
UNDER-RESOURCED OR OVERLOADED? 

 

1 

 

Running head: UNDER-RESOURCED OR OVERLOADED? 1 

 2 

 3 

 4 

 5 

Under-resourced or overloaded? Rethinking working memory deficits in developmental 6 

language disorder 7 

 8 

Samuel David Jones and Gert Westermann 9 

Department of Psychology, Lancaster University 10 

 11 

8758 words 12 

 13 

 14 

Author note 15 

This work was supported by Economic and Social Research Council (ESRC) 16 

International Centre for Language and Communicative Development (LuCiD) 17 

[ES/S007113/1 and ES/L008955/1]. We have no conflicts of interest to disclose. A preprint 18 

of this manuscript was posted on the Open Science Framework on 25th May 2021 19 

(https://osf.io/rb5jf). The theoretical view described in this manuscript was presented at the 20 

Biennial Meeting of the Society for Research in Child Development 2021 and the ESRC 21 

LuCiD Conference 2021. 22 

 Correspondence concerning this article should be addressed to Sam Jones, 23 

Department of Psychology, Lancaster University, Lancaster, United Kingdom, LA1 4YF. 24 

Email: sam.jones@lancaster.ac.uk. Telephone: +44 (0) 1524 593698. 25 

https://osf.io/rb5jf


UNDER-RESOURCED OR OVERLOADED? 

 

2 

 

Abstract 26 

Dominant theoretical accounts of developmental language disorder (DLD) commonly invoke 27 

working memory capacity limitations. In the current report, we present an alternative view: 28 

That working memory in DLD is not under-resourced but overloaded due to operating on 29 

speech representations with low discriminability. This account is developed through 30 

computational simulations involving deep convolutional neural networks trained on spoken 31 

word spectrograms in which information is either retained to mimic typical development or 32 

degraded to mimic the auditory processing deficits identified among some children with 33 

DLD. We assess not only spoken word recognition accuracy and predictive probability and 34 

entropy (i.e., predictive distribution spread), but also use mean-field-theory based manifold 35 

analysis to assess; (i) internal speech representation dimensionality, and (ii) classification 36 

capacity, a measure of the networks’ ability to isolate any given internal speech 37 

representation that is used as a proxy for attentional control. We show that instantiating a 38 

low-level auditory processing deficit results in the formation of internal speech 39 

representations with atypically high dimensionality, and that classification capacity is 40 

exhausted due to low representation separability. These representation and control deficits 41 

underpin not only lower performance accuracy but also greater uncertainty even when 42 

making accurate predictions in a simulated spoken word recognition task (i.e., predictive 43 

distributions with low maximum probability and high entropy), which replicates the response 44 

delays and word finding difficulties often seen in DLD. Overall, these simulations 45 

demonstrate a theoretical account of speech representation and processing deficits in DLD in 46 

which working memory capacity limitations play no causal role. 47 

Keywords: developmental language disorder, spoken word recognition, word learning, 48 

convolutional neural network, manifold geometry  49 
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Under-resourced or overloaded? Rethinking working memory deficits in developmental 50 

language disorder 51 

 Learning language is a central aspect of child development and is often mastered with 52 

astonishing ease despite the complexity of language and a lack of direct instruction. 53 

Nevertheless, not all children succeed equally in acquiring language. In developmental 54 

language disorder (DLD), deficits in spoken language comprehension and production severe 55 

enough to affect the child’s wellbeing are observed despite no obvious biomedical cause 56 

(Bishop et al., 2016). Although DLD is widespread, affecting approximately 7.5% of 57 

English-speaking children (Norbury et al., 2016), much remains unknown about the causal 58 

mechanisms underlying this condition.  59 

A dominant feature of existing causal accounts of DLD is an emphasis on the role of 60 

working memory. Apparently uniformly, research in this area has taken lead from Baddeley 61 

and Hitch’s (1974) multi-component model, which comprises a central executive that attends 62 

to and manipulates information stored temporarily in one of three modality-specific buffer 63 

systems; the visuospatial sketchpad, the episodic buffer, and the phonological loop. Research 64 

into the causal origins of DLD has focused principally on the role of the phonological loop in 65 

the temporary retention of speech signals, and the role of the central executive in retrieving 66 

and manipulating speech signals.1 67 

Performance deficits in tasks thought to test the integrity of the working memory 68 

system are perhaps the most consistent finding in DLD research. Children with DLD 69 

commonly score poorly, for instance, in the non-word repetition task, in which participants 70 

are required to repeat recently heard auditory stimuli such as doppelate, hampent, or 71 

 
1 As Vance (2008) has commented, the terms working memory and short-term memory are used differently and 

sometimes interchangeably across studies of DLD. In the current study, working memory refers to both the 

system supporting the temporary retention of activated long-term representations in response to a perceived 

stimulus (short-term memory, or the phonological loop) and the attention system that operates on (i.e., selects, 

inhibits, or manipulates) those activated representations (attentional control, or the central executive).  
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glistering, a task commonly held to tap phonological loop capacity (see Vance, 2008, for 72 

review). Performance deficits in the non-word repetition task and related paradigms among 73 

children with DLD underpin the consensus view that capacity limitations in both the central 74 

executive and phonological loop subsystems of working memory play a causal role in these 75 

children’s language difficulties, directly obstructing the temporary retention, retrieval, and 76 

manipulation of speech signals, and resulting in degraded long-term speech representations 77 

during learning (Archibald & Gathercole, 2006a; Archibald & Harder Griebeling, 2016; 78 

Delage & Durrleman, 2018; Delage & Frauenfelder, 2020; Durrleman & Delage, 2016; Ellis 79 

Weismer et al., 2017; Jakubowicz, 2011; Montgomery, 1995, 2003; Zebib et al., 2020; 80 

Montgomery et al., 2019; cf. Howard & Lely, 1995; Van Der Lely & Howard, 1993; see also  81 

Kail, 1994, for an account citing generalized slowing rather than specific working memory 82 

capacity deficits).   83 

Yet, despite the dominance of the causal view of working memory capacity 84 

limitations in DLD, much of the evidence cited in support of this position is correlational. A 85 

child might show a non-word repetition task performance deficit alongside a deficit in 86 

vocabulary size or sentence comprehension, for instance, and a causal association between a 87 

hypothesised underlying working memory capacity limitation and relatively poor language 88 

skills is inferred on this basis (e.g., Montgomery, 1995; note that more recent studies assess 89 

such correlations using more advanced methods, including mediation and cross-lagged 90 

designs, e.g., Blom & Boerma, 2020). Alternatively, some studies have sought to identify 91 

domain general working memory capacity deficits in children with DLD, for instance deficits 92 

implicating both verbal and visual working memory subsystems; the former measured using 93 

tasks such as non-word repetition and the latter measured using visual pattern recognition and 94 

spatial span tasks (Archibald & Gathercole, 2006b; Bavin et al., 2005; Henry & Botting, 95 

2017). Here, the identification of domain general deficits is argued to bolster the view that 96 
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working memory capacity limitations play a primary role in language impairment, ensuring 97 

that performance deficits are not simply an epiphenomenon of shortfalls in long-term 98 

language knowledge. However, this position remains contentious, with some studies 99 

reporting no evidence of visual working memory task performance deficits among children 100 

affected by DLD, a finding lending apparent support to the claim that the underlying problem 101 

is specific to the verbal working memory system (Archibald & Gathercole, 2006b).  102 

Seemingly stronger evidence for a causal association between working memory 103 

capacity limitations and language impairment comes from studies reporting non-word 104 

repetition task performance deficits in individuals whose language problems have been 105 

resolved through intervention (Bishop et al., 1996). This pattern would apparently not be 106 

expected if working memory task performance deficits purely reflected insufficient long-term 107 

language knowledge. Yet, as these authors acknowledge, alongside others (e.g., Coady & 108 

Evans, 2008; Melby-Lervåg et al., 2012), the once common interpretation of non-word 109 

repetition task performance as a relatively pure measure of working memory capacity, 110 

specifically phonological loop capacity, is misplaced, as non-word repetition implicates a 111 

wide range of skills including auditory perception, speech planning, and articulation. While 112 

this more nuanced interpretation of what is measured in the non-word repetition task and 113 

closely related paradigms in no way challenges the validity of using such measures to 114 

identify individuals with existing language impairment, or potentially with a history of 115 

language impairment, it does undermine the view that what we are detecting in administering 116 

such tasks is a pure working memory capacity limitation. The picture is complex, and deficits 117 

in, for instance, non-word repetition task performance despite largely resolved language 118 

difficulties may reflect residual deficits in any number of skills.  119 

In our view, the causal account of working memory capacity limitations in DLD 120 

remains dominant because the field lacks a cohesive alternative. This has important practical 121 
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implications. An alternative theoretical framework in which working memory capacity 122 

limitations do not feature may not only provide a more compelling explanation of the 123 

behavioural data at hand, but it may also entail different approaches to language support. 124 

Evidence interpreted as signaling a causal association between limited working memory 125 

capacity and language deficits has motivated the development of commercial packages 126 

claiming to improve working memory capacity and in doing so boost language and 127 

educational outcomes (e.g. Jungle Memory; Alloway et al., 2013). However, if working 128 

memory capacity limitations are not a major underlying cause of language deficits then 129 

interventions may need to focus on a different aspect of cognition or language processing in 130 

order to achieve substantial and lasting effects. It is important to re-iterate that working 131 

memory task performance remains one of the best predictors of language impairment (Bishop 132 

et al., 1996; Girbau, 2016; Kalnak et al., 2014), and that the validity of using such paradigms 133 

to statistically identify individuals at risk of language problems is not in question. What is in 134 

question, is whether apparent working memory capacity limitations are the cause, rather than 135 

consequence, of the language learning and processing difficulties seen among children with 136 

DLD. 137 

Rethinking working memory capacity deficits in DLD 138 

The view developed in this report is that working memory capacity limitations are the 139 

consequence rather than cause of children’s language difficulties. Crucial to this account is 140 

the notion of a capacity and performance trade-off. It is uncontroversial that long-term 141 

knowledge affects working memory task performance (Vance, 2008). In both typically and 142 

atypically developing populations, performance is seen to decline (e.g., in terms of the length 143 

of speech segments that can be accurately recalled) when individuals are presented with 144 

unfamiliar stimuli, as seen in word-likeness effects (i.e. phonologically anomalous non-words 145 

are harder to repeat; Gathercole, 1995; Van Bon & Van Der Pijl, 1997) and in responses to 146 
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noisy stimuli (Marrone et al., 2015). The idea of a capacity and performance trade-off 147 

suggests that this drop in performance emerges due to working memory being overloaded as 148 

a result of heightened processing demands. In contrast, faced with broadly familiar, non-149 

noisy stimuli, processing resources are not under pressure and so more information can be 150 

retained. 151 

One possibility, then, is that performance deficits widely attributed to working 152 

memory capacity limitations among children with DLD instead reflect heightened processing 153 

demands resulting from deficits in long-term language knowledge, including poorly 154 

configured long-term speech representations (Kan & Windsor, 2010). This issue may be 155 

masked by the fact that the stimuli presented to children with and without DLD in working 156 

memory tasks are usually matched; for example, stimuli are either all clean or all noisy across 157 

groups. Yet, if a child with DLD has deficient speech encoding ability then their experience 158 

of any given stimulus will be very different to that of a same-age child without language 159 

impairment, increasing processing demands for this child and exhausting cognitive resources 160 

that could be allocated to storage capacity. Rather than fixed, group-level disparities in 161 

working memory capacity, then, the difference between children with and without DLD may 162 

resemble the ostensible capacity discrepancies that can be seen in a single typically 163 

developing child who is presented with noisy and then clean stimuli, and who retains more 164 

information in the second instance. Children with DLD may not be under-resourced in terms 165 

of their working memory capacity as the consensus holds but may instead be overloaded by 166 

heightened processing demands given poorly configured long-term speech representations. 167 

Though relatively unexplored, limited evidence in support of this position includes an 168 

apparent absence of working memory task performance deficits between children with DLD 169 

and control children matched on long-term language knowledge (Van Der Lely & Howard, 170 

1993).  171 
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This view of working memory capacity limitations as the consequence rather than 172 

cause of language difficulties aligns well with contemporary working memory frameworks 173 

that seek to de-emphasise the role of functionally discrete, modality-specific buffers, such as 174 

the phonological loop, in favour of a relatively parsimonious characterization of working 175 

memory in terms of activated long-term memory plus attention (Adams et al., 2018; Chai et 176 

al., 2018; Cowan, 1995; D’Esposito & Postle, 2015; McElree, 2006; Oberauer, 2013, 2019; 177 

Wilhelm et al., 2013). The so-called state-based framework of working memory, popularised 178 

through Cowan’s embedded-processes model (Cowan, 1995; Cowan, 1999) and later notably 179 

developed by McElree (2006) and Oberauer (2013), is outlined by Adams et al. (2018) as 180 

follows: 181 

Information comes in from the environment through a very brief sensory store, 182 

activating features in long-term memory corresponding to the sensory properties of 183 

the incoming information and its coding: phonological, orthographic, visual, and other 184 

simple features from the senses. ... The activated features from long-term memory, 185 

including any newly formed memories, along with the current focus of attention, 186 

together comprise the working memory system. (p. 345) 187 

For some, the state-based working memory framework represents simply a difference 188 

in terminology and research focus (e.g., a heightened interest in the role of attention versus 189 

modality-specific processing), rather than a clear theoretical break with the earlier 190 

multicomponent model that continues to dominate DLD research (Baddeley, 2012). Yet, in 191 

our view, the implications of the state-based framework for theory building in DLD are 192 

significant. Crucially, the framework encourages a theoretical shift in the locus of impairment 193 

from a shortfall in a functionally discrete buffer system (i.e., the phonological loop), to 194 

deficits in the quality of long-term speech representations, and the associated efficacy with 195 

which such representations become activated in response to features of the speech 196 
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environment and are therefore amenable to forming the focus of attention. As Oberauer 197 

(2019) has argued, it is essential that long-term representations are encoded in a manner 198 

supporting efficient activation and the effective deployment of attention. In this report, we 199 

argue that atypical long-term speech representation encoding and activation in DLD result in 200 

attention being overloaded in the absence of any fundamental capacity limitation.  201 

The challenge for mechanistic accounts arguing that apparent working memory 202 

capacity limitations are the consequence of shortfalls in long-term language knowledge is, of 203 

course, to explain how and why speech encoding is deficient without appealing to a primary 204 

working memory capacity bottleneck. Along these lines, computational modelling of 205 

variance in non-word repetition and span task performance among typically developing 206 

individuals has appealed to the notions of input frequency and regularity (Jones, 2016; Jones 207 

et al., 2007, 2008, 2020; MacDonald & Christiansen, 2002; Jones et al., 2020; MacDonald & 208 

Christiansen, 2002). Here, the idea is that the ability of an artificial neural network to 209 

accurately process any given speech sequence relates directly to the quality of the network’s 210 

established, analogous representations, which is higher when the relevant input previously 211 

received is frequent and structurally consistent. In one landmark study, for instance, 212 

MacDonald and Christiansen (2002) showed, in neural networks without functionally discrete 213 

working memory systems, that performance deficits analogous to those attributed to verbal 214 

working memory capacity limitations by Just and Carpenter (1992) diminished with each 215 

cycle of training. This indicates that a separate buffer system which hypothetically varies in 216 

capacity between individuals (e.g., a phonological loop) is not required to explain variance in 217 

task performance; variance in the frequency of stimulus exposure and therefore the quality of 218 

long-term encodings (i.e., more frequently encountered, regular stimuli are better encoded) 219 

can parsimoniously account for the data at hand. 220 
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The long-term encoding benefits of high frequency and regularity of exposure clearly 221 

boost performance for certain stimuli in working memory tasks, and may more broadly 222 

explain why working memory capacity appears to increase during infancy and childhood 223 

(Jones et al., 2020). Simply, as implicit in the state-based framework of working memory, 224 

task performance may improve as children become increasingly adept at deploying their 225 

mounting long-term language knowledge in the moment, not, as is commonly argued, 226 

because of developmental capacity increases that are independent of the quality of long-term 227 

representations (Gathercole et al., 2004). Yet, a notion of language familiarity grounded in 228 

the degree and quality of language exposure alone is unsatisfactory as an explanation of the 229 

language profiles seen in DLD. Evidence for this comes not least from twin studies, which 230 

show that dizygotic twins, who are no more genetically similar than regular siblings but 231 

largely share a language environment, can be differentially affected by DLD; an observation 232 

indicating a genetic component to this disorder (Bishop, 2006). Clearly, then, if we are to 233 

better understand how a working memory capacity overload might emerge as a consequence 234 

of atypical speech representation, it is necessary to go beyond the notions of input frequency 235 

and regularity alone to consider shortfalls in the child’s ability to encode speech information 236 

from their environment. 237 

Auditory processing deficits commonly reported among children with DLD provide a 238 

credible starting point for this form of inquiry. While initially cast as a temporal processing 239 

issue, that is, that some children affected by DLD have difficulty discriminating rapidly 240 

occurring changes in pure tone – a view developed through the work of Paula Tallal and 241 

colleagues (e.g. Merzenich et al., 1996; Tallal et al., 1996) – subsequent studies suggest that 242 

the problem may instead lie in frequency discrimination, aside from the speed of stimulus 243 

presentation (Bishop et al., 1999; Bishop & McArthur, 2005; McArthur & Bishop, 2005a). 244 

For instance, in an electroencephalography (EEG) study incorporating an oddball paradigm, 245 
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Bishop and McArthur (2005) found group deficits among children with DLD in the ability to 246 

identify, through button pressing, differences in frequency between 600 Hz and 700 Hz that 247 

were independent of the rate of stimulus presentation. Importantly, not only did children with 248 

DLD in this study score poorly on behavioural measures (i.e., in their rate of accurate button 249 

presses in response to tone sequences), but EEG analysis also highlighted atypical waveforms 250 

even when these children made accurate responses. This result suggests that atypical 251 

frequency processing may be at play even when performance in a frequency discrimination 252 

task, such as those widely used in the initial screening phase of behavioural assessments 253 

involving children with DLD, is apparently standard. Frequency discrimination deficits may, 254 

therefore, be more widespread than thought in this population. 255 

It may appear reasonable to assume a causal association between low-level frequency 256 

discrimination deficits and the deficits in higher-order speech representation and retrieval that 257 

characterise DLD. Children affected by DLD commonly require more exposures to a spoken 258 

word than control children in order to encode similar levels of phonological detail (Gray, 259 

2003), for instance, and are often slower and less accurate than age-matched peers when 260 

retrieving words and naming known objects (Kambanaros et al., 2015; Messer & Dockrell, 261 

2006), when determining whether an auditory stimulus is a known word or non-word (Jones 262 

& Brandt, 2018), when fixing their gaze to a named visual stimulus (McMurray, Klein-263 

Packard, & Tomblin., 2019), when identifying words from clipped auditory segments 264 

(Montgomery, 1999), when identifying mispronunciations (Alt & Suddarth, 2012), and, as 265 

previously discussed, when repeating non-words (Bishop et al., 1996). These performance 266 

deficits between children with and without DLD may be explained in terms of lower 267 

familiarity with the target stimuli among children with DLD, which is itself a function of the 268 

quality of the speech representations that these children have formed. Evans, Gillam, and 269 

Montgomery (2018), for instance, found no spoken word recognition accuracy discrepancies 270 
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between children with and without DLD in a gating paradigm in which target word 271 

knowledge was controlled. Nevertheless, whether and how such higher-order speech 272 

representation deficits relate to underlying abnormalities in frequency discrimination remains 273 

unclear, and assuming a casual association here remains controversial in lieu of a satisfactory 274 

linking hypothesis (Bishop & McArthur, 2005; McArthur & Bishop, 2005). 275 

Furthermore, despite a wealth of behavioural evidence pointing to speech 276 

representation deficits in children with DLD (e.g. the aforementioned evidence from the 277 

naming, mispronunciation identification, and non-word repetition tasks), a precise account of 278 

the form that such deficits take remains elusive, with existing research restricted to verbal 279 

descriptions of task performance being impeded due to the fuzziness, imprecision, or 280 

indistinctiveness of underlying long-term speech representations (Alt & Suddarth, 2012; 281 

Claessen et al., 2009; Claessen & Leitão, 2012; Maillart et al., 2004). In the current study, we 282 

aim to address each of these gaps in current understanding: First, by demonstrating a causal 283 

association between auditory processing deficits and deficits in higher-order speech 284 

representation and retrieval, and second by providing a precise, computational account of the 285 

nature of speech representation and retrieval deficits in DLD that we believe provides an 286 

essential counterpart to existing verbal theories. Our aim is to demonstrate how auditory-287 

perceptual deficits can explain deficits in long-term speech representation, which in turn 288 

explain communication deficits by way of attention being overloaded, rather than by way of 289 

working memory capacity limitations that are independent of the quality of long-term speech 290 

encodings. 291 

Speech processing from cochlea to cortex 292 

 The theoretical account presented in this report is informed by the manifold 293 

untangling framework developed in visual neuroscience (DiCarlo & Cox, 2007) and recently 294 

applied in studies of speech processing and representation (Kell et al., 2018; Stephenson et 295 
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al., 2020). Manifold untangling describes an integrated theoretical and computational 296 

approach to studying neurobiological processes. In this section, our focus is on theory, 297 

specifically how manifold untangling shapes the view of speech perception and processing in 298 

DLD that we have outlined. Details of the computational implementation of this framework 299 

are discussed in the Method section.  300 

The manifold untangling framework has at its heart the notion that acoustic speech 301 

signals stimulate patterns of firing in populations of neurons that may be understood as a 302 

response vector in high dimensional space; a principle illustrated in Figure 1a (Chung et al., 303 

2018; Cohen et al., 2020; DiCarlo et al., 2012; DiCarlo & Cox, 2007; Stephenson et al., 2020; 304 

Yamins & DiCarlo, 2016). Due to speaker variability, co-articulation effects, and background 305 

noise, no two instances of any given spoken word are acoustically identical, and so each 306 

spoken instance of a given word stimulates a different neural response vector. The collection 307 

of neural response vectors associated with any specific word defines that word’s neural 308 

manifold. 309 

The manifold untangling framework quantifies changes in the dimensionality and 310 

separability of manifolds across a processing hierarchy; in our case the auditory-linguistic 311 

pathway (Stephenson et al., 2020). Crucial here is the idea that the manifolds underpinning 312 

different spoken words are significantly tangled (i.e., intersecting or overlapping) and thus 313 

difficult to separate early in the processing stream (Figure 1b). In the cochlea, for instance, 314 

this overlap is due to the responsivity of spiral ganglion cells to low-level acoustic features. 315 

Neural representations at this level capture variance in the multiple acoustic signals 316 

corresponding to any given spoken word, and are, therefore, described as form dependent or 317 

noise sensitive. Transformations instantiated across the typical auditory processing hierarchy 318 

result, however, in input-invariant neural responses that are reduced in dimensionality, i.e., 319 

which are substantiated in patterns of activation across relatively small subspaces of a given 320 
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neural population, and which are therefore more easily separated from the neural response 321 

patterns underpinning competitor classes (Figure 1c). In typically developing individuals, this 322 

is demonstrated in increasingly form independent or speech selective neural responses across 323 

the auditory pathway. Acoustic distortion is shown to stimulate the auditory pathway up to 324 

and including at the primary auditory cortex (i.e. the core) and the belt, for instance, with 325 

increasing speech selectivity, or, by the same token, reduced sensitivity to low-level acoustic 326 

features including noise, then observed in the parabelt and more distal substrates (Davis & 327 

Johnsrude, 2003; DeWitt & Rauschecker, 2012; Kaas et al., 1999; Okada et al., 2010). This 328 

process of transformation defines the central objective of the auditory-linguistic pathway: To 329 

establish input-invariant neural speech representations. 330 

The impact of low-level auditory-perceptual deficits on successful manifold 331 

untangling (i.e., the shift from form-dependent to form-independent neural responses) is, to 332 

our knowledge, as yet unstudied. However, it might be assumed that such auditory-perceptual 333 

deficits, which demonstrably characterise the profiles of some children affected by DLD 334 

(Bishop & McArthur, 2005; McArthur & Bishop, 2005), would prompt atypical trends in 335 

neural response transformation throughout the auditory-linguistic pathway. Specifically, we 336 

might expect that the degree of untangling achieved on the basis of degraded speech signals 337 

would be lower than the degree of untangling achieved on the basis of clean speech signals. 338 

Faced with poor auditory processing ability, neural systems may struggle to reduce manifold 339 

dimensionality and establish input-invariance, with low-level noise contaminating high-level 340 

speech representations and rendering them highly dispersed. The manifold untangling 341 

framework therefore has the potential to shape a precise linking hypothesis from low-level 342 

auditory-perceptual deficits to higher-order deficits in speech representation in DLD, while 343 

providing a formal description of the latter in terms of neural response manifolds 344 

characterised by abnormally high dimensionality. 345 
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Furthermore, and fundamental to the primary line of argument pursued in this report, 346 

the manifold untangling framework demonstrates how attentional capacity may be 347 

overloaded by the low separability of atypically dispersed neural speech representations 348 

(Stephenson et al., 2020; Cohen et al., 2020). Recall, for instance, our earlier citation from 349 

Oberauer (2019) on the importance of high quality long-term encodings for the effective 350 

deployment of attention. Efficient speech recognition and production depend on rapidly and 351 

accurately isolating and retrieving required speech representations from an activated long-352 

term memory cohort, a capacity to which attentional control is central. If we assume that 353 

auditory-perceptual deficits do characterize the profiles of some children affected by DLD, 354 

and if we can show that these low-level deficits are linked to the formation of higher-order 355 

speech representations characterised by amplified levels of dispersion and overlap (i.e., 356 

residual manifold tangling), then we might further conclude that the performance profiles 357 

commonly attributed to working memory capacity limitations in DLD instead reflect 358 

attention being overloaded as a result of long-term speech representations characterised by 359 

low discriminability. As we show in the Method section (see Analysis), recent computational 360 

realizations of the manifold geometry view of neural responses provide the tools required to 361 

formally quantify both speech representation dimensionality and associated demands on 362 

attentional capacity (Stephenson et al., 2020; Cohen et al., 2020). 363 

Biological and artificial neural networks 364 

The purpose of the current study is, then, to demonstrate through computational 365 

simulations how working memory capacity deficits may emerge as a consequence of atypical 366 

speech representation, which itself results from a primary auditory-perceptual deficit. To do 367 

this, we use a deep learning framework involving convolutional neural networks, which we 368 

describe further in the Method section (see Model). State-of-the-art deep learning systems 369 

have reached human-level accuracy in speech recognition tasks, and work in computational 370 
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auditory neuroscience has shown that despite the many substantial differences between 371 

biological and artificial neural networks, deep learning can provide valuable insight into 372 

human auditory processing and speech representation (e.g. Kell et al., 2018). 373 

There are fundamental parallels between the biological auditory pathway and 374 

convolutional network architectures, including the projection of activation into overcomplete 375 

space (i.e., activation spreads through layers of an increasing numbers of neurons) and 376 

pooling functions (i.e., configurations in which neuron x fires if either antecedent neuron a, b, 377 

or c fire). The untangling of neural response manifolds is achieved in part as a result of these 378 

architectural features, in conjunction with the constraint of response sparseness, i.e., top-379 

down pressure on the system to align on a single target representation. As a result of these 380 

constraints, the relative size of the subspace in which manifolds reside decreases at each level 381 

of transformation, facilitating manifold separability (DiCarlo & Cox, 2007; Kell et al., 2018).  382 

Nevertheless, closer comparisons of the biological auditory pathway and 383 

convolutional neural networks, for instance the position that specific artificial layer activation 384 

can predict biological auditory-cortical responses (e.g. Kell et al., 2018) remain controversial 385 

(Thompson, 2020). One obvious discrepancy between real-world language processing and 386 

the simulations presented in the current report is that natural speech signals unfold in time, 387 

while processing in a convolutional neural network does not (Stephenson et al., 2020). For 388 

our purposes here, then, networks should be understood as providing computational rather 389 

than neurobiological insight, in the tradition of Marr (1982), addressing the following 390 

questions: What transformation does speech input undergo in order to achieve spoken word 391 

recognition? How is this process of transformation impeded due to a low-level auditory 392 

processing deficit? And how does any resultant representational abnormality affect demands 393 

on attentional control? 394 
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In the simulations that follow, we model typical and atypical spoken word recognition 395 

by presenting deep convolutional neural networks with spectrograms in which information is 396 

either retained to mimic typical development or degraded to mimic the auditory processing 397 

deficits identified among some children with DLD (Bishop & McArthur, 2005; McArthur & 398 

Bishop, 2005). Computational simulation is essential in enabling us (i) to examine how 399 

speech representation differs in artificial neural systems with and without engineered 400 

auditory-perceptual deficits, and (ii) to understand in each case how the form of internal 401 

speech representations propagated influences the systems’ ability to retrieve any given 402 

representation, a capacity understood as central to attentional control. Crucially, in an 403 

artificial system, we are able to ensure that any disparities in network performance are not 404 

attributable to an input-independent capacity limitation and are instead attributable 405 

exclusively to engineered low-level auditory-perceptual deficits. Our models are not intended 406 

to provide a complete picture of speech representation and processing deficits in all children 407 

affected by DLD. Instead, we aim to detail a specific causal link previously undescribed in 408 

the literature, from auditory-perceptual deficits to speech representation deficits to attentional 409 

capacity overload, in the absence of any hard-wired capacity limitation. 410 

Method 411 

This report is associated with a Jupyter notebook (Kluyver et al., 2016) that can be 412 

used to replicate the simulations presented or to experiment with alternative configurations of 413 

input, model, and parameters (see https://osf.io/ng6dx/). 414 

Model 415 

Simulations involved the ResNet-18 convolutional neural network (He et al., 2015), 416 

implemented in Python (Python Software Foundation, 2008) using PyTorch (Paszke et al., 417 

2019). A detailed specification of model architecture can be found in the Appendix. For an 418 

introduction to convolutional neural networks we recommend Goodfellow et al., (2016; 419 
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https://www.deeplearningbook.org). In essence, in convolutional layers, these networks pass 420 

learned filters over the input, here acoustic spectrograms, in order to identify and summarize 421 

through pooling functions invariant features that help solve the task at hand, or, more 422 

precisely, that help to reduce output and target discrepancy. For instance, the network might 423 

learn that identifying a specific formant pattern captured in a certain distribution of pixels 424 

facilitates the discrimination of two phonological competitor words (e.g., cat, catch), 425 

reducing classification error for these items. We trained and tested two populations of 426 

networks (n = 3) on clean and degraded speech data in a spoken word recognition task. 427 

Training lasted for ten epochs (i.e., full cycles through the training data), determined as the 428 

point at which networks exposed to clean input approximated 100% accuracy in initial trial 429 

simulations involving a restricted dataset. 430 

Crucially, there was no difference in any architectural parameter affecting processing 431 

capacity between network populations (e.g., number of layers, hidden layer size, or learning 432 

rate). As previously described, the current prevailing view is that fundamental working 433 

memory capacity limitations cause speech representation and processing deficits among 434 

many children affected by DLD. To reflect this position, a prominent approach in the 435 

computational modelling of DLD to date has been to reduce network size, particularly the 436 

number of nodes in a network’s hidden layer, explicitly to mimic group differences in 437 

working memory capacity (e.g. Takac et al., 2017; Vitevitch & Storkel, 2013). In contrast, in 438 

the current report, network processing capacity is reconfigured as an emergent rather than a 439 

hard-coded, static, and input-independent parameter, with any performance discrepancies 440 

observed between network populations attributable only to access to quality low-level 441 

acoustic representations. 442 

Data 443 



UNDER-RESOURCED OR OVERLOADED? 

 

19 

 

Networks were trained and tested on a random sample of 5000 instances of spoken 444 

words (4000 training, 1000 test) from the Speech Commands dataset, which comprises .wav 445 

files of different articulations of 35 spoken word types used in the development of keyword 446 

recognition systems (e.g. backward, up, down, digits 0-9, and a selection of nouns including 447 

bird, cat, and dog: see Warden, 2018; see also the Jupyter notebook accompanying the 448 

current study). Waveforms were converted to 64-band Mel spectrograms (Stevens et al., 449 

1937), and 0.1 standard deviations of Gaussian noise was added to the training and test data 450 

presented to one population of models to simulate the auditory processing deficits observed 451 

among some children with DLD (Bishop & McArthur, 2005). The results of this pre-452 

processing can be seen in Figure 2. Our independent variable is, therefore, dichotomous; 453 

either a network has access to high quality auditory information, or it does not. In reality, 454 

auditory processing ability is likely to be continuous rather than dichotomous in nature, with 455 

DLD describing children at the low end of the distribution (see, for instance, Bishop & 456 

McArthur’s, 2005, study of individual differences). Nevertheless, our treatment of auditory 457 

processing ability as a dichotomous variable represents a welcome simplifying assumption in 458 

this first pass analysis of the role of auditory-perceptual deficits on speech representation and 459 

working memory in DLD.  460 

As we noted in our introduction, the existing evidence suggests that the auditory-461 

perceptual deficits seen among some children with DLD are spectral (i.e., frequency based; 462 

e.g. Bishop et al., 1999; Bishop & McArthur, 2005; McArthur & Bishop, 2005) rather than 463 

temporal (e.g. Merzenich et al., 1996; Tallal et al., 1996) in nature. Note, however, that the 464 

manner in which we add Gaussian noise to spoken word spectrograms in the current study 465 

makes it impossible to distinguish between these contrasting accounts. That is, the addition of 466 

noise disrupts both frequency information across the vertical axis and temporal information 467 

across the horizontal axis (see Figure 2). This is justified because discriminating between the 468 
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spectral and temporal accounts of auditory processing deficits in DLD is outside of our 469 

primary aim to provide an alternative to dominant causal accounts of DLD centred on 470 

working memory capacity limitations. With this in mind, we use the general term auditory-471 

perceptual deficit (i.e., instead of frequency processing deficit) throughout the current study.  472 

Analysis 473 

Networks were required to identify which word each spectrogram corresponded to by 474 

outputting a probability distribution over the 35-word lexicon. The word with the highest 475 

assigned probability was considered the network’s selection. As children with DLD often 476 

show word finding deficits and response latencies even when making accurate responses 477 

(e.g., Messer & Dockrell, 2006), we were interested not only in the networks’ spectrogram 478 

classification accuracy, but also in the degree of certainty in accurate classifications made. 479 

This required looking not only at the word with the highest assigned probability, but also at 480 

the dispersion or entropy of the predictive distribution output in response to any given 481 

spectrogram. High probability, low entropy predictive distributions reflect greater certainty in 482 

a prediction and act as proxy for rapid retrieval, while low probability, high entropy 483 

predictive distributions reflect the heightened ‘consideration’ of competitor classes in 484 

response to features of the acoustic speech signal presented, and act as proxy for delayed 485 

retrieval.  486 

Word classification accuracy and accurate classification predictive distribution 487 

probability and entropy are measures of a network’s output. However, crucial to the current 488 

study was an assessment of the internal speech representations that networks formed. 489 

Manifold dimensionality and classification capacity are variables integral to the 490 

computational implementation of the manifold untangling framework, and were estimated 491 

following the mean-field-theory based method described in Stephenson et al. (2020) across 492 

the networks’ 20 convolutional layers (see Appendix). Readers interested in the mathematical 493 
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principles via which dimensionality and classification capacity are derived are directed to 494 

Cohen et al. (2020) and references therein. In essence, dimensionality quantifies the average 495 

degree of dispersion in speech representations across a given neural population (i.e., a 496 

network layer), while classification capacity quantifies the network’s average ability to 497 

separate any given internal speech representation from competitor representations in a neural 498 

population, and therefore provides a measure of demands on attentional control. 499 

Algorithmically, dimensionality and classification capacity are determined by propagating 500 

activation through the network in order to determine (i) the embedding dimension of the 501 

manifold contributing to successful classification (i.e., dimensionality), and (ii) the number of 502 

word representations that can be linearly separated from competitor representations at each 503 

level of the network’s architecture (i.e., classification capacity), standardizing in each case by 504 

layer size in order to account for differences in the number of artificial neurons in each layer 505 

(Cohen et al., 2020). High classification capacity indicates neural response manifolds having 506 

been reduced in dimensionality to facilitate hyperplane separation (i.e., attention is sufficient; 507 

Figure 1c), while low classification capacity indicates high-dimensional manifolds 508 

unamenable to efficient hyperplane separation (i.e., attention is overloaded; Figure 1d). 509 

Prior research illustrates that dimensionality and classification capacity are not fixed 510 

properties (Stephenson et al., 2020). In untrained deep neural networks, little change in 511 

manifold dimensionality or classification capacity is seen across layers, from the input layer 512 

to the feature layer immediately prior to stimulus classification. In this case, manifolds 513 

remain highly dispersed across each layer of the hierarchy, limiting network classification 514 

capacity and undermining task performance. However, through training on a specific task, 515 

manifold dimensionality decreases across the network hierarchy while classification capacity 516 

concurrently increases as a result of improved separability (Chung et al., 2018; Cohen et al., 517 

2020; DiCarlo et al., 2012; DiCarlo & Cox, 2007; Stephenson et al., 2020; Yamins & 518 
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DiCarlo, 2016). These changes in manifold dimensionality and classification capacity are 519 

driven by training and underpin improvements in task performance such as better spoken 520 

word classification accuracy. 521 

Through modelling this combination of response variables (i.e., prediction accuracy, 522 

probability, and entropy, and manifold dimensionality and classification capacity) as a 523 

function input type (i.e., clean versus noisy Mel spectrograms) we were able to analyse both 524 

potential variance in performance in a simulated spoken word recognition task and the 525 

representation and attentional control factors that underpin that variance. All statistical 526 

analyses were conducted in R (R Core Team, 2016; see data repository for analysis script). 527 

Results 528 

Figure 3a shows training error rates by epoch for each network and input type. 529 

Networks exposed to clean input showed a spoken word recognition advantage throughout 530 

training, with a mean classification accuracy disparity of 79.9% (SD = 2.21) in the clean 531 

spectrogram condition, compared to 55.2% (SD = 1.59) in the degraded spectrogram 532 

condition. Networks exposed to spectrograms that had been degraded by the addition of 533 

Gaussian noise not only made fewer accurate predictions, but also showed substantially 534 

greater uncertainty in the accurate predictions they made (Figure 3b, Figure 3c). The entropy 535 

of accurate predictive distributions generated by networks exposed to clean input was .18 bits 536 

(SD = .34), with a mean, maximum predictive probability of .94 (SD = .13). In contrast, 537 

networks exposed to degraded input generated accurate predictive distributions with entropy 538 

of .53 bits (SD = .59), with a mean maximum predictive probability of .84 (SD = .20). 539 

These training and test-phase performance profiles relate directly to the networks’ 540 

ability to represent and efficiently retrieve speech information. In Figure 4, we show the 541 

average manifold dimensionality and classification capacity during training at the final 542 

convolutional layer of each network, immediately prior to the classification layer (see 543 
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Appendix for network specification). Notably, the divergence in manifold dimensionality 544 

between networks presented with clean and degraded input was smaller in relatively early 545 

training epochs. Through training, each population of networks reduced the average 546 

dimensionality of the internal speech representations it formed in this final convolutional 547 

layer. Yet, at asymptote, the divergence between network populations was clear: Reducing 548 

the dimensionality of degraded input was an obvious challenge for networks simulating 549 

speech representation in DLD. These manifold dimensionality reduction deficits are reflected 550 

in the complementary analysis of network classification capacity (Figure 4). Classification 551 

capacity increased during training across network populations but was substantially higher in 552 

networks modelling typical development. This means that the speech representations formed 553 

by the networks modelling typical development were discriminated more easily by a 554 

simulated attentional control mechanism than the speech representations formed by the 555 

networks modelling DLD, in which attentional control was more rapidly exhausted due to 556 

excessive processing demands. In essence, the instantiated auditory-perceptual deficit 557 

constituted a significant obstacle to learning, resulting in the formation of spoken word 558 

representations that were abnormally dispersed and overlapping (i.e., underpinned by 559 

common patterns of neural response), and which therefore could not be easily recognised or 560 

retrieved. 561 

In Figure 5, a similar trend is shown post training across the networks’ 20 562 

convolutional layers. Neural networks exposed to degraded input never reached levels of 563 

manifold dimensionality or classification capacity as low as those seen in the layers of the 564 

networks exposed to clean input, and these disparities widened substantially towards the final 565 

convolutional layer. Again, networks with engineered auditory-perceptual deficits face a 566 

greater challenge in reducing speech representation dimensionality, and this directly impedes 567 

the ability of these networks to attend to (i.e., isolate and retrieve) specific internal speech 568 
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representations. Ultimately, as detailed above, these atypicalities in internal speech 569 

representation and simulated attentional control are reflected in disparities in task 570 

performance, including reduced speech recognition accuracy and greater uncertainty (i.e., 571 

lower probability, higher entropy predictive distributions) even when accurate classifications 572 

are made. 573 

Discussion 574 

In this article, our aim has been to provide an alternative to dominant causal accounts 575 

of DLD centred on working memory capacity limitations. We developed an account of 576 

speech perception, representation, and processing in DLD closely aligned with contemporary 577 

working memory frameworks that de-emphasise the role of functionally discrete buffer 578 

systems such as the phonological loop in exchange for a more parsimonious characterization 579 

of working memory in terms of activated long-term memory plus attention (Adams et al., 580 

2018; Chai et al., 2018; Cowan, 1995; D’Esposito & Postle, 2015; McElree, 2006; Oberauer, 581 

2013, 2019; Wilhelm et al., 2013). We instantiated this theoretical account in a computational 582 

model. Simulation demonstrated that protracted manifold untangling provides a plausible link 583 

between low-level auditory-perceptual deficits and deficits in higher-order speech 584 

representation, as well as a formal description of those speech representation deficits in terms 585 

of atypically dispersed patterns of neural response within structures of the auditory-linguistic 586 

pathway. This neurocomputational view of speech representation deficits in DLD is broadly 587 

consistent with existing verbal descriptions noting the fuzziness, imprecision, or 588 

indistinctiveness of these children’s speech representations, and provides a vital counterpart 589 

to such accounts (Alt & Suddarth, 2012; Claessen et al., 2009; Claessen & Leitão, 2012; 590 

Maillart et al., 2004). 591 

Simulation further illustrated our theoretical view that ostensible shortfalls in working 592 

memory capacity may emerge as a consequence of low-level auditory-perceptual deficits 593 
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propagating neural response manifolds characterised by atypically high dimensionality and 594 

residual tangling. Returning to the trade-off described earlier, this suggests that the challenge 595 

facing children with DLD may be one of heightened processing demands rather than one of 596 

fixed capacity limitations. Children with DLD may be less able to accurately and rapidly 597 

process speech sequences and deploy their long-term language knowledge, whether during 598 

listening or production, because that long-term knowledge is poorly configured and not 599 

amenable to efficiently forming the focus of attention. We showed that representational 600 

atypicality (i.e., the heightened dispersion of artificial neural responses) directly undermined 601 

the networks’ ability to discriminate any given speech representation within an activated 602 

cohort, which is a central function of attentional control. This illustrates how irregularities in 603 

long-term speech representation may be the cause of apparent, rather than the consequence 604 

of real, working memory capacity shortfalls. Note that this position differs from the claim 605 

that atypical auditory processing restricts the maturation of a working memory buffer system 606 

that is functionally discrete from long-term language knowledge (e.g., the phonological 607 

loop). We posit no such functionally discrete system, and instead attribute a substantial 608 

proportion of the variance in working memory task performance to the quality of activated 609 

long-term speech encodings. Like prior computational work in this general area (e.g. Jones et 610 

al., 2020), the simulations presented here do not provide explicit evidence against a working 611 

memory capacity limitation in children with DLD. Rather, they demonstrate a coherent 612 

theoretical account of speech perception, representation, and processing deficits in which 613 

capacity limitations that are independent of the quality of long-term encodings play no part, 614 

and in doing so challenge the status of such limitations as a feature of dominant causal 615 

theories of DLD. 616 

Simulation also showed how atypical speech representation and control deficits relate 617 

not only to reduced performance accuracy in a spoken word recognition task, but also to 618 
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substantially greater uncertainty even when making correct responses in that task. Networks 619 

with auditory-perceptual deficits made accurate responses characterised by lower maximum 620 

probability assignment and higher entropy predictive distributions. This feature of network 621 

performance is consistent with behavioural evidence from children with DLD of delays when 622 

making accurate responses and associated word finding difficulties, as well as the greater 623 

consideration of competitor stimuli in eye-tracking paradigms even when accurate responses 624 

are initially made, i.e., a child with DLD first orientates accurately to a visual image 625 

corresponding to a presented acoustic label (e.g. net) but subsequently gazes more regularly 626 

at competitor images (e.g. a neck) than age-matched, typically developing control children 627 

(Kan & Windsor, 2010; McMurray et al., 2019; Messer & Dockrell, 2006). Regularly, such 628 

patterns of performance have been explained by positing auxiliary, encoding-independent 629 

processing constraints, for instance generalised slowing (Kail, 1994) or more specific deficits 630 

in a hypothesised lateral inhibition mechanism responsible for the successful dampening of 631 

activated long-term competitor representations among typically developing children 632 

(McMurray et al., 2019). The modelling work presented in the current study suggests, 633 

however, that positing constraints that are independent of the quality of long-term speech 634 

representations in order to explain such patterns of performance may be unwarranted. 635 

Instead, children’s spoken responses may be delayed, or competitor stimuli may be given 636 

greater consideration in an eye-tracking paradigm as a result of attention being overloaded by 637 

the increased search demands that result from low manifold separability. 638 

Above, we commented against drawing close parallels between the convolutional 639 

neural networks used in this study and the biological auditory pathway. However, it is 640 

notable that the typically developing brain approximates invariant speech-sound 641 

representations by the peripheral auditory cortex (Davis & Johnsrude, 2003), prior to the 642 

auditory system splitting into a ventral pathway committed to semantic representation and 643 
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processing, and a dorsal pathway committed to speech-segment representation and 644 

processing, and articulation; each innervated by frontal neural substrates supporting attention 645 

(Hickok & Poeppel, 2000). This indicates that approximating invariant speech-sound 646 

representations at this juncture is essential to the typical function of the language system as a 647 

whole, including to ensuring that attentional resources are not exhausted by uneconomical 648 

speech encodings. By the same token, this prior work (e.g. Hickok & Poeppel, 2000) suggests 649 

that the protracted manifold untangling simulated in the current report will have wide-650 

reaching implications for the language system as a whole, potentially disrupting the mapping 651 

between speech representations and distributed semantics in the ventral stream and speech-652 

segment processing and speech planning in the dorsal stream, as well as disrupting 653 

mechanisms of attentional control substantiated in the frontal lobe. 654 

Relatedly, it is valuable to note that prior computational work attests to the 655 

generalizability of the principles described in this report. While our own focus has been on 656 

auditory perception and the encoding of and attention to spoken word representations, 657 

previous research strongly suggests that the auditory-perceptual deficits simulated here would 658 

prompt protracted manifold untangling regardless of the level of linguistic representation, i.e., 659 

whether phoneme, word, or phrase (Stephenson et al., 2020). Indeed, the principles described 660 

here are expected to hold regardless of the modality of the stimuli being classified (e.g., 661 

whether auditory or visual). There is, therefore, nothing special about words as a unit of 662 

representation. Across levels of linguistic representation (i.e., phoneme, word, and phrase), 663 

speech recognition and comprehension, retrieval, planning, and production would all be 664 

expected to be slower and less accurate as a result of attentional capacity being overloaded by 665 

high dimensionality impeding the efficient separation of neural response manifolds. 666 

Ultimately, determining the coverage of the theory developed here in explaining the broad 667 

constellation of deficits seen in DLD is a matter for future research. There is, of course, no 668 
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requirement to settle on a single cause of DLD, and indeed such attempts are likely to be 669 

fruitless given a complex genetic etiology and the linguistic diversity seen across children 670 

with a diagnosis of DLD. Not all children affected by DLD show behavioural deficits or 671 

neurophysiological abnormalities in auditory processing (McArthur & Bishop, 2005), and 672 

language impairment is not an inevitable consequence of mild to moderate hearing loss (see 673 

Halliday et al., 2017, and references therein). Relatedly, there are features of DLD that are 674 

not easily reconciled with the notion of a basis in auditory processing deficits. Hsu and 675 

Bishop (2014), for instance, report reliable deficits in the ability of children with DLD to 676 

identify regular (though difficult to discern) patterns of change in the position of a character 677 

on a computer screen (i.e., in a visual serial reaction time task; though, relatedly, see 678 

Marshall et al., 2015, for evidence that nonverbal working memory capacity is impacted by 679 

language experience). Thus, the manifold untangling deficit hypothesis described in the 680 

current manuscript should be considered a complementary explanatory framework, rather 681 

than a unifying or absolute theory of DLD. 682 

Attempting to map deficits in manifold untangling to underlying neuronal 683 

abnormalities is an important part of the future research agenda. In this report, we situated the 684 

locus of deficit at the most fundamental level, the input to the hierarchical processing system. 685 

However, given that untangling low-level neural manifolds rests on a protracted and complex 686 

hierarchical configuration, including the projection of activation into overcomplete space and 687 

pooling functions, it is possible that the problem resides later or more broadly distributed 688 

across the auditory pathway, from the basilar membrane to the peripheral auditory cortex, and 689 

beyond. Theoretically, unsuccessful manifold untangling may be caused by 690 

microneuropathology, in the form of genetic irregularities prompting neuronal mis-migration 691 

or inhibiting synaptic pruning, resulting in sub-optimal organisation within the auditory-692 

linguistic pathway (Bishop, 2014). Future physiological research in this direction might take 693 
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lead from work assessing neural responses to distorted speech signals in the auditory cortices 694 

of typically developing adults (Davis & Johnsrude, 2003; DeWitt & Rauschecker, 2012; 695 

Okada et al., 2010). As previously described, this work has identified form-dependent 696 

responses to spoken language in the primary auditory cortex and belt, and increasingly form-697 

independent responses in the peripheral auditory cortex and subsequent auditory-linguistic 698 

pathways. To our knowledge, it remains unclear whether similar patterns of neural activation 699 

across the auditory-linguistic pathway occur in response to different intensities of speech 700 

distortion in children with and without DLD. 701 

Given the dominant view that working memory capacity limitations play a causal role 702 

in DLD, one line of argument is that interventions specifically targeting working memory can 703 

help mitigate these children’s language problems (Delage & Frauenfelder, 2020; 704 

Montgomery et al., 2010). As described in our introduction, a number of commercially 705 

available programmes make this claim (e.g., Alloway et al., 2013). There is, however, little 706 

empirical evidence supporting the efficacy of working memory training. For instance, in a 707 

comprehensive meta-analysis, Melby-Lervåg and Hulme (2013) found no evidence that 708 

apparent gains in working memory function either generalized or remained after a delay 709 

period. This outcome is fully continuous with the current report, in which one cause of 710 

language impairment is considered to be low-level speech perception and encoding deficits, 711 

rather than a functionally discrete working memory capacity bottleneck (see also Jones et al., 712 

2020). Collectively, this work casts doubt on the validity of using working memory training 713 

as a method of boosting language skills. As an alternative, simulation showed (across training 714 

epochs) that increasing the frequency of exposure to specific structures might go some way to 715 

improving long-term encoding and, therefore, to improving the accuracy, speed, and 716 

confidence with which long-term speech representations are deployed in the moment. 717 

Simulation also suggests, however, that increasing frequency of exposure alone is not enough 718 
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to effectively close the gap in representation quality and levels of performance between 719 

children with and without DLD. In Figure 4, we illustrated clear divergence in dimensionality 720 

and classification capacity between network populations at asymptote across ten training 721 

epochs (a pattern which may differ under longer training regimes). This suggests that more 722 

nuanced strategies than simply boosting frequency of exposure are required in order to 723 

mitigate the perceptual and representational challenges faced by children affected by DLD. 724 

One such approach, already well-known to clinical practitioners including speech and 725 

language therapists, is to control the order of stimulus presentation, for instance by teaching 726 

minimal pairs (e.g., cat, catch) in which the discrepant phoneme is a sound that the child has 727 

particular difficulties with (Dean et al., 1995). As high-order neural response manifolds adapt 728 

to task and communicative demands through time (Stephenson et al., 2020), this approach is 729 

expected to improve the discriminability of the representation of the different constituent and 730 

therefore the word-level representation. This view re-describes the computational process 731 

highlighted in the Method section in which neural networks attune to the specific sub-patterns 732 

within speech signals that most effectively reduce performance error. 733 

The prior example alludes to the importance of working across levels of linguistic 734 

representation during language intervention, here improving spoken word representation (and 735 

indeed phrase-level speech representation) by improving sub-lexical speech segment 736 

representation. Ultimately, given the complex causal basis of DLD emphasised earlier, 737 

comprehensive programmes of intervention that target multiple aspects of the language 738 

system appear essential (i.e., because highly specific programs of intervention only focus on 739 

remediating a subset of the underlying issues). This factor may explain the limited success of 740 

targeted commercial packages of auditory processing intervention such as Fast ForWord 741 

(Tallal, 2013) in randomised controlled trials (Strong et al., 2011). Relatedly, it would, as one 742 

anonymous reviewer pointed out, be wrong to assume that programs of intervention only 743 
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work if they address an identified area of deficit, as working with an area of relative strength 744 

may also help overall language functionality. Along these lines, it is reported that individuals 745 

with strong semantic (and syntactic) awareness of the language they are perceiving are better 746 

able to decode vocoded elements within a sentence by exploiting top-down predictive 747 

processing, in the same manner that the occluded orthographic representation g##d#n might 748 

be rapidly decoded by exploiting antecdent information in the phrase “it was a sunny day and 749 

the children were playing in the g##d#n” (i.e. garden; Davis et al., 2005; Sohoglu et al., 750 

2012; see Jones & Westermann, 2021, for an application of the predictive processing 751 

framework to the study of DLD). While it may be challenging to translate this specific 752 

research finding directly into a task to use during language intervention, it is nevertheless 753 

valuable to note that strengthening semantic and syntactic awareness may help children with 754 

DLD navigate the perceptual and representational deficits that constitute a major obstacle to 755 

effective communication. 756 

Conclusion 757 

In this report we have presented an alternative to dominant theoretical accounts of 758 

DLD centred on deficits in working memory capacity. Our account aims to reposition the 759 

proximal origin of many of the behavioural deficits seen in DLD from a shortfall in working 760 

memory capacity, to working memory being itself functionally unimpaired but overloaded 761 

due to operating on speech representations characterised by atypically high dimensionality 762 

and low separability.  763 
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Figure 1 1097 

Illustration of manifold untangling across the auditory and language pathways in typical 1098 

development and DLD  1099 

 1100 

Note. (A) the spoken words cat, catch, and cot in high dimensional space, with each axis (N1 1101 

to Nn) illustrating the response of a single neuron in a population, in spikes per second. Two 1102 

spoken instances of the same word, e.g., cat, will reside in a different neural response vector. 1103 

(B) collectively, response vectors associated with any given word form a manifold. 1104 

Manifolds of different words are tangled early in the auditory-linguistic pathway due to 1105 

cellular responsiveness to low-level acoustic features. (C; a high-capacity system) manifolds 1106 

are incrementally untangled throughout the auditory pathway, eventually supporting efficient 1107 

discrimination and reducing attentional demand. (D; a low-capacity system) in DLD, a low-1108 

level auditory-perceptual deficit may mean that manifold untangling is protracted, leading to 1109 

abnormally high-dimensional, high-order speech representations that are more difficult to 1110 

discriminate and which therefore overwhelm attentional capacity.  1111 
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Figure 2 1112 

Mel spectrograms of the word ‘backward’, clean and with Gaussian noise (SD = 0.1)  1113 

  1114 



UNDER-RESOURCED OR OVERLOADED? 

 

48 

 

Figure 3 1115 

Network performance during training and testing 1116 

 1117 

Note. (A) accuracy (%) by training epoch and input type. (B) accurate response predictive 1118 

distribution entropy in bits as a function of input type. (C) probability assigned to accurate 1119 

predictions as a function of input type. In (B) and (C) black dots represent raw data points, 1120 

filled portions illustrate densities, and black horizonal bars illustrate means.  1121 
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Figure 4 1122 

Feature layer dimensionality and classification capacity by input type and training epoch 1123 

  1124 
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Figure 5 1125 

Post-training dimensionality and classification capacity by convolutional layer and input 1126 

type 1127 
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Appendix 1129 

ResNet-18 specification 1130 

Layer index Layer name  Output size Kernel size Stride 

1 Conv. 2D 1, 64 7, 7 2, 2 

2 Conv. 2D 64, 64 3, 3 1, 1 

3 Conv. 2D 64, 64 3, 3 1, 1 

4 Conv. 2D 64, 64 3, 3 1, 1 

5 Conv. 2D 64, 64 3, 3 1, 1 

6 Conv. 2D 64, 128 3, 3 2, 2 

7 Conv. 2D 128, 128 3, 3 1, 1 

8 Conv. 2D 64, 128 1, 1 2, 2 

9 Conv. 2D 128, 128 3, 3 1, 1 

10 Conv. 2D 128, 128 3, 3 1, 1 

11 Conv. 2D 128, 256 3, 3 2, 2 

12 Conv. 2D 256, 256 3, 3 1, 1 

13 Conv. 2D 128, 256 1, 1 2, 2 

14 Conv. 2D 256, 256 3, 3 1, 1 

15 Conv. 2D 256, 256 3, 3 1, 1 

16 Conv. 2D 256, 512 3, 3 2, 2 

17 Conv. 2D 512, 512 3, 3 1, 1 

18 Conv. 2D 256, 512 1, 1 2, 2 

19 Conv. 2D 512, 512 3, 3 1, 1 

20 Conv. 2D 512, 512 3, 3 1, 1 

21 Linear 35 n/a n/a 

 1131 

Hyperparameters 

Optimizer: stochastic gradient descent 

Learning rate: .001 

Momentum: .9 

Loss function: cross-entropy loss  

 1132 

Note. See Jupyter Notebook for activation functions and pooling, normalisation, and dropout 1133 

layers. 1134 


