case, there are intriguing analogies
with the physics of quantum dots leading to the development of the theory of ionic
Coulomb blockade. We dedicate this Issue to the memory of our late colleague, Dr Igor
Kh. Kaufman, who developed an elegant theory of ionic Coulomb blockade in biological
ion channels and suggested a simple classification of voltage-gated channels based on the
charge of the selectivity filter.

At the same time, it is known that specific features of ionic conduction (e.g., dehydration,
ion-specific binding affinities, protonation, the multicomponent and competitive nature

Entropy 2021, 23, 644. https://doi.org/10.3390/e23060644 https://www.mdpi.com/journal/entropy
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of ion dynamics, the complex and adaptive structure of the ionic pathway, long-range
interaction, local variation of the effective dielectric constant, highly correlated motion of
more than one ion within a narrow channel, electric double layers, and water layering at the
channel entrances) add many layers of complexity to the fundamental physics analogies.

This Special Issue brings together original high-quality papers on ionic permeation
through narrow water-filled channels, both biological and artificial, from some of the
best researchers in the field. It includes papers on the statistical physics of the process,
on molecular dynamics and Brownian dynamics simulations, and on relevant experiments.
Although any selection of papers can only be a narrow slice of the field, our aim is to
emphasise the complexity and mutual interdependence of recent multifaceted progress in
understanding the physics of ion channels and nanopores. The time is ripe for bringing
together these complementary approaches, and we anticipate that they will facilitate major
breakthroughs, enabling the design of nanopores to meet particular technological require-
ments as well as improvements in drug design and perhaps in personalised medicine.

Importantly, the Poisson–Nernst–Planck (PNP) and kinetic models remain among the
principal tools for predicting current through nanopores, both in biology and nanotechnol-
ogy. An example of the classical application of the PNP model to the analysis of reversal
potentials and zero-current fluxes, in a system with a fixed profile of permanent charges
and two mobile ion species, is provided by the paper by Mofidi et al. [1]. Rigorous ana-
lytic and numerical results establish the dependence of the electric and chemical potential
profiles on voltage and permanent charge.

At the same time, it is well known that classical Poisson–Boltzmann (PB) and PNP the-
ories do not take account of short-range ion–ion, ion–wall, or ion–water interactions in ion
channels. Efforts to eliminate or ameliorate the effects of this deficiency of the continuum
models have a long history. This stream of research is represented by the interesting paper
of J.-L. Liu and R.S. Eisenberg [2], featuring the development of a molecular mean-field
theory—a fourth-order Poisson–Nernst–Planck–Bikerman theory for modelling ionic and
water flows in biological ion channels. The theory treats ions and water molecules, in
channels of any volume or shape, with interstitial voids, polarisation of water, and ion–ion
and ion–water correlations. It can be applied to electrolyte solutions in the nanopores of
batteries and fuel cells.

The modelling of ionic currents with reduced models is extensively analysed by
Boda et al. [3]. They show that channels are especially amenable to reduced modelling
because their functions and the relationships between input parameters (e.g., applied volt-
age, bath concentrations) and output parameters (e.g., current, rectification, selectivity) are
well-defined, allowing one to focus on the physics of input–output relationships rather
than on the atomic-scale physics inside the pore. Based on decades of research, the authors
propose four general rules for constructing good reduced models of ion channels and
nanopores, focusing on the physics of input–output relationships rather than on atomic
structure. The proposed rules relate to the importance of (1) the axial concentration profiles,
(2) the pore charges, (3) choosing the right explicit degrees of freedom, and (4) creating
the proper response functions. Examples demonstrating the application of these rules
are provided. Further improvements in predicting the capabilities of reduced models can
be achieved by incorporating into the solution of the one-dimensional electro-diffusion
model the potential of the mean force obtained from MD simulations. The performance
of two such methods is examined by A. Pohorille and M. A. Wilson1 [4] using stochastic
simulations. These methods require neither knowledge of the diffusivity nor simulations
at multiple voltages, which greatly reduces the computational effort needed to probe the
electrophysiology of ion channels. They can be used to determine the free energy profiles
from either forward or backward one-sided properties of ions in the channel, such as
ion fluxes, density profiles, committor probabilities, or from their two-sided combination.
In this work, large sets of stochastic trajectories were generated, individually designed to
mimic the molecular dynamics crossing statistics of models for channels of trichotoxin,
p7 from hepatitis C and a bacterial homolog of the pentameric ligand-gated ion channel
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(LGIC). The authors found that the free energy profiles and the current–voltage curves
obtained from the generated trajectories reproduce with good accuracy results obtained in
molecular dynamics simulations.

The charged particles of which matter is composed move when an external electric
field is applied, and their changed distribution is traditionally described in terms of a
polarisation field. For insulators, it is usually possible to define a relative permittivity
(dielectric constant) to quantify the material’s responsiveness to the electric field. In ion
channels, for example, the protein walls and the water are usually treated as dielectric
continua with relative permittivities of around 2 and 80, respectively. This approach can be
very helpful and revealing, but it involves greater approximation than spatial averaging
because, as R.S. Eisenberg points out [5], the material’s response to the electric field may be
both nonlinear and time-dependent. In order to accommodate such phenomena, while si-
multaneously challenging physicists to review their knowledge of electromagnetism in
biological dielectrics, he proposes and discusses an apparently minor change in Maxwell’s
first equation. It produces a major consequence when joined with Maxwell’s second equa-
tion in that conservation of total current (including the displacement current) then emerges
as a general principle. In one-dimensional systems like ion channels or electronic circuit
components, the consequences are profound: there, total currents are equal at all locations
at any given time, so the space variable does not appear in the description of total current.

There follow two papers reporting MD simulations of ion currents in biological and
artificial channels. First, S.M. Cosseddu et al. [6] present an extended MD-based analysis
of ion motion within the KcsA channel. They reveal complicated patterns of potassium
currents that are governed by the structural variability of the selectivity filter. They show
that ion motion involves the complex dynamics of a strongly correlated network of residues
and water molecules. Intriguing features of self-organisation and readjustment of the
network are analysed statistically and discussed in detail.

Secondly, we note that ionic transport in nano- to subnano-scale pores is highly depen-
dent on translocation barriers and potential wells. These features in the free-energy land-
scape are primarily the result of ion dehydration and electrostatic interactions. For pores in
atomically thin membranes, the ionic dynamics both inside and outside the geometrical
volume of the pore can be critical in determining its transport properties. S. Sahu and
M. Zwolak [7] examine regimes of transport that are highly sensitive to pore size due to
the interplay of dehydration and interaction with pore charge, where picometer changes in
the size (e.g., due to a minute strain), can lead to a large change in conductance.

We have already remarked upon the crucial importance of water, the electric double-
layer, water-layering, polarisation, and the resultant changes of local dielectric permittivity
at the entrances of nanopores. Another approach to this problem is illustrated in the paper
by T.-L. Horng [8]. Starting from the classical Helmholtz free energy functional for an
electrolyte, including the solvation energies for anions and cations, the author follows the
Bikerman modification by adding an entropy term to the functional, and he then extends
the Bikerman approach by introducing ion-size-specific corrections to the theory.

The approach based on density functional theory (DFT), which works well near
charged walls and in bulk electrolytes, can be extended to the analysis of the orientational
ordering of water dipoles in membrane nanotubes. M. Drab et al. [9] analyse water ordering
in nanotubes by minimising the corresponding Helmholtz free energy functional, also
including the orientational entropy contribution of water dipoles, and deriving the modi-
fied Langevin–Poisson–Boltzmann (MLPB) model of the electric double-layer. The MLPB
equation is solved in cylindrical coordinates to determine the spatial dependences of the
electric potential, relative permittivity, and average orientations of water dipoles within
charged tubes of different radii. Results show that for tubes of large radius, the macroscopic
(net) volume charge density of co-ions and counterions is zero on the geometrical axis.
This is attributed to effective electrolyte charge screening in the vicinity of the charged
inner surface of the tube. For tubes of small radius, the screening region extends into the

3



Entropy 2021, 23, 644

whole inner space of the tube, leading to non-zero net volume charge density and non-zero
orientational ordering of water dipoles near the axis.

The DFT results mentioned above are examples of statistical physics yielding insight
into the function of ion channels and nanopores. This theme is continued and extended,
first by Gibby et al. [10], who apply their recent derivation of an effective grand canonical
ensemble and linear response theory of ion channels to analyse the conduction of the
bacterial NaChBac selectivity filter. The authors compare their theory to experimental
current–voltage and current–concentration dependences for a single channel and for a
whole cell. They find that the statistical theory in the linear response regime correctly
predicts many important properties of the NaChBac filter, including the concentration
dependence of the reversal potential and the current–voltage relations. They also show
that the theoretical results are consistent with MD simulations of the filter population at
each binding site.

Secondly, the analysis of quantum mechanical effects in ion channels is another
important direction, supported by the extended capabilities of modern quantum mechan-
ics/molecular mechanics simulations. In this respect, interesting perspectives are opened
by mapping the statistical mechanics of ion channels onto an effective quantum mechan-
ics. Such investigations are reviewed by T. Gulden and A. Kamenev [11], who study
the dynamics and thermodynamics of ion channels, considered as effective 1D Coulomb
systems whose statistical mechanics is dominated by entropic effects that may be taken
accurately into account by mapping onto an effective quantum mechanics. The corre-
sponding semiclassical calculations for non-Hermitian Hamiltonians are conducted by
applying tools from algebraic topology. The relationship of the solutions to the thermody-
namics and correlation functions of multivalent solutions within long water-filled channels
is discussed.

The actual properties of real nanopores are, of course, discovered by experiment,
which has been leading the research in this area, especially since the discovery of the
structure of the KcsA channel. In our Special Issue, experimental insight is provided by
two of the leading research groups in the field.

O. Fedorenko et al. [12] discuss the properties of voltage-gated sodium channels
(Navs). These channels play fundamental roles in eukaryotes but lack structural resolution,
which renders understanding their structure–function relationships a challenging prob-
lem. Bacterial Navs, representing simplified homologues of their eukaryotic counterparts,
have enabled both structural resolution and electrophysiological characterisation. However,
their homotetrameric structure leads to an EEEE locus in the SF that is at odds with the
DEKA locus of eukaryotic Navs. Indeed, prokaryotic Navs have long been considered more
similar to eukaryotic calcium channels (Cavs) than to Navs, leading to the formulation
of the “EEEE paradox”. This was arguably solved by Kaufman et al. by the realisation
that there is a critical D residue close to the EEEE ring of eukaryotic Cavs generating an
effective EEEED locus of charge −5e. Fedorenko et al. present a follow-up of a previous
study, aimed at mimicking the SF of eukaryotic Navs by engineering radial asymmetry into
the SFs of bacterial channels. This goal was pursued with two approaches: co-expression
of different monomers of the NaChBac bacterial channel in mammalian cells to induce the
random assembly of heterotetramers, and the concatenation of four bacterial monomers to
form a concatemer that can be targeted by mutagenesis on specific strands of the SF, thereby
introducing asymmetry. Patch-clamp measurements and MD simulations showed that
an additional gating charge in the SF leads to a significant increase of Na+ and a modest
increase in Ca2+ conductance in the NavMs concatemer, in agreement with the behaviour
of the population of random heterotetramers with the highest proportion of channels with
charge −5e. This study confirms that, although the charge at the SF is important, it is not
the only factor affecting conduction and selectivity. It also offers new tools extending the
use of bacterial channels as models of eukaryotic ones.

The work by A. Chernev et al. [13] reviews the most promising approaches to the
fabrication of artificial nanofluidic devices capable of reproducing the properties of single
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ion channels. It is shown that modern technologies have great potential in allowing one to
test various theoretical models of ion channels. The review aims to highlight ionic Coulomb
blockade—the phenomenon which (see above) can often be a key player in ion channel
selectivity. The authors discuss the most critical obstacles associated with these studies,
and suggest possible solutions to further advance the field.

The rapid interdisciplinary advances in nanotechnology can be characterised as the
beginning of a new industrial revolution, where novel devices and materials are fabricated
and controlled on the atomic level. Ion- and water-selective nanopores represent an
important frontier in these advances.

The selected papers in this Special Issue provide both a snapshot of the present as
well as strong indications of how the subject is likely to evolve over the coming years.
We may, for example, anticipate major developments in the theory at a fundamental level,
based on statistical mechanics and quantum mechanics; substantial improvements in
“intermediate-level” theories like PNP, modified CKE, and DFT which promise quantitative
predictions of the properties of real channels; as well as much faster and more capacious
MD modelling of larger ensembles of atoms on longer timescales, more accurate due to use
of polarisable force fields and QM/MM, encompassing gating and permeation events at
a statistically useful level. This progress is expected to lead to the first-principles design
and fabrication of structures optimised for many important applications including ion
pumps, energy harvesting, and field-effect ionic transistors as well as those mentioned at
the beginning. Many of these will require theory and experiment on small scales where
disciplinary distinctions have mostly faded away, but where physics predominates.

An additional impulse propelling these developments forward is expected due to the
fusion of physics-based approaches with artificial intelligence. The latter has already been
proven to be very useful for the accelerated learning of the force fields in MD, as well as for
the reconstruction of the potentials of the mean force and neural-network-based discovery
of partial differential equations. Remarkably, it also underlies a recent breakthrough in the
solution of the protein-folding problem.
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Abstract: In this work, the dependence of reversal potentials and zero-current fluxes on diffusion
coefficients are examined for ionic flows through membrane channels. The study is conducted for
the setup of a simple structure defined by the profile of permanent charges with two mobile ion
species, one positively charged (cation) and one negatively charged (anion). Numerical observations
are obtained from analytical results established using geometric singular perturbation analysis of
classical Poisson–Nernst–Planck models. For 1:1 ionic mixtures with arbitrary diffusion constants,
Mofidi and Liu (arXiv:1909.01192) conducted a rigorous mathematical analysis and derived an
equation for reversal potentials. We summarize and extend these results with numerical observations
for biological relevant situations. The numerical investigations on profiles of the electrochemical
potentials, ion concentrations, and electrical potential across ion channels are also presented for
the zero-current case. Moreover, the dependence of current and fluxes on voltages and permanent
charges is investigated. In the opinion of the authors, many results in the paper are not intuitive,
and it is difficult, if not impossible, to reveal all cases without investigations of this type.

Keywords: reversal potential; effects of diffusion coefficients; permanent charge

1. Introduction

Ion channels are proteins found in cell membranes that create openings in the membrane to
allow cells to communicate with each other and with the outside to transform signals and to conduct
tasks together [1,2]. They have an aqueous pore that becomes accessible to ions after a change in the
protein structure that makes ion channels open. Ion channels permit the selective passage of charged
ions formed from dissolved salts, including sodium, potassium, calcium, and chloride ions that carry
electrical current in and out of the cell.

To unravel how ion channels operate, one needs to understand the physical structure of ion
channels, which is defined by the channel shape and the spatial distribution of permanent and
polarization charge. The shape of a typical ion channel is often approximated as a cylindrical-like
domain with a non-uniform cross-sectional area. Within a large class of ion channels, amino acid side
chains are distributed mainly over a “short” and “narrow” portion of the channel, with acidic side
chains contributing permanent negative charges and basic side chains contributing permanent positive
charges, analogous to the doping of semiconductor devices, e.g., bipolar PNP and NPN transistors.

The spatial distribution of side chains in a specific channel defines the permanent charge of
the channel. The spatial distribution of permanent charge forms (most of) the electrical structure of
the channel protein. The spatial distribution of mass forms the structure studied so successfully by
molecular and structural biologists. Ions that move through channels are often only an Angstrom or
so away from the permanent charges residing on acid and base side chains. In addition, electrical
forces are in general much stronger than entropic forces. Thus, in most cases, the electrical structure is
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more important in determining how ions go through a channel than the mass structure. Sometimes,
the dielectric properties (“polarization”) of the protein contribute a charge that is significant. Then, the
spatial distribution of dielectric properties becomes an important part of the electrical structure.

The most basic function of ion channels is to regulate the permeability of membranes for a given
species of ions and to select the types of ions and to facilitate and modulate the diffusion of ions across
cell membranes. At present, these permeation and selectivity properties of ion channels are usually
determined from the current–voltage (I–V) relations measured experimentally [2,3]. Individual fluxes
carry more information than the current, but it is expensive and challenging to measure them [4,5].
Indeed, the measurement of unidirectional fluxes by isotopic tracers allowed the early definition of
channels and transporters and is a central subject in the history of membrane transport, as described in
textbooks—for example, [6–9]. The precise definition and use of unidirectional fluxes are dealt with at
length in the paper [5]. The I–V relation defines the function of the channel structure, namely the ionic
transport through the channel. That transport depends on driving forces expressed mathematically as
boundary conditions. The multi-scale feature of the problem with multiple physical parameters allows
the system to have great flexibility and to exhibit vibrant phenomena/behaviors—a great advantage
of “natural devices” [10]. On the other hand, the same multi-scale feature with multiple physical
parameters presents an extremely challenging task for anyone to extract meaningful information
from experimental data, also given the fact that the internal dynamics cannot be measured with
present techniques. The general inverse problem is challenging, although specific inverse problems
have been successfully solved with surprisingly little difficulty using standard methods and software
packages [11].

To understand the importance of the relation of current and permanent charges, that is, the I–Q
relation, we point out that the role of permanent charges in ionic channels is similar to the role of
doping profiles in semiconductor devices. Semiconductor devices are similar to ionic channels in the
way that they both use atomic-scale structures to control macroscopic flows from one reservoir to
another. Ions move a lot like quasi-particles move in semiconductors. In a crude sense, holes and
electrons are the cations and anions of semiconductors. Semiconductor technology depends on the
control of migration and diffusion of quasi-particles of charge in transistors and integrated circuits.
Doping is the process of adding impurities into intrinsic semiconductors to modulate its electrical,
optical, and structural properties [12,13]. In a crude sense, doping provides the charges that acid and
base side chains provide in a protein channel.

Ion channels are almost always passive and do not require a source of chemical energy (e.g., ATP
hydrolysis) in order to operate. Instead, they allow ions to flow passively driven by a combination of the
transmembrane electrical potential and the ion concentration gradient across the membrane. For other
fixed physical quantities, the total current I = I(V ,Q) depends on the transmembrane potential V and
the permanent chargeQ. For fixedQ, a reversal potential V = Vrev(Q) is a transmembrane potential that
produces zero current I(Vrev(Q),Q) = 0. Similarly, for fixed transmembrane potential V , a reversal
permanent charge Q = Qrev(V) is a permanent charge that produces zero current I(V ,Qrev(V)) = 0.

The Goldman–Hodgkin–Katz (GHK) equation for reversal potentials involving multiple ion
species [14,15] is used to determine the reversal potential across ion channels. The GHK equation is
an extension of the Nernst equation—the latter is for one ion species. The classical derivations were
based on the incorrect assumption that the electric potential Φ(X) is linear in X—the coordinate along
the length of the channel. This assumption is particularly unfortunate because it is the change in the
shape of the electrical potential Φ(X) that is responsible for so many of the fascinating behaviors of
transistors or ionic systems [16–21]. There was no substitute for GHK equations until authors of [22,23]
recently offered equations derived from self-consistent Poisson–Nernst–Planck (PNP) systems, to the
best of our knowledge.

In this work, focusing on basic understanding of possible effects of unequal diffusion coefficients
and, as a starting point, we will use the classical PNP model with a piecewise constant permanent
charge and a cylinder-like channel with variable cross-sectional area. The classical PNP model treats
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ions as point charges. Among many limitations, gating and selectivity cannot be captured by the
simple classical PNP model. However, the basic finding on reversal potentials and their dependence
on permanent charges and on ratios of diffusion constants seems important and some are non-intuitive
and deserving of further investigation. In the future, more structural detail and more correlations
between ions should be taken into considerations in PNP models such as those including various
potentials for ion-to-ion interaction accounting for ion sizes effects and voids [24–32].

There have been great achievements in analyzing the PNP models for ionic flows through ion
channels [5,28,33–36], etc. Although mathematical analysis plays a powerful and unique role to
explain mechanisms of observed biological phenomena and to discover new phenomena, numerical
simulations are needed to fit actual experimental data and study cases where analytical solutions do
not exist. Furthermore, numerical observations may give clues for more theoretical investigations.
Indeed, numerical and analytical studies are linked; any progress in one catalyzes work in the other.

This paper is a mathematical study on some aspects of ionic flows via the PNP models. It uses
established mathematical methods and analytical results [23,33] that are derived without further
assumption from their underlying physical models. The numerical results, throughout the paper,
are gained from the algebraic systems (15), (22), (23) and (27), obtained from reduced matching
systems of analytical results in [23,33]. The nonlinear algebraic systems are then solved by the
MATLAB® (Version 9.5) function fsolve that uses the trust–region dogleg algorithm. The trust–region
algorithm is a subspace trust–region method and is based on the interior-reflective Newton method
described in [37]. Our numerical results indicate that current–voltage and current-permanent charge
and even zero-current relations depend on a rich interplay of boundary conditions and the channel
geometry arising from the mathematical properties analyzed in [23,33,34,38]. Although the work here
is presented in the context of biological ion channels, it is clear that the results apply to the artificial
channels that are now being studied for their engineering applications.

The highlights of our studies in this paper as well as in [23,33,34,38] applied to the setup of this
paper include:

(i) a mathematically derived system for the zero-current condition (see System (15)) that can be used
to determine the reversal potential in terms of other parameters (see Display (22));

(ii) an examination on how the reversal potential depends on permanent charge: its sign and its
monotonicity in permanent charge (see Section 2.2); and a comparison between this reversal
potential and that from GHK in the special setting (see Section 2.3);

(iii) a characterization of monotonic dependencies of the reversal potential on the ratio of diffusion
coefficients in terms of different conditions on the boundary concentrations (see Section 2.2),
as well as effects of un-equal diffusion coefficients on signs of zero-current flux and its dependence
on permanent charge (see Section 2.1);

(iv) numerical spatial profiles under the zero current condition of the concentrations and electric
potential, and hence the profiles of the electrochemical potentials for several choices of permanent
charges that reveal special features of permanent charge effects (see Section 2.4, particularly,
Remark 3);

(v) numerical and analytical studies of I–V and I–Q relations, and zero-voltage current and its rich
dependence on permanent charge (see Section 3.3).

Furthermore, there are several qualitatively important but non-intuitive results discussed in
this work. These qualitative results may be helpful in guiding experimentation and some might not be
apparent in intuitive thinking about ion channel behavior. Here are some examples:

a. The zero-current flux J has the same sign as that of l − r (see Section 2.1).
b. The magnitude of the ratio between of the two diffusion coefficients affects the monotonicity of

the zero-current flux J in Q (see Section 2.1).
c. I–Q curves are not monotonic in general (see Section 3.2).
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d. Rich phenomena of interplay between boundary conditions and diffusion coefficients in terms of
monotonicity of zero-voltage current on permanent charge (Section 3.3).

To this end, we would like to emphasize that applying the geometric analysis allows us to identify
and formulate quantities and properties that are crucial to biology, while also providing quantitative
and qualitative understanding and predictions.

This paper is organized as follows. The classical PNP model for ionic flows is recalled in Section 1.1
to prepare the stage for investigations in later sections. In Section 2, we study zero current problems to
investigate the corresponding fluxes and reversal potentials Vrev. In particular, we compare a special
case of the reversal potential with the GHK equation. Some other numerical observations are also
provided to study profiles of relevant physical quantities in Section 2.4. In Section 3, we first recall the
analytical results in [33] when diffusion constants are also involved. Then, numerical observations are
provided to examine behaviors of current, voltage, and permanent charge with respect to each other in
some general cases. Some concluding remarks are provided in Section 4.

1.1. Poisson–Nernst–Planck Models for Ionic Flows

The PNP system of equations has been analyzed mathematically to some extent, but the equations
have been simulated and computed to a much larger extent [39–43]. One can see from these
simulations that macroscopic reservoirs must be included in the mathematical formulation to describe
the actual behavior of channels [24,44]. For an ionic mixture of n ion species, the PNP type model is,
for k = 1, 2, ..., n,

Poisson: ∇ ·
(

εr(
−→
X )ε0∇Φ

)
= −e0

( n

∑
s=1

zsCs +Q(
−→
X )
)

,

Nernst-Planck: ∂tCk +∇ ·
−→J k = 0, −−→J k =

1
kBT
Dk(
−→
X )Ck∇µk,

(1)

where
−→
X ∈ Ω with Ω being a three-dimensional cylindrical-like domain representing the channel

of length L̂ (nm = L̂ × 10−9m), Q(−→X ) is the permanent charge density of the channel (with unit
1M = 1Molar = 1mol/L = 103mol/m3 ), εr(

−→
X ) is the relative dielectric coefficient (with unit 1),

ε0 ≈ 8.854× 10−12 F m−1 is the vacuum permittivity, e0 ≈ 1.602× 10−19C (coulomb) is the elementary
charge, kB ≈ 1.381 × 10−23JK−1 is the Boltzmann constant, T is the absolute temperature (T ≈
273.16 K =kelvin, for water); Φ is the electric potential (with the unit V = Volt = JC−1), and, for the
k-th ion species, Ck is the concentration (with unit M), zk is the valence (the number of charges per
particle with unit 1), and µk is the electrochemical potential (with unit J = CV) depending on electrical
potential Φ and concentrations Ck. The flux density

−→J k(
−→
X ) (with unit mol m−2s−1) is the number of

particles across each cross-section in per unit time, Dk(
−→
X ) is the diffusion coefficient (with unit m2/s),

and n is the number of distinct types of ion species (with unit 1).
Ion channels have narrow cross-sections relative to their lengths. Therefore, three-dimensional

PNP type models can be reduced to quasi-one-dimensional models. The authors of [45] first offered
a reduced form, and, for a particular case, the reduction is precisely verified by the mathematical
analysis of [46]. The quasi-one-dimensional steady-state PNP type is, for k = 1, 2, ..., n,

1
A(X)

d
dX

(
εr(X)ε0A(X)

dΦ
dX

)
=− e0

(
n

∑
s=1

zsCs +Q(X)

)
,

dJk
dX

= 0, −Jk =
1

kBT
Dk(X)A(X)Ck

dµk
dX

,

(2)
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where X is the coordinate along the channel, A(X) is the area of cross-section of the channel over
location X, and Jk (with unit mol s−1) is the total flux through the cross-section. Equipped with
System (2), we impose the following boundary conditions, for k = 1, 2, · · · , n,

Φ(0) = V , Ck(0) = Lk > 0; Φ(L̂) = 0, Ck(L̂) = Rk > 0. (3)

One often uses the electroneutrality conditions on the boundary concentrations because the
solutions are made from electroneutral solid salts,

n

∑
s=1

zsLs =
n

∑
s=1

zsRs = 0. (4)

The electrochemical potential µk(X) for the k-th ion species consists of the ideal component
µid

k (X) and the excess component µex
k (X), i.e., µk(X) = µid

k (X) + µex
k (X). The excess electrochemical

potential µex
k (X) accounts for the finite size effect of ions. It is needed whenever concentrations

exceed, say 50 mM, as they almost always do in technological and biological situations and often reach
concentrations 1M or more. The classical PNP model only deals with the ideal component µid

k (X),
which reflects the collision between ions and water molecules and ignores the size of ions; that is,

µk(X) = µid
k (X) = zke0Φ(X) + kBT ln

Ck(X)

C0
, (5)

where C0 is a characteristic concentration of the problems, and one may consider

C0 = max
1≤k≤n

{
Lk, Rk, sup

X∈[0,L̂]
|Q(X)|

}
. (6)

For given V ,Q(X), Lk’s and Rk’s, if (Φ(X), Ck(X),Jk) is a solution of the boundary value problem
(BVP) (2) and (3), then the electric current I is

I = e0

n

∑
s=1

zsJs. (7)

For an analysis of the BVP (2) and (3), we work on a dimensionless form. Set

D0 = max
1≤k≤n

{ sup
X∈[0,L̂]

Dk(X)} and ε̄r = sup
X∈[0,L̂]

εr(X).

Let

ε2 =
ε̄rε0kBT
e2

0 L̂2C0
, ε̂r(x) =

εr(X)

ε̄r
, x =

X
L̂

, h(x) =
A(X)

L̂2
, Dk(x) =

Dk(X)

D0
,

Q(x) =
Q(X)

C0
, φ(x) =

e0

kBT
Φ(X), ck(x) =

Ck(X)

C0
, µ̂k =

1
kBT

µk, Jk =
Jk

L̂C0D0
.

(8)

In terms of the new variables, the BVP (2) and (3) becomes, for k = 1, 2, · · · , n,

ε2

h(x)
d

dx

(
ε̂r(x)h(x)

d
dx

φ

)
=−

n

∑
s=1

zscs −Q(x),

dJk
dx

= 0, −Jk =h(x)Dk(x)ck
d

dx
µ̂k,

(9)
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with the boundary conditions

φ(0) = V =
e0

kBT
V , ck(0) = lk =

Lk
C0

; φ(1) = 0, ck(1) = rk =
Rk
C0

. (10)

Remark 1. The actual dimensional forms of quantities have been used for all figures throughout the paper,
that is,

Ck =C0ck (M), Q = C0Q (M), µk =
(
e0Φ + kBT ln(Ck/C0)

)
(J),

Φ =
kBT
e0

φ (V), Jk = L̂C0D0 Jk (mol/s), I = L̂C0D0e0 I (A),
(11)

and we take C0 = 10 M, L̂ = 2.5 nm and D0 = 2.032× 10−9 m2/s, and, for diffusion constants [31],

Dk =1.334× 10−9 m2/s for Na+, or

Dk =2.032× 10−9 m2/s for Cl−, or

Dk =0.792× 10−9 m2/s for Ca2+.

(12)

1.2. Setup of the Problem

We now designate the case we will study in this paper. We will investigate a simple setup,
the classical PNP model (9) with ideal electrochemical potential (5), and the boundary conditions (10).
More precisely, we assume

(A0) The ionic mixture consists of two ion species with valences z1 = −z2 = 1;
(A1) Dk(x) = Dk for k = 1, 2 is a constant and ε̂(x) = 1;
(A2) Electroneutrality boundary conditions (4) hold;
(A3) The permanent charge Q is piecewise constant with one nonzero region; that is, for a partition

0 < a < b < 1 of [0, 1],

Q(x) =

{
Q1 = Q3 = 0, x ∈ (0, a) ∪ (b, 1),
Q2 = 2Q0, x ∈ (a, b),

(13)

where Q0 is a constant.

We assume that ε > 0 in System (14) is small. The assumption is reasonable since, if L̂ = 2.5 nm =

2.5× 10−9 m and C0 = 10 M, then ε ≈ 10−3 [47]. The assumption that ε is small enables one to treat
System (14) of the dimensionless problem as a singularly perturbed problem that can be analyzed
by the theory of geometrical singular perturbations (GSP). GSP uses the modern invariant manifold
theory from nonlinear dynamical system theory to study the entire structure, i.e., the phase space
portrait of the dynamical system, and is not to be confused with the classical singular perturbation
theory that uses, for example, matched asymptotic expansions.

We rewrite the classical PNP system (9) into a standard form of singularly perturbed systems and
turn the boundary value problem to a connecting problem. We refer the readers to the papers [33]
and [36] (with insignificantly altered notations) for details. Denote the derivative with respect to x by
overdot and introduce u = εφ̇. System (9) becomes, for k = 1, 2,

εφ̇ =u, εu̇ = −
2

∑
s=1

zscs −Q(x)− ε
hx(x)
h(x)

u,

εċk =− zkcku− ε
Jk

Dkh(x)
, J̇k = 0.

(14)

System (14) will be treated as a dynamical system with the phase space R7 and the independent
variable x is viewed as time for the dynamical system.
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A GSP framework for analyzing BVP of the classical PNP systems was developed first in [33,35]
for ionic mixtures with two types of ion species. The model of ion channel properties involves coupled
nonlinear differential equations. Until accomplished, it was not apparent that any analytical results
could be found, let alone the powerful ones provided by geometrical singular perturbation. This GSP
framework was extended to an arbitrary number of types of ion species successfully only when
two special mathematical structures of the PNP system were revealed [36]. One special structure is a
complete set of integrals (or conserved quantities) for the ε = 0 limit fast (or inner) system that allows a
detailed analysis of a singular layer component of the full problem. It should pointed out that most
of the integrals are NOT conserved for the physical problem since, no matter how small it is, ε is
NOT zero. The GSP allows one to make conclusion about the BVP for ε > 0 small from information
of ε = 0 limit systems. The other special structure is that a state-dependent scaling of the independent
variable turns the nonlinear limit slow (or outer) system to a linear system with constant coefficients.
The coefficients do depend on unknown fluxes to be determined as a part of the whole problem,
and this is the mathematical reason for the rich dynamics of the problem. As a consequence of the
framework, the existence, multiplicity, and spatial profiles of the singular orbits—zeroth order in ε

approximations of the BVP—are reduced to a system of nonlinear algebraic equations that involves
all relevant quantities altogether. This system of nonlinear algebraic equations defines the physical
framework of the problem precisely. The system shows explicitly what has been guessed implicitly
“everything interacts with everything else” and, in the cases analyzed in this paper, the system shows
quantitatively how those interactions occur. This geometric framework with its extensions to include
some of the effects of ion size [28,29,32] has produced a number of results that are central to ion channel
properties [5,23,30,34,38,48]; for example, it was shown in [34] that a positive permanent charge may
enhance anion flux as well as cation flux; and, in order to optimize effects of the permanent charge, the channel
should have a short and narrow neck within which the permanent charge is confined; and, it was shown in [38]
that large permanent charge is responsible for the declining phenomenon—decreasing flux with increasing
transmembrane electrochemical potential. We refer the readers to the aforementioned papers for more
details on geometric singular perturbation framework for PNP as well as concrete applications to ion
channel problems.

In this paper, we will apply some results and follow the notations in [23,33] for analytical results
where the quantities are all in their dimensionless forms. In addition, for simplicity, we use the letters
l, r and Q0 where l1 = l2 = l, r1 = r2 = r, Q2 = 2Q0.

Remark 2. We remind the readers that the quantities V, l, r, ck, Q, φ, µ̂k, Jk, Dk, and I are dimensionless
quantities corresponding to the dimensional quantities V , L, R, Ck,Q, Φ, µk,Jk,Dk, and I , respectively,
obtained from Display (8). We switch from dimensional form to the dimensionless form and vice versa several
times throughout the paper. Dimensionless variables are convenient for illustrating and analyzing mathematical
and general physical relations. Dimensional variables are necessary for showing how evolution has exploited
those general relations.

2. Zero Current Problems with General Diffusion Constants

In this section, we study how boundary concentrations, electric potential, permanent charges,
and diffusion constants work together to produce current reversal. Throughout this section, in order
to express the effects of diffusion constants on zero-current flux and reversal potential, we study and
compare the results for different cases of diffusion constants where D1 = D2 and where D1 6= D2,
to indicate and emphasize the differences.

Diffusion is the phenomenon through which the spatial distribution of solute particles varies
as a result of their potential energy. It is a spontaneous process that acts to eliminate differences in
concentration and eventually leads a given mixture to a state of uniform composition. Fick’s first
law [49] describes diffusion of uncharged particles by ∂tc = D∂2

xxc, where c is the concentration,
D is the diffusion constant, and t is time. Frequently, the determination of diffusion constants
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involves measuring sets of simultaneous values of t, c, and x. These measured values are then
applied to a solution of Fick’s law to get the diffusion constants. Many techniques are available for
the determination of diffusion constants of ions (charge particles) in aqueous solutions [31,50–53], etc.
When diffusion constants are equal, classical electrochemistry tells that many electrical phenomena
“disappear” altogether, e.g., the “liquid junction” is zero. If the diffusion constants of potassium and
chloride are equal, classical electrochemistry says that KCl acts nearly as an uncharged species. Indeed,
this is the basis for the saturated KCl salt bridge used in a broad range of electrochemical experiments
for many years. Therefore, the equal diffusion constants case is quite degenerate. Experimental
measurements are exclusively performed under isothermal conditions to avoid deviation of D values.
Nevertheless, even diffusion constants of certain ionic species may differ from one method to another,
even when all other parameters are held constant. Everything becomes much more complicated
mathematically when the diffusion constants are not equal, however. This complexity is what makes
many biological and technological devices interesting, useful, and valuable. Some kinds of selectivity
depend on the non-equality of diffusion constants as well.

Applying GSP theory to the classical PNP system (2) for two ion species with diffusion constants
Dk, k = 1, 2, the authors of [23] obtained an algebraic matching system with eleven equations and
eleven unknowns for zero current problems and singular orbits on [0, 1]. They further reduced the
matching system for the case where two ion valences satisfy z1 = −z2. It follows that the reduced
matching system for zero current I = J1 − J2 = 0 when z1 = −z2 = 1 is

G1(A, Q0, θ) = V and G2(A, Q0, θ) = 0, (15)

where
G1(A, Q0, θ) =θ

(
ln

Sa + θQ0

Sb + θQ0
+ ln

l
r

)
− (1 + θ) ln

A
B
+ ln

Sa −Q0

Sb −Q0
,

G2(A, Q0, θ) =θQ0 ln
Sa + θQ0

Sb + θQ0
− N,

(16)

and, A is the geometric mean of concentrations at x = a, that is,

A =
√

c1(a)c2(a), (17)

B =
1− β

α
(l − A) + r, Sa =

√
Q2

0 + A2, Sb =
√

Q2
0 + B2, N = A− l + Sa − Sb, (18)

and

θ =
D2 − D1

D2 + D1
, α =

H(a)
H(1)

, β =
H(b)
H(1)

where H(x) =
∫ x

0

1
h(s)

ds. (19)

Note that, if h(x) is uniform, then H(x) is the ratio of the length with the cross-section area of
the potion of the channel over [0, x]. The original of this quantity H(x) has its root in Ohm law for
resistance of a uniform resistor. It turns out that the quantities α and β together with the value Q0

are key characteristics for the shape and the permanent charge of the channel structure (see Section 4
in [34] for more detailed and concrete results about the roles of α and β on the fluxes).

To this end, we recall three relevant results from [23] on which most of our analytical and
numerical studies are based.

For fixed Q0 and θ, A can actually be solved from G2(A, Q0, θ) = 0, where G2 is defined in
Display (16) with the properties stated in the next theorem.

Theorem 1 (Theorem 3.4 in [23]). The solution A = A(Q0, θ) of G2(A, Q0, θ) = 0 satisfies

(a) A(0, θ) = (1− α)l + αr and limQ0→±∞ A(Q0, θ) = l,
(b) if l > r, then l > A(Q0, θ) > A∗ > B(Q0, θ) > r,
(c) if l < r, then l < A(Q0, θ) < A∗ < B(Q0, θ) < r,
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(d) if θQ0 ≥ 0, then ∂Q0 A(Q0, θ) has the same sign as that of (l − r)Q0,

where A∗ =
(1− β)l + αr

1− β + α
.

For fixed Q0 and θ, the reversal potential Vrev = Vrev(Q0, θ) can also be determined and enjoy
properties stated in the next two theorems. Recall that we denote J1 = J2 by J.

Theorem 2 (Theorem 4.2 in [23]). For the reversal potential Vrev = Vrev(Q0, θ), one has

(i) if l > r, then J > 0, and, hence, − 1
z1

ln
l
r
< Vrev(Q0, θ) <

1
z1

ln
l
r

;

(ii) if l < r, then J < 0, and, hence,
1
z1

ln
l
r
< Vrev(Q0, θ) < − 1

z1
ln

l
r

;

(iii) Vrev(0, θ) =
θ

z1
ln

l
r

and limQ0→±∞ Vrev(Q0, θ) = ± 1
z1

ln
l
r

.

Theorem 3 (Theorem 4.4 in [23]). For any given θ ∈ (−1, 1), one has

(i) if θ = 0, then Vrev(Q0, θ) is increasing in Q0 for l > r and decreasing in Q0 for l < r;
(ii) if θ > 0, then, for Q0 ≥ 0, Vrev(Q0, θ) is increasing in Q0 for l > r and decreasing in Q0 for l < r;
(iii) if θ < 0, then, for Q0 ≤ 0, Vrev(Q0, θ) is increasing in Q0 for l > r and decreasing in Q0 for l < r.

In what follows, numerical simulations are conducted with the help of analysis on System (15).
The combination of numerics and analysis gives a better understanding of the zero-current problems
and compliments some analytical results obtained in [23]. For our numerical simulations, we choose
a = 1/3, b = 2/3 in Display (13) and h(x) = 1 for simplicity and for definiteness.

2.1. Zero-Current Flux J = J1 = J2.

We aim to clarify the relationships of ion fluxes with permanent charge and diffusion constants
when current is zero.

Recall that fluxes J1 and J2 are equal for this case and let J denote it. For any permanent charge
Q = 2Q0, once a solution (A, V) of System (15) is obtained, it follows from matching equations
(see Appendix in [23]) that J is given by

J = −6D1D2(A− l)
(D1 + D2)

= −6D1D2(r− B)
(D1 + D2)

. (20)

2.1.1. Sign of Zero-Current Flux J
It was observed in [22] that the Nernst–Planck equation in Display (9) (with dimensionless

quantities) gives, for k = 1, 2,

Jk
Dk

∫ 1

0

1
h(x)ck(x)

dx = zkV + ln
l
r

. (21)

Therefore, the sign of flux Jk depends only on the boundary conditions l, r and V. Note that
Equation (21) holds for any condition, not just zero-current condition.

For zero-current problem, V = Vrev depends on l, r, D1, D2, and Q as well, in general. Thus,
the sign of zero-current flux J seems to depend on all quantities and to be difficult to figure out. It is
not the case. A consequence of Display (20) together with Theorem 1 is that:

The zero-current f lux J has the same sign as that o f l − r

15
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The latter follows directly from Theorem 1 that, for zero-current, l− A has the same sign as that of
l − r. This is consistent with observations in Figure 1 where D1 = 1.334× 10−9 m2/s is fixed, and D2

varies from the same value to D2 = 2.032× 10−9 m2/s, and to a random large value.
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Figure 1. The function J = J (Q) for various values of ρ = D2/D1: The left panel for L = 2 mM and
R = 5 mM; the right panel for L = 5 mM and R = 2 mM.

2.1.2. Dependence of Zero-Current Flux J on Q0 and Dk’s

Concerning the dependence of the zero-current flux J on Q0, we have the following:

(i) If D1 = D2, then the zero-current flux J is an even function in Q0, and it is monotonic for Q0 > 0.

In this case, θ = 0 and, hence, it follows from Theorem 1 that A is an even function in Q0 and is
monotonic in Q0 for Q0 > 0, and thus is the zero-current flux J from Display (20).

(ii) If D1 6= D2, then the zero-current flux J is not an even function in Q0 and the monotonicity of the
zero-current flux J in Q0 seems to be more complicated.

In this case, it can be seen that G2 in Display (16) is not an even function in Q0, and, hence,
the zero-current flux J is not. We would like to point out that, it follows from [38], for fixed
ρ = D2/D1, no matter how large, one always has J → 0 as Q0 → ±∞ that is consistent with the
observations in Figure 1.

(iii) Another fascinating result is that the magnitude of ρ = D2/D1 affects the monotonicity of the
zero-current flux J in Q0.

In this case, if one fixes D1, and let D2 increases from small values to D2 → ∞, (i.e., ρ → ∞),
then it follows from Display (20) that there is a meaningful change in the monotonicity of the
zero-current flux J, for small values of Q0 that is not intuitive.

Let us consider the case where L < R and Q0 < 0 is small. Recall that A is the geometric mean of
concentrations at x = a. It follows from System (15) and (16) that, as Q0 increases,

(a) A increases if ρ ≈ 1 (that is θ ≈ 0), and consequently the zero-current flux J decreases;
(b) A decreases if ρ� 1 (that is θ � 1), and, hence, the zero-current flux J increases.

Thus, depending on the size of ρ, the zero-current flux J may increase or decrease in Q0 < 0,
which is also consistent with the observations in Figure 1. The analysis for the case with L > R
is similar.

It seems likely that the engineering, like evolution, will use these mathematical properties to
control the qualitative properties of channels, technological, and biological.
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2.2. Reversal Potential Vrev.

Experimentalists have long identified reversal potential as an essential characteristic of ion
channels [54,55]. Reversal potential is the potential at which the current reverses direction, i.e.,
V = Φ(0)−Φ(L̂) that produces zero current I . Using dimensionless form of quantities (see Remark 2),
it follows from System (15) and (16) (where there are two ion species with valences z1 = −z2 = 1) that
for general permanent charge Q = 2Q0 6= 0 with arbitrary diffusion constants [23], the variable A
(the geometric mean of concentrations at x = a) can be solved uniquely from G2 = 0 in System (15),
and the reversal potential is then

Vrev = θ
(

ln
Sa + θQ0

Sb + θQ0
+ ln

l
r

)
− (1 + θ) ln

A(Q0, θ)

B(Q0, θ)
+ ln

Sa −Q0

Sb −Q0
, (22)

where B, Sa, Sb, and θ are defined in Displays (18) and (19).

2.2.1. Range of Reversal potential Vrev

For fixed l, r, and for any given Q0, it follows from Theorem 2 that there exists a unique reversal
potential Vrev such that Vrev ≤ | ln l

r |. As Q0 → ±∞, then Vrev gets close to the boundary values, i.e.,
Vrev → ± ln l

r .

2.2.2. Zero Reversal Potential

One particular case is when the reversal potential is zero. To examine under what conditions one
obtains Vrev = Vrev(Q0) = 0, it follows Theorem 2 that,

(i) if D1 = D2, then Vrev(Q0) = 0 for Q0 = 0,
(ii) if D1 < D2, then there is a Q0 < 0, such that Vrev(Q0) = 0,
(iii) if D1 > D2, then there is a Q0 > 0, such that Vrev(Q0) = 0.

Considering the second case above, the observations in Figure 2 show that, as ρ = D2/D1

increases, magnitude of the corresponding Q0 becomes larger. In fact, as ρ→ ∞, then Q0 → −∞.
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Figure 2. The function V = Vrev(Q): The left panel for L = 2 mM and R = 5 mM; the right panel for
L = 5 mM and R = 2 mM.

2.2.3. Reversal Potential Vrev(Q0) for Q0 = 0

For Q0 = 0, one has Vrev(0) = θ ln l
r from Theorem 2. Therefore,

(i) if D1 = D2, then Vrev(0) = 0,
(ii) if D1 6= D2, then Vrev(0) has the same sign as that of θ(l − r).
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Let us consider the case where D1 < D2. In that case, Vrev(0) has the same sign as that of l − r.
This is reasonable, since, for V = 0, we have |J1| < |J2| (since all but Jk/Dk are independent of Dk in
Equation (21)), and to help |J1| more than |J2| to get J1 = J2 for zero current conditions, one needs
to increase V when l > r

(
and decrease V when l < r

)
, and that is why Vrev(0) > 0 for l > r

(
and

Vrev(0) < 0 for l < r
)
. This is consistent with observations in Figure 2 as well. The analysis for the

other case with D1 > D2 is similar.

2.2.4. Monotonicity of Vrev with Respect to Q
It follows from Theorem 3 that

For θQ > 0, ∂QVrev has the same sign as that o f l − r.

This analytical result does not allow conclusions about the case for θQ < 0, however.
The observations in Figures 2 and 3 show that the result holds for any θ and Q. Thus, we have

Conjecture : Vrev is increasing in Q f or l > r and decreasing in Q f or l < r.

We remark that, in Figure 3, we take L = 20 mM, R = 50 mM, and D1 = 1.334× 10−9 m2/s and
D2 = 2.032× 10−9 m2/s which are diffusion constants of, say, Na+ and Cl−, respectively (see the solid
line), and D1 = 1.334× 10−9m2/s and D2 = 0.792× 10−9m2/s, where D2 is the diffusion constants of
Ca2+ (see the dashed line).
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Figure 3. V = Vrev(Q) decreases when L < R, independent of values of diffusion constants.

2.2.5. Dependence of Vrev on ρ = D2/D1

Let us discuss the dependence of Vrev on ρ = D2/D1 for effects of D1 and D2. It follows from
Proposition 4.6 in [23] that

The reversal potential Vrev is increasing in ρ i f l > r and is decreasing in ρ i f l < r.

This feature reveals a fantastic aspect that is not intuitive immediately. Recall Equation (21). Given
the boundary values and diffusion constants, the values one obtains for all terms in Equation (21)
except Jk are independent of Dk [36]. The relation surely holds for the zero-current condition, i.e.,
J1 = J2 with V = Vrev. Now, let us fix D1 and increase D2 (so ρ is increasing). Then, |J2| increases since
all but J2/D2 in Equation (21) are independent of D2. Consequently, to meet the zero-current condition,
we need to increase |J1|. Intuitively increasing Vrev seems to lead to an increase in |J1|. This intuition
agrees with the result for l > r. However, for the case with l < r, the result is the exact opposite of the
intuitive result. That is, for l < r, it says, as ρ increases, Vrev decreases. This counterintuitive behavior

18



Entropy 2020, 22, 325

could be explained by the fact that c1(x) depends on Vrev, and reducing Vrev could still increase |J1|.
In fact, l < r will result in reducing Vrev, but c1(x) changes in a way that consequently increases |J1|.

To illustrate the counterintuitive behavior, we provide a numerical result in Figure 4. We choose C0,
L̂ andD1 for Na+ as mentioned in Remark 1. Now, suppose thatD1

2 = 0.792× 10−9m2/s, and consider
the boundary concentrations L = 20 mM, R = 50 mM and Q = 1 M. In this case, Vrev = −16.7657 mV
and J = −1.7632× 10−17mol s−1. Now, if we increase D1

2 to D2
2 = 2.032× 10−9m2/s, which is Cl−

diffusion constant, then Vrev = −19.5527 mV and J = −1.8788× 10−17mol s−1. These values make
sense now, based on the above discussion. Note that we just pictured the middle part of the channel in
Figure 4 since the sides are almost identical. One should notice that it is hard to realize, from Figure 4,
how L < R will result in reducing Vrev. The complicated behavior discussed above convinces us that
detailed analytical studies, even for special cases, could be critical for the design and interpretation of
numerical results.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
 D2

1 = 0.792  10-9 m2/s

 D2
2 = 2.032   10-9 m2/s

Figure 4. Graphs of C1(X) when D1 is fixed, but we increase D2.

2.3. A Comparison with Goldman–Hodgkin–Katz Equation for Vrev.

In this section, we first recall the GHK equation [14,15], which relates the reversal potential with
the boundary concentrations and the permeabilities of the membrane to the ions. If the membrane
is permeable to only one ion, then that ion’s Nernst potential is the reversal potential at which
the electrical and chemical driving forces balance. The GHK equation is a generalization of the
Nernst equation in which the membrane is permeable to more than just one ion. The derivation of
GHK equation assumes that the electric field across the lipid membrane is constant (or, equivalently,
the electric potential φ(x) is linear in x in the PNP model). Under the assumption, the I–V
(current–voltage) relation is given by

I = V
n

∑
k=1

z2
k Dk

rk − lkezkV

1− ezkV .

For the case where n = 2 and z1 = −z2 = 1, the GHK equation for the reversal potential is

VGHK
rev (ρ) = ln

r + ρl
l + ρr

. (23)

The assumption that the electric potential φ(x) is linear is not correct when applied to channels in
proteins. This is because proteins have specialized structure and spatial distributions of permanent
charge (acid and base side chains) and polarization (polar and nonpolar side chains). Experimental
manipulations of the structure of channel proteins show that these properties control the biological function
of the channel. The GHK equation does not contain variables to describe any of these properties and
so cannot account for the biological functions they control. A linear φ(x) is widely believed to make
sense without channel structure presumably, in particular, where Q0 = 0. However, this is not correct
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either. It follows from Formula (22) for Q0 = 0 that the zeroth order in ε approximation of the reversal
potential in this case is

Vrev(0, ρ) =
ρ− 1
ρ + 1

ln
l
r

. (24)

Figure 5 compares Vrev(0, ρ) in Formula (24) with VGHK
rev from the GHK-equation in Display (23).

It can be seen from the left panel that, when l and r are not far away from each other (for example
L = C0l = 20 mM, R = C0r = 50 mM), then the two curves have almost the same behavior. However,
when we reduce L from 20 mM to 1 mM, then the right panel shows a significant difference between
the two graphs.
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Figure 5. Vrev(Q = 0, ρ) vs. VGHK
rev (ρ): The left panel for L = 20 mM and R = 50 mM; the right panel

for L = 1 mM and R = 50 mM.

In Figure 6, we arrange a simple numerical result for the case whereQ 6= 0 to compare the graphs
of Vrev(Q, ρ), obtained from Formula (22), for various values of permanent charge Q. We consider
L = 20 mM, R = 50 mM, and 0 < ρ < 5 for some values of Q, i.e., Q = 0 M, 1 M, 10 M.
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Figure 6. Vrev(Q, ρ) with various values of permanent charges.

2.4. Profiles of Relevant Physical Quantities

It follows that, for any given Q, once a solution (A, V) of Equations (15) and (16) is determined,
all the other unknowns can be settled, and, hence, the approximation of the solution of boundary value
problem can be obtained. We consider the dimensional form of quantities, and fix (Q, L, R,D1,D2)

to numerically investigate the behavior of Ck(X) and Φ(X) throughout the channel. Figures 7 and 8
graph the cases with small permanent charge Q = 0.1 mM when L = 20 mM, R = 50 mM, D1 =
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1.334× 10−9 m2/s, and D2 = 2.032× 10−9 m2/s. In this case, we obtain J = −1.2079× 10−16 mol s−1

and Vrev = −4.4820 mV.
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Figure 7. The functions Ck(X) (left) and Φ(X) (right) with Q = 0.1 mM.
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Figure 8. The functions µ1(X) and µ2(X) are increasing for Q = 0.1 mM.

Furthermore, Figures 9 and 10 show graphs of concentrations, electrical potential, and
electrochemical potentials versus X, where L = 20 mM, R = 50 mM, Q = 2 M, and diffusion
constants are the same as the previous one. In this case, we obtain J = −1.8789× 10−17 mol s−1 and
Vrev = −19.5527 mV.

Remark 3. We end this section with a few of the remarks on some important features captured in Figures 7–10.
It follows from the Nernst–Planck equation that µ′k(x) has the same sign as that of µk(1)− µk(0) or the opposite
sign as that of Jk; in particular, µk(x) is always monotonically increasing or decreasing. For the zero-current
situation, the reversal potential depends on ALL other parameters; and so it seems that it would be hard to make
general conclusions about µk(x), for example, about its monotonicity. This is not true. In fact, in Section 2.1,
we have concluded that the sign of zero-current flux J is the same as that of L− R, and, hence, µ′k(x) has the
opposite sign as that of L − R. For the case considered in this part, L = 20 mM < R = 50 mM, one has
J < 0, independent of the value of Q. Therefore, µ′k(x) > 0 for k = 1, 2, and, hence, µk(x)’s are increasing for
zero-current situation when L < R, independent of Q, as shown in Figure 8 for Q = 0.1 mM and in Figure 10
for Q = 1 mM. On the other hand, as one changes the value of Q, the profiles of concentrations ck(x)’s and
electrical potential φ(x) may vary from monotone to non-monotone, as shown between Figure 7 for Q = 0.1 mM
and Figure 9 for Q = 1 M.
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Figure 9. The functions C1(X) and C2(X) (left) and the function Φ(X) (right) for Q = 1 M.
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Figure 10. The functions µ1(X) and µ2(X) are increasing for Q = 1 M.

3. Current–Voltage and Current-Permanent Charge Behaviors

Ionic movements across membranes lead to the generation of electrical currents. The current
carried by ions can be examined through current–voltage relation or I–V curve. In such a case, voltage
refers to the voltage across a membrane potential, and current is the flow of ions through channels in the
membrane. Another important piece of data are current-permanent charge (I–Q) relation. Dependence
of current on membrane potentials and permanent charge is investigated in this section for arbitrary
values of diffusion constants.

To derive the I–V and I–Q relations, we rely on [33] where the authors showed that the set of
nonlinear algebraic equations is equivalent to one nonlinear equation for A, the geometric mean of
concentrations at x = a defined in Equation (17). All other quantities or variables such as fluxes,
profiles of electric potential φ(x) and concentrations ck(x) can then be obtained in terms of A. It is
crucial to realize that this is a specific result, not available for general cases. One can only imagine
that the resulting simplification produces controllable and robust behavior that proved useful as
evolution designed and refined protein channels. The reduction allowed by this composite variable
can be postulated to be a “design principle” of channel construction, in technological (engineering)
language, or an evolutionary adaptation, in biological language. In particular, the current I can be
explicitly expressed in terms of boundary conditions, permanent charge, diffusion constants, and
transmembrane potential in the special case that allows the determination of A. In what follows,
we derive flux and current equations—when diffusion constants are involved as well—in terms of
boundary concentrations, membrane potential, and permanent charge. The I–V, I–Q, J–V, and J–Q
relations are investigated afterward in Section 3.2.
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3.1. Reduced Flux and Current Equations

In this section, for simplicity, in addition to the assumptions at the beginning of the setup section
(Section 1.2), we will also assume that h(x) = 1, a = 1/3 and b = 2/3, in particular, α = 1/3 and
β = 2/3 (see Display (19)). It was shown in [33] that the BVP (9) and (10) can be reduced to the
algebraic equation

η ln
Sb − η

Sa − η
− N = 0, (25)

where B = l − A + r, Sa, Sb and N are defined in Display (18), and

η = Q0 −
Q0

ln Bl
Ar

(
V + ln

l(Sb −Q0)

r(Sa −Q0)

)
+

N
ln Bl

Ar
. (26)

Once A is solved from Equation (25), we can obtain the flux densities and current equations
as follows:

Jk := Jk(V, l, r, D1, D2) =3Dk(l − A)
(

1 + (−1)k η

Q0

)
, for k = 1, 2,

I := I(V, l, r, D1, D2) =J1 − J2 = 3(l − A)
(

D1 − D2 −
η

Q0
(D1 + D2)

)
.

(27)

For any given (l, r, D1, D2, Q0, V), there exists a solution for the flux J and current I. The numerical
results in the next section give us more information on “current–voltage” and “current-permanent
charge” relations.

3.2. Current–Voltage and Current-Permanent Charge Relations

3.2.1. Dependence of Current on Diffusion Constants

Now, we reveal a feature of the theoretical results that is not intuitive. Suppose that (l, r, Q0)

is given (V is still free and is allowed to take any value!). It follows from Display (18) for the
definition of N that there exists an A so that N = 0. It consequently follows from Equation (26) that,

if V = ln
B(Sa −Q0)

A(Sb −Q0)
, then η = 0. Therefore, from Display (27), I = 3(l− A)(D1−D2), which implies

For special values o f parameters (l, r, V, Q0), the sign o f I is determined by the sign o f D1 − D2.

3.2.2. I–V Curves and I–Q Curves

Figure 11 is a numerical simulation from Equations (25) and (26) of the I–V curves for several
values of Q with D1 = 1.334× 10−9 m2/s and D2 = 2.032× 10−9 m2/s. One may suspect, based on
the numerical observations, that the value of current I , obtained from Display (27), is unique for any V ,
and is monotonically increasing in V . However, this may not be correct, in general. This is important
since the opening and closing properties of channels might be thought to arise from non-unique
solutions [16,17].
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Figure 11. The function I = I(V) for L = 20 mM and R = 50 mM.

Now, for I–Q relations, our numerical experiments shows that:
I–Q curves are not monotonic in general.

Recall that Equation (21), in dimensional form, gives

Jk

∫ L̂

0

kBT
DkA(X)Ck(X)

dX = µk(0)− µk(L̂), k = 1, 2.

The sign of Jk is determined by the boundary conditions, independent of the permanent charge.
Nevertheless, as expected and seen in Figure 12, the magnitudes of Jk’s, and, consequently, the sign
and the size of the current I do depend on Q = 2Q0C0 in general. (Here, Q would be the nonzero
value of the permanent charge in dimensional form.) Treating V as a parameter, the current I is a
function of Q. The numerical observations in Figure 12 indicate that,

(i) there exists some V∗ such that, for V > V∗, I(Q) has a unique maximum;
(ii) there exists some V∗ such that, for V < V∗, I(Q) has a unique minimum.

In particular, I–Q curves are not monotonic in general.
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Figure 12. The function I = I(Q) with D1 < D2: The left panel for L = 20 mM and R = 30 mM;
the right panel for L = 30 mM and R = 20 mM.

In addition, we claim based on numerical observations (not proven though) that there exists
V̂(D1,D2) = min{V∗, |V∗|}, such that

(i) for any given V where |V| > V̂ , the corresponding current I is non-monotonic in Q, but
(ii) for any V where |V| < V̂ , the corresponding current I is monotonic in Q.
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In particular, it can be seen in Section 3.3 that current is monotonic in Q for V = 0. In the end, we
would like to mention that the diffusion constants affect the values V∗ and V∗ above.

3.3. Zero-Voltage Current

The different permeability of the membrane determines the zero membrane potential (voltage) to
different types of ions, as well as the concentrations of the ions, the permanent charge, and the shape
of the channel. Denote current I(V; Q), and the fluxes Jk(V; Q), for k = 1, 2, to include the dependence
on Q too. We call I(0; Q) the zero-potential current and Jk(0; Q) the zero-potential fluxes, respectively,
when V = 0. For any given value of membrane potential V, approximation formulas for the current
I(V; Q), for small and large values of permanent charge Q, are provided in [34,38], respectively.

It follows from [34] that, for small values of Q, applying V = 0, zero-potential current Is(0; Q),
and zero-potential fluxes Js

k(0; Q) (in dimensionless forms as mentioned in Remark 2) are

Is(0; Q) =(l − r)
(

D1 − D2
)
− 3

2
(D1 + D2)(l − r)2

(2l + r)(l + 2r) ln l
r

Q + O(Q2),

Js
k(0; Q) =(l − r)Dk + (−1)k 3(l − r)2Dk

2(2l + r)(l + 2r) ln l
r

Q + O(Q2), k = 1, 2.
(28)

For large positive values of Q = 2Q0, with ν = 1/Q0 (where ν is small), it follows from [38] that
zero-potential current Il(ν) = Il(0; Q) and zero-potential fluxes Jl

k(ν) = Jl
k(0; Q) are

Il(ν) =− 6D2
√

lr
(
√

l −√r)√
l +
√

r
+

3
2
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( l + r√
l +
√

r

)2
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+
3
2

D2
l + r

(
√

l +
√

r)2
f (l, r)(l − r)ν + O(ν2),

Jl
1(ν) =

3
2

D1

( l + r√
l +
√

r

)2
(l − r)ν,

Jl
2(ν) =6D2

√
lr

√
l −√r√
l +
√

r
− 3

2
D2

l + r
(
√

l +
√

r)2
f (l, r)(l − r)ν + O(ν2),

(29)

where
f (l, r) =

2lr
(
√

l +
√

r)2
+ l + r− 1

2
ln l − ln r

l − r
(l + r)2. (30)

It can be readily seen from Equations (28) that, for small values of Q, the zero-potential current
Is(0; Q) is increasing in Q when l < r and is decreasing in Q if l > r.

However, for large values of the permanent charge Q, the zero-potential current Il(0; Q) depends
on Q in a much richer way. To state the results, we need the following lemma.

Lemma 1. There are t1 and t2 with 0 < t1 < 1 < t2 so that f (l, r) > 0 for l/r ∈ (t1, t2) and f (l, r) < 0 for
l/r 6∈ [t1, t2].

Note that
d

dν
Il(0) =

3D2

2

( l + r√
l +
√

r

)2(D1

D2
+

f (l, r)
l + r

)
(l − r).

It follows from Equations (29) and Lemma 1 that, for large values of Q (small values of ν),

(i) if l/r ∈ [t1, t2] (so that f (l, r) ≥ 0), then, for arbitrary D1 and D2, the zero-potential current Il(ν)

is decreasing in ν (increasing in Q) when l/r ∈ [t1, 1), and is increasing in ν (decreasing in Q)
when l/r ∈ (1, t2];

(ii) if l/r 6∈ [t1, t2] (so that f (l, r) < 0), then,
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(a) for D1
D2

+ f (l,r)
l+r > 0, the zero-potential current Il(ν) is decreasing in ν (increasing in Q) for

l < r, and is increasing in ν (decreasing in Q) for l > r;

(b) for D1
D2

+ f (l,r)
l+r < 0, the zero-potential current Il(ν) is increasing in ν (decreasing in Q) for

l < r, and is decreasing in ν (increasing in Q) for l > r.

Figure 13 illustrates some of the above conclusions. In addition, it suggests that the monotonicity
of I(0) holds for all values of permanent charge, not only for small or large values. We emphasize
that the monotonicity of current I with respect to permanent charge Q is just true for zero membrane
potential, i.e., V = 0. Indeed, one should recall from Section 3.2 that, when V 6= 0, then the current I is
not monotonic in Q.
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Figure 13. The function I = I(Q) for V = 0: The left panel for L = 20 mM and R = 30 mM; the right
panel for L = 30 mM and R = 20 mM.

4. Conclusions

In this paper, we first recall the analytical results in [23] for arbitrary diffusion constants.
To investigate the reversal potential problem for which the current is zero, we do numerical
investigations based on the analytical results in [23], where many cases are studied analytically.
We derive several remarkable properties of biological significance, from the analysis of these governing
equations that hardly seem intuitive.

Biophysicists are also interested in the relation of current–voltage (I–V), and current-permanent
charge (I–Q), as well as reversal potential problems. To do that, we first recall the analytical results
in [33], for arbitrary diffusion constants, to drive the flux densities and current equations explicitly. One
way to characterize channels is the current at zero electric potential, that is, when V = 0, which has
practical advantages. Since it is usually easier to measure a large current than a vanishing one,
we analyzed this case as well. Furthermore, we briefly study the special cases of small and large
permanent charge for zero voltage case, based on the analytical results of [34,38], respectively. To
bridge between small and large values of permanent charges, we numerically study I–V and I–Q
relations for this case as well.
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Abstract: We have developed a molecular mean-field theory—fourth-order Poisson–Nernst–Planck–
Bikerman theory—for modeling ionic and water flows in biological ion channels by treating ions and
water molecules of any volume and shape with interstitial voids, polarization of water, and ion-ion
and ion-water correlations. The theory can also be used to study thermodynamic and electrokinetic
properties of electrolyte solutions in batteries, fuel cells, nanopores, porous media including cement,
geothermal brines, the oceanic system, etc. The theory can compute electric and steric energies
from all atoms in a protein and all ions and water molecules in a channel pore while keeping
electrolyte solutions in the extra- and intracellular baths as a continuum dielectric medium with
complex properties that mimic experimental data. The theory has been verified with experiments
and molecular dynamics data from the gramicidin A channel, L-type calcium channel, potassium
channel, and sodium/calcium exchanger with real structures from the Protein Data Bank. It was also
verified with the experimental or Monte Carlo data of electric double-layer differential capacitance
and ion activities in aqueous electrolyte solutions. We give an in-depth review of the literature
about the most novel properties of the theory, namely Fermi distributions of water and ions as
classical particles with excluded volumes and dynamic correlations that depend on salt concentration,
composition, temperature, pressure, far-field boundary conditions etc. in a complex and complicated
way as reported in a wide range of experiments. The dynamic correlations are self-consistent output
functions from a fourth-order differential operator that describes ion-ion and ion-water correlations,
the dielectric response (permittivity) of ionic solutions, and the polarization of water molecules with
a single correlation length parameter.

Keywords: bioelectricity; electrochemistry; thermodynamics; electrokinetics; molecular mean-field
theory; Boltzmann and Fermi distributions; Poisson–Boltzmann; Poisson–Fermi; Poisson–Bikerman;
Nernst–Planck; steric and correlation effects; ion channels; ion activity; double-layer
capacitance; nanofluidics

1. Introduction

Water and ions give life. Their electrostatic and kinetic interactions play essential roles in
biological and chemical systems such as DNA, proteins, ion channels, cell membranes, physiology,
nanopores, supercapacitors, lithium dendrite growth, porous media, corrosion, geothermal brines,
environmental applications, and the oceanic system [1–34]. Poisson, Boltzmann, Nernst, and Planck
laid the foundations of classical electrostatic and kinetic theories of ions in 1813–1890 [35–39].
Gouy [40] and Chapman [41] formulated the Poisson–Boltzmann (PB) equation in 1910 and 1913,
respectively [9]. Bikerman proposed a modified PB equation in 1942 for binary ionic liquids to
account for different-sized ions with voids [42]. Eisenberg puns PNP for Poisson-Nernst-Planck
and Positive-Negative-Positive semiconductor transistors to emphasize nonequilibrium flows of
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ions through ion channels as life’s transistors [43]. Ions in classical PB and PNP theories are
treated as volumeless point charges like the ‘ions’ of semiconductors, namely holes and electrons
in semiconductor electronics [44–55]. Water molecules are treated as a dielectric medium (constant)
without volumes either. However, advanced technologies in ion channel experiments [56,57] and
material science [33,34,58] have raised many challenges for classical continuum theories to describe
molecular mechanisms of ions and water (or solvents) with specific size effects in these systems at
nano or atomic scale [9,12,14,16–19,30,33].

There is another important property that classical continuum theories fail to describe, namely
short-range ion-ion or ion-water correlations in ion channels [8,9], charge-induced thickening and
density oscillations near highly charged surfaces [14], correlation-induced charge inversion on
macroions (DNA, actin, lipid membranes, colloidal particles) [59], the phase structure of plasma
and polar fluids [60], colloidal charge renormalization [60], etc. Several other properties related
to correlations such as the dielectric response of electrolytes solutions and the polarization of
water in various conditions or external fields are usually modeled differently from the correlation
perspective [61–63].

We have recently developed a molecular mean-field theory
called—Poisson-Nernst-Planck-Bikerman (PNPB) theory—that can describe the size, correlation,
dielectric, and polarization effects of ions and water in aqueous electrolytes at equilibrium or
nonequilibrium all within a unified framework [64–76]. Water and ions in this theory can have different
shapes and volumes necessarily with intermolecular voids. The theory generalizes and unifies the
second-order Poisson–Bikerman equation [42] of binary ionic liquids for different-sized ions with
identical steric energies [72] and the fourth-order differential permittivity operator in Santangelo’s
model of one component plasma [77] or in the Bazant, Storey, and Kornyshev theory of general
nonlocal permittivity for equal-sized ions in ionic liquids [78].

Ion-ion and ion-water correlations are modeled by the permittivity operator with a correlation
length that depends on the diameter of ions or water and the valence of ions of interest [78].
The fourth-order operator yields a permittivity as an output function of spatial variables,
salt concentration, and hydration shell structure including water diameter from solving the PNPB
model and thus describes the dehydration of ions from bath to channel pore or from bulk to charged
wall, the polarization of water, and the change of permittivities of electrolyte solutions at different
locations in response to different configurations and conditions. Water densities also change with
configurations and conditions.

The fourth-order operator introduces correlations into the mean-field equations so they can
deal more realistically with real systems in which the correlations are of the greatest importance.
A remark should be made here that simulations containing only particles do not automatically deal
with correlations better than mean-field theories with fourth-order operators like this. It is not at all
clear that simulations widely done in biophysics actually compute correlations well. Indeed, it is
difficult to see how simulations that use conventions to approximate the electric field, and periodic
boundary conditions to approximate macroscopic systems could deal with correlations correctly.
The dearth of direct checks of the role of periodic boundary conditions, and of the accuracy of the
conventional treatment of electrostatics, does little to assuage these concerns. The detailed direct
checks found necessary in computational electronics are not easily found in simulations of ions in
electrolyte solutions (see Chap. 6, particularly Figures 6.34–35 of [55] for some details that are found to
be necessary in the simulations of computational electronics).

It is important to reiterate the obvious. Our model includes water as a molecule and depends
on the hydration structure around ions. Our model uses partial differential equations (PDEs) to
describe these essentially discrete properties of ionic solutions, and uses the physical parameters
of individual atoms and water molecules, NOT just their mean-field description. This use of PDEs
to describe inherently discrete processes is hardly new: most of probability theory [79,80] and the
entire theory of wave equations, including the wave equation of the electron called the Schrödinger
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equation [81], treat discrete processes the same way, using PDEs that measure (in probability theory)
the underlying discrete system, or represent it exactly as the discrete solutions of a continuum PDE
(e.g., the Schrödinger equation describing a hydrogen atom).

The most important contribution of our work is to include water as discrete molecules by using
Fermi distributions [82] of classical particles having excluded volumes with interstitial voids. We show
that the treatment of water as finite size molecules requires, as a matter of mathematics, not physics,
the existence of voids. This is demonstrated by mathematics and simple ways to compute the voids
and their role are presented. These Fermi-like distributions yield saturation of all particles (ions and
water) even under mathematically infinite large external fields. These distributions also satisfy mass
conservation in the region of interest such as channel pores, which classical theories fail to describe as
well. This Fermi distribution of classical particles obeying volume exclusion is reminiscent of the Fermi
distribution of identical particles obeying the Pauli exclusion principle [83] in quantum mechanics.

We also introduce a new concept of distance-dependent potential between non-bonded particles
for different-sized particles similar to the electric potential for different-charged ions and name it
the steric potential. The void distribution function describes the van der Waals potential [84] of
paired particles [85,86] in the system in a mean-field sense. The steric potential can be written as a
distribution function of voids, emphasizing the crucial role of voids in our theory. The specific sizes
of particles and the distance-dependent steric potential allow us to calculate steric energies at the
atomic scale. Using Coulomb’s law allows calculation of electric energies at the atomic scale as well.
Therefore, our theory applies to biological or chemical systems with explicit atomic structures, as well
as classical mean-field representations of bulk solutions, for example. We have shown that solving the
PNPB model in different continuum and molecular domains yields self-consistent electric and steric
potentials in many examples of biological ion channels or chemical systems in [64–76]. The theory
is also consistent with classical theories in the sense that its model converges to the corresponding
classical one when the volume of all particles and the correlation length tend to zero, i.e., steric and
correlation effects vanish asymptotically to classical cases.

In this review article, we explain the above bold-face terms in detail and compare them with those
of earlier theories in a precise but limited way. The precision means that we display explicitly, to the
best of our ability, the significant differences between analogous concepts in our theory and previous
treatments. It is obviously impossible to do complete comparisons in this vast and formidable field.
No doubt we are ignorant of significant relevant papers. We apologize to those inadvertently slighted
and ask them to help us remedy our oversight. The remaining of this article consists as follows.

Section 2 describes the physical meaning of Fermi distributions and the steric potential of ions
and water with excluded volumes. We also explain the differences between Fermi and Boltzmann
distributions in the context of statistical thermodynamics.

Section 3 unifies Fermi distributions and correlations into the simple and concise 4th-order
Poisson–Bikerman (4PBik) equation. The simplicity refers to the correlation length being the only
empirical parameter in the equation. The conciseness means that the fourth-order differential operator
can describe the complex and correlated properties of ion-ion and ion-water interactions, polarization
of water, and dielectric response of electrolytes solutions all in a single model setting.

Section 4 presents a Gibbs free energy functional for the 4PBik equation. We show that
minimization of the functional yields the equation and Fermi distributions that reduce to Boltzmann
distributions when the volumes of particles vanish in limiting case. This functional is critical to explain
a major shortcoming of earlier modified PB models that cannot yield Boltzmann distributions in the
limit. These models are thus not consistent with classical theories and may poorly estimate steric
energies and other physical properties due to their coarse approximation of size effects.

Section 5 generalizes the 4PBik equation to the PNPB model to describe flow dynamics of ions
and water in the system subject to external fields. The most important feature in this section is the
introduction of the steric potential to the classical Nernst–Planck equation. Electric and steric potentials
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describe the dynamic charge/space competition between ions and water. We also show that the PNPB
model reduces to the 4PBik equation at equilibrium.

Section 6 presents a generalized Debye-Hückel theory from the 4PBik equation for thermodynamic
modeling. The theory yields an equation of state that analytically models ion activities in all types
of binary and multi-component electrolyte solutions over wide ranges of concentration, temperature,
and pressure. It is also useful to study the size, correlation, dielectric, and polarization effects in a clear
comparison with those ignoring these effects.

Section 7 discusses numerical methods for solving the PNPB model that is highly nonlinear
and complex when coupled with the electrical field generated by protein charges in ion channels,
for example. It is very challenging to numerically solve the model with tolerable accuracy in 3D protein
structures that generate extremely large electric field, e.g., 0.1 V in 1 Angstrom, in parts of the molecule
of great biological importance where crowded charges directly control biological function, in the same
sense that a gas pedal controls the speed of a car.

Section 8 demonstrates the usefulness of the PNPB theory for a wide range of biological and
chemical systems, where the steric and correlation effects are of importance. We choose a few examples
of these systems, namely electric double layers, ion activities, and biological ion channels.

Section 9 summarizes this review with some concluding remarks.

2. Fermi Distributions and Steric Potential

The total volume of an aqueous electrolyte system with K species of ions in a solvent domain
Ωs is

V =
K+1

∑
i=1

vi Ni + VK+2, (1)

where K + 1 and K + 2 denote water and voids, respectively, vi is the volume of each species i
particle, Ni is the total number of species i particles, and VK+2 is the total volume of all the voids [68].
The volume of each particle vi will play a central role in our analysis, as well that the limit vi goes to
zero. This limit defines the solution of point particles of classical PB and PNP theory. We must include
the voids as a separate species if we treat ions and water having volumes in a model. This necessity
can be proven by mathematics (see below). It is also apparent to any who try to compute a model of
this type with molecular water, as it was to us [68].

Dividing the volume Equation (1) in bulk conditions by V, we get the bulk volume fraction
of voids

ΓB = 1−
K+1

∑
i=1

viCB
i =

VK+2

V
, (2)

where CB
i = Ni

V are bulk concentrations. If the system is spatially inhomogeneous with variable electric
or steric fields, as in realistic systems, the constants CB

i then change to functions Ci(r) and so does ΓB

to a void volume function

Γ(r) = 1−
K+1

∑
i=1

viCi(r). (3)

We define the concentrations of particles (i.e., the distribution functions of the number density) in
Ωs [72] as

Ci(r) = CB
i exp

(
−βiφ(r) +

vi
v0

Strc(r)
)

, Strc(r) = ln
Γ(r)
ΓB , (4)
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where φ(r) is an electric potential, Strc(r) is called a steric potential, βi = qi/kBT with qi being the
charge on species i particles and qK+1 = 0, kB is the Boltzmann constant, T is an absolute temperature,
and v0 =

(
∑K+1

i=1 vi

)
/(K + 1) is an average volume. The following inequalities

Ci(r) = CB
i exp (−βiφ(r))

[
Γ(r)
ΓB

]vi/v0

= αi

[
1−

K+1

∑
j=1

vjCj(r)

]vi/v0

= αi

[
1− viCi(r)−

K+1

∑
j=1,j 6=i

vjCj(r)

]vi/v0

< αi [1− viCi(r)]
vi/v0

≤ αi

[
1− v2

i
v0

Ci(r)

]
if vi/v0 ≤ 1, by Bernoulli’s inequality, (5)

Ci(r) < αi [1− viCi(r)]
vi/v0 = αi [1− viCi(r)]

γ [1− viCi(r)]
vi/v0−γ

< αi [1− viCi(r)] [1− (vi/v0 − γ) viCi(r)]

< αi [1− viCi(r)] if vi/v0 > 1, (6)

imply that the distributions are of Fermi-like type [87]

Ci(r) < lim
αi→∞

αi

1 + αiv2
i /v0

<
v0

v2
i

if vi/v0 ≤ 1, (7)

Ci(r) < lim
αi→∞

αi
1 + αivi

<
1
vi

if vi/v0 > 1, (8)

i.e., Ci(r) cannot exceed the maximum value 1/v2
i or 1/vi for any arbitrary (or even infinite) potential

φ(r) at any location r in the domain Ωs, where i = 1, · · ·, K + 1, αi = CB
i exp (−βiφ(r)) /

(
ΓB)vi/v0 > 0,

0 < vi/v0 − γ < 1, and γ ≥ 1.
The classical Boltzmann distribution appears if all particles are treated as volumeless points,

i.e., vi = 0 and Γ(r) = ΓB = 1. The classical Boltzmann distribution may produce an infinite
concentration Ci(r) → ∞ in crowded conditions when −βiφ(r) → ∞, close to charged surfaces for
example, which is physically impossible [64–66]. This is a major, even crippling deficiency of PB theory
for modeling a system with strong local electric fields or interactions. The difficulty in the application of
classical Boltzmann distributions to saturating systems has been avoided in the physiological literature
(apparently starting with Hodgkin, Huxley, and Katz [88]) by redefining the Boltzmann distribution to
deal with systems that can only exist in two states. This redefinition has been vital to physiological
research and is used in hundreds of papers [89,90], but confusion results when the physiologists’
saturating two-state Boltzmann is not kept distinct from the unsaturating Boltzmann distribution of
statistical mechanics [91].

It should be clearly understood that as beautiful as is Hodgkin’s derivation it begs the question of
what physics creates and maintains two states. Indeed, it is not clear how one can define the word
state in a usefully unique way in a protein of enormous molecular weight with motions covering the
scale from femtoseconds to seconds.

The steric potential Strc(r) in Equation (4) first introduced in [64] is an entropic measure of
crowding or emptiness of particles at r. If φ(r) = 0 and Ci(r) = CB

i then Strc(r) = 0. The factor
vi/v0 shows that the steric energy −vi

v0
Strc(r)kBT of a type i particle at r depends not only on the steric

potential Strc(r) but also on its volume vi similar to the electric energy βiφ(r)kBT depending on both
φ(r) and qi [72]. The steric potential Strc(r) is especially relevant to determining selectivity of specific
ions by certain biological ion channels [65,66,68,70,72].

In this mean-field Fermi distribution, it is impossible for a volume vi to be completely filled
with particles, i.e., it is impossible to have viCi(r) = 1 (and thus Γ(r) = 0) since that would make
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Strc(r) = −∞ and hence Ci(r) = 0, a contradiction. Therefore, we must include the voids as a separate
species if we treat ions and water having volumes in a model for which Ci(r) < 1/vi and Γ(r) 6= 0 for all
i = 1, · · ·, K + 1 and r ∈ Ωs. This is a critical property distinguishing our theory from others that do
not consider water as a molecule with volume and so do not have to consider voids. We shall elaborate
this property in Section 4.

Our theory is consistent with the classical theory of van der Waals in molecular physics, which
describes nonbond interactions between any pair of atoms as a distance-dependent potential such
as the Lennard-Jones (L-J) potential that cannot have zero distance between the pair [85,86]. Indeed,
the steric potential Strc(r) can be written as a function of the volume of all molecular species (of course,
including water as well as ions). Classical extensions of van der Waals theories often use this variable,
but seem not to mention the existence or importance of voids.

The steric potential Strc(r) lumps all van der Waals potential energies of paired particles in a
mean-field sense. It is an approximation of L-J potentials that describe local variations of L-J distances
(and thus empty voids) between any pair of particles. L-J potentials are highly oscillatory and extremely
expensive and unstable to compute numerically [66]. Calculations that involve L-J potentials [92–98],
or even truncated versions of L-J potentials [99–101] must be extensively checked to be sure that results
do not depend on irrelevant parameters. Any description that uses L-J potentials has a serious problem
specifying the combining rule. The details of the combining rule directly change predictions of effects
of different ions (selectivity) and so predictions depend on the reliability of data that determines the
combining rule and its parameters.

The steric potential does not require combining rules. Since we consider specific sizes of ions and
water with voids, the steric potential is valid on the atomic scale of L-J potentials. It is also consistent
with that on the macroscopic scale of continuum models as shown in Sections 6 and 8.

To our surprise during the writing of this article, we found Equation (2) in Bikerman’s 1942
paper [42] is exactly the same as Equation (4) for a special case of binary ionic liquids with the identical
steric energies of different-sized ions, i.e., the factor vi/v0 = 1 in (4). The steric potential in Equation (4)
is however not explicitly expressed in Bikerman’s paper. Therefore, Bikerman’s concentration function
is a Fermi distribution, a generic term used in statistical mechanics. We do NOT use exactly the
Fermi distribution as Fermi derived in 1926 for identical particles now called fermions in quantum
mechanics. So it is both more precise and historically correct to use the name “Poisson–Bikerman”
equation for finite-sized ions as a generalization of the Poisson–Boltzmann equation for volumeless
ions in electrochemical and bioelectric systems.

As noted by Bazant et al. in their review paper [14], Bikerman’s paper has been poorly cited
in the literature until recently. In our intensive and extensive study of the literature since 2013 [64],
we have never found any paper specifically using Bikerman’s formula as Equation (4), although of
course there may be an instance we have not found. We thus now change the term “Poisson-Fermi”
used in our earlier papers to “Poisson-Bikerman” in honor of Bikerman’s brilliant work. We present
here mathematical as well as physical justifications of a very general treatment of different-sized ions
and water molecules in the mean-field framework based on Bikerman’s pioneer work.

3. Fourth-Order Poisson-Bikerman Equation and Correlations

Electrolytes have been treated mostly in the tradition of physical chemistry of isolated systems
that proved so remarkably successful in understanding the properties of ideal gases in atomic detail,
long before the theory of partial differential equations, let alone numerical computing was developed.
Most applications of ionic solutions however involve systems that are not at all isolated. Rather,
most practical systems include electrodes to deliver current and control potential, and reservoirs
to manipulate the concentrations and types of ions in the solution. Indeed, all biology occurs in
ionic solutions and nearly all of biology involves large flows. It is necessary then to extend classical
approaches so they deal with external electric fields and other boundary conditions and allow flow so
the theory can give useful results that are applicable to most actual systems.
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When the electrolyte system in Ωs is subject to external fields such as applied voltages, surface
charges, and concentration gradients on the boundary ∂Ωs, the electric field E(r) of the system,
the displacement field D(r) of free ions, and the polarization field P(r) of water are generated at all r
in Ωs. In Maxwell’s theory [102,103], these fields form a constitutive relation

D(r) = ε0E(r) + P(r) (9)

and the displacement field satisfies

∇ ·D(r) = ρion(r) =
K

∑
i=1

qiCi(r), (10)

where ε0 is the vacuum permittivity, ρion(r) is the charge density of ions, and Ci(r) are the
concentrations defined in (4). See [104] for a modern formulation of Maxwell’s theory applicable
wherever the Bohm version of quantum mechanics applies [105,106].

The electric field E(r) is thus screened by water (Bjerrum screening) and ions (Debye screening)
in a correlated manner that is usually characterized by a correlation length lc [77,78,107]. The screened
force between two charges in ionic solutions (at r and r′ in Ωs) has been studied extensively in classical
field theory and is often described by the van der Waals potential kernel [71,72,84,107,108]

W(r− r′) =
e−|r−r′ |/lc

|r− r′| /lc
(11)

that satisfies the Laplace-Poisson equation [108]

− ∆W(r− r′) +
1
l2
c

W(r− r′) = δ(r− r′), r, r′ ∈ R3 (12)

in the whole space R3, where ∆ = ∇ · ∇ = ∇2 is the Laplace operator with respect to r and δ(r− r′) is
the Dirac delta function at r′.

The potential φ̃(r) defined in
D(r) = −εs∇φ̃(r) (13)

describes an electric potential of free ions [72,107] that are correlated only by the mean electric field
according to the Poisson equation

− εs∆φ̃(r) = ρion(r), (14)

a second-order partial differential equation, where εs = εwε0 and εw is the dielectric constant of water.
This potential does not account for correlation energies between individual ions or between ion and
polarized water in high field or crowded conditions under which the size and valence of ions and the
polarization of water play significant roles [17,65–68,77,78,107].

The correlations implicit in Maxwell’s equations are of the mean-field and can be summarized
by the statement that current is conserved perfectly and universally on all scales that the Maxwell
equations are valid, where current includes the term ε0

∂E(r,t)
∂t . This term allows the Maxwell equations

to describe the propagation of light through a vacuum, and it allows charge to be relativistically
invariant, i.e., independent of velocity unlike mass, length, and time all of which vary dramatically as
velocities approach the speed of light [104,106].

We introduce the correlated electric potential

φ(r) =
∫

R3

1
l2
c

W(r− r′)φ̃(r′)dr′ (15)
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in [72] as a convolution of the displacement potential φ̃(r′) with W(r− r′) to deal with the correlation
and polarization effects in electrolyte solutions. However, it would be too expensive to calculate φ(r)
using (15). Multiplying (12) by φ̃(r′) and then integrating over R3 with respect to r′ [71], we obtain

− l2
c ∆φ(r) + φ(r) = φ̃(r) (16)

a Laplace-Poisson equation [107,108] that satisfies (15) in the whole unbounded space R3 with the
boundary conditions φ(r) = φ̃(r) = 0 at infinity. From (14) and (16), we obtain the 4th-order
Poisson–Bikerman equation

εs

[
l2
c ∆− 1

]
∆φ(r) = ρion(r), r ∈ Ωs, (17)

a PDE that is an approximation of (16) in a bounded domain Ωs ⊂ R3 with suitable boundary conditions
(see below) of φ(r) on ∂Ωs. We can thus use (9) to find the polarization field

P(r) = εsl2
c∇(∆φ(r))− (εw − 1)ε0∇φ(r) (18)

with E(r) = −∇φ(r). If lc = 0, we recover the standard Poisson Equation (14) and the standard
polarization P = ε0(εw − 1)E with the electric susceptibility εw − 1 (and thus the dielectric constant
εw) if water is treated as a time independent, isotropic, and linear dielectric medium [103]. In this case,
the field relation D = εwε0E with the scalar constant permittivity εsε0 is an approximation of the exact
relation (9) due to the simplification of the dielectric responses of the medium material to the electric
field E [109–111].

The exponential van der Waals potential W(r− r′) = e−|r−r′ |/lc

|r−r′ |/lc
[84] is called the Yukawa [112]

potential in [71,72] and usually in physics, which is an anachronism [108,113]. Van der Waals derived
this potential in his theory of capillarity based on the proposition that the intermolecular potential
of liquids and gases is shorter-ranged, but much stronger than Coulomb’s electric potential [108].
Ornstein and Zernike (OZ) introduced short- (direct) and long-ranged (indirect) correlation functions
in their critical point theory [114]. There are three important properties of the van der Waals potential:
(i) it satisfies the Laplace-Poisson Equation (12), (ii) it generates the same functional form for short-
and long-ranged correlations in the OZ theory, and (iii) it solves van der Waals’s problem for the
intermolecular potential [108].

Therefore, the potential φ(r) in (15) includes correlation energies of ion-ion and ion-water interactions
in short as well as long ranges in our system. The correlation length lc can be derived from the OZ
equation, see Equation (13) in [108], but the derivation is not very useful. The correlation length
becomes an unknown functional of ρion(r) in (10) and the OZ direct correlation function, and is hence
usually chosen as an empirical parameter to fit experimental, molecular dynamics (MD), or Monte Carlo
(MC) data [14,64–73,75,77,78,107]. It seems clear that it would be useful to have a theory that showed
the dependence of correlation length on ion composition and concentration, and other parameters.

There are several approaches to fourth-order Poisson-Boltzmann equations for modeling
ion-ion and ion-water correlations from different perspectives of physics [71,77,78,115,116]. In [77],
a decomposed kernel acts on a charge density of counterions in a binary liquid without volumes and
water (ion-ion correlations) in contrast to the potential φ̃(r) in (15) that is generated by different-sized
ions and water with voids in (14) (ion-ion and ion-water correlations in a multi-component aqueous
electrolyte). The kernel consists of short-range (of van der Waals type) and long-range components from
a decomposition of Coulomb’s interactions. In [78], the kernel is a general nonlocal kernel that acts on
a charge density of equal-sized ions in a binary liquid without water (ion-ion correlations). The kernel
is a series expansion of the gradient operator∇ and thus can yield not only a fourth-order PB but even
higher-order PDEs. The fourth-order PB is the first-order approximation of the energy expansion that
converges only with small wavenumbers k in Fourier frequency domain for the dielectric response of
ionic liquids [78].
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Derived from the framework of nonlocal electrostatics for modeling the dielectric properties
of water in [107], the kernel acting on φ̃(r) in [71] (ion-ion and ion-water correlations) consists of a
van der Waals function and the Dirac delta function that correspond to the limiting cases k = 0 and
k = ∞, respectively. In [115], a system of three PDEs derived from electrostatics and thermodynamic
pressure has electric potential and concentration gradients of equal-sized cations and anions in a binary
fluid as three unknown functions. Linearization and simplification of the nonlinear system can yield
a linear fourth-order PB (ion-ion correlations). In [116], the fourth-order PB is derived from a free
energy functional that models ion-ion correlations in a binary liquid using volume-fraction functions of
equal-sized cations and anions with two additional parameters associated with the interaction energies
of these two functions and their gradients.

The dielectric operator εs
(
l2
c ∆− 1

)
in (17) describes changes in dielectric response of water with

salt concentrations (ion-water correlations), ion-ion correlations, and water polarizations all via the
mean-field charge density function ρion(r) provided that we can solve (4) and (17) for a consistent
potential function φ(r). Therefore, the operator (a mapping) depends not only on ion and water
concentrations (CB

i for all arbitrary species i = 1, · · ·, K + 1 of particles with any arbitrary shapes and
volumes) but also on the location r and the voids at r. The operator thus produces a dielectric function
ε̂(r,CB

i ) as an output from the solution φ(r) that satisfies the 4PBik (17) that saturates as a function
of concentration (4), as we shall repeatedly emphasize. This dielectric function ε̂(r,CB

i ) is not an
additional model for ε̃(r), ε̃(k), or ε̃(CB

i ) as it often is in other models in the literature [62,63,117–127].
Here the dielectric function is an output, as we have stated.

The 4PBik Equation (17) with (4) is a very general model using only one extra parameter lc in the
fourth-order operator to include many physical properties ignored by the classical Poisson-Boltzmann
equation. We shall illustrate these properties of our model in Section 8.

4. Generalized Gibbs Free Energy Functional

To generalize the Gibbs free energy functional for Boltzmann distributions that satisfy the
classical Poisson–Boltzmann equation [3,128,129], we introduce a functional in [72] for saturating
Fermi distributions (4) that satisfy the 4th-order Poisson–Bikerman Equation (17)

F(C) = Fel(C) + Fen(C), (19)

Fel(C) =
1
2

∫

Ωs
ρion(r)L−1ρion(r)dr, (20)

Fen(C) = kBT
∫

Ωs

{
K+1

∑
i=1

Ci(r)

(
ln

Ci(r)
CB

i
− 1

)
+

Γ(r)
v0

(
ln

Γ(r)
ΓB − 1

)}
dr, (21)

where Fel(C) is an electrostatic functional, Fen(C) is an entropy functional, C =

(C1(r), C2(r), · · ·, CK+1(r)), and L−1 is the inverse of the self-adjoint positive linear operator
L = εs

(
l2
c ∆− 1

)
∆ [71] in (17), i.e., Lφ(r) = ρion(r). C is a ‘concentration vector’ that specifies the

number density, i.e., concentration of each species in the ionic solution, including water. C plays a
central role in any theory of ionic solutions because it specifies the main property of a solution, namely
its composition.

Taking the variations of F(C) at Ci(r), we have

δF(C)

δCi
=
∫

Ωs

{
kBT

[
ln

Ci(r)
CB

i
− vi

v0
ln

Γ(r)
ΓB

]
+

1
2

(
qiL−1ρion(r) + ρion(r)L−1qi

)}
dr,

1
2

(
qiL−1ρion(r) + ρion(r)L−1qi

)
= qiφ(r),

δF(C)

δCi
= 0⇒ kBT

[
ln

Ci(r)
CB

i
− vi

v0
ln

Γ(r)
ΓB

]
+ qiφ(r) = 0 (22)
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that yields the saturating Fermi distributions in (4) for all i = 1, · · ·, K + 1. Moreover, we have

δ2F(C)

δC2
i

=
∫

Ωs

{
kBT

[
1

Ci(r)
+

v2
i

v0

ΓB

Γ(r)

]
+ q2

i L−1Ci

}
dr > 0 (23)

implying that the saturating Fermi distribution vector C is a unique minimizer of the functional F(C).
The Gibbs-Bikerman free energy functional F(C) has two important properties. First, its

electrostatic part Fel(C) is defined in terms of the composition vector C only. It depends only on
concentrations and nothing else. If an electrostatic functional F̃el(φ̃(r)) is defined in terms of

∣∣∇φ̃(r)
∣∣2

for the PB equation [64,78,124,130–137], the corresponding concentration vector C̃ and the potential
φ̃(r) do not minimize the corresponding functional F̃(C̃, φ̃(r)) [128,129], i.e., F̃ is not a Gibbs free
energy functional [3,128]. Second, the limit of its entropic part

lim
vi→0

Fen(C) = kBT
∫

Ωs

K+1

∑
i=1

C0
i (r)

(
ln

C0
i (r)
CB

i
− 1

)
dr (24)

exists (Fen converges) when the volume vi tends to zero for all i = 1, · · ·, K + 1. This implies that
all ionic species have Boltzmann distributions C0

i (r) = CB
i exp (−βiφ(r)), i = 1, · · ·, K, the water

concentration C0
K+1(r) = CB

K+1 is a constant, and the void fraction Γ(r) = ΓB = 1 since all particles are
volumeless in PB theory. Therefore, the 4PBik model (4) and (17) is physically and mathematically
consistent with the classical PB model in the limiting case when we ignore the steric (vi = 0) and
correlation (lc = 0) effects.

There are many shortcomings of the lattice approach [138] frequently used to account for steric
effects in lattice-based PB models [14,61,64,78,124,129,133–136,139–141]. For example, (i) it assumes
equal-sized ions and thus cannot distinguish non-uniform particles as in (1), (ii) its effective ion size
needs to be unrealistically large to fit data [14], (iii) its correction over Boltzmann’s point charge
approach appears only at high surface charges [125], (iv) its pressure term diverges very weakly (is
greatly underestimated) at close packing [142], and (v) its entropy functional may diverge as the
volume of ions tends to zero, i.e., the corresponding lattice-based PB model is not physically and
mathematically consistent with the classical PB model in the limiting case [66].

The importance of the restriction in Point (i) is hard to overstate. Almost all the interesting
properties of ionic solutions arise because of their selectivity (as it is called in biology) or specificity
between species, and those different properties arise in large measure because of the different diameters
of the ions. The equal diameter case is dull and degenerate.

Point (v) is a critical problem that is closely related to Points (ii)–(iv). The divergence is obvious
for an entropy term F̃en in Equation (2) in [133] as

lim
v→0

F̃en = lim
v→0

K

∑
i=1

C̃i(r) ln
(

vC̃i(r)
)
= −∞, (25)

which also appears in [61,64,78,124,129,133–136,139–141]. It is impossible to derive Boltzmann
distributions C̃i(r) = CB

i exp
(
−βiφ̃(r)

)
from F̃en as v→ 0 without extra assumptions, see (2.6) in [129],

for example. In fact, the assumption (2.6), i.e., vC̃i(r) > 0, actually forbids us from taking v to the
limit zero.

Our derivation of Fen(C) does not employ any lattice models but simply uses the exact volume
Equation (1). Our theory should not be classified then as a lattice model as sometimes is the case,
at least in informal discussions. The void function Γ(r) is an analytical generalization of the void
fraction 1− Φ in (20) in [14] with all volume parameters vi (including the bulk fraction ΓB) being
physical instead of empirical as Φ. The excess chemical potential in [14] is −kBT ln(1−Φ) whereas
ours is Fen(C) in (21).
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These expressions are different in important respects. Our model is not a lattice-based model
because its differences are crucial both mathematically and physically. Indeed, the lattice-based model
is in a certain sense internally inconsistent with classical statistical mechanics since a fundamental
result of classical statistical mechanics vC̃i(r) > 0 prevents the model from satisfying the classical
imperative of the Boltzmann distribution in the limit of zero v.

The Langmuir-type distribution

Ci(x) =
CB

i exp (−βiφ(x))

1 + ∑K
j=1

CB
j

Cmax
j

(
exp

(
−β jφ(x)

)
− 1
) (26)

of different-sized ions (without water) proposed in [125] also reduces to a Boltzmann distribution
as vj → 0, ∀j, where Cmax

j = p/vj and p ≤ 1 is a packing parameter. This distribution
saturates and thus is of Fermi type, i.e., Ci(x) ≤ Cmax

i and viCi(x) ≤ 1. The entropy term

− ln
(

1 + ∑K
j=1

CB
j

Cmax
j

(
exp

(
−β jφ(x)

)
− 1
))

does not involve voids so it is different from the Strc(r)

in (4). Our distribution in (4) does not need any packing parameters and satisfies viCi(r) < 1.

5. Poisson-Nernst-Planck-Bikerman Model of Saturating Phenomena

For nonequilibrium systems, we can also generalize the classical Poisson-Nernst-Planck
model [38,39,43,143,144] to the Poisson-Nernst-Planck–Bikerman model by coupling the flux
density equation

∂Ci(r, t)
∂t

= −∇ · Ji(r, t), r ∈ Ωs (27)

of each particle species i = 1, · · ·, K + 1 (including water) to the 4PBik Equation (17), where the flux
density is defined as

Ji(r, t) = −Di

[
∇Ci(r, t) + βiCi(r, t)∇φ(r, t)− vi

v0
Ci(r, t)∇Strc(r, t)

]
, (28)

Di is the diffusion coefficient, and the time variable t is added to describe the dynamics of electric
φ(r, t) and steric Strc(r, t) potentials.

The flux Equation (27) is called the Nernst-Planck-Bikerman equation because the steric potential
Strc(r, t) is introduced into the classical NP equation so it can deal with saturating phenomena including
those that arise from the unequal volumes of ions and the finite volume of molecular water. The PNPB
model can be extended to include hydrodynamic kinetic and potential energies in the variational
treatment of energy processes (i.e., EnVarA) by Hamilton’s least action and Rayleigh’s dissipation
principles [145,146]. We shall however consider this as a topic for future work.

At equilibrium, the net flow of each particle species is a zero vector, i.e., Ji(r) = 0 (in a steady
state), which implies that

∇Ci(r) + βiCi(r)∇φ(r)− vi
v0

Ci(r)∇Strc(r) = 0,

∇
[

Ci(r) exp(βiφ(r)−
vi
v0

Strc(r))
]

= 0,

Ci(r) exp(βiφ(r)−
vi
v0

Strc(r)) = ci, (29)

where the constant ci = CB
i for φ(r) = Strc(r) = 0. Therefore, (29) = (4), i.e., the NPB Equation (27)

reduces to the saturating Fermi distribution (4) as the classical NP equation reduces to the Boltzmann
distribution at equilibrium.
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The gradient of the steric potential ∇Strc(r, t) in (28) represents an entropic force of vacancies
exerted on particles. The negative sign in −Ci(r, t)∇Strc(r, t) means that the steric force ∇Strc(r, t) is
in the opposite direction to the diffusion force ∇Ci(r, t).

Larger Strc(r, t) = ln Γ(r,t)
ΓB implies lower pressure because the ions occupy more space (less

crowded) as implied by the numerator Γ(r, t). The larger the Strc(r, t) the lower pressure at the location
r, the more the entropic force (the higher pressure) pushes particles to r from neighboring locations.
The steric force is the opposite of the diffusion force ∇Ci(r, t) that pushes particles away from r if the
concentration at r is larger than that at neighboring locations.

Moreover, the Nernst-Einstein relationship between diffusion and mobility [9] implies that
the steric flux Di

vi
v0

Ci(r, t)∇Strc(r, t) is greater if the particle is more mobile. The Nernst-Einstein
relationship is generalized to

µi = viqiDi/(v0kBT), (30)

where the mobility coefficient µi of an ion depends on its size vi in addition to its charge qi.
The mobility coefficient of water is µK+1 = vK+1DK+1/(v0kBT). The drift term in (28) is thus
−DiβiCi(r, t)∇φ(r, t) = −µi(v0/vi)Ci(r, t)∇φ(r, t).

Therefore, the gradients of electric and steric potentials (∇φ(r, t) and ∇Strc(r, t)) describe the
charge/space competition mechanism of particles in a crowded region within a mean-field framework.
Since Strc(r, t) describes the dynamics of void movements, the dynamic crowdedness (pressure) of
the flow system can also be quantified. A large amount of experimental data exists concerning the
dependence of diffusion coefficient on the concentration and size of solutes. Comparing our model
with this data is an important topic of future work.

The motion of water molecules, i.e., the osmosis of water [147,148] is directly controlled
by the steric potential in our model and their distributions are expressed by CK+1(r, t) =

CB
K+1 exp

(
vK+1Strc(r, t)/v0

)
. Nevertheless, this motion is still implicitly changed by the electric

potential φ(r, t) via the correlated motion of ions described by other Cj(r, t) in the void fraction
function Γ(r, t) and hence in the charge density ρion(r, t) in (17).

In summary, the PNPB model accounts for (i) the steric (pressure) effect of ions and water molecules,
(ii) the correlation effect of crowded ions, (iii) the screening (polarization) effect of polar water, and (iv) the
charge/space competition effect of ions and water molecules of different sizes and valences. These effects
are all closely related to the interstitial voids between particles and described by two additional terms,
namely the correlation length and the steric potential. The steric potential is most naturally written as
a function of the volume of voids, but it can also be written as a function of the total volume of all
molecules, including water and ions.

6. Generalized Debye-Hückel Theory

Thermodynamic modeling is of fundamental importance in the study of chemical and biological
systems [1,6,9,11–13,16,32]. Since Debye and Hückel (DH) proposed their theory in 1923 [149] and
Hückel extended it to include Born energy effects in 1925 [150], a great variety of extended DH models
(equations of state) have been developed for modeling aqueous or mixed-solvent solutions over wide
ranges of composition, temperature, and pressure [6,19,151–155]. Despite these intense efforts, robust
thermodynamic modeling of electrolyte solutions still presents a difficult challenge for extended
DH models due to an enormous number of parameters that need to be adjusted carefully and often
subjectively [19,152–154,156].

It is indeed a frustrating despair (the word frustration on p. 11 in [16] and the word despair on
p. 301 in [1]) that about 22,000 parameters [19] need to be extracted from the available experimental
data for one temperature for combinatorial solutions of the most important 28 cations and 16 anions
in salt chemistry by the Pitzer model [6], which is the most widely used DH model with unmatched
precision for modeling electrolyte solutions [153]. The JESS (joint expert speciation system) is the
world’s largest system of thermodynamic information relating to electrolytes, reactions in aqueous
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media, and hydrocarbon phase equilibria [157]. The total number of Pitzer’s fitting parameters in JESS
is 95 [158].

By contrast, we propose in [75,76] a generalized Debye-Hückel theory from the 4PBik
Equation (17) to include (i) steric effects, (ii) correlation effects, (iii) Born solvation energy, and (iv) ion
hydration [159–166] that are missing in the original DH theory. The generalized theory can be used
to calculate ion activities in all types of binary and multi-component solutions over wide ranges of
concentration, temperature, and pressure with only 3 fitting parameters [69,73,75,76].

We briefly outline the derivation of a generalized DH equation of state and refer to [76] for more
details. The activity coefficient γi of an ion of species i in an aqueous electrolyte solution with a total of
K species of ions describes deviation of the chemical potential of the ion from ideality (γi = 1) [11].
The excess chemical potential µex

i = kBT ln γi can be calculated by [69,167]

µex
i =

1
2

qiφ(0)−
1
2

qiφ
0(0), (31)

where qi is the charge of the hydrated ion (also denoted by i), φ(r) is a reaction potential [167] function
of spatial variable r in the domain Ω = Ωi ∪Ωsh ∪Ωs shown in Figure 1, Ωi is the spherical domain
occupied by the ion i, Ωsh is the hydration shell domain of the ion, Ωs is the rest of solvent domain,
0 denotes the center (set to the origin) of the ion, and φ0(r) is a potential function when the solvent
domain Ωs does not contain any ions at all with pure water only, i.e., when the solution is ideal.
The radii of Ωi and the outer boundary of Ωsh are denoted by RBorn

i (ionic cavity radius [160]) and
Rsh

i , respectively.

O

Ion

Ω
i

Solvent
Domain

Ω
s

R
sh

i

R
Born

i

Hydration Shell

Ω
sh

Figure 1. The model domain Ω is partitioned into the ion domain Ωi (with radius RBorn
i ), the hydration

shell domain Ωsh (with radius Rsh
i ), and the remaining solvent domain Ωs.

The potential function φ(r) can be found by solving the 4PBik Equation (17) and the Laplace
equation [69,73]

∆φ(r) = 0 in Ωi ∪Ωsh, (32)

where εs is defined in Ωsh ∪Ωs, the correlation length lc =
√

lBlD/48 is a density-density correlation
length independent of specific ionic radius [168], lB and lD are the Bjerrum and Debye lengths,
respectively, the concentration Ck(r) function (4) is defined in Ω for all k = 1, · · ·, K + 1 in molarity
(M), and vk = 4πa3

k/3 with radius ak. Since the steric potential takes particle volumes and voids
into account, the shell volume Vsh of the shell domain Ωsh can be determined by the steric potential

Strc
sh = v0

vw
ln Ow

i
VshCB

K+1
= ln Vsh−vwOw

i
VshΓB [69,73], where the occupant (coordination) number Ow

i of water

molecules is given by experimental data [166]. The shell radius Rsh
i is thus determined and depends
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not only on Ow
i but also on the bulk void fraction ΓB, namely on all salt and water bulk concentrations

(CB
k ) [69,73].

We reduce the complexity of higher-order approximations, and make them easier to implement
by transforming the fourth-order PDE (17) to the following two second-order PDEs [64]

(
l2
c ∆− 1

)
ψ(r) = ρion(r) in Ωs, (33)

εs∆φ(r) = ψ(r) in Ωs, (34)

where the extra unknown function ψ(r) is a density-like function as seen from (33) by setting lc = 0.
The boundary and interface conditions for φ(r) and ψ(r) in (32)–(34) are [64]

φ(r) = ψ(r) = 0 on ∂Ωs\∂Ωsh, (35)

ψ(r) = −ρs(r) on ∂Ωsh ∩ ∂Ωs, (36)

[φ(r)] = 0 on ∂Ωi ∪ (∂Ωsh ∩ ∂Ωs) , (37)

[∇φ(r) · n] = 0 on ∂Ωsh ∩ ∂Ωs, (38)

[ε(r)∇φ(r) · n] = εi∇φ∗(r) · n on ∂Ωi, (39)

where ∂ denotes the boundary of a domain, the jump function [φ(r)] = limrsh→r φ(rsh)− limri→r φ(ri)

at r ∈ ∂Ωi with rsh ∈ Ωsh and ri ∈ Ωi, ε(r) = εs in Ωsh and ε(r) = εionε0 in Ωi, εion is a dielectric
constant in Ωi, n is an outward normal unit vector at r ∈ ∂Ωi, and φ∗(r) = qi/(4πεi |r− 0|).
Equation (32) avoids large errors in a direct approximation of the delta function δ(r − 0) in the
singular charge qiδ(r− 0) of the solvated ion at the origin 0 by transforming the singular charge to the
Green’s function φ∗(r) on ∂Ωi in (39) as an approximation source of the electric field produced by the
solvated ion [169,170].

For simplicity, we consider a general binary (K = 2) electrolyte Cz2Az1 with the valences of the
cation Cz1+ and anion Az2− being z1 and z2, respectively. The first-order Taylor approximation of the
charge density functional ρion(φ(r)) in (17) with respect to the electric potential φ(r) yields

ρion(φ(r)) ≈
−CB

1 q1

kBT
[(q1 − q2)−Λq1] φ(r), (40)

where Λ = CB
1 (v1 − v2)

2 /
[
ΓBv0 +

(
v2

1CB
1 + v2

2CB
2 + v2

3CB
3
)]

which is a quantity corresponding to a
linearization of the steric potential Strc(r) [76]. Consequently, we obtain a generalized Debye length

lD4PBik =

(
εskBT

CB
1 ((1−Λ)q2

1 − q1q2)

)1/2

(41)

that reduces to the original Debye length lD [11] if v1 = v2 6= 0 (two ionic species with equal radius
and thus Λ = 0) or v1 = v2 = v3 = 0 (all particles treated as volumeless points in standard texts for
PB [11]). The nonlinear value of Λ 6= 0 for v1 = v2 6= 0 can be obtained by Newton’s method [76].

Equation (33) is a second-order PDE that requires two boundary conditions like (35) and (36)
for a unique solution ψ(r). Since ψ(r) = εs∇2φ(r) = −ρ(r) ≈ εsκ

2φ(r) if lc = 0, Equation (36) is a
simplified (approximate) boundary condition for ψ(r) on ∂Ωsh ∩ ∂Ωs without involving higher-order
derivatives of ψ(r) (or the third-order derivative of φ(r)). The approximations in (36) and (40) do not
significantly affect our generalized DH model’s ability to fit activity data. However, these assumptions
should be carefully scrutinized in other applications such as highly charged surfaces. Bazant et al. have
recently developed more consistent and general boundary conditions for their fourth-order model by
enforcing continuity of the Maxwell stress at a charged interface [171,172].

In [76], we analytically solve the linear 4PBik PDEs (32), (33), and (34) with (40) in a similar way
as Debye and Hückel solved the linear PB equation for a spherically symmetric system. However,
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the spherical domain shown in Figure 1 and the boundary and interface conditions in (35)–(39) are
different from those of the standard method for the linear PB equation in physical chemistry texts [11].
The analysis consists of the following steps: (i) The nonlinear term ρion(r) in (33) is linearized to the
linear term−εsφ/l2

D4PBik in (40) as that of Debye and Hückel. (ii) The linear PDEs corresponding to (33)
and (34) are then formulated into a system of eigenvalue problems with eigenfunctions (φ(r), ψ(r))
and eigenvalues (λ1, λ2), where the general solution of φ(r) is equal to that of Debye and Hückel in
the solvent domain Ωs (not the entire domain) when lc = v1 = v2 = v3 = 0. (iii) A unique pair of
eigenfunctions

(
φ4PBik(r), ψ4PBik(r)

)
is found under conditions (35)–(39), where φ4PBik(r) is equal to

that of Debye and Hückel in Ωs when lc = v1 = v2 = v3 = 0.
The analytical potential function that we found [76] is

φ4PBik(r) =





qi
4πεsRBorn

i
+ qi

4πεsRsh
i
(Θ− 1) in Ωi

qi
4πεsr +

qi
4πεsRsh

i
(Θ− 1) in Ωsh

qi
4πεsr

[
λ2

1e−
√

λ2(r−Rsh
i )−λ2

2e−
√

λ1(r−Rsh
i )

λ2
1(
√

λ2Rsh
i +1)−λ2

2(
√

λ1Rsh
i +1)

]
in Ωs,

(42)

where

Θ =
λ2

1 − λ2
2

λ2
1
(√

λ2Rsh
i + 1

)
− λ2

2
(√

λ1Rsh
i + 1

) , (43)

r = |r|, λ1 =
(

1−
√

1− 4l2
c /l2

D4PBik

)
/
(
2l2

c
)
, and λ2 =

(
1 +

√
1− 4l2

c /l2
D4PBik

)
/
(
2l2

c
)
. Please note

that limlc→0 λ1 = 1/l2
D4PBik, limlc→0 λ2 = ∞, and limlc→0 Θ = limCB

1→0 Θ = limlD4PBik→∞ Θ =

1 [76]. The linearized 4PBik potential φ4PBik(r) reduces to the linearized PB potential φPB(r) =

qie−r/lD /(4πεsr) as in standard texts (e.g., Equation (7.46) in [11]) by taking limlc→0 φ4PBik(r) with
vk = 0 for all k, Rsh

i = 0, and r > 0 [76].
As discussed in [173], since the solvation free energy of an ion i varies with salt concentrations,

the Born energy q2
i

(
1

εw
− 1
)

/8πε0R0
i in pure water (i.e., CB

i = 0) with a constant Born radius R0
i

should change to depend on CB
i ≥ 0. Equivalently, the Born radius RBorn

i in (42) is variable and we can
model it from R0

i by a simple formula [69,73]

RBorn
i = θR0

i , θ = 1 + αi
1

(
CB

i

)1/2
+ αi

2CB
i + αi

3

(
CB

i

)3/2
, (44)

where CB
i = CB

i /M is a dimensionless bulk concentration and αi
1, αi

2, and αi
3 are parameters for

modifying the experimental Born radius R0
i to fit experimental activity coefficient γi that changes with

the bulk concentration CB
i of the ion. The Born radii R0

i given below are from [173] obtained from the
experimental hydration Helmholtz free energies of those ions given in [12]. The three parameters in (44)
have physical or mathematical meanings unlike many parameters in the Pitzer model [19,153,156].
The first parameter αi

1 adjusts R0
i and accounts for the real thickness of the ionic atmosphere (Debye

length), which is proportional to the square root of the ionic strength in the DH theory [11]. The second
αi

2 and third αi
3 parameters are adjustments in the next orders of approximation beyond the DH

treatment of ionic atmosphere [73].
The potential value φ0(0) = limCB

1→0 φ4PBik(0) = qi/
(
4πεsR0

i
)

by limCB
1→0 Θ = 1 and

limCB
1→0 RBorn

i = R0
i . From (31) and (42), we thus have a generalized activity coefficient γ4PBik

i in

ln γ4PBik
i =

q2
i

8πεskBT

(
1

RBorn
i
− 1

R0
i
+

Θ− 1
Rsh

i

)
, (45)
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which satisfies the DH limiting law, i.e., γ4PBik
i = γDH

i = 1 for infinite dilute (ideal) solutions as
CB

i → 0. The generalized activity coefficient γ4PBik
i reduces to the classical γDH

i proposed by Debye
and Hückel in 1923 [149], namely

ln γDH
i =

−q2
i

8πεskBTlD(1 + Rsh
i /lD)

(46)

if RBorn
i = R0

i (without considering Born energy effects), Rsh
i = Ri (an effective ionic radius [149]),

lD4PBik = lD (no steric effect), and lc = 0 (no correlation effect). The reduction shown in [76] is by
taking the limit of the last term in (45) as lc → 0, i.e., limlc→0

Θ−1
Rsh

i
= −1

Ri+lD
.

Hückel soon realized that the DH formula (46) failed to fit experimental data at high ionic strengths
and modified it in 1925 [150] by adding one more parameter η1 to become (see Equation (7.115) in [11])

ln γDHB
i =

−q2
i

8πεskBTlD(1 + η0
√

I)
+ η1 I, (47)

where η0 (an approximation of Rsh
i ) and η1 account for the distance of closest approach to the ion i and

the salting-out effect (an approximation of the Born energy), respectively [11], where I = 1
2 ∑i CB

i z2
i is

the ionic strength of the solution. Consequently, a variety of extended DH models γDHBx
i [153,174] in

the form similar to

ln γDHBx
i =

−q2
i

8πεskBTlD(1 + η0
√

I)
+ ∑

k 6=0
ηk Ik (48)

have been proposed in the literature to express other thermodynamic properties such as temperature
and pressure by a power expansion of I with more and more parameters ηk that can increase
combinatorially with various composition, temperature, and pressure to a frustrating amount [1,16,19].
Please note that ηk may also depend on ionic strength I in a complicated way, see e.g., Equation (2)
in [153]. Many expressions of those parameters are rather long and tedious and do not have clear
physical meaning [19,153,156]. The Davies equation [175] is a special form of (47) with a linear term
in I.

The RBorn
i term in (45) differs significantly from the last term in (48) as they are the inverse of each

other in terms of I and parameters, i.e., I, α1, α2, and α3 are in the denominator in (45) whereas I and ηk
are in the numerator in (48). This implies that γ4PBik

i and γDHBx
i vary oppositely with I. Consequently,

the values of α1, α2, and α3 are totally different from those of ηk when we use γ4PBik
i and γDHBx

i to
fit experimental activity coefficients with I varying from low to high values [76]. This may explain
why the empirical nature of extended DH models requires a great deal of effort to extract parameters
(without physical hints) from existent thermodynamic databases by regression analysis [19,153].

7. Numerical Methods

Numerical simulations are indispensable to study chemical, physical, and mathematical properties
of biological and chemical systems in realistic applications, especially with experimental details at
atomic scale such as ion channels in the Protein Data Bank (PDB) [57]. Continuum PDE models have
substantial advantages over Monte Carlo, Brownian dynamics (BD), or molecular dynamics in physical
insights and computational efficiency that are of great importance in studying a range of conditions
and concentrations especially for large nonequilibrium or inhomogeneous systems, as are present in
experiments and in life itself [10,17,21,95,121,176–185].

The literature on numerical methods for solving PB and PNP models is vast [64,68,74].
We summarize here some important features of the methods proposed in [64,68,74] for
Poisson-Bikerman and Poisson-Nernst-Planck-Bikerman models, which may be useful for workers
in numerical analysis and coding practice. Since PNPB including 4PBik is highly nonlinear and the
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geometry of protein structures is very complex, we emphasize two different types of methods, namely
nonlinear iterative methods and discretization methods for these two problems as follows.

7.1. Nonlinear Iterative Methods

For the PNPB system of K + 1 NP equations in (27), Laplace Equation (32), and two 4PBik
equations in (33) and (34), the total number of second-order PDEs that we need to solve is K + 4.
These PDEs are coupled together and highly nonlinear except (32). Numerically solving this kind of
nonlinear systems is not straightforward [64,68,74]. We use the following algorithm to explain essential
procedures for solving the steady-state PNPB system, where Ωm denotes the biomolecular domain that
contains a total of Q fixed atomic charges qj located at rj in a channel protein as shown in Figure 2L
for the gramicidin A channel downloaded from PDB with Q = 554, for example, ∂Ωm denotes the
molecular surface of the protein and the membrane lipids through which the protein crosses as shown
in Figure 2R, and Ωs is the solvent domain consisting of the channel pore and the extracellular and
intracellular baths for mobile ions and water molecules.

Figure 2. Left (L): Top view of the gramicidin A channel. Right (R): A cross section of 3D simulation
domain for the channel placed in a rectangular box, where Ωm is the biomolecular domain consisting
of the channel protein and the membrane and Ωs is the solvent domain consisting of the channel pore
and the baths.

Nonlinear Iterative Algorithm [68]:

1. Solve Laplace Equation −∇2φ(r) = 0 for φ0(r) in Ωm once for all with φ0(r) = φ∗(r) =

∑Q
j=1 qj/(4πεmε0

∣∣r− rj
∣∣) on ∂Ωm.

2. Solve Poisson Equation−∇ · (ε∇φ(r)) = ρion(r) for φOld(r) in Ωs with ρion(r) = 0, φOld = V = 0
on ∂Ω, and the jump condition

[
ε∇φOld · n

]
= −εmε0∇(φ∗ + φ0) · n on ∂Ωm as (39), where V

denotes applied voltage.
3. V = V0 6= 0 an initial voltage.
4. Solve 4PBik1 Equation εs

(
λcl2

c∇2 − 1
)

Ψ(r) = ∑K
i=1 qiCOld

i (r) for ΨNew(r) in Ωs with ∇ΨNew ·
n = 0 on ∂Ωm, ΨNew = 0 on ∂Ω, COld

i (r) = CB
i exp

(
−βiφ

Old(r) + vi
v0

Strc(r)
)

, Strc(r) = ln ΓOld(r)
ΓB ,

and ΓOld(r) = 1−∑K+1
j=1 λsvjCOld

j (r).

5. Solve 4PBik2 Equation −∇ · (εs∇φ(r)) + ρ′(φOld)φ(r) = −εΨNew + ρ′(φOld)φOld for φNew(r) in
Ωs with φNew = V on ∂Ω and the same jump condition in Step 2, where ρ′(φ) is the derivative of
ρ(φ) with respect to φ.

6. If the maximum error norm
∥∥∥φNew − φOld

∥∥∥
∞

> Tol, a preset tolerance, then set φOld =

ω4PBikφOld + (1−ω4PBik)φ
New and go to Step 4, else go to Step 7.

7. Solve NP Equation −∇ · Ji(r) = 0 for CNew
i (r) in Ωs for all i = 1, · · ·, K + 1 with Ji(r) =

−Di [∇Ci(r) + βiCi(r) ∇φOld(r)− λs
vi
v0

Ci(r)∇Strc(r)
]
, Strc(r) = ln ΓOld(r)

ΓB , CNew
i (r) = 0 on ∂Ω,

and Ji(r) · n = 0 on ∂Ωm.
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8. Solve 4PBik1 Equation for ΨNew as in Step 4 with CNew
i in place of COld

i .
9. Solve 4PBik2 Equation for φNew as in Step 5.

10. If
∥∥∥φNew − φOld

∥∥∥
∞
> Tol, then set φOld = ωPNPBφOld + (1−ωPNPB)φ

New and go to Step 7, else
go to Step 11.

11. V = V + ∆V and go to Step 4 until the desired voltage is reached.

Linearizing the nonlinear 4PBik (17) yields two second-order linear 4PBik1 and 4PBik2 in Steps
4 and 5 that differ from the nonlinear (33) and (34). Newton’s iterative Steps 4–6 for solving 4PBik1
and 4PBik2 dictates convergence that also depends on various mappings from an old solution φOld

to a new solution φNew. This algorithm uses two relaxation and three continuation mappings for
which we need to carefully tune two relaxation parameters ω4PBik and ωPNPB and three continuation
parameters λc (related to correlation effects), λs (steric effects), and ∆V (incremental voltage for applied
voltage). For example, the parameter λs in ΓOld(r) = 1−∑K+1

j=1 λsvjCOld
j (r) can be chosen as λs = k∆λ,

k = 0, 1, 2, · · ·, 1
∆λ , an incremental continuation from 0 (no steric effects) to 1 (fully steric effects) with

a tuning stepping length ∆λ. The algorithm can fail to converge if we choose ∆λ = 1 (without
continuation) for some simulation cases, since we may have ΓOld(r) < 0 resulting in numerically

undefined Strc(r) = ln ΓOld(r)
ΓB at some r where the potential φOld(r) is large.

7.2. Discretization Methods

All PDEs in Steps 1, 2, 4, 5, 8, and 9 are of Poisson type −∇2φ(r) = f (r). We use the central finite
difference (FD) method [64]

−φi−1,j,k + 2φijk − φi+1,j,k

∆x2 +
−φi,j−1,k + 2φijk − φi,j+1,k

∆y2 +
−φi,j,k−1 + 2φijk − φi,j,k+1

∆z2 = fijk, (49)

to discretize it at all grid points rijk = (xi, yj, zk) in a domain, where φijk ≈ φ(xi, yj, zk), fijk =

f (xi, yj, zk), and ∆x, ∆y, and ∆z are mesh sizes on the three axes from a uniform partition ∆x = ∆y =

∆z = h. The domains in Steps 1 and 2 are Ωm and Ωs, respectively. The discretization leads to a sparse
matrix system A

−→
φ =

−→
f with the compressed bandwidth of the matrix A being 7, where the matrix

size can be millions for sufficiently small h to obtain sufficiently accurate φijk.
The matrix system consists of four subsystems, two by the FD method (49) in Ωm and Ωs, one by

another method (see below) to discretize the jump condition in Step 2 on the interface ∂Ωm between
Ωs and Ωm, and one by imposing boundary conditions on ∂Ω. We need to solve the matrix system in
the entire domain Ω = Ωm ∪Ωs.

The convergence order of (49) is O(h2) (optimal) in maximum error norm for sufficiently smooth
function φ(r). However, this optimal order can be easily degraded to O(h0.37) [186], for example,
by geometric singularities if the jump condition is not properly treated. In [64], we propose the
interface method

−εi− 3
2
φi−2 +

(
εi− 3

2
+ (1− A1) ε−

i− 1
2

)
φi−1 − A2ε−

i− 1
2
φi

∆x2 = fi−1 +
ε−

i− 1
2

A0

∆x2 (50)

−B1ε+
i− 1

2
φi−1 +

(
(1− B2) ε+

i− 1
2
+ εi+ 1

2

)
φi − εi+ 1

2
φi+1

∆x2 = fi +
ε+

i− 1
2

B0

∆x2 , (51)

where

A1 =
− (εm − εs)

εm + εs
, A2 =

2εm

εm + εs
, A0 =

−2εm [φ]− ∆x [εφ′]
εm + εs

,

B1 =
2εs

εm + εs
, B2 =

εm − εs

εm + εs
, B0 =

2εs [φ]− ∆x [εφ′]
εm + εs

,
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to discretize the 1D Poisson equation− d
dx

(
ε(x) dφ(x)

dx

)
= f (x) at every jump position γ ∈ ∂Ωm that is at

the middle of its two neighboring grid points, i.e., xi−1 < γ = xi− 1
2
< xi, where xi− 1

2
= (xi−1 + xi)/2

and xi−1 and xi belong to different domains Ωs and Ωm. The corresponding cases in y- and z-axis
follow obviously in a similar way. This method yields optimal convergence [64].

Since the matrix system is usually very large in 3D simulations and we need to repeatedly solve
such systems updated by nonlinear iterations as shown in the above algorithm, linear iterative methods
such as the bi-conjugate gradient stabilized (bi-CG) method are used to solve the matrix system [74].
We propose two parallel algorithms (one for bi-CG and the other for nonlinear iterations) in [74] and
show that parallel algorithms on GPU (graphic processing unit) over sequential algorithms on CPU
(central processing unit) can achieve 22.8× and 16.9× speedups for the linear solver time and total
runtime, respectively.

Discretization of Nernst–Planck equations in Step 7 is different from (49) because the standard
FD method

Ci+1 − Ci
∆x

=
Ci+1 + Ci

2

(
−β

∆φi
∆x

+
∆Strc

i
∆x

)
(52)

for the zero flux (J(x) = −D(x)
(

dC(x)
dx + βC(x) dφ(x)

dx − v
v0

C(x) dStrc(x)
dx

)
= 0) can easily yield

Ci+1 − Ci > Ci+1 + Ci (53)

and thereby a negative (unphysical) concentration Ci < 0 at xi if

1
2
(
−β∆φi + ∆Strc

i
)
> 1, (54)

where ∆φi−1 = φi − φi−1, φi ≈ φ(xi) etc. Therefore, it is crucial to check whether the generalized
Scharfetter–Gummel (SG) condition [68]

− β∆φi + ∆Strc
i ≤ 2 (55)

is satisfied by any discretization method in implementation. This condition generalizes the well-known
SG stability condition in semiconductor device simulations [187,188] to include the steric potential
function Strc(r).

We extend the classical SG method [187] of the flux J(x) in [68] to

Ji+ 1
2
=
−D
∆x

[B(−ti)Ci+1 − B(ti)Ci] (56)

where ti = β∆φi − ∆Strc
i and B(t) = t

et−1 is the Bernoulli function [188]. Equation (56), an exponential

fitting scheme, satisfies (55) and is derived from assuming that the flux J, the local electric field −dφ
dx ,

and the local steric field dStrc

dx are all constant in the sufficiently small subinterval (xi, xi+1), i.e.,

J
D

=
−dC(x)

dx
− kC(x), for all x ∈ (xi, xi+1), (57)

where k = β
dφ
dx − dStrc

dx . Solving this ordinary differential equation (ODE) with a boundary condition
Ci or Ci+1 yields the well-known Goldman-Hodgkin-Katz flux equation in ion channels [9], which is
exactly the same as that in (56) but with the subinterval (xi, xi+1) being replaced by the height of the
entire box in Figure 2R.
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The generalized Scharfetter-Gummel method for Nernst-Planck equations is thus

dJ(xi)

dx
≈

Ji+ 1
2
− Ji− 1

2

∆x
=

bi−1Ci−1 + biCi + bi+1Ci+1

∆x2 = 0 (58)

Ji− 1
2

=
−D
∆x

[B(−ti−1)Ci − B(ti−1)Ci−1]

Ji+ 1
2

=
−D
∆x

[B(−ti)Ci+1 − B(ti)Ci]

ti = β∆φi − ∆Strc
i , B(t) =

t
et − 1

bi−1 = −B(ti−1), bi = B(−ti−1) + B(ti), bi+1 = −B(−ti).

The SG method is optimal in the sense that it integrates the ODE (57) exactly at every grid point
with a suitable boundary condition [189]. Therefore, the SG method can resolve sharp layers very
accurately [189] and hence needs few grid points to obtain tolerable approximations when compared
with the primitive FD method. Moreover, the exact solution of (57) for the concentration function
C(x) yields an exact flux J(x). Consequently, the SG method is current preserving, which is particularly
important in nonequilibrium systems, where the current is possibly the most relevant physical property
of interest [190].

It is difficult to overstate the importance of the current preserving feature and it must be
emphasized for workers coming from fluid mechanics that preserving current has a significance
quite beyond the preserving of flux in uncharged systems. Indeed, conservation of current (defined
as Maxwell did to include the displacement current of the vacuum ε0

∂E(r,t)
∂t ) is an unavoidable

consequence, nearly a restatement of the Maxwell equations themselves [104,106]. The electric field is
so strong that the tiniest error in preserving current, i.e., the tiniest deviation from Maxwell’s equations,
produces huge effects. The third paragraph of Feynman’s lectures on electrodynamics makes this point
unforgettable [191]. Thus, the consequences of a seemingly small error in preserving the flow of charge
are dramatically larger than the consequences of the same error in preserving the flux of mass.

We have developed a C++ code for solving 4PBik and PNPB models on laptop and high-
performance (with GPU) computers. For solving a 4PBik problem with a matrix system of size
4,096,000, for example, the code requires about 300 MB memory to store the compressed matrix system
with double precision. It took about 2 min and 47 s on a laptop computer equipped with 1.3 GHz Intel
CPU and 2 GB RAM to solve the linear system once by the successive overrelaxation method with an
error tolerance of 10−6 [64].

8. Applications

We have used the saturating Poisson-Nernst-Planck-Bikerman theory to study ion activities,
electric double layers, and biological ion channels in the past. The theory accounts for the steric
effect of ions and water molecules, the effects of ion-ion and ion-water correlations, the screening and
polarization effects of polar water, and the charge/space competition effect of ions and water molecules
of different sizes and valences. These effects are all closely related to the dielectric operator in (17) and
the steric potential in (4) that works on both macroscopic and atomic scales. We now illustrate these
properties in the following three areas using mostly experimental data to verify the theory.

8.1. Ion Activities

The curves in Figure 3 obtained by the generalized Debye-Hückel Formula (45) [75] fit well to the
experimental data by Wilczek–Vera et al. [192] for single-ion activities in 8 1:1 electrolytes. There are
only three fitting parameters in the formula, namely αi

1, αi
2 and αi

3, which we reiterate have specific
physical meaning as parameters of the water shell around ions. The values of the parameters are given
in Table 1 from which we observe that RBorn

i deviates from R0
i slightly. For example, RBorn

Cl−
/R0

Cl−
=

1.007∼1.044 (not shown) for Figure 3a with [LiCl] = 0∼2.5 M, since the cavity radius RBorn
Cl−

is an
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atomic measure from the infinite singularity δ(r− 0) at the origin, i.e., φ4PBik(r) and thus γ4PBik
i are

very sensitive to RBorn
i . On the other hand, γ4PBik

i is not very sensitive to Rsh
i (Rsh

Cl−
= 5.123∼5.083

Å), i.e., the fixed choice of Ow
i = 18 (an experimental value in [166]) for all curves is not critical but

reasonable [69]. The error between the estimated Ow
i and its unknown true value can always be

compensated by small adjustments of RBorn
i . The values of other symbols are aLi+ = 0.6 Å, aNa+ = 0.95

Å, aK+ = 1.33 Å, aF− = 1.36 Å, aCl− = 1.81 Å, aBr− = 1.95, aH2O = 1.4 Å, R0
Li+

= 1.3 Å, R0
Na+

= 1.618
Å, R0

K+ = 1.95 Å, R0
F− = 1.6 Å, R0

Cl−
= 2.266, R0

Br− = 2.47 Å [173], εw = 78.45, εion = 1, T = 298.15 K,
where ai is the (Pauling) radius of type i particle (ion) [173].

Table 1 also shows the significant order of these parameters, i.e.,
∣∣αi

1

∣∣ >
∣∣αi

2

∣∣ >
∣∣αi

3

∣∣ in general
cases. Please note that the three sets of the values of αNa+

1 , αNa+
2 , and αNa+

3 for the same Na+ in three
different salts NaCl, NaBr, and NaF are different because the diameters of the anions are different.
Figure 4 shows single-ion activities in 6 2:1 electrolytes by experiments [192] and 4PBik, where the
significant order (not shown) of three fitting parameters is similar to that in Table 1.

Table 1. Values of αi
1, αi

2, αi
3 in (44).

Fig.# i αi
1 αi

2 αi
3 Fig.# i αi

1 αi
2 αi

3

3a Li+ −0.006 −0.037 0.004 3e Na+ −0.049 0.042 −0.013
3a Cl− 0.052 −0.015 0 3e Br− 0.071 −0.048 0.006
3b Li+ −0.006 −0.011 −0.004 3f K+ 0.005 0.051 −0.015
3b Br− 0.026 −0.057 0.010 3f F− 0.033 −0.028 0.003
3c Na+ 0 0 0 3g K+ 0.031 0.022 −0.005
3c F− 0.027 0 0 3g Cl− 0.020 −0.025 0.004
3d Na+ −0.045 0.009 −0.002 3h K+ 0.025 −0.062 0.018
3d Cl− 0.063 −0.014 −0.002 3h Br− 0.001 0.082 0
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Figure 3. Single-ion activity coefficients of (a) LiCl (b) LiBr (c) NaF (d) NaCl (e) NaBr (f) KF (g) KCl
(h) KBr electrolytes. Comparison of 4PBik results (curves) with experimental data (symbols) [192] on
i = C+ (cation) and A− (anion) activity coefficients γi in various [CA] from 0 to 1.6 M.
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Figure 4. Single-ion activity coefficients of (a) MgCl2 (b) MgBr2 (c) CaCl2 (d) CaBr2 (e) BaCl2 (f) BaBr2

electrolytes. Comparison of 4PBik results (curves) with experimental data (symbols) [192] on i = C2+

(cation) and A− (anion) activity coefficients γi in various [CA2] from 0 to 1.5 M.

The electric potential and other physical properties of ionic activity can be studied in detail
according to the partitioned domain in Figure 1 characterized by RBorn

i and Rsh
i . For example, we

observe from Figure 5 that the electric potential (φ4PBik
Br− (0) = −2.4744 kBT/e) and the Born radius

(RBorn
Br− (2 M) = 2.0637 Å) generated by Br− at [LiBr] = 2 M are significantly different from that

(φ4PBik
Br− (0) = −0.6860 kBT/e, RBorn

Br− (2 M) = 4.2578 Å) at [KBr] = 2 M. The only difference between
these two solutions is the size of cations, i.e., the size of different positive ions significantly changes
the activity of the same negative ion at high concentrations. The difference between φ4PBik

Li+ (0) and
φ4PBik

K+ (0) is due to the sizes of Li+ and K+ not Br− as it is the same for both solutions.

0 2 4 6 8 10
0

2

4

6
Li

+

Br
-
 (LiBr)

K
+

Br
-
 (KBr)

Figure 5. Electric potential φ4PBik(r) profiles by (42) near the solvated ions Li+ and Br− at [LiBr] = 2 M,
and K+ and Br− at [KBr] = 2 M, where r is the distance from the center of the respective ion.

This example clearly shows the atomic properties of 4PBik theory in the ion Ωi and shell Ωsh
domains and the continuum properties in the solvent domain Ωs. The Born radius RBorn

i in (42)
determined by (44) changes with (i) ion-water interactions in Ωi ∪Ωsh and (ii) ion-ion interactions in
Ωi ∪Ωs via φ4PBik(r) in (42) that is self-consistently determined by the interface conditions in (35)–(39)
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and by (iii) multi-salt [73,76] concentrations in Ωs, (iv) the screening effects of water in Ωsh and ions and
water in Ωs, (v) the polarization effect of water in Ωs, (vi) the correlation effect between ions in Ωs, (vii) the
steric effects of all ions and water in the entire domain Ω = Ωi ∪Ωsh ∪Ωs, (viii) temperatures [73,76],
and (ix) pressures [73,76]. The generalized Debye-Hückel formula (45) includes all these 9 physical
properties with only 3 fitting parameters. However, we look forward to the day when we can derive the
three fitting parameters for particular types of ions, from independently determined experimental data.

8.2. Electric Double Layers

We consider a charged surface in contact with a 0.1 M 1:4 aqueous electrolyte, where the charge
density is σ = 1e/(50 Å2), the radius of both cations and anions is a = 4.65 Å (in contrast to an
edge length of 7.5 Å of cubical ions in [133]), and εs = 80 [72]. The multivalent ions represent large
polyanions adsorbed onto a charged Langmuir monolayer in experiments [133]. We solve (33) and (34)
using (49) in the rectangular box Ω = Ωs =

{
(x, y, z) : 0 ≤ x ≤ 40, − 5 ≤ y ≤ 5, − 5 ≤ z ≤ 5 Å

}

such that φ(r) ≈ 0 within the accuracy to 10−4 near and on the surface x = 40 Å. The boundary
conditions on the surface and its adjacent four planes are −εs∇φ · n = σ with n = 〈−1, 0, 0〉 and
−εs∇φ · n = 0 with n defined similarly, respectively.

The classical PB model (with a = aH2O = lc = 0, i.e., no size, void, and correlation effects)
produces unphysically high concentrations of anions (A4−) near the surface as shown by the dashed
curve in Figure 6L. The dotted curve in Figure 6L is similar to that of the modified PB in [133] and
is obtained by the 4PBik model with lc = 0 (no correlations), VK+2 = 0 (no voids), and aH2O = 0
(water is volumeless as in [133] and hence ΓB = 1− ∑K

i=1 viCB
i is the bulk water volume fraction).

The voids (VK+2 6= 0) and water molecules (aH2O 6= 0) have slight effects on anion concentration
(because of saturation) and electric potential (because water and voids have no charges) profiles as
shown by the thin solid curves in Figure 6L,R, respectively, when compared with the dotted curves.
However, ion-ion correlations (with lc = 1.6a [78]) have significant effects on ion distributions as
shown by the thick solid and dash-dotted curves in Figure 6L, where the saturation layer is on the
order of ionic radius a and the overscreening layer [78] (CA4−(x) ≈ 0 < CB

A4− = 0.1 M) of excess co-ions

(CC+(x) > CB
C+ = 0.4 M) is about 18 Å in thickness.

The saturation layer is an output (not an imposed condition) of our model unlike a Stern layer [193]
imposed by most EDL models to account for size effects near charge surfaces [194–196]. The electric
potentials φ(0) = 5.6 kBT/e at x = 0 and φ(11.5) = −1.97 kBT/e in Figure 6R obtained by 4PBik with
voids and correlations deviate dramatically from those by previous models for nearly 100% at x = 0 (in
the saturation layer) and 70% at x = 11.5 Å (in the screening layer) when compared with the maximum
potential φ(0) = 2.82 kBT/e of previous models. The 4PBik potential depth φ(11.5) = −1.97 kBT/e of
the overscreening layer is very sensitive the size a of ions and tends to zero as a→ 0.
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Figure 6. Left (L): Concentration profiles of anions CA4− (x) and cations CC+ (x) obtained by various
models in a C4A electrolyte solution with the charge density σ = 1e/(50 Å2) at x = 0. Right (R):
Electric potential profiles φ(x).
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8.3. Biological Ion Channels

Biological ion channels are a particularly appropriate test of a model of concentrated
ionic solutions.

The data available for tens to hundreds of different types of channels and transporters is
breathtaking: it is often accurate to a few per cent (because signal to noise ratios are so large and
biological variation hardly exists for channels of known amino acid sequence, which means nearly
every channel presently). The data is always nonequilibrium, i.e., current voltage relations in a wide
range of solutions of different composition and concentration, or (limiting zero voltage) conductance
in those solutions. Indeed, many of the channels do not function if concentrations are equal on both
sides and the electrical potential is zero. They are said to inactivate.

The data is often available for single channels recorded individually in patch clamp or bilayer
configuration. Data is available for a range of divalent (usually calcium ion) concentrations because
calcium concentration is often a controller of channel, transporter, and biological activity in the same
sense that a gas pedal is the controller of the speed of a car. The structure of the ion channel or
transporter is often known in breathtaking detail. The word ‘breathtaking’ is appropriate because
similar structures are rarely if ever known of strictly physical systems. The structure and the structure
of the permanent and polarization charge of the channel protein (that forms the pore through which
ions move) can be modified by standard methods of site directed mutagenesis, for example that are
available in ‘kit’ form usable by most molecular biology laboratories. Thus, models can be tested from
atomic detail to single-channel function to ensemble function to cellular and physiological function,
even to the ultimate biological function (like the rate of the heartbeat). Few other systems allow
experimental measurement at each level of the hierarchy linking the atomic composition of genes
(that encode the channel’s amino acid composition), to the atomic structure of the channel, right to
the function of the cell. The hierarchy here reaches from 10−11 to 10−5 m. When the channel controls
the biological function of an organ like the heart, the hierarchy reaches to 2 · 10−1 m, in humans
for example.

The biological significance of ion channels is hard to exaggerate since they play a role in organisms
analogous to the role of transistors in computers. They are the device that execute most of the physical
controls of current and ion movement that are then combined in a hierarchy of structures to make
biological cells, tissues, and organisms, if not populations of organisms.

From a physical point of view, ion channels provide a particularly crowded environment in
which the effects of the steric potential (crowding in more traditional language) and electrical potential
can combine to produce striking characteristics of selectivity and rectification. Theories that do not
deal explicitly with ion channel data, i.e., that do not predict current voltage relations from known
structures, seem to us to be begging central PHYSICAL questions that might falsify their approach.
In fact, as a matter of history it is a fact that we learned how to construct our model of bulk solutions
from our earlier work on ion channels.

8.3.1. Gramicidin A Channel

We use the gramicidin A (GA) channel in Figure 2L to illustrate the full
Poisson–Nernst–Planck–Bikerman theory consisting of Equations (4), (27), (28), (32)–(34),
and conditions (35)–(39) with—steric, correlation, polarization, dielectric, charge/space competition,
and nonequilibrium effects—at steady state using the algorithm and methods in Section 7 to perform
numerical simulations. The union domain Ωi ∪Ωsh in Figure 1 is replaced by the biomolecular domain
Ωm in Figure 2R.

Figure 7L shows I-V curves obtained by PNPB and compared with experimental data (symbols)
by Cole et al. [197] with bath K+ and Cl− concentrations CB = 0.1, 0.2, 0.5, 1, 2 M and membrane
potentials ∆V = 0, 50, 100, 150, 200 mV. The PNPB currents in pico ampere (pA) were obtained
with θ = 1/4.7 in the pore diffusion coefficients θDi from (30) for all particle species. The reduction
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parameter θ has been used in all previous PNP papers and is necessary for continuum is comparable to
MD, BD, or experimental data [198]. The values of other model parameters are listed in Table I in [68].
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Figure 7. Left (L): A comparison of PNPB (curves) and experimental [197] (symbols) I-V results with
bath K+ and Cl− concentrations CB = 0.1, 0.2, 0.5, 1, 2 M and membrane potentials ∆V = 0, 50, 100,
150, 200 mV. Right (R): Averaged steric potential Strc(r) profiles at each cross section along the pore
axis with CB = 0.1, 0.2, 0.5, 1, 2 M and ∆V = 200 mV. The same averaging method applies to the
following profiles.

We summarize the novel results of PNPB in [68] when compared with those of earlier continuum
models for ion channels: (i) The pore diffusion parameter θ = 1/4.7 agrees with the range 1/3 to 1/10
obtained by many MD simulations of various channel models [199–201] indicating that the steric
(Figure 7R), correlation, dehydration (Figure 8L), and dielectric (Figure 8R) properties have made
PNPB simulations closer (realistic) to MD than previous PNP for which θ differs from MD values
by an order to several orders of magnitude [200]. (ii) Figures 7R and 8L,R, which are all absent in
earlier work, show that these properties correlate to each other and vary with salt concentration and
protein charges in a self-consistent way by PNPB. (iii) The steric potential profiles in Figure 7R clearly
illustrate the charge/space competition between ions and water under dynamic and variable conditions.
For example, the global minimum value in Figure 7R at r̂ = 13.1 on the channel axis, where the channel
protein is most negatively charged, is Strc(r̂) = ln Γ(r̂)

ΓB = −0.485 yielding Γ(r̂)/ΓB = 0.616. Namely it
is 38.4% more crowded at r̂ than in the bath and mainly occupied by K+ as shown in Figures 8L and
9L. It is important to quantify voids (Γ(r) = 1−∑K+1

i=1 viCi(r)) at highly charged locations in channel
proteins and many more biological, chemical, and nano systems. The charge space competition has
been a central topic in the study of ion channels since at least [202–206]. The literature is too large to
describe in detail here. Recent reviews can help [207–210]. (iv) PNPB preserves mass conservation due
to void and size effects in contrast to PNP as shown in Figure 9R, where the total number of H2O and
K+ in the channel pore is 8 [211].
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Figure 8. Left (L): Water concentration CH2O(r) profiles. Right (R): Dielectric function ε̃(r) profiles.
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channel pore by PNPB and PNP as [KCl] increases from 0 to 2 M. The total number of H2O and K+ in
the pore is 8 [211], which is conserved by PNPB but not by PNP (without steric and correlation effects).

8.3.2. L-Type Calcium Channel

L-type calcium channels operate very delicately in physiological and experimental conditions.
They exquisitely tune their conductance from Na+-flow, to Na+-blockage, and to Ca2+-flow when
bath Ca2+ varies from trace to high concentrations as shown by the single-channel currents in femto
ampere in Figure 10L (circle symbols) recorded by Almers and McCleskey [212], where the range of
extracellular concentrations [Ca2+]o is 108-fold from 10−10 to 10−2 M.
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Figure 10. Left (L): Single-channel currents in femto ampere (fA) plotted as a function of log10[Ca2+]o.
Experimental data of [212] are marked by small circles and PNPB data are denoted by the plus sign and
lines. Right (R): The Lipkind–Fozzard pore model of L-type calcium channel, where 3 Ca2+ are shown
in violet, 8 O1/2− in red, 2 H2O in white and red. Reprinted with permission from (G. M. Lipkind and
H. A. Fozzard, Biochem. 40, 6786 (2001)). Copyright (2001) American Chemical Society.

We used the Lipkind-Fozzard molecular model [213] shown in Figure 10R to perform PNPB
simulations with both atomic and continuum methods (Algorithm 2 in [68]) for this model channel,
where the EEEE locus (four glutamate side chains modeled by 8 O1/2− ions shown by red spheres)
forms a high-affinity Ca2+ binding site (center violet sphere) that is essential to Ca2+ selectivity,
blockage, and permeation. Water molecules are shown in white and red. More realistic structures
would be appropriate if the work were done now, but the analysis here shows the ability of PNPB to
deal with experimental data using even a quite primitive model of the structure.

PNPB results (plus symbols) in Figure 10L agree with the experimental data at [Na+]i = [Na+]o =

32 mM, [Ca2+]i = 0, Vo = 0, and Vi = −20 mV (the intracellular membrane potential), where the
partial Ca2+ and Na+ currents are denoted by the solid and dotted line, respectively. These two
ionic currents show the anomalous mole fraction effect of the channel at nonequilibrium, i.e., trace
concentrations of Ca2+ ions effectively block the flow of abundant monovalent cations [212].
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8.3.3. Potassium Channel

Potassium channels conduct K+ ions very rapidly (nearly at the diffusion rate limit (108 per
second) in bulk water) and selectively (excluding, most notably, Na+ despite their difference in
radius is only aK+ − aNa+ = 1.33− 0.95 = 0.38 Å in sub-Angstrom range) [9]. Figure 11 shows the
structure of KcsA (PDB ID 3F5W) crystallized by Cuello et al. [214], where the spheres denote five
specific cation binding sites (S0 to S4) [215] in the solvent domain Ωs and the channel protein in Ωm

consists of N = 31,268 charged atoms. The exquisite selectivity of K+ over Na+ by K channels can
be quantified by the free energy (G) differences of K+ and Na+ in the pore and in the bulk solution,
i.e., by ∆G(K+) =

[
Gpore(K+)− Gbulk(K+)

]
and ∆G(Na+) = Gpore(Na+) − Gbulk(Na+) [215].

Experimental measurements [216–218] showed that the relative free energy

∆∆G(K+ → Na+) = ∆G(Na+)− ∆G(K+) = 5∼6 kcal/mol (59)

unfavorable for Na+.

Figure 11. The crystal structure of the K channel KcsA (PDB ID 3F5W) [214] with five cation binding
sites S0, S1, S2, S3, and S4 [215] marked by spheres.

Free energies can be calculated by the electric and steric potentials [72]

φS2 =
1

4πε0

(
1
6

6

∑
k=1

N

∑
j=1

qj

εp(r)|cj − Ak|
+

qS2

εbaS2

)
, Strc

S2 = ln
1− vS2

VS2

ΓB , (60)

at the binding site S2 [215] on the atomic scale, where S2 also denotes Na+ or K+ (the site is occupied
by a Na+ or K+), qj is the charge on the atom j in the protein given by PDB2PQR [219], εp(r) =

1 + 77r/(27.7 + r) [119], r = |cj− cS2|, cj is the center of atom j, Ak is one of six symmetric surface
points on the spherical S2, εb = 3.6, and VS2 = 1.5vK+ is a volume containing the ion at S2. We obtained
∆∆G = 5.26 kcal/mol [72] in accord with the MD result 5.3 kcal/mol [215], where Gpore(Na+) =

4.4, Gbulk(Na+) = −0.26, Gpore(K+) = −0.87, Gbulk(K+) = −0.27 kcal/mol, φNa+ = 7.5 kBT/e,
vNa+

v0
Strc

Na+ = 0.23, φK+ = −1.93 kBT/e, vK+

v0
Strc

K+ = −0.59, and CB
Na+ = CB

K+ = 0.4 M.
The crucial parameter in (60) is the ionic radius aS2 = 0.95 or 1.33 Å (also in |cj − Ak|) that affects

φS2 very strongly but Strc
S2 weakly. Another important parameter in (60) is the bulk void fraction ΓB

that depends on the bulk concentrations of all ions and water and links the total energy of the ion at S2
to these bulk conditions measured very far away (∼106 Å) in the baths on the atomic scale.

8.3.4. Sodium Calcium Exchanger

The Na+/Ca2+ exchanger (NCX) is the major cardiac mechanism that extrudes intracellular Ca2+

across the cell membrane against its chemical gradient by using the downhill gradient of Na+ [28].
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The molecular basis of Na+/Ca2+ interactions in NCX so striking to Lüttgau and Niedegerke [220]
have been revealed by the cloning of NCX gene [221] and the structure of the ancient archaebacterial
version NCX_Mj determined by Liao et al. [222]. Figure 12L illustrates NCX_Mj that consists of 10
transmembrane (TM) helices in which eight helices (TMs 2 to 5 and 7 to 10 labeled numerically in
the figure) form a binding pocket of three putative Na+ (green spheres) and one Ca2+ (blue sphere)
binding sites [222].

Figure 12. Left (L): Structure of NCX_Mj consisting of ten transmembrane helices that form a binding
pocket of three Na+ (green spheres) and one Ca2+ (blue sphere) binding sites [222]. Right (R):
Schematic diagram of a cycle of Na+/Ca2+ exchange in NCX consisting of five total potential states
(TPS). Two Na+ and one Ca2+ ions enter the binding pocket in the outward- (TPS2→ TPS3→ TPS4) and
inward-facing (TPS5→ TPS1) conformations, respectively. They exit in opposite conformations [70].

We developed a cyclic model of Na+/Ca2+ exchange mechanism in NCX [70] using (60) to
calculate five total (electric and steric) potential states (TPS) of various Na+ and Ca2+ ions shown in
Figure 12R, where TPS1 and TPS4 are stable (with negative values) and TPS2, TPS3, and TPS5 are
unstable (positive). Four extra sites in Figure 12R are determined empirically and close to entrance
or exit locations of the binding pocket. The green and blue dots in the diagram represent Na+ and
Ca2+ ions occupying the respective sites. Two Na+ and one Ca2+ ions enter the binding pocket in
the outward- (TPS2→ TPS3→ TPS4) and inward-facing (TPS5→ TPS1) conformations, respectively.
They exit in opposite conformations. The cycle consists of five steps.

Step 1: A conformational change is hypothetically activated [70] by a binding Ca2+ at the blue site
(S1) in TPS1 from inward-facing to outward-facing in TPS2.

Step 2: One Na+ enters the binding pocket from the access site in TPS2 to the top Na+ binding
site (S2) in TPS3 followed by another Na+ to the access site. These two coming Na+ ions move
the existing Na+ ion from the middle Na+ site (S3) to the bottom site (S4) by their Coulomb forces.
TPS2 and TPS3 are unstable meaning that the two coming Na+ ions have positive energies and are
thus mobile. The selectivity ratio of Na+ to Ca2+ by NCX from the extracellular bath to the binding
site S2 is CNa+(S2)/CCa2+(S2) = 55.4 under the experimental conditions of the extracellular bath
[
Na+

]
o = 120 mM and

[
Ca2+

]
o
= 1 µM [70].

Step 3: The vacant site S3 in TPS3 is a deep potential well with TP = −8.89 kBT/e that pulls the
two unstable Na+ ions to their sites in TPS4. Meanwhile, these two moving Na+ and the stable Na+ at
S4 extrude the Ca2+ (with unstable TP = 1.65) at S1 out of the pocket to become TPS4.

Step 4: Now, all three Na+ ions in TPS4 are stable with negative TP and the vacant site S1 has an
even deeper TP = −16.02. We conjecture that this TP value may trigger a conformational change from
outward-facing in TPS4 to inward-facing in TPS5. The mechanism of conformational changes in NCX
is yet to be studied.
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Step 5: Furthermore, this large negative TP in TPS5 yields a remarkably large selectivity ratio
of Ca2+ to Na+ by NCX from the intracellular bath to S1, i.e., CCa2+(S1)/CNa+(S1) = 4986.1 at[
Ca2+

]
i
= 33 µM and

[
Na+

]
i = 60 mM. A coming Ca2+ in TPS5 then extrudes two Na+ ions out of

the packet when it settles at S1 in stable TPS1.
Assuming that the total time T of an exchange cycle is equally shared by the 5 TPS, this model

also infers that the stoichiometry of NCX is 3
5 T·2 Na+ : 2

5 T·1 Ca2+ = 3 Na+ : 1 Ca2+ in transporting
Na+ and Ca2+ ions [70], which is the generally accepted stoichiometry (see reviews of Blaustein and
Lederer [223] and Dipolo and Beaugé [224]) since the pivotal work of Reeves and Hale [225] and
other subsequent experimental results. Please note that our model does not consider the electrogenic
property of NCX [223], i.e., the driving force of the electric potential gradient.

9. Conclusions

We have covered a range of aspects of the fourth-order Poisson-Nernst-Planck-Bikerman theory
from physical modeling, mathematical analysis, numerical implementation, to applications and
verifications for aqueous electrolyte systems in chemistry and biology. The theory can describe
many properties of ions and water in the system that classical theories fail to describe such as
steric, correlation, polarization, variable permittivity, dehydration, mass conservation, charge/space
competition, overscreening, selectivity, saturation, and more. All these properties are accounted for in
a single framework with only two fundamental parameters, namely the dielectric constant of pure
water and the correlation length of empirical choice. Ions and water have their physical volumes as
those in molecular dynamic simulations. The theory applies to a system at both continuum and atomic
scales due to the exact definition of the total volume of all ions, water molecules, and interstitial voids.

The most important features of PNPB are that (i) ions and water have unequal volumes with
interstitial voids, (ii) their distributions are saturating of the Fermi type, (iii) these Fermi distributions
approach Boltzmann distributions as the volumes tend to zero, and (iv) all the above physical properties
appear self-consistently in a single model not separately by various models. Most existing modified
Poisson-Boltzmann models consider ions of equal size and fail to yield Boltzmann distributions in
limiting cases, i.e., the limit is divergent indicating that steric energies are poorly estimated. Numerous
models for different properties such as steric, correlation, polarization, permittivity are proposed
separately in the past.

We have shown how to solve 4PBik analytically and PNPB numerically. The generalized
Debye-Hückel theory derived from the 4PBik model gives valuable insights into physical properties
and leads to an electrolyte (analytical) equation of state that is useful to study thermodynamic activities
of ion and water under wide ranges of composition, concentration, temperature, and pressure.

Numerically solving the fourth-order PNPB model in 3D for realistic problems is a challenging
task. There are many pitfalls that one must carefully avoid in coding. For that reason, we have
particularly mentioned some methods for handling the convergence issues of the highly nonlinear
PNPB system of partial differential equations and the discretization problems concerning the
complicate interface between molecular and solvent domains and the Scharfetter-Gummel stability
condition to ensure positivity of numerical concentrations and current preservation.

Finally, we have shown novel results obtained by PNPB for chemical and biological systems on
ion activities, electric double layers, gramicidin A channel, L-type calcium channel, potassium channel,
and sodium calcium exchanger. These results agree with experiments or molecular dynamics data
and show not only continuum but also atomic properties of the system under far-field conditions.
The fourth-order PNPB model is consistent and applicable to a great variety of systems on a vast scale
from meter to Angstrom.
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Abbreviations

The following abbreviations are used in this manuscript:

4PBik Fourth-Order Poisson-Bikerman
BD Brownian Dynamics
bi-CG bi-Conjugate Gradient Stabilized
DH Debye-Hückel
EDL Electric Double-Layer
FD Finite Difference
GA Gramicidin A
JESS Joint Expert Speciation System
L-J Lennard–Jones
MC Monte Carlo
MD Molecular Dynamics
NCX Sodium Calcium Exchanger
NP Nernst-Planck
ODE Ordinary Differential Equation
OZ Ornstein-Zernike
PB Poisson–Boltzmann
PDE Partial Differential Equation
PDB Protein Data Bank
PNP Poisson-Nernst-Planck
PNPB Poisson-Nernst-Planck-Bikerman
SG Scharfetter-Gummel
TPS Total Potential State
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Abstract: Biological ion channels and synthetic nanopores are responsible for passive
transport of ions through a membrane between two compartments. Modeling these ionic
currents is especially amenable to reduced models because the device functions of these pores,
the relation of input parameters (e.g., applied voltage, bath concentrations) and output parameters
(e.g., current, rectification, selectivity), are well defined. Reduced models focus on the physics
that produces the device functions (i.e., the physics of how inputs become outputs) rather than
the atomic/molecular-scale physics inside the pore. Here, we propose four rules of thumb for
constructing good reduced models of ion channels and nanopores. They are about (1) the importance
of the axial concentration profiles, (2) the importance of the pore charges, (3) choosing the right
explicit degrees of freedom, and (4) creating the proper response functions. We provide examples for
how each rule of thumb helps in creating a reduced model of device behavior.

Keywords: nanopores; ion channels; reduced models; Monte Carlo; classical density functional
theory; Poisson-Nernst-Planck

We dedicate this paper to our distinguished colleague and dear friend, Douglas Henderson (1934–2020).

1. Introduction

When modeling anything, some approximations must be made, usually to make the calculations
feasible. For example, molecular dynamics (MD) simulations use Lennard-Jones (LJ) interactions
between atoms in lieu of quantum mechanical interactions. This still keeps the all-atomic nature of
the simulations, but can now include more than a small number of atoms. Other models coarse-grain
the system much more, reducing the physics to simply calculated properties. Electrical circuits are an
example; the electrons are never explicitly modeled, nor are the quantum mechanical interactions that
produce electrical resistance. Instead, the concept of resistance is reduced to a proportionality factor
between the current and voltage, a kind of response function that (phenomenologically) encapsulates
complicated physics in a number. A reduced model can thus be very powerful.

In many nanoscale systems, however, it is not a priori clear how (or even if) one can reduce the
physics and still get sensible results. In this paper, we would like to better understand and define
when and why reduced models work for certain problems, but not for others? (Ion channels can be
considered as natural nanopores, a nomenclature often used in the literature. In this work, when we
use the term “nanopore”, we mean synthetic ones.) Why do reduced models work well for some
biological ion channels and synthetic nanopores What are reduced models and what defines a “good”
reduced model? Our attempt to answer these questions is based on the knowledge accumulated over
20 years [1–52] of modeling and computing permeation and selectivity in ion channels and nanopores.
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1.1. The Device Approach

Reduced models are especially useful if we focus on a system as a simple device [53,54]. A device
is a black box that responds to some incoming stimuli (input signals) by producing output signals.
Our goal is to open the black box a little bit and peak into it to understand the inner mechanisms
of the device that make the output. In the case of nanodevices, understanding necessarily means
understanding molecular mechanisms due to the microscopic dimensions of the underlying processes.
This is generally accomplished by modeling. In our model, we do not want to include everything;
we focus on those components that are absolutely necessary to reproduce device behavior. By device
behavior, we mean the relation of the input signal and output signal, also called device function.

By focusing on device function we reduce the problem at hand. We look at a complex system
from an engineering point of view. While complex systems are called complex because the engineering
approach tends to fail, there are systems where focusing on the important degrees of freedom allows us
to reproduce and explain device behavior, which is an experimentally measurable quantity. The system
gives the same response to a given signal in a reproducible manner no matter how complicated the
underlying molecular processes are.

Let us take the example of a toy model of an airplane. If we want to reproduce the primary device
function—the plane flies as a result of lift produced by a horizontal driving force—we do not need to
model unimportant degrees of freedom like seats inside the plane and screens on the backs of the seats.
We just need to model the proper shape of the plane, the wings especially. Those are the important
degrees of freedom.

Similarly, in modeling ion channels, the knowledge of which amino acid residues are charged (and
thus interact with the ions) is an important degree of freedom. The residues that are uncharged and are
far from the pore are unimportant. For example, in our model of the 2.2 megadalton ryanodine receptor
(RyR) channel (one of the largest ion channels known), we only include five charged amino acids.
Moreover, as we describe later in Section 3.1.2, not having the surface charge pattern correct (because
all the charged amino acids had not been identified yet) produces qualitatively incorrect results.

1.2. Ion Channels and Nanopores as Devices

A basic function of nanopores and open ion channels is to connect the bulk aqueous phases
separated by a membrane and let ions through in a controlled manner [55–57]. The basic input signals
of the baths+pore system are the concentrations and electrical potentials on the two sides of the
membrane. A difference in any of these properties (concentration and/or electrical potential difference,
for example, voltage) acts as a driving force for the diffusing ions and results in ionic currents that are
the output signals of the system.

We can also consider the structural features of the nanopore as an input signal as soon as they
can be changed easily. The most important feature is the surface charge pattern on the wall of the
nanopore [58]. This can be modified very easily with pH [59–61] or an electrical potential [62,63]
applied on the wall of a nanopore (a gate potential, to borrow a term from semiconductors) when it
is made of a conducting material (typically, gold). Surface charge pattern can also be changed with
chemical methods in the case of nanopores [64,65] and with point mutation techniques in the case of
ion channels. Here, we restrict ourselves to bath concentrations and voltage (the boundary conditions
of the problem of steady state transport) as the main input parameters also controlled by experiments.

The pore’s structural features are important because they determine the current response of the
device given to the driving force. That relation determines the various useful device functions that are
commonly attributed to ion channels and nanopores. An especially important feature of ion channels
is selectivity. Various ion channels with well-defined functions in the cell are often distinguished by
the specific ion that they favor over other kinds of ions. Regardless of their strict selectivity properties,
ions channels are often named on the basis of their physiological roles in the cell. This way, for example,
we distinguish calcium channels, potassium channels, sodium channels, and so on.
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Nanopores can be manipulated more easily, so they can exhibit a wider variety of
functions [56,65–72]. They can also be selective if they distinguish cations from anions. They can
behave as diodes if they let ions through at one sign of the voltage, but not at the opposite sign of
voltage, a phenomenon called rectification. If we can modify the pore’s properties by a third signal
(gate voltage or pH, for example), we can use the pore as a transistor [45,48,73]. We can also decorate
the nanopore’s wall with molecules that bind certain ion species selectively. In this case, if that ion
is present in the electrolyte, it can change the pore wall’s properties by binding to these molecules
and thus changing the current of the background electrolyte. In this way, the nanopore can be used
as a sensor [43,47,49,51]. The range of applications of nanopores for specific tasks is much wider,
well beyond the short list above, for example, DNA sequencing.

2. Reduced Models

The main idea of reduced models is in their name: the number of degrees of freedom that we
treat in detail in the model is reduced. We build only those components into the reduced model that
are necessary to reproduce and understand the device function. We call these degrees of freedom the
important ones. The unimportant or implicit degrees of freedom are treated with less precision and are
averaged into “response functions”.

A good reduced model is defined by choosing the important degrees of freedom carefully and
constructing sufficiently accurate response functions for the others.

Our aim with this paper is to illustrate how to accomplish this, with ion channels and nanopores as
worked examples.

The first question is how reduced our model should be? How much detail can we ignore?
In this respect, the models shown in this paper belong to a “no man’s land” between the really
detailed all-atom models studied by MD simulations popular in ion channel studies and mean-field
continuum models (the Poisson-Nernst-Planck (PNP) theory, for example) popular in nanopore studies.
We believe that our position between these two limiting cases is especially suitable to shed light on the
nature of good reduced models that are appropriate for a well-specified purpose, namely, studying a
device behavior.

First, we explain in a few words, why reduced models can be more suitable for ion channel devices
than all-atom models, at least, in certain cases. All-atom, in this context, means that we model all
water molecules and every single atom of the protein and the membrane explicitly. There are various
problems with these all-atom models. They cannot always cover the physiological parameter range,
small voltages or small concentrations, for example. They have sampling issues, specifically regarding
the simulation of ionic currents, because this means collecting samples of rare events, for example,
ions passing through the pore. The applied force fields might be problematic; they tend to overestimate
interactions between multiply charged entities due to missing electronic polarization in the models [74].
Also, the models are based on X-ray structures of the protein that are not always available, and even if
they are, the crystal structures often do not represent native functional states. For example, the fact
that they have been obtained for a frozen structure calls into question their applicability at room
temperature. Such uncertainties might be overcome with reduced models with properly adjusted
parameters if the goal is to reproduce the conductance properties of the pore.

Reduced models, as soon as they contain the necessary physics, do not suffer from these
shortcomings as much (they have other kinds of shortcomings, naturally). They can be simulated
faster, sampled better, and the model contains only the basic physics necessary to reproduce the device
behavior. One can spare oneself from computing the unimportant details. What is the important
physics and degrees of freedom is always determined by the problem at hand, the intention of the
investigator (to what deepness are you interested in the details, for example), and the computational
resources. Computation, namely, the simulation method with which we investigate the model is a
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crucial point of the research, but, from the point of view of the train of thoughts of this discussion,
they have secondary importance.

2.1. Ionic Distribution in the Pore as a Determining Factor

One aspect of our methodologies, however, is important and should be discussed here. In our
work, we usually use the Nernst-Planck (NP) transport equation [75,76] to compute the ionic flux:

ji(r) = −
1

kT
Di(r)ci(r)∇µi(r), (1)

where ji(r), Di(r), ci(r), and µi(r) are the flux density, the diffusion coefficent profile, the concentration
profile, and the electrochemical potential profile of ionic species i, respectively. One important principle
(rule of thumb) of this paper follows from this equation:

1. The current carried by an ionic species as a result of a given driving force (conductance) is mainly
determined by the axial concentration profile of that species inside the pore.

One interpretation of this statement is the obvious one that if there are more ions in the pore, they will
carry more current. The mechanism can, however, be more subtle than that. Pores working on the
basis of excluding certain ions from the pore (sodium channels exclude K+, while nanopores with
overlapping double layers exclude the coion) are controlled by depletion zones of these excluded ionic
species inside the pore somewhere. These depletion zones of low concentration act as high resistance
elements in a equivalent circuit if we imagine the consecutive zones of the pore as resistors connected
in series. These ideas will be fleshed out below, in our worked examples.

2.2. What Determines Local Concentration Inside the Pore?

The probability that a particle is found at a given position r in the system depends on the potential
energy, U(r), and the electrochemical potential, µi(r), of ionic species i at r (see the acceptance
probability of the particle insertion/deletion step in a Grand Canonical Monte Carlo (GCMC)
simulation [29]). The distribution of ions inside the pore, therefore, is influenced by (1) local interactions
of the ions with pore charges, other ions, solvent molecules, and confining surfaces, and (2) external
parameters such as concentration and electrical potential in the baths (the boundary conditions).

If local interactions dominate (U(r) dominates over µi(r)), such as in the crowded selectivity
filters of calcium channels (see Section 3.1), the concentration profiles are not so sensitive to boundary
conditions. In wide nanopores (Sections 3.2 and 3.3), on the other hand, changes in voltage or bath
concentration can significantly influence the concentration profile. In bipolar nanopores, for example,
changing the sign of the voltage reduces the depletion zones of ions even further, reducing current and
resulting in a diode behavior.

Of these two factors, however, it is the local interactions that are more important for our discussion.
These local effects determine the shape of the concentration profile, where it has peaks and where it
has depletion zones. They determine the basic device characteristics of the pore and they determine
how the pore responds to changes in the external conditions.

We can narrow what is important more specifically. Because free particles (ions and water) just
respond to changes in U(r) and µi(r), it is the features (structure) of the pore that determines device
function. Moreover, because the ions are charged, their Coulomb interactions with pore charges
are dominant; dipolar and higher-order terms in the multipole expansion are secondary both in
strength and range. Concentration profiles, therefore, depend sensitively on the distribution of the
pore charges. From all our work on channels and pores [5–31,33–52] up to this day, we can conclude
the following principle:

2. We need to build the pore charges into the model properly if we want to reproduce local concentration,
and, consequently, device function.
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In summary, pore charges are important degrees of freedom, as is the geometry of the pore (length,
radius, shape). But what can we say about important and unimportant degrees of freedom?

2.3. Important vs. Unimportant Degrees of Freedom

Charges (monopoles) are the first, and strongest term of the multipole expansion. The second,
and weaker term is the dipolar one that appears in the interaction of an ion with water molecules.
The big question arises whether we need to take the water molecules into account explicitly (as in
all-atom MD models), or can we replace them with response functions such as a dielectric constant or
a diffusion coefficient?

The answer to this question also depends on the system at hand. In the case of ion channels, it is
obvious that explicit water molecules are crucial in potassium channels; the selectivity of that channel
is the result of a subtle balance between the interactions of the permeating ions with the atoms of the
selectivity filter and with water molecules [77]. Calcium and sodium channels, however, as our model
calculations imply, work on the basis of interactions with charged side chains inside the selectivity
filter and volume exclusion (discussed below).

Using implicit water is not even a question in the nanopore world, where they abundantly use
transport equations and the PB theory. In this world, there is no argument about the necessity of
the implicit water model. Instead, we need to argue about the necessity of sophisticated statistical
mechanical methods such as classical density functional theory (DFT) or MC.

Why can water be smeared into an implicit background in one case, but not in the other case?
In other words, what decides whether explicit water is an important degree of freedom or not? Or,
in general, what decides whether any degree of freedom is important or not? We give an explicit
answer to this question that, we hope, will be a general recipe for building reduced models:

3. Those degrees of freedom are the important ones that depend on the input parameters of the device
(voltage and concentration), while those that do not can be replaced by response functions.

If a component of the system does not change considerably upon, for example, changing the voltage,
then this component does not influence the mechanisms by which the model generates an output
signal as a response to the input signal.

Let us use implicit water as an example to explain this, as this choice is sometimes controversial.
Ions are screened by the surrounding water molecules no matter whether external conditions change
or not. Certainly, an applied field or the presence of other ions distort the hydration shell around the
ions, so screening is changed by changing voltage or concentration.

The effect of external conditions is small if they are small relative to primary effects, for example,
to interactions with pore charges. If two degrees of freedom have a large relative difference in how
they change with external conditions, then we can make the one with the small response implicit.
This is a decision for the modeller, and, eventually, a matter of comparison of the model results with
reference data. Reference data are primarily experimental data, but they can also be MD results for
all-atom models (results will be shown for both cases).

Implicit water, although the most characteristic, is not the only way of reducing the number of
explicit degrees of freedom. We can, for example, model the membrane with a slab between two hard
walls. We can model the pore with a cylinder of hard wall. We can model the ion channel only by
taking its selectivity filter into account, because that is the region that discriminates between ions.
We can model protein side chains in a simplified way by taking only the oxygens of the carboxyl
groups into account. There are a plenty of ways to simplify the model, but we need to ask ourselves at
every step whether the details we just ignored are important or not.

As in the case of the mean-field PNP theory, it can happen that we ignore too much detail. It is
well known that PNP cannot reproduce the selectivity behavior of calcium channels, because ionic
correlations and volume exclusion that are so important in the highly charged and crowded selectivity
filter of Ca channels are absent in PNP. We cannot use the approximations of PNP even in the case
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of the relatively wide nanopores if multivalent ions are present. Charge inversion, a feature that is
common in charged confined systems with multivalent ions cannot be reproduced with PNP [78].

The bottom line is that we need to balance between too many and too few details when we
create a model for a specific purpose. If one is curious about the detailed physics of the coordination
of ions at binding sites, the reduced model is too crude. If one is studying a wide nanopore with
a 1:1 electrolyte in it, PNP theory is probably all right. There is, however, a wide area in between,
where ionic correlations (including finite size) matter, but explicit water does not matter.

2.4. What Are Good Response Functions?

If we managed to distinguish between important and less important degrees of freedom, the next
step is to decide how to smear the less important ones into response functions. There are various
possibilities and it is not always obvious which one we should choose. In this respect, we suggest the
following principle.

4. When we create a response function, we should choose one whose parameters do not depend on external
conditions, or, at least, we should minimize that dependence. In other words, those parameters should be
transferable as much as possible.

This rule might sound obvious because it seems quite ridiculous to refit the parameters for every state
point (different values of input device parameters). A model is a model together with its parameters.
If those parameters are not stable, meaning transferable between various state points, the model is
probably missing some basic physics.

That is exactly the deeper meaning of the above rule. If the physics of the model is right, then it
should describe the properties of the nanopore’s wall or the ion channel’s selectivity filter in a robust
way. The model should be the same at another voltage or concentration. If the parameters depend on
external conditions, they should do that in a physically well-based and explainable way. Otherwise,
it is just an unsystematic fitting on the basis of a useless model. The model is useless in this case
because it is unusable for prediction. Transferable parameters are the basis of predictions.

In the following, we present our results for three different case studies that illustrate the rules
introduced above.

3. Case Studies

In the case studies presented in the following sections the system consists of two baths separated
by a membrane that contains a pore connecting the two baths. Two electrodes in the two baths produce
electrical potential difference (voltage) that is a part of the driving force of the transport of ions. Also,
ionic concentrations can be different on the two sides of the membrane. Concentration difference and
voltage add up to create an electrochemical potential difference that is the full driving force in the NP
equation (Equation (1)).

In the model of this system we include the two baths, the membrane and the pore. The simulation
cell is finite surrounded by a boundary at which different boundary conditions are prescribed for the
ionic concentrations and the electrical potential on the two sides of the membrane. The electrolyte is
modeled in the implicit water framework with the “Primitive Model” that, given the success of our
models, is not so primitive after all.

The ions are modeled as charged hard spheres immersed in a dielectric continuum represented
by the dielectric constant ε, one of the response functions. The interaction potential is

uij(r) =





∞ if r < Ri + Rj

1
4πε0ε

zizje2

r
if r ≥ Ri + Rj,

(2)

where Ri and Rj are the radii of ionic species i and j, respectively, zi and zj are the valences of ionic
species i and j, respectively, ε0 is the permittivity of vacuum, e is the elementary charge, and r is the
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distance between the two ions. The solvent also exerts its effect on the ions by hindering their diffusion
via friction. This is taken into account by another response function, the diffusion coefficient Di(r) (see
Equation (1)), which may include effects beyond interactions with waters, such as interactions with
other ions and the confining geometry.

The membrane and the pore are defined by hard walls for simplicity. The most important
difference between the test cases is that the pore is modeled differently in different cases. Basically,
the shape of the pore and the representation of pore charges are different. By shape of the pore we
mean an R(z) function that defines the hard wall obtained by rotating this function around the z axis.
The models of pore charges will be described in the different cases.

The models are studied with a hybrid simulation method in which the NP equation is coupled
to the Local Equilibrium Monte Carlo (LEMC) method (NP+LEMC). The LEMC method is basically
a generalization of the GCMC method [79,80] for the case of non-equilibrium systems where the
chemical potential is not necessarily constant, so the system is not in global equilibrium. Instead,
the input of the LEMC method is the µi(r) profile, while the output is the ci(r) profile. In practice,
the system is divided into small subvolumes, Vα, in which the µα

i is constant (local equilibrium is
assumed). The result of the simulation is the concentration in each subvolume, cα

i . The resulting µα
i and

cα
i profiles are substituted into the NP equation providing a flux, jα

i . An iteration process results in a self
consistent µα

i and cα
i pair that produces a flux density satisfying the continuity equation, ∇·ji(r) = 0.

It is an expression for local conservation of mass, while in our calculations we use the integrated
form that states that the sum of inward and outward currents in and out of a volume element is zero.
Details are found in previous papers [29,37,39,41].

The results of other models and computation methods will also be presented. Specifically, we will
show results of DFT coupled to the NP equation and MD simulations for explicit water models.
These models and methods will be described at the specific system, where they are used.

3.1. The Ryanodine Receptor Calcium Channel

The RyR is a biological ion channel that, in muscle, releases Ca2+ ions from the sarcoplasmic
reticulum in response to an influx of Ca2+ through L-type calcium channels. In both cardiac and skeletal
muscle cells, that RyR-mediated Ca2+ initiates muscle contraction. While its physiological importance
is obvious, RyR is also interesting from a single-channel biophysics point of view. Experimentally,
its large current allows for relatively easy single-channel current/voltage (IV) recordings. Theoretically,
it is a Ca2+-selective channel, but whose preference for Ca2+ is much lower than the L-type calcium
channel, even though they share the same selectivity filter in amino acids.

What makes an ion channel a calcium channel is the abundance of negative carboxyl groups
(COO−) in and around the selectivity filter. Generally, four glutamate (E) and/or aspartate (D)
amino acids line the selectivity filter, which is a short and narrow region of the pore. An important
turning point in the understanding of the physics of Ca2+ versus monovalent cations selectivity
was a reduced model by Nonner et al. [4] They imagined the selectivity filter of a calcium channel
as a high-density fluid where the two oxygens of each of the four COO− groups were modeled as
independent hard-sphere O1/2− ions (with radius 0.14 nm). When both Na+ and Ca2+ ions compete
for space in this “electric stew” [81], the competition is won by Ca2+ ions because they provide twice
the charge of Na+ ions while occupying the same volume (as they have similar Pauling radii).

This mechanism was later called “Charge-Space Competition” [5] because, while the four negative
charges of the selectivity filter attract cations, the crowding of those COO− groups and the permeating
ions inside the very small selectivity filter imposes entropic and energetic penalties for permeating
ions (Figure 1). In this scheme, there is a competition between entropic and enthalpic components,
creating an advantage for small and/or high-valence cations over large and/or low-valence cations.
This effect is amplified when the dielectric constant of the protein surrounding the pore is lower than
the dielectric constant of the selectivity filter lumen [13].
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Figure 1. Model of the RyR channel [37]. (A) The 3D model is obtained by rotating the shaded gray
area about the z-axis (the models have rotational symmetry). The arrows indicate the regions into
which the 8 O1/2− ions representing the respective amino acids are confined. The charges of the E4902
residues of the RyR channel are modeled by eight point charges on a ring. The dielectric constants is
εw = 78.5 in the whole system. The entire simulation cell is enclosed in a large cylinder. The geometry
for the NP+LEMC calculations can be found in Figure 1 of Reference [39]. The brown line indicates
the countour of the 1D model of Gillespie [16]. (B) A snapshot of the simulation. The blue, green,
light blue, and red spheres represent Na+, Ca2+, Cl−, and O1/2− ions, respectively. This figure was
prepared with vmd [82].

When this model of the L-type selectivity filter was incorporated into a pore and studied with
GCMC simulations, the model was successful in reproducing the micromolar Ca2+ selectivity of the
L-type calcium channel (EEEE locus). Specifically, it reproduced the seminal experiment of Almers and
McCleskey [83] where, in 32 mM NaCl, 1 µM Ca2+ in the bath blocks Na+ current, reducing it to half
that in the absence of Ca2+. The block works because Ca2+ ions displace Na+ ions in the selectivity
filter even though they are present in the bath at much smaller concentrations than the Na+ ions.
The model also reproduced [17,21,24] other mole fraction experiments (e.g., Ca2+ vs. Ba2+ [84–86],
Li+ vs. Na+ [87]) and Gd3+-block of ionic current [88]. Lastly, we were able to interpret [14] the
experiments of Heinemann et al. [89] where a DEKA→DEEA mutation converted a sodium channel
without a Ca2+ blockade into a calcium channel with 10−4 M affinity.

Concurrent to this work on the physics of L-type calcium channel selectivity, one of us (DG)
created a 1D reduced model of RyR using DFT based on the Nonner et al. independent-O1/2− model
of the COO− groups [11]. Here, we focus on a second, improved version of this 1D DFT model [16],
as it included more charged amino acids that are outside of the selectivity filter yet play an important
role in cation permeation [90] (following the second principle of reduced models). The D4945, D4938,
D4899, and E4900 amino acids (four copies of each of them due to the homotetrameric RyR structure)
were modeled by confining eight half charged oxygen ions, O1/2− (with radius 0.14 nm), in the regions
indicated by arrows in Figure 1. The E4902 amino acids were placed in a ring at the luminal entrance
of the pore.

The purpose of this RyR model was to determine whether a reduced model of this channel could
reproduce and predict experimental data. (RyR is more useful for this than L-type calcium channel
because of the vast amounts of IV data available for RyR.) Both the model [16] and its subsequent
applications [19,20,32,35] showed that this is indeed the case, reproducing all the available IV data
from the labs of Gerhard Meissner (University of North Carolina, Chapel Hill) and Michael Fill (Rush
University Medical Center, Chicago). Moreover, in these papers the model predicted (before confirming
experiments were done) a number of counterintuitive and nonlinear selectivity phenomena in RyR.

Later, a 3D reduced model of RyR was created by Boda et al. [37,41]. The purpose of this model was
partly to understand the success of the 1D model, trying to define the effects of radial ion distributions
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that are ignored in the 1D model (which assumed homogeneity in the radial direction). The profile
of the pore radius is indicated by the gray shaded area in Figure 1. Here, we focus on the 3D model
because it has been less well analyzed in detail and because it uses the same NP+LEMC simulation
technique that is also used for the nanopores, described later, that serve as different case studies of
reduced models.

Both the 1D and 3D models reproduce dozens of IV curves, some shown in the Supplementary
Information for the 3D model. This indicates that both models seem to capture the basics of the RyR
device physics in the axial direction. Therefore, we will discuss how each of the principles of reduced
models for nanopores works in these RyR models.

3.1.1. Ionic Concentrations and Current

How the ionic profiles determine the species current has several interesting subtleties in RyR. First,
given that the 3D model performs equally well as the 1D model, it seems that any radial ion packing
effects do not contribute significantly to the current. Figure 2 shows examples for Na+ and Ca2+.
The profiles are monotonic in the radial dimension, so the cross-section averaged axial concentration
profiles are the main determinants of current. This explains the success of the 1D model.
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Figure 2. Concentration profiles, ci(z, r), of Na+ and Ca2+ over the (z, r) plane for 100 mM NaCl and
1 mM CaCl2.

Second, high concentration of a species inside the pore does not always translate into high current
for that species. This is exemplified in mole fraction experiments, where two cation species compete
for the pore (Figures 3 and 4). We distinguish two basic kinds of mole fraction experiments: (1) In
one kind, we add one type of cation (e.g., divalents) to a fixed background of the other type of cation
(e.g., monovalents), for example, adding CaCl2 to a fixed 100 mM NaCl (or CsCl) solution; (2) In the
other kind, we keep the total salt concentration (or ionic strength) fixed while changing the mole
fraction of the two salt, for example, a NaCl/CsCl mixture at 250 mM total concentration.

Total current, I, or chord conductance, G = I/U (U is the applied voltage), can be considered
a primary device function in the case of ion channels. But, currents carried by the ionic species
are also interesting, and we show those as well. Figure 3 shows the currents as functions of
composition expressed either as lg[CaCl2] for the added-salt experiment or the mole fraction of
Na+ ([NaCl] + [CsCl] = 250 mM) for the mole fraction experiment.

In the added-Ca2+ experiment with Na+, it is seen that 10−3 M Ca2+ affects the current;
against Na+, RyR has millimolar Ca2+ selectivity. This [Ca2+] is smaller for Cs+ because Ca2+

can compete more easily with the larger Cs+. In both cases, the total current has a minimum, called the
anomalous mole fraction effect (AMFE), for experiments (gray spheres), the 1D DFT RyR model
(magenta lines), and the 3D NP+LEMC model (green triangles). There is also an AMFE for mixtures of
Na+ and Cs+.
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To understand the origin of the minimum in current, we first note that at the extremes all the
single-species currents are very similar: the all-Na+ current (and all Cs+ current) at 10−6 M Ca2+ or 0
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Cs+ (0 Na+) mole fraction is similar to the all-Ca2+ current at 10−2 M Ca2+. Why then does current
decrease with added Ca2+ (added-salt experiment) or added Na+ (mole fraction experiment) and
then increase?

Part of the answer lies in the axial concentration profiles for select Ca2+ concentrations and Na+

mole fractions shown in Figure 4. In the added-salt experiment (top row of figure panels), Ca2+

displaces Na+ and Cs+ throughout the pore. Ca2+ has a much stronger effect on Cs+, indicating that
RyR has a higher preference for Ca2+ than Cs+ (compared to Ca2+ versus Na+). Specifically, 10−3 M
Ca2+ displaces almost half the Na+ in the pore and two-thirds of the Cs+. Interestingly, however,
the Ca2+ current in Figure 3 (top row) is below the Na+ current and equal to the Cs+ current at
[Ca2+] = 1 mM. Recall that all single-species currents are nearly identical. Therefore, just because
Ca2+ has a large (or even the largest) concentration in the pore, it does not produce as much current as
would be predicted from those intra-pore concentrations.

In previous work [17,20], we traced this anomaly to the fact that Ca2+ is at low concentration
in the baths, even though it is extremely high (relatively) in the selectivity filter. This produces the
counterintuitive result that the bath has a high resistance to Ca2+ flowing, while the selectivity filter
has a low resistance. Usually it is the opposite. Only when the bath Ca2+ concentration is relatively
high is there an appreciable amount of Ca2+ current. This is physiologically relevant, as resting luminal
SR Ca2+ concentration is between 0.5 to 1 mM, and during contractions this is Ca2+ depleted to∼ 50 %
levels in cardiac myocytes and even lower in skeletal myocytes. The physiological cardiac ion species
currents are described in Reference [32].

This is an extreme example of the depletion zones we will discuss for the nanopores later.
A depletion zone (a place where ions are absent for the most part) can have as large an effect on
current as the regions of high concentration. This is because the axial direction for current flow is
made of several regions, the bath, the access region (at the mouth of the channel or pore), the pore,
another access region, and another bath. Each of these has a resistance to current flow and the
highest resistance element can dominate. In a channel this is usually the selectivity filter because it is
commonly physically narrow. However, if it is highly charged, then it will always have ions in it at
high concentration and so the bath resistance may dominate the current. In general, the absence of
ions in a region can be as consequential as high concentrations.

3.1.2. Accurate Representation of Pore Charges is Important for Reproducing Device Function

As stated above, the first 1D RyR model [11] did not include all the charged groups that the
second one [16] does. In fact, it originally included only the two then-known charged groups (Asp-4899
and Glu-4900). But, no parameters could be found to make the computed IV curves resemble,
even qualitatively, the experimental curves. Only by hypothesizing the existence of a region of
negative charge on the cytosolic side of the selectivity filter did the curves begin to match up. Later,
it was determined that two other aspartate groups (Asp-4945 and Asp-4938) also significantly affect
ion permeation and selectivity [90]. Only with the explicit addition of these and another charged group
(Glu-4902) did the model reproduce all the experimental data and predict even more (which were later
confirmed by experiments [16,19,20,32,35]).

3.1.3. Important versus Unimportant Degrees of Freedom

The results of both the 1D and 3D models indicate that the essential important degrees of freedom
were captured. One that was left out was ion dehydration. This is crucial for the physiological
function of potassium channels [77,91] and excludes Mg2+ from many other calcium channels [92].
However, in RyR it does not seem to play a role, as indicated by both experiments and the models.
In experiments, Mg2+ (which has a very large ion dehydration energy compared to the otherwise
similar Ca2+) permeates RyR equally as well as Ca2+, indicating no large energetic barrier for Mg2+

entry by stripping off waters. In the two models, missing an important piece of physics ought to
result in (large) deviations from the experimental data, especially in Mg2+ versus monovalent cation
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competition experiments. That this was not seen implies (but does not prove) that ion dehydration is
not significant for RyR.

One degree of freedom we have in both the 1D and 3D models that may be superfluous is the
flexibility of the O1/2− to move within their regions of confinement. Our previous work on the
L-type calcium channel [27] indicates that their movement in response to other ions being nearby is
unimportant for selectivity. Specifically, for that model pore the selectivity behavior of the channel does
not change much if we fix the positions of the O1/2− ions. Seemingly, the important characteristics is
the density of the O1/2− ions inside the pore, while their exact position is secondary. We continue to
include the flexibility because it is easy to include and extensive studies would be needed to verify
that it is indeed superfluous.

3.1.4. Transferability of Parameters

The main parameters we had that were not based on known RyR structure and that had to be
fitted to data were the ionic diffusion coefficients. For both the 1D and 3D models, after these were
fit, they were never changed. Therefore, they were used at low and high ionic bath concentrations,
low/high and negative/positive applied voltages, and in ionic mixtures. This indicates that they truly
are transferable and independent of external conditions.

The one caveat to that statement relates to one of the differences in constructing the 1D and
3D models. In the 3D model, we used only one adjustable Dpore

i value in the selectivity filter and
interpolated in the vestibules to the bulk. (Values are shown in Table 1.) In the 1D model, on the
other hand, there were fitted diffusion coefficients not only in the selectivity filter, but also in the
vestibules on either side, in the D4938 and E4900 regions (Figure 1). These were fit for K+ based on
data of RyR in symmetric 0.25 M KCl for native RyR (i.e., fully charged) and two charge-neutralizing
mutations (D4938N and E4900Q). With these, the 1D model reproduces the nonlinear IV curve of
another charge-neutralizing mutation (D4899N) that was not used in fitting the diffusion coefficients.
This further shows the transferability of the diffusion coefficients. (All non-K+ cation species were
fitted with one experimental data point for the selectivity filter diffusion coefficient and the vestibule
values were determined from ratios of the K+ diffusion coefficients in different areas of the pore.)

Table 1. Parameters of ions as used in the NP+Local Equilibrium Monte Carlo (LEMC) simulations.
The last column shows the density functional theory (DFT) value Dpore

i , the diffusion coefficient in the
selectivity filter, for comparison; the values for the vestibules are found in Reference [16]. a This value
was not fitted due to the fact that the channel does not let Cl− through.

Ion Ri (Pauling) Dbulk
i Dpore

i (LEMC) Dpore
i (DFT)

nm 10−9 m2s−1

Na+ 0.095 1.334 0.141 0.0365
Cs+ 0.169 2.056 0.193 0.0418
Ca2+ 0.99 0.792 0.0243 0.0041
Cl− 1.81 2.032 0.25 a 0.02

The 3D model, on the other hand, does not reproduce these charge-neutralizing experiments
(data not shown). Therefore, its diffusion coefficients are not as robust against changes to external
conditions (although such mutations are large perturbations). This indicates that caution is always
in order when interpreting a reduced model outside its established (i.e., tested against experiments)
range of external conditions.

3.2. Nanopores of Different Device Functions from Different Charge Patterns

In a recent work [46], we considered synthetic nanopores with varying charge patterns on their
walls along the z-axis (Figure 5). Although our rules of thumb were not formulated explicitly back
then, we practically organized that study along the lines of the four rules of thumb:
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• We studied how different charge patterns influence concentration profiles, and, through those,
device functions (rules of thumb #1 and #2).

• We performed simulations with models of different resolutions and studied the performance of
reduced models compared to all-atom MD simulations. Special attention was given to whether
water molecules could be treated implicitly, that is, whether they proved to be “unimportant”
degrees of freedom (rule of thumb #3).

• We fit the diffusion coefficients in the pore to MD data and investigated their transferability over
varying charge patterns (rule of thumb #4).

Figure 5. Schematics of the cylindrical nanopores with different charge patterns. There are two
regions of lengths HL and HR carrying σL and σR surface charges. We consider either bipolar (top
row) or unipolar (bottom row) nanopores. In the bipolar cases, the left-hand region is always negative
(σL = −σ0 with σ0 = 0.4835 e/nm2), while the right-hand region is positive (σR = σ0). In the unipolar
cases, the same is true, but the other side is neutral. The dimensionless net charge, Q, increases from
left to right, while the fraction of the left region, xL (Equation (3)), changes as indicated by the arrows.

A cylindrical nanopore was considered with radius Rpore = 0.97 nm and length H = 6.4 nm.
The wall of the pore was divided into two regions along the z-axis: a left (L) region of length HL

carrying σL surface charge, and a right (R) region of length HR = H−HL carrying σR surface charge.
The geometry can be characterized by the dimensionless parameter xL = HL/H. We gradually
increased HL, while keeping the total length, H, fixed, so we increased xL from 0 to 1. We performed
two series of calculations.

Bipolar pores: The HL region was negative (red in Figure 5), σL = −σ0, where σ0 = 0.4835 e/nm2,
while the HR region was positive (blue in Figure 5), σR = σ0. The limiting cases are the fully
negatively (‘nn’) and positively (‘pp’) charged pores for xL = 0 and 1, respectively, while we talk
about bipolar pores in between (‘np’).

Unipolar pores: In the other series, one of the regions was neutral (grey in Figure 5) in the intermediate
cases. These are actually two series of experiments. Starting from the ‘nn’ limiting case (from
left to right in Figure 5), through unipolar ‘n0’ charge patterns, we reach the ‘00’ limiting case
(neutral pore) as xL changes from 1 to 0. Starting from the ‘pp’ limiting case (from right to left in
Figure 5), through unipolar ‘0p’ charge patterns, we reach the ‘00’ limiting case (neutral pore) as
xL changes from 0 to 1. The ‘n0’ (‘0p’) pore, where σL = −σ0 and σR = 0 (σL = 0 and σR = σ0)
exhibits rectification due to the asymmetric charge pattern.

In order to characterize charge pattern, we introduced a dimensionless net charge, Q, ranging from
−1 to 1, defined as

Q = xL
σL

σ0
+ (1− xL)

σR

σ0
. (3)

This value is uniquely related to xL in the cases depicted in Figure 5. Its value is −1 for the ‘nn’
pore, 1 for the ‘pp’ pore, 0 for the ‘np’ pore, −0.5 for the ‘n0’ pore, 0.5 for the ‘0p’ pore, and 0 for the
‘np’ and ‘00’ pores. We found that the pore’s basic behavior is correlated with this parameter (Figure 6).
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Figure 6. (A) Ionic currents as functions of Q for the bipolar (left panel) and unipolar (right panel)
nanopores. Blue and red colors correspond to Na+ and Cl−, respectively. Symbols and lines correspond
to MD and NP+LEMC results, respectively. Filled symbold and solid lines refer to the ON state (200 mV),
while open symbols and dashed lines refer to the OFF state (−200 mV). (B) Diffusion coefficients in the
pore, Dpore

i , normalized by the bulk values, Dbath
i , fitted to MD currents in the ON states of the bipolar

pore. The fit was done for every Q separately.

In order to relate our implicit-water NP+LEMC simulations to explicit-water MD simulations,
we constructed an all-atom version of the model. While we did our best in building the all-atom
model that is, apart from the treatment of water, is as similar to the reduced model as possible,
there are differences:

• Water is explicit (SPC) in MD, while it is implicit in LEMC.
• The ions have Lennard-Jones cores in MD, while they have hard-sphere cores in LEMC.
• The pore wall is a carbon nanotube (CNT) in MD, while it is a hard wall in LEMC.
• The membrane is confined by carbon nanosheets (CNS) in MD, while with hard walls in LEMC.
• The interior of the membrane is empty (a vacuum) in MD, while it is an ε = 78.45 region in LEMC.
• The MD simulation cell applies periodic boundary conditions, while the LEMC simulation cell is

finite (a cylinder).

The most serious difference between the two systems is the treatment of water, so we consider
this study as a test of the implicit-water approximation for this nanopore system.

A continuous surface charge was mimicked by placing partial point charges at the carbon atoms
of the CNT. The CNT consisted of hexagons of side width 0.142 nm. There were 1682 partial charges of
strength 0.0112 e on the grid for the ‘pp’ pore. These same partial charges were used in the NP+LEMC
calculations. This fine resolution of the pore charges was necessary, because we also compared to the
PNP theory in Reference [46] (PNP results are not shown here).

The electrolyte was NaCl (for the ionic parameters see Reference [46]) at bulk concentrations 1 M.
The asymmetric pores were rectifying when we applied voltages 200 and −200 mV (ON and OFF
states, respectively).

3.2.1. Concentration Profiles and Device Functions

The MD simulation results are our gold standard, so we fit the diffusion coefficients inside the
pore, Dpore

i , to MD current data for the bipolar pore in the ON state (Figure 6B). Because we decided to
use only one adjustable parameter (Dpore

i ), it was necessary to make its value Q-dependent, because the
pore’s behavior is severely different at different Q parameters as also shown by the concentration
profiles (Figure 7).
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OFF states, respectively. Symbols and solid lines refer to molecular dynamics (MD) and NP+LEMC
results, respectively.

As the pore charge, Q, increases, Na+ current decreases and Cl− current increases (Figure 6A).
One of the device functions, selectivity, changes with Q, with the pore being non-selective at Q = 0.
When the charge pattern is asymmetrical, the pore rectifies, namely, the ON current is larger than the
OFF current (Figure 6A). Rectification (the other device function) has a maximum at Q≈0 in the bipolar
case, while it has maxima between Q = −1 and 0 as well as between Q = 0 and 1 in the unipolar case.
The selectivity and rectification curves as functions of Q are shown in Reference [46] (their Figure 7).

The axial concentration profiles (Figure 7) determine the current, as in the case of the RyR ion
channel. The major difference compared to the RyR channel is that the depletion zones have decisive
roles inside the pore here, not only in the access regions as in the case of the RyR. Briefly, if an ionic
species has a depletion zone somewhere inside the pore along the z-axis, its current is suppressed.
This statement is intuitive if we imagine the pore as a collection of layers along the z-axis that, in turn,
are imagined as resistors connected in series. If any of the resistors has a large resistance due to a
depletion zone in that layer, the whole circuit has a large resistance.
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We can also support our statement with a quantitative analysis. In Appendix A, we outline our
slope-conductance approach that shows that the resistance of the pore is related to the integral of c−1

i (z)
(Equation (A6)). Depletion zones give large contributions to that integral, and, therefore, to resistance.

3.2.2. Charge Pattern Determines Device Behavior

The decisive effect of pore charge pattern does not require special verification here; the studies of
Reference [46] shown in Figure 5 were devised for the purpose of studying that effect. Figure 6A for the
current and Figure 7 for the concentration profiles clearly show that the charge pattern characterized
by the Q parameter squarely determines device behavior.

When electrostatic attractions and repulsions play the primary role in forming the shape of the
ionic concentration profiles—namely, defining which are the coions and which are the counterions to
define where depletion zones and peaks are formed—it is not a surprise that charge pattern dominates
over other factors.

3.2.3. Water Molecules as Unimportant Degrees of Freedom

The decisive roles of Coulomb interactions and charge patterns also explain why water molecules
can be smeared into a continuum background. Both the axial concentration profiles (Figure 7) and
currents (Figure 6A) show that the device works qualitatively the same way in the case of the
explicit-water (MD) and implicit-water (NP+LEMC) models.

We devoted a whole paper to this question [42], so we summarize the results of that paper.
We showed that the implicit-water and explicit-water models produced qualitatively similar behavior
of the current for different voltages and model parameters. Looking at the details of concentration and
potential profiles, we found profound differences between the two models. However, these differences
did not influence the basic behavior of the model as a device because they do not influence the
z-dependence of the concentration profiles, which we found are the main determinants of current.
Therefore, our simulations showed that reduced models can still capture the overall device physics
correctly because they included the physics that is necessary from the point of view of device function.
This is despite the fact that they get some important aspects of the molecular-scale physics quite wrong
(e.g., radial ion packing produced by the structure of the water molecules).

3.2.4. Transferability of the Fitted Diffusion Coefficient

We emphasized that it is the qualitative behavior that is the same on the two modeling levels.
If we want quantitative agreement, we need to fit the parameter(s) of the reduced model to MD or
to experimental data. In general, we can say that if we observe an overall qualitative agreement,
the reduced model does its job and there is a good chance that our response function that replaces the
smeared degrees of freedom is transferable. The question is what transferability means. What are the
external conditions that influence the response function and what are those that do not?

This question has been already touched on with the RyR ion channel, where we stated
that our choice of a single adjustable parameter (the diffusion coefficient in the selectivity filter,
Dpore

i ) does not make it possible to create a response function that is transferable over charge
patterns, namely, over mutations. It was, however, transferable over voltages, concentrations,
and electrolyte compositions. The situation here is the same. We attempted to create a diffusion
coefficient profile that is independent of Q, but due to uncertainties in MD simulations and
computational demand of NP+LEMC simulations, we abandoned these efforts. Instead, we realized
that the difference between the MD and NP+LEMC concentration profiles (Figure 7) depends on Q
systematically. For example, as Q increases, the Na+ profiles as obtained from MD and NP+LEMC
become increasingly different. (At the same time, Cl− profiles become increasingly similar.) Exactly
this difference is what must be balanced by the diffusion coefficient in the pore.

Therefore, we decided to use a single Dpore
i (Q) value all along the pore that is allowed to vary

with Q. We fitted Dpore
i to one case (bipolar/ON), and investigated transferability for the remaining
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three cases (bipolar/OFF, unipolar/ON, unipolar/OFF). So, we fixed the Dpore
i (Q) values fitted to the

bipolar/ON case and used them at other cases for the same Q. These values are shown in Figure 6B as
functions of Q.

As an example, let us consider Q values close to −1. This is close to the ‘nn’ geometry, namely, a
cation selective pore. Cl− ions have depletion zones in this case in both models, but they are deeper in
MD than in NP+LEMC. We need, therefore, a very small Dpore

Cl−
value to bring the NP+LEMC profiles

(and, therefore, currents) down to the values yielded by MD. As Q increases, the difference between
the Cl− profiles decreases and they are pretty similar for Q = 1, namely, for the ‘pp’ pore. In general,
we can state that the implicit-water approximation works better (compared to MD) in the case of peaks
than in the case of depletion zones.

To summarize, one job of the Dpore
i (Q) function is to take the differences in the explicit and

implicit water models into account. The diffusion coefficient in the pore, therefore, is more than a
transport coefficient that, in principle, could be calculated from autocorrelations functions or mean
square displacements. It carries more information that stems from differences between the reduced
model and the more realistic experimental data or MD simulations. Eventually, it is an adjustable
parameter of the reduced model as a whole.

3.3. Selectivity Inversion Due to Charge Inversion

In the two case studies so far radial profiles were relatively unimportant. The narrow RyR pore
was a crowded high density region (Figure 2) but without layering (oscillatory concentration profiles)
in the radial dimension. The case of the wider nanopore in Section 3.2, however, is much more complex.
The radial distribution of the ions is important because it determines the behavior of the axial profiles.
This was discussed in detailed in our recent studies [50,52].

In the first study [50], we showed that bipolar nanopores exhibit a scaling behavior for a fixed
σ = ±1 e/nm2. Specifically, we constructed a scaling parameter, ξ = Rpore/λ

√
z+|z−|, where λ

is the characteristic screening length of the electrolyte computer either as the Debye length (for a
point-ion model) or the Mean Spherical Approximation screening length (for Primitive Model ion).
(Note that screening works differently near surfaces of different curvatures (flat, concave, convex).
Different equations for the capacitance can be given with an unchanged value of the Debye length. [93])
We found that for different pore sizes and different electrolyte concentrations that had the same
ξ the device function (this time rectification) was the same; that is, for a given z+:z− electrolyte,
the relationship of Rpore and λ determines device behavior. If Rpore�λ, the double layers formed
at the nanopore’s wall in the radial dimension overlap. In that case, the counterions will be at
high concentration in the middle of the pore, while coions will be at relatively low concentration.
This forms depletion zones for the excluded coions. If Rpore�λ, the double layers do not overlap, a bulk
electrolyte is present in the pore’s center line, and depletion zones are not formed. Depletion zones are
necessary for selectivity and rectification. In Section 3.2, this was not discussed because Rpore and λ

(concentration) were fixed. Double layer overlap was present.
In the second study, [52] we considered the dependence of bipolar nanopores on σ for different

electrolytes (1:1, 2:2, 2:1, 3:1). If multivalent ions are present, a deviation from the above scaling
behavior (basically a mean-field phenomenon) appears because strong ionic correlations cause peculiar
phenomena such as overcharging (overcharging means that more counterions are attracted to the
surface than necessary to compensate the surface charge) and charge inversion [78] (charge inversion
is the appearance of a layer of excess coions that produces a change in the sign of the electrical
potential in this layer). Specifically, these correlations cause an increase in coion concentration in the
second layer of ions behind the dense counterion first layer near the charged wall. Consequently,
the electrostatic potential can change sign (relative to the potential at the charged wall). We showed that
this accumulation of coions (anions) produces an anion leakage current, and this causes non-monotonic
behavior in the device function (rectification) as σ increases. Charge inversion always manifests itself
in the dimension perpendicular to the charged wall, which for pores is the radial dimension.
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In this section, we present new results for the phenomenon of selectivity inversion in a
negatively charged nanopore (σ = −1 e/nm2) as the electrolyte is changed from 1:1 through 2:1 to 3:1.
This phenomenon was shown experimentally in our paper with the group of Zuzanna Siwy [22] and
interpreted with the help of GCMC simulations. It was observed that while the pore is cation selective
for a 1:1 electrolyte (KCl), it becomes anion selective for a 3:1 electrolyte (CoSepCl3). The GCMC
simulations supported the idea that the basic reason of this selectivity inversion is charge inversion.
The trivalent cations stick to the negatively charged surface, overcharge it, and remain paralyzed; they
do not contribute to the current significantly because their mobility near the pore is reduced by being
trapped in an energy well.

Here, we show that this behavior can be reproduced without explicitly changing the mobilities of
the ions (i.e., decreasing Di(r) near the wall) by using localized charges instead of a surface charge that
is smeared over the surface relatively uniformly as it was in Section 3.2. In fact, this model is much
closer to the experimental reality, because the negative charges are localized in chemical groups on the
surface of an insulator, specifically, in COO− groups for the PET nanopores used by Siwy et al.

Here, we show that adopting this idea can produce strong charge inversion around the binding
sites now both in the z and r dimensions. The nanopore is practically the same as the one in
Section 3.2: it is a cylindrical pore with Rpore = 1 nm and H = 6 nm with c = 0.1 M electrolytes
on both sides (ionic radii are R+ = R− = 0.15 nm). We place fractional point charges on a rectangular
grid on the pore’s surface of width ∆z in a way that the surface charge density is kept constant at
σ = −1 e/nm2. Having ∆z = 1 nm, where −e point charges are sitting on the grid, corresponds to the
experimental situation.

3.3.1. Axial Concentration Profiles Determine Selectivity

Cation selectivity defined as I+/(I++I−) is shown in the bottom panel of Figure 8A as a function
of ∆z for different electrolytes (1:1, 2:1, and 3:1) for a constant Rpore. The top panel shows the ionic
currents from which selectivity was computed. While cation selectivity is insensitive to the fineness
of the grid (the degree of localization of surface charge) in the 1:1 case, cation current (and cation
selectivity with it) quickly drops as ∆z increases above 0.8 nm in the 3:1 case (thick red lines).

The explanation follows from the axial cationic concentration profiles (i.e., cross-sectionally
averaged concentrations) in Figure 8B. For a fine grid similar to that used in Section 3.2 and in our
earlier studies (∆z = 0.2 nm), [42–52] the cation profiles are practically constant inside the pore for all
the electrolytes from 1:1 to 3:1. For the case of localized charges (∆z = 1 nm), depletion zones appear
along the z-dimension that are much deeper in the case of 2:1 and, especially, 3:1 electrolytes. As the
axial depletion zones get deeper, cation currents decrease as ∆z increases.

Anion currents, on the other hand, do not change significantly as ∆z changes because the anion
profiles do not change (Figure 8B). This statement is valid for the anion profiles too (see Figure 8B).
This is not a surprise because the anions are far from the charged surface on average, so their
distribution is less influenced by the localization of the pore charges. This indicates that it is the
behavior of the cations that is responsible for selectivity inversion.

3.3.2. Charge Localization Is an Important Degree of Freedom

The appearance of those depletion zones, however, can be fully understood only if we take into
account both the z- and r-dependence of the ionic distributions. Although the statement that current
primarily depends on the axial profiles remains true (Equation (A6)), understanding why the axis
profiles look the way they look requires the complete picture.

Figure 9A shows the c3+(z, r) concentration profiles for trivalent cations and ∆z = 1 nm. The figure
shows the large peaks near the localized pore charges and deep depletion zones between the peaks (note
the logarithmic scale). Also, the cationic concentration profiles decline as r→0, namely, approaching
the centerline of the pore.
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Figure 8. (A) The top panel shows ionic currents as functions of ∆z for various electrolytes (green, blue,
and red color refer to 1:1, 2:1, and 3:1, electrolytes). Solid and dashed lines refer to cations and anions,
respectively. The bottom panel shows the cation selectivities computed as I+/(I+ + I−). Values above
and below 0.5 correspond to cation and anion selectivities, respectively. (B) Axial concentration profiles
of cations (solid lines) and anions (dashed lines) in the three elecrolytes. Different panels refer to
different values of ∆z (0.2, 0.8, and 1 nm from top to bottom). Colors have the same meaning as in
Figure 8A.

These phenomena can be observed better if we plot the radial profiles for fixed z values that
correspond to either a peak (red) or a depletion region (blue). (For the actual values of z, see the caption
of Figure 9B.) The left panel of Figure 9B shows radial profiles for ∆z = 0.8 nm; the corresponding
axial profiles were shown in the middle panel of Figure 8B. The important thing to note is that the
radial profiles do not differ much for different values of z. Depletion zones, therefore, are not formed
in this case (see solid blue line with filled squared). It is important to point out that charge inversion is
present in this case in the radial profiles; the anion profiles are larger in and around the center line of
the pore. It is, however, only present in the radial direction.
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The right panel of Figure 9B shows the radial profiles for ∆z = 1 nm. This small difference in ∆z
results in a significant change in the behavior of the ions. The cation profiles show the large peaks
for z = 0.5 nm (solid red line with filled circles), while they exhibit depletion zone for z = 0.9 nm
(solid blue line with filled squares). This different behavior at z = 0.5 nm and z = 0.9 nm produces
the oscillating axial concentration profiles with the axial depletion zones of Figure 8B. In this case,
therefore, we have charge inversion in both the radial and axial directions.

Taken together, these results show that the way we place the pore charges on the wall matters from
the point of view of reproducing device function (pore selectivity and specifically its change due to
charge inversion). Specifically, modelers probably need to step beyond the continuous surface charge
distribution and to build localized pore charges into the reduced model. Counterion interactions
with pore charges depend on the distance from a local binding site in all directions. In the case here,
charge inversion around a local binding site produced important axial depletion zones. However,
even when not considering cases with charge inversion, different ion correlations around localized
pore charges can potentially produce similar important axial effects that are missed with a uniformly
charged wall.

3.3.3. Future Work

While it is clear that the location and discreteness of pore charges are an important degree of
freedom, whether we need to use explicit particles to model the atoms of the COO− groups is a subject
of ongoing research. We suspect it is not vital since the charge inversion at the core of the device
behavior is a product of charge itself, not the shape or mobility of the atoms producing the charge.

Also, we do not know whether we need to change the diffusion coefficient, Di(z, r), in the radial
dimension in order to fit to experiments or to dynamic simulations. Work is currently underway with
all-atom MD simulations to determine this.

4. Conclusions

In reduced models, some degrees of freedom (the important ones) are modeled explicitly, while the
rest (the unimportant ones) are taken into account implicitly in some way, via response functions,
for example. Before the age of computers, all models were reduced. When MD simulations became an
everyday computational tool, atomic models became the new standard in certain areas of chemistry,
physics, and biology. While understanding nanoscale physics is vital, we believe that the ease of use of
MD has sometimes caused the baby to be thrown out with bath water. Rather, we think that what is
needed are clever models that are necessarily reduced to some degree to be computationally feasible.

Modeling of ion channels and synthetic nanopores is a case in point. This modeling is inherently
difficult as nanoscale interactions and physics directly translate into measurable phenomena (what
we call device functions). By simplifying the physics to be modeled, reduced models have a number
of advantages over all-atom simulations. However, building such models is in many ways more art
than science. Here, we have taken both old and new data from our simulations of ion channels and
nanopores and distilled from them four rules of thumb (principles) for constructing reduced models
for nanopores. These are

1. The current carried by an ionic species is mainly determined by the axial concentration profile of
that species inside the pore.

2. Care must be taken to model the pore charges since they produce the local ion concentrations,
and, consequently, device function.

3. The important degrees of freedom that must be included in the model are those that depend on
the input parameters of the device (voltage and concentration), while those that do not can be
replaced by response functions.

4. Having the parameters within a response function not depend on external conditions (or at least
have minimal dependence) makes those parameters transferable to other conditions, and this
makes it possible for the model to make predictions that can be tested.
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Our goal is to offer insights into how to think about reduced model, but also to point out the
subtleties and consequences of the choices a modeler might make. Specifically, for each rule of thumb
we showed that its interpretation is not as straightforward as it might seem. For example, while large
ion concentrations are important, so are areas with small concentrations which act as large resistors
that can dominate the current. Also, charged groups seemingly far from the key locations (e.g., the
selectivity filter of an ion channel) can grossly change current/voltage curves. Overall, testing and
probing to find the important degrees of freedom that capture the axial-direction physics is the key to
reproducing device function and understanding the physics behind the device function; for example,
using uniform versus discrete pore charges can have measurable consequences. Once these have been
identified, approximating other physics as response functions is a lot easier.

Lastly, we note that while reduced models are important to understand these devices, they are
only one part of the continuum of modeling levels that are possible. All-atom and even quantum
mechanical simulations play key roles as well in defining the physics of nanopores at the atomic and
molecular levels. The role of reduced models is on a larger scale, namely to identify the physics of the
device as a whole using the nanoscale physics defined at more detailed levels of modeling. They are
the last step to couple atoms to experimental measurements.
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Appendix A. Slope Conductance Theory

Let us assume rotational symmetry, so quantities depend on the variables z, r. Let assume,
furthermore, that µ does not depend on r; results (not shown) support this assumption. Let us
integrate the NP equation (Equation (1)) over the cross section:

Ii = −zie
∫

A(z)
ji(z, r)da =

zie
kT

[∫

A(z)
Di(z, r)ci(z, r)da

]
dµi(z)

dz
=

zie
kT

Ni(z)
dµi(z)

dz
(A1)

for any z inside the pore with

Ni(z) =
∫

A(z)
Di(z, r)ci(z, r)da.

Let us rearrange and integrate over the pore

Ii

∫ H2

H1

dz
Ni(z)

=
zie
kT

∫ H2

H1

dµi(z) =
zie
kT

∆µi. (A2)

If we assume that bulk concentrations are the same on the two sides of the membrane,
the electrochemical difference is

∆µi = zieU, (A3)
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where U is the voltage across the pore. Substituting into Equation (A2), we obtain that

Ii

∫ H2

H1

dz
Ni(z)

=
z2

i e2

kT
U (A4)

from which the resistance (the reciprocal of conductance) is obtained as

1
Gi

=
U
Ii

=
kT

z2
i e2

∫ H2

H1

dz
Ni(z)

. (A5)

If we assume that Dpore
i (z) does not depend on r inside the pore, we can write that

1
Gi

=
kT

z2
i e2

∫ H2

H1

dz
Dpore

i (z)A(z)ci(z)
, (A6)

where ci(z) = 1
A(z)

∫
A(z) ci(z, r)da is the radially-averaged concentration. If ci(z) is very small

somewhere in the pore along the z-axis, the integral, the resistance, becomes large. This analysis
was used in several works [17,18,21,23,24,27,46,48,52] to relate concentration profiles to currents.
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Abstract: We use stochastic simulations to investigate the performance of two recently developed
methods for calculating the free energy profiles of ion channels and their electrophysiological
properties, such as current–voltage dependence and reversal potential, from molecular dynamics
simulations at a single applied voltage. These methods require neither knowledge of the diffusivity
nor simulations at multiple voltages, which greatly reduces the computational effort required to probe
the electrophysiological properties of ion channels. They can be used to determine the free energy
profiles from either forward or backward one-sided properties of ions in the channel, such as ion
fluxes, density profiles, committor probabilities, or from their two-sided combination. By generating
large sets of stochastic trajectories, which are individually designed to mimic the molecular dynamics
crossing statistics of models of channels of trichotoxin, p7 from hepatitis C and a bacterial homolog
of the pentameric ligand-gated ion channel, GLIC, we find that the free energy profiles obtained from
stochastic simulations corresponding to molecular dynamics simulations of even a modest length are
burdened with statistical errors of only 0.3 kcal/mol. Even with many crossing events, applying
two-sided formulas substantially reduces statistical errors compared to one-sided formulas. With a
properly chosen reference voltage, the current–voltage curves can be reproduced with good accuracy
from simulations at a single voltage in a range extending for over 200 mV. If possible, the reference
voltages should be chosen not simply to drive a large current in one direction, but to observe crossing
events in both directions.

Keywords: computational electrophysiology; electrodiffusion model; stochastic simulations; current–
voltage dependence; reversal potential; committor probabilities

1. Introduction

Ion channels are ubiquitous in living systems in which they mediate ion transport
across cell walls [1–3]. Although all confirmed structures of ion channels are either bundles
of α-helices or β-barrels organized around a transmembrane, water-filled pore lined largely
with hydrophilic side chains, they markedly differ in their properties. Their activity is
regulated by a variety of signals, such as voltage, ligands, pH or mechanical tension. Some
channels are made of peptides that barely span the membrane, while others are among
the largest protein assemblies in a cell. In terms of ionic conductance, defined as the
ratio of ionic current to voltage, channels differ by more than two orders of magnitude
and conductance is not correlated with size. For example, the single-channel conduc-
tance of a bacterial homolog of pentameric ligand gated ion channels (pLGICs), GLIC,
which consists of 317 residues per subunit is 8 pS [4], similar to the lowest conductance
level of a channel made of antimicrobial peptide, alamethicin, which is built of 20 amino
acids [5]. Another channel-forming peptide trichotoxin (TTX), consisting of 7 helices, each
containing 18 residues conducts ions at 850–900 pS [6], which is close to the conductance of
mechanosensitve channels MscS containing 250–1100 residues [7], approximately equal to
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1 nS [8]. Some channels exhibit exquisite selectivity whereas others are non-selective. Single
point mutations can not only markedly affect conductance and selectivity but even render
a channel inactive or constitutively open [9–11]. How variations in a common, general
architecture translate to a variety of electrophysiological behaviors is of great interest not
only for understanding regular biological systems but also for explaining a number of
diseases associated with improper function of ion channels [12–14].

The availability of high-resolution structural models of ion channels has created
opportunities to connect structure and function. Molecular dynamics (MD) computer
simulations can contribute to this goal by providing mechanistic and thermodynamic
descriptions of ion transport that is not readily accessible from experimental studies [15–26].
For a recent, comprehensive review, see Flood, et al. [27]. Furthermore, MD simulations
can be used to validate experimentally derived structural models, which do not always
correspond to the native structures of channels [28], select the native structure among
several candidates [29], and predict functional effects of mutations. These simulations,
however, have to be validated by demonstrating that they can be used to reproduce
measured electrophysiological properties with satisfactory reliability.

Calculating electrophysiological properties from MD simulations with applied voltage
can be done simply by way of computing the current across the simulation cell [15,30,31]
or counting the number of ions that cross the channel [16,24,25,32]. However, this direct
method, especially when applied to obtain I-V curves and reversal potentials, requires
significant computational effort, as it involves MD simulations at a number of applied
voltages. To obtain the same accuracy, channels with low conductance generally require
longer simulations than channels with high conductance. For example, in simulations of
TTX, we counted almost 200 K+ crossing events in 900 ns at 50 mV [33], whereas only
23 Na+ crossing events were observed in a 7.7 µs simulation of GLIC at 100 mV (Wilson
and Pohorille, unpublished). Since the ionic currents from both simulations appear to
obey Poisson statistics, we expect the relative errors in the conductance of K+ in TTX and
Na+ in GLIC to be approximately 7% and 20%, respectively. To achieve the same relative
errors for currents in GLIC as in TTX, a MD trajectory of over 60 µs in length would be
required. This means that calculating the I-V curve might present a considerable challenge.
To deal with this challenge, it has been common to improve statistics for ion crossing events
by applying high voltages, sometimes substantially above their physiological values, or
increasing ionic concentration in bulk solution [15–17,34–38]. This approach, however, is
fraught with dangers, as it might lead to the disruption of membrane structure or saturation
effects for ion entry to a channel [37]. Furthermore, if high voltages are used, I-V curves in
physiologically relevant ranges are obtained via interpolation or extrapolation procedures
of unknown accuracy [35].

If the motion of ions through the channel can be satisfactorily described as diffusion
in the applied electric field and the potential of mean force (PMF) exerted by all other
components of the system, which is assumed to be independent of voltage, then the com-
putational effort can be markedly reduced. Several approaches not based on MD take
advantage of this description. Methods based on Poisson-Nernst-Planck (PNP) theory rely
on solving the electrodiffusion (ED) equation for electrical current in which the mobile ions
are represented as a mean-field concentration profile whose distribution and motion is
determined by electrostatic forces [39–44]. In Brownian Dynamics (BD), channel conduc-
tance is calculated by way of solving the Langevin equation in which both short-ranged
interactions with a static model of the channel and long-ranged, electrostatic interactions
are taken into account [40,45–48]. In both PNP and BD approaches, electrostatic forces are
are obtained from the Poisson equation and the medium is represented as a continuum.
From this perspective, we take an approach in which atomistic, dynamic information
offered by MD is combined with the efficiency of the ED equation. Instead of carrying
out a series of extensive MD calculations of a channel over a range of applied voltages, a
substantially reduced set of simulations is combined with the one-dimensional ED model
in a steady state. In this approach, the actual electrophysiological properties, such as the
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current, are calculated from the ED equation, whereas the quantities needed to solve this
equation are supplied from MD simulations.

Not all channels conform to the ED model. This model cannot be applied directly
if ion crossing events are not statistically independent [49,50], ion diffusion is single file
rather than Fickian [51], there are strong binding sites for ions in the channel, the channel
changes its structure in response to applied voltage in the range of interest [26] or ions
experience saturation in the mouth of the channel. Despite these limitations, it appears
that ion movement through many channels satisfies the assumptions of the ED model. A
number of small, naturally occurring and synthetic channels and pLGICs belong to this
category. The channels discussed in this paper were found to be well-described by the
model. More generally, a number of different equations that are special cases of the ED
equation, such as Goldman-Hodgkin-Katz (GHK) equation, have been extensively and
successfully used as basic tools in experimental and computational electrophysiology for
nearly 80 years, for example to determine ionic selectivity from the measured reversal
potential [1,52]. Further, basic assumptions of the ED model, such as independence of ion
crossing events or Fickian nature of diffusion, can be tested without substantial, additional
effort. This was previously done for a number of channels [25].

Previously, we developed an approach to calculate electrophysiological properties
from the integrated form of the ED equation [19,24,25]. Instead of MD calculations at
several voltages, the system is simulated at a single voltage (or with no applied voltage) to
obtain the PMF for each ion in the channel. Subsequently, markedly shorter simulations
at voltages of interest are required to determine the densities of the ions near the ends of
the channel. Calculating the currents from simulations at these voltages is not required.
In addition, ionic diffusivity along the channel has to be determined. Both boundary
density values and diffusivity obtained by any of these methods are burdened with errors,
contributing to inaccuracies in the calculated currents.

Recently, we developed two formalisms for calculations of electrophysiological prop-
erties, including I-V curves and reversal potential, from a single MD simulation at one
voltage [33]. From this simulation, the PMF, nonequilibrium density profiles and committor
probabilities for ions in the channel are obtained and used to calculate currents at different
voltages after appropriate transformations of the ED equation. Additional calculations
to obtain the density boundary terms at different voltages and diffusivity are no longer
needed. These formalisms were tested on a simple model of the TTX channel, comprised
of 7 straight α-helices, each containing 18 amino acids [6], and were shown to perform very
well. The improved efficiency of this novel approach derives from the fact that only one MD
simulation instead of multiple ones is needed to obtain the I-V curve or reversal potential.

As is the case for any new approach, it is essential to establish the intrinsic accuracy of
our formalism. This is the goal of this paper. Specifically, we focus on the question: how
reliable are our approaches to calculating electrophysiological properties, independent
of other sources of errors, such as inaccuracies in force fields and insufficient simulation
times? Separating errors due to the proposed methods from other error is not simple. It
cannot be done through a direct comparison with experiments because, for example, of
inaccuracies due to force fields. In principle, it can be done via comparison with accurate
MD simulations of the PMF and currents at several applied voltages, but, in practice, it
is expensive to obtain sufficiently accurate free energies and currents. Although PMFs
for ions in a number of channels were obtained from MD simulations, in most cases no
estimates of errors were provided [21,23,26,53–61]. In a few cases in which errors are
available by way of either direct estimates or comparisons of PMF obtained via different
methods [20,24,25,62–68] they are of the order of 0.2–0.7 kcal/mol, which is similar to
what is expected to be the intrinsic accuracy of the formalisms studied here. This means
that if there were differences between electrophysiological properties obtained from MD
simulations at several applied voltages and reconstructed from simulations at a single
voltage it would not be possible to determine whether these differences were due to
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insufficient accuracy of the simulations or to inaccurate reconstruction from the new
methods. For these reasons, we take a different approach.

We assume that the ED model describes ion transport with satisfactory accuracy
and that the underlying PMF is known. Then, the ED equation is solved many times by
way of stochastic simulations to ascertain how statistical errors depend on the number
of stochastic trajectories. Even though the stochastic simulations employed here do not
involve time explicitly, the number of trajectories considered in a stochastic dataset can
be related to the MD simulation time. In a simple case of TTX, we demonstrate that
this can be done consistently. For each set of stochastic trajectories, the PMF and the
electrophysiological properties at different applied voltages are reconstructed by way of
the new theoretical approaches considered here. Due to the stochastic nature of each
solution to the ED equation and the limited number of trajectories in each set, which
can be related to a specific simulation time, the quantities of interest obtained from each
reconstruction differ between themselves and from the accurate values associated with
the underlying PMF. Further, the calculated quantities also depend on the theoretical
formalism used. If a sufficient number of trajectories has been generated, statistical errors
on the quantities of interest can be estimated as a function of the number of trajectories
or equivalently, simulation time and performance of each theoretical approach can be
systematically assessed. For sets with a large number of trajectories, which corresponds
to long simulation times in MD, the underlying PMFs will be reconstructed accurately.
For sets with a smaller number of trajectories, the accuracy will not be as good and is
expected to deteriorate as the number of trajectories is reduced. A similar systematic study
cannot easily be done in practice by way of MD simulations because the computational
effort to generate many MD trajectories of different length would have been prohibitive.
Furthermore, no analytical method for error analysis exists for this problem.

In principle, this type of analysis can be carried out for any underlying PMF, even if it
is unrelated to real ion channels. This is, however, not the direction that we pursue. Instead,
we use the PMFs that we previously obtained from simulations of three actual channel
models and, for the purpose of this study, assume that they are accurate. The models were
selected such that they differ in size, pore structure, conductance and selectivity. The first
model is TTX, which exhibits relatively high conductance, very little structure inside the
pore and a weak selectivity for cations.

The second model is the high-resolution NMR structure proposed by OuYang et al. [69]
for a hexameric channel p7 from the hepatitis C virus. Each subunit consists of 63 amino
acids. The model has an unusual architecture not found in any other channel. The channel
does not exist as a bundle of α-helices, which is the most common structural motif among
membrane proteins, but instead forms an interlocked structure in which each subunit
assumes a horseshoe conformation with each side comprised of a short, α-helical section.
Because of these atypical features there have been concerns about the veracity of this
model [28]. Recently, we calculated conductance and ionic selectivity of this model by
way of MD simulations and showed that both properties differ significantly from those
measured experimentally (Shannon et al., unpublished). Specifically, in contrast to the
electrophysiological data, the model exhibits high conductance and strong selectivity for
Cl− over K+. These results strongly suggest that the proposed model does not represent
the native structure of the channel, demonstrating that computational electrophysiology
can be used not only to support but also to disprove structural models of ion channels.

The third model is based on the crystal structure of a pentameric, cation-selective
ion channel, GLIC, from a cyanobacterium Gloeobacter [70]. This channel is a bacterial
homolog of receptors belonging to the family of pentameric ligand-gated ion channels. Its
main electrophysiological characteristics are low-conductance (9.3 pS) and strong selectivity
for cations [70]. Molecular models of all three channels are shown in the Supplementary
Materials (SM), Section S4.

Both the p7 and GLIC models have a markedly more varied pore structure than TTX
and, consequently, a more complex PMF. Although we will use the names of these three
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channels further in the text, we do not claim that the underlying PMFs faithfully represent
the PMFs for these channels in their native open forms (this does not appear to be the case
for p7) and, therefore, we do not compare the electrophysiological properties calculated
from stochastic simulations with the same properties obtained experimentally. Instead, we
fully concentrate on assessing the accuracy of the underlying theory.

2. Theory and Method

In this section, we briefly outline the theory behind three different approaches to
calculating the PMF and electrophysiological characteristics of an ion channel. Two of them
require simulations at only one applied voltage. A more detailed derivation of the basic
formulas, which follows closely the earlier development [33], is provided in Supplementary
Materials, Section S1. Next, we describe how the properties of interest can be obtained from
stochastic simulations under the assumptions of the ED model specified in the introduction.
Note that while the theory is developed in the context of MD simulations, here, we use
the results of the theory to compute the PMF and I-V curves from density profiles and
committor probabilities that were obtained from stochastic simulations.

2.1. Calculating the Potential of Mean Force

If the concentrations of ions on both sides of the membrane and the applied voltage
remain constant in time, the system is in a steady state, which means that the flux of
ions through the channel, J, is also constant in time. These are the conditions most often
considered in both experiments and simulations aimed at extracting electrophysiological
properties of channels. Then, the one-dimensional ED equation for a given type of ions can
be written as

J = −D(z)
(

dρ(z)
dz

+ βρ(z)
dE(z)

dz

)
, (1)

where D(z) is the diffusivity that, in general, depends on position z along the reaction
coordinate z. For a transmembrane channel embedded in the membrane located in the
x,y-plane, a convenient reaction coordinate is the position of an ion along the pore of the
channel, which can be measured along the z-coordinate. ρ(z) is the line density of ions,
which is usually recorded as a histogram in computer simulations. β = kBT, where kB is
the Boltzmann constant and T is temperature. E(z) is given by

E(z) = A(z) + qV(z), (2)

where A(z) is the PMF, V(z) is the applied voltage and q is ionic charge. In a constant
electric field, E el , acting along z, which is the most frequent experimental condition,

V(z) = E el(z− za). (3)

Even though the electric field is applied across the whole system [15,30], it acts only
between za and zb in the non-polar phase, which has been identified as corresponding to
the hydrophobic core of the membrane [25,33]. Thus, electric field is a boxcar function
that is equal to E el in the range [za, zb] and zero otherwise. This can be formally written as
E el [H(z− za)− H(z− zb)], where H is the Heaviside function. Although we will not use
this notation for simplicity, the range in which E el is non-zero has to be kept in mind.

Integrated with the integrating factor exp[βE(z)] and resolved for J, the ED equation
takes the form

J =
ρ(zmin) exp[βE(zmin)]− ρ(zmax) exp[βE(zmax)]∫ zmax

zmin

exp[βE(z)]
D(z) dz

. (4)

For a system in a steady state, J does not formally depend on the limits of integration
zmin and zmax. This means that these limits do not have to coincide with the edges of the
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channel. In practice, the limited precision of MD simulations introduces some dependence
on the limits of integration, as analyzed elsewhere [25].

To calculate J from this equation, E(z) has to be known, which in turn requires
determining A(z). This can be done in equilibrium simulations in the absence of voltage.
A host of methods exist for this purpose [71–73]. A(z) can be also calculated from non-
equilibrium simulations at an applied voltage. If the ED equation is integrated with the
integrating factor 1/ρ(z) then

J =
ln ρ(zmin)

ρ(zmax)
− β

[
A(zmax)− A(zmin) + qE el(zmax − zmin)

]

∫ zmax
zmin

1
D(z)ρ(z)dz

. (5)

Since J is independent of the limits of integration, zmax can be substituted by z. Af-
ter simple rearrangements, it yields a formula for the PMF relative to its value at zmin,
∆A(z, zmin) = A(z)− A(zmin)

∆A(z, zmin) = −kBT
[

ln
ρ(z)

ρ(zmin)
+ J

∫ z

zmin

1
D(z′)ρ(z′)

dz′
]
− qE el(z− zmin). (6)

We call this method for determining PMF the Integrated Electrodiffusion Equation
Method (IEEM).

To solve Equations (5) and (6), D(z) has to be known in the full range of z. D(z) can
be determined by way of calculating the mean square displacement of the ion at several
points along the channel obtained from a series of short MD trajectories after subtracting
the PMF [19], from the force-force autocorrelation function acting on a stationary ion at
different positions in the channel [74], or by way of a Bayesian fitting method [75–77]. See
Supplementary Materials, Section S5 for a discussion of how diffusivity was computed in
our MD simulations.

Once ∆A(zmax, zmin) and D(z), which are both assumed to be independent on voltage,
are known, the boundary density terms ρ(zmin) and ρ(zmax) have to be obtained from either
MD or stochastic simulations at each voltage of interest. Since the full knowledge of ρ(z) is
not needed, these simulations can be markedly shorter than simulations to determine the
PMF. Then, ∆A(zmax, zmin), D(z), ρ(zmin) and ρ(zmax) are used in Equation (5) to calculate
J at a given voltage. Previously, we demonstrated that this method performs satisfactorily
for simple channels [19,24,25].

Recently, we developed two alternative approaches to calculating the PMF and electro-
physiological properties that require markedly less computational effort [33]. Both rely on
separating the total ionic current, J, to currents moving in two opposite directions – from
zmin to zmax and from zmax to zmin. We abbreviate them J f and Jb and call them forward
and backward currents, respectively.

J f =
ρ f (zmin) exp[βE(zmin)]− ρ f (z) exp[βE(z)]

∫ z
zmin

exp[βE(z′)]
D(z′) dz′

, (7)

Jb =
ρb(z) exp[βE(z)]− ρb(zmin) exp[βE(zmim)]∫ z

zmin

exp[βE(z′)]
D(z′) dz′

, (8)

J = J f − Jb. (9)

Here, ρ f (z) and ρb(z) are densities of ions that entered the range [zmin, zmax] at zmin and
zmax, respectively. We assume that both forward and backward currents are in a steady
state and, therefore, their values do not depend on the limits of integration. This allows for
setting the upper limit to zmin < z ≤ zmax.
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Assume that J f > 0 and Jb > 0 and take the ratio of Equation (7) to Equation (8).
This yields

J f

Jb =
ρ f (zmin)− ρ f (z) exp[β∆E(z, zmin)]

ρb(z) exp[β∆E(z, zmin)]− ρb(zmin)
, (10)

where
∆E(z, zmin) = E(z)− E(zmin). (11)

Combined with Equations (2) and (3), Equation (10) can be solved for ∆A(z, zmin)

∆A(z, zmin) = −kBT ln
Jbρ f (z) + J f ρb(z)

Jbρ f (zmin) + J f ρb(zmin)
− qE el(z− zmin). (12)

From this equation it follows that the PMF can be obtained from non-equilibrium simula-
tions at applied electric field E el simply from an average of ion densities in the forward
and backward directions weighed by the backward and forward currents, respectively. We
call this method for calculating the PMF the Current-Weighted Density Method (CWDM).
Knowledge of diffusivity is not necessary in CWDM. The denominator in the argument of
the logarithmic function sets the reference value of the PMF at zmin.

If we abbreviate the number of crossing events in forward and backward direction as
n f and nb, respectively, then, assuming that crossing events are governed by the Poisson
statistics, the corresponding errors will be approximately 1/

√
(n f ) and 1/

√
(nb). This

means that if n f or nb is small, ∆A(z, zmin) calculated from Equation (12) may become
inaccurate. Thus, we developed another, related theoretical approach for determining the
PMF from non-equilibrium simulations that does not suffer from this disadvantage. Since
it requires calculating committor probability, P(z), we will call it the Committor Probability
Method (CPM). For a diffusive process considered here, P(z) referenced to the forward
direction is defined as the probability that a particle (ion) in position z will reach zmax
before it reaches zmin. P(z) can be calculated either directly during computer simulations
or in post-processing, as described in Supplementary Materials, Section S3. A general
discussion of committor probabilities in more than one dimension and their application to
chemical kinetics can be found elsewhere [78–81].

The PMF can be calculated from ion densities in the forward or the backward direction.
The corresponding formulas are

exp[β∆E(z, zmin)] =
ρ f (zmin)[1− P(z)]
ρ f (z)− ρ f (zmax)

, (13)

exp[β∆E(z, zmin)] = exp[β∆E(zmax, zmin)]
ρb(zmax)P(z)

ρb(z)− ρb(zmin)
. (14)

Their derivation closely follows our earlier work [33] and is given in Supplementary
Materials Section S1.

Both equations allow for calculating the same quantity— the PMF. Individually, each
of them is not expected to be accurate in the full [zmin, zmax] range of z, especially away
from the entry point. Specifically, as z becomes close to zmax both ρ f (z)− ρ f (zmax) and
1− P(z) approach zero. Since numerical inaccuracies in Equations (13) and (14) affect
mainly the opposite sides of the [zmin, zmax] range, these two equations can be profitably
combined. Then, ρ f (z)− ρ f (zmax) and ρb(z)− ρb(zmin) can be considered as two biased
distributions representing the same unbiased distribution h(z). The problem of merging
them to reconstruct h(z) such that statistical error on ∆A(z, zmin) is minimized can be
solved by way of the Weighted Histogram Analysis Method (WHAM) [82]. This yields the
following formula for reconstructing the PMF from non-equilibrium simulations:

∆A(z, zmin) = C− kBT ln
[

h(z)
ρ f (zmin)(1− P(z))P(z)

]
− qE el(z− zmin), (15)
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where neither C, which is a constant that only shifts the energy scale, nor ρ f (zmin), which
is independent of z and is needed to ensure that the PMF at z = zmin is equal to zero,
influences the shape of ∆A(z, zmin). Similarly to Equation (12), no knowledge of diffusivity
is required.

Typically, MD simulations would be carried out on the channel system of interest
at some applied voltage V. From this, the committor probability, P(z) and the 1-sided
density profiles, ρ f (z) and ρb(z), and the number of forward and backward crossing
events would be determined, and used to calculate the forward and backward fluxes, J f

and Jb, respectively. The PMF can be determined from either CWDM (Equation (12)) or
CPM (Equation (15)). As will be discussed later, we created synthetic data sets of 106–108

stochastic trajectories. For each data set, we calculate the same quantities that would be
calculated in MD, P(z), ρ f (z) and ρb(z), and then use these to calculate the PMF. Note that
the free energy depends on ratios of density profiles, so the absolute normalization of the
density profiles is not important. Similarly, the CWDM requires only ratios of the forward
and backward currents, so the magnitudes are not required.

2.2. Calculating I-V Dependence from Simulation at a Single Voltage

If the PMF, the current, Jµ, and the density, ρµ(z), or the committor probability, Pµ(z),
are known from simulations at an applied voltage, ∆Vµ, the current, Jν, at a different
voltage ∆Vν can be obtained without any calculations at this voltage. This allows for
reconstructing the I-V curve from simulations at a single voltage.

If Equation (1) is integrated with the same integrating factor, exp[βEν(z)], for both
voltages, ∆Vµ and ∆Vν, we obtain

Jµ =

ρµ(zmin) exp[βEν(zmin)]− ρµ(zmax) exp[βEν(zmax)] + βq(E el
ν − E el

µ )
∫ zmax

zmin
ρµ(z) exp[βEν(z)]dz

∫ zmax
zmin

exp[βEν(z)]
D(z) dz

,
(16)

and

Jν =
ρν(zmin) exp[βEν(zmin)]− ρν(zmax) exp[βEν(zmax)]∫ zmax

zmin

exp[βEν(z)]
D(z) dz

(17)

The latter but not the former equation is the standard integrated form of the ED equation,
Equation (4).

If we take the ratio of currents Jµ/Jν then, after some algebra given in Supplementary
Materials, Section S2 we obtain

Jµ

Jν
= 1 + βq(E el

ν − E el
µ )
∫ zmax

zmin

fµ(z) exp
{

βq
[
Vν(z)−Vµ(z)

]}
dz, (18)

where

fµ(z) = exp
[
β∆Eµ(z, zmin)

] ρµ(z)
ρµ(zmin)

. (19)

or

fµ(z) = 1 + exp
[
β∆Eµ(z, zmin)

]ρµ(zmax)

ρµ(zmin)
− Pµ(z), (20)

depending on whether it is preferred to calculate Jν from ion density, ρµ(z), or committor
probability, Pµ(z). In both instances, neither diffusivity nor quantities at the applied voltage
∆Vν are needed. Equation (19) is expected to be less accurate that Equation (20) because
∆Eµ(z, zmin) and Pµ(z) that enter the latter equation are estimated on the basis of both
forward and backward simulations, whereas ρµ(z) in the former equation is a one-sided
density that looses accuracy away from the entry point.
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Unlike the free energy, Equation (18) gives only ratios of forward or backward currents
with respect to a reference voltage. Consequently, to calculate the I-V curves, we need
currents at this reference voltage.

2.3. Stochastic Simulations

The electrodiffusion equation was solved by generating trajectories on a free energy
surface E(z) that included the PMF and applied electric field with diffusivity D(z) or
average diffusion coefficient, < D >, at temperature T [83,84]. This allowed us to generate
the channel crossing statistics, density profiles and committor probabilities for the ions for
this free energy surface. As the crossing events that we have observed in MD simulations
appear to obey Poisson statistics, independently for both ions, we consider the ED equation
for each ion separately. Then, we calculated statistical errors in recovering the underlying
PMF and the I-V curves as functions of the number of trajectories.

As above, we define the channel boundaries as zmin and zmax, and absorbing boundary
conditions were located at these points. Trajectories were initiated at a point just inside
the boundary at either zmin for forward trajectories or zmax for backward trajectories, and
propagated until they reached either of the absorbing boundaries. Forward and backward
trajectories are considered separately as we are interested in the 1-sided density profiles
and committor probabilities, as well as their 2-sided combination. A trajectory that crossed
from zmin to zmax is said to be a crossing trajectory in the forward direction. Similarly,
trajectories that cross from zmax to zmin are crossing trajectories in the backward direction.
For simplicity, these will be referred to as forward or backward crossing events. Since
the trajectories are initiated near the absorbing boundaries, the majority of trajectories in
either direction do not cross, but they do contribute to the 1-sided density profiles and first-
passage statistics that are used to compute the committor probabilities (see Supplementary
Materials, Section S3 for further details).

The number of trajectories initiated per data set were typically 106, 107 or 108, further
abbreviated as N6, N7 and N8, respectively. These numbers were chosen because the
average number of crossing events for PMFs corresponding to the models of TTX and p7
observed for N = 106 is of the same order of magnitude as the numbers of crossing events
observed in our MD simulations of 0.5–2 µs. For the cation-selective GLIC channel, in
which the free energy barrier to permeation of Na+ is markedly higher, simulations with
106 trajectories yielded too few crossing events to be useful. In this case, the number of
crossing events observed at the N7 level approximately corresponds to the number seen
in MD simulations of 8 µs. See Supplementary Materials, Section S4 for details of the
MD simulations.

The free energy surfaces for the stochastic simulations were obtained by adding the
voltage ramp to the PMFs. We use a set of PMFs from our MD calculations. For our
problem, the PMFs are the equilibrium free energy surfaces for moving an ion along the
1-dimensional reaction coordinate of the ion with respect to the center-of-mass of the
protein channel, at the bulk ion densities of the MD. For this study, we used average
diffusion coefficients, < D > obtained by averaging the diffusivities estimated from MD
(Supplementary Materials, Section S4). Strict matching of diffusivity is not necessary for
the primary purpose of this study, but it provides a more realistic connection between
statistical errors estimated in stochastic simulations and time scales of MD simulations.
Additional details are given in Supplementary Materials, Section S7. The forward and
backward ion density profiles were obtained from histograms of either the forward or
backward trajectories in each data set. Committor probabilities (Supplementary Materials,
Section S3) were calculated from the first passage statistics of the forward and backward
trajectories. The density histograms and committor probabilities were computed for each
data set, and not as an average over the individual trajectories in the data set. Averages
were constructed over multiple data sets.
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3. Results and Discussion
3.1. Connection with Molecular Dynamics

To compute the currents for the I-V curves from stochastic simulations, some con-
nection to MD is required. MD simulations provide both forward and backward ion
trajectories as part of the simulation, unless the channel is strongly rectifying or a large
voltage is applied. The net current due to a particular ion is J = J f − Jb (Equation (9)). The
total current is the sum of these net currents over all types of ions. As mentioned in the
introduction, J can be obtained from MD simulations by way of combining the fluxes from
forward and backward crossing events or calculating the ionic displacement currents. In
stochastic simulations, only the former method can be used. Therefore, we tested whether
both method yield the same results for MD and found that this was indeed the case. Both
methods and the results of the tests are described in Supplementary Materials, Section S6.

In addition, the detailed balance condition connecting forward and backward crossing
events has to be satisfied. In MD simulations this problem is implicitly solved: if there
is no external voltage, simulations of transmembrane systems will exhibit no net current
to within statistical errors, which means that the number of forward and backward cross-
ing events is equal, again to within statistical errors. In stochastic simulations, detailed
balance also has to be satisfied, which means that trajectories in both directions have to
be combined with the correct weights. To determine these weights, we carried out sets of
108 simulations with no applied voltage to obtain the well converged, average numbers
of forward and backward crossing events. From these simulations, the ratio of forward
to backward trajectories that satisfies the detailed balance condition was established and
subsequently used to compute the density profiles, committor probabilities and the PMFs
at different voltages.

Once the ratio of forward to backward trajectories needed to satisfy the detailed
balance condition is known, the average numbers of crossing events in both directions,
n f (∆V) and nb(∆V), can be obtained from stochastic simulations at a given voltage ∆V.
This, however, is still insufficient to determine currents; additional information about time
scales is required. This can be obtained from a MD simulation of the system. We abbreviate
the number of forward and backward crossing events observed in MD simulations at
applied voltage, ∆Vre f , as m f and mb. Then, the length of the MD trajectory, tMD, can be
used to estimate a stochastic time, tS, corresponding to the number of stochastic trajectories
that produced n f (∆Vre f ) and nb(∆Vre f ) crossing events at the voltage ∆Vre f . A simple way
to make such estimate is to use the number of crossing events in one direction. It is, of
course, recommended to choose the direction that provides better statistics. Assuming that
there are more forward than backward crossing events in the MD simulations,

tS = tMD
n f (∆Vre f )

m f .

If the backward events dominate, tS would be estimated using nb(∆Vre f ) and mb. Once tS
has been determined, the stochastic currents at voltage ∆V can be calculated:

JS(∆V) = J f
S (∆V)− Jb

S(∆V) = [n f (∆V)− nb(∆V)]/tS.

where JS(∆V), J f
S (∆V) and Jb

S(∆V) are the total, forward and backward currents at volt-
age ∆V.

3.2. Committor Probabilities

The committor probabilities for p7 are shown in Figure 1. The committor probabilities
in Figure 1a have been calculated from Supplementary Materials, Equation S30, in which
ions arriving at z from both sides are included. The statistical errors associated with P(z)
at different voltages are small, even at the N6 level. As can be seen in Figure 1b, this
is not the case for one-sided P(z), obtained using Supplementary Materials, Equations
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S28 and S29. This is due to the decreasing number of ions from one direction as they
approach the opposite side of the channel. The inset of Figure 1b shows the numbers of
first-passage events from the forward and backward calculations as well as the combined
number of events. At 140 mV, the statistics are satisfactory only in the forward direction, in
which most of crossing events occur, whereas no reliable probabilities are obtained for the
backward direction over the full range of z. The opposite is true for −140 mV; P(z) in the
forward direction is unreliable. Thus, combining information about P(z) in both directions
is preferable whenever possible.

As voltage changes from −140 mV to 140 mV, the position of the transition state for
K+ permeation through p7, defined as the x,y-plane at which P(z) = 0.5, Ref. [85] shifts
substantially and systematically from 7 Å to −13 Å with respect to the center of mass of
the membrane. Such large shifts, however, are not universal. As we have shown in the
example of TTX [33], the position of the transition state changes markedly less with voltage
if the underlying PMF is strongly peaked.
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Figure 1. (a) Committor probabilities for Cl− in p7 at −140 mV (red), −70 mV (green), −35 mV
(black), 0 V (blue), 70 mV (cyan) and 140 mV (magenta). Error bars are shown for the N6 data sets at
−35 mV and 140 mV; (b) Committor probabilities for p7 at 140 mV from the N6 data set for 1-sided
forward (green) and backward (blue) trajectories, respectively, 2-sided data set in the backward
direction (red lines), and average in the forward direction with error bars (red symbols). In the inset
we show the number of first passage trajectories to reach z for one N6 data set in the forward (green)
and backward (magenta) directions and the total (light blue).

Calculating P(z) for GLIC is more difficult. This is a slow channel and even at the
N7 level, which approximately corresponds to a MD trajectory of 8 µs in length (see
Supplementary Materials, Section S4, the number of crossing events is small. At 100 mV
only an average number of 0.5 forward and 29 backward crossing events were observed.
In particular, N7 simulations of forward trajectories frequently produce no crossing events.
At the same voltage, P(z) in the backward direction is often equal to 1 over a relatively
wide range of several Å near zmax, which means that all ions that reached this range exit the
channel at zmax. In such circumstances, calculation of P(z) from Supplementary Materials,
Equation S30 is no longer possible. A different approach is needed.

Direct calculation of the committor probability requires that some number of tra-
jectories successfully cross the channel, Nb(zmin) > 0 and N f (zmax) > 0. If one of these
conditions is not met, for example, if N f (zmax) = 0, then P f (z) = N f (zmax)/N f (z) = 0. If
we consider position z′ (z′ < zmax) at which N f (z′) > 0, then we can write the committor
probability P(z) = αN f (z′)/N f (z), where α is unknown, though formally would be equal
to N f (zmax)/N f (z′) if complete sampling of the forward direction were available. α can be
determined in a self-consistent manner. Using Equation S30 from Supplementary Materials,
Section S3, we can write the total committor probability in the region z < z′ and the
backward committor probability z > z′:

P(z) =





αN f (z′)+Nb(z)−Nb(zmin)

N f (z)+Nb(z)
if z < z′

1− Nb(zmin)
Nb(z) if z > z′.
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If we require that P(z) is continuous at z = z′, then α = 1 − Nb(zmin)/Nb(z′). Other ways
of determining P(z) for this problem are possible.

3.3. The Potential of Mean Force

Typically, the PMFs for ions in channels are calculated in simulations in the ab-
sence of electric field using enhanced sampling techniques (see the recent review by
Flood, et al. [27]). In contrast, the methods outlined here allow for reconstructing PMF
from steady-state simulations with an applied electric field. The underlying PMFs for p7
and GLIC used in the present study were obtained by way of this method (see Supple-
mentary Materials, Section S1). Since TTX is a bundle of straight α-helices surrounding a
featureless water pore, the PMFs for K+ and Cl− are quite generic, which is characteristic
of several very simple channels (see Figure 2a) [24,25]. For K+, the PMF is fairly flat over
a wide range of approximately 18 Å inside the channel, which is reminiscent of classical
models of ionic conductance in which it is assumed that the PMF is a step function constant
inside the channel [1,86]. For Cl−, the PMF is peaked near the center of the bilayer, which
can be attributed to the Born barrier experienced by an ion permeating a rigid, featureless
non-polar lamella [87]. If an ion is transferred across a membrane through a water-filled
pore, the general shape of the PMF remains the same, but the barrier is substantially re-
duced [87,88]. For TTX, it still remains approximately 1.5 kcal/mol higher than the barrier
for K+, which is consistent with a weak selectivity of this channel toward cations.

The PMF for permeation of Cl− in the OuYang et al. model of p7 [69] is more structured
than the PMF for TTX (see Figure 3a). The barriers are low, which explains high chloride
current predicted by this model [37]. In contrast to TTX, the barriers to Cl− permeation in
p7 are located near the mouths of the channel due to the presence of positively charged
residues at these locations. Compared to permeation of Cl−, the current of K+ in this model
is quite low, which indicates that the channel should be anion-selective. Both predicted
selectivity and total currents are at variance with electrophysiological data [89], thus
contributing to arguments that the proposed high-resolution structure [69] is not native.

The PMF representing permeation of Na+ through GLIC is also markedly more
structured than the PMF for ions in TTX (see Figure 2b). The barrier is substantially higher
than in the other two channels. As a result, the conductance of this channel is relatively
low [70]. This presents a challenge because the number of crossing events in both directions
is small. The PMF for Cl− in this channel is not considered because no crossing events of
this ion have been observed in MD simulations.
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Figure 2. (a) PMFs for K+ (lower curves) and Cl− (upper curves) in TTX from stochastic simulations
with an applied voltage of 50 mV. The PMFs have been reconstructed by way of CWDM at the N6
(blue) and N7 (gold) levels or by way of CPM at the N6 (green) and N7 (magenta) levels; (b) PMF
for Na+ in GLIC from stochastic simulations with applied voltage of 100 mV. The PMF has been
reconstructed by way of CWDM at the N7 (blue) and N8 (gold) level or by way of CPM at the N7
(green) and N8 (magenta) level. In both panels, the underlying PMF is in red.

Taken together, the PMFs considered here are quite different from one another,
but are typical of the variety seen in ion channels. In spite of these differences, all
three PMFs were successfully reconstructed from non-equilibrium simulations by way of
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Equations (12) and (15) associated, respectively, with the CWDM and CPM methods. The
applied voltages were 50 mV for TTX, 140 and −35 mV for p7 and 100 mV for GLIC. For
TTX and p7, reconstruction was carried out at the N6, N7 and N8 levels. For GLIC, the
number of crossing events at the N6 level was quite small or equal to zero. Thus, only
N7 and N8 levels were considered. At the N6 level, 50 and 100 data sets of trajectories
were generated for TTX and p7, respectively. At the N7 level, 20 sets of trajectories were
generated for TTX and p7, and 50 sets were generated for GLIC. At the N8 level, the
number of generated sets was 4, 8 and 25 for TTX, p7 and GLIC, respectively. At each level,
all reconstructed PMFs are found to be tightly clustered and their averages at each level
are close to the underlying PMF, as shown in Figures 2 and 3a.
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Figure 3. (a) PMF for Cl− in p7 from stochastic simulations with an applied voltage of 140 mV. The
PMFs have been reconstructed by way of CWDM at the N6 (blue) and N7 (gold) levels or by way
of CPM at the N6 (green) and N7 (magenta) levels. The input PMF (red) is shown for reference.
PMFs at the N8 level are not shown, as they coincide with the underlying PMFs and statistical
errors associated with this level arequite small and are poorly visible at this scale; (b) PMFs for P7
reconstructed by way of one-sided forward trajectories (green) using Equation (13) and backward
trajectories (blue) using Equation (14) from stochastic simulations at the N6 level with applied
voltage of 140 mV. Two-sided reconstruction (magenta) and the underlying PMF (red) are shown for
comparison. Note that one-sided, but not two-sided reconstructions are burdened with large errors
at the ends.

In these figures, statistical errors associated with dispersion of the reconstructed PMFs
are marked. For ∆A(zmax, zmin), these errors are approximately ±0.3 kcal/mol at the N6
level for TTX and p7 and at the N7 level for GLIC. As expected, they are reduced by
approximately a factor of 3 with each level in which the number of sets increases by an
order of magnitude. The mean PMFs obtained by way of CWDM and CPM at different
levels are quite close to the underlying PMF and the corresponding statistical errors are
very similar, indicating that both methods are successful in reproducing the underlying
PMFs. Only for GLIC at the N7 level, does the ∆A(zmax, zmin) reconstructed by way of
CWDM appear to be systematically underestimated. At this level, no crossing events in one
direction are observed for a considerable fraction of data sets, which makes reconstruction
of the PMF from Equation (12) impossible. This systematically biases the sample in favor
of sets with higher counts of crossing events and, consequently, lower ∆A(zmax, zmin).
From the comparison between the PMFs reconstructed for p7 from trajectories at 140 and
−35 mV, it appears that precision of the reconstruction depends somewhat on applied
voltage. If the forward and backward densities are well balanced, precision improves.

In CPM, the PMFs can be calculated from one-sided quantities, Equations (13) and (14),
or by combining them. Here, the latter has been done by way of WHAM, Equation (15). As
can be seen in Figure 3b, this approach yields improved agreement with the underlying
PMF. In one-sided formulas, the densities can become quite low near the exit and, as a
result, precision in this range suffers.

In summary, both CWDM and CPM provide a reliable means for reconstructing
PMFs from non-equilibrium simulations. However, the relation between statistical errors
obtained in stochastic and MD simulations is not straightforward. Even if the assumptions
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of the ED model are satisfied, precision of stochastic simulations is expected to be higher
than precision in MD simulations of equivalent length. Specifically, it is usually uncertain
if all degrees of freedom perpendicular to the reaction coordinate have been properly
equilibrated on the time scale of the simulations. Torsional angles in the side chains of
residues lining the pore or motion of whole helices are examples of degrees of freedom
that might undergo slow equilibration and, by doing so, influence the calculated PMF
and electrophysiological properties. The same concern applies to all other methods for
calculating these quantities.

3.4. Current-Voltage Dependence

Once the PMFs for the ions permeating the channel have been reconstructed and the
committor probabilities for these ions have been calculated for a reference voltage, the full
current-voltage (I-V) curves can be calculated from Equations (19) and (20) without the
need for additional simulations. This is the principal gain in efficiency of the method: the
I-V curve can be obtained from a single MD simulation instead of multiple simulations. For
example, if constructing the I-V curve required MD simulations at five different voltages in
the range of interest the efficiency of our methods would be approximately five-fold. Since
numerical results indicate that Equation (19) yields less accurate results than Equation (20),
this equation will not be further considered. The results for TTX, p7 and GLIC are shown
in Figures 4 and 5. The reference applied voltages are the voltages used for reconstructing
PMFs, described in the previous subsection. For comparison, currents calculated directly
from stochastic trajectories at several voltages are also shown.
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Figure 4. (a) I-V curves for K+ (green) and Cl− (blue) in TTX reconstructed from simulations at
50 mV at the N6 level. Blue and green dots are currents obtained from direct simulations at specific
voltages.; (b) I-V curves for Cl− in p7 reconstructed from simulations at 140 mV at the N6 (blue), N7
(green) and N8 (red) level, and for −35 mV at the N6 level (magenta). N7 and N8 curves are not
shown because they are almost identical to the N6 results. Black dots are currents obtained from
direct simulations at specific voltages. All reconstructions were done using the PMFs obtained by
way of CPM. The results of reconstructions using the PMFs from CWDM are not displayed because
they are nearly identical.

As we can see in Figure 4, the agreement between the I-V curves for both K+ and Cl−

in TTX calculated directly and by way of Equations (18) and (20) is excellent, even at the
N6 level, for the full range of voltages studied here, which extends from −100 to 100 mV.
As shown in Figure 6, the I-V curves obtained for different sets of trajectories are closely
clustered and deviate from each other only at the largest absolute applied voltages by no
more than a few pA.
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Figure 5. I-V curves for Na+ in GLIC reconstructed from simulations at 100 mV at the N7 level with
PMF from CPM (blue), at the N7 level with PMF from CWDM (magenta), and N8 with PMF from
CWDM (red). N8 with CPM (not shown) is almost identical to N7 CPM. Black dots are currents
obtained from direct simulations at specific voltages.
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Figure 6. Reconstructions of I-V curves in TTX from individual sets of trajectories for K+ (a) and
Cl− (b). The PMFs were obtained from CPM (upper panels) or CWDM (lower panels). The curves
were calculated by way of Equation (20) (blue) or Equation (18) (green). All reconstructions were
carried out from simulations at applied voltage of 50 mV at the N6 level. Note that blue curves, but
not green curves, are tightly clustered together indicating that Equation (20) is more accurate than
Equation (18).

For p7, the agreement is not as good if the the reference voltage of 140 mV is used for
calculating the I-V curve. The Cl− currents calculated directly and from Equation (18) agree
well for positive voltages, but diverge for negative voltages, away from the reference state.
The corresponding statistical errors also increase and become quite large below −50 mV.
The source of this disagreement can be traced to the integrand in Equation (18). As the
difference between the reference and the target voltage increases, the exponential term also
increases, which magnifies inaccuracies in function f (z). If the reference voltage is chosen
to be −35 mV, the agreement over the full range of voltages −150 to 150 mV improves
markedly, with modest deviations only at high, positive voltages (see Figure 4). A similar
situation was observed for GLIC. For the reference voltage of 100 mV, the I-V curves at
the N7 level satisfactorily reproduce currents calculated directly for positive voltages. For
negative voltages, the performance of the method progressively deteriorates. Again, if one
is interested in an I-V curve that extends to both positive and negative voltages, a different
choice of reference voltage may yield significant improvements in accuracy.

As pointed out in the introduction, a number of previous studies have used unreal-
istically large applied voltages to increase the number of crossing events and, by doing
so, improved precision of the calculated currents [15,23,35,37]. Furthermore, as discussed
earlier, this may lead to electroporation of the membrane, saturation effects during the
intake of ions at the mouth of the channel and involves extrapolation or interpolation to
the voltages by way of ad hoc procedures of unknown accuracy. The approach developed
here is more efficient and accurate and has a substantially stronger theoretical basis than
procedures used previously, even though only calculations at the reference applied volt-
age are necessary. In this approach, the accuracy of the reconstructed I-V curves can be
substantially improved through a judicious choice of this reference voltage. This choice
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depends on the range of voltage that is of interest and on several properties of a channel, in
particular its rectification, which characterizes an asymmetry of currents in response to the
change in direction of applied voltage. In general, maximizing total ion current through
applying high voltage is not the optimal strategy. Instead, it is often better to choose a
voltage that yields good statistics in both directions.

3.5. Reversal Potential

The reversal potential, ∆VR, is the applied voltage at which there is no net current. If
ionic concentrations on both sides of the membrane are equal, ∆VR = 0. Experimentally,
the reversal potential is measured by maintaining different concentrations on the cis and
trans side of the membrane, and then used in conjunction with the GHK equation to
estimate channel selectivity [1,6]. In MD, asymmetric concentrations have to be maintained
to measure directly the reversal potential [90], which markedly complicates simulations.
We have only considered the situation where the concentrations of ions are the same on
both sides of the membrane, as this corresponds to the conditions under which we have
carried out MD. We wish to expand this to a range of concentrations.

We expect that the net number of crossing events, from which we calculate the I-V
curve, depends on this concentration. If the bulk concentrations are low and the channel is
not saturated, then we expect the number of crossing events, and hence the currents, to
be linearly dependent on the concentrations of ions. For example, if the concentration is
doubled on both sides of the membrane, the net currents will also double. Under these
assumptions, we can calculate the reversal potential from our formalism. We simply need
to scale the fluxes of all ion types on one side of the membrane to match the desired
concentration difference.

The K+/Cl− selectivity of TTX obtained from the MD simulations is 2.2 [24,33]. Using
currents scaled by 5:1 in the I-V reconstruction from Equation (20), we obtain a reversal
potential of −9 mV. This corresponds to a GHK selectivity of 1.7, which is reasonably close
to the selectivity found in MD. Note that experimentally, the reversal potential is −27 mV,
corresponding to a K+/Cl− selectivity of 6 estimated from the GHK Equation [6]. This
cannot be compared directly to our results because the actual channel structure is unknown,
there are uncertainties due to force fields, and the GHK equation itself is an approximation.

4. Conclusions

Stochastic simulations were used to investigate the reliability of two new methods to
calculate PMFs for ion transport across transmembrane ion channels and electrophysio-
logical properties of these channels within the general framework of the electrodiffusion
model. Both methods have the desirable features that only simulations at a single voltage
are needed and information on the diffusivity is not required. In CPM, knowledge of
the committor probability is required. Stochastic simulations containing 106 trajectories
were shown to have similar numbers of crossing events for models of TTX and p7 in MD
simulations of 1–2 µs in length. Analysis of 50 or 100 of such simulations indicate that
errors in the free energy profiles are approximately ±0.3 kcal/mol. For a model of a slow
channel, GLIC, 107 trajectories, which approximately corresponds to MD simulations of
10 µs in length, are needed to achieve a similar statistical error. For both TTX and for p7 at
lower applied voltages, CPM and CWDM yield similar results. In CWDM, one-sided fluxes
are used directly, and for cases in which few crossing events are observed in one direction,
either due to large applied voltages, such as p7 at ±140 mV, or because the channel is
rectifying, such as GLIC, CPM performs better because two-sided quantities are employed
in this method. Similarly, even though one-sided CPM calculations are possible, the errors
near the end of the channel become substantial because the density becomes quite small,
yielding large relative errors.

Stochastic simulations were also used to investigate the reliability of a new expression
to calculate the ionic currents at different voltages, ∆V, given knowledge of the PMF,
committor probabilities and density profiles at a reference voltage ∆Vref. We found that
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the I-V dependence could be reconstructed over a range of ±100 mV, with respect to the
reference voltage. Judicious choice of ∆Vref can markedly improve the accuracy of the
reconstruction. Specifically, the I-V reconstruction for p7 is much better for ∆Vref = −35 mV
than for ∆Vref = 140 mV. Although much of the error can be attributed to the large voltage
ramp for voltages away from ∆Vref (3.2 kcal/mol at 140 mV), some of the error is due to the
poor statistics in the direction against the field. This is also evident in the reconstruction
of the I-V curve for GLIC, for which some simulations yielded no crossing events against
the field.

Common goals of simulations of ion channels are to obtain the free energy profiles
of ions translocating the channel and to determine electrophysiological properties of the
channel. In some instances, a reliable estimate of the numbers of crossing events, from
which the ionic currents can be calculated, is difficult to obtain from MD even for long
simulation times. We have shown that the new methods perform very well both to obtain
reliably the free energy profile across the channel and to allow for accurate determination
of the I-V curves. In the latter case, it is desirable to use a reference voltage that yields
good crossing statistics in both directions rather than a voltage that maximizes the total
number of crossing events. In summary, if transport of ions through a channel can be
satisfactorily described by the ED model, the new methods offer substantial reductions of
computational effort without sacrificing accuracy. Our approach is amenable to extensions
in which the advantages of MD and stochastic simulations are further combined on reliable
theoretical grounds.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.339
0/e23050571/s1 , Figure S1: Pictures from MD simulations of TTX, p7, and GLIC, Figure S2: Total
displacement charge calculated from ion crossing statistics and displacement current.
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Abstract: When forces are applied to matter, the distribution of mass changes. Similarly, when
an electric field is applied to matter with charge, the distribution of charge changes. The change
in the distribution of charge (when a local electric field is applied) might in general be called the
induced charge. When the change in charge is simply related to the applied local electric field, the
polarization field P is widely used to describe the induced charge. This approach does not allow
electrical measurements (in themselves) to determine the structure of the polarization fields. Many
polarization fields will produce the same electrical forces because only the divergence of polarization
enters Maxwell’s first equation, relating charge and electric forces and field. The curl of any function
can be added to a polarization field P without changing the electric field at all. The divergence of the
curl is always zero. Additional information is needed to specify the curl and thus the structure of the
P field. When the structure of charge changes substantially with the local electric field, the induced
charge is a nonlinear and time dependent function of the field and P is not a useful framework to
describe either the electrical or structural basis-induced charge. In the nonlinear, time dependent
case, models must describe the charge distribution and how it varies as the field changes. One
class of models has been used widely in biophysics to describe field dependent charge, i.e., the
phenomenon of nonlinear time dependent induced charge, called ‘gating current’ in the biophysical
literature. The operational definition of gating current has worked well in biophysics for fifty years,
where it has been found to makes neurons respond sensitively to voltage. Theoretical estimates
of polarization computed with this definition fit experimental data. I propose that the operational
definition of gating current be used to define voltage and time dependent induced charge, although
other definitions may be needed as well, for example if the induced charge is fundamentally current
dependent. Gating currents involve substantial changes in structure and so need to be computed
from a combination of electrodynamics and mechanics because everything charged interacts with
everything charged as well as most things mechanical. It may be useful to separate the classical
polarization field as a component of the total induced charge, as it is in biophysics. When nothing
is known about polarization, it is necessary to use an approximate representation of polarization
with a dielectric constant that is a single real positive number. This approximation allows important
results in some cases, e.g., design of integrated circuits in silicon semiconductors, but can be seriously
misleading in other cases, e.g., ionic solutions.

Keywords: polarization; maxwell equations; gating current; dielectric constant

1. Introduction

When forces are applied to matter, the distribution of mass changes. Similarly, when
electrical forces are applied matter with charge, the distribution of charge changes.

The electric field E
(
x, y, z

∣∣t; ρQ(x, y, z|t; E)
)

changes the spatial distribution of charge
P(x, y, z|t; E) producing polarization that has a central role in electrodynamics. In general,
the change in charge distribution induced by the electric field will depend on time and
electric field in a complex nonlinear way. We will discuss that situation later. But even
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when the induced charge is that of a polarization field characterized by a single dielectric
constant (a real number), the actual definition of the polarization field P(x, y, z|t; E) is
problematic, as major textbooks point out. Purcell and Morin [1], p. 500–507, show how the
same structure can be described by different fields P(x, y, z|t). They conclude “The concept
of polarization density P is more or less arbitrary” (slight paraphrase of [1], p. 507) and
leads to an auxiliary variable that “is an artifice that is not, on the whole, very helpful” [1],
p. 500.

Feynman shares this view. Feynman’s text says (on p. 10–17 of [2]) “One more point
should be emphasized. An equation like D = εrε0E is an attempt to describe a property of
matter. But matter is extremely complicated, and the equation is in fact not correct.”, as he
then explains in some detail [3]. (Zangwill [2] uses quantum electrodynamics (p. 160) to
deal with P and avoids (p. 44) the auxiliary variable D. He concentrates on the fundamental
variable E, as we do here.) Neither Purcell nor Feynman propose a general explanation for
the ambiguity in P.

The significance of the Purcell and Morin and Feynman’s statements is great. If the
concept of polarization is ‘more or less arbitrary’ (Purcell and Morin’s words); and the
distinction between bound and free charge is ‘ambiguous’, then the formulation of the
Maxwell equations in textbooks is ambiguous and arbitrary.

I hope it is not necessary to say the obvious: something as important as the Maxwell
equations should not be presented in a way that two Nobel Laureates (Purcell and Feyn-
man) think is ambiguous and arbitrary (their words, not mine). It seems that “ . . . the
conventional theory of electrodynamics inside matter needs to be redesigned”: p. 13 of [4].

A general explanation is presented here following Griffiths, Ch. 4, [5]. The ambiguity
in the definition of polarization arises from a mathematical property of vector fields and not
from a particular physics or structure of charges. Only the divergence of the polarization
field enters into the equations for the electric field E and so very different functions can
be added to P without changing the observable electric field. Specifically, the curl of any
function can be added to P without changing the electric field because the divergence of the
curl of any function is zero. Thus, measurements of E cannot determine the polarization
field P uniquely. Different structures of polarization charge can give the same electric
field and so measurements of the electric field cannot determine the structures producing
polarization or there the structures of charge itself.

A paradigm widely used in biophysics to define gating current allows resolution of
this ambiguity in many cases beyond biophysics. This paradigm cannot be universally
applied but when it can be applied it is very useful. The dependence of polarization on the
electric field is as complicated as the motions of matter in an electric field. These motions
are nearly as complicated as the motions of matter in general. It is unlikely that any single
paradigm will be universal. Nonetheless, the gating current paradigm of biophysics may
be generally useful and will surely make specific what is needed for paradigms in general.

The paradigm of biophysics was developed to resolve the nonlinear displacement
(i.e., capacitive) current of nerve that Hodgkin and Huxley [6] suggested might be the
voltage sensor of nerve. This ‘gating current’ was measured in nerve [7] using a paradigm
developed by Schneider and Chandler [8,9] and significantly improved by Bezanilla and
Armstrong [10,11] and has been studied in great detail [7,12–19] because of the insight it
gives [17,18,20,21] into the physical mechanism of conformation change in a most important
biological protein and process. The conformation change of the voltage sensor determines
many properties of the action potential, which is the signal used by the nervous system,
skeletal and cardiac muscle to send signals more than a few micrometers.

The ambiguity of P arises from the history of electrodynamics, in my view. Faraday
and Maxwell thought all charge depends on the electric field ([3], p. 36; [22–24]. All charge
would then be polarization.

Maxwell used the D and P fields as fundamental dependent variables. Charge only
appeared as polarization, usually over-approximated [25–35] by a dielectric constant εr that
is a single real positive number. Charge independent of the electric field was not included,
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because the electron had not been discovered: physicists at Cambridge University (UK)
did not think that charge could be independent of the electric field. The electron was
discovered some decades later, in Cambridge, ironically enough [36,37]. (Thomson’s
monograph“intended as a sequel to Professor Clerk-Maxwell’s Treatise on electricity and
magnetism” [38] does not mention charge, as far as I can tell. Clarendon Press: 1893.
“intended as a sequel to Professor Clerk-Maxwell’s Treatise on electricity and magnetism”;
does not mention charge, as far as I can tell. Faraday’s chemical law of electrolysis was
not known and so the chemist’s ‘electron’ postulated by Richard Laming and defined
by Stoney [39] was not accepted in Cambridge as permanent charge, independent of the
electric field. It is surprising that the physical unit ‘the Faraday’ describes a quantity of
charged particles unknown to Michael Faraday. Indeed, he did not anticipate the existence
or importance of permanent charge on particles or elsewhere.) It then became apparent to
all that the permanent charge of an electron is a fundamental source of the electric field.
The electron and permanent charge must be included in the equations defining the electric
field, e.g., Equations (1) and (6) as it is in every textbook I have examined.

For physicists today, the fundamental electrical variable is the E field that describes
the electric force on an infinitesimal test charge. D and P fields are auxiliary derived fields
that many textbooks think unnecessary, at best.

2. Theory

The setup used here is described in many fine textbooks and so detail is omit-
ted [1–5,40,41]. The specifics of the setup used to measure gating currents is described later,
see Figures 1 and 2.
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Maxwell’s first equation for the composite variable D relates the ‘free charge’ ρ f (x, y, z|t),
units cou/m3, to the sum of the electric field E and polarization P. It is usually written as

div D(x, y, z|t) = ρ f (x, y, z|t) (1)

D(x, y, z|t; E) , ε0 E(x, y, z|t) + P(x, y, z|t; E) (2)

The physical variable E that describes the electric field is not visible in the classical
formulation Equation (1). Maxwell embedded polarization in the very definition of the
dependent variable D , ε0 E+P. ε0 is the electrical constant, sometimes called the ‘permit-
tivity of free space’. Polarization is described by a vector field P with units of dipole moment
per volume, cou-m/m3, that can be misleadingly simplified to cou-m−2. The charge ρ f
cannot depend on D or E in traditional formulations and so ρ f is a permanent charge.

115



Entropy 2021, 23, 172
Entropy 2021, 23, x FOR PEER REVIEW 4 of 23 
 

 

 

Figure 2. shows the response to a step function change in potential and the charges measured that 

are proposed as an operational definition of polarization. 

Maxwell’s first equation for the composite variable 𝐃  relates the ‘free charge’ 

ρ𝑓(𝑥, 𝑦, 𝑧|𝑡), units cou/m3, to the sum of the electric field 𝐄 and polarization  𝐏. It is usu-

ally written as 

𝐝𝐢𝐯 𝐃(𝑥, 𝑦, 𝑧|𝑡)  =  ρ𝑓(𝑥, 𝑦, 𝑧|𝑡) (1) 

𝐃(𝑥, 𝑦, 𝑧|𝑡; 𝐄) ≜  𝜀0 𝐄(𝑥, 𝑦, 𝑧|𝑡) + 𝐏(𝑥, 𝑦, 𝑧|𝑡; 𝐄) (2) 

The physical variable 𝐄 that describes the electric field is not visible in the classical 

formulation Equation (1). Maxwell embedded polarization in the very definition of the 

dependent variable 𝐃 ≜  𝜀0 𝐄 + 𝐏. 𝜀0 is the electrical constant, sometimes called the ‘per-

mittivity of free space’. Polarization is described by a vector field 𝐏 with units of dipole 

moment per volume, cou-m/m3, that can be misleadingly simplified to cou-m−2. The 

charge ρ𝑓 cannot depend on 𝐃 or 𝐄  in traditional formulations and so ρ𝑓 is a permanent 

charge. 

When Maxwell’s first equation is written in a style appropriate since the discovery of 

the electron 𝐄 is the dependent variable, as textbooks make clear. The source terms are 

ρ𝑓 and the divergence of 𝐏. 

𝜀0𝐝𝐢𝐯 𝐄(𝑥, 𝑦, 𝑧|𝑡) = ρ𝑓(𝑥, 𝑦, 𝑧|𝑡) − 𝐝𝐢𝐯 𝐏(𝑥, 𝑦, 𝑧|𝑡; 𝐄) (3) 

𝐏  does not have the units of charge and should not be called the ‘polarization 

charge’. 𝐏 does not enter the equation by itself. Only the divergence of 𝐏 appears on the 

right-hand side of Equation (3). 

𝐃(𝑥, 𝑦, 𝑧|𝑡) and the polarization 𝐏(𝑥, 𝑦, 𝑧|𝑡) are customarily over-approximated in 

classical presentations of Maxwell’s equations: the polarization is assumed to be propor-

tional to the electric field, independent of time. 

Figure 2. shows the response to a step function change in potential and the charges measured that
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When Maxwell’s first equation is written in a style appropriate since the discovery of
the electron E is the dependent variable, as textbooks make clear. The source terms are ρ f
and the divergence of P.

ε0div E(x, y, z|t) = ρ f (x, y, z|t)− div P(x, y, z|t; E) (3)

P does not have the units of charge and should not be called the ‘polarization charge’.
P does not enter the equation by itself. Only the divergence of P appears on the right-hand
side of Equation (3).

D(x, y, z|t) and the polarization P(x, y, z|t) are customarily over-approximated in clas-
sical presentations of Maxwell’s equations: the polarization is assumed to be proportional
to the electric field, independent of time.

P(x, y, z|t) , (εr − 1)ε0 E(x, y, z|t) (4)

D(x, y, z|t) , εrε0E(x, y, z|t) (5)

The proportionality constant (εr − 1)ε0 involves the dielectric constant εr which must
be a single real positive number if the classical form of the Maxwell equations is taken
as an exact mathematical statement of a system of partial differential equations. If εr is
generalized to depend on time, or frequency, or the electric field, the form of the Maxwell
equations changes. If εr is generalized, traditional equations cannot be taken literally
as a mathematical statement of a boundary value problem. They must be changed to
accommodate the generalization.

Polarization and thus εr—however generalized—depend on time or frequency in
complex ways in all matter as documented in innumerable experiments [33–35,42–44].
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Many of the most interesting applications of electrodynamics arise from the dependence of
polarization and εr on field strength.

εr should be taken as a constant only when experimental estimates, or theoretical
models are not available, in my view.

It is difficult to imagine a physical system in which the electric field produces a
change in charge distribution independent of time (see examples shown towards the end
of Discussion). The time range in which Maxwell’s equations are used in the technology of
our computers, smartphones, and video displays starts around 10−10 s. The time range
in which Maxwell’s equations are used in biology start around 10−15 s in simulations
of the atoms that control protein function. The time range of the X-rays that determine
protein structure is ~10−19 s. The time range used to design and operate the synchrotrons
that generate X-rays is very much faster than that, something like 10−23 s. The Maxwell
equations describe experiments to many significant figures over this entire range.

It is evident that a dielectric constant εr independent of time is an inadequate over-
approximation in many cases of practical interest today, in biology, engineering, chemistry,
and physics.

Maxwell’s first equation for E is well described in many textbooks, although the
inadequacies of the usual representation of polarization with a single dielectric constant
are not emphasized, if mentioned at all. Students are then often unaware of the over-
approximation, particularly if they have a stronger background in biology or mathematics
than the physical sciences.

εrε0div E(x, y, z|t) = ρ f (x, y, z|t) (6)

Polarization is particularly well described in Griffiths [5].
It is wise, in my view to combine the fields on the right-hand side of Equation (3) with

the definition
ρQ(x, y, z|t; E) , ρ f (x, y, z|t)− div P(x, y, z|t; E) (7)

yielding the version of Maxwell’s first law that does not involve a polarization field
P(x, y, z|t) at all.

ε0div E(x, y, z|t) = ρQ(x, y, z|t; E) (8)

We adopt this version of Maxwell’s first equation here.

3. Results

The traditional formulation of the differential equations shown in Equations (1) and (6)
is ambiguous in an important way (Integral forms of the Maxwell equations show more
clearly the need for boundaries. They display the charge on the surface as an integral and
explicit part of the general solution of Poisson’s equation for the electrical potential, for
example). They do not mention the shape or boundaries of the regions in question. In fact,
if P varies from region to region, but is constant within each region, charge is absent within
each region: when P is constant, div P = 0. Charge accumulates only at the boundaries of
the regions. In many situations involving dielectrics, including most of those described
in classical textbooks Only the boundary charge has effects on the Maxwell Equations (1)
and (6). The P field in the Maxwell Equation (7), and implied in Equations (1) and (6), is
zero; only the boundary values of P are important and they are not visible in the Maxwell
Equations (1) and (6) themselves.

We turn now to applications in biology where the issue of charge at boundaries
is particularly important, not to say that it is unimportant in semiconductor devices as
well. Dielectric boundary charges have a particular role in biological systems involving
membranes or proteins. The membrane capacitance, so important in determining the
electrical properties of cells, particularly cells with action potentials like nerve and muscle,
is a boundary phenomenon. Boundary charges are of great importance in channel proteins
that allow (nearly catalyze) ion flow through membranes, see Appendix A on Proteins
and [45].

117



Entropy 2021, 23, 172

Turning back to classical electrodynamics, we remember that most of the properties of
dielectric rods studied by Faraday—and predecessors going back to Benjamin Franklin, if
not earlier—arise from the dielectric boundary charges. Textbooks typically spend much
effort teaching why polarization charge appears on dielectric boundaries in systems with
constant P where div P = 0 (e.g., Ch. 6 of [3]). Students wonder why regions of dielectrics
without polarization charge have polarization charge on boundaries.

A general principle is at work here: a field equation in itself—like Equations (1) and (6)
that are partial differential equations without boundary conditions—is altogether insuffi-
cient to specify an electric field. A model is needed that has boundary conditions. Applica-
tions of electrodynamics to biology, electrochemistry, and semiconductors are not useful
until they specify models and boundary conditions that realistically describe the system
of interest.

The model needs to include an explicit structure. It needs to describe the spatial
variation of P. Indeed, the spatial variation of P may be a main determinant of prop-
erties [46–48] in (for example) many biological systems (e.g., channels), electrochemical
systems (electrodes of batteries), and semiconductor devices. Without specifying boundary
conditions (defined explicitly in specific structures), using P in the differential Equation (7),
and implied in Equations (1) and (6), is ambiguous and confusing. Indeed, using P without
boundary conditions is so incomplete that it might be called incorrect.

The general nature of the ambiguity in P becomes clear once one realizes that:

Adding curl C̃(x, y, z|t)to P(x, y, z|t) in Maxwell’s first equation, Equation (7) (9)

changes nothing (Ch. 4 of [5]) because [49,50]

div curl C̃(x, y, z|t) ≡ 0 ; (10)

The ambiguity in P in the Maxwell differential equations means that any model
Pmodel(x, y, z|t) of polarization can have curl C̃(x, y, z|t) added to it, without making any
change in the div P(x, y, z|t) in Maxwell’s first equation (7), and implied in Equations (1)
and (6).

In other words, the polarization div P(x, y, z|t) in Maxwell’s first Equations (7), and
implied in Equations (1) and (6), does not provide a unique structural model of polarization
Pmodel(x, y, z|t). In particular, a model drawn from an atomic detail structure can be modi-
fied by adding a polarization P̃(x, y, z|t) , curl C̃(x, y, z|t) to its representation (i.e., ‘draw-
ing’) of polarization without changing electrical properties at all: div P ≡ div

(
P + P̃

)
.

Models of the polarization P1
model and P2

model of the same structure written by different
authors may be strikingly different but they can give the same electrical results even though
the models can appear to be very different. The curl C̃(x, y, z|t) field can be quite complex
and hard to recognize in a model, particularly for structural biologists who may not be
comfortable with vector calculus and its curl and div operators. The two models P1

model and
P2

model produce the same charge distribution div P1
model and div P2

model in Maxwell’s first
equation Equation (11) and so they cannot be distinguished by electrical measurements.

As we have seen, the P field is arbitrary, as certainly has been known previously Ch.
4 of [5]. Purcell and Morin [1], see pp. 500–507, describe structural models and ways to
construct different fields P(x, y, z|t) from the same structure as stated in the introduction to
this paper. P fields are not unique.

Purcell and Morin are not guilty of overstatement—indeed they may be guilty of
understatement—when they say “The concept of polarization density P is more or less
arbitrary” (slight paraphrase of [1], p. 507) and the D field is “is an artifice that is not, on
the whole, very helpful” [1], p. 500.

The classical approach criticized by Purcell and Morin [1] does not allow unique
specification of a polarization field P(x, y, z|t) from electrical measurements.

An arbitrary artificial formulation is prone to artifact and likely to produce misunder-
standing and unproductive argument: “what is the true description of a dielectric object
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(e.g., protein)?” is a question likely to arise and be unanswerable if the polarization field P
is itself not unique.

The P(x, y, z|t) of classical theory is not a firm foundation on which to build an under-
standing of the structural basis of the phenomena of polarization, or the electrodynamics
of matter, with problems particularly apparent in the understanding of the polarization
arising from the structure of proteins (see Appendix A).

It seems clear that most formulations of electrodynamics of dielectrics in classical
textbooks are “more or less arbitrary” and depend on an “artifice” (quotations from Feyn-
man and Purcell and Morin). Because dielectrics, polarization and a dielectric constant
(as a single real number) are central to the classical treatments of electrodynamics, the
conclusion (p. 13) of a modern monograph on electrodynamics, using mathematics (exterior
differential forms) appropriate for relativistic theories of electrodynamics, [4] quoted previ-
ously seems worth restating “We believe that the conventional theory of electrodynamics
inside matter needs to be redesigned”. That redesign begins with a revised treatment of
polarization that reflects the ambiguity of the curl, see [5]. Ambiguity and its problems can
be avoided if Maxwell’s First Equation is rewritten without a polarization field P(x, y, z|t)
as shown previously in Equation (8). The phenomena of polarization—the response of
charges to an electric field—is then included in a variable ρQ(x, y, z|t; E), specifically as
(part of) its dependence on E :

div ε0E(x, y, z|t) = ρQ(x, y, z|t; E) (11)

Here ρQ(x, y, z|t; E) describes all charge whatsoever, no matter how fast, small or
transient are their movements, including what is usually called dielectric charge and per-
manent charge, as well as charges driven by other fields, like convection, diffusion or
temperature. The charge ρQ can be parsed into components in many ways (see Equa-
tions (1), (3), (6) and (8) and [43,51]). Updated formulations of the Maxwell differential
equations [43,51] are needed, in my opinion, to avoid the problems produced by ambiguous
P and over-simplified εr.

We turn now to a quite different property of charge matter, the flow of charges.
Most applications of electrodynamics involve flow. The most prominent application

of electrodynamics is surely computational and semiconductor electronics [52–61] and that
involves flow, usually described by Kirchhoff’s current law. Semiconductor electronics
has remade our world increasing computer power by nearly 109× in the last seventy
years [62–67]. Biology and electrochemistry (batteries) scarcely exist without flow: what
physical chemists call equilibrium (no flows of any kind) is hardly worth studying in
biological or electrochemical systems. Unlike thermodynamics, electrodynamics nearly
always involves flow.

Thus, we study the flux of charges ρQ as well as their density. Maxwell’s second
equation describes the flow of charges, electrical current, and the magnetic field. It is
understandable that Maxwell—and his Cambridge contemporaries and followers—had
difficulty understanding current flow when their models did not include permanent charge,
electrons or their motions.

Maxwell’s extension of Ampere’s law describes the special properties of current flow
Jtotal (Equation (13) that make it so different from the flux of matter. Maxwell’s field
equations include the ethereal current ε0∂E/∂t that makes the equations resemble those
of a perfectly incompressible fluid: the ethereal current always exists, whether matter is
present or not, unlike the dielectric current (εr − 1)ε0∂E/∂t that exists only when matter
is present.

Maxwell’s field equations describe the incompressible flow Jtotal over the dynamic
range of something like 1016 that is safely accessible within laboratories. The dynamic
range of the Maxwell equations is much larger if one includes the interior of stars, and the
core of galaxies in which light is known to follow the same equations of electrodynamics as
in our laboratories.
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Maxwell’s field equations are different from material field equations (like the Navier–
Stokes equations) because they are meaningful and valid universally [68], both in a vacuum
devoid of mass and matter and within and between the atoms of matter [43].

The ethereal current ε0∂E/∂t responsible for the special properties of Maxwell’s equa-
tions arises from the Lorentz (un)transformation of charge. Charge does not vary with
velocity, unlike mass (this is the mass that determines inertia, called the ‘relativistic mass’
nowadays. This was the meaning of the word ‘mass’ in Einstein’s original papers, presum-
ably because he wanted an operational definition of ‘mass’ that was based on the observable
properties, inertia and momentum, and that was independent of Lorentz transformations,
and theoretical considerations) [69], length, and time, all of which change dramatically
as velocities approach the speed of light, strange as that seems. This topic is explained in
any textbook of electrodynamics that includes special relativity. Feynman’s discussion of
‘The Relativity of Electric and Magnetic Fields’ was an unforgettable revelation to me as a
student, see Section 13-6 of reference [2]: an obervers moving at the same speed as a stream
of electrons sees zero current, but the forces measured by that observer are the same as the
forces measured by an observed who is not moving at all. The moving observer describes
the force as an electric field E(x, y, z|t). The unmoving observer describes the force as a
magnetic field B(x, y, z|t). The observable forces are the same, whatever they are called,
according to the principle and theory of relativity. (The principle and theory of relativity
are confirmed to many significant figures every day in the GPS (global positioning sys-
tems) software of the map apps on our smartphones, and in the advanced photon sources
(synchrotrons) that produce X-rays to determine the structure of proteins).

The ethereal current reveals itself in magnetic forces which have no counterpart in
material fields. The ethereal current is apparent in the daylight from the sun, that fuels life
on earth, and in the night light from stars that fuels our dreams as it decorates the sky. The
ethereal current is the term in the Maxwell equations that produces propagating waves in
a perfect vacuum like space.

Magnetism B is described by Maxwell’s version of Ampere Law, Maxwell’s Sec-
ond Equation:

1
µ0

curl B = JQ + ε0
∂E
∂t

(12)

Jtotal , JQ + ε0
∂E
∂t

(13)

1
µ0

curl B = Jtotal (14)

If we are interested in flux and current, we must turn to Maxwell’s second equation and
deal explicitly with magnetism, even if magnetic fields themselves do not carry significant
energy (as in almost all biological applications). Only by dealing with Maxwell’s second
equation can we derive conservation of total current and compare it with the conservation
of charge. Indeed, the derivation of the continuity equation used here depends on equations
involving the magnetic field.

Note that JQ includes the movement of all charge ρQ with mass, no matter how small,
rapid or transient. It includes the movements of charge classically approximated as the
properties of an ideal dielectric. It describes all movements of the charge described by
ρQ(x, y, z|t; E); ρ f is one of the components of ρQ. Indeed, JQ can be written in terms of
vQ the velocity of mass with charge. In simple cases, such as a plasma of ions each with
charge QQ

JQ =vQQQNQ (15)

where QQ is the charge per particle and NQ is the number density of particles. In a mixture,
sets of fluxes Ji

Q, velocities vi
Q, charges Qi

Q, number densities Ni
Q, and charge densities

ρ i
Q are needed to keep track of each elemental species i of particles. Plasmas are always

mixtures because they must contain both positive and negative particles to keep electrical
forces within safe bounds, as determined by (approximate) global electroneutrality.
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In cases other than plasmas, the relationship of JQ , Jtotal and QQ to material prop-
erties is complex. The relationship often involves convection and diffusion fields and
extends over a range of scales from atomic to macroscopic, in both space and time. For
example, the Maxwell equations do not describe charge and current driven by other fields,
like convection, diffusion, or temperature. They do not describe constraints imposed by
boundary conditions and mechanical structures. Those must be specified separately. If
the other fields, structures, or boundary conditions involve matter with charge, they will
respond to changes in the electric field. The other fields and constraints thus contribute
to the phenomena of polarization and must be included in a description of it, as we shall
discuss further below in the examples shown towards the end of Discussion. The theory
of complex fluids has dealt with many such cases, often with the label ‘micro macro’,
spanning scales, connecting micro (even atomic) structures with macro phenomena.

The charge density ρQ and current Jtotal can be parsed into components in many ways,
some helpful in one historical context, some in another. References [33,43,51,70–75] define
and explore those representations in tedious detail. Simplifying those representations led
to the treatment in this paper.

Maxwell’s Ampere’s law Equation (12) implies two equations of great importance and
generality. First, it implies a continuity equation that describes the conservation of charge
with mass. The continuity equation is the relation between the flux of charge with mass
and density of charge with mass.

Derivation: Take the divergence of both sides of Equation (12), use div curl = 0 [49,50],
and get

div JQ = div
(
− ε0

∂E
∂t

)
= − ε0

∂

∂t
div E (16)

when we interchange time and spatial differentiation.
However, we have a relation between div E and charge ρQ from Maxwell’s first

equation, Equation (11), giving the Maxwell Continuity Equation:

div JQ = − ε0 ε0
∂ρQ

∂t
(17)

div
(
vQQQNQ

)
= − ε0

∂ρQ

∂t
, (18)

for a biophysical or astrophysical plasma of ions.
Note that sets of fluxes Ji

Q and sets of charge densities ρ i
Q are needed to keep track of

each elemental species i of particles in a mixture, along with sets of velocities vi
Q, charges

Qi
Q, and number densities Ni

Q, as described near Equation (15).
Maxwell’s Ampere’s law Equation (12) implies a second equation of great importance.

Indeed, it is this equation that allows the design of the one-dimensional branched circuits
of our digital technology using the relatively simple mathematics of Kirchhoff’s current
law [72,74].

Derivation: Taking the divergence of both sides of Maxwell’s Second law Equation (12)
yields Conservation of Total Current

div Jtotal , div
(

JQ + ε0
∂E
∂t

)
= 0 (19)

div Jtotal = 0 (20)

or

div Jtotal , div
(

vQQQNQJQ + ε0
∂E
∂t

)
= 0 (21)

It is easy to overlook the importance of one-dimensional systems. They may seem
trivial, almost unworthy of analysis using the powerful beauty of vector calculus. However,
one-dimensional systems are of great importance despite, or because of their simplicity.
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Nearly all of our electronic technology occurs in one-dimensional systems, networks
of branching one-dimensional conductors. Our electronic technology is driven by batteries
that are one-dimensional systems. Our technology is at the hands of animals, humans
in which all information transfer is done by one-dimensional circuits, unbranched in ion
channels, and barely branched in nerve cells. Branched one-dimensional systems describe
the metabolic pathways of biological cells that make life possible.

The importance of one-dimensional systems may come from their design. The design
of one-dimensional systems is relatively easy for engineers or evolution. Design requires
Kirchhoff’s laws and little else. One-dimensional systems are widely used for another
reason. They are reliable. The dimensionality of these circuits rules out spatial singularities.
Systems are more robust when steep slopes near infinities are not present to create severe
sensitivity.

Kirchhoff’s laws are used to design semiconductor circuits that work over an enor-
mous range of sizes and times, from say 10−10 s to many minutes, from 10−19 m to 104 m or
longer. Current flow over these ranges of time space involves a wide range of physics,
described by many constitutive equations.

Current is not just the movement of point permanent charges as assumed in the text-
book derivations of Kirchhoff’s current law I have consulted, both in electrical engineering
and electrodynamics. The derivations of Kirchhoff’s current law are usually restricted to
the simplest case of the long-time translation of point permanent charges, although it is
very well known that is a poor model for current flow under conditions actually found in
the integrated circuits of our digital technology. It is possible to show, however, that current
flow in one-dimensional systems can be described accurately by a simple generalization of
Kirchhoff’s current law that arises naturally from the treatment of Maxwell’s equations
found in this paper: all the Jtotal that flows into a node must flow out [51,72–74]. This result
seems to be rather new, although of course it seems elementary and obvious. Indeed, it is
so obvious that it must exist somewhere in the literature, even though I do not know where.

Kirchhoff’s current law take on simplest form in unbranched one-dimensional systems.
Unbranched one-dimensional systems are important despite their utter simplicity. Indeed,
the ion channels of biological systems control a wide range of biological function and
are unbranched one-dimensional series systems. They cannot be considered degenerate.
Nor can be the diodes of electronic technology that are also series systems. However, the
greatest importance of unbranched one-dimensional systems may be the insight they give
to the importance of the ethereal current ε0∂E/∂t, as we shall soon see.

Unbranched one-dimensional systems have components in series, each with its own
current voltage relation arising from its microphysics. In a series one-dimensional system,
the total current Jtotal is equal everywhere at any time in every location no matter what
the microphysics of the flux JQ of charge with mass. The current through a battery is an
exceedingly complicated mixture of the microphysics of electrodes, ion movement and
electron flow. If that battery is connected by a wire to a vacuum capacitor, the microphysics
of the vacuum capacitor icapacitor = Areaε0∂E/∂t, is as simple as the microphysics of the
battery is complex, yet the total currents in the capacitor and the battery are equal at any
time, in any conditions. Indeed, the microphysics of the wire linking the capacitor and
the battery is totally different from the microphysics of the capacitor and battery. The
microphysics of the wire actually resemble that of a waveguide at frequencies important
in our digital integrated circuits. The microphysics of the wire, capacitor and battery do
not change the fact that the total current through each is exactly the same, always, at every
location and at every time.

How can that possibly be true? The answer is found in the Maxwell equations. They
can be solved for the electric field and magnetic fields that make the total currents equal.

The solutions of Maxwell’s equations ensure that the ethereal current ε0∂E/∂t, and
the other dependent variables, take on the values at every location and every time needed
to make the total currents Jtotal equal everywhere. A practical example, not difficult to
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build in any laboratory, including resistor, capacitor, diode, capacitor, cylinder of salt water,
and wire is described in detail near Figure 2 of [73].

There is no spatial dependence of total current in a series one-dimensional system.
No spatial variable or derivative is needed to describe total current in such a system [75],
although of course spatial variables are needed to describe other variables, including
(1) the density of mass with charge Qi

Q (2) the flux JQ of charge with mass (3) the electrical
current Ji

total of individual elemental species (4) the velocities, charge, and number densities
vQ, QQ, ρQ, and NQ.

It is important to realize that the flux of charge with mass JQ is not conserved, only
the total current Jtotal is conserved. Charges carry JQ can accumulate. In fact, div JQ =

div
(
vQQQNQ

)
supplies the flow of charge that is the current ∂ρQ /∂t necessary to change

div (ε0∂E/∂t) as described by the following continuity equation.

div JQ = div ε0
∂E
∂t

=
∂

∂t
div (ε0E) =

∂ρQ

∂t
. (22)

That is to say, JQ can accumulate as QQ. Total current Jtotal cannot accumulate, not at
all, not anywhere, not at any time.

Because conservation of total current applies on every time and space scale, including
those of thermal motion, the properties of JQ differ a great deal from the properties of
Jtotal . For example, in one-dimensional channels, the material flux JQ can exhibit all the
complexities of a function of infinite variation, like a trajectory of a Brownian stochastic
process, that reverses direction an uncountably infinite number of times in any interval.
A Brownian trajectory of a Brownian stochastic process is a continuous function that does
not have a (well defined) time derivative anywhere.

In marked contrast to the infinite variation of JQ, the electrical current Jtotal has no
spatial variation at all. It is spatially uniform [75].

The fluctuations of ε0∂E/∂t (in time and space) and other variables are exactly what are
needed to completely smooth the infinite fluctuations of JQ into the spatially uniform Jtotal .

Maxwell’s equations serve as the perfect low pass (spatial) filter converting the infinite
variation of Brownian motion into a spatial constant, as strange as that seems.

These universal and exact properties of Maxwell’s equations are hidden in the usual
treatment of Maxwell’s equations. The usual treatment includes a grossly approximate
treatment of polarization as the property of a perfect dielectric. Everyone knows how
bad this approximation is, so everyone understands that Maxwell’s equations as usually
written are not universal or exact. They are as sloppy as is the dielectric constant as a
description of the polarization of matter.

ONLY when Maxwell’s equations are written without a dielectric constant, with
a perfectly general treatment of induced charge, does it become clear that Maxwell’s
equations are universal and exact independent of any property of matter.

How then is polarization included in a modified version of the Maxwell equations
that does not include a dielectric constant. One needs an explicit model of polarization
appropriate for the system of interest.

It is obvious that one cannot describe material flow unless one knows how matter
moves in response to forces. It should be obvious that one cannot describe the flux of
charges unless one knows how material charge moves in response to forces.

The use of a single real dielectric constant in Maxwell’s equations is no more nec-
essary than the use of a single spring constant (i.e., elasticity) is in material equations.
But Maxwell’s equations describe the total electrical current—that includes the ethereal
current—not the flux of charges. Because of the ethereal current, Maxwell’s equations
describe light in the vacuum of space between stars.

Because of the ethereal current, Maxwell’s equations are universal and exact. They
describe total current as exactly as they describe anything, and their description of total
current flow is entirely independent of the properties of matter. Total current flow depends
on no constitutive equations, except perhaps the constitutive equation of a vacuum, more
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or less determined by special relativity. Electrodynamics are very different in this respect
from the equations of material movement. They always depend on constitutive equations
in important respects. The fundamental properties of electrodynamics do not depend on
constitutive equations.

4. Discussion: From Electrodynamics to Biophysics and Back

A fundamental question arises with the updated version of Maxwell’s equations. How
is the phenomenon of polarization included in Equation (11) and Equation (14)?

To answer this question, we first need a general paradigm to define polarization, even
when dielectrics are far from ideal, when they might be time and frequency dependent, and
voltage dependent as well. We need a paradigm that describes how the charge distribution
varies with the electric field in as general a system as possible, including systems with
charge movement driven by forces not in the Maxwell equations at all, such as convection
and diffusion.

It seems obvious that a general paradigm cannot be found. After all the motions of
matter in response to a change in electric field are more or less as complex as the motions
of matter itself! Nonetheless, a paradigm of that may be helpful in many cases has been in
use for many years, even if it is not perfectly general.

This problem has been addressed in membrane biophysics. A community of scholars
has studied the nonlinear currents that control the opening of voltage sensitive protein
channels for nearly fifty years, [7,12–19] inspired by [6]. They have developed protocols
that may be useful in other systems, as they have been in biophysics. Schneider and
Chandler followed by Bezanilla and Armstrong are responsible for this paradigm, more
than anyone else [7–9].

The basic setup used in these experiments is that of an electrochemical cell modified to
deal with a cylindrical cell as shown in Figure 1. Membrane potential is measured across a
biological membrane, with defined concentrations on both sides of the membrane. Current
is applied through electrodes to control the potential, in the classical voltage clamp set
up of Cole [76] and Hodgkin, Huxley, and Katz [77,78]. It is best to apply that current
in electrodes different from those that record membrane potential using a so-called four
electrode setup [79–81], like those described in textbooks of electrochemistry.

I propose using the operational definition of ‘gating current’ used to define nonlinear,
time and voltage dependent polarization by biophysicists as a useful setup and definition
of many types of polarization. Obviously, this definition is not general, but the hope is that
it may be generally useful.

The basic idea is to apply a set of step functions of potential across the system—in
biology across the membrane—and observe the currents that flow. The currents observed
are transients that decline to a steady value, often to near zero after a reasonable (biologi-
cally relevant) time. The measured currents are perfectly reproducible. If a pulse is applied,
the charge moved (the integral of the current) can be measured when the voltage step is
applied. The integration goes on until t1 when the current ileak is nearly independent of
time, often nearly zero. That integral is called the ON charge QON.

When the voltage is returned to its initial value (the value that was present before
the ON pulse), another current is observed that often has quite different time course [7–9],
much more so than in Figure 1. The integral of that current is the OFF charge QOFF.

If QON = QOFF, and the physical processes involved depend fundamentally on
potential and not its time derivative, the biophysical paradigm is likely to be useful. In
other cases, another paradigm is needed. If the current produced by the step in potential is
in fact actually transient, the steady current will be what it was before the voltage step was
applied. The transient will disappear with time as the word ‘transient’ implies. In that case
it seems that the biophysical paradigm is not only useful but may even provide a unique
definition of gating current and the corresponding polarization.

Gating current as measured in biophysical experiments depends on the membrane
voltage before the step, as well as the voltage just after and during the step. It also
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depends separately on the voltage after the step, although Figure 1 does not illustrate
the dependence documented in the literature [7–9]. The voltage and time dependence
arises from the molecular motions underlying the gating current. The voltage and time
dependence defines the mean molecular motions [7,16,17,19,21,82–86] and is called ‘the
gating current’ in the biophysics literature.

If the ON charge is found experimentally to equal the OFF charge, for a variety of
pulse sizes and range of experimental conditions, the current is said to arise in a nonlinear
(i.e., voltage dependent) polarization capacitance and is interpreted as the movement of
charged groups in the electric field. The charged groups move to one location after the ON
pulse, and return to their original location following the OFF pulse. The charge is called
‘gating charge’, and the current that carries the charge is called ‘gating current’.

The macroscale current observed in the set-up is equal to the sum of the micro (actually
atomic scale) currents carried by the charged groups inside a channel protein, even though
the recording electrodes are remote from the protein. Indeed, there might be 1018 charged
atoms (ions) between the electrodes and the protein.

The currents in the electrodes and the channel protein are equal because the setup
is designed to be an unbranched one-dimensional circuit with everything in series. In a
one-dimensional series setup the total current is equal everywhere in the series system at
any one time, even though the total current varies significantly with time. The Maxwell
equations guarantee spatial uniformity of total current (including the ethereal current
ε0∂E/∂t) independent of the microphysics of movement of charge (with mass): Figure 2
of [73], and [43,75,87]. The equality of current can be checked by measuring current
in different locations in the experiment. The spatial equality of current needs also to
be checked in simulations as in [18,21,88] because tiny inadvertent errors in numerical
procedures or coding can produce substantial deviations from spatial equality and thus
misleading artifacts. Imposing periodic boundary conditions on nonperiodic systems is
another possible source of such artifacts.

If the currents reach a steady value independent of time, but not equal to zero, as
in Figure 1, the signal is not transient, in the strict meaning of the word. In biophysics,
the steady current ileak is then usually considered to flow in a resistive path that is time
independent, but perhaps voltage dependent, in parallel with the path or device in which
the gating charges QON and QOFF flow. If the current does not reach a steady value, or
if the areas in Figure 2 are not equal, the currents are not considered ‘capacitive’ and are
interpreted as those through a time and voltage dependent ‘resistor’. This is a biological
and biophysical assumption. It is not a physical or mathematical necessity. Thus, it is
important to investigate the properties of the currents through the resistive path—e.g.,
those that are not transient and do not return to zero and those that make QON 6= QOFF by
independent methods to see if they are time independent. In biophysics, currents can be
done by blocking the resistive path with drugs, or with mutations of the channel protein. If
the resistive currents are not time independent, the definition of QON and QOFF in Figure 1
needs to be changed. Indeed, experiments of another type must be designed that allow
separation of polarization from conduction currents. The simplest version of the biophysics
paradigm then needs to be extended.

Clearly, this approach will only work if step functions can reveal all the properties
of the underlying mechanism. If the underlying mechanisms depend on the time rate of
change of voltage, step functions are clearly insufficient because ∂V/∂t, is zero or infinity
but nothing else in a step function. In the classical language of membrane biophysics, the
ionic conductances gNa and gK must not depend on the rate of change of voltage.

Much work has been conducted showing that step functions are enough to under-
stand the voltage dependent mechanisms in the classical action potential of the squid
axon [89–91], starting with [78], Figure 10 and Equation (11). Hodgkin kindly explained the
significance of this issue to colleagues, including the author (around 1970). He explained
the possible incompleteness of step function measurements: if sodium conductance had a
significant dependence on ∂V/∂t, the action potential computed from voltage clamp data
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would differ from experimental measurements. He mentioned that this possibility was an
important motivation for Huxley’s heroic hand integration [6] of the Hodgkin Huxley dif-
ferential equations. Huxley confirmed this in a separate personal communication, Huxley
to Eisenberg. Those computations and many papers since [89–91] have shown that voltage
clamp data (in response to steps) is enough to predict the shape and propagation of the
action potential in nerve and skeletal muscle. It should be clearly understood that such a
result is not available for biological systems in which the influx of Ca++ drives the action
potential and its propagation [92].

The conductance of the voltage activated calcium channel has complex dependence
on the current through the channel because the concentration of Ca++ in the cytoplasm is
so low (~10−8 M at rest) that the current almost always changes the local concentration in
and near the channel on the cytoplasmic side. Those concentration changes, in turn, alter
the gating and selectivity characteristics of the channel protein, as calcium ions are prone
to do int many physical and biological systems, particularly at interfaces.

It seems unlikely that the resulting properties of voltage dependent calcium chan-
nels can be comfortably described by the same formalism [6] used for voltage-controlled
sodium and potassium channels of nerve and skeletal muscle. That formalism uses vari-
ables that depend on membrane potential and not membrane current because Cole [93]
and Hodgkin [94–96] guessed that neuronal action potentials were essentially voltage
dependent, not current dependent. They found action potentials in ‘space clamped’ axons
with wires down their middle [76,77,97,98] that ensured spatial uniformity of potential.
These axons had very different patterns of current flow from normal axons, and so Cole
and Hodgkin were confirmed in their view that the membrane processes generating the
action potential were voltage dependent, much more than current dependent (personal
communication Cole to Eisenberg 1960; Hodgkin to Eisenberg 1961, et al.).

Hodgkin, Huxley, Katz, and Cole did not know of action potentials driven by calcium
channels [99–103], nor of the extraordinarily small concentration of calcium ions inside
cells. There may of course be other reasons the formalism [6] is inadequate. In summary,
experiments, theory, computations and perhaps simulations are needed to show that
responses to steps of voltage allow computation of a calcium driven action potential.

The polarization protocol described here can be applied to simulations of polarization
as well as experimental measurements of polarization. Indeed, the operational definition of
polarization has been applied even when theories [18] or simulations are enormously com-
plicated by atomic detail that includes the individual motions of thousands of atoms [21,88].

Another question of general interest is how does the polarization defined this way
correspond to the polarization −P = (εr − 1)ε0E in the classical formulation of the Maxwell
Equations (7) and implied in Equations (1) and (6)? Does the estimated polarization equal P?

The answer is not pleasing. Polarization cannot be defined in general. The variety
of possible responses of matter to a step of potential prevents a general answer. Indeed,
a main point of this paper is that polarization must be defined by a protocol in a specific
setting that specifies how the local electric field changes the distribution of charge.

Polarization cannot be defined in general because there are too many possible motions
of mass with charge in response to a change in the electric field. Every possible motion of
mass (with charge), including rotations and translations and changes of shape and density
of charge, would produce a polarization. Polarization currents can be as complicated as
the motions of matter.

In mechanical systems in general these issues do not attract much attention. It seems
obvious that one must have a model and theory of how a system changes shape (and
distribution of mass) when forces are applied. Seeking a general treatment is silly. In elec-
trodynamics, for illogical reasons of history, tradition, and respect for our elders, scientists
have sought the general treatment that would be considered silly for mechanical systems.

Scientists, certainly including me, have used the simple electromechanical model of
an ideal dielectric to describe how charge moves in response to an electric field, using the
name polarization to describe the phenomena. They have tried to apply it everywhere,
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as is seen because that model is embedded in the traditional formulation of the Maxwell
equations found universally in textbooks.

It seems to me time to abandon this forlorn hope of a general description of the
response of charged matter to a change in the electric field, and to move to a more reasonable
approach, in which explicit models of the response of charge to the electric field are
constructed, with different models for different systems.

Insight can be developed into various kinds of polarization by constructing ‘toy’
models of simple systems. Those models must specify the mechanical variables vQ, QQ, ρQ
and NQ (or their equivalent) and solve the field equations of mechanics, perhaps including
diffusion, along with the Maxwell equations. The models are then studied using the
operational definition of polarization, described previously (Figure 1) or other operational
definitions more suitable for other systems. One can hope some of the models resemble
some of the more elaborate models of polarization already in the literature [26–29,31,32,34].

Toy models might include:

(1) Simple electro-mechanical models, like a charged mass on a spring with damping.
(2) Ideal gases of permanently charged particles, i.e., biological and physical plasmas.
(3) Ideal gases of dipoles (point [104] and macroscopic), quadrupoles, and mixtures of

dipoles and quadrupoles, that rotate and translate while some are attached by bonds
that vibrate (see (1)). These mixtures should provide decent representations of liquid
water in ionic solutions, if they include a background dielectric, even if the dielectric is
over-approximated with a single dielectric constant εr(H2O) ∼= 80. Indeed, there is a
substantial literature of such models, including [105,106] but one must be sure that the
models include the unavoidable interactions of atoms, molecules, and structures often
dominated by their electrodynamics. Atoms, molecules and structures are almost
always charged and so never move independently. Their motions are correlated
by the electric field, and those correlations are likely to dominate the properties of
greatest interest in applications. Of course, the extensive analysis of these authors can
be of great use once it is focused on issues and applications of interest and combined
with experimental measurements (see (5) and (6) below).

(4) Molecular models of ionic solutions that include water as a molecule. It is best
to use models that are successful in predicting the activity of solutions of diverse
composition and content and include water and ions as molecules of unequal nonzero
size [107].

(5) Classical models of impedance, dielectric, and molecular spectroscopy [26–29,31,32,34].
(6) Well-studied systems of complex fluids, spanning scales, connecting micro (even

atomic) structures with macroscopic functions, often called ‘micro-macro models’ in
the literature.

These examples, taken together, will help form a handbook of practical examples
closely related to the classical approximations of dielectrics.

These problems have time dependent solutions except in degenerate, uninteresting
cases. Time dependence poses particular problems for the classical formulations of Maxwell
equations. As stated in [51] on p. 13.

“It is necessary also to reiterate that εr is a single, real positive constant in Maxwell’s
equations as he wrote them and as they have been stated in many textbooks since then,
following [108–110]. If one wishes to generalize εr so that it more realistically describes the
properties of matter, one must actually change the differential Equation (6) and the set of
Maxwell’s equations as a whole. If, to cite a common (but not universal) example, εr is
to be generalized to a time dependent function, (because polarization current in this case
is a time dependent solution of a linear, often constant coefficient, differential equation
that depends only on the local electric field), the mathematical structure of Maxwell’s
equations changes”.

Perhaps it is tempting to take a short cut by simply converting εr into a function of
time εr(t) in Maxwell’s equations, as classically written. “Solving the equations with a
constant εr and then letting εr become a function of time creates a mathematical chimera
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that is not correct. The chimera is not a solution of the equations.” The full functional form,
or differential equation for εr(t) must be written and solved together with the Maxwell
equations. This is a formidable task in any case, but becomes an even more formidable
challenge if convection or electrodiffusion modify polarization, as well as the electric field.

If one confines oneself to sinusoidal systems (as in classical impedance or dielec-
tric spectroscopy [27,42,111,112]), one should explicitly introduce the sinusoids into the
equations and not just assume that the simplified treatment of sinusoids in elementary
circuit theory [113–117] is correct. It is not at all clear that Maxwell’s equations joined
with constitutive equations; and boundary conditions always have steady state solutions
in the sinusoidal case. The Maxwell equations joined with diffusion and convection
equations (like Navier–Stokes [118–135] or PNP = Poisson Nernst Planck = drift diffu-
sion [52,53,55,57,59,61,123,136–145]) certainly do not always have solutions that are linear
functions of just the electric field [146–149].”

It seems clear that the classical Maxwell equations with the over-approximated di-
electric coefficient εr cannot emerge in the time dependent case. Of course, the classical
Maxwell equations cannot emerge when polarization has a nonlinear dependence on the
electric field, or depends on the global (not local) electric field, or depends on convection
or electrodiffusion.

Indeed, in my opinion, when confronted with the models of polarization listed on
the previous page, the classical Maxwell equations will be useful only when knowledge
of the actual properties of polarization is not available. All the models listed involve
time dependence in the polarization fields that are not included in the classical Maxwell
equations as usually written.

5. Conclusions

A generalization of Maxwell’s P useful in a range of systems may emerge. The
generalization would describe how the local electric field changes the distribution of
charge, as one imagines that Maxwell hoped P and D would be.

Until then, one is left with:

(1) Bewilderingly complete measurements, over an enormous range of frequencies
(e.g., [26–29,31,32,34,35]) of the dielectric properties and conductance of ionic so-
lutions of varying composition and content. These measurements embarrass the
theoretician with their diversity and complexity. They have not yet been captured in
any formulas or programs less complicated than a look-up table of all the results.

(2) Computations of the motion of all charges on the atomic scale [21,88], described by
the field equations of mechanics and electrodynamics [18].

(3) Reduced models. It is unlikely that the reduced models can be derived solely by
mathematics. It is more likely that they must be ‘guessed and checked’ one by one, as
most models are checked in science.

What should be done when little is known? Sadly, the actual properties of polarization
are often unknown. Then, one is left with the over-approximated Equation (6) or nothing
at all. It is almost never wise to assume polarization effects are negligible. Equation (6) is
certainly better than nothing: Equation (6) can be particularly helpful if it is used gingerly:
toy models can successfully represent an idealized view of a part of the real world of
technological or biological importance, for example, electronic circuits or several properties
of ion channels.

In some cases, the toy models can be enormously helpful. They allow the design of
circuits in our analog and digital electronic technology [150–153]. They allow the under-
standing of selectivity [107,154–156] and current voltage relations of several important
biological channel proteins in a wide range of solutions [107,157–159]. In other cases—for
example, the description of ionic solutions with many components—the toy models can be
too unrealistic to be useful. Experiments and experience can tell how useful the toy model
actually is in a particular case: pure thought usually cannot.
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Appendix A P(x, y, z|t) in Proteins

Ambiguities in the meaning of the polarization field P(x, y, z|t) can cause serious diffi-
culties in the understanding of protein function. Understanding protein function is greatly
aided by knowledge of protein structure. The protein data bank contains 173,754 structures
in atomic detail today (24 January 2021) and the number is growing rapidly as cryo-electron
microscopy is used more and more.

Protein structures are usually analyzed with molecular dynamics programs that
assume periodic boundary conditions and chemical equilibrium, i.e., no flows. Most
proteins control large flows as part of their natural biological functions. Equilibrium hardly
ever occurs in living biological systems. It seems obvious that equilibrium systems cannot
provide general insight into flows, any more than a nonfunctional amplifier without a
power supply can show how a functional amplifier works. Proteins are not periodic in
their natural setting. It seems obvious that periodic systems with flow cannot conserve
total current Jtotal in general—or perhaps even in particular—as required by the Maxwell
equations, see Equation (19). In other words, it is likely that molecular dynamics analyses
of periodic structures do not satisfy the Maxwell equations, although almost all known
physics does satisfy those equations.

It is also unlikely that standard programs of molecular dynamics compute electrody-
namics of nonperiodic systems correctly, despite their use of Ewald sums, with various
conventions, and force fields (tailored to fit macroscopic, not quantum mechanical) data.
Compare the exhaustive methods used to validate results in computational electronics [61]
with those in the computation of electric fields in proteins.

The electrostatic and electrodynamic properties of proteins are of great importance.
Many of the atoms in a protein are assigned permanent charge greater than 0.2e in the force
fields used in molecular dynamics, where e is the elementary charge, and these charges
tend to cluster in locations most important for biological function, just as they cluster at
high density near the electrodes of batteries and other electrochemical systems. Enormous
densities of charge (>10 M, sometimes much larger) are found in and near channels of
proteins [107,160–162] and in the ‘catalytic active sites’ [163] of enzymes. Such densities are
also found near nucleic acids, DNA and (all types of) RNA and binding sites of proteins
in general.

It seems likely that a hierarchy of models of different resolutions will be needed to
compute the electrodynamics of proteins accurately enough to explain how the electrical
properties of side chains (polarizability [21] and others) of a protein determine biological
function. Analysis of gating currents suggests such an approach is feasible [17,18,20,21].
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Abstract: The complicated patterns of the single-channel currents in potassium ion channel KcsA
are governed by the structural variability of the selectivity filter. A comparative analysis of the
dynamics of the wild type KcsA channel and several of its mutants showing different conducting
patterns was performed. A strongly correlated dynamical network of interacting residues is found
to play a key role in regulating the state of the wild type channel. The network is centered on the
aspartate D80 which plays the role of a hub by strong interacting via hydrogen bonds with residues
E71, R64, R89, and W67. Residue D80 also affects the selectivity filter via its backbones. This network
further compromises ions and water molecules located inside the channel that results in the mutual
influence: the permeation depends on the configuration of residues in the network, and the dynamics
of network’s residues depends on locations of ions and water molecules inside the selectivity filter.
Some features of the network provide a further understanding of experimental results describing the
KcsA activity. In particular, the necessity of anionic lipids to be present for functioning the channel is
explained by the interaction between the lipids and the arginine residues R64 and R89 that prevents
destabilizing the structure of the selectivity filter.

Keywords: ion channels; protein dynamics; molecular dynamics

1. Introduction

Over the last few decades, the bacterial K+ ion channel KcsA [1] found in Streptomyces
lividans has been widely studied in order to understand the structural and functional
features of potassium ion channels. It continues to be of interest [2–8] in part due to
its sequence similarity to eukaryotic K+ channels, and in part because of its role as an
archetype for ion permeation, selectivity, and the complex interplay of the different “gates”
which governs a variety of current patterns observed experimentally in the K+ channel
superfamily [9–11]. These patterns are defined by small structural rearrangements of
the pore region once the inner gate is opened [4,10–13]. The local rearrangements are
mostly obscure as current experimental techniques are unable to provide the combina-
tion of spatial and temporal resolution needed to identify the underlying atomistic-level
mechanisms. Structural studies showed that the current patterns depend on a number
of residues, some of which are located relatively far from the pathway of K+ permeation,
and physiological recordings revealed the strong influence of the K+ concentration in the
outer bulk on the patterns [1,10,14–19]. The anionic phospholipids modulate the function
of the channel [20–22] and the addition of phosphatidic acid lipid significantly affects the
permeation [23].

As with most of the K+ ion channels, KcsA contains a highly conserved amino acid
sequence motif TXXTXGYGD known as the signature sequence, which corresponds to
residues 75 to 79 in the reference X-ray structure 1K4C [1], where “X” in position 76 is
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replaced by valine. The whole quaternary structure of KcsA is divided into three functional
regions: the selectivity filter, a water-filled cavity, and an inner gate associated with
large movements in the transmembrane helices for opening the channel [16,24–27]. The
selectivity filter (SF) is the narrowest part of the pore. The SF consists of five well-defined
binding sites for K+ ions by exposing the backbone carbonyl groups of the residues toward
the channel axis [28]. These sites are commonly labeled as S0 (below T75), S1 (between T75
and V76), S2 (between V76 and G77), S3 (between G77 and Y78), and S4 (between Y78 and
G79). The permeation is forced to occur in a single file fashion as a hopping of an ion from
one site to another site.

The filter plays a role in both ion selectivity and modulating the current. The latter
corresponds to random-like switching (gating) between zero and finite values of the current.
Once the inner gate is opened, the current is regulated by small structural rearrangements.
They are responsible for different gating processes, such as the C-type inactivation and the
modal-gating, from which complex patterns of ion current arise [13,14,16,17,28–30]. The
C-type inactivation corresponds to very long inactive (zero current) time intervals under
steady-state conditions. The modal gating is associated with three different modes of the
single-channel currents in KcsA. Two modes correspond to a high and low probability of
the pore to be in the conducting (active) state, respectively. Third mode is a high-frequency
flicker mode representing in bursts of fast switching back and forth between active and
inactive states [13,14].

The inactivation in the KcsA channel is a common feature in functioning potassium
channels, including eukaryotic ones [10]. Therefore, the C-type inactivation has been exten-
sively studied using a variety of different experimental techniques such as crystallography,
NMR, ssNMR, fluorescence measurements, and computational studies, leading to several
hypotheses reflected in the recent detailed review [6]. A combination of structural (X-ray)
studies and physiological measurements of the wild type (WT) of KcsA and its different
mutants suggests that several residues behind the SF could be involved in filter’s struc-
tural rearrangements during the inactivation [9,14,15,18,19,29–33]. These studies led to the
suggestion of four channel’s states with an open or closed inner gate and a conducting or
non-conducting SF [4,11]. One of the hypotheses [6,11,34] suggests that the activation by
opening the inner gate simultaneously alters the SF via allosteric coupling [35,36]. This
coupling leads to a slow (on a time scale of seconds) collapse of the SF to a non-conducting
configuration. Although structures corresponding to an inactive channel with closed and
open inner gate were reported [11,28,30], a structure of an active channel with an open
gate and a conducting SF is still missing. Note that the canonical structure 1K4C [28] with
a conductive configuration of the SF has a closed inner gate. Another set of experiments
used mutagenesis of residues in the SF and demonstrated that the ion occupancy in specific
sites controls the inactivation [37–39]. This result leads to the second hypothesis that the
SF alone could play the role of an “inactivating gate” without the involvement of the
inner gate [6]. This hypothesis tightly links to experimental observations that the SF’s
conformational dynamics in the WT KcsA and its mutants govern gating properties in
the KcsA channel [14,40,41]. Although these two hypotheses are sometimes considered
controversial [6,42], they could coexist and reflect the complexity of the KcsA channel.

An additional complication to this gating-permeation picture is the dependence of the
K+ current and the filter rearrangements on the extracellular K+ concentrations, common
among numerous K+ channels [9,10,38,43,44]. The probability of the inactivation grows
with decreasing K+ concentration. This effect has been suggested to link to a “foot-
in-the-door” mechanism in which an ion resident in the filter stabilizes the conductive
conformation and reduces the inactivation probability [9,16,38]. The exact location of the
binding site responsible for the effect is unknown. However, it is suggested such site
can be located either at the extracellular mouth or in the central region of the selectivity
filter [10,38,45].

In the majority of these studies static (crystallographic) X-ray structures were used
for describing the function. However, these static pictures do not provide details of the
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essentially dynamical picture of the inactivation. Therefore, general mechanistic knowl-
edge of the gating behavior, which comprises transitions between various states, remains
obscure [4,10,11,13]. Recent applications of solid-state NMR [41], 2D IT spectroscopy [2],
and florescences measurements [46] for analyzing channel dynamics could address the
uncertainties in functional relevance of crystallographic structures. However, a mechanistic
picture of the filter’s rearrangements with simultaneous dynamical analysis of ions and
water molecules is beyond the current experimental techniques. Molecular dynamics
(MD) simulations offer valuable tools for exploring dynamical properties at the atomic
level [47–49]. For example, MD helped discriminate between “knock-on” and “snug-fit”
mechanisms of the permeation in the KcsA channel [50]. In turn, the structural study [51]
recently resolved some controversy in MD simulations [2,3] on water involvement in
knock-on mechanisms.

The inactivation hypotheses were also discussed by applying MD approaches [34,52].
These computational studies concluded that the activation via opening the inner gate
affects the low site S0 in the SF by enhancing the permeation [34] and controlling the
SF’s stability [52]. The latter result leads to new perspectives [53] for the inactivation
mechanism as a process tightly controlled by the inner gate, which could be in different
partially open states [52]. The dynamics near SF becomes less important in this picture. A
quick collapse of the SF in the case of a widely open inner gate was observed [52]. The
collapse happens on much shorter than broader time scales of the inactivation, which
can be the order of seconds. The same time scale for collapsing the SF was reported in
recent unbiased simulations of a similar open structure [54]. The former result [34] partly
supports these new perspectives as it shows that configurations of the inner gate affect the
permeation. However, a collapsed SF has not been reported for the performed biased MD
simulations for the open inner gate [34]. As mentioned above, a crystallographic structure
of the KcsA channel with a conducting SF and an open inner gate is not available, so such
a structure was created in silico [34,52] using combinations of the reported structures [55].
Differences in structures used for creating proteins with an open inner gate could explain
some contradictions in those MD approaches [34,52].

Heer et al. [34] also reported that the permeation barrier in the canonical (a conducting
SF and a closed inner gate) structure 1K4C [1] is too high to consider its SF configuration
as conducting. This conclusion was derived from biased simulations using the umbrella
sampling method [56]. The obtained barrier was found to be too high for observing the per-
meation rate according to experimental recordings [57]. This result is in line with the work
reported earlier by Fowler et al. [58]. In contrast, other unbiased MD simulations [59–61]
confirmed the conducting state of SF. Note that the SF of structure 1K4C was used in
the majority of the simulations mentioned above. Two major factors could explain such
discrepancies. The first factor is the use of either biased or unbiased MD approaches.
The second factor is defined by differences between obtained in silico structures with an
open inner gate. While generating a new structure in silico applied a tight control of SF
backbones and ions’ and water molecules’ locations, other residues were not over-sighted.
In biased approaches, just one or two so-called collective variables (typically ions locations)
were considered assuming that the dynamics of all other variables (water molecules and
residues) can be averaged out. Yet, in unbiased approaches some constraints are applied
on the protein during MD simulations.

Thus, conformations and behavior of many residues, especially in the region of the
SF, were kept out of the consideration despite the experimental studies that identified a
number of residues strongly altering the inactivation and gating [9,14,15,18,19,29–33]. A
series of papers by Cordero et al. [9,14,29] suggested that the stability of the SF depends
on a hydrogen-bond (H-bond) network formed by the triad of residues E71-D80-W67. In
particular, the substitution of glutamate E71 with alanine A71 suppresses the inactivation,
and the conduction is observed even in low K+ concentrations [14]. Therefore, there is a gap
in understanding how states of this triad are linked to the permeation. In this manuscript,
we aim to provide a mechanistic picture of rearrangements in the WT KcsA protein and
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discuss the mechanisms by which residues behind the SF interacts with the backbones
of the SF, and ions and water molecules within. This picture is an essential piece of the
inactivation puzzle and in addressing issues of MD biased simulations.

A large number of residues in the SF region of the KcsA protein means that a brute
force (combinatoric) consideration of all possible combinations of different residues states
is unrealistic. The state-of-the-art microseconds MD simulations [52,54] show that structure
1KC4 adapts one of the multistable states and no rearrangements of residues behind the
SF were reported. In the present work, therefore, we first conduct a comparative analysis
between the WT protein and different mutants (E71A, Y82A, R64A, and L81A) (see Figure 1)
where key residues are replaced by the short, weakly interacting alanine. The selection
of the mutated structures is based on previous experiments [9,14,15,18,19,29–33] which
reported different probability of the inactivation. MD simulations were combined with
biased free-energy methods, well-tempered metadynamics [62], and statistical analysis.
The biased simulations introduce additional perturbations into the protein and, therefore,
verify the stability and thermodynamics of different states of the SF. The results of MD
simulations are critically assessed against published experimental and computational
investigations. The study was designed to unveil the complex dynamics that underlie the
permeation path in the WT KcsA protein and has allowed us to identify a cooperative
network of dynamically interacting residues located near the SF. Note that preliminary
results of this study were reported in work [63].

In this paper, first, an analysis of residues’ dynamics in mutated structure E71A is
presented. The relationship between conformational changes at the SF and rearrangements
of residue D80, located at the channel’s outer entrance, is explored. Second, a network
of residues, which affect the ion permeation, is identified by comparing the dynamics
of proteins WT, Y82A, R64A and L81A. Third, a thorough description of the network
dynamics, including energetics of transitions in the network, and its influence on the filter
structure and the ion permeation is presented.

L81A

Y82A

A82

A81R64A

A64

E71A

A71
WT

R64

R89

E71

D80

L81Y82

W67

Figure 1. A region near the SF in the different proteins: WT, E71A, Y82A, R64A, and L81A, is shown.
With the exception of the mutated residues, the other residues are in the X-ray conformation [28].
Ions are shown as purple spheres interacting with oxygen atoms (red color) of residues in the SF. The
key residues are highlighted by different colors, mutated residues are shown in blue.
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2. Methods
2.1. Setup of the Simulations

The simulations were performed using NAMD 2.8 and 2.9 [64] in the NPT ensem-
ble with pressure 1.01 bar and temperature 310 K. A multiple timestep algorithm was
used [65,66]. In the case of unbiased simulations the integration step size was 1 fs, non-
bonded nonelectrostatic interactions were calculated every 2 fs, and electrostatic forces [67]
every 4 fs. In biased simulations, the step size was 2 fs, nonbonded nonelectrostatic interac-
tions were calculated every 2 fs, and electrostatic forces every 6 fs. The CHARMM27 force
field (FF) was used for the protein, with a modification in the Lennard–Jones term to rep-
resent the interaction between K+ and the carbonyl oxygens of the protein, CHARMM36
for the lipids, and TIP3P for water were applied [50,68–72]. The system was prepared by
embedding the X-ray structure (pdb code 1K4C; solved at 2 Å resolution [28]) with 2 K+

in the SF and 1 K+ in the cavity, in a membrane patch of 222 molecules of 1-palmitoyl-
2-oleoylphosphatidylcholine (POPC), and solvated by 17740 water molecules [73–75]. A
potassium concentration in the aqueous phase of 0.2 M was obtained with 63 K+ ions,
and the system was neutralized by 75 Cl− ions. The ions were distributed over the whole
simulation box. Relaxation of the system and preparation of the mutants is described in
Supplementary Materials.

Coordinates, if not otherwise stated, were considered every 2 ps, ignoring an initial
equilibration period of 1 ns.

2.2. Collective Variables and Order Parameters

Collective variables (order parameters) used in this work are defined as follows. (i)
Variables ψ76 and ψ81 are the ψ dihedral angles measured for residues indicated in the
subscripts, and they follow the standard definition. (ii) Variable χ181 is the χ1 dihedral
angle of the L81 residue, which follows the standard definition as well. (iii) Variable SC80 is
the position of the D80 side chain considered as the distance between Cγ atom of D80 and
a reference atom, Cα of A73. Note that the latter residue shows the lowest fluctuations in
RMSD analysis. (iv) The distance D80–R89 is between Cγ atom of D80 and the Cζ atom of
the closest R89 residue in the quaternary structure. (v) SF length, the length of the TVGYG
sequence, is measured as the distance between the Cα atoms of residues T75 and G79. (vi)
The distance R64–SF is measured between Cζ atom of R64 and the center of mass (COM) of
the selectivity filter. (vii) The distance E71–D80 is between Cγ atom of D80 and the H-bond
donor oxygen of E71. (viii) The coordinates zK1 and zK2 are the z coordinates of the K+ ions
bound to the filter (ions labeled as K1 and K2 in Figure 5); the coordinate system has been
centered with respect of the COM of the SF, in order to remove the components associated
with the protein diffusion in the membrane.

The COM of the SF was defined by the atoms N, Cα, and C of residues from 74 to 78
of all four subunits.

2.3. Free Energy Calculations—Metadynamics

Different approaches are used to enhance the sampling when high energetic barriers
between states do not allow an appropriate sampling for the investigation of rare events and
the reconstruction of the free energies. These are often based on non-Boltzmann sampling.

Well-tempered metadynamics (wt-metaD) is a non-Boltzmann sampling method based
on a history-dependent bias potential, created as a sum of Gaussians centered along the
trajectory of specified collective variables (CVs) [62,76,77]. In wt-metaD technique, the
height of Gaussians added is history-dependent, and this dependence is associated with
a parameter ∆T having the dimension of temperature. This parameter was adjusted for
each simulation. The NAMD package [64] includes module colvar for performing wt-
metaD. Additional details of the implementation of wt-metaD and the selection of the
relevant parameters are reported in the Supplementary Materials, section “Well-tempered
Metadynamics”.
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2.4. Initialization of WT-R64D80 Simulation

For the simulation denoted as WT-R64D80, an equilibrated conformation of WT
KcsA simulated for 6 ns was used. During first 20 ps of the relaxation, residues L81 and
R64 were restrained. Every residue L81 was restrained towards the flipped state by the
harmonic potential with a spring constant of 24 kcal/mol degree2 and centered on 185◦.
The harmonic potential (spring constant 20 kcal/mol degree2 centered on −160◦) was
applied on χ1 dihedral angle of each R64. Note that the latter restraints were added to
speed up the calculation, but are not strictly necessary to obtain the desired configuration.
A further 25 ps of relaxation were performed without any restraint.

2.5. Statistical Analysis

The statistical analyses were performed using VMD 1.9 [78] and R software envi-
ronment [79]. Several packages for R were used in addition to the core functions: bio3d,
ggplot2, car, and MASS [80–84].

All the free-energy surfaces (FES) presented in this work were smoothed via cubic
smoothing spline (grid length 80) and thin plate spline methods (grid sizes 80× 80) which
are implemented in R packages stats v2.15.3 [79] and fields v6.7.6 [85], respectively.

3. Comparative Analysis of Dynamics of WT and Mutated Proteins
3.1. Considered Proteins

The simulations commenced from relaxed systems, prepared from the X-ray structure
solved at 2 Å resolution [28], as explained in the previous section “Methods”. The KcsA
channel has a tetrameric structure, and the four subunits of the KcsA are referred by capital
letters A, B, C, and D. The SF is described as a five-site pore [24,25] through which ions and
water molecules move in a single-file fashion. The standard notation of the sites is used:
S0 to S4 starting from the outer site. The configurations of the SF are described by a five-
character string (from S0 to S4), where a “K” represents a K+ ion, “w” a water molecule, “0”
a vacancy; when a K+ is present in the cavity a “K” is appended, separated from the filter
occupancy by sign “+”. For example, the configuration wKwKw+K means the presence of
K+ ions in S1, S3, and the cavity separated by water molecules. In comparison, KwK0K
implies the presence of K+ ions in S0, S2, and S4, a water molecule in S1, a vacancy in S3
and no a K+ ion in the cavity. Consistent to the previous literature [14,86], the results are
described by considering the extracellular region as an outer region and “up” in the frame
of reference, while the intracellular region is considered as inner and “down”.

Among the numerous mutants, which differ from the WT in the gating behavior, three
proteins have been considered: (i) E71A is be resistant to the inactivation, (ii) R64A shows
a sharp reduction of the inactivation, and (iii) Y82A demonstrates an enhancement of the
rate and extent of the inactivation [14]. It is, therefore, possible to specify a trend in the inac-
tivation probability of these proteins: E71A < R64A < WT < Y82A. An additional mutant,
L81A, was created for testing the roles of residues L81 and R64, and their coupled motions.

3.2. Dynamics of Mutant E71A

The link between residues E71 and D80 is considered to be an important one for KcsA
functioning. A special patch in the force fields was introduced to tune the link for observing
ions’ conduction [86]. However, the mutation of glutamate (E71) to alanine (A71) does
not affect the conductivity and, moreover, it suppresses the inactivation. This observation
means that other residues play an essential role to keep the SF in a conducting configuration.

The mutation by replacing glutamate E in position 71 by alanine A results in the
structure E71A which was studied experimentally by Cordero et al. [14]. The authors
demonstrated that the permeation path undergoes large conformational rearrangements in
the non-inactivating mutant E71A. The rearrangements primarily occur in the region of
V76 residue. Additionally, the authors [14] reported a strong upward movement of residue
D80 relative to its position in the WT structure, leading to the “flipped E71A” structure.
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For understanding the influence of the mutation on the dynamics and interactions of
residues, an unbiased MD simulation of length 24 ns was performed. Several rearrange-
ments in the permeation path were observed during the simulation. The most noticeable
changes happened among the residues of the TVGYG sequence in the subunit B. Rotation
of the V76-G77 peptide group occurred at 9 ns, and the rotation remained stable until the
end of the simulation. Similar transitions have been reported in the literature for both
WT and E71A. Many hypotheses [30,58,87–90] have been proposed for explaining the
transitions which are usually referred to as “flipping of V76”. However, understanding the
significance and origin of the transitions is still missing.

The flipping of V76 has been suggested by different authors to be able to generate non-
conductive conformations associated with the C-type inactivation or flicker mode [30,88].
We performed various permeation tests on V76 flipped conformations of E71A and WT by
performing unbiased simulations with two ions in the cavity (see Supplementary Materials,
section “Permeation in the V76 flipped configurations of E71A and WT”). The simulations
revealed that reverse transitions of V76 occurring easily in the case of K+ permeation. This
result supports the hypothesis of Domene et al. [89] that flipping of V76 is not responsible
for the C-type inactivation. Furthermore, the observed conductivity suggests that the
flipping of V76 alone is not sufficient even for short-living inactive states, which are
associated to the modal-gating, and that additional conformational readjustments are
necessary for generating meta-stable non-conductive states.

The simulation of E71A showed that interactions between D80 and an arginine nearby
(R89) could trigger structural rearrangements of the filter. D80 side chains, which are
negatively charged, demonstrated relatively large fluctuations towards the extracellular
region (see Supplementary Materials, Figure S2). These fluctuations are promoted by
strong inter-domain electrostatic interactions with positively charged arginines R89. The
interaction between the residues D80 and R89, and the corresponding rearrangements of
the SF, are illustrated in Figure 2. The conformational space in Figure 2a is defined by the
three order parameters (conformational changes for subunit B only are shown): (i) the
dihedral angle ψ of V76 (ψ76); (ii) the position of the D80 side chain (SC80); (iii) the distance
between D80 and nearest R89 (D80–R89). Initially, the dynamics of D80 and R89 appear
uncorrelated (blue clouds). Some correlations arose (light blue cloud) as the time advanced
because of an intermittent creation of a H-bond (D80–R89 distance is around 3 Å) between
D80 and R89. Note that similar H-bonds between D80 and R89 have been reported in the
literature also occurring for the WT structure [91]. The presence of the D80–R89 H-bond
in E71A protein is associated with a small drift in the position of D80, SC80 is changed
from 13.5 to 13.8 Å (see Supplementary Materials, Figures S3 and S4, for more details). The
temporary strengthening and stabilization of the H-bond was accompanied by a distortion
of the filter structure (in Figure 2a clouds blue to green, and in Figure 2b structure green to
colored). Residue V76 assumed a partially flipped conformation (ψ76 ≈ 50◦) in the distorted
structure. This observation is an important result since it demonstrates that the backbone
structure of the sequence GYGD is rigid enough for delivering a perturbation from D80
to the V76-G77 peptide group. It is shown below that the rigidity of the GYGD backbone
strongly affects the SF flexibility.

Time series reported in Supplementary Materials (Figure S3) further demonstrated
that, in turn, V76 partial flipping affected the permeating K+ ions, causing an inward shift
of the outermost ion K1. Thus, ions’ dynamics are linked with the dynamics of residues
behind the filter, D80 and R89. The partially flipped conformation of V76 appears to
be unstable and evolved into a complete flipping of V76. The D80–R89 H-bond caused
additional small transitions in the TVGYGD sequence until a slight movement of the D80
towards the extracellular side (see Figure S3 in Supplementary Materials and Figure 2b
colored to yellow) restored the initial uncorrelated motions of the D80 and R89 (red clouds
in Figure 2a) causing a breakage of the H-bond.
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Figure 2. The influence of residues D80 and R89 on structural rearrangements in mutant E71A. (a)
The evolution of the system (subunit B, initial 1 ns ignored as the relaxation interval) revealed that
the stress induced by the D80–R89 H-bond led to rearrangements in the filter structure (the flipping
of V76) and to an outward transition of D80. The conformational space is defined by a set of the
order parameters (see “Methods”): (i) SC80 the position of side chain D80; (ii) D80–R89 distance,
where residue R89 belongs to the neighboring subunit; and (iii) ψ76. Time evolution of the system
in the conformational space is coded by color scale shown in the colorbar. (b) Superposition of
snapshots from the simulation of E71A: an initial configuration (green drawing); a configuration with
the D80–R89 H-bond and partially flipped V76 (colored drawing); and a configuration at the end of
the simulation (yellow drawing).

Although the described path is one among many available toward a V76 flipped
configuration in protein E71A, these results demonstrate that the creation of H-bonds with
residue D80 can trigger structural rearrangements which propagate to the filter because of
the relative rigidity of the GYGD sequence backbone. The arginine R89 is able to promote
the triggering transitions by creating a strong H-bond with residue D80. In the following
sections, further evidence is presented for confirming that all the residues which can
form H-bonds with D80 play a significant role in conformational rearrangements of the
permeation path.
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3.3. Correlated Dynamics of L81 and R64 Residues

The results of the previous subsection indicate that residue E71 plays an essential role
in the inactivation and, therefore, in the dynamics of the WT protein. In mutant E71A,
alanine in position 71 does not form bonds with D80 and residue D80 is very flexible.
In contrast, in the WT protein, residue D80 is restrained by a strong link between D80
and E71. For the identification of residues that affect the permeation path, we performed
a comparative analysis of three different proteins in which E71 is present. The selected
proteins are the WT protein and mutants Y82A and R64A. These mutants show distinct
behaviors for the inactivation: Y82A has significantly higher, and R64A has reduced
the inactivation probability in comparison to WT. All three structure were simulated
starting with the same initial configuration (excluding mutated residues) for different but
comparable intervals: 38 ns, 28.5 ns and 23 ns for WT, Y82A and R64A respectively. Note
that in the WT protein, residue R64 directly interacts with L81, which is a neighbor of
residue Y82 (Figure 1).

The root mean square displacements (RMSDs) of the backbone atoms of each residue
reveal residues which showed different behaviors across the three selected proteins; the
X-ray structure of WT was used as the reference [28]. The results are reported in Figure S5 in
the Supplementary Materials. The RMSDs analysis shows that fluctuations of the arginine
R89 are wider in the proteins with a higher probability of inactivation, WT and Y82A, than
in R64A. This observation additionally supports the hypothesis of a particular role of this
arginine in the conformational variability of the pore. However, residue R89 in proteins
WT and Y82A show similar RMSDs, and the difference in RMSDs of R89 in R64A and WT
structures is relatively small. These facts imply that the dynamics of R69 by itself cannot
account for the substantial diversity in the inactivation between these three proteins.

A closer inspection reveals the importance of second arginine residue, R64, which has
relatively large RMSDs in WT and Y82A. The mutation of this arginine with alanine in
structure R64A leads to a significant reduction of the RMSDs of the residue in position 64.
In WT and Y82A proteins, arginine R64 can approach and interact with D80 and create
strong H-bonds similarly to R89 in mutant E71A (Figure 3a). The possibility of a H-bond
between R64 and D80 is important considering that R64 is located relatively far from D80 in
the static structure provided by X-ray experiments [28] (D80-R64 distance = 9.3 Å). Residue
R64 fluctuated over wide ranges and, more importantly, it can destabilize linkages between
the triad of E71-D80-W67 via the interaction with residue D80 (Figure 3a). This interaction
occurs more prominently in mutant Y82A, the simulation of which ended with a broken
triad E71-D80-W67 in two subunits. As a result of the R64–D80 interaction, residue D80 can
rotate around the dihedral angle χ1 and such rotations were observed a few times during
simulations (see Figure S6 in the Supplementary Materials). In Y82A and WT proteins, the
flexibility of D80 promoted by R64 leads to several multistable configurations, one of which
includes a broken E71–D80 link. Note that this link is stable though the whole simulation
of mutant R64A. Thus, residues R64 in WT and Y82A proteins play the destabilizing role.

In both WT and Y82A proteins, arginine R64 can interact with D80, but these structures
demonstrate different inactivation behavior. Our simulations indicate that the difference in
the inactivation has a dynamical origin. Residue R64 moves faster and creates quicker a
H-bond with D80 in mutant Y82A than in WT. The rate of H-bond creation depends on
the conformation of the leucine in position 81 (L81). This rate primarily controls by the
rotation of L81 side chain, which can open by flipping, when angle χ181 changes from −63◦

to 185◦, or obstruct, when residue L81 is in that conformation found in the crystallographic
structure, the path toward forming the D80–R64 H-bond (Figure 3a). Conformational
changes of L81 have, therefore, a critical regulatory role in the dynamics of residue R64.
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Figure 3. (a) The disruption of E71–D80–W67 linkages in Y82A and WT, promoted by the D80–R64
interaction. Snapshots and the final configurations for simulations of Y82A and WT are reported.
Residues in the snapshots are superimposed with respect of the heavy atoms of the SF. The color
sequence in the snapshots is (i) blue, an initial state; (ii) green, a transition state (distinguished only
for the WT and characterized by the E71 χ1 angle of 120 degrees); and (iii) red, E71-D80-W71 linkages
disrupted. Distances in the figures are reported in Å. (b) Comparison of the probability density of
the D80–R64 distance in WT, Y82A, and L81A calculated for 10 ns of simulation. The initial D80–R64
distance is 9.3 Å and shown with the dashed magenta line. Distance D80–R64 which is less than 5.2 Å
indicates the formation of the D80–R64 H-bond. Data from all the four subunits were used.

In turn, the dynamics of L81 are associated with additional readjustments in the
amino acid sequence L81-X82-P83-V84, roughly definable as pivoting around the residue
in position 82 (X82-pivoting (Figure 3a). Collective motions of this sequence can promote
the flipping of L81 and a small drift of its backbone. The X82-pivoting is different in
three considered proteins. The main differences are reflected in the RMSDs of residues
surrounding residue 82 (X82) (Figure S5 in the Supplementary Materials). In all the three
proteins, the RMSDs are similar for X82 (where X is tyrosine Y in the WT and R64A and
alanine A in Y82A). In contrast, the RMSDs of the surrounding residues (L81, P83, and V84)
correspond to the inactivation probabilities R64A < WT < Y82A, that is, the RMSDs are
larger for Y82A and smaller for R64A than for WT. The lowest RMSDs for mutant R64A
are due to the absence of a residue in position 64, which is capable of interacting with L81
via X82-pivoting. In WT and Y82A proteins, the R64–L81 interaction is controlled by bulky
tyrosine Y82 and non-bulky alanine A82, respectively. In the WT protein, therefore, the
motion of L81 is slower and more limited than in mutant Y82A, while in Y82A, the dynamics
of L81 are faster and accompanied by a noticeable backbone drift (Figure 3a). Note that the
described X82-pivoting can furthermore explain the conformational rearrangements of Y82
suggested in the experimental investigation of the C-type inactivation [17].

Thus, the mutation in position 82 changes the dynamics of residues close to the filter
region, mainly affecting the conformation of L81. The enhancement of L81 transitions in the
deep inactivating mutant Y82A causes the promotion of D80–R64 interactions because the
dynamics of L81 and R64 are strongly coupled. Note that the X82-pivoting also alters the
dynamics of residues V84 which can access D80 in a similar manner as R64. A comparable
influence of V84 on D80, therefore, can be hypothesized. However, if such influence exists,
it was masked by a stronger R64–D80 interaction.

For verifying the regulatory role of L81, mutant L81A (Figure 1) was additionally
considered. The probability of the creation of the D80–R64 H-bond was compared for
three proteins: WT, Y82A, and L81A. All the proteins were simulated with the same
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initial configuration, and the probability was calculated for the same time interval 10 ns.
Consistently with the presented above results, the simulations confirm that the rate of the
H-bond creation depends on residues L81, with a trend in the probability L81A > Y82A >
WT (Figure 3b). The probability is larger in Y82A with respect to the WT by the enhanced
fluctuations of L81. The probability becomes even larger in L81A when L81 is directly
substituted by the small alanine which interferes less with R64 motion.

The results of this subsection show that proteins WT, R64A, and Y82A differ from each
other in the dynamics of a few residues: primarily arginines R64 and R89, and leucine L81
that regulates the D80–R64 interaction. The cooperative dynamics of these three residues
have a destabilizing effect on the triad E71-D80-W67 and, therefore, affect the pore region.
Note that glutamate in position 71 (E71) has a non-trivial influence on the inactivation. In
the absence of E71, mutant E71A is very flexible, but the inactivation is suppressed entirely.
The presence of E71 is, therefore, essential to observe the inactivation, as E71 limits the
flexibility of the pore region and strongly affects the motion of D80.

4. The Interactions of Residues and Ions in the WT Protein
4.1. Influence of Arginines R64 and R89 on D80, the SF and Ions

For understanding the action of arginines R64 and R89 in the WT protein, confor-
mations with residue R64 close to residue D80 were investigated by a simulation started
with a particular initial configuration. In order to enhance the probability of the R64-D80
interaction, an unbiased simulation (denoted WT-R64D80, duration of 45 ns) of the KcsA
WT protein was commenced from a conformation with residues R64 were near D80 in all
the four subunits. Details of how the initial configuration was obtained are given in the
section “Methods”. Figure 4b shows the initial configuration characterized by the filter
occupancy wKwKw+K; the flipped state of L81 and R64 is close to D80 in all subunits.
Note that in subunit C, residue R64 forms a H-bond with D80 during a short equilibration
in a preparation stage (see Figure S7 in the Supplementary Materials, starting point).

Two positively charged arginines R64 and R69 can exert a sufficiently strong combined
upward force on negatively charged residue D80 to overcome the strong downward
attraction toward E71. From the beginning of simulation WT-R64D80, this force resulted in
a large mobility of the pore region. A long breakage of E71-D80-W67 linkages (for 17 ns)
occurred in subunit C as well as brief disruptions of the linkages in other subunits were
observed. Conformational rearrangements in residues and content (K+ ions and water
molecules) of the SF accompanied these disruption events. Representative snapshots of
changes in the SF are shown in the Supplementary Materials, Figures S7 and S8. The
rearrangements observed in the subunit C were analyzed using three order parameters:
angle ψ76, distance SC80 and the length of the TVGYG sequence of the subunit, SF length.
Figure 4 shows the trajectory, which reflects the time evolution of the system, in the
conformational space defined by these three order parameters for the first 22.5 ns of the
simulation. Initially, several transitions of residues V76 (angle ψ76 switches back and
forth between −50◦ and 145◦) were observed. These transitions demonstrate the inherent
flexibility of the V76/G77 peptide group, which is sensitive to changes in the SF. The
trajectory also shows that after 5 ns the E71-D80-W67 triad broke and residues D80 moved
outward (distance SC80 changes from 13.5 Å to 15.5 Å). All these changes were promoted
by residue R64. Residue D80 accommodated an upward state with H-bonds formed
between either D80 and R64, or D80 and R89, or D80 and both arginines (see Figure S8 in
Supplementary Materials). This upward state of D80 caused stretching of the TVGYGD
sequence of the SF (SF length increases), and residue V76 switched to a meta-stable flipped
state. The described changes correspond to the transition from the state A to the state B in
the conformational space (Figure 2). The two-dimensional density for distance SC80 and
angle ψ76 shown in Figure 2b emphasizes a meta-stable character of the distorted state B
and its dependence on the position of D80 side chain.
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Figure 4. Panels (a,b) compare of the X-ray structure of the WT protein (a) and the initial configuration for simulation WT-R64D80 (b).
Panel (c) shows the correlation between the states of D80 and the SF by means of the two-dimensional probability density for position
SC80 and angle ψ76 (see “Methods”) during first 22.5 ns of simulation WT-R64D80, i.e., before ion configuration KwK0K was reached.
Two meta-stable states are denoted by letters A and B. Snapshots corresponding to each of the two states are shown on the right side
panels. State A is the initial state in which E71-D80-W67 linkages were present. State B is characterized by an outer movement of D80
which followed by the break of E71-D80-W67 linkages and TVGYGD rearrangements. Panel (d) reports time evolution of subunit C
in the conformational space defined by (i) ψ76, (ii) SC80, and (iii) the length of the TVGYG sequence, SF length. The trajectory in the
conformational space is coded by color scale shown in the colorbar. Letters A and B indicate the same states as in panel (c).

Figure 5 and Figure S9 in Supplementary Materials show significant consequences of
the distortions in subunit C on the elements bound to the filter, and in particular, on the
permeating K+ ions, which facilitate in spreading the distortions among the other three sub-
units. The changes in the permeation path can be characterized by the correlation between
the positions of K+ ions in the SF. Let us stress that strongly correlated motion of ions was
considered as being the fundamental feature of the knock-on mechanism of the permeation
in previous works [92,93]. Simulations started from the X-ray configuration demonstrate
the presence of such correlated dynamics of ions in the SF (see Figure 5a): Pearson’s coeffi-
cient is large (around 0.75) and the positions of ions K1 and K2 are linearly correlated. In
the distorted state observed in simulation WT-R64D80 (state B in Figure 2b), the correlation
between K+ ions is lost; Pearson’s coefficient is close to zero (Figure 5a). Ions in the SF
become more flexible in the binding sites, that leads to weakening in the spatial definition
of the K+ sites (Supplementary Materials, Figure S9). An unexpected transition of the
innermost ion (K2) toward the intracellular side was observed (wKwKw+K � wKw0K+K,
Figure 5b). This transition occurred in the reverse direction with respect to the permeation
path. Note that such a transition was not observed in simulations started from the X-ray
conformation of the WT protein. The observation of the inverse transition is particularly
important because it reveals the influence of protein distortions on single K+ permeation
events. This influence additionally can explain the different free-energy barriers obtained
for the permeation path using biased approaches which induce distortions of some parts of
the KcsA protein [58,86,90,94,95].
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Figure 5. Panel (a) illustrates the correlation of the position of permeating K+ ions (K1 and K2) for
two different conformations of WT: (i) the X-ray conformation in which R64 was far from D80 in
all subunits; and (ii) the confirmation used in simulation WT-R64D80 with R64 near D80 in all the
subunits. Only a part (durations of 7 ns for (i) and 15 ns for (ii), respectively) of the simulations
with identical filter occupancy wKwKw+K were considered. For simulation WT-R64D80 the part
corresponds to broken E71-D80-W67 H-bonds. Representative snapshots and z-positions of two ions
in the SF on the state plane of zK1 and zK2 for each configuration are shown. Panel (b) depicts a config-
uration of the channel after the inward transition of the innermost ion K2 (wKwKw+K � wKw0K+K)
occurred. All four subunits denoted by letters A–D are shown.

The described distorted state of the SF is observed during the initial part of simulation
WT-R64D80. In the later stage, ions underwent several further rearrangements. One of the
rearrangements is the ion (K3) from the cavity enters the SF (wKwKw+K −→ wKwKK)
that leads to the re-establishment of E71-D80-W67 linkages. Then, the transition of the
outermost ion (K1) to the site S0 (wKwKK −→ KwK0K) led to a configuration close to
those observed in the conductive state of the X-ray structure. The latter result suggests that
the conformation in which a K+ ion is bound to site S0 stabilizes the filter structure.

Thus, simulation WT-R64D80 demonstrates that conformational changes of the SF
are dependent on a strongly correlated network of residues, in which aspartate D80 plays
the central role. States of D80 with the broken E71-D80-W67 triad are promoted by the
combined action of arginines R64 and R89. Furthermore, these states of D80 can destabilize
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the SF and cause filter’s distortions. The latter affects the dynamics of ions and can prevent
the permeation of ions. In turn, ions permeation through the SF can either enhance or
suppress the destabilization effect.

4.2. Energetics of the Arginine Motions

Simulation WT-R64D80 was started from a particular initial configuration, and the
observed changes in the SF are transient. In this subsection, therefore, the energetics
of the changes are studied using a technique called well-tempered metadynamics (wt-
metaD). Wt-metaD (see Supplementary Materials for further details) is a theoretical method
which belongs to the family of the biased methods and has been successfully applied for
both to accelerate the observation of rare events and to reconstruct free energy surfaces
(FES) [62,76].

The analysis of the dynamics of mutants and simulation WT-R64D80 demonstrate
that the interactions of two arginines R64 and R89 with D80 can trigger rearrangements
which change the shape of the channel pore, hence alter the ion permeation in KcsA.
The dynamics of R64 is strongly coupled with leucine L81 which regulates the D80–R64
interaction. Therefore, the motion of R64 needs to be analyzed together with the motion of
L81. Arginines R89 is not directly controlled by neighboring residues and can be studied
alone. Energetics of the motion of R69 are described in the Supplementary Materials
(section “Energetics of the arginine motions”).

For characterizing the dynamics of R64 and L81 the two-dimensional FES was calcu-
lated for the following order parameters: (i) the distance between R64 side chain and the
center of mass of the SF (R64–SF), and (ii) angle χ181 (more details in section “Methods”
and Supplementary Materials). The total sampling length of the wt-metaD simulation
was 122 ns. The computed FES, shown in Figure 6, confirms the interplay between R64
and L81, and the regulatory role of the latter. There are several multi-stable states on the
two-dimensional FES. State Sa is with non-flipped residue L81 (χ181 ≈ 297◦) and residue
R64 which is far from the SF (R64–SF > 19 Å). This state is close to the X-ray structure of
KcsA. It demonstrates that when L81 is in the non-flipped conformation, R64 tends to be
away from the filter and D80. On the other hand, when L81 is in the flipped conformation
(χ181 ≈ 185◦) residue R64 can approach closer to the SF (states Sb and Sc, R64–SF < 18 Å).
Residues D80 and R64 form a H-bond in the state Sc. Two minimal-energy paths Sa → Sc
are shown by dotted lines in the FES plane. The first path, highlighted by the magenta line,
consists of an initial flipping of the L81 side chain (χ181 from ~297◦ to ~185◦) followed by
the subsequent movement of R64 towards the SF along a downward gradient. The second
path, highlighted by the black line, involves the creation of an initially relatively unstable
D80–R64 H-bond which is lately stabilized by the flipping of the L81 side chain. Both paths
have a similar energy barrier (5 kcal/mol).

Note that the energy barrier for the inverse transition Sc → Sa is significantly higher
(13–15 kcal/mol) than for Sa → Sc. It means that state Sc corresponds to the global
minimum of the FES and the configuration with a H-bound between R64 and D80 and with
L81 in the flipped conformation should be observed in X-ray structural studies [28]. An
analogous result, with the R89–D80 H-bond in the most probable state, was also obtained
by free-energy calculations of the R89 motion for two out of three configurations of ions
(see Supplementary Materials, section “Energetics of the arginine motions”).
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Figure 6. In the middle, two-dimensional FES computed via the wt-metaD approach is shown
with respect to the distance between R64 and the SF (R64–SF) and angle χ181. In order to aid the
visualization, angle χ181 is reported in the range (0, 360), instead of the standard (−180, 180). The
FES is shown in kcal/mol, lines in the contour plot are drawn every 1 kcal/mol. Configurations of
residues for three different multi-stable states: Sa, Sb and Sc, are shown on the sides of the FES plot.
These three states are denoted on the FES. State Sa is with non-flipped residue L81 and close to the
X-ray structure of KcsA. L81 is in the flipped conformation for states Sb and Sc. Residue R64 forms a
H-bound to D80 in the state Sc. The global minimum of the FES is state Sc.

Thus, the most probable positions of arginines R64 and R89 observed in the wt-metaD
calculations are different from those in the X-ray structure [28]. These positions difference
can be explained by interactions between the protein and surrounding lipids. In fact,
numerous experiments indicate that in common with other K+ channels, KcsA channel
is stabilized in the conductive state by the presence of the anionic lipids. In contrast, the
channel is primarily non-conductive for the non-anionic lipids [20,33]. Deol et al. [96]
revealed, by means of molecular dynamics simulations, that R64 and R89 can form strong,
long-lived H-bonds with the head groups of the anionic lipids. Later, this result was
experimentally confirmed [33]. This arginine–lipid interaction could bring the arginines in
positions close to those determined by the X-ray experiment [28].

Our wt-metaD simulations were performed in the absence of anionic lipids, using
neutral POPC lipids which as shown experimentally have no specific interaction with
KcsA [33]. However, the radial distribution function that characterizes the interaction of
Cl− ions in the bulk with residues R64 and R89, confirms the strong affinity between the
arginines and negatively charged species (see Figure S11 in the Supplementary Materials).
Because of this affinity, the computed FESs (Figure 6 and Figure S10 in Supplementary
Materials) show that the most stable position of R64 and R89 are located in proximity to
the negatively charged D80. The presence of the anionic lipids would make this position
less probable by additional interactions between the arginines and these lipids. Another
factor affecting the arginines is locations of ions in the SF. For example, when ions occupy
sites S0, S2 and S4, the probabilities of finding R89, respectively, in proximity to D80 and
far from D80 are equal (see Figure S10 in Supplementary Materials). The influence of ions’
configuration on the dynamics of R64 is considered in the next subsection.

4.3. Opposite Influence of R64 and a K+ Ion Bound to S0 on the E71–D80 H-bond

For characterizing the simultaneous action of arginine R64 and ions in the SF on
the strong H-bond between E71 and D80, we calculated the FES for the interaction of
E71 and D80 in different configurations of the SF. The distance between E71 and D80
residues is selected as the order parameter for the FES. The calculated FESs for arginine
R89 (see Supplementary Materials, Figure S10) suggest that a K+ ion in site S0 stabilizes
the E71–D80 H-bond by reducing the probability of the R89–D80 interaction. Free energy
calculations were, therefore, performed for two ions conformations: one is “KwK0K” with
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an ion bound to S0, and the other is “wwK0K” without an ion in S0. Two different positions
of R64 with respect to D80, near and far away respectively, were additionally considered.
Thus, the FES were calculated for four different configurations of R64 and ions in the
SF (see Figure 7). Further details of the FES calculations are reported in Supplementary
Materials (Section 7). Note that configurations with a water molecule occupied site S3
(“KwKwK” and “wwKwK”) were also considered and the corresponding results are
reported in Supplementary Materials (Figure S12). These results are consistent with those
presented below.

The FESs in Figure 7 demonstrate the strong mutual influence between the filter
occupancy and the position of R64 on the E71–D80 H-bond. The interaction between E71
and D80, therefore, does not merely depend on the nature of the residues and the nearby
solvent molecules (water). Still, it originates from many different elements which constitute
a strongly interacted (correlated) system.

If an ion is absent in site S0 and simultaneously R64 is far from D80 (Figure 7b), the
E71–D80 H-bond is the only stable state in the FES. However, the proximity of R64 to
D80 makes breaking the E71–D80 H-bond possible and leads to new meta-stable states
without the bond (Figure 7d). The energetic barrier for the breaking the H-bond is relatively
small (around 2.5 kcal/mol) and slightly higher (by 0.2 kcal/mol) than the barrier for re-
establishing the H-bond. These new states without the interaction between E71 and D80
are close to those that led to distorted configurations in the SF observed during simulation
WT-R64D80.
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Figure 7. Graphs in the middle show the FESs for the distance between E71 and D80 in different
cases: (a) R64 is far from D80 and ions configuration “KwK0K”, (b) R64 is far from D80 and ions
configuration “wwK0K”, (c) R64 is close to D80 and ions configuration “KwK0K”, and (d) R64 is close
to D80 and ions configuration “wwK0K”. A starting configuration for each wt-metaD simulation is
shown on the left side of the figure. Examples of a configuration with a broken H-bond between E71
and D80 are shown on the right side of the figure for each corresponding initial configuration.

The presence of a K+ ion in site S0 changes the observed picture. In the case of
R64 located far from D80, the presence of an ion leads to new states with the broken

150



Entropy 2021, 23, 72

E71–D80 H-bond (compare Figure 7b and Figure 7a). However, the new states are less
stable than the state with the H-bond, and the energetic barrier for the bond breaking is
high (around 6.5 kcal/mol). When R64 is close to D80, the occupation of site S0 increases
the energetic barrier for the breaking the H-bond and makes states without the H-bond
significantly less stable (compare Figure 7d and Figure 7c). In this case, the barrier for the
bond breaking is around 4 kcal/mol, and for the re-establishing, the barrier is four times
less (Figure 7c). Thus, a K+ ion occupied site S0 opposes the destabilizing influence of
arginine R64, favoring the presence of the E71-D80 H-bond. The absence of an ion in site S0
induces a widening of the site that facilitates the approach of R64 to D80 and destabilizing
the E71–D80 H-bond.

These results demonstrate broad cooperation between residues and ions in controlling
the dynamics of the pore region. Note that the described role of the occupation of site S0
by an ion provides a mechanistic and energetic insight to the hypothesis of a ‘foot-in-the-
door’ mechanism, widely discussed in the literature for interpreting some experimental
results [9,16,38]. In particular, the strong dependence of the current on the extracellular
K+ concentration was observed experimentally [9,10,38,43,44]. For explaining this strong
dependence, different authors have hypothesized that ion’s occupancy in the SF rises for
the high concentration of ions and an ion resident in the filter stabilizes the conductive
conformation. This hypothesis was supported further by the evidence that ions with a
longer occupancy (Rb+, Cs+, and NH+

4 ) slow down the switching of the ion channel into
the inactivated state [9,38]. According to our results, an ion in site S0 appears as the most
valuable candidate for playing the role of the “foot-in-the-door”.

As previously mentioned, Cordero et al. [14] reported a flipped structure in mutant
E71A, where the replacement of glutamate E71 by alanine A71 effectively remove the E71–
D80 H-bond that leads to broad outward movement of D80 and large rearrangements in the
V76 region. In all our simulations, the WT protein never adopted a similar configuration,
even for states with considerable free energies. It implies that residue E71 consistently
plays a dual role in shaping the WT ion channel through the strong electrostatic interaction
between E71 and D80 and through a steric hindrance of large rearrangements in the region
of V76.

5. Conclusions

In this work, a comparative analysis of the dynamics of the WT KcsA ion channel
and mutants E71A, Y82A, R64A, and L81A was conducted using molecular dynamics
simulations. This analysis helped us to identify a set of residues which control the state of
the SF. The interactions between the identified residues and the interdependence between
the residues and ions in the SF were characterized by free-energy calculations using well-
tempered metadynamics [62]. A detailed description was provided for the residues which
most prominently outlined the state of the SF and the influence of the ion permeation
path. Our investigations revealed that the permeation path is regulated by a strongly
interconnected dynamical system. The system is centered on aspartate D80, which is linked
to neighboring H-bond donors, includes ions in the SF and residues located far from the SF.
Key features of this interconnected system were described, that provides a consistent and
unifying picture for some experimental results on the regulation of KcsA activities. These
features are highlighted below.

First, the highly conserved aspartate D80 plays the critical role in changing the struc-
ture of the SF by translating broader dynamics of the protein to the filter structure because of
the relatively rigid backbone of the conserved sequence GYGD of the SF. Thus, movements
of residue D80 can trigger significant rearrangements of the whole pore.

Second, two arginines (R64 and R89) can strongly interact with D80 via H-bonding.
This interaction facilitates movements of D80 that triggers the changes in the protein
pore. While the D80–R89 interaction was previously described in the literature [91], the
possibility of the D80–R64 H-bond and the destabilizing consequences of the combined
action of these two arginines on D80 were described for the first time in this work. Between
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the two arginines, R64 was found to exert the strongest influence on D80, and thus on the
ion flow.

Third, the local dynamics of the region behind the filter is regulated by conformational
changes of leucine residue L81. These changes, in turn, are linked to collective motions of
the amino acid sequence L81-Y82-P83-V84, in particular to a pivoting action on residue
Y82. Additionally, the simulations provided the unambiguous evidence for the regulatory
role of L81: the flipping of the L81 side chain facilitates the establishment of the D80–R64
H-bond.

Fourth, the destabilization effect of arginines R64 and R89 on states D80 is reduced by
the presence of a K+ ion in the outermost binding site (S0) of the filter since the resulting
electrostatic interactions stabilize the conductive structure.

We showed that the interactions between the two arginines (R64 and R89) and D80
induces the breaking the E71–D80 H-bond that could lead to a non-conducting state of the
pore. This result provides an explanation of the necessity of the anionic lipids for observing
the current in KcsA channel as the lipids can interact with both arginines [96], and this
interaction reduces the probability of breaking the E71–D80 H-bond. Additionally, we
showed that the occupancy of site S0 by an ion also stabilize the E71–D80 H-bond. The
stabilizing influence of the ion bound to S0 offers an important insight into the “foot-in-
the-door” mechanism proposed by various authors for explaining the influence of the
extracellular K+ concentration in stabilizing the conductive state [9,38,43].

Our comparison between the dynamics of the WT protein and mutant E71A revealed
a vital role of glutamate residue E71 in response to perturbations of the pore region. In the
WT protein, the residue E71 participates in E71-D80-W67 linkages, which are considered
as being an essential factor driving the filter toward non-conductive conformations [9,29].
Our results demonstrated that these linkages represent just a part of the more extensive
strongly correlated network which dynamically and collectively participates in determining
the state of the SF. The mutation of E71 with alanine in mutant E71A generated a non-
inactivating pore with freely moving D80 [14]. We showed that in mutant E71A, residue
D80 interacts with arginines R64 and R89. This interaction induces the strain on the SF,
which adapts and relieves the perturbation through a flipping of V76 and a transition of
D80 toward the extracellular (outer) region. As a result of this adaptation, the filter remains
in a conducting state. The presence of E71 in the WT protein prevents such adaptation
when D80 interacts with the two arginines. This interaction, therefore, leads to distorted
configurations with complicated dynamics. The resulting complex picture is defined by
ions and water molecules in the filter as well as by residues interacting or controlling the
interaction between the arginines and D80.

The summarized complex picture provided by this research can be represented as
a network of weighted nodes which affect the permeation path (Figure 8). The sizes of
the nodes are weighted according to the number of edges connecting each node. This
figure reveals the primary importance of the residue D80, being the main hub. It forms
the core of the network with the neighbouring H-bond donors E71, W67, and arginines
R64 and R89 which mutual dynamical influence defines states of D80. The collaborative
dynamics of the residues result either in the stabilization of the conductive conformation
or in distorted states of the TVGYGD sequence of the SF. Note that the sequence belongs
to the highly conserved signature sequence TXXTXGYGD observed in many potassium
channels [16,29,31,97]. In these channels, the aspartate residue D, similar to D80 in KcsA, is
surrounded by different H-bond donors. Thus, the existence of similar complex network
might be a general feature in the regulation of the current in the K+ ion channels.

The significant mutual influence between the residues behind the SF and the ion occu-
pancy in specific sites means that perturbations imposed on either residues or ions affect
the KcsA channel’s state. It is reasonable to expect that numerous networks’ states have
distinct permeation properties. Recent experiments [7,23] with modified phospholipids
showed that the interaction of arginines R64 and R89 with added phosphatidic acid lipid
enhances the conduction in the KcsA channel. These experiments confirm the results of
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Section 4, which describes the particular role of these arginines in regulating the network
(Figure 8). In turn, the change of ion locations by an additional artificial force in biased MD
simulations [34,58] could alter the residues behind the SF resulting in a non-conducting
state with a high permeation barrier. It means that all the network components (Figure 8)
should be included as collective variables in a biased MD simulation. Alternatively, a set
of biased MD calculations for different states of the networks should be considered. The
self-organized dynamics of the whole network define conducting or non-conducting states
of the KcsA channel and considering the SF and ions only is not sufficient.

This dynamical network (Figure 8) is identified for the canonical structure 1KC4 with a
closed inner gate. It is shown [35,36] that opening the inner gate leads to the perturbations
on the backbones of the SF. Therefore, the inner gate should be included in this dynamical
network as well. However, the possibility of an opposite influence of ions and residues
near the SF on the inner gate is an open question. Several structures [34,52,54,59,60] with
a conducting SF and an open inner gate were generated in silico by combining different
crystallographic structures. Creating such structures should include a slow adaptation of
the whole network to changes in the gate. The applied constraints on the SF backbones
and ions only does not guarantee a realistic configuration of the SF. In this context, MD
simulations of a transition of the inner gate from closed to open state are an essential
missing link for clarifying the influence of the inner gate on the whole channel.

Current physical models (see, for example, the recent work in [98] and references
therein) of the ion permeation in the KcsA channel consider a part of this network: ions
and their interaction with the residues in the SF. Incorporating the whole network in
physical models would lead to a more complex model, for example, the Markov state type,
but a more realistic one. The representation of the protein’s complexity via this network
would lead to a comprehensive description of complicated patterns of currents observed
experimentally.

Results of Section 4.1 show that one of network’s states is non-conducting, and the
channel in that state is inactive. This observation means that the inactivation can result
from the dynamics of this network alone without the involvement of the gate residues.
Future work will address the role of the network in the C-type inactivation.

D80

E71
W67

SF
R89

L81
R64

Y82

P83

V84

Ions

Figure 8. The network of residues that are determinant for the permeation path is drawn following
certain rules: (i) blue-dashed lines represent non-bonded electrostatic interactions that can eventually
lead to strong H-bonds; (ii) black lines represent connections through the backbones of the WT
protein; and (iii) green dotted lines represent all the remaining non-bonded interactions, such as
steric interactions or repulsions between positive or partially-positive charged groups. The sizes
of the nodes are weighted according to the number of edges connecting each node. The label “SF”
indicates the selectivity filter. The network was created using software package Gephi [99].
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Abstract: Ionic transport in nano- to sub-nano-scale pores is highly dependent on translocation barriers
and potential wells. These features in the free-energy landscape are primarily the result of ion dehydration
and electrostatic interactions. For pores in atomically thin membranes, such as graphene, other factors
come into play. Ion dynamics both inside and outside the geometric volume of the pore can be critical
in determining the transport properties of the channel due to several commensurate length scales,
such as the effective membrane thickness, radii of the first and the second hydration layers, pore radius,
and Debye length. In particular, for biomimetic pores, such as the graphene crown ether we examine
here, there are regimes where transport is highly sensitive to the pore size due to the interplay of
dehydration and interaction with pore charge. Picometer changes in the size, e.g., due to a minute
strain, can lead to a large change in conductance. Outside of these regimes, the small pore size itself
gives a large resistance, even when electrostatic factors and dehydration compensate each other to give
a relatively flat—e.g., near barrierless—free energy landscape. The permeability, though, can still be
large and ions will translocate rapidly after they arrive within the capture radius of the pore. This,
in turn, leads to diffusion and drift effects dominating the conductance. The current thus plateaus and
becomes effectively independent of pore-free energy characteristics. Measurement of this effect will
give an estimate of the magnitude of kinetically limiting features, and experimentally constrain the local
electromechanical conditions.

Keywords: ion transport; nanopore; graphene; crown ether

1. Introduction

Ionic transport through nano- and sub-nano-scale pores elicits a tremendous amount of interest
due to its relevance in cellular processes including neurotransmission, muscle contraction, and other
biological processes [1,2], as well as its application in technologies such as desalination [3–5], osmotic power
generation [6–8], and bio-chemical sensing [9–13]. Ref. [14] provides a recent review of the use of pores in
2D materials for these applications. Understanding transport mechanisms, particularly in biological
settings, has remained challenging due to their complexity and dependence on atomic details [15].
Furthermore, even for uncharged membranes, the region outside the pore can play a significant role
in determining ionic transport, either via access resistance [16–18] or via diffusion limitations [19].
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Synthetic nanopores offer the ability to study the factors that underpin transport mechanisms, such as
the role of dehydration [20–24] and functional groups [25–28], and give rise to functional behavior, such as
ion selectivity [27,29]. Pores in 2D membranes, in particular, have a larger access resistance, compared to
their pore resistance, due to their small aspect ratio, ap/hp, where ap is the effective pore radius and hp is
the effective pore length. Therefore, 2D materials provide a unique opportunity to study geometric effects
in transport [30], atomic changes in area via precise control in pore fabrication and height via layering [24],
and the interplay of various length scales relevant to the problem [14], which will help in the design of
separation membranes [14,31,32] and delineating factors relevant to biological channels [14]. In particular,
the effective thickness is not the geometric thickness of the membrane (e.g., for graphene, twice the van
der Waals radius of the carbon atoms), since ion size, hydration layer radii, and even membrane charge
and the build up of charge layers give rise to an effective thickness [16]. When both the bulk and pore are
within the continuum drift-diffusion regime, measuring or calculating the dependence of the conductance
on pore radius quantifies the effective pore length through the equation

R = γ

(
1

2ap
+

hp

π a2
p

)
, (1)

which assumes a homogeneous resistivity γ and a cylindrical pore geometry. The former entails that
there are no concentration gradients and that the medium in the pore has the same resistivity as
the bulk (otherwise, it requires an independent determination of the pore resistivity). For graphene,
this approach yields an effective pore thickness of about 1 nm, both experimentally [33] (for unknown
rim functionalization) and computationally [14,16] (for unfunctionalized rims), provided that simulations
properly include the influence of the bulk via the golden aspect ratio or associated scaling analysis [16,34],
as well as properly determine the pore radius [16]. The effective pore length is mostly due to the van der
Waals radii and first hydration layer of the ions, which are both reflected in a build up of charge layers
about 0.5 nm from the membrane.

More recently, it was demonstrated that applying strain to 2D pores can elucidate the conditions
under which optimal transport and ion selectivity arise by modulating the balance of dehydration and
electrostatic interactions [27]. It is unclear, however, whether 2D pores, and synthetic pores more generally,
offer a means to investigate diffusion limitations. These arise due to fine details of pore structure typically
thought to be out of our control. We will demonstrate here that the control provided by strain can
tune atomically thin biomimetic pores into a diffusion-limited regime. Finding transitions into these
regimes will help delineate and probe the electromechanical environment of nanopores, and elucidate
diffusion-limited phenomena in more complex, biological settings.

Ionic transport through a pore becomes diffusion-limited when the permeability of ions in the pore
is large and the current is only restricted by the rate of diffusion of the ions from the bulk to the pore
mouth [35,36]. In this diffusion-limited regime, the current does not increase with voltage as expected from
Ohm’s law. This is similar to the diffusion-limited processes in chemical reactions [37] and other transport
processes [38,39]. Diffusion-limited ionic currents are a regular occurrence in biological pores [40,41],
as these can have the necessary conditions: narrow channels with high permeability for specific ions [1]
and the presence of “inert” ions [42]. Pores in atomically thin membranes, such as graphene, MoS2,
and hBN, also provide a very high permeability for ions due to their sub-nanoscale channel length [14].
Thus, in these membranes, the diffusion of the ions from the bulk to the mouth of the pore may become
the limiting factor in the ion transport. It is the objective of this work to determine under what conditions
bulk diffusion becomes the limiting factor, particularly when drift is also present.

For the transport to be diffusion-limited, however, the drift contribution to the current in the bulk has
to be small. This condition is hard to realize in pores in 2D materials under electrically driven transport,
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since a large portion of the applied voltage drops in the bulk solution, which in general has a higher
resistance—in the form of access resistance—than the pore itself [14,16,17,33]. This is also true of small
aspect ratio—short and wide—biological channels, where access resistance becomes dominant at low ion
concentration [18]. There are regimes, though, where diffusion limitations may appear. Sub-nanoscale
pores in graphene, for instance, have a high pore resistance [23]. As a result, most of the applied potential
will drop across the pore, thus diminishing the drift current in the bulk and giving an opportunity to
observe the diffusion-limited transport. At this sub-nanometer length scale, the translocation barriers
and potential wells due to ion dehydration and electrostatic interactions play a major role in determining
transport through such pores [27]. When one or the other interaction dominates, translocation through the
pore is barrier-limited.

Under the right conditions—determined by pore size and charge, dehydration energy, etc.
—the permeability of the pore will be large [43,44] (e.g., ion channels with binding sites, in particular,
can have an inverse relationship between permeability and conductance [45]). To understand the
conditions for having a small pore conductance and high pore permeability, one can look at the
continuum-limit expressions

Gp = q cp µp Ap/hp (2)

and
Pp = Dp/hp, (3)

where cp is the ion concentration in the pore, q is the charge of the ion, µp is the pore mobility, Dp

(=µpkBT/q) is the diffusion coefficient, Ap is the pore area, hp is the pore length, kB is Boltzmann’s
constant, and T is the temperature. We briefly note that all pore quantities (which have a subscript p)
are effective quantities, as will be abundantly clear throughout this work. An overall barrier in the pore
can limit the concentration by exponentially reducing the partition coefficient into the pore. When such
a barrier is present, without features internal to the pore, the mobility and diffusion can be unaffected.
Similarly, the internal features, and hence mobility, can be altered with very small relative changes to pore
size (and vice versa, reducing the cross-sectional area of the pore can reduce the conductance but with
little effect on mobility when the pore size is relatively large). Essentially, strain and voltage will give the
right knobs to tune some pores into a diffusion-limited regime by modulation of cp and µp, while retaining
a small Ap (i.e., a large pore resistance).

Here, we will examine the 18-crown-6 pore in graphene (see Figure 1) under the influence of a
homogeneous strain in the plane of the membrane and cross-membrane voltage for different local electronic
pore environments. Crown ether pores were seen by scanning transmission electron microscopy of
graphene membranes that were made by exfoliation of graphite [46]. Even though strain only changes
the pore area by a minuscule amount, the change in the free-energy barrier and hence the ionic current
is substantial [27]. We find both barrier-limited and diffusion-limited regimes depending on the strain,
voltage, and local environment. In the barrier-limited regime, the conductance increases with applied
voltage, as it helps ions overcome the barrier. In the diffusion-limited regime, the pore conductance
decreases with voltage as the bias depletes the charge carriers in the pore and at its entrance. The transition
between these regimes depends on the charge separation in the pore (e.g., the local dipole moment at
pore rim), which is not experimentally known, nor is there sufficient thermodynamic or kinetic data from
experiment to constrain it. Measurement of the pore conductance versus strain and voltage, therefore,
gives a possible route to determining the electromechanical environment, and thus constraining the
magnitude of charge separation at the pore rim.
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Figure 1. Ion trajectories in a graphene crown ether pore. The trajectories of K+ ions around the pore
with qO = −0.54 e at 4% strain, with an applied bias of 0.25 V along the z-axis (making K+ move in the
positive z-direction). We plot the trajectories in z-r2 space to keep the representation of volume constant.
The red trajectories are for ions that translocate through the pore and the cyan trajectories are for ions that
reflect back. The green dashed line shows the geometric boundary of the membrane determined by the van
der Waals radii of the pore atoms. The effective boundary extends to |z| . 0.5 nm due to the size of the
hydrated ions. The inset shows a portion of the graphene crown ether (red and grey spheres are oxygen
and carbon atoms, respectively) and a three-dimensional trajectory of a potassium ion (purple spheres,
separated in time by 10 ps, connected with purple lines) crossing the pore. Connecting lines are a guide to
the eye only.

2. Methods

We performed all-atom molecular dynamics (MD) simulations using the NAMD2 simulations
package [47]. The details of the simulations were the same as in Ref. [27]. We applied a voltage between
0.1 V to 1.0 V and calculated the ionic current for a 1 mol/L KCl solution by counting the ions that
crossed the pore. Since the pore rim is negatively charged and sub-nanoscale in size (i.e., the electrostatic
interactions are not significantly screened), only cation currents were present in all cases. We calculated
the free-energy barrier using the adaptive biasing force (ABF) method [48] in a cylinder of radius 0.28 nm
and height 3 nm, centered at the pore. A portion of our simulation cell and a set of ion trajectories are
shown in Figure 1. We employed the golden aspect ratio method, as it is the only method that can properly
capture bulk access effects [16,17], and without it, one cannot explore bulk diffusion limitations with
all-atom simulations.

We calculated the ionic current and free-energy barrier at various homogeneous strains from 0% to
10% on the graphene membrane (we note that most of the features we observe occur at strains of 4% to
6%, and graphene can survive strains above 20% [49,50]). The strain was within the membrane and thus
tended to enlarge the pore (albeit by small amounts) and expand in-plane distances between atoms. In the
unstrained pore, the nominal pore radius (measured from the pore center to the center of the oxygen atoms)
was approximately 0.29 nm and increased by about 7.5 pm for each 1% strain (this reflects a small—a factor
of ≈2—geometric amplification [27]). This yielded nominal pore sizes from 0.29 nm (at 0% strain) to about
0.37 nm (at 10% strain), with a roughly linear relationship with strain. Though the change in pore size was
minuscule, the energy landscape changes substantially. The landscape also depended on the pore charge,
which is, however, not known. For the crown ether pore in graphene, the charge per oxygen atom (qO)
could be between −0.2 e and −0.7 e [27,51–53]. We thus used two representative test charges, −0.24 e and
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−0.54 e. In the former, there was an energy barrier, and in the latter, there was a potential well at the
center of the unstrained pore. Each of the 12 carbon atoms—the ones adjacent to the six oxygen atoms in
the pore—had charge −qO/2, and the rest of the carbon atoms were neutral. When we refer to the pore
charge, we are referencing the local polarization of charge from the carbon atoms of the graphene near the
pore and the oxygen atoms on the pore rim. For each data point (i.e., for a particular value of qO, strain,
and voltage), we performed five parallel production runs for a total simulation between 250 ns to 500 ns.
This allowed for an error estimation using the standard error, SE =

√
var/nr, where var is the variance

between the nr = 5 parallel runs.

3. Results

Ionic current through a graphene crown ether pore: Figure 2 shows the potassium current, IK,
through the graphene crown ether pore versus strain at various voltages. Only potassium ions contribute
to the total current, as the negatively charged pore edge does not allow any chloride ions to translocate
(on the timescale of the simulations). We also plot the conductance of potassium ions, GK, in order to
demonstrate the non-Ohmic behavior of ionic current. At low voltage, the current increases by several
fold for a minute strain—a couple percent strain changes the conductance by a couple hundred percent.
This dramatic amplification is an example of colossal ionic mechano-conductance [27]. The current
eventually maximizes around 3% strain and either decreases (for qO = −0.24 e at small voltage) or
plateaus (for all other cases). Since the pore size does not change substantially with a small strain,
the colossal change in the ionic conductance is the result of a modification of the translocation barriers.
The translocation landscape veers toward barrierless transport as strain tunes transport to its optimum [27].
Furthermore, the change in conductance with voltage displays non-Ohmic behavior. In some regimes,
such as the colossal mechano-conductance, the conductance increases with voltage, indicating an activated
process. In other regimes, the conductance decreases with voltage, indicating the diffusion-limited process.
The depletion of charge carriers in the pore, see Figure 3, is also consistent with the decrease in conductance
and points to a diffusion-limited regime.

Translocation barriers in sub-nanoscale pores: The single-ion energetics of transport through
functionalized sub-nanoscale pores may be approximately expressed as

∆Fν ≈∑
i

ηi fiνEiν + ∑
ν′

qνqν′nν′

4πε0ε rνν′
, (4)

where fiν and Eiν are the fractional dehydration and energy of ith hydration layer for ion ν, qν′ ’s and nν′ are
the charge and number of atom species ν′ in the pore, and ε0 is the vacuum permittivity. The parameter
ηi is an O(1) factor to account for the increased binding of water molecules with the ion as dehydration
increases [23], essentially giving the non-linear response of the hydration energy to the removal of water
molecules. The relative permittivity of water, ε, under nanoscale confinement is significantly smaller
than the bulk value and depends on atomic details [27,29,54]. Specifically, in the case here, when there
are not intervening water molecules between the ion and charged groups in the pore, the dielectric
constant is around 4 [27] and the electrostatic interaction is very large. The small dielectric constant and
short distances involved give rise to the large electromechanical susceptibility of ions within the pore.
The fractional dehydration fν1 also changes with the position of ion [23,24,27] and can be estimated with
geometric arguments [20,22–24]. As an ion approaches the pore, the free-energy change will remain small
(<kBT) even at 1 nm distance from the pore, because the ion is still fully hydrated. The electrostatic
interaction between the fully hydrated ion and the pore charge is weak due to the dielectric screening of
the solution. However, when the ion is about 0.5 nm from the pore, it starts to dehydrate (initially in the
second hydration shell and then in the first), and consequently the dehydration energy increases sharply.
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Simultaneously, the electrostatic energy also rises rapidly since the ion will be significantly closer to the
negatively charged oxygen atoms compared to the positively charged carbons, and the effective dielectric
constant of water at this distance will be strongly diminished due to the removal of intervening molecules.

0.01

0.1

1

0 4 8 0 4 8

I K
(n
A
)

qO = −0.24 e

strain (%)

qO = −0.54 e

0.1 V
0.25 V
0.5 V
1.0 V

0.1

1

0 4 8 0 4 8

G
K

(n
S
)

qO = −0.24 e

strain (%)

qO = −0.54 e

0.1 V
0.25 V
0.5 V
1.0 V

Figure 2. Colossal rise, non-monotonicity, and saturation of the ionic current. (top panel) Potassium
current (IK) versus strain at various voltages across the graphene crown ether pore within 1 mol/L KCl.
At small voltages and minute strains, IK increases rapidly with strain due to the large electromechanical
susceptibility of the pore [27]. A further increase of the strain causes IK to either decrease (for qO = −0.24 e)
or saturate (for qO = −0.54 e), albeit the latter will also decrease when the electrostatic well disappears and
dehydration begins to control the current. At large voltage, the current becomes less sensitive to strain
because the applied bias dominates over the energy landscape of the pore, self-consistently washing out
relevant features—ones that are contributing to resistance—of the landscape. As voltage increases further
still, the current saturates at a smaller strain where the relevant free energy features are commensurate with
the voltage drop (bottom panel). The conductance versus strain shows that for qO = −0.24 e there is an
intricate interplay of voltage and strain, indicating that the variation of free energy features with these two
parameters is playing a defining role. At larger strain (greater than about 6%), the conductance tends to
increase with the voltage (i.e., superlinear behavior). This is a telltale sign of an activated process, where the
voltage helps overcome an overall barrier, but does not yet wash it out. In this particular case, this is due to
a reduction in electrostatic compensation of dehydration as strain pulls away the counteracting negatively
charged oxygen atoms. For qO = −0.54 e, the conductance increases with the voltage at smaller strain
(superlinear behavior) and decreases with voltage at larger strain (sublinear behavior). The superlinear
behavior indicates barrier-limited transport and sublinear behavior diffusion-limited. The error bars are
plus/minus one SE from five parallel runs. Connecting lines are a guide to the eye only. Purple shaded
regions in the upper panels approximately delineate the region where bulk limitations control the current.
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Figure 3. Voltage dependence of the ion concentration. Concentration of potassium ions near a graphene
crown ether pore with qO = −0.54 e at (a) 0% and (b) 4% strain for various voltages. For 4% strain, where we
see diffusion limitations of the ionic current, we also see the depletion of ions in the pore as the voltage
increases. See the Supplemental Material (SM) for additional plots with different parameter values.

Equation (4) gives these qualitative features of the energy landscape and helps to understand why
electrostatics can play such a strong role even in high salt solutions. Still, we use all-atom molecular
dynamics (MD) simulation for the calculation of quantitative landscape—see the Methods and later
discussion about an additional entropic barrier to move into the ABF constriction. The free-energy profiles
from MD are shown in Figure 4. Since we are driving the ionic current through a nanopore by an external
voltage, we also calculate the energy landscape of ion transport with an applied bias. The equilibrium
free-energy barrier alone does not fully represent the energy landscape of ion transport, especially when
the applied bias is large compared to the features in the free energy. We note, of course, that even the energy
landscape with the bias does not fully capture the current due to kinetic prefactors and averaging effects.

The equilibrium free-energy profiles (blue lines in Figure 4) exhibit a potential barrier for qO = −0.24 e
and potential well for qO = −0.54 e at the center of the pore in the unstrained membrane. In the former,
the electrostatic energy (between the ion and the pore charges) is less than the dehydration barrier,
while the opposite is true for the latter. Additionally, there can be small potential wells just outside the
pore where the ion maintains a larger hydration yet stays close to the negatively charged oxygen atoms
of the pore. The energy landscape changes markedly with strain, which is primarily due to the change
in the electrostatic interactions within the pore and dehydration outside of the pore. An increase in the
pore size—by picometers—due to the strain causes the attractive electrostatic energy to decrease rapidly.
The dehydration energy penalty in the pore also decreases with strain but, for small strain, it does not
change as rapidly as the electrostatic energy. Consequently, there is a net increase in the energy of the
ion at the center of the pore. As a result, the barrier in qO = −0.24 e increases, and the potential well in
qO = −0.54 e flattens and then disappears at large strain (a dehydration-based barrier does appear in
the middle of the qO = −0.54 e pore, a feature which is already present in the qO = −0.24 e pore at 0%
strain due to the lower electrostatic compensation). In contrast, the effect of the strain on the free-energy
outside the pore is in the opposite direction. The barrier outside the pore decreases with strain as ion can
hydrate better with reduced hindrance from the pore oxygen atoms. The electrostatic energy, however,
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does not change as rapidly as in the center of the pore. The basic mechanism behind these large changes
in free energies is that at the 0.1 nm to 0.5 nm scale; picometer changes in atomic configuration result
in large changes in electrostatic and dehydration energies [27]. Dielectric screening (from the solution),
in particular, is not that effective at this length scale.
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Figure 4. Equilibrium and voltage-dependent landscape for ion transport. The free-energy profile of K+

going through a graphene crown ether pore at 0% and 4% strain for equilibrium and non-equilibrium
(Vext = 0.25 V) cases. The charge of the oxygen atoms of the crown ether is either −0.24 e or −0.54 e
(and adjacent carbon atoms have half this charge). The potential wells and barriers are mainly the result
of competition between the electrostatic attraction and the dehydration. The applied voltage reduces
the features (barriers and wells) in the energy landscape but some sharp features still remain, either
due to the barriers’ size or due to their irrelevance, a term we use operationally, see the main text and
Figure 5. Irrelevance of barriers occurs since the influence of a barrier on the current is both a kinetic and
thermodynamic effect, and other bottlenecks (e.g., diffusion limitations) can exist, i.e., these are the relevant
processes at a given voltage and strain. In particular, for 4% strain and qO = −0.54 e, the supply of ions
from bulk has a much larger influence on the ionic transport than the dissociation from the well at 0.2 nm.
Hence, that barrier remains roughly unchanged. Error bars are plus/minus one SE from five parallel runs.

The free-energy landscape explains many of the features seen in the ionic current versus strain,
Figure 2. At small voltages, the current changes significantly with strain because of the change in the energy
landscape of the pore. For qO = −0.24 e, the entrance barrier, just outside the pore, initially decreases with
strain and the current increases rapidly. Eventually, the increase in the energy at the center of the pore will
negate the decrease in the outer barrier, and the current subsequently decreases, thus giving a turnover
behavior with the optimal current around 3% strain. At very large strains, ion hydration will increase in the
pore, and thus the energy barrier at the center will start to disappear. For qO = −0.54 e, the potential well at
the center of the pore becomes shallow with strain, making it easier for ions to dissociate from the pore and
contribute to the increase in the current. A common principle for the colossal mechano-conductance change
is that the free energy veers toward a barrierless landscape for both these example pore environments.
At intermediate strains (4% to 10%), while strain does influence barriers, bulk limitations have kicked in
and the barrier change will not be manifest in the current versus strain. Even at small strain, the current will
become flat if the applied voltage is large enough, since the larger voltage can wash out larger free energy
features. There are, however, irrelevant free energy features—ones that are not rate limiting—that remain
even as voltage increases, for which we introduce discrete-barrier and one-way rate analyses below that
help identify relevant and irrelevant features. The evolution of features under strain can also suggest
their relevance (i.e., if the current is constant versus strain, yet a large feature disappears, that feature is
likely—but not guaranteed, since other factors can conspire together—to be irrelevant).
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To elucidate the effect of the applied bias on the energy landscape, and hence the current, we calculated
the free-energy of the potassium ion in the presence of an external voltage (Vext = 0.25 V). Figure 4 shows
that the applied voltage raises the potential on one side of the membrane and decreases on the opposite
side and the overall potential roughly drops over |z| < 0.5 nm (we also see this drop in the calculation
of the electrostatic potential). Note that although the graphene is only 0.3 nm thick, the double layer of
cations and anions on the opposite side of the membrane will be separated by a distance of about 1 nm
due to their hydrated radii. Nonetheless, even a small voltage will result in a large electric field in the pore
which can suppress the energetic features. Yet, some sharp features have a spatial variation larger than the
applied field and are still prominent in the free energy landscape with an applied voltage.

To capture how the features in the equilibrium free-energy profile change with applied voltage,
we plot in Figure 5 the discrete gradients from each energy minimum, i, to the next maximum in positive
z-direction, i.e., (∆Fi

max − ∆Fi
min)/(z

i
max − zi

min). The gradient of applied voltage, which is in the opposite
direction to these gradients, reduces the barrier to transport (we do not plot the gradients in negative
z-direction, which assist rather than hinder the ion translocation). Figure 5 shows that some of the gradients
are larger than the electric field from the applied bias (Vext = 0.25 V), and thus these barriers are still
present in the energy landscape with applied bias. More importantly, though, the examination of how
these discrete gradients change with voltage enables one to identify rather large features that remain
unchanged at finite voltages, such as the well at 0.2 nm for the qO = −0.54 e and 4% strain case. This well
(and associated barrier) is not a limiting factor in transport at this strain and thus the applied bias does
not self-consistently remove it. This type of plot (and a related plot we will examine later) give a clear
depiction of what features are influencing transport, including indirectly the influence of kinetic prefactors.
We further note that the largest gradient for the unstrained pore at qO = −0.54 e is about 40 kBT/nm and
thus will require Vext ≈ 1 V to effectively wash it out, which is reflected in Figure 2. Once the applied
voltage produces local fields larger than the relevant discrete gradients, the ionic current will have little
dependence on the equilibrium landscape of the pore, which explains the saturation of the ionic current
across all values of strain for large voltages, as we see in Figure 2. Saturation at smaller voltage is a
combination of this same washing out plus the presence of irrelevant features due to high kinetic rates
(compared to other rates, such as diffusion and entrance-side feeding; see the Supplemental Material (SM)
for additional plots of the equilibrium and non-equilibrium free energy barriers).

Some features in the energy-landscape, though, are beyond 0.5 nm from the pore, albeit they are small.
These features can survive to large applied voltages. Thus, while they matter little for smaller voltages,
they eventually can become important when their energy- and kinetic-scales are commensurate with the
other renormalized features. Thus, ions will eventually have to overcome additional entrance barriers.
These barriers will directly affect the rate at which ions can enter and exit the pore and thus influence
the saturation current through the pore. Conversely, the barrier on the exit side, though significant, has a
smaller influence due to the larger dissociation rate, which we will discuss later when examining the
interpretation of the rate constants within the model.

We note that since the K+ ion is confined to a cylindrical region during the ABF calculations, the free
energy we present does not include the entropic, ‘constriction’ barrier to move an ion from bulk to
the ABF cylindrical constriction of radius rABF = 0.28 nm, and vice versa (on the exit side). The ABF
constriction allows other ions (both coions and counterions) to be in the volume. The ratio of accessible
states is thus approximately ΩABF = πr2

ABFl/l3, where l is the typical distance between co-ions in bulk
(≈1.2 nm at 1 mol/L KCl). Thus, the contribution to the free energy of this constriction penalty is
−kBT ln ΩABF ≈ 1.7 kBT. From within the ABF constriction, the entropic penalty to then go into the
pore is included within the ABF calculation. For comparison, this contribution can also be estimated as
follows: The geometric pore radius is rp = 0.137 nm, taken as the pore center to oxygen center, 0.29 nm,
minus oxygen’s van der Waals radius, 0.152 nm. A typical approach to estimate the entropic penalty
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is the formula, −kBT ln
(
1− (rK+/ap)2). However, rK+ ≈ ap (see, e.g., Ref. [55] for ionic sizes) and this

approach will lead to large errors and, in fact, does not include important physical processes, such as
the movement of oxygen atoms at the pore rim. A better approach is to estimate the entropy from the
actual trajectories of ions going through the pore. Potassium ions cross the pore within a radius of about
rc ≈ 0.02 nm from the origin. Assuming that the ions are not localized in a well, but still are locally in
equilibrium, the entropic penalty is approximately −kBT ln

(
r2

c /r2
ABF
)
≈ 5 kBT. The presence of a well of

size lW ≈ 0.3 nm in some cases gives an additional contribution −kBT ln (lW/l) ≈ 1 kBT to 2 kBT.
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Figure 5. Discrete gradients and the renormalization of energy barriers. The discrete energy gradients
encountered by a K+ ion in graphene crown ether pores at 0% and 4% strain for 0 V (blue) and 0.25 V
(red) applied bias. The gradients are between each local minimum and the next maximum in the positive
z-direction in Figure 4 and we plot them against the mean position of the barrier. The gradient from
the applied bias (Vext = 0.25 V), ideally about 10 kBT/nm between z = ±0.5 nm (shown with black,
dashed line), reduces the translocation barrier, completely eliminating it in some cases (shown with a
green arrow). To the first approximation (in particular, ignoring the self-consistent development of the
potential drop), the sharp features that are larger than the ideal electric field will have a significant influence
on the ionic current, as they are still present (though reduced) when the voltage is applied. This ideal
behavior is approximately occurring in the qO = −0.24 e pore, as for both values of strain shown the
gradients within the membrane region are being collectively diminished. For qO = −0.54 e, more complex
behavior is occurring, with some features changing more than others. Examining the change in discrete
energy gradients upon application of a voltage gives a clear indication of the presence of irrelevant
features—these barriers do not change, as they are not rate limiting and do not create a self-consistent
potential drop around themselves. The errors are due to the uncertainties in both the position and the
magnitude of minima and maxima.

Radius of the pore: Before moving forward, we address an issue that permeates the whole field of
transport in sub-nanoscale pores and is apparent in the proceeding paragraph—that of the pore radius.
For smooth, uncharged pores, the radius or open area (when not circular) can be rigorously defined with
all-atom simulation: One samples the trajectories of ion crossings and takes a weighted average of discrete
area elements (see Ref. [16], where the current density was roughly uniform, enabling a direct and intuitive
treatment). However, when pore charge is present or the pore has structure, whether steric or energetic,
along its length, there is clearly no simple answer for pore radius. The effective radius that defines access
resistance, for instance, will not be the same as the geometric radius of the pore mouth. This is easy to see
when charge is present at the pore mouth, since the effective opening within a continuum approximation
will increase by about a Debye length due to electrostatic attraction of counterions [14]. The fact that
effective sites are present will change this picture further. For instance, there are association-side sites
that form a staging area from around z = −0.4 nm to −0.3 nm with a spread rs of about 0.1 nm, which is
related to ap but can be influenced by other factors (their numerical values here are the same). It is this
region that has to be “accessed.”
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Moreover, if the pore has a conical shape (e.g., even for this graphene crown ether pore, ions seem
to follow a coarse canonical shape, see Figure 3), what radius is relevant to defining the “open area” of
the pore, especially when energetic features are present? When variation in size or energy is large on the
scale of inter-ion separation and the ion mean-free path, this issue can be handled simply by assuming
local equilibrium and appropriately averaging. The graphene pore examined here, as well as other pores
in 2D membranes and biological channels, do not have such a simple separation of scales. Fortunately,
here, the important length scales that define size fall within the range rc ≈ 0.02 nm (spread of trajectories
of ion crossings) to rs ≈ 0.1 nm (spread of association-side sites) to rp = 0.137 nm (geometric radius) to
λD ≈ 0.3 nm (Debye length). We will take the effective pore radius as ap ≈ 0.1 nm. This value is in the
middle of this range and thus, except for a few particular quantities such as the entropic barrier, it gives a
reasonable starting point for estimating values of different pore characteristics.

Incoming rates: Before discussing the modeling of these pores, we first introduce a simple tool
to further assess the influence of different energetic features. Figure 1 shows the trajectories of K+ ions
moving toward the graphene crown ether pore. The trajectories of ions that eventually translocate through
the pore are shown with a red line, and others are shown in cyan lines. Only a few non-translocating
trajectories go into the range of z = −0.3 nm. This becomes more apparent by plotting the trajectories
near the pore (within the radial distance of 0.6 nm from the center of the pore) versus z and time, as seen
in Figure 6 upper panel. Information regarding the rejection of ions would thus be helpful. In Figure 6,
we thus also plot the incoming rate Jin of ions crossing a z-plane versus the z-distance at various applied
voltage. Initially, Jin drops rapidly with z, as ions have to go through a diffusion constriction and also get
reflected by the entrance barrier. At a certain location, Jin becomes flat, indicating all ions that made it to
that distance will complete the translocation. For qO = −0.24 e, for example, the rate drop sharply going
from z = −0.5 nm to z = −0.2 nm in the unstrained pore due to the presence of an occupation barrier.
The rate then becomes flat, as ions cannot go back (we note that we do see some ion crossing events that
go backward, up the potential gradient. These are few and far between, but the small gap in Figure 6 for
some cases quantifies this magnitude of these events). For 4% strain, the rate continues to drop until z = 0,
as there is a large barrier at the center of the pore.

Similar observations can be made for qO = −0.54 e. For the unstrained pore at small voltage, we see
a large drop in the incoming rate between z = −0.5 nm and z = −0.2 nm due to the repulsion from the
ion already in the pore. There is a smaller drop due to dissociation of the ion from the pore. Importantly,
both of these drops are due to dissociation, with the former due to a blockade (many-body) effect and the
latter being actual ion dissociation. We note that many-body and single-ion effects can be unraveled by
comparing the free energies at finite concentration to the free energy of a single ion pair in solution [27],
which shows that the satellite barriers for the unstrained, qO = −0.54 e pore are due to the presence of an
ion in the pore. For the 4% strain (and for the unstrained pore at larger voltage), the drop in the rate is
small and it essentially saturates at z = −0.3 nm. This means that ions do not feel a significant barrier
going through the pore and the total current is only limited by the rate at which ions arrive at the mouth of
the pore. As with the discrete barrier gradients, the plot of the one way ion rate allows for the identification
of what features matter. For qO = −0.54 e at strain at about 4% and above, the reduction in ion flux at the
entrance side is due to the diffusion constriction and entrance barriers. These incoming ion rate plots thus
provide both qualitative and quantitative information. We will use this to motivate the modeling choices
below (specifically, the use of a staging site and the assumption of one-way current flow in the pore).

Reaction rate model: The 18-crown-6 pore in graphene can only fit a single ion at a time. It is thus
intuitive to analyze the ionic transport process using rate theory [42]: Ions arrive at the pore at a certain
rate and depart at a certain rate, which together provide the ionic current.

The simplest case would be to assume a single site and that ions only move in one direction.
The latter takes into account that the bias is sufficiently large that ions cannot move backward, up
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the potential gradient (this is a reasonable assumption for the voltages in this work, as we saw above,
but cannot correctly reproduce equilibrium conditions). In that case, the ionic current through the pore
is given as I/q = (1/ka + 1/kd)

−1, where ka (kd) is the rate constant for association (dissociation) of
ions into (from) the pore. In terms of the site occupancy (equivalently, probability of being occupied),
I/q = ka (1− P) = kd P and P = ka/(ka + kd). These latter equations make it clear that, with a strain
independent association rate ka, the current will linearly depend on occupancy and thus cannot plateau,
as seen in Figure 2, until P is effectively zero. This limit, ka � kd, gives I = q ka, in which case the ionic
current is fully determined by the incoming rate.
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Figure 6. Translocation events and one-way rates. (Top panel) Time trace of the z-position of potassium
ions that translocate (red) through the graphene crown ether pore and reflect (cyan) after coming within
0.6 nm of the center of the pore. For qO = −0.24 e, ions cross the pore very quickly and the association
rate is the primary determinant of the current. In the unstrained pore with qO = −0.54 e, the ions spend
a significant time in the pore, and thus the dissociation rate determines the current. (Bottom panel)
The inward rate of K+ ions versus z-distance at different applied voltages. The dashed horizontal lines
gives the net rate. For small voltage, Jin near the pore is much smaller than the bulk diffusion rate, and thus
the current is limited by the barriers to transport. Error bars are plus/minus one SE. Connecting lines are a
guide to the eye only.

We will see that P is still substantial on some of the plateau. Thus, while the fit to a single-site model
is reasonable when allowing ka to have some voltage dependence (i.e., ka = ka0 + κaV), the model is not
qualitatively consistent with the data, as the model current still increases when the actual current has
leveled off. This assessment of the single-site model is the same regardless of whether only one way
motion is assumed or not: Allowing fluctuations in and out of the pore on both sides of the membrane still
gives a linear dependence on P with a similar coefficient.

Instead, we examine a three-site model, despite the fact that the channel is atomically thin. The data
in Figure 3 show that there are multiple localized regions of enhanced K+ density. On the association side
(left side of the figure), there are candidate sites—staging sites—at about −0.3 nm and about −0.4 nm
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(offset from each other also in the radial direction), and similarly on the dissociation side. That is, there are
4 or 5 candidate sites in the parameter regimes of that figure (ambiguity results from the fact that the
candidate sites on the dissociation side are not fully disconnected—there is a non-negligible probability
to find an ion in between some locations). These sites are due to ripples in the free energy, which extend
outside the pore, as discussed above and seen in Figure 4. Due to the proximity of the association-side
staging sites, we will assume they are the same and employ a three site model. Moreover, the one-way
rate data in Figure 6 supports this view of the pore, as well as the assumption that current (mostly) flows
in one direction at the pore binding site.

The kinetic equations for the three site system are

Ṗ1 = kb(1− P1)− k′bP1 − kaP1(1− P2) (5)

Ṗ2 = kaP1(1− P2)− kdP2(1− P3) (6)

Ṗ3 = kdP2(1− P3) + kb′P3 − k′b′(1− P3), (7)

where Pi is the occupancy of the site i =1, 2, and 3, kb (k′b) is the incoming (outgoing) rate from bulk
on the association side, and kb′ (k′b′ ) the dissociation side. Again, the set of equations assume only one
way motion into (the association side), and out of (the dissociation side), the internal pore site i = 2.
Backward fluctuations can easily be included, but this adds extra parameters to be fitted and will only
influence the fit in a minor way. We will apply this model only to the behavior of the qO = −0.54 e pore,
since the qO = −0.24 e pore has more intricate behavior that would ultimately require association rates that
are strain-dependent, i.e., that depend on the variation of the free energy landscape. We have discussed
the qO = −0.24 e pore extensively already in Ref. [27], including the origin and scale of the free energy
variation. We only note here that, as seen in Figure 2, the 0.5 V and 1 V biases for qO = −0.24 e also give
an entrance-limited region. The magnitude of the currents in this region are lower than qO = −0.54 e
by only an order one factor for the same voltages and strain. The similarities in current are expected for
bulk-limited behavior. The fact that they are lower by a small amount is likely due to the increased capture
effectiveness of the higher charge pore. The specific estimates for parameters will thus apply in this case,
albeit with some small modifications of effective radii and rates.

Even with the assumptions regarding one-way rates at the i = 2 site and the symmetry of bulk rates,
there are a number of parameters. Instead of direct fitting, we can employ main pore site (P2) occupancy
data from MD to reduce the number of parameters and see if a consistent model results. Considering only
Equation (5) and setting Ṗ1 = 0 yields the occupancy of the first site

P1 =
kb

kb + k′b + ka(1− P2)
. (8)

This site and the third site are the least well-defined, and thus eliminating them from the expressions is
key to reducing mathematical and computational acrobatics in defining and fitting the quantities in the
model. The particle current is given by the last term in Equation (5) (or, equivalently in the steady state,
the sum of the first two terms),

I/q = kaP1(1− P2) =
kbka(1− P2)

kb + k′b + ka(1− P2)
(9)

=

(
1
kb

+
1

k̃a(1− P2)

)−1
, (10)
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where k̃a = kaPeq
1 is the effective association rate and Peq

1 = kb/(kb + k′b) is the equilibrium density of
site 1 in the absence of its connection to the main pore site (in this absence, we can examine equilibrium
of P1). We do not have to separately determine or fit Peq

1 , since we can examine solely k̃a for association
and only kb to give the influence of bulk. Note that Equation (10) has made no assumptions regarding
the relative magnitude of the dissociation rate, or, for that matter, the influence of any of the factors
that appear in Equations (6) and (7), other than the kaP1(1− P2) term common with Equation (5). Thus,
the model can be thought of as just Equation (5), which has only the assumption that there is a negligible
backward rate from the site 2 to site 1, which as we have seen is justified for much of the parameter ranges
examined for qO = −0.54 e. The form of the bulk rates on the dissociation side and the lack of backward
processes on that side is thus inconsequential. Moreover, whether the model is two or three sites is also
irrelevant due to our approach. The inclusion of (1− P2) in the model, which will be directly extracted
from MD, captures the influence of all potential processes on the dissociation side, whether included in
Equations (6) and (7) or not.

Figure 7 shows the occupancy of the pore, P2, and the model results overlaid with the current data.
Note that we only fit the model for select points (the one for which occupancy data is shown). Since the
conductance depends on voltage, we let kb = kb0 + κbV, which together with k̃a gives a three parameter
fit. The resulting fit parameters are kb0 = (0.50± 0.03)× 109 ion/s, κb = (2.2± 0.2)× 109 ions/(V·s),
and k̃a = (1.2 ± 0.3) × 1010 ion/s, with uncertainties given by the standard error of the fit. We will
discuss these parameters shortly, including their agreement with back-of-the-envelope estimates, as well
as providing a quantification of diffusion limitations versus drift-supplied ions.
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Figure 7. Pore occupancy versus strain and model fit to the current for the qO = −0.54 e pore.
(a). Pore occupancy versus strain for the four voltages indicated. The occupancy is decreasing exponentially
with strain and voltage, with some additional, minor features and an apparent threshold behavior with
voltage at zero strain. These data are reproduced in the SM along with data for the qO = −0.24 e pore.
(b). Current versus strain at the four voltages labeled, along with the model. The latter was fitted
using current-voltage and P2 data at 0% to 10% strain at 2% increments (i.e., the P2 data shown in a).
The continuous model plot is found by linearly interpolating the P2 data. The model is very good when
accounting for diffusion and access limitations. When using the interpolated P2 data from 2% increments
(solid line), there is some deviation at 0.5% and 1% strain. However, using the interpolated P2 data
including those two additional points (dashed line) shows that the issue is that P2 has features not captured
by interpolation at 2% increments (see the SM for the additional P2 data). The R2 and adjusted R2 for
the fit are 0.998 and 0.997, respectively (for data from 2% increments). The step-like features are solely
due to employing (linear) interpolation to create a continuous curve. Error bars are plus/minus one SE.
Connecting lines are a guide to the eye only.
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When the model and data are viewed in tandem, the physical behavior is apparent. When the current
plateaus versus strain, it is due to combined diffusion and entrance/access limitations, for which without
some component of the latter, the current would not increase substantially with voltage (the voltage could
only decrease local ion density, increasing and eventually saturating the diffusive contribution in the
process). For smaller strains and voltages, the current is dominated by the k̃a(1− P2) component. That is,
the current is dictated by a many-body effect: localization of a K+ ion prevents current flow until that ion
dissociates, in which case an effective particle current of k̃a flows while the pore is empty (i.e., in more
concrete terms, this regime can be thought of as a current of zero flowing, while the i = 2 site is occupied
and k̃a otherwise, giving I/q = 0 · P2 + k̃a(1− P2) and considering P2, which is between 0 and 1, to be
a probability). The many-body nature of transport in this regime is further supported by a decreasing
ionic current versus concentration, which shows the saturating nature of the process; see the concentration
figures in the SM.

The expression in Equation (10) quantitatively captures the current versus strain and voltage behavior
for most of the data. Where it gives the least fidelity to the full simulation result (small strain and low
voltage), it still qualitatively captures the trend in the current. For small strain and/or low voltages,
this is precisely where backward motion that was neglected in the model is most important, as well as
the fact that it is where the sites (except the main binding site) are the least well-defined, see Figure 3.
We have seen from molecular dynamics simulations, as well, that there is a small, backward moving
current, even at quite large voltage drops. Despite neglecting these effects, we still conclude here that
Equation (10) is sufficient to understand and capture ionic transport through the graphene crown ether
pore at qO = −0.54 e, as well as qO = −0.24 e at 0.5 V and higher (with a slight modification of rates).

Rate constants: The rate constants kb, ka, and kd depend on attempt frequencies and free-energy
barriers that ions encounter during the translocation from one side of the membrane to the other [42,56].
We will consider kb to have separate diffusion and drift components and for the other two rates to have
explicit barriers. When Ua and Ud are the barriers to enter the pore and exit the pore, respectively,
then ka = k0

a e−Ua/kBT and kd = k0
d e−Ud/kBT , where k0

a and k0
d are the rate constants for barrierless transport.

Bulk rate constant—We first consider the rate constant from bulk, kb = kb0 + κbV, to the sites on the
association side. For pure diffusion, the standard result is to take a capture radius equal to the pore radius
ap and solid angle Θ [1], which would give

kb0 ≈ Θ D c ap, (11)

where D and c are the diffusion coefficient and the bulk ion concentration. We note that here one could
argue that we should take rs (the spread of staging sites) or some modification depending on the Debye
length. However, rs and ap are related and, indeed, they are equal in this work (as discussed above).
The influence of electrostatic interactions is even less clear, as the pore rim is charge neutral on the scale
of the Debye length. Thus, we consider ap only, but there could be further refinement of the estimates of
the model and parameters. The solid angle, Θ, is generally taken to be 4π in chemical reactions [37,57]
and 2π for transport through pores [38,39]. Instead, considering the pore to be a circular disc rather
than a sphere, one obtains Θ = 4 [58,59]. These estimates of Θ implicitly assume that the particle size
is negligible compared to the capture radius. A similar estimation for sub-nanoscale pores is difficult
due to the commensurate length scales involved: pore size, hydrated ion size, and Debye length are all
similar. For example, Läuger pointed out that the effective capture radius of the pore can be as small as
the difference between the geometric radius and the ion radius [35], which, of course, would give rise to
similar issues that we discussed in the context of the pore radius.

Assuming that a region of radius ap mimics the capture of a circular disc gives kb0 ≈ 0.5 ns−1 for one
molar concentration. Different assumptions about the capture geometry yield only an order one deviation
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in this estimate. Thus, this is in excellent agreement with that found by fitting the current data to the
model, employing the pore occupancy directly from MD, which gives 0.5 ns−1 also. We note that the same
scale of kb is used for biological ion channels [42].

The driven component of the incoming rate from bulk is also inline with heuristic expectations:
Ignoring diffusion and when the current is determined predominantly by the pore itself, see Equation (1),
the current will be

I ≈ V
γphp/(πa2

p)
(12)

in the continuum limit with pore resistivity γp. Again ignoring diffusion, the bulk drift has to supply this
same amount of current. Converting to a rate, this gives

κbV ≈ πa2
pV/(qγphp). (13)

Alternatively, one can think of this scenario as one where the voltage drop in bulk on one side of the
membrane is Vb ≈ πapγbV/(4γphp), which comes from taking the exact—assuming a continuum with
bulk resistivity γb—voltage drop on one side of the bulk I · Ra and approximating the current as in
Equation (12). This partial voltage drop then supplies ions at a rate determined by its bulk, access resistance,
Vb/Ra (note that here Ra = γb/(4ap) as we are dealing with one side of the membrane). This yields a
bulk rate identical to Equation (13). The bulk resistivity is γb = 0.071 Ω·m for 1 mol/L KCl in rigid TIP3P
water [14]. Putting in approximate values hp ≈ 1 nm (see, e.g., Ref. [16]) and ap ≈ 0.1 nm yields either
1.4× 109 ions/(V·s) when using just the K+ resistivity (γp ≈ 2γb) in Equation (12) or 2.8× 109 ions/(V·s)
when using the KCl resistivity as the pore resistivity (in the bulk, we use γb), which is in reasonable
agreement with the extracted value of (2.2± 0.2)× 109 ions/(V·s). Again, some parameters, such as ap

and hp, may be different, including when one is looking at different characteristics (access versus pore
resistance), but at most this will give an order one change—for instance, employing ap ≈ 0.13 nm and
γp ≈ 2γb would give 2.3× 109 ions/(V·s). In these estimates, we do allow γp 6= γb, but this is imposed
from above rather than a consequence of free energy barriers or concentration gradients, both of which
have more complex repercussions. Computing these even within a continuum picture would require a
self-consistent solution, including without local electroneutrality. Barriers in the pore, though, are easy to
incorporate, they lower the current and thus lower the drift-induced feeding κb (equivalently, they reduce
Vb). The proximity of the estimates, though, suggests that the pore in the plateau regime is similar to
that of a small open pore—“open” meaning no free-energy features. While the pore does have energetic
features for smaller strain (i.e., 2% to 6%, see the SM), this entails that those features are irrelevant in the
sense developed above. For larger strain (8% and 10%), the pore is basically barrierless, even in a more
strict sense (see the SM). The agreement between treating the drift rate as that in response to a small but
otherwise open pore (hp ≈ 1 nm and ap ≈ 0.1 nm) may be coincidental, however, as the ion crossings
happen at a smaller scale in the middle of the pore (≈0.02 nm). We will discuss this further below.

We note also that the values for kb0 and κb are in rough agreement with the one way rates shown in
Figure 6. Those rates seemingly would suggest a kb0 about 4 times higher. However, these are one-way
rates to cross a whole z-plane. Therefore, they will be larger than the rate to go into the staging sites.
There are simply more fluctuations in both directions across a z-plane far from the pore when one is in the
charge layers that maintain the potential drop. If one instead looks at the rates crossing a hemispherical
surface (see the SM), the magnitudes are about a factor of two different than kb0. This agreement is thus
still only approximate, but it does suggest consistency of the model and MD data. The agreement with
κb is also reasonable – the increase of the one-way rates when voltage goes from 0.1 V to 1 V is about
109 ion/s to 2× 109 ion/s, which agrees with the extracted κb ≈ 2.2× 109 ion/s.
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Finally, we discuss an alternative potential interpretation (pun intended): Above, we considered
rates given separately by bulk diffusion and bulk drift. However, it could be that small entrance barriers,
specifically into the association-side staging sites, are giving a weakly-activated process, and hence
the voltage enters through the exponent, i.e., kb = kb0eβV/kBT . There are small features in the free
energy around which ions would associate into the staging sites, as well as depleted ion density
there, see Figures 3 and 4 (and similar figures in the SM). Using this as a fitting form also results in
a reasonable fit, albeit slightly worse than the form we use above, especially at low voltage. The resulting
fit parameters are kb0 = (0.79 ± 0.06) × 109 ion/s, β = (1.3 ± 0.1)kBT/V (at room temperature),
and k̃a = (1.0± 0.4)× 1010 ion/s, with uncertainties given by the standard error of the fit. All these
numbers are inline with the heuristic estimates.

The major difference between these two interpretations is the behavior at small voltage and that
the drift-based interpretation better captures the data at the smallest voltage we examine (0.1 V).
Otherwise, it will be difficult to discern the exact diffusion/entrance mechanism: The expected one-sided
access-induced potential drop is 1.5 kBT at room temperature when the total applied voltage is 1 V
(i.e., about 40 kBT). From a homogeneous drift theory [58], about half of this is expected to drop within a
distance ap from the pore (i.e., within the “Hille” hemisphere [19])—that is, one would have to dissect small
changes in the free energy and potential with voltage in the same spatial vicinity. The precision to which the
calculations would have to be performed is astounding—not just statistical precision, which can be made
smaller than this, but non-scaling finite-size effects would have to be nearly completely removed [16,17].
Clearly, studying the temperature dependence can help further delineate these two interpretations by
revealing activation energies (provided that the temperature dependence of other factors, such as the
resistivity, can be accounted for), as can an even more comprehensive study including smaller voltages
(where activation will be more clearly visible) and larger simulation cells (to completely—to within
more than kBT—remove non-scaling finite-size effects [16,17]). While the data here favor the drift-based
interpretation, it is not conclusive but it does not affect the main findings of a diffusion-limited regime
around 0.1 V. Yet another alternative model is to just retain κb in kb (i.e., kb0 = 0). This assumes that just
drift is feeding ions to the pore. However, this model gives a poorer fit and is not consistent with the data.
Thus, diffusive contributions from the bulk are present.

Association rate constant—We next consider ka. The model fit did not directly give us this parameter,
but instead the effective association rate k̃a = kaPeq

1 = (1.2± 0.3)× 1010 ion/s. This rate is three times
larger than kb at 1 V, and 30 times larger than kb at 0.1 V. Thus, the only time this component of the
resistance matters is when the factor, 1− P2, multiplying it in Equation (10), is small, which occurs only
when both strain and voltage are small. It is difficult to estimate this parameter a priori without sufficient
gymnastics as to obscure the truth of the matter. However, there are two qualitative features that support
its magnitude. The first is that Peq

1 is relatively small, which can be seen from Figure 3, probably around
1/10 or smaller. This means that ka is an order of magnitude or more larger. From Figure 4, a large value
of ka is expected. There is only a small barrier around −0.4 to −0.3 nm for the qO = −0.54 e pore, and then
the ion will be driven downhill into the pore binding site. That is, we do expect a large ka for an ion already
in the staging area.

Dissociation rate constant—We next consider kd. This parameter does not participate in the model
fitting at all, since we instead used the computationally determined P2, which enabled us to only employ
the first of the three equations, Equation (5), in the model. However, we can employ the outgoing
current from the second site, i.e., the second term in Equation (6), to estimate kd. We can do this by
noticing that P3 is also small (just as P1 is). Since here, 1− P3 is present, the estimate assuming P3 is
small will be less sensitive to this assumption compared to Peq

1 and ka. On the plateau, this entails that
kdP2 = I/q = constant. Examining this relation, data point by data point, gives kd estimates between
109 ion/s to 1011 ion/s, with well defined trends versus strain and voltage. For instance, at 1 V,
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one obtains kd = 2.0 × 1010e(0.20±0.01)s ion/s, where s gives the strain in percent and the confidence
interval of the prefactor is [1.9 × 1010, 2.2 × 1010] ion/s. Thus, the kd varies from 2.0 × 1010 ion/s at
0% strain to 1.5× 1011 ion/s at 10% strain. For completeness, the remaining voltages give fits for kd
of 2.7× 109e(0.28±0.03)s ion/s, 8.3× 108e(0.29±0.02)s ion/s, and 4.3× 108e(0.24±0.02)s ion/s for 0.5 V, 0.25 V,
and 0.1 V, respectively, with corresponding prefactor confidence intervals [2.2× 109, 3.3× 109] ion/s,
[7.1 × 108, 9.7 × 108] ion/s, and [3.7 × 108, 5.0 × 108] ion/s. A reasonable fit to all the plateau data
(versus voltage and strain) is 3.2× 109Ve(0.043±0.003)qV/kBT+(0.22±0.01)s ions/(V · s) with confidence interval
[2.8× 109, 3.6× 109] ions/(V·s) (note that V is a prefactor out front, as well as in the exponent, since ions
are driven across the pore). One takeaway from this is not only the order of magnitude of kd, but that
strain and voltage in this regime change barriers in the pore region by O(kBT). This is in agreement with
estimates of how barriers change due to strain, see Equation (4) and Ref. [27]. However, it is somewhat
surprising that voltages, that are 10s of kBT, do not change the barriers by more. The reason that this is not
the case is that the pore barriers simultaneously are not playing a strong role in the resistance (i.e., they are
irrelevant in the language above and thus do not self-consistently get removed by the voltage) and they
occur on a scale of 0.1 nm. This means that what is relevant is the ∆V on this scale. For 1 V that evenly
drops over 1 nm, this is only 4 kBT, i.e., only about a factor of 2 to 4 (assuming 0.2 nm over which the barrier
occurs) above the actual change found in the fitted form above. We do not expect back-of-the-envelope
estimates to do much better.

To give an independent estimate of the dissociation constant for comparison, we assume that only
one ion occupies the pore at a time and the translocation is driven by a constant electric field, Ep, across the
internal pore site of length ∆p. Thus, the rate constant for exit from the pore may be estimated from
the drift velocity-like picture (with an effective diffusion coefficient as an attempt frequency times an
Arrhenius factor) as

kd =
vd
∆p

=
q D e−Ud/kBT Ep

kBT ∆p
=

q Pp Ep

kBT
, (14)

where Pp = D e−Ud/kBT/∆p = Dp/∆p is the permeability of the ion. Assuming that Ep = V/hp with
hp = 1 nm (i.e., a potential drop over the effective membrane thickness that is larger than the internal pore
site), we obtain k0

d ≈ 76 ns−1 (for ∆p = hp) to 190 ns−1 (for ∆p = 0.4 nm, which is more represented of the
P2 site) for 1 V applied voltage and the potassium mobility µK = qD/kBT = 7.62× 10−8 m2/(V·s). This is
in reasonable agreement with the kd ≈ 150 ns−1 found above for 1 V and 10% strain, where the latter
has the smallest influence of barriers and is thus most similar to the barrier-free estimate here. Notably,
however, this estimate decreases linearly with voltage. For 0.1 V, the estimate is 10 times too high compared
with the one found from the MD data. However, it is clear from the P2 data that occupancy is dropping
faster than exponentially with voltage, meaning that kd increases faster than exponentially (note that the
pore conductance, proportional to kdP2 decreases with voltage, in line with diffusion-limited expectations).
The form fitted above for all plateau data assumed a form VevV , with v as a positive constant. This form
performs well and indicates that Equation (14) is only reasonable where the voltage is not modifying the
energetic landscape at all.

Finally, we comment on the magnitude of kd compared to the bulk rate constant kb. Even taking
into account the effect of the potential well in the pore, the dissociation rate constant is still larger than
the association rate constant (∼0.5 ns−1) for most cases. For plateau data, the smallest the dissociation
constant becomes a factor of two larger, but for almost all data, it is an order of magnitude larger or
more. Only in the unstrained pore with qO = −0.54 e, where there is a large exit barrier, are the two rate
constants comparable at a small voltage. Thus, ionic transport in the crown ether pore is—outside of
the colossal mechano-conductance regime—generally controlled by the rate at which ions arrive in the
pore, i.e., the diffusion and drift rates, possibly with some reflection at the pore mouth due to a small
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entrance barrier. The latter includes an overall barrier for pore occupation when extended to qO = −0.24 e,
see Figure 4.

Diffusion-limited currents: The observation of diffusion-limited currents requires both that
current-carrying ions spend little time in the pore and that drift component of feeding ions to the pore is
small. In terms of the model, Equation (10), we need kb � k̃a(1− P2) and that κbVb � kb0. To meet the
former condition requires that kb � k̃a (i.e., entrance barriers should not be large, or otherwise k̃a will be
small) and k̃a � kd (to ensure that P2 is not close to one), which combines to the chain of inequalities

kb � k̃a � kd. (15)

In other words, both entrance and exit barriers should be small (i.e., transport in a near barrierless regime,
where “near” is defined in terms of how fast ions arrive at the pore from bulk and thus, under realistic
conditions, even barriers in the range of 5 kBT can be “near” barrierless for this pore, but what quantifies
“near” depends on pore characteristics).

When kb � k̃a(1− P2) in Equation (10), we get I = q kb, in which case the ionic current is fully
determined by the incoming rate from bulk and is independent of pore conditions, as seen in Figure 2.
Albeit, one has to compare kb to the association rate, which not only can have a free energy barrier
associated with it, but also the equilibrium occupancy of the stating site Peq

1 , and thus k̃a can be quite
small itself.

The conditions above can in turn be employed to put conditions on the voltage. First consider a
lower bound: Equation (14) gives the rate at which ions cross the pore, including both the drift (due to
the local electric field) and the dissociation from a pore well (if present). This rate is proportional to the
voltage. Considering the chain inequality above and considering kd at Ud = 0 (i.e., the time spent in the
pore without a well needs to be much greater than the bulk feeding—the presence of a well will only push
this inequality toward not being satisfied):

kd � kb ≈ kb0 =⇒ Ep ≈ V/hp � Θ kBT c ap hp/q, (16)

where we can take kb ≈ kb0, since we are interested in the regime where diffusion dominates over drift.
We also take ∆p ≈ hp (this only drops an order one factor). This relation indicates that the diffusion-limited
current is likely to be observed in short and narrow pores, provided that entrance and exit barriers are
small. Note that, although many biological ion channels are not necessarily short compared to their width,
ions can move in a single-file concerted motion via “knock-on” mechanisms [27,60], which diminishes the
effective length of the channel.

An approximate upper bound on the voltage to observe diffusion limitations is, as already noted,
for there to be little voltage drop in the bulk. For instance, Läuger points out that the presence of excess
impermeable, or “inert”, electrolyte increases the impact of diffusion limitations [35], a fact that occurs
in our pore (i.e., Cl− is inert). This is due to the fact that an impermeable electrolyte shifts the balance of
pore and bulk resistance, making the former much larger relative to the latter. Assuming a cylindrical
pore, the pore resistance is dominant if hp/πap � γb/2γp, where γb (γp) is the resistivity in bulk (pore).
For larger graphene pores, and even some nanoscale ones, this condition is unlikely to be true. In fact,
access resistance is larger than the pore resistance for most sizes of graphene pores, and thus the majority
of the voltage will drop in the bulk. In such a case, the current will be limited, not by diffusion but mostly
by drift.

In the graphene crown ether pore, however, the effective pore radius is around 0.1 nm and,
when under strain, near barrierless in the sense used above (there may be barriers and wells, but the
prefactors—the transition rates or attempt frequencies—are still determining the hierarchy of rate scales).
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Using the same estimate to find κb as above, where we assume a homogeneous, continuum medium both
inside and outside the pore, with the pore resistance the dominant factor, we obtain

κbV ≈ πa2
pV/(qγphp) = πa2

pVcpµp/hp � kb0 ≈ Θ D c ap. (17)

This upper bound can be derived directly from the steady state Nernst–Planck equation, assuming
hemispherical symmetry (i.e., with only a radial component) and a homogeneous medium. There,
one wants

∂c
∂r
� qc

kBT
∂Φ
∂r

, (18)

to have the diffusion contribution much larger than the drift, where Φ is the electric potential. Taking the
pore mouth to be a hemisphere with radius ap. The RHS is qcapVb/(r2kBT). The LHS is ∆cap/r2, with ∆c
the concentration bias between the bulk (infinitely far from the pore) and the hemispherical pore mouth.
This presumes that the diffusive and drift components are decoupled.

Assuming further that the staging site has zero occupancy (and thus zero concentration), this gives
the maximum diffusion contribution and Equation (18) results in

qVb � kBT. (19)

This relation is interesting in itself. Its simplicity is due to Einstein’s relation of mobility and diffusion
coefficients, which results in additional factors dropping out, and due to comparing a maximum diffusive
current occurring at the largest concentration gradient with the maximum drift current occurring at zero
concentration gradient. Equation (19) indicates that for drift to be negligible, the voltage drop in bulk has
to be less than the thermal energy. The latter “drives” the diffusion. It should be larger than the drive
of the drift current from bulk to the pore. Plugging in the form of Vb assuming a bulk potential drop in
the presence of a dominant pore resistance (see just below Equation (13)) gives the same inequality as
Equation (17) up to order one factors.

Rewriting Equation (17) together with Equation (16), assuming cp = c and µp = µ (i.e., that these two
quantities are equal to their bulk), to obtain a two-sided inequality for V yields

Θ kBT c ap h2
p � qV � Θ kBT hp/(πap). (20)

This foundational relation gives one of the main predictions of this paper: Diffusion-limited currents
appear within a sweet spot when free energy features are irrelevant. For the graphene crown ether pore,
the voltage should be between about 6 mV and 300 mV. At voltages higher than this range, drift will be
important and, below this range, ions will not be removed from the pore region fast enough to create a
concentration gradient (and free energy features will also become relevant). The simulations and modeling
validate the upper bound (at 0.25 V, the bulk drift and diffusion contributions are roughly equal), but they
do not address the lower bound (in any case, free energy barriers will likely be relevant at 6 mV for the
qO = −0.54 e pore, as they are with the qO = −0.24 e pore still at 100 mV and 250 mV, the relevance of
which is inconsistent with the assumptions leading to Equation (20)). This range includes the voltage,
0.1 V, that we see the strongest diffusion limitations, whereas at higher voltages, drift starts to determine
the current. The pore charge is important, as it determines when free energy features are irrelevant
(e.g., at 0.1 V but 0% strain, the free energy landscape is dominant). Around 0.1 V is a typical value for
graphene pore experiments, small enough to not degrade the membrane (i.e., 0.5 V and higher will start to
see membrane degradation), but large enough that typical currents are in the 10 s of picoampere or more
(while the time-resolution is irrelevant to measuring the dc conductance, we do note that pin hole leaks or
other factors can set a baseline resolution of the current, around 0.5 pA at 0.1 V (see Ref. [33] where such
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currents in “as-grown” membranes could vary by an order of magnitude from membrane to membrane).
We note that the rate model that we are developing cannot be used at very small voltages, as it includes
only one way currents in the pore which cannot capture the approach to equilibrium as V → 0.

In any case, there should be a very small drift current in the bulk when the applied voltage is around
0.1 V and it should start to become comparable to the diffusive component at about 0.25 V and dominant
for higher voltage. We can make this quantitative using the fit to the model in Equation (10). For instance,
at 0.1 V, the unstrained membrane has an effective pore associate rate, k̃a(1− P2) of 12/µs due to the
presence of a localized ion that creates a many-body blocking effect (i.e., P2 ≈ 1). This effective rate
increases to 11/ns for 10% strain. Meanwhile, the diffusive rate is 0.5/ns and the drift rate is 0.2/ns. Thus,
diffusion supplies ions over drift by more than a factor of 2 over the whole range of strains, and already
at 2%, the strain is smaller (though comparable) to the pore association rate (about 1.9/ns). At 0.25 V,
the diffusive and drift components are comparable at 0.5/ns and 0.55/ns, respectively. These values are
slightly more than the 0.25/ns effective pore association rate at 0% strain, but are the controlling factors for
essentially all strains at 2% and above.

Since the smallest voltage we consider, 0.1 V, has smallest bulk drift contribution, we can postulate that
the plateau resistance is the closest to γphp/(πa2

p) (i.e., without any access component). Employing γp/2 =

γb = 0.071 Ω·m (γb is the resistivity of 1 mol/L KCl in TIP3P water, see Ref. [14]) and hp ≈ 1 nm, this gives
ap ≈ 0.11 nm, in agreement with the effective pore radius. This is unexpected, since the potassium ions
cannot make use of the full pore area for transport and there are diffusion limitations. There may be
several factors that conspire to give this agreement. One is that the pore rim is not fixed but can instead
move, so that ap can be bigger than a priori expectations. This does not, however, seem to be the case,
since the density plots show that ions are translocating closer to the origin than 0.1 nm. Another factor is
the role of hp. The effective thickness may be smaller than 1 nm (its value for unfunctionalized graphene
pores [16]). Moreover, while transport veers toward barrierless transport, the pores are not becoming
barrierless in the strict sense for either qO = −0.54 e (until high strain, see the SM) or qO = −0.24 e
(see Ref. [27] for the discussion of the latter case). However, localized binding sites can give a rate that
is similar in magnitude to free diffusion through the pore constriction, or even a higher rate, because,
while ions have to jump out of the well and the barrier height thus suppresses the rate, there is still a large
prefactor, since the ion is fluctuating rapidly. The enhanced density can push the currents higher than
expected based on just an open area. Whether we should think about the pore as an open pore of radius
0.1 nm or whether it is a pore of radius 0.02 nm with an enhanced density due to binding, is an interesting
question. Evidence—specifically the higher concentration in a smaller spatial region—suggests the latter.
However, we only point out that there is still broad agreement between these two perspectives and they
only inform us how we should dissect the pore resistance Rp into component pieces (meaning, the utility
of the perspectives is limited).

It is to be noted that the access resistance in an MD simulation (or any other method) depends on the
simulation cell size: one can make it arbitrarily small (using a wide and short cell) or large (using tall and
narrow cell) [16]. Therefore, in order to match experimental conditions, which effectively has an infinite
bulk, one has to exert great care. In our simulation, we chose the simulation cell aspect ratio to be the
golden aspect ratio [17], which ensures that the access resistance represents the infinite, balanced bulk
resistance. Without taking this approach, one could not examine the bulk diffusion and access limitations.
In the SM, we show results of simulations for several different voltages and strains, showing that the
golden aspect ratio gives converged currents, ones where the bulk is properly included.
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4. Conclusions

Diffusion-limited ionic currents are commonly observed in biological channels because they can
provide the necessary conditions: a large pore resistance (compared to access resistance) due to the small
pore radius, but also a high permeability of ions due to the functional groups that facilitate the transport
of ions [61]. However, diffusion limitations have not been studied systematically in synthetic nanopores,
since it is difficult to replicate the permeability of biological ion channels. In this regard, strained synthetic
pores may provide a platform, not only to investigate the competition of dehydration and electrostatic
interactions within precision atomic constructions that lead to optimal transport characteristics [27], but to
investigate diffusion and entrance effects in ionic transport.

We have shown that there is broad agreement between a simple, many-body model developed here
for the qO = −0.54 e pore and the all-atom simulations, encompassing not only the residuals and current
fit, but also with the fit parameters themselves and independent estimates. This agreement suggests
that, with strain, this pore transitions from a barrier-limited pore with current dictated by many-body
mechanisms (i.e., a well with a localized ion that blocks the pore), to one equivalent to an open tiny
pore. The pore still has a free energy structure, but this structure is irrelevant in the plateau regime:
At small voltages, current-limiting regions of the landscape—dictated both by the barrier scale and the
kinetics—will appear. Larger voltages will start to self-consistently remove those limiting regions by the
counteracting local voltage drop. Other regions of the landscape will start to be limiting, and those regions
will subsequently be washed out. For a given strain and voltage, though, the type of behavior observed
depends on the pore charge and ion dehydration energy. In the particular pore here, the extent of the
bulk-limited region reflects whether the unstrained pore has an internal (dehydration-dominated) barrier
or (electrostatically stabilized) well.

Therefore, the transition from the barrier-limited to the diffusion-limited regime gives the opportunity
to experimentally delineate and constrain the electromechanical environment of the pore, thus pushing
further the limits of employing synthetic pores to understand complex mechanisms in sub-nanoscale ion
transport. Functionalized pores in two dimensional membranes are thus simultaneously complicated
enough to display a wide-range of ionic phenomena seen in biological pores and simple enough to
be amenable to direct modeling. Moreover, if other information can be experimentally determined,
such as the (equilibrium) pore occupancy (P2 here), then measurement will enable the extraction of kinetic
rates and barriers via modeling. In other words, the graphene crown ether pore is about as simple a
sub-nanoscale pore as possible. Yet, it displays a wide variety of behavior: single versus many-body
ion competition, optimality, diffusion limitations, relevant versus irrelevant features, etc. Its behavior,
for instance, will enable quantifying aspects of transport, such as the role of precision atomic placement
and charge in biological systems, and a theoretical understanding of what “near barrierless” entails
in particular pores. This area is vast, and pores in 2D membranes will provide the landscape for a
systematic experimental exploration and validation of theoretical models of sub-nanoscale pores and
biological channels.
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Abstract: The classical Poisson-Boltzmann model can only work when ion concentrations are very
dilute, which often does not match the experimental conditions. Researchers have been working on
the modification of the model to include the steric effect of ions, which is non-negligible when the ion
concentrations are not dilute. Generally the steric effect was modeled to correct the Helmholtz free
energy either through its internal energy or entropy, and an overview is given here. The Bikerman
model, based on adding solvent entropy to the free energy through the concept of volume exclusion,
is a rather popular steric-effect model nowadays. However, ion sizes are treated as identical in the
Bikerman model, making an extension of the Bikerman model to include specific ion sizes desirable.
Directly replacing the ions of non-specific size by specific ones in the model seems natural and has
been accepted by many researchers in this field. However, this straightforward modification does
not have a free energy formula to support it. Here modifications of the Bikerman model to include
specific ion sizes have been developed iteratively, and such a model is achieved with a guarantee
that: (1) it can approach Boltzmann distribution at diluteness; (2) it can reach saturation limit as the
reciprocal of specific ion size under extreme electrostatic conditions; (3) its entropy can be derived by
mean-field lattice gas model.

Keywords: steric effect; Poisson-Boltzmann model; Bikerman model; entropy; specific ion size

1. Introduction

One of the major limitations of the Poisson-Boltzmann (PB) and Poisson-Nernst-Planck (PNP)
models is the assumption of point-like ions without considering their sizes. These models based
on mean field theories work well for dilute electrolytes, but break down when the concentration
is high and ions are crowded in it. A high concentration would generally cause steric repulsions
and additional electrostatic correlations among ions, that cannot be described by classical PB/PNP
models [1]. For example, the concentration of counter-ions, predicted by PB, can be unrealistically high
near the electrode surface, when the electrode voltage is large. Another example occurs at the selectivity
filter in a potassium channel, where potassium ions are strongly attracted into this extremely narrow
filter by the strong negative charges of oxygens on the backbone of the filter. Employing classical
PB/PNP models would overestimate the density of potassium inside the filter and give incorrect
channel current predictions. Therefore, many researchers have worked on the modification of PB/PNP
to include the steric effect of ions.

Steric effect has long been approached in modeling by modifying either the internal energy or
entropy in the Helmholtz free energy. Through internal energy, the steric effect has been featured as
excess hard-sphere energy either by density functional theory (DFT) [2,3] or Lennard-Jones potential [4].
These energies were all formulated using non-local potentials and cause the resultant modified PB/PNP
to produce a series of complicated integro-differential equations, which are hard to compute in higher
dimensions. For practical implementations, localization of hard-sphere potential and simplifying
integro-differential equations into pure differential equations has been conducted in [5–8] for DFT
and [9] for Lennard-Jones potential.
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Through an entropy approach, Bikerman modified the classical Boltzmann distribution by
adjusting bulk and local ion concentrations via the excluded volume concept [10]. Borukhov et al. [11]
rigorously derived the same formula independently by adding solvent entropy through excluded
volume into the Helmholtz free energy. Although the localized hard-sphere model-based DFT [5–8]
also captures this solvent entropy as one of the terms accounting for excess hard-sphere chemical
potential, the Bikerman model [10,11] has been a more popular steric model due to its easiness of
application and qualitatively good agreement with experiments [12–15].

In order to obtain the potential and further derive a neat modified PB equation from free energy,
Borukhov et al. [11] treated all ions as having identical size, which has been long criticized for neglecting
specific ion sizes. Researchers have tried to address this shortcoming with specific ion sizes, and many
of them simply extended original Bikerman model by replacing the identical ion size with specific
ones without any rigorous justification. Although the resultant model has a better agreement with
experiments than the original Bikerman model [16–18], it does not have a Helmholtz free energy to
support it. Here modifications of the Bikerman model to include specific ion sizes have been developed
iteratively in Sections 4–6, preceded by derivations of classical PB in Section 2, and the original
Bikerman model in Section 3. Finally, in the Discussion and Conclusions section a specific-ion-size
Bikerman model is presented with a guarantee that: (1) it can approach Boltzmann distribution at
diluteness; (2) it can reach the saturation limit as the reciprocal of specific ion size under extreme
electrostatic conditions; (3) its entropy can be derived by a mean-field lattice gas model.

2. Classical Poisson-Boltzmann Model

Though the classical PB model is well known, we still derive the model here for review and
comparison with its modified versions discussed later. Starting by stating the Helmholtz free energy,
internal energy and entropy, we have:

F = U − TS (1)

U =

∫ [
−ε

2

∣∣∣∇φ
∣∣∣2 + zpepφ+ znenφ+ qφ+ pWsol,p + nWsol,n

]
dV, (2)

− TS =

∫
kBT

[
p log

p
c0
− p + n log

n
c0
− n

]
dV, (3)

where F is Helmholtz free energy; U is internal energy; T is temperature; S is entropy; φ is electric
potential. p, n denote cation/anion concentrations, and zp, zn denote their valence, respectively.
e denotes elementary charge. q denotes permanent charge. Permittivity ε = ε0εr with ε0 being the
permittivity for vacuum and εr being the relative permittivity or dielectric constant. c0 is some reference
concentration such as bulk concentration of electrolyte. Wsol,p and Wsol,n denote the solvation energies
for cations and anions, respectively. Although the traditional PB model generally does not include
solvation energy in the expression, it is important when modeling some electrolyte systems involving
hydration/dehydration of ions and is therefore it is explicitly included in the energy here. Based on the
Born model, the solvation energies for cations and anions are:

Wsol,i =
z2

i e2

8πε0ri

(
1

εr(x)
− 1

)
, i = p, n. (4)

Differentiation of F with respect to φ gives the Poisson equation:

−∇·(ε(x)∇φ) = zpep + znen + q (5)

By doing the differentiation of F with respect to p and n, we obtain the chemical potentials for p
and n, respectively:

∂F
∂p

= µp = zpeφ+ kBT log
p
c0

+ Wsol,p, (6)
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∂F
∂n

= µn = zneφ+ kBT log
n
c0

+ Wsol,n (7)

At equilibrium, the chemical potential is uniform everywhere and therefore the local chemical
potential must be equal to its bulk value, which is usually known:

µp = µp,b, µn = µn,b, (8)

with the bulk chemical potential for cations and anions:

µp,b = kBT log
(

pb

c0

)
+ Wsol,p,b, µn,b = kBT log

(
nb
c0

)
+ Wsol,n,b, (9)

where the subscript b denotes the bulk situation. Equations (8) and (9) can be solved solve for p and n:

p = pbe−βzpeφe−β∆Wsol,p = pbe−βEp , n = nbe−βzneφe−β∆Wsol,n = nbe−βEn , (10)

where β = 1/kBT, Ep = zpeφ+ ∆Wsol,p, En = zneφ+ ∆Wsol,n, and:

∆Wsol,i = Wsol,i −Wsol,i,b =
z2

i e2

8πε0ri

(
1

εr(x)
− 1
εr,b

)
, i = p, n. (11)

From (10), as φ→ −∞ , we obtain p→∞, n→ 0 . Likewise, as φ→∞ , we obtain p→ 0, n→∞ .
These unrealistic infinite concentrations for p and n are mainly because ions are treated as particles
without size in the classical PB model. This pitfall has motivated modifications of the classical PB/PNP
model to account for the finite-size effect, or so-called steric effect, of ions. In reality, the limit of p
should be at most 1/vp, where vp is the particle volume of p. This can be derived by considering a
volume V fully occupied by cation p only, with the number of cation particles being Np, and then:

pmax =
Np

V
=

Np

Npvp
=

1
vp

. (12)

Likewise, the limit of n is at most 1/vn, where vn is the particle volume of n.
Substituting (10) into (4), and we obtain the classical PB equation:

−∇·(ε(x)∇φ) = zpepbe−βEp + znenbe−βEn + q. (13)

For z:z electrolyte without considering solvation energy, the equation above reduces to:

∇·(ε(x)∇φ) = 2zecbsinh(βzeφ) − q, (14)

with cb = pb = nb.

3. Bikerman Model

As stated earlier, the Bikerman model [10] has been a popular steric-effect model due to its easiness
of application and qualitatively good agreement with experimental data. It modifies the free energy
of the classical PB (1)–(3) by adding a solvent entropy term. This term also partially represents the
excessive energy accounting for overcrowding of ions and solvent molecules in localized hard-sphere
models based on DFT [5–8]. The free energy in the Bikerman model treats all species of ions and
solvent molecules with an identical size, and is stated as follows:

F = U − TS, (15)
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U =

∫ [
−ε

2

∣∣∣∇φ
∣∣∣2 + zpepφ+ znenφ+ qφ+ pWsol,p + nWsol,n

]
dV, (16)

− TS =

∫
kBT[p log(pv) − p + n log(nv) − n + w log(wv) −w]dV, (17)

where w is concentration of solvent (such as water); v is the universal particle volume. Why are all
solute and solvent particles treated as having the same size? Why are specific sizes of ions and solvent
molecules not used here? This was not explained in the original model [10,11], and the justification of
using identical size for all species particles will be addressed later in Section 5.

If we assume that, besides occupation of ions, the rest of space is occupied by solvent molecules
(which can be taken as water here). Then:

w =
Nw

V
=

Nwv
Vv

=
V −Npv−Nnv

Vv
=

1
v
(1− pv− nv), (18)

where V is the whole volume of electrolyte; Np, Nn, Nw are number of cation, anion and solvent
particles in an electrolyte with volume V, respectively. Equation (18) can then be rewritten as:

wv + pv + nv = 1, (19)

which simply means the sum of volume fractions of water, cation and anion is one. Note that here we
assume that, besides occupation of ions, the rest of space is occupied by water.

Substituting (19) into (17) we can obtain:

−TS =
∫

kBT
[
p log(pv) − p + n log(nv) − n + 1

v (1− pv− nv) log(1− pv− nv) − 1
v (1− pv− nv)

]
dV. (20)

Differentiation of F with respect to φ again gives the Poisson equation:

−∇·(ε(x)∇φ) = zpep + znen + q. (21)

By doing the derivation of F with respect to p and n, we obtain the chemical potentials for p and n,
respectively:

∂F
∂p

= µp = zpeφ+ kBT[log(pv) − log(1− pv− nv)] + Wsol,p, (22)

∂F
∂n

= µn = zneφ+ kBT[log(nv) − log(1− pv− nv)] + Wsol,p. (23)

At equilibrium, the chemical potential is uniform everywhere and therefore the local chemical
potential must be equal to its bulk value, which is usually known:

µp = µp,b, µn = µn,b, (24)

with:
µp,b = kBT[log(pbv) − log(1− pbv− nbv)] + Wsol,p,b, (25)

µn,b = kBT[log(nbv) − log(1− pbv− nbv)] + Wsol,n,b. (26)

By substituting (22), (23), (25) and (26) into (24), we can relate the local ion-to-solvent volume
fraction ratios (denoted as γi, i = p, n.) to their counterparts in bulk solution in a Boltzmann manner
for p and n, respectively:

γp =
pv

1− pv− nv
=

pbv
1− pbv− nbv

e−βEp , (27)

γn =
nv

1− pv− nv
=

nbv
1− pbv− nbv

e−βEn . (28)
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Summation of (27) and (28) gives the solute-to-solvent volume fraction ratio as:

pv + nv
1− pv− nv

= γp + γn,

and we can further obtain the solute volume fraction:

pv + nv =
γp + γn

1 + γp + γn
. (29)

From (29) and (19), we know then volume fraction for p, n and w, respectively.

pv =
γp

1 + γp + γn
, nv =

γn

1 + γp + γn
, wv =

1
1 + γp + γn

, (30)

which further gives p and n in terms of their bulk values pb, nb, identical particle size v, and local
energy Ep, En:

p =
pbe−βEp

(1− pbv− nbv) + pbve−βEp + nbve−βEn
, n =

nbe−βEn

(1− pbv− nbv) + pbve−βEp + nbve−βEn
(31)

Equations (27) and (28) can be re-arranged to obtain:

p = pbe−β(Ep+Strc), n = nbe−β(En+Strc), (32)

with ionic steric potential Strc expressed as:

Strc = kBT log
(

1− pbv− nbv
1− pv− nv

)
. (33)

The steric potential Strc, first described in [16–19], characterizes the crowding of ions and their
finite-size effect by a bulk-to-local water fraction ratio. Larger local ion concentrations would have
a larger steric potential.

Also, by letting 1 − pv − nv = wv, and 1 − pbv − nbv = wbv, Equations (27) and (28) can be
simplified as:

pv
wv

=
pbv
wbv

e−βEp = γp, (34)

nv
wv

=
nbv
wbv

e−βEn = γn. (35)

Therefore, by (30), we obtain:

zppv + znnv =
zp

pbv
wbv e−βEp + zn

nbv
wbv e−βEn

1 + pbv
wbv e−βEp +

nbv
wbv e−βEn

=
zppbve−βEp + znnbve−βEn

wbv + pbve−βEp + nbve−βEn
. (36)

Since pb
nb

= −zn
zp

due to electric neutrality in bulk conditions, therefore:

pbv =
−znµ

zp − zn
v, nbv =

zpµ

zp − zn
v, (37)

where µ = pb + nb. Also:
wbv = 1− pbv− nbv = 1− µv. (38)
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then (36) becomes:

zpp + znn =
zpznµ

(
−e−βEp + e−βEn

)

(1− µv)
(
zp − zn

)
+ µv

(
zpe−βEn − zne−βEp

) . (39)

Substituting (39) into (21), we obtain the Bikerman-PB equation:

−∇·(ε(x)∇φ) =
zpzneµ

(
−e−βEp + e−βEn

)

(1− µv)
(
zp − zn

)
+ µv

(
zpe−βEn − zne−βEp

) + q. (40)

For z:z electrolyte without considering the solvation energy, the equation above becomes:

∇·(ε(x)∇φ) = 2zec0sinh(βzeφ)

1 + 2rsinh2
( βzeφ

2

) − q, (41)

as shown in [11] with c0 = pb = nb, r = µv = 2c0v.
Two important criteria need to be checked for all modified PB/PNP models accounting for

steric effects:
CRITERION I: When ion concentrations p and n are dilute, will they follow the classical

Boltzmann distribution?
CRITERION II: As φ→ ∓∞, will p and n approach their saturation limits 1

vp
and 1

vn
, respectively?

For CRITERION I when p and n are dilute here, it means their volume fractions are negligible,
and therefore 1− pv− nv ≈ 1, and 1− pbv− nbv ≈ 1. Steric potential term Strc then vanishes, and by (32)
p = pbe−βEp , and n = nbe−βEn , which follows the Boltzmann distribution.

For CRITERION II, let us consider φ→ −∞ first, and φ→∞ can be derived similarly.
As φ→ −∞ , γp →∞ , and γn → 0 . Therefore, pv→ 1 , and nv→ 0 by (30), which further means
p→ 1

vp
= 1

v , and n→ 0 . Likewise, as φ→∞ , we can get n→ 1
vn

= 1
v , and p→ 0 .

4. The Bikerman Model with Specific Ion Sizes

The shortcoming of the Bikerman model is the usage of a universal particle size, denoted by
v, for cations, anions and solvents. Using specific ion and solvent sizes would be closer to reality.
Taking NaCl solution as an example, the spherical diameters for Cl−, Na+ and water are DCl− = 3.62 Å,
DNa+ = 2.04 Å, and Dw = 2.08 Å, and then the particle volume ratio is vNa+ : vCl− : vw = 1 : 5.59 : 1.06,
in which using universal particle volume would be far from reality in the case of high ion concentrations.
In appearance, it seems, and many researchers did, we can just simply modify the model to include
specific ion sizes by changing pv and pbv to pvp and pbvp; similarly, nv and nbv to nvn and nbvn for (22)
to (41). With this straightforward extension, we obtain p, n as:

p =
pbe−βEp

(
1− pbvp − nbvn

)
+ pbvpe−βEp + nbvne−βEn

,

n =
nbe−βEn

(
1− pbvp − nbvn

)
+ pbvpe−βEp + nbvne−βEn

(42)

and the specific-ion-size Bikerman-PB equation:

−∇·(ε(x)∇φ) =
e
(
zppbe−βEp + znnbe−βEn

)

1−
(
pbvp + nbvn

)
+ (pb + nb)

(
zpvne−βEn − znvpe−βEp

)
/
(
zp − zn

) + q (43)
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For z:z electrolyte without considering solvation energy, the equation above becomes:

∇·(ε(x)∇φ) = 2zec0sinh(βzeφ)

1− c0
(
vp + vn

)
+ c0

(
vneβzeφ + vpe−βzeφ

) − q. (44)

Let us denote (42) as the specific-ion-size Bikerman model 1 (SISBM1) for convenience of notation.
However, we can not find an energy functional like (15)–(17) to support this naive extension, which
means chemical potentials (22) and (23) with universal particle size replaced by specific ion sizes
cannot be derived. The correct specific-ion-size energy functional and chemical potentials should be
derived as follows:

F = U − TS, (45)

U =

∫ [
−ε

2

∣∣∣∇φ
∣∣∣2 + zpepφ+ znenφ+ qφ+ pWsol,p + nWsol,n

]
dV, (46)

− TS =

∫
kBT

[
p log

(
pvp

)
− p + n log(nvn) − n + w log(wvw) −w

]
dV. (47)

By wvw = 1− pvp − nvn, (47) can be rewritten as:

−TS =
∫

kBT
[
p log

(
pvp

)
− p + n log(nvn) − n + 1

vw

(
1− pvp − nvn

)
log

(
1− pvp − nvn

)
− 1

vw

(
1− pvp − nvn

)]
dV. (48)

Differentiation of F with respect to φ again gives the Poisson equation:

−∇·(ε(x)∇φ) = zpep + znen + q. (49)

By doing the differentiation of F with respect to p and n, we can obtain the chemical potentials for
cations and anions, respectively:

µp = zpeφ+ kBT
[
log

(
pvp

)
− log

(
1− pvp − nvn

)kp
]
+ Wsol,p (50)

µn = zneφ+ kBT
[
log(nvn) − log

(
1− pvp − nvn

)kn
]
+ Wsol,n (51)

where kp =
vp
vw

, kn = vn
vw

.
At equilibrium, the chemical potential is uniform everywhere and therefore the local chemical

potential must be equal to its bulk value, which is usually known:

µp = µp,b, µn = µn,b, (52)

with:
µp,b = kBT

[
log

(
pbvp

)
− log

(
1− pbvp − nbvn

)kp
]
+ Wsol,p,b, (53)

µn,b = kBT
[
log(nbvn) − log

(
1− pbvp − nbvn

)kn
]
+ Wsol,n,b. (54)

To solve p and n from (52), there is no closed form solution like (31) for p and n due to the
nonlinearity, unless some simplified case such as kp = kn = 1 is considered, which is actually reduced
to the original Bikerman model with vp = vn = vw = v. Like (32), p and n at most can be expressed as:

p = pbe−β(Ep+kpStrc), n = nbe−β(En+knStrc), (55)

with the steric potential Strc being modified from (33) to include specific ion sizes:

Strc = kBT log
(

1− pbvp − nbvn

1− pvp − nvn

)
(56)
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Let us denote (55) as the specific-ion-size Bikerman model 2 (SISBM2) for convenience. Note that
a similar model was also obtained in [18,19] without a rigorous derivation.

Again, we need to check criteria I and II for this specific-ion-size model. For CRITERION I, when
p and n are dilute, it again means 1 − pvp − nvn ≈ 1, and 1 − pbvp − nbvn ≈ 1. Therefore Strc ≈ 0 by
(56), and then p = pbe−βEp , and n = nbe−βEn by (55), which follows a classical Boltzmann distribution.

For CRITERION II, as φ→ −∞ in (50), kBT
[
log

(
pvp

)
− log

(
1− pvp − nvn

)kp
]

should approach +∞ for

µp to be finite. This can only be achieved by n→ 0, and p→
(

1
vp

)−
(saturation). Applying the

same reasoning for (51), as φ→∞ , kBT
[
log(nvn) − log

(
1− pvp − nvn

)kn
]

should approach +∞ for µn

to be finite. Then p→ 0, and n→
(

1
vn

)−
(saturation). This specific-ion-size model seems correct and

reasonable so far, but actually there is a pitfall. That is its entropy formula (48) cannot be derived by
the traditional mean-field lattice gas model. This will be explained in the next section.

5. Mixing Entropy Derivation Based on the Mean-Field Lattice Gas Model

In this section, we would like to derive the entropy in (20) by the traditional mean-field lattice gas
model. Consider the entropy for an aqueous electrolyte system:

TS = kBT log W, (57)

where W is the number of microstates at equilibrium which possess a maximum number of microstates.
Mixing entropy in electrolyte studies macrostates through spherical particles’ (solute and solvent)
occupation of identical cubic sites is based on the mean-field lattice gas model. The necessity of
using identical cubic sites provides a combinatorial basis when computing the maximum number
of microstates. The most probable distribution of all solute (ions) and solvent particles, reaching
maximum number of microstates for each species, is that each identical cubic site generally would be
at most occupied by one solute/solvent particle as depicted in Figure 1a. This is based on the concept
that the size of each species’ particle is infinitesimal or finite but dilute. When the actual size for each
species’ particle is considered and an aqueous electrolyte is extremely concentrated as depicted in
Figure 1b, the most probable distribution above may not be available. The situation in Figure 1b will
be addressed in the next section.

The entropy based on the most probable distribution of K-species solute (ions) and solvent (treated
as K + 1-th species) particles, under dilute situation, over a total of N =

∑K+1
j=1 N j available identical

sites in a system is:

W

=
K+1∏
j=1

W j

=

(
N
N1

)(
N −N1

N2

)
· · ·

(
N −N1 −N2 · · · −NK−1

NK

)(
N −N1 −N2 · · · −NK

NK+1

)

= N!
N1!(N−N1)!

(N−N1)!
N2!(N−N1−N2)!

· · ·
(
N−∑K−1

j=1 N j
)
!

NK!
(
N−∑K

j=1 N j
)
!

(
N−∑K

j=1 N j
)
!

NK+1!

= N!(∏K
j=1 N j!

)
NK+1!

,

(58)

where N j, j = 1, · · · , K, is the particle number of j-species ion. NK+1 is the particle number of solvent,
so the entropy becomes:

TS = kBT log
N!(∏K

j=1 N j!
)
NK+1!

. (59)
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Using the Stirling formula log M! ≈M log M−M with M� 1, we can rewrite the entropy as:

TS = kBT


N log N −N −

K∑
j=1

N j log N j +
K∑

j=1
N j −NK+1 log NK+1 + NK+1




= kBT


N log N −

K∑
j=1

N j log N j −NK+1 log NK+1




= kBT


N log N −

K∑
j=1

N j log N j −

N −

K∑
j=1

N j


 log


N −

K∑
j=1

N j






= kBT


N log N

N−∑K
j=1 N j

−
K∑

j=1
N j log

N j

N−∑K
j=1 N j




(60)

using the following relations:

V = Nvs, or
N
V

=
1
vs

, (61)

N j

V
= c j, (62)

N j

N
=

N jvs

Nvs
=

N jvs

V
= c jvs, (63)

where c j is the concentration of j-species particle; V is the volume of system; vs is the volume of
an identical cubic site that composes the volume of system. It is naturally requested that vs ≥
max1≤ j≤K+1v j, where v j is the particle volume of j-species particle. Usually vs = max1≤ j≤K+1v j in
aqueous electrolyte system, where solute and solvent particles are generally crowded.
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Figure 1. (a) Moderately concentrate situation with each solute/solvent particle only occupy one
identical site. (b) Extremely concentrate situation with each identical site can be allowed to be occupied
by multiple solute/solvent particles of the same species in order to increase packing efficiency in space.

Applying (61)–(63) to (60), the entropy density can be expressed as:

TS
V

= kBT




1
vs

log
1

1−∑K
j=1 c jvs

−
K∑

j=1

c j log
c jvs

1−∑K
j=1 c jvs


. (64)

For a binary electrolyte, (64) can be expressed as:

TS =

∫
kBT

[
1
vs

log
1

1− pvs − nvs
− p log

pvs

1− pvs − nvs
− n log

nvs

1− pvs − nvs

]
dV, (65)

or:

− TS =

∫
kBT

[
p log(pvs) + n log(nvs) +

1
vs
(1− pvs − nvs) log(1− pvs − nvs)

]
dV, (66)
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which, without loss of generality, can be augmented as:

−TS =
∫

kBT
[
p log(pvs) − p + n log(nvs) − n + 1

vs
(1− pvs − nvs) log(1− pvs − nvs) − 1

vs
(1− pvs − nvs)

]
dV. (67)

Equation (67) is exactly the same as (20) with:

v = vs = max
{
vp, vn, vw

}
. (68)

This means the universal particle volume v in the Bikerman model is actually the volume of
an identical occupation site vs, which is limited from below by the largest particle size among all solute
and solvent particles. The original Bikerman model has long suffered criticism for assuming all ions
have the same size instead of using specific ion sizes in the model. The above reasoning explains
why specific ion size information is left out mainly due to the need for all cubic sites to be identical
in order to support the combinatorial basis demanded by the mean-field lattice gas model. Actually,
information of specific ion sizes is still carried but only implicitly as shown in (68). Researchers may
prefer to use SISBM2 as illustrated in Section 4, but actually its entropy formula (48) cannot be derived
by the mean-field lattice gas model described above. Note that usually solute and solvent particles
are treated as spheres in modeling. If ap, an, aw are diameters for p, n, and w, respectively and their

maximum is an for example, then v = vs = a3
n not 4π

3

(
an
2

)3
since the identical occupation is cubic. This

is why a3, instead of 4π
3

(
a
2

)3
, used in [10,11].

In CRITERION II described above, as φ→ ∓∞, p and n should approach their saturation limits
1
vp

and 1
vn

, respectively. Here, this would be changed to approach 1
vs

instead of 1
vp

and 1
vn

respectively,

although approaching 1
vp

and 1
vn

sounds more physically correct. This paradoxical conclusion is from
entropy rigorously derived by the traditional mean-field lattice gas model based on combinatorics
requiring identical occupation sites. Can this be fixed to resume the limit approach to 1

vp
and 1

vn
and

still holding the ground of combinatorics at the same time? An attempt at this is discussed in the
next section.

6. Entropy Fixing for Electrolytes under Extreme Concentration Conditions

Here we hope to construct a steric PB model with entropy able to be derived by the mean-field
lattice gas model, and at the same time showing physically correct saturation limits for ions as φ→ ∓∞ .
The mean-field lattice gas model is fixed here such that each identical cubic site is allowed to be
occupied by more than one solute particle of the same species as illustrated in Figure 1b. Although this
kind of distribution is no more a most probable distribution as stated earlier, it allows more efficient
packing when space is extremely limited and size among species varies largely. Again, we consider the
entropy for an aqueous electrolyte system:

TS = kBT log W, (69)

Let Ñ j, j = 1, · · · , K + 1, be the particle number of species j and N j, j = 1, · · · , K + 1, the number
of identical sites occupied by j-species particles with Ñ j ≥ N j. This means that in an extremely
concentrated situation an identical site can be occupied by more than one particle of the same species.
If an identical cubic site, on average, can allow r j j-species particles to occupy it, we can then relate Ñ j

and N j by Ñ j = N jr j, or equivalently vs = r jv j. Again, v j is the particle volume of species j. vs is the
volume of an identical cubic site with vs = max1≤ j≤K+1v j. The entropy based on the most probable
distribution of all ‘grouped’ species particles over a total of N =

∑K+1
j=1 N j available identical sites in

a system is:

W =
K+1∏
j=1

W j =
N!

N1!(N−N1)!
(N−N1)!

N2!(N−N1−N2)!
· · ·

(
N−∑K−1

j=1 N j
)
!

NK!
(
N−∑K

j=1 N j
)
!

(
N−∑K

j=1 N j
)
!

NK+1! = N!(∏K
j=1 N j!

)
NK+1!

. (70)
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Note that, after all the ions (in group) are distributed, there are N −∑K
j=1 N j = NK+1 sites that will

be filled by solvent molecules in group, so the entropy becomes:

TS = kBT log
N!(∏K

j=1 N j!
)
NK+1!

. (71)

Using the Stirling formula log M! ≈M log M−M with M� 1, we can rewrite the entropy as:

TS = kBT


N log N −N −

K∑
j=1

N j log N j +
K∑

j=1
N j −


N −

K∑
j=1

N j


 log


N −

K∑
j=1

N j




+


N −

K∑
j=1

N j




 = kBT


N log N

N−∑K
j=1 N j

−
K∑

j=1
N j log

N j

N−∑K
j=1 N j


,

(72)

Using the following relations:

V = Nvs, or
N
V

=
1
vs

, (73)

N j

V
=

Ñ j
r j

V
=

c j

r j
, (74)

N j

N
=

N jvs

Nvs
=

N jvs

V
=

c j

r j
r jv j = c jv j, (75)

where c j is the concentration of species j; V is the volume of the system.
The entropy per unit volume can be expressed as:

TS
V

= kBT




1
vs

log
1

1−∑K
j=1 c jv j

−
K∑

j=1

c j

r j
log

c jv j

1−∑K
j=1 c jv j


. (76)

Compared with (64), specific ion sizes can now appear explicitly in the entropy formula (76).
For a binary electrolyte:

TS =

∫
kBT

[
1
vs

log
1

1− pvp − nvn
− p

rp
log

pvp

1− pvp − nvn
− n

rn
log

nvn

1− pvp − nvn

]
dV, (77)

or:

− TS =

∫
kBT

[
p
rp

log
(
pvp

)
+

n
rn

log(nvn) +
1
vs

(
1− pvp − nvn

)
log

(
1− pvp − nvn

)]
dV, (78)

which, without loss of generality, can be augmented as:

−TS =
∫

kBT
[

p
rp

log
(
pvp

)
− p

rp
+ n

rn
log(nvn) − n

rn
+ 1

vs

(
1− pvp − nvn

)
log

(
1− pvp − nvn

)
− 1

vs

(
1− pvp − nvn

)]
dV. (79)

by:

µp =
δ f
δp

= zpeφ+ Wsol,p +
kBT
rp

log
pvp

1− pvp − nvn
, (80)

µn =
δ f
δn

= zneφ+ Wsol,n +
kBT
rn

log
nvn

1− pvp − nvn
, (81)

Again, at equilibrium, the chemical potential is uniform everywhere and therefore the local
chemical potential must be equal to its bulk value, which is usually known:

µp = µp,b, µn = µn,b. (82)
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Usually bulk solutions are dilute and chemical potentials under that condition can be formulated
following (80) and (81) with rp = rn = 1:

µp,b = kBT log
pbvp

1− pbvp − nbvn
+ Wsol,p,b, (83)

µn,b = kBT log
nbvn

1− pbvp − nbvn
+ Wsol,n,b. (84)

By denoting γp = e
µp,b−zpeφ−Wsol,p

kBT/rp , γn = e
µn,b−zneφ−Wsol,n

kBT/rn ,
(82) forms

pvp

1− pvp − nvn
= γp,

nvn

1− pvp − nvn
= γn, (85)

and can solve for p and n:

pvp =
γp

1 + γp + γn
, nvn =

γn

1 + γp + γn
, (86)

or:

pvp =

(
pbvp

1−pbvp−nbvn

)rp
e−βpEp

1 +
(

pbvp
1−pbvp−nbvn

)rp
e−βpEp +

(
nbvn

1−pbvp−nbvn

)rn
e−βnEn

(87)

nvn =

(
nbvn

1−pbvp−nbvn

)rn
e−βnEn

1 +
(

pbvp
1−pbvp−nbvn

)rp
e−βpEp +

(
nbvn

1−pbvp−nbvn

)rn
e−βnEn

, (88)

where Ep = zpeφ+ ∆Wsol,p, En = zneφ+ ∆Wsol,n, βp =
(
kBT/rp

)−1
, βn = (kBT/rn)

−1. Let us denote (87),
(88) as the specific-ion-size Bikerman model 3 (SISBM3) for convenience.

Again, we need to check this new model with criteria I and II. For CRITERION II, we can
easily deduce from (87) φ→ −∞ , n→ 0, pvp → 1, p→ 1

vp
(saturation). Similarly, from (88), φ→∞ ,

p→ 0, nvn → 1 , n→ 1
vn

(saturation). There is no constraint like p, n→ 1
vs

as φ→ ∓∞ any more, and
entropy here can be derived by mean-field lattice gas model.

For CRITERION I, p and n will not approach a Boltzmann distribution pbe−βEp and nbe−βEn at
diluteness unless rp = rn = 1. This violation of the Boltzmann distribution at the dilution limit is
because we allow multiple ions of the same species to occupy an identical cubic site. This failure and a
possible cure will be discussed in next section.

7. Discussion and Conclusions

If we wish to obtain a model for electrolytes such that: (1) it can approach a Boltzmann distribution
at diluteness; (2) it can reach the saturation limit as the reciprocal of specific ion size under extreme
electrostatic conditions; (3) its entropy can be derived by a mean-field lattice gas model. The only
options here is SISBM3 with rp = rn = 1, since SISBM2 satisfies (1) and (2) but not (3). How can we
justify rp = rn = 1 for SISBM3 here? Interpreting all ion sizes as being about the same is certainly not
acceptable. Remember SISBM3 is designed for extremely high ion concentrations motivated by the
more efficient packing shown in Figure 1b. Actually for situations that would give rise to extremely
high ion concentrations and make the steric effect not negligible, such as the Stern layer in the electric
double layer (EDL) of a charged wall (discussed next) and the selectivity filter of a K channel [20], there
would be ‘locally’ one species only, which is the counter-ion of the local electrostatic environment,
since co-ions (and even water) would be totally expelled. Taking the K channel selectivity filter as an
example, its extreme narrowness and the strong negative oxygen charges inside it would definitely
justify only one species being inside the selectivity filter, which is definitely potassium. This implies rp
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to be 1 locally in the filter, and we can justify rn = 1 inside the filter as well since anions would be
extremely dilute there due to strong electrostatic repulsion. For the rest of the K channel where ions
are at most moderately concentrated, the steric effect is much less significant, and basically the original
Bikerman model would be appropriate for it. Since SISBM3 with rp = rn = 1 would be a very good
approximation of the original Bikerman model under mild ion concentrations, we can use SISBM3
with rp = rn = 1 globally for the whole K channel then. Notice, under rp = rn = 1, SISBM3 is actually
same as SISBM1, but with a rigorous derivation now. This model has been useful and proven to fit the
experimental data quite well [16–18]. Although here we just discussed steric-effect modifications for
PB, modifications for PNP can be likewise derived.

Here we compare SISBM1 and PB by computing ion distributions in a 1D charged wall problem.
Many researchers have used this physical model to investigate the surface differential capacitance
of electrodes adjacent to electrolyte solutions [12–15]. Here (14) for PB and (44) for SISBM1 were
used to calculate the ion distributions of a binary KCl electrolyte solution without considering the
solvation energy and permanent charges. The associated boundary conditions are φ(0) = Vwall, and
φ(∞) = 0. The bulk concentration of KCl as x→∞ is set to be c0 = 100 mM, and dielectric constant
is set to 80 for the whole domain (0,∞). The Debye length, featuring the order of thickness of EDL,

is λD =
√
ε0εrkBT

c0e2 = 13.78 Å. The simulation result is shown in Figure 2 with Figure 2a being the

distributions of [K+] for SISBM1 and PB under Vwall = 0.1 V and 2 V. Figure 2b is the counterpart plot
of Figure 2a for [Cl−]. In Figure 2a, the [K+] distributions for SISBM1 and PB are very close to each other
and almost indistinguishable in the graph at a weak wall voltage Vwall = 0.1 V. When the wall voltage
increases to Vwall = 2 V, [K+] calculated by SISBM1 reaches its saturation limit 1/vK = 7.90× 104 mM
right adjacent to the wall, but [K+] unrealistically increases beyond the saturation limit when computed
by the PB model. The main effect of SISBM1 is to offer a saturation limit for counter-ions (K here)
when electrostatic attraction from electrode is strong enough, while it is very close to the result of
PB when the electrostatic attraction is weak. In Figure 2b, [Cl−] distributions calculated by SISBM1
and PB are very close to each other for both strong and weak wall voltages due to the diluteness
caused by electrostatic repulsion to the co-ion (Cl here) of the electrode. Note that, corresponding to
a saturation layer of [K+] adjacent to wall at Vwall = 2 V (see Figure 2a), [Cl−] almost vanishes at that
layer as well (see Figure 2b). This implies a total exclusion of Cl over there due to the saturation of K,
and justifies the locally one-species argument above. If we use the original Bikerman model (41), in
which ion sizes are universal, a similar saturating phenomenon for counter-ion concentration can still
be obtained. However, specific ion sizes are particularly desired when electrolyte solutions are ternary,
like a mixture of KCl and NaCl solutions since K and Na have different sizes, which would saturate at
different limiting concentrations. These would be otherwise indistinguishable if using the original
Bikerman model.
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Figure 2. (a) K distributions in charged wall problem computed by SISBM1 and PB models under
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Above we assume the rest of space after the occupation of ions is exclusively occupied by solvent
particles such as water. [9–12] have suggested that the rest of space should be occupied by solvent or
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void, so the K + 1 species in (58) and (70) should be interpreted as solvent or void. This may make
more sense. Taking the selectivity filter of a K channel as an example, more and more evidences have
shown the selectivity filter of a K channel is exclusively occupied by potassium and voids, and water
is not allowed there due to the strong solvation energy barrier. [9–12] even explicitly separate water
and voids as two species in their modeling. However, that means the species transport equation
(Nernst-Planck equation) of water needs to be modeled explicitly when constructing a PNP type
model. This water equation is generally hard to model due to its physical complexity, especially for its
electrostatic behavior since water is a dipole.
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Abstract: The electric double layer (EDL) is an important phenomenon that arises in systems where
a charged surface comes into contact with an electrolyte solution. In this work we describe the
generalization of classic Poisson-Boltzmann (PB) theory for point-like ions by taking into account
orientational ordering of water molecules. The modified Langevin Poisson-Boltzmann (LPB) model
of EDL is derived by minimizing the corresponding Helmholtz free energy functional, which includes
also orientational entropy contribution of water dipoles. The formation of EDL is important in many
artificial and biological systems bound by a cylindrical geometry. We therefore numerically solve the
modified LPB equation in cylindrical coordinates, determining the spatial dependencies of electric
potential, relative permittivity and average orientations of water dipoles within charged tubes of
different radii. Results show that for tubes of a large radius, macroscopic (net) volume charge density
of coions and counterions is zero at the geometrical axis. This is attributed to effective electrolyte
charge screening in the vicinity of the inner charged surface of the tube. For tubes of small radii,
the screening region extends into the whole inner space of the tube, leading to non-zero net volume
charge density and non-zero orientational ordering of water dipoles near the axis.

Keywords: electric double layer; orientational ordering of water dipoles; Helmholtz free energy;
modified Langevin Poisson-Boltzmann model

1. Introduction

The electric double layer (EDL) is a central phenomenon found at the boundary between a charged
surface and an electrolyte solution [1–8]. The counterions are accumulated close to the charged surface
and the coions are depleted from this region, resulting in a non-homogeneous distribution of ions.
The physical properties of the EDL are crucial in understanding colloidal systems, transport of charged
molecules across biological membrane channels or binding of charged proteins to biological surfaces.

Recently, much attention is being devoted to inorganic and organic hollow cylindrical structures
in the nanometer range due to their potential benefit in technology, biology and medicine [9]. Potential
applications range from microelectronics to microfluidics [10]. Ion channels or pores in biological
membranes and blood capillaries are also examples for cylindrical nanotubes.

In some biological systems, the walls of organic nanotubes are charged and in contact with
electrolyte solution, where the primary agents of interaction are electrostatic forces, both between
charged particles and polar water molecules. Due to the surface charge of the walls, counterions and
coions of the electrolyte are, respectively, accumulated and depleted near the walls. At the internal
surfaces concave electrical double layers of cylindrical geometry are formed [11].
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Furthermore, when bound to a cylindrical geometry, the effect of curvature on EDL properties is
significant on small enough scales. Such biological cylindrical channels, where EDL interactions are
important, encompass axons or tunneling nanotubes [12]. When artificially made channels, for example,
those found in nanoporous materials, are used in the manufacture of electrochemical nanocapacitors,
their power and energy densities are dependent on EDL characteristics such as capacitance [13–15].

EDL was first modeled by Helmholtz who assumed that the charged surface attracts the
surrounding point-like counterions and a single layer is formed to screen the charge [16,17].
Later, these ions have been described by a Boltzmann distribution, forming a diffuse layer extending
into the bulk [18,19]. The finite size has been incorporated by Stern with the so-called distance of
closest approach [20] and later developed further by numerous authors [3,21–26]. In recent decades,
EDL has been the subject of numerous analytical and numerical studies from Monte-Carlo methods,
DFT theories and lattice models [3,7,27–44]. Additionally, interest in nanostructured materials [45–48]
requires that theoretical models of EDL are revisited [49–51], also by taking into account the possible
quantum effects [52,53].

It has been shown that close to the charged surface, orientational ordering and depletion
of water molecules may result in a strong decrease in the local permittivity of the electrolyte
solution [54–61]. Considering the orientational ordering of water and finite size of molecules,
Outhwaite and collaborators developed a modified Poisson-Boltzmann’s (PB) theory of EDL composed
of a mixture of hard spheres with point-like dipoles and finite-sized ions [54,62]. Later, Szalai et al. [63]
published a mean spherical approximation-based theory [64] that can reproduce simulation results
for the electric field dependence of the dielectric permittivity of a dipolar fluid in a saturation regime.
The problem was also considered within a discrete lattice statistics model taking into account the
asymmetric size of ions and orientational ordering of water dipoles [44]. Recently, ion-ion and
ion-water correlations were also considered in a mean-field approach [65,66].

In the present paper, we first discuss the relative permittivity of water molecules within a cavity
field model. We then go on to the derivation of a modified Langevin Poisson-Boltzmann (LPB) equation
for point-like ions and water dipoles for planar geometry and then generalize the equations for arbitrary
geometry. In derivation of modified LPB equation we construct a Helmholtz free energy functional
and minimize it to derive the analytical expressions for ion distributions and spatial dependence of
statistical averages orientations of water dipoles. The free energy expression also includes contributions
from configurational entropy of ions and rotational entropy of water dipoles. In the second part of
the paper the modified LPB equation and the corresponding boundary conditions, generalized for
an arbitrary geometry, are utilized to present the numerical solution for a cylindrical geometry with
special emphasis given to very narrow cylindrical channels (Figure 1).

Figure 1. A schematic of a tubular structure with labeled independent coordinate r that can be at
most R.
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2. Relative Permittivity of Water

The dipole moment of an isolated water molecule is around 1.85 D (Debye is 3.336× 10−30 Cm).
In a solution, the dipole moment of a single water molecule differs from an isolated one since each
molecule is also polarized by the electric field of the neighboring water molecules, creating an effective
value of the dipole moment around 2.4 D–2.6 D [67,68]. The body of literature dealing with the
dielectric permittivity of water is voluminous and comprehensive, from analytic models detailing
the state of bound water molecules and water in charged crevices [69,70] to molecular dynamics
simulations with nonlinear response to external electric fields [71,72].

The effect of a polarizing environment can be reproduced in the most simple way by introduction
of the cavity field [61,73–75]. Cavity field is derived by solving the Poisson’s equation of a model water
molecule placed in an outside homogeneous electric field (for a detailed derivation, see Reference [76]).
The present section deals with polarization of water dipoles that follows directly from the cavity field.

The water molecules are described within the modified Kirkwood approach [75] as point-like
dipoles p with magnitude |p| = p at the centres of finite sized spheres, embedded in a medium with
electric permittivity representing the ion-water solution εr (Figure 2) [7,61]. Within this medium,
a spatially homogeneous electric field, E, is present. Due to the built up charge at the interface between
the inside and outside of the sphere, the dipole experiences the so called cavity field Ec. The relative
permittivity of water is given by εr = 1 + Ptot/(ε0E), where Ptot is the total polarization of water
dipoles, E is the magnitude of the spatially homogeneous electric field and ε0 is the permittivity of
vacuum. The total polarization is the sum of electronic polarization, Pe, and orientational polarization
due to the permanent water dipoles P, so that Ptot = Pe + P. The electronic polarization determines
the refractive index of water [51,61] n2 = 1 + Pe/(ε0E) ≈ 1.8 and εr can be expressed as

εr = n2 +
P

ε0E
. (1)

To find the expression for P we must take into account the constant number density of water nw and
the statistical-average orientation of water molecules in the solution [7]:

P = nw p〈cos θ〉. (2)

Here, θ is the angle between p and the cavity field Ec acting on it (see Figure 3). Statistical averaging
is labeled by 〈...〉. To estimate 〈cos θ〉, we must first find the expression for Ec. This involves solving
the Poisson equation for a sphere with electric permittivity n2 embedded in a medium with a relative
permittivity εr described in detail in Reference [76]. Neglecting the short range interactions between
dipoles, the local electric field strength at the centre of the sphere at the location of the permanent
point-like dipole (Figure 2) can be expressed as [7,76]

Ec =
3εr

n2 + 2εr
E. (3)

When the surrounding medium has a relative permittivity much larger than the refractive index of
water εr � n2, it follows that

Ec ≈
3
2

E → Ec ≈
3
2

E. (4)

So far we have neglected the reaction field, which is the field of the point-like dipole at the center of the
cavity itself. This reaction field is directly proportional to the strength of dipole Ereact ∝ p. In vacuum,
in the case of a single isolated water molecule, the external dipole moment is also the experimentally
measured dipole moment of a single water molecule pe given by [7,76]:

pe =
3

n2 + 2
p. (5)
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Here, p is the permanent point-like internal water dipole at the center of the sphere. The energy of an
internal point-like dipole p in a local field Ec is [61]

We = −p · Ec. (6)

Substituting from Equation (4) and Equation (5), we can express the dipole energy as [61]

We = −3
2

(
2 + n2

3

)
p0E cos θ, (7)

We = γp0E cos ω. (8)

Here, p0 is the magnitude of pe and ω is supplementary to θ, as shown in Figure 3. The constant γ

equals [7,61] (see Equations (7) and (8))

γ =
3
2

(
2 + n2

3

)
. (9)

With this in mind, the ensemble average in Equation (2) can be calculated as:

〈cos ω〉 =
∫

cos ωe−(βγp0E cos ω) dΩ∫
e−(βγp0E cos ω) dΩ

= −L(βγp0E). (10)

Here, β is the Boltzmann’s factor equal to β = 1/kT, where kT is the thermal energy. The element of
solid angle is dΩ = 2π sin ωdω, meaning that the integral runs from 0 to π with assumed azimuthal
symmetry. The Langevin function is defined as L(u) = coth u − 1/u. By taking into account
Equations (1), (2), (5) and (10), we can express the relative water permittivity as [7]:

εr = n2 +
nw p0

ε0

(
2 + n2

3

) L(βγp0E)
E

. (11)

In the limit of vanishing electric field strength (E→ 0), the above expression for the relative permittivity
of water yields to the Onsager limit [7]

εr = n2 +
nw p2

0β

2ε0

(
2 + n2

3

)2

. (12)

For p0 = 3.1 D and nw/NA = 55 mol/L, [7,44], where NA is the Avogadro number, Equation (12)
yields the value εr = 78.5 at room temperature. Returning to Equation (2), we can write the final result
for the orientational polarization of water dipoles P, which will be needed for our Helmholtz free
energy minimization in the following section:

P = −nw p0

(
2 + n2

3

)
L(βγp0E). (13)
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Figure 2. A single water molecule is modelled by a sphere with relative permittivity n2, where n = 1.33
is the refractive index of water. A permanent point-like rigid dipole with magnitude, p, is located at the
center of the sphere [61]. Due to the built up charge, the point dipole experiences the so-called cavity
field Ec.

Ec

p

ÑΦcΩΘ

Figure 3. Relation between angles θ and ω. The water internal dipole moment is marked by p, the local
cavity field, Ec, points in the opposite direction of ∇φc.

3. Derivation of the Modified LPB Equation by Minimization of Helmholtz Free Energy

Our model assumes the electrolyte solution is a mixture of point-like monovalent co- and
counterions and permanent water dipoles, representing the water molecules. The expression for
the spatial dependence of the solution permittivity εr(x), arising as a direct consequence of the
spontaneous ordering of water dipoles, can be obtained by using the minimization of the Helmholtz
free energy in a one-dimensional setting with the charged planar surface located at x = 0. In the
minimization procedure, the local electric field at the positions of the hydrated point-like ions in the
electrolyte solution is denoted by E(x), while the local cavity field at the positions of the water internal
point-like dipoles is denoted by Ec(x). We can write the Helmholtz free energy of the system F as (see
also Reference [58]):

F =
ε0n2

2

∫
E2

c (x) dV
︸ ︷︷ ︸

F1

+
ε0n2

2

∫
E2(x) dV

︸ ︷︷ ︸
F2

+kT
[ ∫ (

n+(x) ln
n+(x)

n0
− (n+(x)− n0)

)
dV

︸ ︷︷ ︸
F3

+

+
∫ (

n−(x) ln
n−(x)

n0
− (n−(x)− n0)

)
dV

︸ ︷︷ ︸
F4

+
∫
(λ+n+(x) + λ−n−(x)) dV

︸ ︷︷ ︸
F5

+

+
∫

nw〈P(x, ω) lnP(x, ω)〉ω dV
︸ ︷︷ ︸

F6

+
∫

nwη(x) (〈P(x, ω)〉ω − 1) dV
︸ ︷︷ ︸

F7

]
.

(14)

The thermal energy is given by kT, while n is the refractive index. For greater clarity, we split the
particular contributions to the free energy as marked by the underbraces in Equation (14). The mean
field created by coions and counterions and the water dipoles polarization contribution are given by
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terms F1 and F2, respectively. Mixing entropy free energy contributions of point-like counterions and
coions are accounted for in terms F3 and F4. The constraint of a constant number of ions in the system
is given in F5, where λ+ and λ− are the global Lagrange’s multipliers for counterions and coions.
The free energy that corresponds to orientational entropy of permanent water dipoles is given by F6,
while the last term, F7, gives the local constraint for orientation of dipoles. P(x, ω) is the probability
that a permanent water dipole located at x is oriented at angle ω with respect to the normal to the
charged surface (Figure 3). The brackets 〈...〉ω denote the average:

〈F (x, ω)〉ω =
1

4π

∫ π

0
F (x, ω) 2π sin ωdω. (15)

Here, ω is the angle between the internal dipole moment vector, p, and nφ = ∇φc/|∇φc| (see Figure 3).
We perform variation on the Helmholtz free energy, F, in Equation (14), so that δF = 0. Let us deal with
the variational approach of every contribution in Equation (14) particularly, beginning with F1 and
F2. For clarity of notation, direct spatial dependence will sometimes be omitted, so that for example,
n+(x) ≡ n+.

3.1. Variation Procedure

3.1.1. Electric Fields (F1 and F2)

Since there are no time dependent magnetic fields, we can express the electric fields as potentials
E(x) = −φ′(x), Ec(x) = −φ′c(x), where the prime labels the spatial derivative, and perform a variation
on the electrostatic term pertaining to water dipoles.

δ

(
ε0n2

2

∫
φ′2c dV

)
=

ε0n2

2

∫
2φ′cδ(φ′c) dV. (16)

We can rearrange this term, if we consider the rules of differentiating a function product

(φcδφ′c)
′ = φ′cδφ′c + φcδφ′′c ,

φ′cδφ′c = (φcδφ′c)
′ − φcδφ′′c .

(17)

The integral in Equation (16) can be rewritten as,

ε0n2
∫

φ′cδ(φ′c) dV = ε0n2
(

φcδφ′c|∞0︸ ︷︷ ︸
=0

−

−
∫

φcδ(φ′′c ) dV
)

,

(18)

where the first term on the right-hand side equals 0 at infinity, since we impose the electric potential
there to be constant and equal to 0. Taking into account the Poisson’s equation for the water dipoles,
namely φ′′c (x) = ∇ · P/ε0n2, where P represents the net polarization of the permanent water dipoles,
we get

− ε0n2
∫

φcδ(φ′′c ) dV =
∫

φcδρc dV. (19)

Here, ρc corresponds to the bound charge density due to the dipoles’ polarizations, which is related to
net polarization ρc = −∇ · P. We observe that δ(∇ · P) = ∇ · δP. The integral in (Equation (19)) can
now be rewritten: ∫

φcδρc dV = −
∫

φc(∇ · δP) dV. (20)

The product rule for divergence can be used ∇ · (φcδP) = (∇φc) · δP + φc(∇ · δP), so that the integral
of Equation (20) can now be written differently again:
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∫
φc(∇ · δP) dV =

∫
∇ · (φcδP) dV

︸ ︷︷ ︸
=0

−
∫
(∇φc) · δP dV. (21)

Here, the first integral on the right hand side vanishes by virtue of the divergence theorem; since the
potential far away from the plates is constant and equal to zero. We therefore arrive at the final result

δF1 =
∫
(∇φc) · δP dV. (22)

The polarization, P, is related to the average orientation of all water dipoles (Equation (2)):

P(x) = nw〈P(x, ω)〉ω pnφ. (23)

Here, nw is the number density of water molecules in the solution, p = |p| is the internal point-like
dipole magnitude, nφ = ∇φc/|∇φc| is the unit vector away from the charged plate and 〈P(x, ω)〉ω is
defined by Equation (15) (see Figure 3). Since our case deals with a negatively charged surface (σ < 0),
P points in the direction opposite to the direction of the x-axis and is thus negative (for details see
Reference [76]). Since the variation of P can be written δP(x) = 〈nwpδP(x, ω)〉ω, we arrive at the
variation of F1:

δF1 = nw

∫
〈δP(x, ω)(∇φc) · p〉ω dV. (24)

Similarly, for F2 by taking into account Equation (17), we get

δ

(
ε0n2

2

∫
φ′2 dV

)
=
∫

φδρfree dV. (25)

The Poisson equation is different for free charges (ions): φ′′(x) = −ρfree/ε0n2 = e0(n+(x)− n−(x)).
The variation by φ′′(x) in Equation (25) can be written with macroscopic net volume charge density
ρfree(x), which in turn is the sum of the contributions of the local net ion charges. Performing the
variation on ion charge distribution ρfree(x) gives

δρfree = e0(δn+ − δn−), (26)

finishing the variation of the term F2:

δF2 =
∫

e0φ(δn+ − δn−) dV. (27)

3.1.2. Ion Mixing (F3, F4 and F5)

It makes sense to perform the variation of the ion mixing terms (F3 and F4), together with their
Lagrange multipliers (F5), since the variation δn+ and δn− will be a common term for positive and
negative ions, respectively. It is easily shown from Equation (14) that

δF3 + δF4 + δF5 = kT
∫

δn+(λ+ + ln
n+

n0
) dV + kT

∫
δn−(λ− + ln

n−
n0

) dV. (28)

3.1.3. Dipole Mixing (F6 and F7)

Variation of the terms F6 and F7 is straightforward. Since the bulk water number density, nw,
is taken to be constant, the variation of F6 is

δF6 = kTnw

∫
(〈δP(x, ω) lnP(x, ω) + δP(x, ω)〉ω) dV. (29)

207



Entropy 2020, 22, 1054

The last variation of F7 is performed over the probability, P(x, ω), and the Lagrange multiplier, η(x).
Expanding and applying the product rule, we find that

δF7 = kTnw

∫
(δη(x)〈P(x, ω)〉ω + η(x)〈δP(x, ω)〉ω − δη(x)) dV. (30)

3.2. Euler-Lagrange Equations

Combining the variations of all the integrals given in Equation (14), their sum δF gives
us the variation of Helmholtz free energy. Factoring all the variation terms with respect to
n+(x), n−(x),P(x, ω) and η(x) gives

δF =
∫

dVδn+(x)
[
kT
(

ln
n+(x)

n0
+ λ+

)
+ φe0

]
+
∫

dVδn−(x)
[
kT
(

ln
n−(x)

n0
+ λ−

)
− φe0

]
+

+
∫

dVnw〈δP(x, ω)
(
∇φc · p +

lnP(x, ω) + η(x) + 1
β

)
〉ω + kT

∫
dVnwδη(x)

(
〈P(x, ω)〉ω − 1

)
.

(31)

The volume differentials in a planar geometry are dV = S dx. Since the minimization condition
demands δF = 0, the expressions multiplied by δn+(x), δn−(x), δP(x, ω) and δη(x) in the last
equation must equal zero, resulting in a system

kT
(

ln
n+(x)

n0
+ λ+

)
+ φe0 = 0, (32)

kT
(

ln
n−(x)

n0
+ λ−

)
− φe0 = 0, (33)

Ec p cos ω +
lnP(x, ω) + η(x) + 1

β
= 0, (34)

〈P(x, ω)〉ω − 1 = 0. (35)

Here, we write β = 1/kT and expand the dot product ∇φc · p = Ec p cos ω (see Figure 3). Solving
Equations (32) and (33), we obtain the ion spatial distributions

n+(x) = n0 exp
(
− βe0φ− λ+

)
, (36)

n−(x) = n0 exp
(

βe0φ− λ−
)

. (37)

The boundary conditions state that φ(x → ∞) = 0 and n+,−(x → ∞) = n0, which renders λ+ = λ− = 0.
We may now turn our attention to the variation of permanent water dipoles orientation. Solving for
P(x, ω), Equation (34) gives

P(x, ω) = Λ(x) exp
(
− βEc p cos ω

)
, (38)

where Λ(x) = exp(−η(x)− 1). Substituting the cavity field Ec by E (Equation (4)) and dipole moment
magnitude p by p0 (Equation (5)) gives

P(x, ω) = Λ(x) exp
(
− β

3E
2

(2 + n2

3

)
p0 cos ω

)
, (39)

where p0 is the magnitude of pe. The final result is expressed using the constant γ defined in
Equation (9):

P(x, ω) = Λ(x) exp
(
− βγEp0 cos ω

)
. (40)

We can now evaluate the average internal dipole moment by integrating over mean orientations
(considering Equation (23)),
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p〈cos ω〉 = p0

(2 + n2

3

)
〈cos ω〉

=

∫ π
0

(
2+n2

3

)
p0 cos ω exp (−βγEp0 cos ω) dΩ

∫ π
0 exp (−βγEp0 cos ω) dΩ

= −p0

(
2 + n2

3

)
L (βγEp0) .

(41)

The orientational polarization of water is thus (see Equations (2) and (5)):

P(x) = nw p〈cos ω〉

= −nw p0

(
2 + n2

3

)
L (βγE(x)p0) . (42)

If we insert the above result and the ion distribution functions (Equations (36) and (37)) into the average
microscopic charge density equation ρ(x) = ρfree(x)− dP/dx [61,77], where ρfree is the contribution of
the net ion charges Equations (26), (36) and (37) and P(x) is the polarization due to partially oriented
water dipoles, we get the expression for ρ(x) in a one-dimensional case:

ρ(x) = −2e0n0 sinh (βe0φ(x)) + nw p0

(
2 + n2

3

)
d

dx
(L (βγE(x)p0)) . (43)

Inserting the above expression for average microscopic volume charge density ρ(x) into the
Poisson’s equation,

φ′′(x) = −ρ(x)
n2ε0

, (44)

we get the modified LPB differential equation for the electric potential φ(x):

φ′′(x) =
1

n2ε0

[
2e0n0 sinh (βe0φ(x))− nw p0

(
2 + n2

3

)
d

dx
(L (βγE(x)p0))

]
, (45)

where φ′′(x) is the second derivative of the electric potential φ(x) with respect to x and E(x) = −φ′(x).
Equation (45) can be factorized via a product rule if we take into account that the Langevin function is
odd and its derivative is L′(u) = 1/u2 − 1/ sinh2 u in the following form [7]:

d
dx

[
ε0εr(x)φ′(x)

]
= 2e0n0 sinh (βe0φ(x)), (46)

εr(x) = n2 + nw
p0

ε0

(
2 + n2

3

) L(βγE(x)p0)

E(x)
, (47)

where εr(x) is the relative permittivity (Equation (11)). This modified Langevin Poisson-Boltzmann
(LPB) differential equation (Equation (46)) is subject to two boundary conditions. The first boundary
condition arises from the electro-neutrality of the system, which assumes that the total net charge of
the system is zero, hence ∫

ρfree(x) dV − σS = 0, (48)

where σ is the negative membrane surface charge density, S is the total membrane surface area
and ρfree(x) = −2e0n0 sinh (βe0φ(x)) is the macroscopic (net) volume charge density of coions and
counterions. Since the macroscopic volume charge density is only dependent on x (Equation (43)) and
the differential dV = S dx, Equation (48) may be rewritten

∫ ∞

0
2e0n0 sinh (βe0φ(x)) dx = −σ. (49)
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If we integrate Equation (45) once over the whole system, we get

φ′(x = 0) = − 1
n2ε0

[
σ + nw p0

(
2 + n2

3

)
· L(βγEp0|x=0)

]
. (50)

The second boundary condition states that the electric potential far away from the charged surface
(in the bulk) is constant φ′(x → ∞) = 0, rendering L(βγEp0|x→∞) = 0. The modified LPB equation
(Equation (46)) was derived in one dimension, but can be rewritten in a more general form to apply to
an arbitrary three-dimensional geometry. In three dimensions, the steps are analogous and discussed
in detail in a previous work [58], where a three-dimensional Lagrangian was derived for a model of
finite-sized ions. With this in mind, the modified LPB equation (Equation (46)) can be rewritten:

∇ ·
[
ε0n2∇φ(r)

]
+ nw p0

(
2 + n2

3

)
∇ ·

(
nφ L (βγEp0)

)
= 2e0n0 sinh (βe0φ(r)), (51)

where nφ = ∇φ/|∇φ| = ∇φ/E. We may factor the last equation, so that

∇ ·
[
ε0

(
n2 +

nw p0

ε0

(
2 + n2

3

) L (βγEp0)

E

)
∇φ(r)

]
= 2e0n0 sinh (βe0φ(r)). (52)

This modified LPB equation can be written even more compactly, considering the definition of spatially
dependent permittivity εr(r) given by Equation (47) (for details, see Reference [58]):

∇ · [ε0εr(r)∇φ(r)] = 2e0n0 sinh (βe0φ(r)), (53)

εr(r) = n2 + nw
p0

ε0

(
2 + n2

3

) L(βγE(r)p0)

E(r)
. (54)

Here, ρfree(r) is the macroscopic (net) volume charge density of coions and counterions.
A corresponding three-dimensional variant of the boundary condition (Equation (50)) is

∇φ(r = rsurf) = −
1

n2ε0

[
σnφ + nφnw p0

(
2 + n2

3

)
· L(βγE(r)p0(r)|r=surf)

]
. (55)

Rearranging, it follows that

∇φ(r = rsurf)
[
1 +

nφ

∇φ(r = rsurf)

nw p0

n2ε0

(
2 + n2

3

)
· L(βγE(r)p0(r)|r=surf)

]
= − σ

n2ε0
nφ. (56)

Evaluating the second expression on the left hand side of the last equation gives

nφ

∇φ(r = rsurf)
=
∇φ(r = rsurf)

|∇φ(r = rsurf)|
1

∇φ(r = rsurf)
=

1
E(r = rsurf)

. (57)

Combining this simplification with Equation (42), Equation (55) becomes

∇φ(r = rsurf)εr(r = rsurf) = −
σnφ

ε0
. (58)

Here we also take into account the expression for εr (Equation (47)). We see that the term
inside the square brackets on the left-hand side of Equation (56) is precisely the definition of the
relative permittivity on the surface of charged membrane εr(r = rsurf) (Equation (54)), yielding the
general result

∇φ(r = rsurf) = −
σnφ

ε0εr(r = rsurf)
. (59)
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4. Results

Figure 4 shows the dependency of the calculated macroscopic (net) volume charge density of the
electrolyte solution inside the nanotubes (ρfree(r)) on the radial distance from the geometrical axis of
the tube. It can be seen in the figure that for larger radii of the inner cross-sections of the nanotubes
(R), the value ρfree at the geometrical axis of the tube is zero, which means that the number densities of
counterions and coions there are equal and the electric potential is constant, that is, zero in our case
(see the right panel in Figure 5).

Figure 4. Macroscopic (net) volume charge density of coions and counterions (ρfree) as a function of
the radial distance from the geometrical axis of tube (r) calculated for 4 values of the inner tube
diameter R: 0.5 nm, 1.0 nm, 2.5 nm and 5.0 nm. The bulk concentrations of counterions and
coions n0/NA = 0.15 mol/L and σ = −0.25 As/m2, T = 298 K, constant concentration of water
nw/NA = 55 mol/L, optical refractive index n = 1.33 and magnitude of external dipole moment of
water p0 = 3.1 Debye, where NA is the Avogadro number.

Figure 5. Space dependence of electric potential in the cross-section of the tube interior calculated for 2
values of the inner tube diameter R: 1.0 nm and 5.0 nm. The values of the model parameters are the
same as given at Figure 4.

On the contrary, for smaller values of the nanotube radius R, the value of ρfree at geometrical axis
of the nanotube is not zero (Figure 4). Accordingly, for small values of the radius of the inner nanotube
also the gradient of the electric field (Figure 6) and the electric potential at the nanotube geometrical
axis are not zero (left panel in Figure 5). Hence, the bulk condition of the equal number densities of
counterions and coions is fulfilled outside the interior of the nanotube.
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Figure 6. The magnitude of electric field strength as a function of the radial distance from the
geometrical axis of tube (r), calculated for 4 values of the inner tube diameter R: 0.5 nm, 1.0 nm,
2.5 nm and 5.0 nm. The values of the model parameters are the same as given at Figure 4. The narrow
nanotube before and after entrance of the nanoparticles.

Figure 7 shows the dependency of the average orientation 〈cos (ω)〉ω and the relative permittivity
εr on the radial distance from the geometrical axis of tube (r), calculated for four different values of
nanotube inner radius R. It can be seen that for small radii, R, the average orientational of water dipoles
is relatively strong also in the vicinity of geometrical axis of the tube, while for larger R the average
orientation of water dipoles is strong only in the region near the charged inner surface of the tube.

Figure 7. Average orientation 〈cos (ω)〉ω and relative permittivity εr as a function of the radial distance
from the geometrical axis of tube (r), calculated for 4 values of the inner tube diameter R: 0.5 nm,
1.0 nm, 2.5 nm and 5.0 nm. The values of the model parameters are the same as given at Figure 4.
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5. Discussion and Conclusions

In this paper, we derived a modified Langevin Poisson-Boltzmann (LPB) model and the modified
LPB equation to theoretically describe the electric double layer (EDL) for a monovalent electrolyte
solution inside very narrow nanotubes with a negatively charged inner surface. In the modified LPB
approach, the electronic polarization of the water is taken into account by assuming a permanent
dipole embedded in the center of the sphere with a volume equal to the average volume of a water
molecule. The effect of a polarizing environment is reproduced by introduction of the cavity field
in the saturation regime [7,61,76]. In past EDL studies, treatments of cavity fields and structural
correlations between water dipoles were limited to cases of relatively small electric field strengths,
far away from the saturation limit of polarization and orientational ordering of water molecules
[73–75]. High magnitudes of electric field strength were later added in several works [44,61,63,78].
A commonly oversimplified assumption when theoretically describing the EDL is the assumption of a
surface charge density-independent relative permittivity in the inner (Stern) layer. Due to orientational
ordering of water dipoles, the relative permittivity of the Stern layer depends on the electric field
strength, that is, on the surface charge density (σ) of the electrode [51,79–82]. Furthermore, fitting the
model curves with a range of free parameters to the experimental points [83] cannot prove that the
Stern layer capacitance and permittivity is σ-independent. The decrease in the relative permittivity
close to the charged surface (electrode) is obviously partially the consequence of orientational ordering
of water dipoles close to the saturation regime or in the saturation regime as shown theoretically in
References [6,27,44,54,58,59,61–64,80,82].

Within a recently presented phenomenological approach it is claimed that close to the charged
surface, almost all water molecules belong to water shells around the ions, while the free water
molecules are excluded [83]. The results of simulations clearly refute this fact [84] by showing increased
water ordering in the direction towards the charged surface (including the region close to the charged
surface) (Figure 7, upper panel) even for high salt concentrations [84], in quantitative agreement
with mean-field theoretical predictions [7,82]. For example, for a magnitude of 0.16 As/m2 surface
charge density, there is practically no difference in the orientational ordering and space distribution of
water dipoles close to the charged surface between water with and without NaCl (of concentration
500 mmol/L) [84]. In general, for magnitudes of surface charge density up to around 0.3 As/m2, where
the mean-field approach can still be justified [7,82], there is only a weak quantitative influence of salt on
the profile of orientational ordering of water dipoles in Stern and diffuse layers, but not qualitative [84].
Note that the multi-layering of water predicted in simulations [84] cannot be predicted within our
mean-field approach [44,61] as well also not in the oversimplified phenomenological models [83].

Besides the saturation in polarization/water dipole orientation at high magnitudes of the
electric field strength, the important thing to consider in the EDL studies is also the saturation
in the counterion concentration near the charged surface due to the finite size of ions. These steric
effects were first predicted in the Wicke-Eigen’s model (also called the Bikerman’s model) and their
modifications [3,5,22,25,27,35,85,86]. For finite sized ions, the dielectric permittivity profile in the
vicinity of a charged surface is modulated by the depletion of water dipoles at the charged surface due
to accumulated counterions [58,82]. In the modified LPB model [7,59], described in the present paper,
these steric effects were not taken into account.

The described decrease in the relative permittivity relative to its bulk value in the present paper is
the consequence of strong orientational ordering of the water dipoles in the vicinity of the charged
surface (Figure 7). Contrary to our results it is claimed in Reference [87] that the relative permittivity is
increased in direction to the charged surface. As pointed out in publications of different authors the
predicted increase of relative permittivity near the charged surface in Reference [87] is unphysical [6,59]
and defies the common wisdom in electrochemistry [56]. In addition, the experiments report just the
converse as predicted in Reference [87], that is, the experiments indicated the decrease of relative
permittivity near the charged surface [88,89]. The predicted substantial increase of relative permittivity
in the inner part of the double layer near the charged surface in Reference [87] is due to arise in
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the dipole density near the surface as pointed out in Reference [56]. This unphysical result [6]
is the consequence of inconsistency of so-called dipolar PB theory presented in Reference [87] as
indicated in Reference [59]. Namely, it was shown [59] that the dipolar PB theory for point-like ions in
Reference [87] assumes an orientationally averaged Boltzmann factor for spatial distribution function
for water dipoles, which is however not compatible with the assumption of point-like ions. Energy
dependent spatial distribution of water dipoles cannot be taken into account simultaneously with the
assumption of point-like ions, but only if the finite size of molecules in the electrolyte solution are
taken into account [35,61]. This means that the dipolar PB model presented in Reference [87] is not
a self-consistent model and consequently predicts unphysical results which are not compatible with
experimental results even qualitatively, as noticed in References [6,56,59] and other publications.

The other important difference between our modified LPB model and the theoretical model
presented in Reference [87] is that our value for (external) water dipole moment 3.1 D [7,44,51,61]
is considerably smaller than the corresponding value 4.86 D used in Reference [87]. The value 3.1
D is closer to the experimental values of the effective dipole moment of water molecules in clusters
(2.7 D) and in bulk solution (2.4–2.6 D) (see for example Reference [68]). The value 4.86 D is so large in
order to compensate for the cavity field [6,61,74,75,78] that is not taken into account in Reference [87],
as noticed also in Reference [6], but is considered in the present modified LPB model. The model
value 3.1 D can be additionally decreased by taking into account structural correlations between water
dipoles [60,78]. The ion-ion and ion-water correlations were taken into account also in the mean-field
models of References [8,65,66].

It has been shown that for finite-sized ions the drop in the number density of water near a charged
surface results in an additional decrease of permittivity [7,58]. A further generalization of the modified
LPB model with steric effects taken into account within a lattice-statistics model of a modified LPB is
found in References [44,51,82]. By taking into account asymmetric finite size of ions the modified LPB
equation was generalized to (modified Langevin Eigen-Wicke model) [44,51,82]:

d
dx

[
ε0εr(x)

dφ

dx

]
= 2e0nsn0

sinh (βe0φ)

DA(φ, E)
, (60)

where εr(x) is the spatial dependence of relative permittivity:

εr(x) = n2 + n0wns
p0

ε0

(2 + n2

3

)(F (γp0Eβ)

DA(φ, E)E

)
(61)

and
DA(φ) = α+n0e−e0φβ + α−n0e+e0φβ +

n0w

γp0Eβ
sinh (γp0Eβ). (62)

Here, the parameters α+ and α− are the number of lattice sites occupied by a single positive and
negative hydrated ion, respectively, where a single water molecule is assumed to occupy just one lattice
site. The reduced number density of lattice sites ns/NA = 55 mol/L is equal to the concentration
of pure water [44,51,82]. The symbol n0w stands for the bulk number density of water molecules.
The function F (u) is defined as F (u) = L(u) sinh (u)/u, where L(u) is the Langevin function.

The results of the present paper are important when considering electric fields within artificial
as well as biological channels containing an electrolyte. Much attention has recently been given to
understanding tunneling nanotubes (TNTs), small tubular structures that drive cell communication
and spreading of pathogens [12]. Not yet fully understood, it is thought that these tubular structures
initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic
membrane nanodomains. Further research is needed to clarify the role of EDL in the inception of these
structures, since cytoplasmatic proteins and other elements are electrically charged. When such motor
proteins are complemented by protruding cytoskeletal forces provided by the polymerization of f-actin,
TNT formation is crucial in determining cell morphology, sometimes even leading to endovesiculation
of the red blood cell membrane [90–92]. Recently, within a molecular mean-field approach and taking
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into account the asymmetric size of ions, polarization of water, and ion-ion and ion-water correlations,
the ionic and water flows through biological ion channels was theoretically considered [65,66].

To conclude, in the present paper we started from a mean-field Helmholtz free energy functional,
presented a thorough derivation of the modified LPB equation and model by minimization of the
system free energy for the case of planar geometry. A special emphasis was devoted to orientational
ordering of water dipoles, taken into account in the expression for the free energy by rotational
entropy. Our approach provides a distinct analytical description of the interplay between mean-field
electrostatic and entropic effects arising from the mixing entropy of ions and rotational entropy of
water dipoles in EDL.

The derived modified LPB equation in planar geometry is then generalized for arbitrary geometry
and then used to calculate numerically the average orientation of water dipoles, relative permittivity
εr, magnitude of electric field strength, electric potential and the macroscopic (net) volume charge
density of coions and counterions for a cylindrical geometry (in dependence on radial distance from
the center of the tube).

Among other things it is indicated that in the saturation regime close to the charged surface,
where the magnitude of electric field is very large (Figure 6), strong orientational water dipole ordering
(Figure 7, upper panel) may result in a strong local decrease of permittivity (Figure 7, lower panel).
The relative permittivity of the electrolyte solution decreases with increasing magnitude of the electric
field strength.

Most interesting, we have shown that in the case of very narrow nanotubes the macroscopic (net)
volume charge density of coions and counterions (ρfree) at geometrical axis of the nanotube is not
zero (Figure 4). In addition, in narrow nanotubes the water dipoles are partially oriented also close to
the axis of the nanotube (Figure 7, upper panel), as schematically shown in (Figure 8). The potential
importance of this phenomena for the transport through the narrow channels with the charged inner
surface, specific only for very narrow nanotubes, should be investigated in the future. The channels in
biological membranes can be an interesting example of such systems.

Figure 8. A schematic figure of a radial arrangement of water dipoles inside a very narrow cylindrical
nanotube. The inner surface of the tube is negatively charged.

6. Materials and Methods

To solve Equation (52), a partial differential equation, we have used Comsol Multiphysics and
its electrostatics stationary solver. The mesh consists of 4946 elements, the boundary condition
(Equation (59)) was applied on the 2D cross-section of the nanotube and the geometry was solved
for 10293 DoFs. The numerical results were solved using a stationary nonlinear solver (Automatic
(Newton)), which implements a damped Newton’s approach, with a minimum damping factor of 10−6.
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Abstract: Biological ion channels are fundamental to maintaining life. In this manuscript we apply
our recently developed statistical and linear response theory to investigate Na+ conduction through
the prokaryotic Na+ channel NaChBac. This work is extended theoretically by the derivation of ionic
conductivity and current in an electrochemical gradient, thus enabling us to compare to a range of
whole-cell data sets performed on this channel. Furthermore, we also compare the magnitudes of the
currents and populations at each binding site to previously published single-channel recordings and
molecular dynamics simulations respectively. In doing so, we find excellent agreement between theory
and data, with predicted energy barriers at each of the four binding sites of ∼4, 2.9, 3.6, and 4kT.

Keywords: ion channel; statistical theory; linear response; ionic transport; NaChBac

1. Introduction

Biological channels are natural nanopores that passively transport ions across cel-
lular membranes. These channels are of enormous physiological and pharmacological
importance, and so investigation of their transport properties is an area of great interest
and research. For example, Na+ channels play a key role in the generation of the action
potential [1–3]. Furthermore, artificial nanopores are primarily designed for their transport
functionality which can be informed by our understanding of biological channels.

A primary function of these channels is their ability to discriminate effectively between
ions, whilst still conducting them at high rates. An example is NaChBac from Bacillus
halodurans, which is the first bacterial voltage-gated sodium channel (Nav) to have been
characterised, and thus is a prokaryotic prototype for investigating the structure–function
relationship of Nav channels [4]. It conducts ions at rates of 107 s−1 despite having
permeability ratios favouring Na+ over K+ and over Ca++. Recently we reported these
values to be at least 10:1 and 5:1 respectively [5]. In fact from the reversal potential the
Na+/K+ permeability ratio is found to be 25:1, which is closer in agreement but still less
than [6] who found the ratio to be 170:1. This contrasts with potassium channels such
as KcsA where selectivity is reversed, favouring K+ over Na+ at 1000:1 [7]. The channel
itself is formed from several coupled subsystems, but we focus on the selectivity filter (SF),
which is the primary region responsible for selectivity between ions. The SF can readily
be mutated to generate a range of conducting (and non-conducting) channel types which
exhibit different selectivity and conductivity properties compared to those exhibited by the
wild-type (WT) channel (see [5]).
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The SF has the amino acid (Here: T = threonine, L = Lecucine, E = glutamte, S = serine,
W = tryptophan, A = alanine and x highlights where the sequence is not conserved and can
be several possible amino acids.) sequence TLESWAS, and thus shares the TxExW sequence
with eukaryotic calcium channels [6]. Unfortunately, a crystal structure of NaChBac is
not available. However, Guardiani et al. [8–10] applied homology structural modelling
to produce a structure of NaChBac that we will use in this publication. We conduct a
variety of different Molecular Dynamics (MD) simulations (see Figure 1) to explore its
properties. During simulation the SF was found to have an average radius Rc ∼ 2.8 Å,
length Lc ∼ 12 Å and 4 binding sites for conducting Na+ ions labelled S1–4 from the
intra- to the extra-cellular side respectively. The conduction mechanism was found to
involve knock-on between at least two, if not three, ions. Each binding site has a volume,
as estimated in Table 1, whose sum gives the total volume of the pore Vc. The first two sites
are formed at the backbone carbonyls of the threonine and leucine residues respectively.
S1 is wider than the average pore radius with diameter 3.06 Å, but S2 has the average
pore radius of 2.8 Å. As a result, these two sites accommodate the primary hydration shell
with around 5–6 waters per ion, and thus prevent bare ion-protein interaction. S3 is of
approximately the same size as S2, but the ion only interacts with four waters because it
also interacts directly with the glutamate ring. The fourth site is formed on the extracellular
side from the side chain of the serine residues and a sodium ion here has a 40% probability
of interacting with one or two serines and a 60% probability of being fully hydrated by
water. This is in stark contrast to the narrower potassium channels where K+ ions are
almost fully dehydrated as they permeate the pore. The Na+ occupancies at each site have
been determined by molecular simulation using 0.5 M bulk solutions. Both S1 and S4 have
energy minima that are higher in energy than S2,3 and so are less likely to be occupied. In
fact the average occupancy of S1,4 is only around half that of the most occupied site S2 (see
Figure 7c).

Figure 1. Structure of NaChBac [8] visualised using chimera [11]. (a) Yellow ribbons denote the
protein spanning a lipid membrane (orange strands) between two aqueous ionic solutions. The
selectivity filter (SF) is located within the box and highlighted by the red ribbons. The charged
glutamates in the SF are highlighted green, and Na+ (purple), and Cl− (blue) ions alongside water
molecules are included. (b) Structure of the SF for NaChBac with each amino acid highlighted and
labelled by colour. The positions of the binding sites are included and labelled S1–S4 from the intra-
to the extra-cellular side respectively. In (c) we show the lattice model used to define the system.
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Table 1. Table of averaged radii and length of each binding site, obtained through the homology
based structural model of NaChBac from [8]. The corresponding surface areas and volumes were
estimated by assuming that each site was spheroidal in shape. The binding site is identified from a
minima in the potential of mean force (PMF), and its length is estimated from the distance between
maxima in the PMF. The radius is estimated from the average calculated radius in this region. These
lengths and radii are given in the table.

Site Estimated
Average Radius

Estimated
Length

Estimated
Surface Area

Estimated
Volume

S1 3.06 Å 3 Å 116 (Å)2 117 (Å)3

S2 2.77 Å 4 Å 126 (Å)2 129 (Å)3

S3 2.75 Å 3 Å 90 (Å)2 80 (Å)3

S4 2.77 Å 2 Å 78 (Å)2 63 (Å)3

Mean 2.8 Å 3 Å 103 (Å)2 97 (Å)3

These results are consistent with the results of MD simulations that have been per-
formed on a variety of similar bacterial NaV channels. Chakrabarti et al. [12] conducted a
21.6 µs-long MD simulation of NavAb, observing a variable number of ions in the pore,
mainly two or three (rarely four) and spontaneous and reversible ionic diffusion along the
pore axis. Ulmschneider et al. [13] simulated the open state of the pore domain of NavMs
with a voltage applied, and calculated the conductance which at ∼33pS was in agreement
with experimental results.

The SF has a nominal charge of −4e arising from the fixed gluatamte ring. However,
determining the exact charge contribution from these pores is challenging due to the potential
partial charges from remaining uncharged amino acids and the protonation that may occur at
physiological pH levels. That latter is suspected to be true in voltage-gated Ca++ channels
which share a ring of glutamates [14,15]. As a result, protonation of the glutamate ring in Navs
has been studied fairly extensively [5,16–19]. Corry and Thomas [17] investigated the pore
when only a single glutamate residue was protonated. The slightly protonated pore showed
little difference in the potential of mean force vs. the normal pore. However, the doubly-
protonated state showed a larger barrier for permeation to the pore, and reduced affinity for
ion binding. Boiteux et al. [18] found a slight difference in the average number of Na+ ions
in the SF at 2.3 and 2.0 in the fully deprotanated and slightly-protonated states, respectively;
however, both states were conducting. In simulations with two protonated residues, the
authors observed the existence of a non-conducting state forming as a result of stable hydrogen
bonds between the glutamates. As the number of protonated residues increased to three
and four, Chloride Cl− ions started to bind and the pore became non-conductive for Na+.
A similar study with shorter biased simulations suggested that protonation of a single Glu
residue would diminish the conductance [16]. Meanwhile, a recent [19] study found that,
at physiological pH, the pore may exist in the full deprotonation state but that it could also
exist in the single or double-protonation states as well. Furthermore, the calculated pKa value
decreases with each additional bound ion, implying that the presence of ions inside the pore
leads to protonation of the SF. Thus, in [5] we introduced the notion of an effective charge
describing the total charge in the pore as felt by the conducting ion, and its values were
estimated by fitting Brownian dynamics simulations to experimental data for wild-type (WT)
NaChBac and for a large selection of mutants. In our earlier work we studied NaChBac and
its mutants theoretically and by Brownian dynamics simulation [5,20].

In earlier publications [5,21], we reported studies of Na+ and Ca++ permeation in
NaChBac, using Brownian dynamics models. The key result of modelling was that ionic
conduction is analogous to electron transport in a quantum dot. As a function of the value
of fixed charge, we observed a set of resonant conduction peaks separated by regions of
blockade where the ions could not enter/leave the pore. This phenomenon is called ionic
Coulomb blockade (ICB) [22], by analogy with (electronic) Coulomb blockade in quantum dots,
for which the physics and the governing equations are essentially the same. Each resonant
peak corresponds to an n → n + 1 barrier-less transition, which is of the knock-on kind
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when n > 0 [23], and the regions of blockade are when the charge carrier cannot pass. The
occurrence of ICB has also been confirmed experimentally in artificial nanopores [24,25].
Although the ICB model explained immediately the role of the fixed charge, and accounted
convincingly for the effect of mutations in which the fixed charge is altered, it is only a good
approximation when electrostatic forces are dominant, that is, for divalent and trivalent ions.
Furthermore, it does not contain affinities in the pore or excess chemical potentials in the
bulk and so it cannot describe selectivity between ions of the same charge. It is also not
connected to the results of Molecular simulation (MD) or the structure, and it cannot describe
the absolute magnitude of the permeating current.

To provide a more accurate description, we needed a more fundamental model. We
therefore developed a kinetic model [20], to investigate Na+ vs. K+ selectivity. This model
was based on a simplified two site model of NaChBac and it was made self-consistent
through the form of its transition rates. These were chosen such that the kinetic model and
an earlier statistical and linear response theory had the same form of conductivity at low
voltages. However, this did not include the complete structure or any comparison to results
from MD simulation. It also did not include the binding site conductivities, or account for
the correlations between ions at different binding sites. These two properties are expected
to be important for fully describing the permeation properties and making quantitative
predictions of the function of biological channels because it is known that small mutations
in structure can lead to significant changes in function, for example, [5,26,27]. This was
shown in [28], where we introduced a statistical and linear response theory fully accounting
for structure and the properties of each binding site, and used it to analyse a point mutation
in KcsA exploring the reasoning behind its drop in conductivity and occupancy.

In the present paper, we apply this recently developed statistical and linear response
theory [28] to NaChBac with a more accurate model based on the structure introduced
in [8]. The theory will include all four binding sites and their estimated volumes and
surface areas, and the excess chemical potentials at each site. Furthermore, we extend this
theory by deriving the conductivity at linear response in the presence of an electrochemical
gradient. The theory is successfully compared to experimental single-channel and whole-
cell recordings (some of which published in [5,20]), and results from MD simulations [8].
Finally, the theory allows us to make quantitative predictions of the current-concentration
and current-voltage relations, and the effective open probability of the channel; as a function
of the energy profile, experimental bulk concentration and structure of the pore.

In what follows, with SI units e is the unit charge, T the temperature, z the ionic
valence, and k Boltzmann’s constant.

2. Experimental Methods and Data

To apply the theory to NaChBac, and to compare with experimental recordings and
make predictions, we consider two experiments. For further details of the experimental
methods, including generation of the mutant channels and their expression, as well as
details of the electro-physiological experiments, we refer to [5], and here we only present a
concise summary. The first of these data sets is single-channel current-voltage recordings
originally published in [20]. In these experiments identical bath and pipette solutions
containing (in mM: 137 NaCl, 10 HEPES and 10 glucose, pH 7.4 adjusted with 3.6 mM
NaOH) were used. Single-channel recordings are possible because Na+ is the preferred
substrate with sufficiently high conductance to provide a single-channel current amplitude
which significantly exceeded noise (i.e., a favorable signal-to-noise ratio). In Figure 2a
we plot the current-voltage curve, and in (b,c) we provide a current-time trace made at
+100 mV. Trace (c) begins at the end of trace (b). There are at least three active channels
passing currents with the magnitudes shown by the dashed lines.
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Figure 2. (a) Single channel currents recorded from NaChBac (originally published in [20]). (b,c) The
original recording made at +100 mV in the 140 mM NaCl solution; the trace contains contributions
from at least three active channels; and (c) represents a continuation in time of trace (b). The dashed
lines show the amplitude level per channel, the numbers on the ordinate denoting the number of
open channels.

In the second series of experiments, we performed whole-cell current measurements
through NaChBac, in different Na+/K+ concentrations (see Figure 3). The black and
purple curves in (a) (and the curve in (c)), that is, with 0M and 0.14M of NaCl solutions
in the bath solution respectively (or 0.1M and 0M of KCl), were published in [5]. An
identical experiment on a mutant was performed and described in [20]. In each case, the
pipette solution contained (in mM) 120 Cs-methanesulfonate, 20 Na-gluconate, 5 CsCl,
10 EGTA, and 20 HEPES, pH 7.4 adjusted with 1.8 CsOH, meanwhile the bath solution
contained (in mM); 137 NaCl, 10 HEPES and 10 glucose, pH 7.4 (adjusted with 3.6 mM
NaOH). Permeability to K+ was investigated by incrementally replacing the NaCl bath
solution with an equivalent KCl solution such that the total ionic concentration was fixed
at 140 mM. Total current across the cell was then normalized and, because one can assume
that the total number of channels, their type and their open probability is conserved in
each cell for the duration of the recording, it can effectively be modeled as a single channel.
This normalization was with respect to the absolute value of peak current and is shown in
Figure 3a. In (b) we show the current-concentration behaviour at −10 mV, which corre-
sponds to the peak current. The reversal potential is plotted in (c); in cases where inward
current was not detected, estimated values were determined from the voltage at which
outward current could be detected. Finally, in (d) and (e) we provide the corresponding
current-time traces.

Since NaChBac is highly impermeable to K+ and Cl− we have neglected the presence
of these ions in the pore and in our theory we shall simply consider a single ion species,
that is, Na+ inside the pore.

Comparison of NaChBac Structures

In this subsection we shall compare the structure of NaChBac from the homology model
which was used in [8], and the Cryo-EM structures 6vx3.pdb and 6vwx.pdb from [4].

In Figure 4 we provide an overlay of the homology model (yellow ribbons) and the
6vx3.pdb structure (green ribbons), using all of the backbone atoms. (a) provides the
overlay of the whole pore and (b) provides a snap-shot of the selectivity filter (SF). From
visual inspection there is clearly good agreement between the structures. In the pore the
root-mean-square distance between structures (computed using the backbone atoms) is
17.47 Å and 7.14 Å in the SF.
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Figure 3. (a) Mean peak whole cell voltage-current relationships from cells expressing NaChBac
channels, obtained in the bath solution with decreasing Na+ content ranging from 140 mM to 0 mM
(with NaCl being replaced with equimolar KCl). The peak currents were determined from time vs.
current traces (examples shown in parts (d,e). Peak currents are normalized to the peak current
recorded from the same cell in 140 mM NaCl-containing solution in the absence of K+; error bars
represent the standard error of the mean (SEM), determined from at least 4 independent cells. In
(b) we show mean reversal potentials (±SEM) determined from data plotted in part (a). In cases
where inward current was not detected, the reversal potential was assumed to be the voltage at
which outward current could be detected. In (c) we plot the mean (±SEM) peak whole cell current
(determined from data plotted in part a) as a function of Na concentration. Parts (d,e) are examples
of time-dependent NaChBac currents recorded in 140 mM NaCl (d) and 126 mM NaCl and 14 mM
KCl (e).

Figure 4. Comparison of NaChBac structures from the homology model (yellow) introduced in [8]
and the Cryo-Em structure in green (6vx3.pdb) from [4]. (a) represents the whole pore and (b) is a
snapshot of the (half) selectivity filter.

To further explore these structures we considered the pore radius which can be
compared using the HOLE program. In Figure 5 we show a comparison between structures.
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The homology model is more open than the Cryo-EM structures (6vx3 and 6vwx) both
at the level of the cytosolic mouth (minimum centered on z = −15 Å) and in the region
of the SF (around z = 0–12 Å). This is confirmed by volume filling representations of the
pores which show a bottleneck close to the cytosolic mouth of 6vx3. The SF of 6vwx is
narrower because the SF is occupied by two Na+ ions, and these attract the side chains
of the glutamates and the backbone carbonyls of the leucines, moving them towards the
centre of the pore. Hence, there are two distinct minima in the pore radius which cannot be
spotted in the radius profile of the homology model because this structure was obviously
empty. However, the fact that the SF in 6vx3 (whose SF is empty) is also narrower than that
of the model suggests that the structural differences might reflect different functional states
in the channel cycle. In fact in the paper [4], Gao comments on the narrow radius of the
cytosolic mouth, and on the arrangement of the Voltage Sensor Domain, suggesting that
these structures might represent an inactivated conformation of the pore. By contrast, our
homology model was built using the fully open conformation of NavMs from Magnetococcus
sp. (PDB ID: 4F4L) as a template. As a result, our homology model probably represents an
open conformation of NaChBac. This choice was deliberately taken on the assumption that
an open conformation would be more suitable for the computational study of permeation
and selectivity. In summary, the good agreement in overlayed structures, along with the
choice to use an open conformation of NavMs as a template, makes us confident our model
is a reliable system for the study of the selectivity and permeation of NaChBac.

Figure 5. Comparison of average pore radius in the homology model structure (red) [8] and Cryo-EM
structures 6vx3.pdb (black) and 6vwx.pdb (pink) [4]. The green and blue dashed lines denote the
ionic Na+ and hydrated Na+ radii, respectively, and the purple dashed lines at z = 0, 13 Å highlight
the selectivity filter region.

3. Theory

To model the SF we consider a system comprised of a pore thermally and diffusively
coupled at either entrance to bulk reservoirs. This system and the effective grand canonical
ensemble was considered and rigorously derived for multi-ion species in [28], and here we
only present the necessary details needed to describe a single-species system. This pore is
represented as a 1-dimensional lattice with 4 sites that may be occupied by a single ion at
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most. These are labelled S1–4 starting from the intracellular side in (c) of Figure 1. This
figure also provides in (a) an overview of the system and (b) a snapshot of the SF which is
highlighted by the red ribbons in (a). Clearly each configuration of Na+ ions in the pore
represent a distinct state of the system with total state space {nj}. In this system ions inside
the pore interact electrostatically with each other and charges on the surface of the pore via E .
Furthermore, they also interact locally at each binding site, m, via short-range contributions
µ̄c

m and may experience an applied potential φc
m. Thus, with only Na+ in the pore we can

write the following distribution function, P({nj}),

P({nj}) = Z−1 (xb
Na)

nNa

n0!nNa!
exp[−(E({nj})−∑

m
nNam(∆µ̄Nam + ez∆φb

m))/kT]. (1)

We have introduced ∆ to denote the difference between bulk and site m in the pore
such that ∆µ̄b

m = µ̄b − µ̄c
m and ∆φb

m = φb − φc
m. In these cases µ̄ and φ denote the excess

chemical potential and applied voltage in the bulk or at site m respectively. The prefactor
contains factorial terms due to the indistinguishably of ions nNa and empty sites n0 in the
pore, and xNa denotes the mole fraction. For clarity we will drop the Na subscript. The
necessary statistical properties such as site or pore occupancy can be derived from the
partition function Z or Grand potential Ω = −kT log(Z).

In [28] we demonstrated that the response to an applied electric field can be calculated
following Kubo and Zwanzig [29–31]. We showed that the susceptibility density at each site
can easily be derived and related to the conductivity at each site following the Generalised
Einstein relation. The total conductivity through the pore is thus calculated by summing the
reciprocals of the site-conductivity, in analogy to resistors in series. As a result all sites must
be conducting for the total conductivity to be non-negligible. This effect partly explains
the reduced conduction of a KcsA mutant [26], although we have to be mindful that the
overall pore charge also decreases, increasing the overall energy barrier for conduction,
and contributing to the reduced conductivity. We shall extend this derivation here by
considering the response to an electrochemical gradient comprised of an electric potential
gradient δφ and a concentration gradient δc. We shall assume that both bulk reservoirs are
perturbed symmetrically so that the left (+) and right (−) electrochemical potentials, µb,
can be written,

µb = kT log((c± δc/2)/cw) + µ̄0 + ezφ0 ± ezδφ/2, (2)

where cw is the concentration of the solvent which is much larger than that of the ions at
around ∼55M, and c is the concentration of the solute, µ̄0 is the equilibrium bulk excess
potential which we assume to be unperturbed by the electrochemical gradient and φ0 is the
equilibrium electrical potential (which we will consider to be 0). In the following derivation
we will write c/cw as the mole fraction x. Thus following [28] we can write the following free
energy, G({nj}, δφ, δc), in the presence of this gradient by linearising µb about small δc,

G({nj}, δφ, δc) = E({nj})−
M

∑
m=1

nm(kT log(x) + ∆µ̄0
m ±

kT
2c

δc± ezνb
mδφ)

+ kT ln(n0)! + kT ln n!. (3)

In this expression we have rewritten δφb
m = νb

mδφ where νb
m is a function representing the

fraction of the voltage drop to move from either the left or right bulk to site m in the pore
(see [28] for details). In a symmetrically distributed pore (which we assume), the average
of νb

m is equal to 1/2. In this regime the probability distribution function can be written as

P({nj}, δφ, δc) = Z−1 xn

n0!n!
exp[−(E −∑

m
nm(∆µ̄0

m ± ezνb
mδφ± kT

2c
δc)/kT]. (4)

Here the partition function Z is defined in the standard manner from the conservation of
probability and distinguished from the equilibrium partition function Z . Both the free
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energy and distribution function can also be expressed in terms of the chemical gradient
ηL − ηR because

kT log(xL/xR) = δη =
kT
c

δc. (5)

The distribution (4) can be linearised about both small δφ and δc. When calculating the
average particle density at each site 〈nm〉δc,δφ/Vm, where Vm is the site volume, one can

obtain relations for the susceptibilities due to the electrical gradient χ
δφ
m and the chemical or

concentration gradient χ
δη
m . The former is defined in [28], since we assume a symmetrical

pore the latter is defined as,

χ
δη
m =

1
2kT

(〈
nm

(
∑
m

nm

)〉
−
〈(

∑
m

nm

)〉
〈nm〉

)
1

Vm
. (6)

It is worth noting that this expression is similar to χ
δφ
m and is proportional to the variance

of particle number at site m plus the covariance between sites m and the remaining sites
in the pore. These susceptibilities are also proportional to the electrical conductivity, σm,
at each binding site, which can be defined from the Einstein relation as: σm = ze2Dmχm
where Dm and χm correspond to the diffusivity and susceptibility at each site respectively.
As a result, the total current across the pore can be calculated as [28]

I =

(
∑
m

1
Am
Lm

σm

)−1

(δφ + δη/e), (7)

where we recall that δφ is the voltage gradient in V, δη is the chemical gradient in kT, and
Am and Lm are the surface area and length of site m respectively. Finally, the conductivity
at each site is calculated from

σm = ze2Dm

(
χ

δφ
m + χδx

m

)
, (8)

which is a function of the equilibrium bulk chemical potential.

4. Application to NaChBac

In Figure 6a, we consider the free energy spectra for selected (most favoured) pore
configurations of NaChBac calculated from Equation (3) (when δφ = 0 and δc = 0). We
consider 0.14M NaCl solutions, and 0–3 ions inside the pore. In Equation (3) the total
electrostatic energy, E , is calculated by approximating the pore as a capacitor of total charge
n f and capacitance C taking the form E = Uc(n f + n)2 where Uc =

e2

2C [21,22]. Since the
permitivitiy of water inside the pore is not known (though it must be less than the bulk
value of 80) we consider Uc = 10kT. This approximation is discussed in detail in [28].
The energy spectra are parabolic vs. n f , and each n-ion state has multiple configurations
(15 in total) and we only highlight the most favoured. These states are determined by
the values of ∆µ̄Nam, and their exact values are determined from fitting to experimental
data (see Section 4.1). Differences in this term lead to energy splitting between possible
configurations because the site occupied, in addition to the total number of ions inside the
pore, determines the energy, conducting states correspond to the degeneracies where the
lowest energy levels intersect, cf. [23], and this was shown to be the case in KcsA [28]. In
NaChBac, the circle highlighting the 2–3 resonant transition occurs at around n f ∼ −2.7.
Importantly, this differs from n f = −2.5, suggesting that the the 3rd-ion faces an energy
barrier to enter each site. If the concentration of the solutions was increased the energy
barrier would decrease and the location of the resonant conduction would shift along the
abscissa towards n f − 2.5. It is worth reiterating that n f here represents the total pore
charge, and so differences from the fixed glutamate ring charge of −4e can be explained
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from the additional contribution of all other charges and possible protonation inside the
pore. Extended discussions of this point are provided in [5,16–19].

In Figure 6b we plot the energy spectra of the favoured 2 and 3-ion states, vs. n f but
also vs. bulk concentration. From the explanation above it is clear that the latter affects
the value of n f at which the two energy levels intersect. At low concentrations the energy
barrier to add an ion to the pore is large. Thus, strong negative pore charge is required to
reduce the barrier to attract the ion. Conversely at large concentrations the barrier is small
and so less negative charge is needed. Thus one would expect the experimental current to
be larger for measurements at higher concentrations, if these could be made.

Figure 6. Free energy of the favoured states, plotted with ∆µ̄Na,1−4 ∼ 2.3, 3.4, 2.8, 2.4kT. In (a) it is
plotted vs. n f with 0.14M NaCl bulk solutions and in (b) vs. both n f and bulk concentration. In (a)
the blue curves correspond to the occupied n > 0 states of the pore, and black denotes the empty
state. The purple circle highlights the location at which the two most favoured 2 and 3 ion states
coincide, and we see that at n f = −2.5 there is a small energy barrier. As bulk concentration increases
this energy barrier reduces and the purple circle would shift towards n f = −2.5. This is further
clarified by (b) which shows only the 2 and 3 ions states.

To obtain the values of ∆µ̄Na,1−4 we performed fitting to two data sets, and this will
be explained in the following subsection.

4.1. Comparison to Single Channel Data and MD

The values of ∆µ̄Na,m used in Figure 6 are obtained by fitting, performed using the
LSQCURVEFIT function in Matlab. We fit theory to the equilibrium site occupancies 〈nNa,m〉
calculated from simulation data [8] (see Figure 2c), and the current at 35 mV. Current is needed
here so that we can ensure it is of the correct order of magnitude. We also note that the
difference in bulk NaCl concentration between the current and occupancy data is taken into
account during fitting. To minimise the number of free parameters we also assumed that
the diffusivity in the pore was constant, and equal to a tenth of the bulk value at ∼1.33 ×
10−10 m2s−1, and calculated ∆µ̄Na,m, relative to n f = −2.5. The diffusivity is expected to be
smaller within a confined pore due to the nature of the binding sites [32,33] and, although
this value may appear small, it produces a barrier-less conduction rate through the pore of
∼0.9 × 108 ions per second which is of the order of tens of pA. We choose n f = −2.5 because
the electrostatic contribution to add a third ion is zero, that is, E(3)− E(2) = 0.

Both data sets are in excellent agreement with the theory, with currents only starting to
differ at relatively large voltages when the experimental data deviate from Ohmic behaviour.
Clearly beyond this regime, the system is far from equilibrium and our theory will need to be
extended accordingly. After fitting we obtain ∆µ̄Na,1−4 ∼ 2.3, 3.4, 2.8, 2.4kT when n f = −2.5,
with the sum of squared residuals being small at 10−4. When the concentration is 0.14M
the ions face the following barriers to enter each site: ∼ 4.0, 2.9, 3.6, 4.0kT. These barriers
are fairly similar to each other, although it is clear that S2 is the more favoured site and
this is shown by its occupancy. As already discussed and observed in Figure 6, the energy
barrier at each site reduces when the bulk concentration increases from 0.14M, resulting in a
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larger ionic current. This is confirmed by predicted current-voltage dependencies for 0.25 and
0.5M solutions respectively as showing increases in current; and the current-concentration
behaviour in Figure 7b. In this latter case the bulk solutions are assumed to be symmetrical,
with the driving force originating from a 50 mV voltage drop. This curve clearly demonstrates
increasing conduction with concentration and we note that the current is relatively small
<10 pA and is continuing to increase even at 2M because the overall energy barrier to enter
the pore is large. We expect that these predictions can be further refined if more experimental
measurements can be made.

Theory: 0.14M

Theory: 0.25M

Theory: 0.5M

Exp: 0.14M

Figure 7. (a) Comparison of theoretical current vs. experimental data (squares) taken from [20] with
symmetrical 0.14M NaCl solutions. (b) Predicted current-concentration curve at 50 mV across the
pore. (c) Comparison of equilibrium occupancy at each site vs. simulation data with 0.5M NaCl
solutions [8]. In doing this fitting we find that ∆µ̄Na,1−4 ∼ 2.3, 3.4, 2.8, 2.4kT, corresponding to energy
barriers of ∼ 4, 2.9, 3.6, 4kT at 0.14M and we find the pore diffusivity to be ∼1.33 × 10−10m2s−1.

4.2. Comparison to Whole Cell Data

The theory can now be compared to the experimental whole-cell current-voltage
recordings outlined earlier. In this experiment the data are normalised against the maximal
current which is calculated when −10 mV is applied across the pore, and the bath solution
contains 0.14M of Na+ ions. We note that in Figure 8a this normalisation is with respect to
the absolute value of this maximal value.

Under experimental conditions only the bath solution was varied. As a result, the
theoretical equilibrium concentration and (chemical potential) used to calculate the conduc-
tivity σ and hence current varies slightly at each experimental point. This is because they
are defined from the average concentration (or chemical potential) from both bulk solutions.
Since the chemical gradient is calculated from the difference in bulk concentrations, we
consider the lower limit of bulk concentration to be 0.1 mM rather than 0, to avoid the
gradient diverging at low concentrations. Even at with the lowest concentration being
0.1 mM, the gradient is ∼ 5kT and so at the edge of applicability of our theory.
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In Figure 8a, we plot the normalised current-voltage curves for the range of bath solu-
tions. Overall we see good agreement between theory and data, but with two exceptions.
NaChBac is a voltage-gated channel so that, at negative voltages, the number of open
channels is reduced because the open probability decreases resulting in a smaller overall
current [5,34]. Thus, at voltages below −10 mV our current diverges from the experimental
data, and hence serves as a prediction of the normalised current in a single open channel.
This prediction is given by the dashed lines, which we note increase in magnitude as
voltage becomes more negative because the gradient increases. Furthermore, when the
bath solution contains no Na+ (black dashed curve) we observe poor agreement between
theory and experiment and so highlight the curve with a dashed line. Finally, the inset
curve shows the current closest to equilibrium.

The system is in equilibrium when the net current is zero, and this occurs when the
applied voltage is equal to the reversal potential φRe. This was measured experimentally
and is compared to the theoretical current in (b). In the theory the reversal potential is
calculated from,

eφRe = kT log(xL/xR), (9)

where L, R again refer to the left and right pipette/bath solutions respectively. We see
good agreement except when the bath solution contains no Na+. Even, our reduced
concentration of 0.1 mM yields a reversal potential smaller than −35 mV. This is echoed by
the current at this concentration which is not in good agreement with the experiment (see
the black dashed curve in Figure 8a). A possible explanation for these disagreements is
that, in the absence of Na+ in the bath solution, K+ ions enter the pore but do not conduct,
consequently blocking the pore. Furthermore, at this concentration we are at the limits of
applicability because the chemical gradient is still relatively large ∼5kT. We plan to discuss
this in a future manuscript after further investigations.

In Figure 9a we estimate the effective open probability Peff. This is defined relative to
the open probability at peak current Pmax, from the ratio of theoretical and experimental
current for each of the given concentrations. We neglect the estimate in the absence of Na+

because the theoretical current did not agree with experimental data. We observe that Peff
takes values between 0 and 1.5 except for three concentrations all at +50 mV of applied
voltage. At 0.126M, 0.1386M and 0.14M bath concentration the theoretical current was
below the experimental values and in the latter two concentrations of different sign. This
produced estimated effective open probabilities, Peff, taking the values of 2.5, −15 and −0.5
for the three concentrations respectively (only Peff ∼ −0.5 is shown). Apart from these
points however we observe it to be broadly sigmoidal and being 0 at negative voltages as
anticipated. We expect, that the actual open probability, POpen, can be calculated through
the following definition,

POpen(V) = Peff × Pmax, (10)

if the open probability of the maximal current is known.
In Figure 9b we highlight the current-concentration (I − C) behaviour by plotting

the I − C curve at the peak voltage (−10 mV). Note that, unlike Figure 8a, the current is
normalised to the maximum current at 0.14M (and not to the absolute value). As expected
the theoretical current agrees fairly well with the experimental one except at low concentra-
tions (.5 mM). The curve takes a quasi-linear shape because the current comprises two
terms: (1) the conductivity prefactor and (2) the electrochemical gradient. The second term
is of the standard form, but our conductivity is a function of the equilibrium bulk chemical
potential, which through our derivation must take the averaged concentration between the
two bulks and thus slightly varies with bath concentration as well.
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0M

0.07M

0.126M

0.1386M

0.14M

Figure 8. (a) Comparison of theoretical (solid line) to experimental (squares) data of normalised
(to absolute value) whole-cell current in the presence of an electrochemical gradient, for a range of
extra-cellular bulk solutions. The peak occurs at −10 mV, and below this voltage the current reduces
due to the reduction in the open probability. Dashed lines predict the normalised currents if the
open probability remained unchanged from the value at the peak current. (b) Theoretical (solid)
and experimental (squares) of the reversal potential (φRe) for a range of concentrations. Theory only
differs when the right bulk is absent of Na+.

0.07M

0.126M

0.1386M

0.14M

Figure 9. (a) Estimated open probability from the ratio of experimental to theoretical current. Below
−40 mV the open probability is close to zero indicating that the channels are closed. (b) Comparison
of normalised theoretical current (solid line) and experimental (squares) data vs. bulk concentration,
at −10 mV of applied voltage.

5. Conclusions and Summary

In summary, we have taken the statistical and linear response theory, originally derived
in [28] and applied to KcsA and a mutant, and applied it to investigate Na+ conduction in
NaChBac. Importantly, in order to compare with experimental and simulation data see
Figures 2 and 3), we needed to extend the theory to take account of a chemical gradient.
In doing so, we derived the conductivity at each site and the total through the pore in the
presence of an electrochemical gradient. The main result of the paper is the quantitative
predictions of pore function that we make as a function of the energy profile, experimental
bulk conditions, and the pore structure.

In Figure 7 we compared the theoretical current-voltage and equilibrium site occu-
pancies to experimental and simulation data. This comparison allowed us to extract the
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following values of ∆µ̄Na,1−4 ∼ 2.3, 3.4, 2.8, 2.4kT. At the experimental concentration 0.14M,
the 3rd ion faces an energy barrier to enter each site within the pore of ∼4, 2.9, 3.6, 4kT.
Although these values are not barrier-less as observed in KcsA [28], they are not expected to
be because the experimental current is smaller in NaChBac. Furthermore, these parameters
lead to barrier heights consistent with [8,20]. Using these parameters we have predicted
the current for higher concentrations, including the current-concentration behaviour with
50 mV of applied voltage and current-voltage dependencies for 0.25 and 0.5M solutions.
As expected both show an increase of current as the bulk solution increases. We expect that
with more experimental data, we could refined these parameters.

In Figures 8 and 9 we compared the theory to normalised whole-cell data, under
the assumption that the normalisation effectively renders it a single-channel for the point
of comparison. The theory was found to be in good agreement with experiment except
for when the bath solution was devoid of Na+. A possible explanation is that in the
absence of Na+, K+ ions enter the pore but do not conduct, subsequently blocking the pore.
Furthermore, at this concentration we are at the limits of applicability because the chemical
gradient is still relatively large ∼5kT. We plan to investigate this in a future manuscript
by introducing a far-from equilibrium kinetic model that accounts for both Na+ and K+

ions. Such a model was briefly introduced in [20]. However, it failed to account properly
for the correlations between ions at different sites, and only considered a 2 site pore; and so
further development is needed.

Finally, we expect our theory to be applicable to the study of mixed-valence, that is,
Na+/Ca++ selectivity in NaChBac and related voltage gated Ca++ channels, alongside
artificial nano-pores.
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Abstract: We study dynamics and thermodynamics of ion transport in narrow, water-filled channels,
considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes
about due to the dielectric constants mismatch between the water and the surrounding medium,
confining the electric filed to stay mostly within the water-filled channel. Statistical mechanics of
such Coulomb systems is dominated by entropic effects which may be accurately accounted for by
mapping onto an effective quantum mechanics. In presence of multivalent ions the corresponding
quantum mechanics appears to be non-Hermitian. In this review we discuss a framework for
semiclassical calculations for the effective non-Hermitian Hamiltonians. Non-Hermiticity elevates
WKB action integrals from the real line to closed cycles on a complex Riemann surfaces where direct
calculations are not attainable. We circumvent this issue by applying tools from algebraic topology,
such as the Picard-Fuchs equation. We discuss how its solutions relate to the thermodynamics and
correlation functions of multivalent solutions within narrow, water-filled channels.

Keywords: non-Hermitian Hamiltonians; algebraic topology; semiclassical methods; nanopores;
ion transport; statistical mechanics

1. Introduction

Transport of ions through narrow channels plays a big role in many biological and
technological systems. Many pathogens attack cells by forming nanopores in the cell
membrane by using pore-forming toxins (PFTs) [1,2]. This punches holes in the cell mem-
brane through which ions diffuse to the outside, effectively killing the cell. Physically this
is similar to artificial nanopores in, e.g., silicon [3,4]. These are heavily used in genetic
sequencing techniques where high-throughput of selective transport is the most important
factor [5]. Other similar examples include free-standing silicon nanowires [6,7] and water-
filled nanotubes [8,9]. These systems play various different roles in biology and technology.
However they all follow the same underlying physics of a quasi-1D statistical system
formed by ions confined to move in a narrow water-filled tube inside a lipid membrane
or solid medium [10–16]. What makes this system special is the large ratio between the
dielectric constants of water, κ1 ' 80, and the surrounding media (e.g., for lipids or silicon
oxide κ2 ' 2− 4). Because of this, the electric field created by an ion within is confined
to stay mostly inside the water-filled channel and does not leak into the surrounding
medium. As several numerical simulations in three dimensions point out the flow field
also follows almost entirely the channel direction [17–19]. This simple observation has
profound consequences.

First, as was noticed by Parsegian [20], there is a potential barrier for an ion to enter
the channel. This barrier is equal to the energy difference between an ion being inside and
outside the channel. For a channel of radius a the electric field created by an ion of charge e
in the middle of the channel is E0 = 2e/(κ1a2). The corresponding field energy integrated
over the channel volume is U0 = κ1

8π E2
0πa2L = kBT(λBL)/(2a2), where L is the length of
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the channel and λB = e2/(κ1kBT) ≈ 7Å is the Bjerrum length at ambient temperature [11].
For a typical channel with L ≈ 40Å and a ≈ 5Å the corresponding (self-)energy barrier
exceeds ambient temperature kBT by a factor of 5 or 6. This means that such a channel
would block the transport of ions. However, there are at least two mechanisms which can
be employed to overcome this issue. One is placing charged radicals along the channel
path. The other is entropic screening of the barrier by a collective effect of multiple cations
and anions inside the channel. In this review we focus on this latter phenomena, while the
former is addressed in References [13,14,21,22].

The second consequence of the mismatch of dielectric constants is that the mutual
interactions between the ions within the channel acquire the form of the 1D Coulomb potential

Φ(xi − xj) = eE0|xi − xj|, (1)

where xi are 1D coordinates of the ions along the channel axis. As illustrated in Figure 1,
the electric field lines emanating from a charge are bent to run along the channel. Only after
a characteristic length ξ given by the implicit relation ξ2 = a2κ1/(2κ2) ln(2ξ/a) the field
lines start penetrating the lipid membrane and escaping the channel [11]. For a water-filled
channel in a lipid membrane this gives ξ ≈ 7a. Hence, for a sufficiently short channel
with L < ξ or (as considered in Section 3) a large concentration of salt ions where the
characteristic distance between two ions is smaller than ξ, the interactions effectively
follow the 1D Coulomb potential. The linear nature of the potential (1) leads to the curious
observation that the energy barrier of transporting a charge through the channel can’t be
less than U0, irrespective of how many other ions are present in the channel [20]. Indeed,
for the most favorable arrangement of alternating positive and negative ions, the electric
field along the channel alternates between ±E0. This leads back to the value of U0 for the
electrostatic energy of adding a single ion to the channel in the presence of the other ions.
This may seem as a predicament that collective screening can’t lower the transport barrier.
Such conclusion is premature, however. The resolution of this apparent paradox is that in
a system of multiple particles at a finite temperature it is the free energy (rather than the
energy) which determines the transport barrier. The difference between the two is given
by the entropy, i.e., it is the entropy of the ion gas within the channel which provides the
screening mechanism. The nature of entropic suppression of the transport barrier can be
traced to the aforementioned independence of the energy U0 of the positions of individual
ions. This observation implies that there is a large number of microscopic configurations
which are close in energy. This is the hallmark of a state with large entropy and thus lower
free energy.

Figure 1. This is an illustration of the electric field lines emanating from an ion inside a water-filled channel of radius a
which is surrounded by a medium with lower dielectric constant. Due to the mismatch in dielectric constants the field lines
run mostly along the channel which means that another charge would feel an effective 1D Coulomb potential. The ratio is
finite however, i.e., a distance ξ away from the ion the field lines start permeating the outside medium. If the channel is
shorter than this critical length scale, L < ξ, or the typical spacing between charges is smaller than ξ, then all interactions
are well-described by the 1D Coulomb potential.

Formalizing these observations is not entirely straightforward. As was first realized
by Edwards and Lenard (EL) in 1962 [10] it requires mapping of the 1D statistical system
onto an effective quantum mechanics with cosine potential. In fact, this is a particular
case of the generic correspondence between D-dimensional statistical mechanics of the
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Coulomb gas and (D-1)-dimensional sine-Gordon field theory [23]. The D=2 version of this
mapping is well-known in the physics of the Berezinskii-Kosterlitz-Thouless transition.
The less appreciated fact is that the Hermitian potential of the form 2 cos θ = eiθ + e−iθ is
a consequence of having a neutral plasma of monovalent ions with charge ±e. In the EL
mapping the e±iθ operators shift the value of the electric field in the channel (the variable
canonically conjugated to θ) by a quanta ±2E0, which corresponds to the electric field
generated by a unit charge ±e.

What happens in the presence of a multivalent dissociated salt, such as, e.g., CaCl2
which produces a plasma with positive charges +2e and twice as many negative charges
−e? It is not difficult to see that the EL mapping leads to an effective Hamiltonian with the
potential 1

2 e2iθ + e−iθ . Such a Hamiltonian is non-Hermitian and thus admits a complex-
valued spectrum. This may present a problem for the interpretation of the original statistical
mechanics of the Coulomb plasma. For example, the free energy density (a manifestly
real quantity) is given by the logarithm of the partition function which therefore needs
to be real and positive. Fortunately the effective non-Hermitian quantum operator obeys
the so-called PT -symmetry [24], which ensures that all eigenvalues are real or appear
as complex-conjugate pairs. When calculating the partition function, which includes
summing over all eigenvalues, the imaginary parts cancel and we obtain a real, physical
result [25]. However, in general there exist complex eigenvalues (spontaneously broken
PT -symmetry). This translates to an oscillatory character of certain correlation functions,
reflecting short-range charge density wave correlations within the channel.

To model the transport of ions through the channel in this framework we use the
concept of boundary charges which was developed in Reference [11]. From now on we
assume that the channel is sufficiently short so that all field lines stay inside the channel.
If there are no ions inside the channel (or the sum of all charges is zero), then there is
no electric field emanating from the channel. If a single ion is added in the center of the
channel, then half of its electric field lines are exiting the channel on the left and the other
half on the right, cf. Figure 1. This is akin to having two image boundary charges q, q′ = 1

2 at
the two ends of the channel (charges are measures in units of e). These charges are provided
by polarization effects in the well-conducting reservoirs. There are only integer charges
inside the channel. Hence, if the boundary charge at one end is q (the ion emits a fraction q
of its field lines at one end), then the other boundary charge is q′ = 1− q. Reference [11]
shows that moving a unit probe charge through the channel (while allowing the other
ions to equilibrate) creates boundary charges which change from zero to one. Once the
boundary charges reach an integer value they may either be released from the end points
and join the bulk, or enter into the channel. This makes thermodynamic properties periodic
functions of q with unit period. In Section 2 we show that the boundary charge q takes the
role of the quasi-momentum in the effective quantum mechanics. Hence, the bandwidth of
the lowest quantum-mechanical band translates directly to the transport barrier.

This review is devoted to the mathematical apparatus needed to treat the non-
Hermitian operators appearing in the physics of multivalent 1D plasmas. However,
we want to stress that these methods can be applied more broadly to a wide range of
non-Hermitian systems. In particular we focus on semiclassical methods applicable for
relatively large concentrations of the dissociated salts. Our central observation is that
the corresponding (complex) semiclassical trajectories may be viewed as closed cycles on
Riemann surfaces of non-zero genus. The action integrals along such cycles are given by
solutions of the Picard-Fuchs differential equation, allowing for their analytic evaluation.
As a result one obtains asymptotically exact thermodynamic and correlation functions of
the 1D multivalent Coulomb plasmas. Of particular interest is the transport barrier, given
by the width of the lowest Bloch band (i.e., energy difference between anti-periodic and
periodic ground-states of the Schrödinger equation). We obtain analytic results for the trans-
port barriers for various combinations of ion valencies as functions of salt concentration
and temperature.
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The structure of this paper is as follows: in Section 2 we discuss the EL mapping
of statistical mechanics to an effective quantum mechanics with a cosine potential and
its generalizations to the non-Hermitian cases. Section 3 is devoted to the semiclassical
treatment of the corresponding non-Hermitian operators using the Picard-Fuchs equation.
At the end of that section we go beyond the usual semiclassical formulas and describe how
to obtain second- and higher-order corrections with little computational effort. We provide
a brief summary and discussions in Section 4.

2. Thermodynamic Description and Equivalent Quantum Mechanics

In this section we discuss the relationship between statistical mechanics of the ion
channel and (non-Hermitian) quantum mechanics. We start with a thermodynamic de-
scription of the ion channel in terms of the grand-canonical partition function. Then we
review how to map the partition function onto a Feynman propagator and derive a Hamil-
ton operator from there. This mapping was pioneered by Edwards and Lenard [10] and
subsequently used in several works as starting point [11,25–27]. If the system consists of
cations and anions with the same valency and concentration, then the resulting Hamilton
operator is Hermitian. However, if the positive and negative charges have different valency,
for example solutions of the divalent salts MgCl2 or CaCl2, non-Hermitian terms appear.
Hence, the spectrum of the resulting operator also contains complex eigenvalues. We
discuss how reality and positivity of the partition function is ensured. In the end we
comment on the case if charge neutrality is violated.

2.1. Derivation of the Hamilton Operator

As discussed in Section 1 charged ions inside the channel interact with the effective
1-dimensional Coulomb potential Φ(x) = −eE0|x|, where E0 = 2e/κ1a2 is the electric field
strength generated by a single ion with charge e inside a channel of radius a and dielectric
constant κ1 [11]. The total interaction energy of all ions in the channel is given by

U =
1
2

∫∫ L

0
dxdx′ρ(x)Φ(x− x′)ρ(x′). (2)

Here we write the charge density for point charges in terms of δ-functions,

ρ(x) =
N1+N2

∑
j=1

σjδ(x− xj) + q(δ(x)− δ(x− L)), (3)

where σj = n1 for 1 ≤ j ≤ N1 and σj = −n2 for N1 + 1 ≤ j ≤ N1 + N2. This charge
density represents N1 cations with valency n1 and N2 anions with valency −n2, and the
two fractional boundary charges ±q at x = 0, L. The channel is open and can exchange
particles with two 3D bulk reservoirs at the ends. Therefore the thermodynamic properties
are given by the grandcanonical partition function,

Z =
∞

∑
N1,N2=0

f N1
1 f N2

2
N1!N2!

N1+N2

∏
j=1

∫ L

0
dxje−U/kBT , (4)

where f1,2 are the fugacities of the two charge species. As shown in References [10,11] and in
Appendix A, the partition function can be converted into a functional integral by introduc-
ing an auxiliary field θ(x) as conjugate to the charge density ρ(x). Through this process all
integrals over the variables xj decouple, bringing them to the form ∑N [ f

∫
dx eiσθ(x)]N/N! =

exp{ f
∫

dx eiσθ(x)}. The interaction potential (2), being inverse of the 1D Laplace operator,
leads to an additional term exp{(kBT/eE0)

∫
dx θ∂2

xθ}. As a result the partition function (4)
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is identically written in terms of the Feynman path integral with an “imaginary time” x,
describing quantum mechanics with the Hamiltonian

Ĥ = (i∂θ − q)2 −
(

α1ein1θ + α2e−in2θ
)

, (5)

where α1,2 = f1,2kBT/eE0 are dimensionless ion concentrations. The Feynman integral is
the expectation value of the evolution operator over the imaginary “time” L,

ZL =

〈
q
∣∣∣X e−

eE0
kBT

∫ L
0 dx Ĥ

∣∣∣q
〉

= ∑
m
|〈q|m〉|2e−

eE0 L
kBT εm(q), (6)

where X is the x-ordering operator. Here {εm(q)}m is the spectrum of the effective Hamil-
tonian Ĥ, and |m〉 = ψm(θ) are its eigenvectors in the Hilbert space of periodic functions,
ψm(θ) = ψm(θ + 2π). The matrix elements are 〈q|m〉 =

∫ 2π
0 dθeiqθψm(θ). The boundary

charge q plays the role of the Bloch quasi-momentum and the spectrum is periodic in q
with unit period.

Note that for α1 = α2 and n1 = n2 the potential in Equation (5) reduces to the
cosine function and the Hamiltonian becomes the well-known Mathieu Hamiltonian [10].
However, if these conditions are violated the potential is non-Hermitian [25]. We discuss
implications of this in the following section.

2.2. Physical Observables

The partition function in Equation (6) gives the thermodynamic properties of the ion
gas. However, to be physically meaningful the partition function needs to be real and
positive, while the spectrum of the non-Hermitian Hamiltonian (5) may contain non-real
eigenvalues. This issue is resolved because the Hamiltonian obeys a symmetry akin to
PT -symmetry. The combined action of the “parity operator” P : θ → −θ and “time
reversal” T : i→ −i leaves the Hamiltonian in Equation (5) unchanged. Bender et al. [24]
proved that all eigenvalues of a PT -symmetric Hamiltonian are either real or appear in
complex conjugated pairs. Hence, summing over all eigenvalues in Equation (6) gives a real
result. In [25] is was shown that for positive values of concentrations α1,2 > 0 the lowest
energy band ε0(q) is entirely real-valued, ensuring positivity of the partition function. The
higher bands εm(q) are in general complex-valued.

Hence we obtain a physically meaningful partition function, and can connect it to
thermodynamic observables. The pressure of the Coulomb gas is its free energy per
unit length

P = kBT
∂ lnZL

∂L
L→∞−→ −eE0ε0(q) , (7)

which for a long channel is determined by the eigenvalue with the smallest real part, ε0(q).
In equilibrium the system minimizes its free energy by choosing an appropriate boundary
charge q. In [25,26] this minimum was found to generally be the non-polarized state of the
channel, i.e., q = 0. Adiabatic charge transfer through the channel is associated with the
boundary charge q sweeping through its full period. As a result, the (free) energy barrier
for ion transport is

U0 = eE0L(∆ε)0 , (8)

where (∆ε)0 is the width of the lowest Bloch band. Therefore the ground state energy and
the width of the lowest Bloch band of the Hamiltonian (5) give the leading thermodynamic
and transport properties of the (n1, n2) Coulomb gas. In Section 3 we discuss analytic
results for the eigenvalues and the bandwidth.

2.3. Charge Non-Neutrality

In [10] it was shown that for arbitrary values of α1,2 the Hamiltonian (5) is always
isospectral to a similar charge-neutral Hamiltonian. This can be seen by shifting the
coordinate as θ → θ + θ0. Upon such transformation the dimensionless concentrations
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α1,2 renormalize as α1 → α1ein1θ0 and α2 → α2e−in2θ0 . Notice that the combination αn2
1 αn1

2
remains invariant. Hence, the family of Hamiltonians (5) with

αn2
1 αn1

2 = const (9)

is isospectral [10,25]. Therefore one may choose one representative from each isospectral
family. A convenient choice is taking the representative with charge neutrality in the bulk
reservoirs, i.e., n1α1 = n2α2 ≡ α. The physical reason for this symmetry is that the interior
region of the channel always preserves charge neutrality due to the large self-energy of
charges. The edge regions screen charge imbalances of the reservoirs. Therefore, irrespec-
tive of the relative fugacities of cations and anions in the reservoirs, the thermodynamics
of the long channel are equivalent to the one in contact with neutral reservoirs with an
appropriate salt concentration α. This brings the Hamiltonian (5) to the form

Ĥ = α

[
p̂2 −

(
1
n1

ein1θ +
1
n2

e−in2θ

)]
, (10)

where we define the momentum operator as

p̂ = α−1/2(−i∂θ + q) ; [θ, p̂] = iα−1/2 . (11)

The commutation relation shows that α−1/2 plays the role of the effective Planck
constant. Hence, a large concentration of charges corresponds to the semiclassical limit of
the Hamiltonian (10). We further rescale the eigenvalues ε as

u ≡ n1n2

n1 + n2

ε

α
. (12)

This keeps the classical minimum of the potential at u = −1, irrespective of the
concentration α and the valencies n1, n2. In Section 3 we discuss the spectral properties of
the Hamiltonian (10) in the semiclassical limit.

3. Large Charge Concentration

In Section 2 we mapped the grand-canonical partition function of the Coulomb gas
onto an equivalent quantum system. The resulting Hamiltonian, Equation (10), contains
one free parameter α which is proportional to the concentration of charged ions. In this
section we analyze the spectral problem of this Hamiltonian in the limit of large α. As ar-
gued after Equation (11), this is the semiclassical limit of the equivalent quantum problem.
We use the main semiclassical results, Bohr-Sommerfeld quantization and Gamow’s for-
mula, to calculate the eigenvalues and bandwidths of the Hamiltonian for several different
cases of valencies (n1, n2). In the case of equal valencies, n1 = n2, the Hamiltonian (10)
is the well-known Mathieu Hamiltonian which we discuss in Section 3.1. It’s spectral
properties were calculated using several different approaches [10,11,25–28]. In this review
we focus on an approach based on integration on a complex Riemann surface [25,26,28].
We choose this method because it can also be applied to the cases with different valencies,
n1 6= n2, see Section 3.2. In that situation the Hamiltonian is non-Hermitian, and the
required action integrals are not attainable by straightforward integration. Instead we
show how to relate them to integrals along closed cycles on a Riemann surface. Then we
use powerful tools from algebraic topology to derive a differential equation for the action
integrals. This is known as the Picard-Fuchs equation. The required actions are a combi-
nation of the solutions of this differential equation. Through this procedure we bypass
the use of direct integration methods. From the actions we obtain the eigenvalues and
the bandwidths, which are directly related to the ion pressure and transport barrier for
ions in the channel. In Section 3.3 we go one step further. We use the same concepts to
calculate the second-order corrections in the WKB series. Most importantly we show that
these can be expressed in terms of the already-calculated action and its derivatives, and
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therefore can be obtained with minimal computational effort. This gives an improved
semiclassical approximation of the eigenvalues. Relating this to the pressure in the ion
channel we find that beyond the ideal-gas pressure and the Debye-Hueckel correction there
is another correction which only depends on the geometry of the channel but not on the
concentration of ions. We compare these results to numerical calculations.

3.1. Equal Valency

As mentioned in Section 2 the Hamiltonian in Equation (5) is Hermitian if the valencies
of the two charges are equal, n1 = n2. Indeed, in this case it reduces to the well-known
Mathieu Hamiltonian,

H = α
[

p̂2 − 2 cos θ
]
. (13)

In literature there exist several studies of the Coulomb gas with charges of equal
valency. In [10] it was first noted that the Coulomb gas is mapped onto the Mathieu
equation. In [27] the authors perform a semiclassical calculation on this equation via direct
integration. From this they obtain the required actions and analytic approximations of
the eigenvalues and bandwidths. [11] provides additional qualitative arguments which
lead to the same results. However, as mentioned above, in this section we will follow the
Riemann surface methods developed in [25] because in that framework one can also study
the case of unequal valencies n1 6= n2 in Section 3.2, and these concepts form the basis of
our considerations for higher-order corrections in Section 3.3.

3.1.1. Construction of the Riemann Surface

In the semiclassical ansatz we look for wave functions of the form ψ = eiα1/2S, where
S is the action of the classical problem with the normalized Hamiltonian (13). The semiclas-
sical trajectories satisfy the classical Hamilton equations of motion and thus conserve the
(complex) energy u in Equation (12),

2u = p2 − 2 cos θ . (14)

In this normalization u = ∓1 corresponds to the bottom (top) of the cosine poten-
tial. Our approach to calculate the action integrals S =

∮
γ p(θ, u)dθ is based on complex

algebraic topology. First we set z = eiθ and consider (z, p) as complex variables. Energy con-
servation, Equation (14), defines a family of complex algebraic curves parametrized by u
and satisfying

Eu : F (p, z) = p2z− (z2 + 2uz + 1) = 0. (15)

For u 6= ±1 it can be checked that (∂F/∂z, ∂F/∂p) does not vanish on Eu, so each
Eu is nonsingular. Then F (p, z) implicitly defines a locally holomorphic map p = p(z).
The exceptions to this occur at z = 0, ∞, z±, where z± = −u ± i

√
1− u2 are the roots

of p2 = 0 (i.e., classical turning points). In a vicinity of these four branch points p(z)
behaves as

p ∼ z−1/2, (z ∼ 0)

p ∼ z1/2, (z ∼ ∞) (16)

p ∼ (z− z±)1/2, (z ∼ z±)

respectively, i.e., p(z) is locally double-valued. Note that we added the point at infinity to
have an even number of branch points. This compactifies the complex plane and makes it
topologically equivalent to a Riemann sphere, cf. Figure 2.
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Figure 2. Construction of the Riemann surface of genus 1, as defined by Equation (15). (a) In the z-plane there are four
branch points at 0, z±, ∞ which are pairwise connected by two branch cuts (gray). (b) Considering z = ∞ as a regular point
the complex plane compactifies to a Riemann sphere with two cuts on the sphere. (c) The double-valued nature of the
function p(z) is resolved by defining two copies of the Riemann sphere. The branch cuts are opened and the spheres are
deformed into tubes (d) and glued together to form a torus (e). The arrows are used to signify the edges that are glued
together. There are two fundamental cycles γ0, γ1 which are topologically different and non-trivial, i.e., they can not be
smoothly transformed into each other or a point. Reproduced with permission from Reference [26].

To avoid dealing with p(z) as a double-valued function we introduce a second copy
of the complex z-plane and the corresponding Riemann sphere. On both sheets we define
two branch cuts connecting the four branch points, between 0, ∞ and the turning points
z± respectively. p(z) is analytically continued across the branch cuts, i.e., when crossing
a branch cut we jump from the first sheet to the second and vice versa. Identifying the
branch cuts as edges we can deform the two Riemann spheres into tubes and glue them
together to form a torus. This construction is visualized in Figure 2. Thus, the complex
algebraic curve Eu in Equation (15) defines a torus which is a compact Riemann surface of
genus g = 1. (Generically, every compact Riemann surface is topologically equivalent to a
sphere with some number of handles g, or a (multi-)torus with g holes, called the genus of
the surface).

3.1.2. Integrals on the Riemann Surface and the Picard-Fuchs Equation

The action integrals can be understood as integrals over closed cycles γ,
S(u) =

∮
γ λ(u), where

λ(u) = p(θ) dθ = p(z)
dz
iz

=
(z2 + 2uz + 1)1/2

iz3/2 dz (17)

is the action 1-form which, by construction, is holomorphic on the Riemann surface.
To visualize the relevant trajectories we momentarily return to θ and consider it as

complex. In this representation one has square-root branch cuts along the real axis, con-
necting the classical turning points along the classically allowed region. The integration
trajectories run just above or below the real axis and connect the turning points. After com-
bining them to form closed cycles one can push these cycles off the real axis and away from
the turning points without altering the integrals (by Cauchy’s theorem). We call these the
classical cycle γ0 and the instanton cycle γ1, as shown in Figure 3. Translating these two
cycles to the complex z-plane yields the contours in the right panel of that figure.
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Figure 3. Left: The classically allowed (forbidden) regions along the θ-axis at energy u are shown by the solid (dashed) gray
line. Deforming the classical (instanton) orbits into the complex plane leads to the cycles γ0(γ1). Right: Cycles γ0 (red) and
γ1 (blue) in the complex z-plane for u = −0.9. Notice that the cycle γ1 crosses the two cuts from the first sheet (solid line) to
the second sheet (dashed line) and back. Reproduced with permission from Reference [25].

Cauchy’s theorem is also valid on the Riemann surface since the action form (17) is,
by construction, holomorphic on the torus. Therefore all closed cycles can be deformed
without changing the integrals, and can be expressed as a combination of an integer number
of these two basis cycles. This leads to our key idea how to calculate the action integrals: for
this we employ a central theorem of algebraic topology, de Rham’s theorem. It states that
on a Riemann surface there are exactly as many linearly independent holomorphic 1-forms
to integrate upon as there are independent closed cycles to integrate along. This is valid up
to exact forms, i.e., 1-forms which integrate to 0 along any closed cycle, and boundaries,
i.e., closed curves which can be continuously deformed to a point. Hence, there are exactly
two independent holomorphic 1-forms on the Riemann surface. Any set of three 1-forms is
linearly dependent modulo an exact form which integrates to 0 upon integration along any
closed cycle. (A full explanation of the mathematical concepts is beyond the scope of this
review. A detailed discussion of relevant and related concepts is in [29], basic definitions
and additional background are in [30,31]. All concepts can also be found online at [32].
A simplified derivation specifically for complex-valued Riemann surfaces is in chapter 2
of [28]).

Equipped with this we look at a set which contains the action 1-form (17) and its first
two derivatives with respect to energy u, {λ(u), λ′(u), λ′′(u)}. Taking derivatives does
not change the structure of branch points, therefore these are three 1-forms which are all
defined on the same Riemann surface. Hence, we know that there must exist a linear
combination of these which is an exact form. Reference [25] explains in detail how to find
the linear combination and the exact form as

(
(u2 − 1)∂2

u +
1
4

)
λ(u) =

d
dz

[
i
2

1− z2

z1/2(z2 + 2uz + 1)1/2

]
dz . (18)

It is evident from Stokes’ theorem that the right-hand-side integrates to 0 along any
closed cycle on the Riemann surface. Hence, we obtain

∮

γ

(
(u2 − 1)∂2

u +
1
4

)
λ(u) = (u2 − 1)S′′(u) +

1
4

S(u) = 0 . (19)

This differential equation for the action S(u) is called the Picard-Fuchs Equation [29].
Integration is performed along a closed cycle γ, which can be the classical or the instanton
cycle, γ0,1 in Figure 3. Therefore both the classical and instanton actions S0,1(u) are solutions
of the Picard-Fuchs Equation (19). This equation is a second-order ordinary differential
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equation, therefore it admits two independent solutions. These can be found in the form
F0(u2) and uF1(u2), where

F0(u2) = 2F1

(
−1

4
,−1

4
;

1
2

; u2
)

, (20)

F1(u2) = 2F1

(
+

1
4

,+
1
4

;
3
2

; u2
)

,

are hypergeometric functions [33,34]. These solutions form a basis out of which S0,1(u)
must be composed, so we write

S0(u) = C00F0(u2) + C01uF1(u2), (21)

S1(u) = C10F0(u2) + C11uF1(u2).

To find the correct coefficients Cjk, j, k = 0, 1 it is sufficient to evaluate the periods
at one specific value of u. Employing the fact that the hypergeometric functions (20) are nor-
malized and analytic at u = 0, i.e., Fk(u2) = 1 + O(u2), one notices that
Sj(u) = Cj0 + uCj1 +O(u2). Thus, to identify Cjk we expand the integrand λ(u) to first
order in u and evaluate the integrals Sj(u) at u = 0. Straightforward calculation yields

C00 = e−iπ/2C10 = 8π−1/2Γ(3/4)2, (22)

C01 = e+iπ/2C11 = π−1/2Γ(1/4)2.

The relations between C0k and C1k are not accidental. They originate from the fact that
the cycle γ1 transforms into γ0 by substitution z′ = e−iπz and u′ = eiπu, and vice versa.
This gives a global symmetry between the two periods,

S0(u) = e−iπ/2S1(eiπu) . (23)

Equations (20)–(23) fully determine the classical and instanton actions S0,1(u). We now
proceed to relate them to physical observables.

3.1.3. Semiclassical Results

We seek semiclassical results for the sequence of low-energy bands terminating at
u = −1. Therefore we quantize the classical action S0(u) according to the Bohr-Sommerfeld
rule to determine the normalized energies um as solutions of the equation

S0(um) = 2πα−1/2(m + 1/2) , m = 0, 1, . . . (24)

We see that the cycle γ0 contracts to a point when the energy goes to the bottom of the
potential, u→ −1. This corresponds to vanishing of the classical action, S0(u = −1) = 0.
To obtain an approximate analytic expression for the lowest energy levels εm = 2αum we
expand the classical action to first order near the bottom of the potential,

S0(u) = 2π(u + 1). (25)

Equations (24) and (25) combined imply εm = −2α + 2α1/2(m + 1/2). As a result the
pressure (7) of a monovalent gas is

P = −eE0ε0 = 2kBT f −
√

kBTeE0 f . (26)

The two terms here are the pressure of the ideal gas with fugacity f and the mean-field
Debye-Hueckel interaction correction [22].
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The instanton action S1(u) determines the bandwidth (∆u)m according to Gamow’s formula,

(∆u)m =
ω

π
√

α
eiα1/2S1(um)/2 . (27)

Here ω = 2 is the frequency of the harmonic-oscillator approximation of the potential
near the classical minimum. We expand the instanton action near the classical minimum
and at the quantized energies um = −1 + α−1/2(m + 1/2) to obtain

S1(um) = 16i + 2i
(

m +
1
2

)
ln
(

m + 1/2
32eα1/2

)
. (28)

Applying this to Gamow’s Formula (27) leads to

(∆ε)m = 2α(∆u)m =
4
π

(
32e

m + 1/2

)m+1/2
e−8α1/2+(m/2+3/4) ln α, (29)

This coincides with the known asymptotic results for the Mathieu Equation [27,35,36].
As explained below Equation (3), adiabatic charge transport is associated with a change of the
boundary charge q (i.e., quasi-momentum) across the interval 0 < q < 1 (i.e., the Brillouin
zone). Therefore the free energy transport barrier is given by the width of the lowest
Bloch band, (∆ε)0. One notices that increasing the concentration of salt ions leads to an
exponential entropic suppression of the transport barrier, (∆ε)0 ∝ α3/4e−8

√
α.

3.2. Multivalent Ions

So far we worked with the Hermitian example of the Mathieu Hamiltonian,
i.e., when both ion species are monovalent, n1 = n2 = 1. With that we could validate the
Riemann surface method by comparing the results to literature. In this section we discuss
four different cases with multivalent ions (assuming n1 > n2 without loss of generality).
In such a scenario the Hamiltonian (5) is non-Hermitian. This leads to complex values
in the spectrum, which we present in Section 3.2.1. Furthermore, in classical motion the
coordinate and momentum acquire complex values. This results in a phase space (θ, p)
with two complex dimensions (instead of two real dimensions). The classical (instanton)
action is obtained by integrating the momentum p(θ) along the trajectory which connects
two turning points and solves the classical equations of motion with real (imaginary) time.
However, solving the equations of motion in complex phase space (θ, p) is non-trivial, if at
all attainable. Therefore we go from an integral along the trajectory to an integral along a
closed cycle in the plane of complex z = eiθ which encloses the trajectory, similar to the
mapping in Figure 3. With that we connect the non-Hermitian problem to the method
that we validated in the previous section. We discuss this calculation for four different
combinations of charge valencies in Section 3.2.2. In Section 3.2.3 we connect the results to
the classical and instanton actions and physical observables.

3.2.1. Spectrum of the Non-Hermitian Hamiltonian

Non-Hermiticity of the Hamiltonian (10) has a significant effect on its spectrum.
Namely, not all eigenvalues are real. In Figure 4 we show numerical results for the eigen-
values at large concentration α, for four different combinations of the integers (n1, n2).
Most importantly all non-real eigenvalues appear as complex conjugate pairs. This is a
consequence of the PT -symmetry of the Hamiltonian and crucial to obtain a physically
meaningful partition function, as discussed in Section 2. Furthermore we see sequences
of narrow bands which emerge from u = −ν with νn1+n2 = 1. These sequences approxi-
mately follow the lines connecting u = −ν and u = 1, but avoid the special point u = 1.
At some point all of these branches merge. Beyond this the nature of the spectrum changes
drastically, instead of narrow bands and large gaps we see wide bands separated by small
gaps. This feature is similar to the case of a periodic Hermitian potential: as long as the
energy lies below the maximum of the potential there are narrow bands, while for energies
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exceeding the maximum there are wide bands. Hence, we associate the point where the
spectral branches meet with the top of the potential. (It is important to bear in mind that
for a complex-valued potential there is no proper definition of a “maximum”.) The energy
variable u is normalized so that in the Hermitian (1, 1) case this point lies at u = 1. In the
non-Hermitian cases we observe u ≈ 0.96 for (2, 1), u ≈ 1.09 for (3, 1), u ≈ 1.20 for (4, 1),
and u ≈ 0.84 for (3, 2). These values are independent of α, so this must be a consequence
of the underlying classical mechanics.

Figure 4. The bands of the non-Hermitian Hamiltonian in space of complex energy u. Blue stands for q = 0, while red
stands for q = 1

2 . The dotted circle marks |u| = 1. In all cases we see multiple branches of narrow bands with complex
values which terminate near the unit circle. The dashed line is a guide to the eye which connects the termination points of
the branches, u = −(1)1/(n1+n2), to u = 1. Top left: (n1, n2) = (2, 1), α = 200; top right: (3, 1), α = 300; bottom left: (4, 1),
α = 400; bottom right: (3, 2), α = 400. Reproduced with permission from References [25,26].

To calculate the statistical partition function in Equation (6) the most important eigen-
values are those with small real part. Therefore we will focus on the narrow bands and
treat them in semiclassical approximation.

3.2.2. Riemann Surface and Picard-Fuchs Equation

We use the rescaled energy variable u in Equation (12), substitute z = eiθ in the
Hamiltonian (10), and write the classical energy-momentum relation as

u
n1 + n2

n1n2
= p2 −

(
1
n1

ein1θ +
1
n2

e−in2θ

)
. (30)

The generalization for the complex algebraic curve in Equation (15) is the family
of curves

Eu : F (p, z) = n1n2 p2zn2 −
(
n2zn1+n2 + (n1 + n2)uzn2 + n1

)
= 0. (31)
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This defines implicitly a double-valued function p(z). It is easy to see that

(∂F/∂z, ∂F/∂p) does not vanish on Eu unless u = −e
2πim

n1+n2 for an integer m. For the
non-singular values of u the function p(z) is locally holomorphic except for the points
z = 0, ∞, zj, where zj, j = 1, ..., n1 + n2 are the roots of p2 = 0. The zj are the turning points
of classical motion in complex coordinates. Near these special points p(z) behaves as

p ∼ z−n2/2, (z ∼ 0) (32)

p ∼ zn1/2, (z ∼ ∞)

p ∼ (z− zj)
1/2. (z ∼ zj)

The zj are n1 + n2 branch points. If n2 (n1) is odd, then 0 (∞) is an additional branch
point; for even n2 (n1) there is a normal pole at 0 (∞). Hence, there are n1 + n2 + 1
branch points on the Riemann sphere if one of the integers is odd, and n1 + n2 + 2 branch
points if both are odd. (Here we ignore the case that n1, n2 are both even, because if
both integers can be divided by the same number n we can define z′ = einθ to obtain a
simpler algebraic curve.) In all cases there is an even number of branch points which
can be connected pairwise to form branch cuts. For (n1, n2) = (2, 1) we obtain four
branch points and two branch cuts and a Riemann surface of genus 1, as in Figure 2.
For (n1, n2) = (3, 1), (4, 1), (3, 2) the asymptotic expansions (32) give six branch points.
Consequently there are three branch cuts in the complex plane. Through a similar construc-
tion as in Figure 2 one obtains a Riemann surface which is topologically equivalent to a
figure “8”, i.e., a figure with two holes and genus 2 [26,28]. In the following we consider
these four cases because there are no naturally occurring ions with larger charge. However,
mathematically the algebraic curves for higher values of the integers can be constructed in
the same way, yielding Riemann surfaces with larger genus.

In Figure 5 we show the structure of branch points in the z-plane for these four
cases. On a Riemann surface with genus g = 1(2) there are two (four) independent closed
cycles [29]. In Figure 5 we define three cycles for the (2, 1) case, and five cycles for (4, 1)
and (3, 2). This is done for convenience and symmetry reasons. The superfluous cycle
can be expressed by the other cycles. For (2, 1) the linear combination γ0 − γ1 − γ2 does
not contain any of the branch points and is contractible to a point. For (4, 1) the trivial
cycle is γ0 − γ1 + γ2 + γ3 − γ4

∼= 0, and for (3, 2) we see that γ0 + γ1 − γ2 − γ3 + γ4
∼= 0.

We choose to include the additional cycle because it gives an easy representation for
the symmetry relation between the corresponding actions Sj(u), akin to Equation (23).
By substituting z′ = e−iφz and u′ = eiφu the cycles transform γj → γj+1. For the (2, 1) case
the resulting symmetry relation is

S0(u) = eπi/3S1(e−2πi/3u) = e−πi/3S2(e2πi/3u) . (33)

The analogous symmetry relations for the genus-2 cases are shown in Reference [26].
To calculate the actions S(u) =

∮
γ λ(u) we continue in the same manner as in Section 3.1.

The 1-form (cf. Equation (17)) with general n1, n2 is

λ(u) = p(θ)dθ = p(z)
dz
iz

=
(n2zn1+n2 + (n1 + n2)uzn2 + n1)

1/2

i
√

n1n2z1+n2/2 dz. (34)
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Figure 5. The integration cycles in the complex z-plane for the four non-Hermitian cases that are discussed in Section 3.2.
In all images we set u = 0. Each color represents one closed cycle of integration. Solid lines denote the sections which lie on
the principal sheet, dashed lines the parts on the second sheet. Top left: (2, 1); top right: (3, 1); bottom left: (4, 1); bottom
right: (3, 2). Note the differences in the structure of the branch cuts: in the (2, 1) case all branch points are finite, while in
the (1, 1) case in Figure 3 one branch point lies at ∞. Similar differences exist between the other three figures, whether
the branch points are at finite values of z or at ∞, and whether the origin is a branch point or a pole. Reproduced with
permission from Reference [26].

On a Riemann surface of genus g = 1(2) there are two (four) independent closed cycles.
According to the de Rham theorem, this is equal to the number of linearly independent
1-forms, modulo exact forms. Therefore a set of the 1-form (34) and its first few derivatives,
{∂k

uλ(u)}K
k=0, is linearly dependent if it contains the first K = 2(4) derivatives. We build a

linear combination of these which equals an exact form (for details see [26]). The integral
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of the exact form along a closed cycle gives zero. What is left is a linear combination of the
action and its first derivatives, cf. Equation (19). In the (2, 1) case we find this Picard-Fuchs
equation as

(u3 + 1)S′′j (u) +
u
4

Sj(u) = 0. (35)

This is a second-order differential equation. The Picard-Fuchs equations for the
genus-2 cases are fourth-order ODEs which can be found in Reference [26]. Equation (35)
admits two solutions F0(u3) and uF1(u3) which are given in terms of hypergeometric
functions [26,34],

F0(u3) = 2F1

(
−1

6
,−1

6
;

2
3

; −u3
)

, (36)

F1(u3) = 2F1

(
+

1
6

,+
1
6

;
4
3

; −u3
)

.

The actions are a linear combination of these, Sj(u) = Cj0F0(u3)+Cj1uF1(u3). Expand-
ing the hypergeometric functions near the origin, F0,1(u3) = 1 +O(u3), one notices that
Sj(u) = Cj0 + uCj1 +O(u3) as u→ 0. The constants C0k are therefore given by C00 = S0(0)
and C01 = S′0(0). Straightforward integration and the symmetry relation (33) yield

C00 = C10eπi/3 = C20e−πi/3 =
211/63π3/2

Γ( 1
6 )Γ(

1
3 )

, (37)

C01 = C11e−πi/3 = C21eπi/3 =
31/2Γ( 1

6 )Γ(
1
3 )

211/6π1/2 .

The actions Sj(u) for (n1, n2) = (2, 1) are fully given by Equations (33), (36), and (37).
The analogous expressions for the genus-2 cases with (n1, n2) = (3, 1), (4, 1), (3, 2) are
given in Reference [26]. In the next section we discuss how to obtain semiclassical results
for the physical observables.

3.2.3. Semiclassical Results in the Non-Hermitian Cases

In this section we calculate the eigenenergies and bandwidths of the non-Hermitian
Hamiltonian in Equation (10) with the Bohr-Sommerfeld quantization condition and
Gamow’s formula. To utilize these standard semiclassical results we need to calculate
the classical and the instanton actions, Scl,inst(u) =

∮
γcl,inst

λ(u). The crucial part hereby is
identifying the correct cycle of integration. In Section 3.1, when discussing the case of a
Hermitian Hamiltonian, we identified these with trajectories which connect the classical
turning points through the classically allowed or forbidden region respectively, cf. Figure 3.
In the non-Hermitian case this is not so clear, because there exist more than two turning
points, and in the space with complex coordinate, momentum, and energy the concept
of classically allowed or forbidden regions doesn’t apply. Instead, to identify the correct
actions Scl,inst(u) we look at the analytic behavior of these actions near special values of
the energy u.

The Bohr-Sommerfeld condition requires that the classical action goes to zero at the
classical minimum of the potential. This happens when two turning points collide which
causes the corresponding cycle of integration to collapse to a point. We can easily check that
in all four cases in Figure 5 the cycle γ0 collapses to a point as u→ −1. The corresponding
action goes to zero, S0(−1) = 0. Therefore we identify S0(u) as the classical action which
quantizes into the branch of eigenstates that terminates at u = −1. For (n1, n2) = (2, 1) it
follows immediately from the symmetry relation (33) that at the singular point u = eiπ/3

(e−iπ/3) the cycle γ1 (γ2) collapses to a point and the action S1(u) (S2(u)) goes to zero.
It should be thus identified with the classical action for the spectral branch terminating at
u = eiπ/3 (e−iπ/3). In the same manner the analogous symmetry relations for the genus-2
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cases in Reference [26] allow us to identify the classical actions for all the spectral branches
in Figure 4. Quantizing these classical actions according to the Bohr-Sommerfeld rule,

Sj(u
(j)
m ) = 2πα−1/2(m + 1/2), m = 0, 1, ... , (38)

one finds the semiclassical energies u(j)
m determining the q = 0 edges of the narrow bands

in the complex plane. These results are compared with numerical data in Figure 6. The ex-
cellent agreement holds all the way up to the point where all spectral branches coalesce.
Beyond this point the semiclassical approximation breaks down, which manifests in e.g.,
the appearance of wide Bloch bands.

Figure 6. Narrow energy bands (red dots) in the upper half-plane of complex energy u for large α, cf. Figure 4. In all four
cases, Im S0(u) = 0 along the real axis, where the thin lines mark |S0(u)| = 2πα−1/2(m + 1/2), the quantization condition.
The other black lines mark Im Sj(u) = 0 for the other actions Sj(u), and the thin lines mark |Sj(u)| = 2πα−1/2(m + 1/2).
In all cases Sj(u) corresponds to an action encircling two branch points. These points coalesce at a singular value of u on the
unit circle (dashed) where the spectral branch ends. Near intersections of two lines neither quantization condition holds,
cf. u ≈ 0.90 + 0.31i in (4, 1) and u ≈ 0.82 in (3, 2). Beyond this intersection the states are quantized according to the sum of
the two corresponding actions, S1 + S2 in (4, 1) and S2 + S3 in (3, 2), marked in green. To the right all lines coalesce and
beyond this point we observe wide bands with narrow gaps. The lower half-plane shows the mirror image (i.e., complex
conjugate) of the upper half plane. Top left: (n1, n2) = (2, 1), α = 200; top right: (3, 1), α = 300; bottom left: (4, 1), α = 400;
bottom right: (3, 2), α = 400. Reproduced with permission from Reference [26].

All graphs exhibit spectral branches along the lines where one of the actions Sj(u)
is real, while the narrow bands lie at the points determined by the Bohr-Sommerfeld
condition (38). For (2, 1) and (3, 1) there exists a total of three spectral sequences, for (4, 1)
and (3, 2) five sequences due to a higher number of special energies. In the (4, 1) case the
two complex-valued branches intersect at u ≈ 0.90 + 0.32i. Beyond this point the two
sequences merge into one, for which the quantization condition is neither determined
by S1 nor S2 individually, but instead by the sum S1 + S2 (shown in green). For (3, 2)
the two lines for the complex-conjugate pair S2 and S3 collide at u ≈ 0.84, the other pair
collides at u ≈ 0.98 where the semiclassical approximation breaks down. A closer look
at the state at u ≈ 0.89 reveals that this cannot be explained by the quantization of S0
along the real axis. However, it meets the Bohr-Sommerfeld condition (38) for S2 + S3
with m = 17. Thus we may conclude that the spectral branches can be derived from the
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Bohr-Sommerfeld condition for one of the actions, or upon intersection of two branches by
the sum of the two actions of these branches.

To calculate the width of these bands with Gamow’s formula,

(∆u)m =
ω

π
√

α
eiα1/2Sinst(um)/2 , (39)

we need to identify the instanton actions. The classical frequency ω is determined from
the harmonic oscillator approximation, i.e., by expanding the potential around θ = 0. In
Hermitian quantum mechanics the instanton trajectory connects the two classical turning
points through the classically forbidden region, cf. Figure 3. Hence, we identify the
instanton cycle as the other possible cycle that connects the same two turning points. This
is a combination of all other integration cycles γi. The instanton actions that correspond to
the classical actions S0(u) are

Sinst(u) = −S1(u) + S2(u), (2, 1);

Sinst(u) = −S1(u)− S2(u) + S3(u), (3, 1); (40)

Sinst(u) = −S1(u)− S2(u) + S3(u) + S4(u), (4, 1);

Sinst(u) = −S1(u) + S2(u)− S3(u) + S4(u), (3, 2).

From the symmetry relation (33) between the actions and its analogons for the genus-2
cases it is easy to check that these combinations are purely imaginary, which makes the
bandwidth in Equation (39) real, as required.

More can be said when considering the analytic structure of the classical and instanton
action in a vicinity of u = −1. Therefore we use a concept called monodromy [29,32], which
is visualized in Figure 7. We choose some u & −1 and allow u to wind around −1 (i.e.,
(u + 1)→ (u + 1)e2πi). The two branch points inside the cycle γ0 in Figure 5 are exchanged
by this transformation via a counter-clockwise half-turn; the branch cut in effect rotates by
180◦. For γ0 this has no effect, the cut turns within it. Not so for γ1: if this cycle is never to
intersect the branch points, it is continuously deformed and as a result of this monodromy
transformation we obtain γ1 → γ1 + γ0, thus S1 picks up a contribution of S0. This effect is
visualized in Figure 7. While we have returned to the initial value of u, the period S1 does
not return to its original value and thus can’t be analytic. This occurs for every monodromy
cycle near u = −1. The only function which monotonically increases as the phase of its
argument grows is the complex logarithm. Thus, S1 must have a logarithmic dependence
on 1 + u. One can check that

S1(u) = Q1(u)−
i

2π
S0(u) ln(1 + u) (41)

yields the correct behavior, where Q1(u) and S0(u) are analytic functions of (1 + u).
The same applies to the other cycle which is connected to the same branch cut. Therefore
the instanton action Sinst in Equation (40) picks up a contribution of −2S0. Hence, we can
derive the Bohr-Sommerfeld quantization condition (38) from the requirement that the
monodromy transformation leaves the bandwidth (39) unchanged.
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Figure 7. In a monodromy transformation the parameter u is smoothly changed around a critical value in parameter space
and returned to its original value, e.g., (1 + u) → (1 + u)e2πi. During the transformation the branch points (blue) move
in the complex plane, and the same structure of branch points is recovered. However, if a special value of the parameter
u is enclosed by the trajectory in parameter space, e.g., u = −1, then the two branch points which collide at u = −1 are
exchanged. During the transformation the integration cycle (red) is not allowed to cross a branch point, hence they are
pulled along with the branch points. To restore the original cycle a closed cycle enclosing the two branch points has to be
added.

A comparison of the results for the bandwidth with numerical simulations is shown
in Figure 8 for the four non-Hermitian cases and the Hermitian (1, 1) case. All cases show
good agreement with the numerical data already for moderate values of the parameter α.
(Note however, that for the genus-2 cases Gamow’s formula had to be multiplied by an
overall factor of 3/2 (in (3, 1) case) or 2 (in (4, 1) and (3, 2) cases), respectively. The origin
of this preexponential factor is beyond the scope of this paper.)

Figure 8. Analytic (numerical) results for the logarithm of the bandwidth of the lowest band, ln(∆ε)0,
as a function of α1/2, for all five cases with Riemann surfaces of genus 1 or 2. (1, 1): solid line (stars),
(2, 1): dashed line (diamonds), (3, 1): dotted line (circles), (4, 1): short-dashed line (triangles), and
(3, 2): dash-dotted line (squares). Reproduced with permission from Reference [26].

To summarize, we find that in all cases the bandwidth is of the form

(∆ε)m = A×
(

k
m + 1/2

)(m+1/2)
× exp

(
−b
√

α + (m/2 + 3/4) ln α
)
. (42)
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The pressure, which is calculated from the lowest eigenvalue, contains the ideal gas
pressure and the Debye-Hueckel correction,

P = CkBT f − c
√

kBTeE0 f . (43)

Here A, k and b, and C and c, are numerical factors that can be calculated directly by
expanding S0 and Sinst:

(n1, n2) A k b C c
(1, 1) 4/π 32e 8 2 1
(2, 1) 2

√
6/π 36

√
6e 3

√
6 3/2

√
3/2

(3, 1) 4
√

2/π 6.35 7.06 4/3
√

2
(4, 1) 5

√
5/2/2π 1303.46 6.90 5/4

√
5/2

(3, 2) 5
√

5/2/3π 6740.06 5.65 5/6
√

5/2

These values quantify the thermodynamic properties of the ion channels for all five
different combinations of charged ions which give a Riemann surface of genus 1 or 2. With a
maximum valency of 4 these are also the physically relevant cases. Most importantly we
show that the Coulomb gas with unequal valency n1 6= n2 has the same qualitative behavior
as the standard gas with ions of equal valency, n1 = n2. In all cases the pressure consists
of the ideal gas pressure and the Debye-Hueckel correction, see Equation (43). Crucially
for transport through the ion channel, in all cases the bandwidth shows exponential decay
with the square-root of the fugacity α and has a universal pre-exponential factor of α3/4.
However the factor b in the exponent shrinks when the valency is increased, meaning that
the transport barrier falls off slower with increased charge concentration when transporting
ions with larger valency.

3.3. Higher-Order Corrections from Exact Wkb Method

The approximations for the eigenvalues of the non-Hermitian Hamiltonian can be
improved further by considering second- and higher-order terms in the WKB series. The in-
spiration comes from the exact WKB method which was studied extensively in the context
of resurgence theory [37,38]. We use this to get a better approximation for the eigenvalues,
and with that the pressure of the Coulomb gas, at moderate values of the charge concentra-
tion α & 1. The key is that the q = 0 band edge, which gives the pressure in equilibrium,
is determined by an infinite series in α−1 (i.e., h̄2 in usual quantum mechanics),

∞

∑
n=0

(−1)n

αn

∮

γcl

ρ2n(θ, um)dθ =
2π(m + 1/2)√

α
. (44)

ρ0(θ, u) = p(θ, u) is the classical momentum, and the other terms can be found through
a recursive relation [37]. Equation (44) is sometimes also referred to as the generalized
Bohr-Sommerfeld quantization condition. Reference [38] shows a calculation of the exact
WKB series at all orders for a class of Hermitian genus-1 cases which include the cosine
potential, i.e., the (1, 1) case in our notation. Here we follow the ideas in [39] and chapter
5 of [28] which give a general procedure to calculate the terms order-by-order for any
potential, and can also be applied to non-Hermitian Hamiltonians.

It is evident that truncation of Equation (44) at the n = 0 term leads to the usual
Bohr-Sommerfeld quantization condition. To improve upon this we include the n = 1 term.
The integrand is given by

ρ2(θ, u)dθ =

(
∂2

θ(ρ0(θ, u)2)

48ρ0(θ, u)3 +
5
24

∂θ
ρ′0(θ, u)
ρ0(θ, u)2

)
dθ, (45)
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where the prime denotes a derivative with respect to θ [37]. The second term is an exact
form which integrates to zero. We drop this exact form, use the expression (30) for the
classical momentum p = ρ0, and perform the coordinate transformation z = eiθ to write
the second-order 1-form as

ρ̃2(z, u)dz =
−n1zn1 − n2z−n2

48
(

u n1+n2
n1n2

+ 1
n1

zn1 + 1
n2

z−n2

)3/2
iz

dz. (46)

A comparison with Equation (34) shows that the second-order 1-form ρ̃2(z, u)dz has
the same branch points as the action 1-form λ(u). Therefore it is defined on the same
Riemann surface. As discussed in the preceding sections, on the Riemann surfaces of genus
g = 1(2) there exist two (four) linearly independent 1-forms, up to an exact form. We
take {∂k

uλ(u)}K
k=0 as this maximal independent set with K = 1(3). This forms a basis for

the space of all 1-forms. Hence, the second-order correction can be written as a linear
combination of these basis 1-forms, modulo an exact form. We find this linear combination
in the same way as in the derivation of the Picard-Fuchs Equations (19) and (35) and
integrate it along the classical cycle γcl to get

∮

γcl

ρ̃2(z, u)dz = −a
(
S′0(u) + 2uS′′0 (u)

)
,

(n1, n2) (1,1) (2,1) (3,1) (4,1) (3,1)
a 1/48 1/18 3/32 2/15 3/10

. (47)

These expressions fully define the second-order corrections in terms of the classical
action and its derivatives with respect to u. These are easily obtained from the previous
results, Equations (20)–(22), (36) and (37) (see Reference [26] for the genus-2 cases). Note
that in the genus-1 cases the second derivative S′′0 (u) can be replaced with S0(u) by using
the Picard-Fuchs Equations (19) and (35).

Here we want to stress that calculation of the second-order (and any higher) correction
is only as computationally demanding as deriving the Picard-Fuchs equation. It does not
require solving the differential equation and matching boundary conditions because the
correct classical action was already identified. Therefore this can also be used as a simple
method to simply calculate the higher-order WKB terms if the classical action was obtained
in a different manner. The improvement in the approximation of the lowest eigenvalue is
shown in Figure 9.

Figure 9. Log-plot of the deviation of the first-order (dashed line) and second-order (solid line) WKB result from the exact
numerical result for the lowest eigenvalue as a function of α. We show the five different cases: (1, 1) in black, (2, 1) in blue,
(3, 1) in red, (4, 1) in orange, (3, 2) in purple. The error drops by several orders of magnitude when taking the second-order
WKB term into account. The approximations converge to the exact result as α→ ∞; however, already at moderate values of
α & 1 the approximations give quite accurate results.
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With the second-order result we can calculate the eigenvalues u up to order α−1.
Therefore we expand the classical action S0(u) for u & −1 to order (u + 1)2 and solve for u.
Taking the lowest eigenvalue u0 and applying this to the formula for the pressure (7) gives

P = c0kBT f − c1
√

eE0kBT f − c2eE0, (48)

with the following constants:

(n1, n2) c0 c1 c2

(1, 1) 2 1 1/16
(2, 1) 3/2

√
3/2 1/9

(3, 1) 4/3
√

2 19/144
(4, 1) 5/4

√
5/2 1/8

(3, 2) 5/6
√

5/2 13/36

This gives the ideal gas pressure and the Debye-Hueckel correction from the usual
Bohr-Sommerfeld condition. The second-order WKB term gives an additional correction
which is independent of the fugacity but only depends on the geometric properties of the
channel which are included in the definition of E0.

4. Summary of Semiclassical Results

In this review we discussed analytic calculations of the thermodynamic properties of
an ion channel at large charge concentrations, with an extension to moderate concentrations.
We started with discussing a standard mapping of a statistical system onto an effective
quantum system [10,23]. When performing this mapping there is no guarantee that the
resulting effective Hamiltonian is Hermitian and has a purely real spectrum. Physically
one needs to obtain a real and positive partition function. This is e.g., guaranteed if the
Hamiltonian obeys PT -symmetry and its lowest eigenvalue is purely real.

Translation between the quantum results and thermodynamic observables is straight-
forward. Most importantly, the pressure (i.e., free energy density) is given by the quantum
mechanical ground-state energy. The adiabatic transport barrier is the width of the lowest
Bloch band. The complex energies of excited states, c.f. Figures 4 and 6, describe higher-
order correlation functions. Their imaginary part is responsible for spatial oscillations,
while the real part yields an overall exponential decay. Such decaying oscillatory correla-
tion functions reflect short-range charge density wave ionic order within the channel. As
seen in Figures 4 and 6, the onset of complex eigenvalues happens at lower energies for
ions with larger valencies, which implies stronger charge density fluctuations. In all cases
we observe that an increase of the charge concentration leads to an exponential reduction
of the transport barrier, however this decay is slower if the ion valencies are large. This is
visualized in Figure 8.

The approximation with the effective 1D Coulomb potential, Equation (1), works best
at large ion concentration. Electric field lines leak out of the channel after a characteristic
length ξ which is given by ξ2 = a2κ1/(2κ2) ln(2ξ/a), where a is the radius of the channel
and κ1, κ2 are the dielectric constants of water and the surrounding medium. Therefore the
1D Coulomb potential best approximates the situation where the characteristic distance
between the ions is small. This is the case of large charge concentration, which is also the
case when then semiclassical approximation is applicable.

Here we discuss a method how to perform semiclassical calculations without the need
to solve the classical equations of motion and without direct integration. This is particularly
useful in the non-Hermitian cases when the solutions to the equations of motions are hardly
attainable. Instead we derive and solve the Picard-Fuchs differential equation, which is
a tool from algebraic topology. The power of the Picard-Fuchs equation is that it is a
coordinate-free expression, i.e., one does not need to know the classical trajectories. In the
last part we extend our calculations to second- and higher-order terms in the WKB series.
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These provide a clearly improved approximation for the eigenvalues especially at moderate
charge concentrations, see Figure 9.

The applicability of the Picard-Fuchs method extends far beyond the case of ion
channels. It can be a powerful tool for Hermitian and non-Hermitian systems alike, as it can
be applied to generic Hamiltonians. Especially the extension to second- and higher-order
terms in the WKB series requires very little computational effort once the classical action
has been calculated. Mappings of a generic statistical system onto an effective quantum
system can lead to a non-Hermitian Hamiltonian for which semiclassical calculations with
direct integration are difficult. We believe that the Picard-Fuchs method can be especially
useful in these cases, as it allows us to circumvent the complications associated with direct
integration like solving equations of motion with complex coordinates.
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Appendix A. Equivalence between Partition Function and Quantum Mechanics

Here we present details of the mapping between the statistical system of charged ions
and an effective single-particle quantum mechanical problem. Our goal is to evaluate the
grandcanonical partition function of the Coulomb gas, Equation (4),

Z =
∞

∑
N1,N2=0

f N1
1 f N2

2
N1!N2!

N1+N2

∏
j=1

∫ L

0
dxj e−U/T , (A1)

where the gas potential energy U is given by Equations (2) and (3). To this end we first
consider an auxiliary identity:

1 =
∫
Dρ(x) δ

(
ρ(x)−

N1+N2

∑
j=1

σjδ(x− xj)− q(δ(x)− δ(x− L))

)

=
∫
Dρ(x)

∫
Dθ(x) e

−i
L∫
0

dx θ(x)

(
ρ(x)−

N1+N2
∑

j=1
σjδ(x−xj)−q(δ(x)−δ(x−L))

)

(A2)

=
∫∫
Dρ(x)Dθ(x) e

−i

(
L∫
0

dx θ(x)ρ(x)−
N1+N2

∑
j=1

σjθ(xj)−q(θ(0)−θ(L))

)

.
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Here ρ(x) is a continuous field for the charge density, and θ(x) its conjugate field.
Substituting this identity into the expression for the partition function, one finds:

Z =
∫ ∞∫

−∞

dθ0dθL

(2π)2 eiq(θ0−θL)
∫∫
Dρ(x)Dθ(x) e

− 1
2T
∫ L∫

0
dxdx′ρ(x)Φ(x−x′)ρ(x′)−i

L∫
0

dx θ(x)ρ(x)

×
∞

∑
N1=0

1
N1!


 f1

L∫

0

dx eiσ1θ(x)




N1

×
∞

∑
N2=0

1
N2!


 f2

L∫

0

dx e iσ2θ(x)




N2

(A3)

=
∫ ∞∫

−∞

dθ0dθL

(2π)2 eiq(θ0−θL)
∫
Dθ(x) e

− T
2
∫ L∫

0
dxdx′θ(x)Φ−1(x−x′)θ(x′)+

L∫
0

dx( f1ein1θ(x)+ f2e−in2θ(x))
.

The integral over θ(x) runs over all functions with the boundary conditions θ(0) = θ0
and θ(L) = θL. We also use that the valencies of the charges are σj = n1 for 1 ≤ j ≤ N1
and σj = −n2 for N1 + 1 ≤ j ≤ N1 + N2. It is straightforward to verify that the inverse
of the interaction operator is given by Φ−1(x− x′) = −(2eE0)

−1δ(x− x′)∂2
x, because the

Coulomb potential in any dimension is a resolvent of the Poisson equation and therefore
its inverse is the Laplacian. As a result, the functional integral on the r.h.s. of the last
expression takes the form of the Feynman propagator

G(θ0, θL; L) ≡
∫
Dθ(x) e−

xT
4
∫

dx[(∂xθ)2−(α1ein1θ(x)+α2e−in2θ(x))] , (A4)

where xT = T/(eE0) and α1,2 = 4 f1,2/xT . Expression (A4) represents the “quantum
mechanical” probability to propagate from θ0 to θL during the (imaginary) “time” L.
The corresponding stationary “Schrödinger equation” for the eigenfunction Ψm(θ, x) =
Ψm(θ) exp{−2 εmx/xT} has the form:

− ∂2Ψm(θ)

∂θ2 −
(

α1ein1θ(x) + α2e−in2θ(x)
)

Ψm(θ) = εmΨm(θ) . (A5)

In terms of the stationary eigenfunctions of this equation the propagator takes the form

G(θ0, θL; L) = ∑
m

Ψm(θ0)Ψ̄m(θL) e−2εm L/xT . (A6)

Finally the partition function (A3) is nothing but the Fourier transform of the propa-
gator with respect to θ0 and θL and thus may be written as

Z = ∑
m

Ψm(q)Ψ̄m(q) e−2εm L/xT , (A7)

where Ψm(q) ≡
∫

dθ/(2π)Ψm(θ) exp{iθq} = 〈q|m〉 is the quasi-momentum representation
of the wavefunction in the m-th Bloch band with the energy εm. Instead of dealing with
Bloch wavefunctions with the boundary condition Ψm(θ + 2π) = ei2πqΨm(θ) one may
perform a gauge transformation to deal with periodic wavefunctions and having q as the
vector potential in the Schrödinger equation. This way we arrive at Equations (5) and (6)
in the main text.
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Abstract: Voltage-gated sodium channels (NaVs) play fundamental roles in eukaryotes, but their
exceptional size hinders their structural resolution. Bacterial NaVs are simplified homologues of
their eukaryotic counterparts, but their use as models of eukaryotic Na+ channels is limited by their
homotetrameric structure at odds with the asymmetric Selectivity Filter (SF) of eukaryotic NaVs.
This work aims at mimicking the SF of eukaryotic NaVs by engineering radial asymmetry into the SF
of bacterial channels. This goal was pursued with two approaches: the co-expression of different
monomers of the NaChBac bacterial channel to induce the random assembly of heterotetramers,
and the concatenation of four bacterial monomers to form a concatemer that can be targeted by
site-specific mutagenesis. Patch-clamp measurements and Molecular Dynamics simulations showed
that an additional gating charge in the SF leads to a significant increase in Na+ and a modest increase
in the Ca2+ conductance in the NavMs concatemer in agreement with the behavior of the population
of random heterotetramers with the highest proportion of channels with charge −5e. We thus showed
that charge, despite being important, is not the only determinant of conduction and selectivity, and we
created new tools extending the use of bacterial channels as models of eukaryotic counterparts.

Keywords: ion channel; selectivity; permeability; patch-clamp; computer simulations

1. Introduction

Voltage-gated sodium and calcium channels (NaVs and CaVs, respectively) are involved in
a multitude of processes, including electrical signaling, secretion, and synaptic transmission [1].
The malfunction or dysregulation of NaVs and CaVs leads to a wide range of neurological,
cardiovascular, and muscular disorders, including periodic paralysis [2], arrhythmia [3], and epilepsy [4],
which highlights the importance of these molecules.

Eukaryotic NaVs and CaVs have similar structure and comprise a pore-forming α1 subunit of
approximately 190–250 kDa, which co-assembles with a number of auxiliary subunits. The α1 subunit
is organized in four domains, each comprising a voltage sensor (encompassing helices S1–S4) and
a pore domain (including helices S5–S6) [5–9]. The four domains arranged around the pore are not
identical, resulting in a channel structure that is asymmetric and pseudo-tetrameric [10]. The atomic
level resolution of the structure of these molecules is essential to understand their structure-function
relationships, but this task is particularly challenging for eukaryotic NaV channels, due to them being
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membrane integral proteins [11] and is exacerbated by their particularly large size. Consequently,
to date only the structure of a single eukaryotic NaV has been resolved at the atomic level (3.8 Å),
but the channel was not electrophysiologically characterized [12].

Bacterial NaVs and CaVs are simplified homologues of eukaryoticchannels. Theyarehomotetrameric
channels formed by four identical monomers corresponding to the four domains of the α1 subunit
of eukaryotic channels [13–16]. Their minimalist structure has enabled the determination of
high-resolution atomistic structures, which has allowed extensive structure-functional characterization
with respect to their cation selectivity, gating, and binding of anesthetics e.g., [17–19]. Although a
complete understanding of selectivity has not been arrived at, the availability of high-resolution
structures has provided a detailed understanding of the atomistic-level interaction of ions in the
Selectivity Filter (SF). Despite this, there is still no widely accepted predictive model for cation selectivity,
representing gaps in our knowledge of the molecular mechanism of ion permeation and selectivity.
Mutation studies suggest the fixed charge (Qf) of the SF to be one of the major determinants of selectivity
and permeation [15,20–32]. The Qf charge is at the core of many theoretical models attempting to
explain the physical origins of cation selectivity in ion channels. For example, cation conduction has
recently been modelled within the framework of Ionic Coulomb Blockade (ICB) [24,25], an electrostatic
model with the aim of predicting Na+ and Ca2+ permeability based on knowing the actual Qf value of
the SF.

Although prokaryotic and eukaryotic channels show the same general architecture along the
axis of the pore (an outer vestibule and an inner water filled cavity separated by a narrow SF),
the use of prokaryotic channels as models of their eukaryotic counterparts is limited by their lack
of radial asymmetry. In the case of the homotetrameric bacterial NaVs, four identical monomers
form the channel pore; in contrast, their eukaryotic counterparts are composed of four non-identical
domains which introduce significant radial asymmetry [14,26–31]. This difference becomes evident
at the level of the SF, where conduction and selectivity are controlled by a DEKA ring (Qf = −1e) in
eukaryotic NaVs and an EEEE ring (Qf = −4e) in prokaryotic NaVs. Another puzzling fact is that the
EEEE locus is typical of bacterial sodium-selective channels but also characterizes calcium-selective
eukaryotic channels [16,32–34], thus leading to NaChBac being initially predicted to be Ca2+-selective.
The existence of disparate sequences indicates that bacterial and eukaryotic channels enforce their ion
preferences through different molecular strategies [15,34,35]. As a result, the selectivity and conduction
mechanisms discovered in prokaryotes are not readily transferable to eukaryotes.

The puzzling functional similarity between bacterial NaVs and eukaryotic CaVs has been termed
the “EEEE paradox” [36]. The paradox arises as a result of the violation of the assumption that Qf is the
main driving force of cation selectivity. A possible resolution of the paradox is related to the existence
of a conserved D residue in domain 2 of CaVs in the neighborhood of the EEEE ring. Monte Carlo
simulations predicted this D residue (termed D2p51 in [37]) to occupy a position in close proximity to
the EEEE locus. This observation led to the hypothesis that the locus imparting Ca2+ permeability is
actually EEEED, with a Qf value of −5e [25,37]. Moreover, when this conserved D residue in domain 2
of Cav1.2 (referred to as D707 in [29]) was replaced with neutral residues, a striking reduction in Ca2+

binding to the SF was measured [29]. These results suggest D707 to be an important cation binding
determinant of eukaryotic channels.

The different behavior of prokaryotic and eukaryotic voltage-gated sodium and calcium channels
highlights the importance of incorporating radial asymmetry in the SF of prokaryotic channels. In our
previous work [38] we reported the creation of a concatenated bacterial NaV, in which four NavMs
monomers were covalently linked to form a stable single polypeptide chain, resembling the general
structure of a eukaryotic NaV. This allowed the targeted mutagenesis of individual domains introducing
radial asymmetry in the bacterial channel with the aim to gain further insight on the role of Qf as
a determinant of ion selectivity. In the present study, we report the first attempt to mutate the
concatemer and generate a bacterial sodium channel with radial asymmetry in the SF. In order to
obtain atomistic-level detail of selectivity and permeation, the electrophysiological characterization
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was integrated with Molecular Dynamics (MD) simulations of wild-type NavMs (Qf = −4e) and a
mutant with an additional negative charge in the SF (Qf = −5e).

In the present study, we have also employed an independent yet complementary approach
to introduce radial asymmetry into the SF of a bacterial sodium channel. Namely, a number of
combinations of NaChBac monomers (differing in their amino acid composition and Qf value of the
SF) were transfected into Chinese Hamster Ovary (CHO) cells to generate a random population of
heterotetrameric channels with radial asymmetry in the SF. The mixed monomer approach using
NaChBac monomers showed that Ca2+ conduction is increased in channels with a Qf > −4e (consistent
with the proposed explanation for the EEEE paradox). Our data confirm the key role of the SF charge
as the major determinant of conduction and selectivity. However, the failure to completely overturn
the sodium selectivity of the NavMs concatemer to Ca2+ selectivity (with much smaller relative Ca2+

permeability exhibited by the −5e mutant NavMs concatemers compared to that for eukaryotic CaVs)
suggests the existence of fine-tuning mechanisms of structural origin.

2. Materials and Methods

2.1. Materials Generation of Mutant Bacterial Channels

cDNA constructs encoding NaChBac (GenBank accession number BAB05220) and NavMs
(GenBank accession number WP_011712479) bacterial sodium channels were synthesized by EPOCH
Life Science (www.epochlifescience.com). NavMs concatemer was subcloned into pTRACER-CMV2
(Invitrogen) downstream of CMV promoter, as described previously [38].

Site-directed mutagenesis was performed using specific primers containing the sequence
for the desired amino acid substitutions (according to Q5® Site-Directed Mutagenesis
Kit; New England BioLabs Inc., Hitchin, UK). For the generation of LEDWAS mutant
from wild-type NaChBac, we used the forward primer CACGCTAGAGgatTGGGCGAGCG
and the reversed primer ACCACTTGGAACAATGTTAAC; for LASWAS mutant,
we used the forward primer GGTCACGCTAgccTCATGGGCGAGcggc and the reversed
primer ACTTGGAACAATGTTAACAAACtaagc.

Qf = −5e NavMs mutants were generated from NavMs concatemer, which was designed
with restriction sites delimiting each domain (Supplementary Figure S3A). Domain I (KpnI/EcoRI)
and Domain II (EcoRI/EcoRV) were excised by restriction digest. The domain fragments were
re-amplified by PCR using primer pairs to regenerate the restriction site prior to subcloning into
vector pCR Blunt II-TOPO (Invitrogen): primers are Kpn1_NavMs_F (CCCGGTACCAGCCGCCA
CCATGTCACGCAAAATAAG)/EcoRI_ NavMs_R (CCCGAATTCGGGCTCGTCCTCCCAGATG)
for Domain I and EcoRI_ NavMs_F (CCCGAATTCATGTCTAGGAAGATCC)/EcoRV_ NavMs_F
(CCCGATATCGGGCTCGTCCTCCCAGATG) for Domain II. Site-directed mutagenesis (for S179D,
according to NavMs monomer residue nomenclature) was performed on each domain using
primers LEDWSM_ NavMs_F (GACCTTAGAGgatTGGTCTATGGGC) and LEDWSM_ NavMs_R
(ATCACCTGAAATAGTGTG) prior to the restriction enzyme-mediated excision and ligation (T4 DNA
ligase; NEB) of the Domain DNA fragment in the NavMs concatemer at sites KpnI/EcoRI (for Domain I)
and EcoRI/EcoRV (Domain II).

All the clones were sequenced to check for correct construction and to ensure that no unwanted
PCR induced mutations had been introduced. DNA for the transfection of cells was prepared using
Midi Plasmid Kit (Qiagen, Manchester, UK).

2.2. Cell Culture and Transfection

Chinese hamster ovary (CHO) and human embryonic kidney (HEK293T) cell lines were obtained
from Dr. Stephen K. Roberts. Cells were cultured in DMEM high glucose with L-glutamine (Lonza,
Slough, UK ) supplemented with 10% Fetal Bovine Serum (Thermo Scientific, Loughborough, UK) with
the addition of 50 U/mL of penicillin and 50 µg/mL of streptomycin (Sigma, Irvine, UK). Cells were
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maintained in a T25 flask (Thermo Scientific) at 37 ◦C in a 5% CO2 incubator and passaged twice a week.
Then, 24 h before transfection, the cells were seeded in 6-well plates (Corning, Deeside, UK) containing
No.1 coverslips (Scientific Laboratory Supplies, Nottingham, UK). A total of 10 µL of transfection
reagent (Mirus, Cardiff, UK) and 5 µg of plasmid DNA or a mixture of DNAs in defined proportions
were equilibrated separately in 250 µL of UltraMEM™ Reduced Serum Medium (Lonza, Slough, UK)
at room temperature for 5 min and then mixed and incubated at room temperature for 20 min to form
the DNA-reagent complex. Treated cells (at 80% confluency) were supplemented with DNA-reagent
complex and incubated at 37 ◦C and 5% CO2 for 24–48 h before experiments.

2.3. Electrophysiology

Whole-cell voltage clamp recordings were performed at room temperature (20 ◦C) using an
Axopatch 200A (Molecular Devices, Inc., Wokingham, UK) amplifier. Patch-clamp pipettes were pulled
from borosilicate glass (Kimax, Kimble Company, Dover, USA) to resistances of 2–3 MOhm. Shanks of
the pipette’s tip were coated with bee’s wax to reduce the pipette capacitance. The pipette solution
contained (in mM) 15 Na-gluconate, 5 NaCl, 90 NMDG, 10 EGTA, and 20 HEPES, pH 7.4 adjustedwith
3 mM HCl). To record Na+ influx currents the bath solution was (in mM) 140 Na-methanesulfonate,
5 CsCl, 10 HEPES and 10 glucose (pH 7.4 adjusted with 4.8 mM CsOH); for the measurement of the Ca2+

influx currents, 140 mM of Na-methanesulfonate was replaced with 100 mM of Ca-methanesulfonate.
Data collection was initiated 3 min after obtaining the whole cell configuration to ensure the

complete equilibration of the pipette solution and cytosol. The bath solution was grounded using a 3 M
KCl agar bridge; the liquid junction potential determined experimentally (as described by [39]) agreed
with that calculated (using JPCalc program, Clampex, Axon Instruments, Inc., Wokingham, UK) and
was negligible. To ensure the complete exchange of the bath solution, electrophysiological recordings
were initiated after >4 min of solution change. The rate of the gravity-fed perfusion system for the
bath solution exchange was approximately 0.7 mL/min in a chamber volume of approximately 200 µL.

The results were analyzed using the Clampfit 10.1 software (Molecular Devices, Wokingham,
UK) and OriginPro8 (OriginLab Corporation, Wellesley, MA, USA). Pooled data are presented as
means ± SEM (n), where n is the number of independent experiments.

2.4. Equilibrium Simulations of NavMs Channel

The initial structure of wild-type NavMs was taken from the Protein Data Bank (PDB ID: 3ZJZ).
Mutation S179D on chain A, and embedding in a membrane of 248 POPC molecules was performed
using the CHARMM membrane builder [40,41]. The membrane was bathed on both sides by a 0.14 M
NaCl solution or a 0.1 M CaCl2 solution. The size of the simulation box was 102 × 102 × 86 Å and
the total number of atoms in the four simulated systems was a little short of 90,000. All the acidic
residues have been assigned a charge −1e, while basic residues have been assigned a charge +1e based
on an analysis of the pKa values with the PROPKA program (server.poissonboltzmann.org/pdb2pqr).
All the simulations were performed with the NAMD 2.11b2 [42] suite of programs using the ff14SB [43]
force field for the protein and the Lipid14 force-field [44] for the phospholipids. As already observed
in [45], in the absence of harmonic restraints the pore rapidly closes at the cytoplasmic gate. In order to
avoid this behavior that likely results from the absence of the Voltage Sensor Domain in the simulated
system, harmonic restraints (50 kcal/mol/Å2) were applied to the backbone atoms of the transmembrane
helices (residues 131–154 and 194–222) throughout the simulation. The four systems first underwent
10,000 steps of conjugate gradient minimization.

During equilibration, harmonic restraints were applied to non-hydrogen atoms of the protein
backbone and side-chains (outside the transmembrane helices; residues 155–193), as well as to the
phospholipid heads. A harmonic restraint was also applied to the dihedral angle formed by carbons
8, 9, 10, 11 of oleoyl acid and to the improper dihedral C1–C3–C2–O2 involving the three carbons
of the glycerol unit and the hydroxyl oxygen linked to its central carbon. The equilibration was
organized in six stages, whereby the constraints were gradually released. The values of the force
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constants used in the six stages can be found in Supplementary Table S1. The production run was
carried out in the isothermal isobaric (NPT) ensemble for 100 ns (in NaCl solution) or 150 ns (in CaCl2
solution). The pressure was kept at 1 atm by the Nose–Hoover Langevin piston method, while the
temperature was kept at 300 K by coupling to a Langevin thermostat with a damping coefficient of
1 ps−1. Long-range electrostatic interactions were evaluated with the smooth particle mesh Ewald
algorithm. For the short-range non-bonded interactions, we used a cutoff of 12 Å with a switching
function at 10.0 Å. The integration time step was 2 fs, and the bonds between hydrogen and heavy
atoms were fixed to eliminate the most rapid oscillatory motions. The Potential of Mean Force (PMF)
was computed using equation F(z) = −kBT log(ρ(z)/ρb), where kB is the Boltzmann constant, T is
the absolute temperature, ρ(z) is the density profile of sodium or calcium ions, and ρb is the density
of these ions in the bulk. Since the ion density in the channel is typically higher than in the bulk,
the PMF normally has negative values. To avoid a divergence in the logarithmic expression of the
PMF, we assigned F(z) = 0 when ρ(z) = 0—that is, in the regions of the channel that are never visited
by ions.

2.5. Current-Voltage Curves Calculation

Current–voltage (IV) curves in NavMs were attained using the collective diffusion model
introduced in [46], where the time-course Q(t) of the net charge transported across the channel
at equilibrium is thought of as an unbiased random walk. The net charge transported in the time
interval ∆t between two consecutive frames of the trajectory is ∆Q =

∑
z1≤z≤z2

ei∆zi
Lz

, where the sum runs

over all ions i, such that z1 ≤ z ≤ z2, z1 = −4.5 Å and z2 = 16.5 Å are the axial limits of the filter
region somewhat extended in the vestibule and central cavity. The use of this extended SF gives us the
opportunity to exploit the fluctuations due to ions exploring the vestibule region without entering
into the SF as well as the aborted permeation events where the ion crosses the mouth of the SF but is
immediately pulled back in due to the attraction of the acidic residues. In the expression, ∆zi is the
axial displacement of the ion in the time interval ∆t and Lz = z2 − z1 is the length of the SF. The time
course of the charge, Q(t), can then be attained as Q(t) =

∑
ti<t

∆Q(ti).

Diffusion theory predicts that, for sufficiently long times, the mean square displacement
of the charge

〈
Q2(t)

〉
grows linearly with a slope proportional to the diffusion coefficient,〈

Q2(t)
〉
∼ 2DQt + Const. Applying linear response theory, the steady current induced by a small

constant voltage V can be computed as Isteady = DQV/kBT. Using such an approach, the linear region
of an IV curve can be computed based on the spontaneous ion fluctuations at equilibrium in the absence
of any applied electric field.

3. Results

3.1. Experimental Results

To introduce radial asymmetry in the SF of NaChBac, two approaches were adopted. First, mixed
populations of NaChBac monomers (differing in their amino acid composition and the Qf value of
the SF) were co-transfected into CHO cells to generate hetero-tetrameric channels exhibiting radial
asymmetry in the SFs. Second, we used a concatenated NavMs tetramer [38] to generate radial
asymmetry in the SF by the targeted mutation of one of the four repeats.

3.1.1. Na+/Ca2+ Selectivity for Randomly Mixed Populations of NaChBac Monomers

The random assembly of channel tetramers can be demonstrated taking advantage of the
different electrophysiological properties of WT NaChBac and the L226P mutant illustrated by the
recordings in Supplementary Figure S1. The L226P mutation causes conspicuous alterations in
channel gating of NaChBac from depolarization-activated whole-cell currents to non-inactivating
hyperpolarization-activated whole-cell currents [47], (Supplementary Figure S1A,B). The mutation
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shifts the voltage of the maximal current from −10 mV in WT to −180 mV in the mutant
(Supplementary Figure S1D), thus currents at −10 mV originating from separate channel populations
of WT and L226P homotetramers can be easily separated. The current recordings from CHO cells
co-transfected with NaChBac-encoding WT:L226P cDNAs in a ratio 3:1 (Supplementary Figure S1C,E)
exhibited unique currents at −10 mV, which cannot be explained by the simple addition of whole
current traces from homotetramer channels formed from either L226P or wild-type NaChBac (note that
there is no current at −10 mV from L226P channels), indicating that unique heterotetramers are being
formed. Assuming that the assembly of heterotetramers is formed without bias, the proportions of
channel types can be determined by binomial distribution. It is noteworthy that this assumption is in
agreement with previous findings [47,48], showing no bias for heterotetramer formation in CHO cells
expressing a mixture of WT and G219P mutant NaChBac monomers and dimers.

Using this approach, CHO cells were co-transfected with cDNAs of NaChBac-encoding WT and
mutants, with varied Qf in the SF, in different ratios. Note that the open probabilities and single
channel conductances for the WT NaChBac (LESWAS) and LEDWAS homotetramers were equivalent
(Supplementary Figure S2), and that the whole-cell Na+ currents from cells expressing homotetramer
WT and LEDWAS were similar in magnitude (Figure 1a,c), consistent with the expression of the channel
(i.e., number of channels) being independent of the single amino acid mutations introduced into the
SF. Figure 1 shows the currents recorded from cells transfected with defined mixtures of NaChBac
monomers; see Table 1 for the probabilities of different charged species, assuming that the assembly
follows a binomial distribution.
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Figure 1. Na+/Ca2+ selectivity for NaChBac monomer mixtures. The voltage–current relations (A,B) 
and the mean (+/− SEM) whole-cell peak current density at −10 mV (C,D) for Na+ (A,C) and Ca2+ (B,D) 
in CHO cells transfected with cDNAs encoding for NaChBac channels possessing either a wild-type 
selectivity filter (LESWAS/LES) or a mutated selectivity filter (LASWAS/LAS or LEDWAS/LED); 5 μg 
of total DNA was used per transfection and was composed of either a mixture of types of cDNA at 

Figure 1. Na+/Ca2+ selectivity for NaChBac monomer mixtures. The voltage–current relations (A,B)
and the mean (+/− SEM) whole-cell peak current density at −10 mV (C,D) for Na+ (A,C) and Ca2+ (B,D)
in CHO cells transfected with cDNAs encoding for NaChBac channels possessing either a wild-type
selectivity filter (LESWAS/LES) or a mutated selectivity filter (LASWAS/LAS or LEDWAS/LED); 5 µg of
total DNA was used per transfection and was composed of either a mixture of types of cDNA at defined
ratios, as indicated in Table 1 and on the X-axis, or a single cDNA type. Numbers in parentheses
indicate the number of replicates.
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Whole-cell currents were initially recorded in bath solution containing 140 mM of
Na-methanesulfonate, followed by recordings after the complete replacement of bath Na+ with
100 mM of Ca-methanesulfonate. Na+ permeation appears relatively insensitive to changes in Qf
values between −4e and −8e and equivalent in cells expressing only LESWAS and/or LEDWAS
monomers. Focusing on channels exhibiting Qf values less than −4e, it is interesting to note that,
despite co-transfection with a 1:1 ratio of LASWAS:LESWAS resulting in an expected only 6.2% of
the channel population being homotetramers of LESWAS (Qf = −4e), the Na+ current density was
approximately 30% of that recorded from cells expressing only LESWAS homotetramer channels
(Figure 1a,c). An equivalent interpretation can be made for measurements of current density from cells
transfected with a 1:3 ratio of cDNAs encoding LASWAS:LESWAS: the sodium current density was
equivalent to that recorded from cells expressing only LESWAS homotetramers, despite only 32% of
the channel population being predicted to be homotetrameric LESWAS. It is also interesting to compare
the current density of the 3:1 LASWAS:LESWAS-expressing cells. Note that these cells show about
25% current density compared to the LESWAS-only cells (5 and 20 pA/pF, respectively). If one looks
at the binominal predictions, 25% of channels are predicted to have Qf = −2e and greater and this is
consistent with a Qf = −1e and 0 being non-conducting (Figure 1c). The simplest explanation for the
disproportionately large Na+ current in cells expressing mixtures of LESWAS and LASWAS monomers
is that functional NaChBac channels possessing a SF with a Qf value less than −4e are functional and
able to mediate the Na+ influx.

Extending this type of analysis to the Ca2+ currents, cells transfected with a 1:3 ratio of
LESWAS:LEDWAS encoding cDNAs (in which 0.3% of expressed functional channels were predicted
to be LEDWAS homotetramers, with a Qf = −8e) exhibited a similar current density for Ca2+ influx as
that from cells expressing only LEDWAS channels (Figure 1d). Thus, functional NaChBac channels
possessing SFs with a Qf value of less than −8e appear to be able to mediate Ca2+ influx, with the
possibility that a Qf value of −5e is sufficient to permit Ca2+ permeation. This explanation is also
consistent with the observation that the Ca2+ current density is greatest in cells transfected with
equal and 1:3 ratios of LESWAS:LEDWAS (Figure 1b,d). Note that the Na+ influx current density
remains relatively constant in cells transfected with both LESWAS and LEDWAS encoding cDNAs,
indicating that the effect of varying Qf between −4e and −8e was specific to the Ca2+ current density.

3.1.2. Na+/Ca2+ Selectivity for Concatenated NavMS Channels

Although the use of a mixed population of cDNAs encoding for NaChBac and its mutants
suggested the value of Qf to be a major determining factor for Na+/Ca2+ selectivity, the results are
subject to the caveat that the whole-cell currents result from the cumulative current from an unknown
but predictable range of different channel types. To address this complication, we attempted to
generate a stable concatenation of NaChBac to enable the expression of a homogeneous population of
NaChBac mutants; however, we have previously shown [38] the NaChBac oligomer to be unstable
and not to remain intact in the plasma membrane. In contrast, an equivalent intact NavMs oligomer
could be stably expressed in HEK293T cells [38] and thus enable the generation of a homogeneous
population of bacterial channels, in which the Qf value of the SF can be altered in steps of 1e. The SF of
eukaryotic CaVs is formed by a ring of glutamates (the EEEE locus) and a conserved aspartate residue
in domain II (D2p51 [37]). The D2p51 residue is suggested to form a binding site for a third incoming
Ca2+ from the extracellular side of the pore and thus bring an additional positive charge to the SF
region necessary for the release of a bound Ca2+ to the cytosolic side (i.e., a knock-on mechanism [49]).
Although direct evidence for the role of the D2p51 in Ca2+ permeation remains elusive, replacing the
D2p51 residue in Cav1.2 (aka D707) with a neutral amino acid residue significantly reduces the Ca2+

binding of the SF [29]. Thus, to gain further insight into the role of the D2p51 in Ca2+ permeation,
we used site-directed mutagenesis targeted to repeat I or II in the NavMs oligomer to generate a
bacterial NaV with an “EEEED” locus (Qf = −5e) in the SF (Supplementary Figure S3). NavMs has a
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high homology (45% sequence identity) to NaChBac [28,45], which should enable comparison with the
results from NaChBac.

The WT NavMs SF is defined by 177LESWSM182, and we generated NavMs tetramers
(Supplementary Figure S3) with the S179D mutation in either repeat I (mutant DI) or repeat II
(mutant DII). Both mutants are therefore expected to carry a charge of −5e in the SF. Figure 2 shows
typical whole-cell currents from WT and mutant NavMs in bath solution containing either 140 mM of
Na+ or 100 mM of Ca2+.
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Figure 2. Na+/Ca2+ selectivity for NavMs concatemer possessing varied Qf values in their SF.
The original recordings representatives of wild-type NavMS (A) and its DI (B) and DII (C) mutants in
140 mM Na+ solution (grey traces) and in 100 mM Ca2+ solution (black traces). The voltage–current
relations (D,E) and the mean (+/− SEM) whole-cell peak current density at −10 mV (F,G) for Na+ (D,F)
and Ca2+ (E,G) in HEK 293T cells transfected with cDNAs encoding for either wild-type or mutated
NavMS. Numbers in parentheses indicate the number of replicates; and in HEK293T cells transfected
with wild-type NavMS concatemer (WT) and mutant NavMS concatemer (DI and DII).

In order to make quantitative comparisons between the electrophysiological behavior of NaChBac
and NavMs mutants, the peak calcium and sodium currents as well as their ratio are tabulated in
Supplementary Table S3 for the NaChBac heterotetramer populations and in Supplementary Table S2
for the NavMs mutants. The comparison of the data of the two tables shows that the ratio of the peak
current densities for Na+ and Ca2+ in wild-type NavMs (0.018) is comparable to that for wild-type
NaChBac (0.010). The tables also show that the ratio of peak current densities for Ca2+ and Na+ in the
two NavMs mutants with an SF charge of −5e (0.080 for the DI mutant and 0.097 for the DII mutant) is
similar to that for mutant channels formed from the expression of the 3LES:1LED mixture of NaChBac
(0.054) in CHO cells, which yields the highest probability of occurrence (42%) of heterotetramers with
an SF charge equal to −5e. Although both data sets support the increased Ca2+ permeability in −5e
mutant bacterial sodium channels, the difference in the Ca2+ current magnitude that is evident upon
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comparing NavMs and NaChBac channels clearly indicates that factors other than the value of Qf are
important in determining the Ca2+ permeability.

3.2. Computational Results

In an attempt to gain a molecular-level understanding of the different behavior of WT NavMs
(Qf = −4e) and its mutant with charge Qf = −5e, we ran equilibrium MD simulations in a 100 mM
solution of CaCl2 or 140 mM NaCl (for 150 and 100 ns, respectively). The initial structure of WT NavMs
was taken from the Protein Data Bank (ID: 3ZJZ). Mutation S179D on chain A and embedding in a
membrane of 248 POPC molecules was performed using the CHARMM membrane builder [40,41].

In 140 mM of NaCl solution, the WT NavMs SF is stably occupied by a single Na+ even if transient
events of occupation by a second ion can also be spotted (Supplementary Figure S4a). Qf = −5e
mutants SF is almost immediately occupied by two Na+ ions and, after 40 ns, the filter becomes stably
occupied by three sodium ions (Supplementary Figure S4b). The different behavior of the two species
is also reflected in the PMF profile (Figure 3a,b), which is characterized by a single deep minimum
centered at z = 4–5 Å for WT NavMs, and a minimum split into three sub-basins at z = 2.0 Å, z = 5.0 Å,
and z = 8–9 Å, corresponding to three different binding regions, for the Qf = −5e mutant. The barriers
between the sub-basins are in the order of 1–2 kcal/mol and can be easily overcome at the simulation
temperature, yet the sodium ions linger in each binding site for longer than they would in case of a
uniform probability distribution of occupancy.

The nature of these binding sites can be better characterized by analyzing the conformation of the
SF in the last frame of the 100 ns simulations (Figure 3e–h). A notable feature of wild-type NavMs is
that the side chains of E178 residues do not point toward the center of the channel, but they are aligned
along the channel wall pointing towards the extracellular side. As a result, the distance between the
resident sodium ion and the ε-oxygen of E178 always exceeds 4.0 Å. This means that there are no
direct sodium-protein interactions; Na+ interacts with the protein via water molecules in its hydration
shell. Indeed, the withdrawn placement of E178 side chains leaves sufficient space in the SF for Na+

to fully keep its first hydration shell of six water molecules. In contrast, the conformation of the
SF of Qf = −5e mutant revealed three sodium ions that directly interact with the residues of the SF;
specifically, the extracellular one interacting with D179 and E178 both located on chain A, the central
one with E178, and the intracellular sodium with the backbone carbonyl group of one of the L177
residues. The additional negative charge thus determines an enhanced ability of the NavMs mutant to
capture sodium ions from the bulk. This, combined with the possibility of a knock-on mechanism
deriving from the simultaneous presence of three Na+ ions in the SF, possibly explains the larger
sodium current density for NavMs channels with Qf = −5e. As a result of this structural arrangement
(and in contrast to that for the WT; Figure 3c), Na+ ions accessing the SF of the mutant lose on average
3.5 water molecules. However, this loss is compensated by the interactions with the oxygens provided
by the acidic residues (2 oxygens) and by other protein residues (1 oxygen), such that the total number
of coordinating oxygens is maintained equivalent to that for sodium in bulk solution (Figure 3c,d).
Note that the interactions of the resident ions with all other residues of the SF are water-mediated.

In 100 mM of CaCl2 within the timescale of our simulations, no Ca2+ gains access to the SF of the
WT channel, while a single Ca2+ enters into the SF of the Qf = −5e mutant during the early stages of
the simulation and thereafter remains locked inside, while also repelling other potentially incoming
calcium ions (Supplementary Figure S5a,b). This pattern is in keeping not only with the behavior of
WT and mutant NavMs concatemer, but also with the results of the experiments on mixed populations
of NaChBac heterotetramers. In fact, while the calcium peak current of the LESWAS homotetramers
(Qf = −4e) is just 0.66 pA/pF, that of the 3LES:1LED population, where we expect the highest proportion
of channels with Qf = −5e, is tenfold higher (6.0 pA/pF). The seeming mismatch between the currents
recorded in experiments and the total block of the Ca2+ ion revealed by the simulations is (at least in
part) due to the fact that, in the latter, no electric field was applied. Moreover, experimental recordings
are performed on a timescale of hundreds of milliseconds, one million times longer than that covered
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by simulations, allowing time for slow, activated events of ion permeation. A comparison between our
computational results and those by other groups is discussed in Supplementary Figure S6.
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Figure 3. MD simulations for the WT and mutant NavMS in NaCl 140 mM. (a,b) Potential of Mean
Force of Na+ as a function of the axial position in WT NavMS (a) and the mutant with charge Qf = −5e
(b). (c,d) Average number of coordinating oxygens per sodium ion in axial bins with a thickness of 2.0 Å.
(c) Wild-type NavMs; (d) NavMs mutant with Qf = −5e. The distance cutoff to identify sodium-chloride
interactions was set to 3.5 Å, and for sodium-oxygen to 3.2 Å. Color code is as follows. Blue line:
number of coordinating water-provided oxygens; green line: number of coordinating oxygens provided
by aspartate and glutamates; red line; number of coordinating oxygens provided by other protein
residues; black line: total number of coordinating oxygens; magenta line: number of coordinating
chlorides. (e,h) Configuration of the selectivity filter of wild-type NavMS (e,g) and the mutant with
charge Qf = −5e (f,h). All the structures correspond to the last frame of a 100 ns simulation in 0.14 M
NaCl. Panels (e,f) show a side view of the SF; panels (g,h) show the top view. Glu178 is shown in
red, while Asp179 is shown in purple. The backbone of Leu177 is shown in green. Sodium ions are
portrayed as blue beads. Panels (e,g) also show the water molecules that mediate the interactions
between the resident sodium ion and the protein in wild-type NavMS.
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The position of the ion in the SF revealed by the Potential of Mean Force (PMF) shows that Ca2+

ions do visit the vestibule region of the WT channel, but they never enter into the SF (Figure 4a).
The presence of an additional negative charge in the SF (S179D) is sufficient to pull in a Ca2+ ion that
occupies a binding site centered at z = 6.5 Å (Figure 4b). The PMF minimum corresponding to this
binding site has a depth of approximately 7.0 kcal/mol, which, at the simulation temperature of 300 K,
corresponds to 11.5 kBT. The energy well is thus so deep that a single Ca2+ cannot leave the SF. Thus,
to be consistent with the experimental recording of Ca2+ current (Figure 2e,g), calcium permeation must
involve some sort of knock-on mechanism. The role of the aspartate residue in the SF is immediately
highlighted by Figure 4e–h, which shows the configuration of the SF in the last frame of the simulation.
The resident calcium ion appears to be directly bonded to D179 and to E178, both located on chain
A (Figure 4). The interactions with the other glutamates of the SF are all water-mediated. In order
to better characterize calcium hydration, in Figure 4c,d we plot the average number of coordinating
oxygen atoms per calcium ion in axial bins with a thickness of 2.0 Å. Figure 4 shows that when a
calcium ion enters into the SF, the number of hydrating water molecules drops from approximately
8 to 4.5. This dehydration is compensated by an increase in the number of coordinating oxygens
provided by aspartate and glutamate residues (approximately 3). Thus, when Ca2+ enters the SF,
the total number of coordinating oxygens remains roughly unchanged (Figure 4c,d).

A collective diffusion model approach was adopted to approximate the Ca2+ currents [46].
The algorithm relates the spontaneous permeation events at equilibrium with steady currents induced
by small voltages. This approach thus enables the estimation of currents from equilibrium simulations;
however, as it is based on linear response theory, its predictions are reliable only in a small voltage
range. The results of the calculation are summarized in Table 2.

Table 2. Current estimates through linear response theory. The first column shows the NavMs species
analyzed, either the wild-type form EEEE with an SF charge Qf = −4e or the mutant EEEED with
an additional negative charge in the SF (Qf = −5e). The second column shows the ion carrying the
current, the third column reports the estimated conductance in pS, and the fourth column lists the
estimated current at V = −20 mV. This voltage corresponds to the peak current in the current–voltage
plots determined from whole-cell patch-clamp experiments.

Species Ion Conductance (pS) Currents
(pA; −20 mV)

EEEE Ca2+ 1.69 −0.033
EEEED Ca2+ 4.87 −0.097
EEEE Na+ 23.06 −0.46

EEEED Na+ 35.37 −0.70

Notwithstanding the limitations of our calculations, the collective diffusion modelling predictions
are in reasonable agreement with the experimental observations (Figure 2). For example, (1) whole-cell
recordings showed that peak sodium currents increased by approximately 1.5-fold in the Qf = −5e
NavMs channel (−35 to −55 pA/pF); this is mirrored by a 1.5-fold increase in sodium conductance
(from 23.06 to 35.37 pS) predicted by linear response theory calculations. (2) Experimental measurements
of peak calcium currents in the Qf = −5e mutant are approximately 10 times smaller than those for
sodium. This is consistent with the modelling in the Qf = −5e mutant, in which a seven-fold greater
sodium (35.37 pS) conductance is predicted compared to that for calcium (4.87 pS). (3) The small finite
Ca2+ influx predicted in the WT NavMs (Table 2; 1.69 pS) can be observed in the electrophysiological
recordings (Figure 2e).
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of Ca2+ as a function of the axial position in WT NavMS (a) and the mutant with charge Qf = −5e
(b). (c,d) Average number of coordinating oxygens per calcium ion in axial bins with a thickness of
2.0 Å. (c) Wild-type NavMs; (d) NavMs mutant with Qf = −5e. The distance cutoff to identify both
calcium-chloride and calcium-oxygen interactions was set to 3.5 Å. Color code is as follows. Blue line:
number of coordinating water oxygens; green line: number of coordinating oxygens provided by
aspartate and glutamates; red line; number of coordinating oxygens provided by other protein residues;
black line: total number of coordinating oxygens; magenta line: number of coordinating chlorides.
(e–h) Configuration of the selectivity filter of wild-type NavMS (e,g) and the mutant with charge
Qf = −5e (f,h). All the structures correspond to the last frame of a 150 ns simulation in 0.10 M of
CaCl2. Panels (e,f) show a side view of the SF; panels (g,h) show the top view. Glu178 is shown in
red, while Asp179 is shown in purple. The backbone of Leu177 is shown in green. Calcium ions are
portrayed as orange beads.
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4. Discussion and Conclusions

In this work, we engineered radial asymmetry in the bacterial NaChBac and NavMs channels
as a first attempt to mimic the features of eukaryotic voltage-gated sodium and calcium channels.
It is well known that prokaryotic sodium channels are characterized by a glutamate ring that imparts
a charge −4e to the SF and endows the channel with Na+ selectivity. It is also well established that
an increase in the negative charge of the SF makes the channel progressively more calcium-selective.
Pioneering studies by the Clapham group, for instance, showed that mutating into aspartate either
serine of the SF sequence TLESWAS of NaChBac decreases the PNa/PCa ratio, while a mutation of both
serines makes the channel completely calcium-selective [20]. Using the same strategy, more recently
Tang et al. replaced the TLESWSM sequence in the SF of NavAb with TLDDWSD, causing a complete
shift from sodium to calcium selectivity [21]. It is noteworthy that, due to the tetrameric symmetry of
prokaryotic NaVs, in all these studies the charge of the SF was always varied in −4e steps and radial
symmetry was maintained. It is thus known that a charge Qf = −4e is typical of a Na+-selective channel,
while a charge −8e or −12e leads to calcium selectivity. This change in the Qf value is rather coarse and
does not address the fact that the SF of eukaryotic channels is asymmetric. Therefore, it is important to
investigate the influence on the selectivity of charge changes by −1e steps.

The study of random heteroteramers in our work indicated that channels with an SF charge
smaller than −4e mediate Na+ currents and channels with an SF charge in the −4e < Qf < −8e range
conduct Ca2+. Furthermore, the study of the NavMs concatemer showed that the presence of an
additional negative charge in the SF leads to a significant increase in the Na+ and Ca2+ current.

The electrophysiological behavior of the NaChBac populations of randomly assembled
heterotetramers appears to be in reasonable agreement with the predictions of the Ionic Coulomb
Blockade (ICB) model [23–25]. According to this model, ion permeation and selectivity through channels
mainly depend on the Qf of the SF. If calcium permeation is plotted as a function of Qf, a pattern of
alternating conductance and stop bands can be observed. In contrast, the same plot for sodium predicts
a steep increase in current magnitude up to values in Qf of <−2e, followed by a plateau and the absence
of stop bands (Figures 2 and 3, in [25]), consistent with sodium permeation being relatively insensitive
to changes in Qf. Thus, the predictions of the ICB model appear to be compatible with the plot of peak
sodium currents in Figure 1c. Furthermore, it is tempting to envisage the pattern of Ca2+ current density
shown in Figure 1d as an oscillation in the calcium conductance (i.e., conductance and stop bands),
which would repeat over a wider range of Qf values. The ICB model, however, appears to be less
successful in explaining the so-called ”EEEE paradox”—that is, the apparently shared “EEEE” motif in
both the sodium-selective bacterial NaVs and the calcium-selective eukaryotic CaVs. Kaufman et al.
tentatively reconciled this inconsistency, noting the presence of a conserved aspartate close to the EEEE
ring of eukaryotic CaVs, thus redefining the motif as EEEED, which raises the SF charge to −5e [36].
Our experiments on the NavMs concatemer go some way towards confirming this prediction, but also
highlight that other factors in addition to the value of Qf are important. The ICB model predicts that
a charge −5e allows the access of a third Ca2+ ion when the SF is already occupied by two resident
calcium ions. Our MD simulations, however, show that while no calcium ion gains access to the
SF of WT NavMs, only a single Ca2+ ion stably occupies the filter of the mutant with charge −5e.
This calcium ion is strongly bound to D179 and E178 located on the same subunit, and sits in a free
energy well so deep that it cannot leave the SF. At the same time, the resident ion probably exerts an
electrostatic repulsion on other potentially incoming Ca2+ ions, preventing a knock-on mechanism in a
similar fashion as that described for NaChBac [49].

Our experiments and simulations thus suggest that the extra negative charge is effective in the
capture of cations from the bulk, but it does not promote permeation. Contrary to that postulated
by simplified physical models (in which the channel atomic structure is not considered), the charge
of the SF is not the only determinant of conduction and selectivity. It is possible that calcium flow
in eukaryotic Cavs requires some sort of fine modulation of charge effects. Flood et al., for instance,
performed an interesting computational study grafting the SF and external vestibular region of the
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human NaV1.2 channel into the scaffold of the NavRh bacterial channel [35]. Their multi-microsecond
MD simulations revealed that permeation and selectivity depend on the close interplay of the DEKA
and EEDD rings, so that the charge of the extended filter region is −5e as in our NavMs mutant. In its
protonated state, the lysine residue of the DEKA ring acts like a built-in sodium ion involved in the
formation of multi-carboxylates/multi-ion complexes. When the charged ammonium group of lysine
is in the HFS site, where the electrostatic potential is most negative, it creates a smooth electrostatic
environment leading into the cavity, whereas, when it is bent toward the central cavity, it creates a zone
of high electrostatic potential that cuts the cavity off from the SF. Our recent work [38], showing the
possibility to create stable concatemers of the bacterial NavMs channel, offers the opportunity to
experimentally test these computational predictions by creating a bacterial channel chimera where the
SF and vestibule of the human Nav1.2 channel are grafted onto the NavMs concatemer.

Since no positively charged residue appears to be located close to the SF of eukaryotic CaVs,
the fine modulation of the charge might rely on the differential protonation of the acidic residues of
the EEEED locus. The effect of protonation has been extensively studied through MD simulations.
Furini et al., for instance, showed that the glutamate side chains in NavAb can adopt two different
orientations pointing either towards the extracellular environment or towards the central cavity [34].
Interestingly, they found that the likelihood of the inwardly directed arrangement increases when E177
residues are protonated. Moreover, the presence of a glutamate residue with the side chain directed
to the central cavity increases the energy barrier for the translocation of sodium ions. Since E177
was observed to adopt an alternative conformation in MD simulations with Ca2+ ions [50], it is
possible that these protonation-induced configurations also affect selectivity. While the control of
the protonation state of the filter is a trivial task in MD simulations, it is a challenging endeavor in
biophysical experiments.

This leads us to the methodological aspect of our work. Our study not only tested the importance
of SF charge in controlling ion selectivity and permeation, but created new tools extending the use of
bacterial channels as models of eukaryotic ones. Indeed, the current work is the first one to report
experiments on a NaV channel in which the pore region has been mutated to have radial asymmetry,
and thus it represents an important first step in bridging the major limitation in using bacterial sodium
channels to investigate their eukaryotic counterparts. Our methodology will enable us to design
physical experiments to investigate the mechanisms of the fine modulation of charge effects that are
likely to occur in asymmetric eukaryotic channels, such as that predicted by Flood et al. [35].

A further methodological merit of our approach is its relevance in understanding the effect of pH
on channel permeation and selectivity. In fact, when the pH is varied, the four glutamates of the SF are
unlikely to be protonated or deprotonated simultaneously. A more probable scenario is that they are
protonated or deprotonated one at a time, resulting in +1e or −1e changes in the SF charge [23]. Finally,
our combination of molecular dynamics and electrophysiological approaches provided fresh insight
into the molecular mechanisms of cation permeation in bacterial sodium channels, and gave insight
into understanding the molecular mechanisms that underlie the function of NaVs and CaVs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/12/1390/s1:
Supplementary Table S1 Parameters of NavMs equilibration. Supplementary Table S2. Peak currents ratios of
WT and mutant NavMs channels. Supplementary Table S3. Peak currents ratios of NaChBac heterotetramers.
Supplementary Figure S1. The tetramer formation via co-transection is proved to be a random process without bias
for homo- or hetero-tetramer formation. Supplementary Figure S2. The single channel currents recorded from WT
NaChBac. Supplementary Figure S3. Schematic representation of NavMs concatemer. Supplementary Figure S4.
Ion occupancy of Selectivity Filter in MD simulations of WT NavMs and its mutant with Qf = −5e in NaCl 140 mM.
Supplementary Figure S5. Ion occupancy in Selectivity Filter in MD simulations of WT NavMs and its mutant
with Qf = −5e in CaCl2 100 mM. Supplementary Figure S6. Current-voltage plot calculations: comparison of
constant electric field simulations and equilibrium simulations in conjunction with linear response theory.

Data Availability: Data related to this research are openly available from the University of Warwick archive at
(https://wrap.warwick.ac.uk/143573). Fedorenko, Olena A., Khovanov, Igor A., Roberts, Stephen K., and Guardiani,
Carlo (2020) Data for Changes in ion selectivity following asymmetrical addition of charge to the selectivity filter of bacterial
sodium channels [Dataset].

277



Entropy 2020, 22, 1390

Author Contributions: Conceptualization, O.A.F., C.G., S.K.R., and I.A.K.; methodology, O.A.F. and C.G.;
formal analysis, O.A.F. and C.G.; investigation, O.A.F. and C.G.; writing—original draft preparation, O.A.F. and
C.G.; writing—review and editing, S.K.R. and I.A.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by EPSRC; project: Ionic Coulomb blockade oscillations and the physical
origins of permeation, selectivity, and their mutation transformations in biological ion channels (grant numbers:
EP/M015831/1 and EP/M016889/1). CG is currently supported by a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 803213).

Acknowledgments: We are grateful to Huaping Sun for the generation of the −5e NavMs constructs.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Catterall, W.A. Forty years of sodium channels: Structure, function, pharmacology, and epilepsy.
Neurochem. Res. 2017, 42, 2495–2504.

2. Flucher, B.E. Skeletal muscle CaV1.1 channelopathies. Pflug. Arch. Eur. J. Physiool. 2020, 472, 739–754.
3. Zhang, Q.; Chen, J.; Qin, Y.; Wang, J.; Zhou, L. Mutations in voltage-gated L-type calcium channel:

Implications in cardiac arrhythmia. Channels 2018, 12, 201–218.
4. Oyrer, J.; Maljevic, S.; Scheffer, I.E.; Berkovic, S.F.; Petrou, S.; Reid, C.A. Ion channels in genetic epilepsy:

From genes and mechanisms to disease-targeted therapies. Pharmacol. Rev. 2018, 70, 142–173.
5. Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell. Dev. Biol. 2000,

16, 521–555.
6. Tyson, J.R.; Snutch, T.P. Molecular nature of voltage-gated calcium channels: Structure and species comparison.

Wiley Interdiscrip. Rev. Membr. Transp. Signal. 2013, 2, 181–206.
7. Catterall, W.A.; Swanson, T.M. Structural basis for pharmacology of voltage-gated sodium and calcium

channels. Mol. Pharmacol. 2015, 88, 141–150.
8. Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The physiology, pathology, and pharmacology of

voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 2015, 67, 821–870.
9. Xu, L.; Ding, X.; Wang, T.; Mou, S.; Sun, H.; Hou, T. Voltage-gated sodium channels: Structures, functions,

and molecular modeling. Drug Discov. Today 2019, 24, 1389–1397.
10. Wu, J.; Yan, Z.; Li, Z.; Qian, X.; Lu, S.; Dong, M.; Zhou, Q.; Yan, M. Structure of the voltage-gated calcium

channel Cav1.1 at 3.6 Å resolution. Nature 2016, 537, 191–196.
11. Carpenter, E.P.; Beis, K.; Cameron, A.D.; Iwata, S. Overcoming the challenges of membrane protein

crystallography. Curr. Opin. Struct. Biol. 2008, 18, 581–586.
12. Shen, H.; Zhou, Q.; Pan, X.; Li, Z.; Wu, J.; Yan, N. Structure of a eukaryotic voltage-gated sodium channel at

near-atomic resolution. Science 2017, 355, 4326.
13. Ren, D.; Navarro, B.; Xu, H.; Yue, L.; Shi, Q.; Clapham, D.E. A prokaryotic voltage-gated sodium channel.

Science 2001, 294, 2372–2375.
14. Zhang, X.; Ren, W.; DeCaen, P.; Yan, C.; Tao, X.; Tang, L.; Wang, J.; Hasegawa, K.; Kumasaka, T.; He, J.; et al.

Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 2012, 486, 130–134.
15. Finol-Urdaneta, R.K.; Wang, Y.; Al-Sabi, A.; Zhao, C.; Noskov, S.Y.; French, R.J. Sodium channel selectivity

and conduction: Prokaryotes have devised their own molecular strategy. J. Gen. Physiol. 2014, 143, 157–171.
16. Catterall, W.A.; Zheng, N. Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic

ancestors. Trends Biochem. Sci. 2015, 40, 526–534.
17. Naylor, C.E.; Bagnéris, C.; DeCaen, P.G.; Sula, A.; Scaglione, A.; Clapham, D.E.; Wallace, B.A. Molecular basis

of ion permeability in a voltage-gated sodium channel. EMBO J. 2016, 35, 820–830.
18. Bagneris, C.; DeCaen, P.G.; Naylor, C.E.; Pryde, D.C.; Nobeli, I.; Clapham, D.E.; Wallace, B.A. Prokaryotic

NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc. Natl.
Acad. Sci. USA 2014, 111, 8428–8433.

19. Guardiani, C.; Rodger, P.M.; Fedorenko, O.A.; Roberts, S.K.; Khovanov, I.A. Sodium binding sites and
permeation mechanism in the NaChBac channel: A molecular dynamics study. J. Chem. Theory Comput. 2017,
13, 1389–1400.

278



Entropy 2020, 22, 1390

20. Yue, L.; Navarro, B.; Ren, D.; Ramos, A.; Clapham, D.E. The cation selectivity filter of the bacterial sodium
channel, NaChBac. J. Gen. Physiol. 2002, 120, 845–853.

21. Tang, L.; Gamal El-Din, T.M.; Payandeh, J.; Martinez, G.Q.; Heard, T.M.; Scheuer, T.; Zheng, N.; Catterall, W.A.
Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 2014, 505, 56–61.

22. Guardiani, C.; Fedorenko, O.A.; Khovanov, I.A.; Roberts, S.K. Different roles for aspartates and glutamates for
cation permeation in bacterial sodium channels. Biochim. Biophys. Acta (BBA)-Biomembr. 2019, 1861, 495–503.

23. Fedorenko, O.A.; Kaufman, I.K.; Gibby, W.A.T.; Barabash, M.L.; Luchinsky, D.G.; Roberts, S.K.;
McClintock, P.V.E. Ionic coulomb blockade and the determinants of selectivity in the NaChBac bacterial
sodium channel. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183301.

24. Kaufman, I.K.; McClintock, P.V.E.; Eisenberg, R.S. Coulomb blockade model of permeation and selectivity in
biological ion channels. New J. Phys. 2015, 17, 083021.

25. Kaufman, I.K.; Fedorenko, O.A.; Luchinsky, D.G.; Gibby, W.A.T.; Roberts, S.K.; McClintock, P.V.E.;
Eisenberg, R.S. Ionic Coulomb blockade and anomalous mole fraction effect in the NaChBac bacterial
ion channel and its charge-varied mutants. Nonlinear Biomed. Phys. 2017, 5, 4–12.

26. Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The crystal structure of a voltage-gated sodium channel.
Nature 2011, 475, 353–358.

27. Payandeh, J.; Gamal El-Din, T.M.; Scheuer, T.; Zheng, N.; Catterall, W.A. Crystal structure of a voltage-gated
sodium channel in two potentially inactivated states. Nature 2012, 486, 135–139.

28. Bagnéris, C.; Decaen, P.G.; Hall, B.A.; Naylor, C.E.; Clapham, D.E.; Kay, C.W.; Wallace, B.A. Role of the
C-terminal domain in the structure and function of tetrameric sodium channels. Nat. Commun. 2013, 4, 2465.

29. Shaya, D.; Findeisen, F.; Abderemane-Ali, F.; Arrigoni, C.; Wong, S.; Nurva, S.R.; Loussouarn, G.; Minor, D.L., Jr.
Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding
site common to eukaryotic channels. J. Mol. Biol. 2014, 426, 467–483.

30. Bagnéris, C.; Naylor, C.E.; McCusker, E.C.; Wallace, B.A. Structural model of the open-closed-inactivated
cycle of prokaryotic voltage-gated sodium channels. J. Gen. Physiol. 2015, 145, 5–16.

31. McCusker, E.C.; Bagnéris, C.; Naylor, C.E.; Cole, A.R.; D’Avanzo, N.; Nichols, C.G.; Wallace, B.A. Structure of
a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat. Commun.
2012, 3, 1102.

32. Dudev, T.; Lim, C. Why voltage-gated Ca2+ and bacterial Na+ channels with the same EEEE motif in their
selectivity filters confer opposite metal selectivity. Phys. Chem. Chem. Phys. 2012, 14, 12451–12456.

33. Furini, S.; Barbini, P.; Domene, C. Effects of the protonation state of the EEEE motif of a bacterial Na+ channel
on conduction and pore structure. Biophys. J. 2014, 106, 2175–2183.

34. Boiteux, C.; Flood, E.; Allen, T.W. Comparison of permeation mechanisms in sodium-selective ion channels.
Neurosci. Lett. 2019, 700, 3–8.

35. Flood, E.; Boiteux, C.; Allen, T.W. Selective ion permeation involves complexation with carboxylates and
lysine in a model human sodium channel. PLoS Comput. Biol. 2018, 14, e1006398.

36. Kaufman, I.K.; Luchinsky, D.G.; Gibby, W.A.T.; McClintock, P.V.E.; Eisenberg, R.S. Putative resolution of
the EEEE selectivity paradox in L-type Ca2+ and bacterial Na+ biological ion channels. J. Stat. Mech.
2016, 054027.

37. Cheng, R.C.; Tikhonov, D.B.; Zhorov, B.S. Structural modeling of calcium binding in the selectivity filter of
the L-type calcium channel. Eur. Biophys. J. 2010, 39, 839853.

38. Sun, H.; Zheng, Z.; Fedorenko, O.A.; Roberts, S.K. Covalent linkage of bacterial voltage-gated sodium
channels. BMC Biophysics. 2019, 12, 1.

39. Neher, E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992,
207, 123–131.

40. Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM.
J. Comput. Chem. 2008, 29, 1859–1865.

41. Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Dávila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.;
Venable, R.M.; et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations.
J. Comput. Chem. 2014, 35, 1997–2004.

42. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.;
Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802.

279



Entropy 2020, 22, 1390

43. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the
accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015,
11, 3696–3713.

44. Dickson, C.J.; Madej, B.D.; Skjevik, A.A.; Betz, R.M.; Teigen, K.; Gould, I.R.; Walker, R.C. Lipid14: The amber
lipid force field. J. Chem. Theory Comput. 2014, 10, 865–879.

45. Ulmschneider, M.B.; Bagneris, C.; McCusker, E.C.; DeCaen, P.G.; Delling, M.; Clapham, D.E.;
Ulmschneider, J.P.; Wallace, B.A. Molecular dynamics of ion transport through the open conformation of a
bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 2013, 110, 6364–6369.

46. Liu, Y.; Zhu, F. Collective diffusion model for ion conduction through microscopic channels. Biophys. J. 2013,
104, 368–376.

47. Zhao, Y.; Scheuer, T.; Catterall, W.A. Reversed voltage-dependent gating of a bacterial sodium channel with
proline substitutions in the S6 transmembrane segment. Proc. Natl. Acad. Sci. USA 2004, 101, 17873–17878.

48. Zhao, Y.; Yarov-Yarovoy, V.; Scheuer, T.; Catterall, W.A. A gating hinge in sodium channels; a molecular
switch for electrical signaling. Neuron 2004, 41, 859–865.

49. Guardiani, C.; Fedorenko, O.A.; Roberts, S.K.; Khovanov, I.A. On the selectivity of the NaChBac channel:
An integrated computational and experimental analysis of Na+ and Ca2+ permeation. Phys. Chem.
Chem. Phys. 2017, 19, 29840–29854.

50. Ke, S.; Zangerl, E.M.; Stary-Weinzinger, A. Distinct interactions of Na+ and Ca2+ ions with the selectivity
filter of the bacterial sodium channel NavAb. Biochem. Biophys. Res. Commun. 2013, 430, 1272–1276.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

280



entropy

Perspective

Prospects of Observing Ionic Coulomb Blockade in
Artificial Ion Confinements

Andrey Chernev, Sanjin Marion and Aleksandra Radenovic *

Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL,
1015 Lausanne, Switzerland; andrey.chernev@epfl.ch (A.C.); sanjin.marion@epfl.ch (S.M.)
* Correspondence: aleksandra.radenovic@epfl.ch

Received: 9 November 2020; Accepted: 11 December 2020; Published: 18 December 2020

Abstract: Nanofluidics encompasses a wide range of advanced approaches to study charge and
mass transport at the nanoscale. Modern technologies allow us to develop and improve artificial
nanofluidic platforms that confine ions in a way similar to single-ion channels in living cells. Therefore,
nanofluidic platforms show great potential to act as a test field for theoretical models. This review
aims to highlight ionic Coulomb blockade (ICB)—an effect that is proposed to be the key player
of ion channel selectivity, which is based upon electrostatic exclusion limiting ion transport. Thus,
in this perspective, we focus on the most promising approaches that have been reported on the
subject. We consider ion confinements of various dimensionalities and highlight the most recent
advancements in the field. Furthermore, we concentrate on the most critical obstacles associated with
these studies and suggest possible solutions to advance the field further.

Keywords: nanofluidics; ionic Coulomb blockade; 2D materials; nanopores; nanotubes; angstrom slits

1. Introduction

In the past fifteen years, various artificial nanofluidic platforms have become highly compelling for
fundamental studies of physical phenomena and numerous practical applications where the transport
of the confined ions plays a crucial role [1,2]. Among the most exciting practical applications are
power generation [3–7], filtration, and molecular separation [8–10]. The last five years have witnessed
remarkable progress in the fabrication of nanofluidic devices, enabling researchers to develop artificial
nanofluidic systems with the confinement of one to a few water molecules (below 1 nm) [11].
Such nanofluidic platforms have been realized in zero-dimensional (0D), 1D, or 2D geometry [7,12–14]
(Figure 1). These platforms exhibit giant permeability and ion selectivity comparable to biological
ion channels, excluding anions and macromolecules, and closely mimic functionalities previously
observed only in biological channels. Superb selectivity of the sodium/calcium family of channels has
fascinated scientists due to its physiological relevance and underlying physical mechanism [15–17].
A simplified electrostatic and Brownian dynamics model of the prototypical model Ca2+ or Na+

channel has been used in describing its conduction and selectivity [18], echoing the phenomenology of
Coulomb blockade [17]. The term ionic Coulomb blockade (ICB) was suggested first as a counterpart of
the electronic Coulomb blockade (ECB) by Krems and Di Ventra [19]. Confinement below 1 nm dictates
a departure from the mean-field assumptions as the correlations between the ions and finite-size effects
cannot be neglected and complicates the insight into the ionic charge transfer at the nanoscale [17,20,21].
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Figure 1. Different geometries are considered for confined nanofluidic systems from two-dimensional
(2D) nanoslits to 1D nanowires and quantum dot-like nanopores in the atomically thin material matrix,
i.e., 2D nanopores.

Artificial nanofluidic devices developed for single-ion conductivity measurements provide a
unique opportunity to test the proposed models and reveal the many-body effects in ionic systems.
This perspective article aims to discuss practical challenges in verifying the models that evoke
ionic Coulomb blockade in a variety of settings that are now available due to recent progress in
nanofabrication [12,22,23]. Furthermore, it also provides suggestions for the integration of additional
approaches such as modulation of the charges, pressure, pH, ionic strength, temperature, and potential
in the range not attainable on lipid bilayers.

As suggested initially, ionic Coulomb blockade is based on the relation of ion kinetic and barrier
energies and manifests as the nonlinear transport of ions. This behavior was later experimentally
observed in atomically thin, sub-nanometer-sized molybdenum disulfide (MoS2) nanopores [13].
Although theoretical models predict ICB and suggest particular conditions to reveal the effect [17,20,24],
irrefutable experimental observation of this phenomenon is still challenging. The reason for that
is a whole set of issues that have to be taken into account before considering this complex process.
The most critical issues that could mask ICB observation are related to the fact that ionic transport is
measured at room temperatures, causing large charge fluctuations, which leads to the increased noise,
and instability of the nanofluidic devices. Together with regular wetting and contamination challenges
in nanofluidics [25], we can argue that the ionic systems’ nonlinear current-voltage characteristics are
insufficient to prove the ICB effect. Unlike in the case of ECB [26], there are still no convincing data
showing conductance oscillations or single-ion devices.

Therefore, it is essential to critically assess the suitability of different nanofluidic platforms for
the observation of ICB and propose novel solutions that will allow us to untangle the role of the
issues mentioned above. New geometries like nanopores in 2D materials, single-digit nanotubes and
angstrom slits play a key role and are essential in verifying the different parameters required to observe
ICB reproducibly. The complex nature of ionic transport can be considered with different settings
and thus allow direct observation of experimental parameter variation such as pore length, diameter,
access resistance, surface charge, gating voltage temperature, and many others [27].
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2. Prerequisites for Ionic Coulomb Blockade

The basic prerequisites for ionic Coulomb blockade are shared with its electronic counterpart [28,29].
The geometrical requirement for ICB to occur is represented by two reservoirs with charge carriers,
in our case ions, with a channel in between with a large resistance to ion transport at least in one
direction [17,19,20,24]. More specifically, the channel has to provide the type of confinement that
allows ions to dwell inside of it as it was suggested originally [15]. Ion transport between the two
reservoirs is inhibited due to strong Coulomb interactions and an ion dwelling at or near the channel,
so that there is a limit on the possible charge, which can be transferred between the two sides of the
chamber [17,19,20,24]. When the energy barrier for ions to enter the channel, and subsequently traverse
it, is larger than the system’s thermal energy, ionic Coulomb blockade can be observed. We identify
two main mechanisms that are expected to result in ionic Coulomb blockade signatures in nanopore or
nanochannel systems. One is linked to capacitive charging [19,30] and analogous to the electronic case
of a tunnel junction. The second mechanism is linked to the existence of an “island” corresponding
to a quantum dot in ECB, which can be gated [15,16,20] and can be further developed towards the
analogy of the single-electron transistor [20].

The first case, which we call the capacitive ICB, is relatively similar to the ECB case with a single
tunneling junction. It occurs if an ion transits between the two reservoirs and charges it analogously to
a capacitor, thus producing a barrier for further ions to transit [19,30].

This case requires that the channel/pore be ion-selective so that a capacitive barrier can form for
an ion of valence z, that the thermal energy is lower than the capacitive self-energy of the channel
U = Q2/2Cs, and that the transferred charge Q = nze dwells inside the pore or next to the pore
entrance for a sufficiently long time for it to interact with the transport of further ions. We note that the
ICB effect is expected to be stronger for ions carrying more than one unit of charge, as the self-energy
has a quadratic dependence on the valence z. The capacity of the channel/pore of length L and radius
R to store charge is the self-capacitance Cs and can, neglecting any fine effects, be approximated by
Cs = 4πε0εrR2/L, with εr the relative dielectric constant of water. In general, the capacitive self-energy
is a good measure if ICB is detectable as it gives information on the resulting energy barriers for
ion transport.

Coarse-grained molecular dynamics simulations [19,30] indicate capacitive ICB could occur
in sub-nm pores in quasi-2D or 2D materials but also predict a weak nonlinear current-to-voltage
dependence uncharacteristic for the classical electronic Coulomb blockade. In contrast, Brownian
dynamics simulations show that the role of screening and ion-pair formation via Bjerrum pairs are
paramount in these systems [20]. Here, both parameters are strongly modulated by the dielectric
constant of water, which has been shown to be reduced in confinement in respect to its bulk value [31,32],
and which would decrease the capacitive self-energy and require lower temperatures or smaller and
thinner pores for ICB to be detectable. Moreover, finite-size effects would need to be considered,
including the peculiarities of pore-wall interactions, which can strongly influence ion transport in
quasi-2D or 2D membranes [33–36].

In the second case, ionic Coulomb blockade happens in the systems that are reminiscent of a
quantum dot, confined with two energy barriers—schemes that are used for ECB observations and
applications. As for the ICB counterpart, it can be observed in the setting where the ion occupancy
of the channel limits ion transport [17,20] and where it has a role analogous to an isolated quantum
dot in the electronic case [29]. Here, ions need to have an energetically favorable position inside
the channel, which binds them there in spite of thermal motion so that their presence would block
other ions traversing the channel. This stable position can be formed due to ion-channel interactions,
either by electrostatic gating voltage modulation or by the presence of surface charges [24,37]. In the
latter case, the surface charge will then attract oppositely charged ions and thus block ion transport
through the channel.

When a fixed voltage bias is applied between the reservoirs, the ion current oscillates with peaks
at certain quantized values of these gating surface charges. A typical signature of ICB is when this
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neutralizing charge has a stepwise dependence on the gating voltage or surface charge, and when the
conductance of the channel has peaks at certain values with conductance almost completely suppressed
otherwise [17].

Microscopically, there are several distinctions between the ionic and the electronic Coulomb
blockades. While electrons are negatively charged by default, ions can be both negative and positive,
with different valences available. These ions are also present in a solution so that the electrostatic
interaction between them is screened, losing its long-range components. Thus, such an effect will be
local and will require extreme confinements for size exclusion and Coulomb interactions to dominate
transport properties. In the case of strong 1D confinement, ion transport through such channels is
expected to go through the dissociation of pairs of ions (second Wien effect) [38,39].

Nevertheless, in the case of gating via voltage or wall charge inhibiting the movement of ions
due to tight binding, some of the ions are tightly bound, and only under certain conditions are they
able to dissociate, a situation recently termed as a “fractional Wien effect” [20]. Under this model, it is
also predicted that when electrostatic screening becomes too large, the ionic Coulomb blockade effect
becomes suppressed. This also provides an upper limit on the size of a confining channel to about
2.5 nm. This means that, in certain geometries, ICB could be detected even in pores larger than one
nanometer, depending on the magnitude of electrostatic screening.

Providing unquestionable proof for the ionic Coulomb blockade is not an easy task. Most experimental
“wet” implementations cannot easily change the interaction between the ions and the channel interior,
i.e., by changing its surface charge or applying a gating voltage to it. One of the major indicators of
ICB is nonlinear current-to-voltage curves [17,20,24,35]. As the bias voltage is increased until a certain
threshold is crossed, there is no ion transport through the system. After that, a nonlinear increase in current
is expected until linear (ohmic) behavior is obtained. In the classical electronic CB, several steps called
the Coulomb staircase in the current versus voltage curves are expected in this nonlinear regime [29].
Recent work indicates that, in the case of ICB, there could be no such steps, with a direct transition to an
ohmic regime [20]. However, it is problematic to identify ICB only with current-voltage characteristics
(IV curves), especially in the absence of a staircase-like pattern. Realistic devices are known to exhibit
leakage currents that will exceed the current in the blocked ICB conditions [13], possibly overshadowing
any conduction steps.

Furthermore, similar nonlinear IV curves are known to occur during the electrowetting of channels
and are caused by remnant gas inside the pore system [25,40–42]. Partial wetting of these systems
presents with nonlinear activation-like IV curves, similar to the ones that have been associated with
ionic current blockade [13]. There are many open questions regarding our understanding of ICB,
which could help to design better experiments. Variations of the ambient temperature could be used to
probe the activation energy barriers and possibly promote ICB. Varying the solution’s pH could be
used to change the gating charges, thus enabling the variation of the gating charge in larger channels.
However, the main requirement is still to manufacture a device with such properties to optimize the
conditions for the observation of ICB, a topic we tackle in the following sections.

3. ICB in 2D Nanopores

Over the last decade, 2D materials have become a rich area of research and are showing
tentative signs of impacting our everyday life [43]. In bulk, these materials have the form of layered
crystals, with van der Waals interaction holding together 2D layers with a thickness starting from
0.3 nm. These 2D sheets are under intense study because of their fascinating electronic properties,
spanning the range from isolating and semiconducting to superconducting. Nanopores formed
in 2D membranes from graphene [44–46], hexagonal boron nitride (h-BN) [47], transition metal
dichalcogenides (TMDCs) [4,48], and MXenes [49] have been used to investigate nanofluidic phenomena
or can act as a single molecular sensor.

2D nanopores have the peculiarity that due to their thickness, or lack of it, the pore sizes need to be
small for the interactions between a single ion and the pore to dominate ion transport. For capacitive ICB
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to occur, we need ion selectivity, a sufficient capacitive barrier, and ions to remain next to the pore entrance
for a sufficient time. 2D nanopores are known for their selectivity to ions, which is expected to come from
the surface charges and the resulting ion enhancement zones near the pore [5]. Simple classical estimates of
the self-capacitance would support 2D material nanopores having a sufficient energy barrier [13], but there
is no evidence of ion retention for sufficiently long times to cause this blockade effect unless the ion is
retained inside the pore itself. Classical bulk models for nanopore conductance break down as we approach
the nanometer scale [21,33,50], requiring us to include the specifics of the pore atomic structure and its
interactions with the ions and water.

Ion transport in 2D systems is a rich topic of research [33,51], but little is known experimentally
about the peculiarities of transport in sub-nm pores. When the degree of confinement approaches the
ion’s size, i.e., sub-nm size ranges, then an effect called hydration layer shredding occurs [19,37,52].
If an ion needs to lose a part of its hydration layer to traverse the pore, it experiences an energy barrier
that can also result in a nonlinear IV curve, one of the expected signatures for ICB. Unless there is some
sort of weakly bound state for the ion in the middle of the channel, this hydration layer shredding
is not enough by itself to induce a Coulomb blockade effect. This can be achieved by tailoring pore
interior bond edges, which could temporarily bind an ion inside the pore, causing it to block further
ion transport [50]. Pore edge termination is known to influence ion transport [53–55] and could be
tailored by binding other chemical species and modifying the pore interior [54–58]. Ion transport
through pores is determined by bulk solution and solvent-mediated interactions between the ions and
the pore interior edges. This interaction has been shown to cause ions to dwell inside the pore [24,35];
however, it is unclear if this influences ion transport via the Coulomb blockade mechanism.

2D nanopore systems have several unresolved issues that still require further study. Control of the
pore shapes and sizes is not easy to achieve as pores are known to be highly sensitive to the fabrication
method [47,59] (Figure 2). However, this can be addressed by the predefined pore shapes. Together with
electrostatic gating, it is expected to be a highly effective approach for ion selectivity and controlled
transport [24]. In this case, the trapped cations themselves not only act as natural clogs of the pores, but also
“protect” the clogged pore states by creating the repulsive potential around each pore that essentially
suppresses the knock-on mechanism by mobile cations dancing around.

Solvation of pore systems is expected to be able to change the pore structure, and etching of
pores and their enlargement due to chemical species or dissolved reactive oxygen. In addition, 2D
systems are prone to surface contaminants (e.g., hydrocarbons) that originate from the 2D material
transfer process [60]. These contaminants can clog pores or change their properties, making controlled
experiments difficult. Additionally, wetting or clogging issues can plague these systems [25] and
possibly even produce nonlinear IV curves due to the presence of nanobubbles [40,41,61]. Moreover,
the standard method of wetting all nanoscale devices uses prewetting with water-ethanol mixtures,
a procedure known to produce nanobubbles on hydrophobic surfaces and which has been linked to the
same effect on mildly hydrophobic 2D material surfaces [25]. In addition, remnants of bound ethanol,
or other molecules, have been shown to modify surface properties and can persist after subsequent
flushing [62]. Differentiating these effects from ICB nonlinear IV curves requires additional probes and
separate gating control.
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Figure 2. (a–c) Selection of the most popular 2D materials, i.e., graphene, hexagonal boron nitride,
and molybdenum disulfide structures in bulk and monolayer form and generation and evolution of
defects in 2D materials under e-beam. Defects and pores are created under 80 keV e-beam irradiation
while imaging with a transmission electron microscope. Images adapted from (a) [59] and (b,c) [48].

Gating can be applied to nanofluidic platforms for modulating ICB in 2D pores (Figure 3). Notably,
it can be applied in various ways, and not only limited to electrostatic gating. For example, one approach
would be applying mechanical stress directly to nanopores [63] as the strain has been predicted to modulate
ion transport through sub-nm 2D nanopores by promoting or removing a stable dwelling spot for ions
in the center of the pore [31–33]. Strain moves the pore edge atoms out of their equilibrium positions,
changing ion–atom and ion-water interactions, thus modifying the free energy landscape for the ions,
possibly promoting or destroying a bound state for the ion inside the pore. Chemical gating of these
systems is limited, and the surface charge can be modulated via pH modulation [11] and photo-gating [6],
but it is not expected to make significant changes to the interaction of ions with the pore edges and could
promote pore growth due to etching. Another useful probe would be studying the effect of temperature
variation to provide information about the energy barriers for transport and possibly promote or suppress
ICB effects. Although promising, this strategy has a reduced temperature range, in essence, from the
melting to the boiling point of the solution.
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Figure 3. Common 2D nanopore measurement system with temperature control (a) equipped with
transverse contacts for additional measurement channel or gating (b) and 2D material encapsulation
(hBN-MoS2-hBN) (c) for the improved signal-to-noise ratio and decoupling of the measurement circuits
(cis-trans and transverse).

Heterostructures

A promising approach may be to use layered heterostructures of 2D materials [64]. Here, a stable
position for an ion inside the pore could be designed through a combination of different materials in
A-B or A-B-A scheme where the monolayers are held together by van der Waals forces (Figure 3c).
The major challenge for this is the existence of hydrocarbon contaminants complicating the reproducible
production of such heterostructures using material transfer, where one 2D material (B) is transferred over
another (A). This disadvantage would not be an issue in the case of in situ growth of heterostructures.
Similar heterostructures have already been opened in several different research avenues, such as
graphene interacting with h-BN allowed several groups to study the Hofstadter butterfly effect
while numerous optoelectronic devices were based on the heterostructures from semiconducting
monolayers [65–67].

Van der Waals heterostructures could be used to achieve direct gating by sandwiching a
semiconductor such as MoS2 in between two layers of a wider bandgap energy 2D material such as
h-BN. This suggested geometry could be considered either on a stand-alone basis or in combination
with the in-plane transverse gating similar to the previous nanopore field-effect transistor (FET)
approaches [68,69].

Another promising setting could be achieved by using stacked membranes (i.e., graphene oxide),
where the percolating path of ions through the porous membranes and between the layers could be
modified due to ions getting stuck and blocking ion transport [70].

However, to progress in the aforementioned systems, one has to have solid fabrication approaches
for each of them. It is important to advance in nanopore fabrication techniques to reliably produce
sub-nm pores through layered 2D membranes using existing techniques, namely an electron beam in
transmission electron microscope [50,60,61,71] or electron beam lithography [72,73]. This approach
is known to be the most common practice in nanopore research. However, complex multiple-step
processes often result in relatively high contamination and low device yield; thus, alternative solutions
have to be applied.

One possible solution is a 2D material growth over the aperture in a suspended SiN membrane [73].
However, the first attempts show that the SiN pore ends up inducing growth, and thus, the island

287



Entropy 2020, 22, 1430

of growth is located exactly above it. Another fine point is that the resulting 2D material might be
polycrystalline, which makes its structure controversial for pore stability. Following that, this approach
requires a significant improvement in order to benefit from the potential cleanliness of such a process.

On the contrary, the electrochemical reaction allows the precise control of the pore size in the flow
cell [74]. However, this technique does not allow the pore size confirmation other than using ionic
current-voltage characteristics. The reason for that is a poor quality of nanopore samples after the
nanofluidic experiments, as they appear to be irreversibly contaminated after the measurements in a
flow cell.

4. ICB in 1D Nanowires

The 1D channels represent the next promising nanofluidic platform (Figure 4). Such systems,
reminiscent of narrow nanotubes, have been proposed as a very effective ion-confining solution capable
of showing the single-ion transport and consequently able to reveal an ICB [20]. Furthermore, based on
the geometrical confinement properties, Fermi-Dirac distribution for ions can be achieved, and thus,
single-ion transport was predicted [17] and explained in detail for biological channels [17] and infinite
1D channels [20].Entropy 2018, 20, x  9  of  14 
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Figure 4. 1D experimental geometry suggested for the ionic Coulomb blockade observation (a–c) in 1D
nanochannels and (d) 2D nanoslits by the application of an external electric field and a consequent
electrostatic gating of the ion-confining channel. Pictures (a–c) reprinted from Kavokine et al. [20].

State-of-the-art techniques that allow single nanotube manipulation [3,75], if applied to the
ultra-narrow nanotubes, could allow fabrication of a single conductive channel for ions, 1D ionic
channels that show great potential for the observation of ICB. Inspired by ECB applications [76],
1D ionic channels were also suggested as the charge-carrier pumping systems, where the gating
voltage on multiple gating contacts oscillates out of phase and thus allows a turnstile mechanism and
a single-ion passage through the channel [20]. The unifying point of the aforementioned theoretical
works [17,20] is the fixed wall charge that has to be controlled in order to manipulate the charge
carrier transport at a single-ion level. However, despite the great success in nanofabrication [3,75],
theoretically predicted effects are still to be confirmed experimentally, partly due to an even higher
complexity of nanofabrication required (point contact, low leakage current, room temperature of
measurements, high device yield). However, from the technical point of view, nanofabrication
approaches developed for carbon nanotubes and nanowire field-effect transistors could be of help
when applied to one-dimensional ion channels [75,77].

5. ICB in 2D Nanoslits

First of all, 2D nanoslits inherited the flexibility of material stacking that was suggested for the
first time in graphene research [66]. Following that, as in the case with 2D nanopores, this type of ion
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confinement in 2D nanoslits could benefit from a wide variety of available materials [59]. Furthermore,
2D nanoslits attract a particular interest as a first-ever system to experimentally show the value of
the dielectric constant of water in confinement [32], frictionless water transport [78], and unmatched
selectivity, allowing only water and protons to pass through the narrow 2D nanoslits [7]. However,
despite the significant flexibility given by the fabrication process of 2D nanoslits, one particularly
important property has to be considered—these systems are represented by multiple nanofluidic
channels, and thus, read-out of a single-channel ion transport and control over the transport at a
single-ion level is still complicated.

One possible solution to that would be an extensive application of the most advanced fabrication
techniques allowing the electrostatic control over each channel (Figure 4d) and thus, limiting the ionic
current to a single channel of interest, a similar level of control could also be achieved mechanically
similarly as in microfluidics [79]. Moreover, the 2D nanoslit fabrication approach [12] lacks control
over channel side wall quality, and despite the atomically smooth surface of top and bottom of the
channel, this might significantly affect the transport in narrow nanoslits with the comparable aspect
ratio in both horizontal and vertical directions. Nonlinear transport of ions in such systems has been
shown [14]; however, in that case, it is not associated with the Coulomb blockade of the channels
due to a multiple input from a selection of nanoscale effects that might affect the conductance [80].
One possible solution to that would be an improved electrostatic control over the electric field in the
channel as mentioned earlier (Figure 4d), similarly as proposed for other geometries.

6. Summary

The complex nature of ion transport in nano-confined systems is usually challenged with natural
artifacts, such as improper wetting of the pore, pore instability (especially in the case of a 2D nanopore),
inability to confirm the pore size after the measurement, and many others. Development of a
well-defined approach that would be able to address these issues one by one would propel the research
field. However, this conception sounds much easier than it is; one would think of the experiments
where the local temperature is controlled, together with the further gating of the confining geometry
(either electrical or optical).

Temperature control is important in such systems since it has a significant impact on the ions’
mobility, the potential barrier size, and charge fluctuations, which might increase noise and the
instability of nanofluidic devices. Therefore, in both ICB and ECB cases, the temperature criterion has
to be fulfilled, i.e., kT<<Ec.

Electrostatic or optical gating of the confinement is expected to provide a crucial transition
from a closed to an opened state within the system. The current status of nanofabrication allows
us to create wafer-scale batches of devices showing a corresponding quality [22], and to combat
one of the most important bottlenecks in nanopore research field—the small amount of nanopore
devices and consequently low statistics of the measurements. Together with the demonstrated pioneer
approaches [68,69,81] the nanopore research field is reaching the limitations and heading towards the
achievement of the controlled confinement that would allow us to probe charged states within the
pore on a single-ion level.

However, we assume that it is important to show the most controversial points that still have
to be resolved in the field. For example, nanoscale contamination is starting to play an even more
crucial role in nanoelectronic devices. Leakage currents and electrochemical reactions happening
at the nanoscale in 2D materials and gating contacts of nanopore field-effect transistors come into
play [68,69]. With irreproducible point-like defects and contaminants, ICB observation is even more
challenging since, unlike in ECB, one cannot simply “freeze” the unwanted states and free charges.
This problem keeps growing as long as we need more fabrication steps to produce a better-controlled
ion-confining system.

Furthermore, recent studies [25] have shown that nanoscale contamination may lead to partial
rewetting, which adds a high level of complexity for these studies. In particular, we have to admit that
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the most common practice of pore wetting with ETOH solution with subsequent electrolyte flushing
and exchange may lead directly to the formation of nanoscale gas bubbles [61]. Apart from that,
the typical ETOH wetting process has been shown to change the hydrogen distribution over the
surface, and thus, change the ion-solvation part of the interactions of the ions with the surface and
consequently mask the ICB.

Nevertheless, we would like to draw attention to the most promising future prospects and
applications of this field to probe each contribution to ion transport phenomena and to improve
the control over these platforms. That would allow us to achieve a synthetic model of a cell’s ion
channels on a discrete channel level and benefit from step-by-step additions to a solid-state platform’s
controls. As a result, we may expect to obtain crucial insights on gating, strain, temperature control,
etc., to use as inputs in the bottom-up computation design of biopores [82], which have already proven
themselves as a unique platform for sensing and single-molecule experiments [83]. So far, no further
ICB signatures have been experimentally demonstrated as conductance oscillations and Coulomb
staircase, even though these have been predicted for biological nanopores [17].
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