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Abstract 

The energetic requirements of all physical systems are supplied by resource acquisition, 

distribution, and end-use (RADE) networks. While the characteristics of these networks vary 

considerably, they share similar outcomes, namely heterogeneity in natural systems, and inequality 

in social systems. Despite the criticality of resources for sustaining life, and impacts of their unequal 

distribution, little work has attempted to explicitly connect RADE network structure, resource 

flows, and consumer outcomes.  

The overall aim of this thesis was to develop and use modelling approaches to identify relationships 

between network structure and consumer heterogeneity in stylised networks. After reviewing the 

current literature on RADE networks (Chapter 1), we develop a model of RADE networks using 

an electrical analogue and quantify consumer inequality as networks evolve toward maximum 

power (Chapter 2). In networks with heterogeneous architecture, such as commonly seen fractal 

structures, inequality between consumers increases as resource flows increase, even after maximum 

power has been reached.  

We then develop a method to extract macropore networks from soil profile images and analyse 

them with metrics from network science and transport geography (Chapter 3). The networks are 

used as the environment in an agent-based model (ABM) of foraging soil organisms. The 

methodology captures known differences between soil types, and shows larger, more heterogenous 

soil networks support larger, more diverse simulated consumer populations.  

Finally, we develop an ABM of generic consumers building a network to move between resources 

in  heterogeneous landscapes, attempting to maximise their time-discounted consumption 

(Chapter 4). The dynamics were similar across the landscapes, with the consumer inequality 

decreasing during initial network construction, then increasing as the network reached its stable 

state. The resource distribution in each landscape moderated the specific rates and timings of these 

dynamics.  

Overall, the findings here linking known system development trajectories and network 

architectures to increased inequality provide insight into the emergence and persistence of 

heterogeneity among consumers in both ecological and socio-ecological systems, and alleviation 

of inequality in the latter. 
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1 
1. Introduction 

The requirement for energetic resources is ubiquitous across earth systems. Depending on the 

system, these resources are transported through a vast array of interconnected networks, such as 

foraging trails, vascular systems, electricity grids, roads, and railways. The heterogeneity of these 

resources in space and time, and the resulting heterogeneity of the networks distributing and 

providing access to them, has been linked with biodiversity, behavioural adaptations, and 

ecosystem functioning and stability in natural systems. In socio-ecological systems, however, this 

inequality in basic resources is linked with negative health, environmental, and economic outcomes 

for individuals and groups. This heterogeneity in natural systems and inequality in socio-ecological 

systems, as well as the resource distribution networks that supply them, have been studied from a 

variety of perspectives. However, the link between resource distribution network structure and 

heterogeneity of resource flow has rarely been studied, especially with explicit consideration of the 

spatial dimension of networks or the thermodynamic and physical laws governing earth systems.  

This introduction provides an overview of the literature associated with heterogeneity and 

inequality in resource distribution networks. The first section outlines the causes and effects of 

heterogeneity and inequality in natural and socio-ecological systems. In the second and third 

sections, resource distribution networks are introduced, and their major shared characteristics are 

discussed, with a focus on how that affects heterogeneous distribution. Finally, a brief overview 

of previous analytical methods and conceptualisations, along with areas of future work, are 

highlighted, and the thesis aims and structure are outlined. 
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1.1. Heterogeneity and inequality 

1.1.1. Natural systems 

In natural systems, the concept of environmental heterogeneity is often divided into spatial or 

structural heterogeneity, and resource heterogeneity (Stevens and Tello, 2011). Structural 

heterogeneity refers to the different physical structures within the environment, such as rock 

formations, canopy layers, understory vegetation, soil pores, and other microhabitats. These 

provide a range of shelters, breeding and nesting grounds, and foraging and hunting territories. 

Resource heterogeneity refers to the unequal spatial and temporal distribution of energetic 

resources used by consumers. This distribution is caused by interactions of structural heterogeneity 

and local climatic and environmental factors, as well as disturbances and top-down forces such as 

predation, herbivory, parasites, and pathogens that prevent takeover by any single species 

(Eichhorn, 2016). These cause heterogeneity of primary producers, which is then propagated 

upward through trophic levels to create diversity of primary consumers and beyond, often 

involving dynamic ecological processes such as succession, predator-prey interactions, and 

dispersal (Eichhorn, 2016; Guichard, 2017).  

Other processes which affect the resource heterogeneity of a system are anthropogenic impacts, 

such as fragmentation through habitat destruction. This limits the physical range of species, 

potentially cutting them off from key resources and causing extinction. While heterogeneity in the 

physical environment and resource ‘patchiness’ can lead to greater specialisation and biodiversity, 

as will be discussed, fragmentation often occurs at spatial scales to which local species are not 

adapted. This can interrupt larger ranges and territories, bar migration routes, cut off access to 

essential resources such as water sources, or trap species in effective ‘islands’ of habitat where such 

small populations are supported that stochastic disruption can quickly lead to extinction (Tews et 

al., 2004; Seiferling, Proulx and Wirth, 2014).  
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Discussions of environmental or structural heterogeneity in natural systems often describe a 

relationship between a measure of heterogeneity and a measure of diversity. These so-called 

heterogeneity-diversity relationships (HDRs) have been investigated across a range of terrestrial 

and aquatic ecosystems (see reviews in Tews et al., 2004; Stein, Gerstner and Kreft, 2014). In these 

systems, the relationship between heterogeneity and diversity is hypothesised to be positive, as an 

increase in the types of resources available creates more niches (in the sense of Grinnell, 1917; 

Hutchinson, 1978) for species. Depending on the size of the area in question, this relationship may 

also become unimodal, if increased heterogeneity beyond a threshold leads to areas that are too 

small to support populations of specialists that are large enough to avoid stochastic extinctions 

(Heidrich et al., 2020). Efforts to prove this single rule relating heterogeneity to biodiversity have 

been hampered by the considerable situational differences that occur among natural systems 

(Naeem and Colwell, 2012), and different definitions of both heterogeneity and diversity (Tews et 

al., 2004). However, several large meta-analyses suggest a generally positive or unimodal 

relationship between heterogeneity and the richness or abundance of species supported by an area 

(e.g. Tews et al., 2004; Stein, Gerstner and Kreft, 2014). Furthermore, resource heterogeneity can 

lead to a range of behavioural and social adaptations within species (e.g. MacArthur and Pianka, 

1966; Horn, 1968; Hopkins, 2011; Stevens and Tello, 2011; Croft, Hodge and Pitchford, 2012; 

Tanner and Jackson, 2012; Silva et al., 2013; Wright and Rohde, 2013). It can also lead to population 

stability (e.g. Brown, 2007; Oliver et al., 2010) and ecosystem functioning and stability (e.g. Tylianakis 

et al., 2008; Godbold, Bulling and Solan, 2011; García-Palacios et al., 2012; Wagg et al., 2014; Wang 

et al., 2019). 

For example, the environmental heterogeneity of the soil matrix, and the range of habitats and 

resources this encompasses, creates niches for a diverse range of organisms. Soil involves a 

significant degree of both horizontal and vertical structural heterogeneity, which is caused by 

erosion and weathering processes, deposition, burrowing roots and organisms, and movements of 
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gas and water (Oades, 1993). This structural heterogeneity, coupled with nutrient build up from 

drainage and decomposition, creates a range of habitats and resource pools. This provides 

opportunities for resource and habitat specialisation, predator avoidance, and limitation of 

competitive exclusion (e.g. Ettema and Wardle, 2002; Bardgett, Yeates and Anderson, 2009; Young 

and Ritz, 2009), and results in significant biodiversity of microorganisms and fungi, and species 

that prey upon them (Bardgett, 2005). This includes both animals and fungi that live exclusively in 

the soil, as well as terrestrial plants and animals that burrow into the soil for shelter or to forage. 

For this reason, soil heterogeneity has also been linked to more productive and stable aboveground 

communities, again by limiting competitive exclusion, providing stable resource bases and refuge 

from predation, creating microhabitats with characteristics different to those of the surrounding 

soil matrix, and enabling signalling mechanisms and activities, such as the pathogenic fungi that 

promote tree spacing introduced above (Ettema and Wardle, 2002; Wardle et al., 2004; Baer et al., 

2005).   

While resource heterogeneity can lead to many positive outcomes, it can also lead to local and 

global extinction of species, especially if it is caused by anthropogenic fragmentation (Tews et al., 

2004; Seiferling, Proulx and Wirth, 2014). As discussed, the scales at which fragmentation occurs 

rarely correspond with the scales at which habitats and their inhabitants have co-evolved. For 

example, the natural structural and resource heterogeneity in the soil matrix is easily disrupted by 

ploughing and compacting activities of agriculture (Kravchenko et al., 2011). Although ploughing 

arguably creates a certain type of heterogeneity, it is far more fractured and random than that which 

occurs through natural processes. Soil that has been ploughed repeatedly loses much of the 

structure and resources that allow it to support healthy ecosystems, such that this form of 

heterogeneity leads to decreased biodiversity and stability (Bardgett, Yeates and Anderson, 2009; 

Kravchenko et al., 2011). The contrasting effects of heterogeneity have led some to argue that, in 

the face of anthropogenic modification of ecosystems, it would be better to conceptualise 
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naturally-occurring environmental heterogeneity as a form of complexity (Parrott, 2010; Seiferling, 

Proulx and Wirth, 2014). This term better captures the different effects of natural heterogeneity, 

which has co-evolved with the ecosystem in question, versus the randomising or fragmenting 

heterogeneity introduced by humans.  

Regardless of terminology, however, identifying the cause of heterogeneity and the scale on which 

it occurs, compared to the scales on which the affected species operate, is necessary to predict its 

impacts. As many of these impacts have widespread ramifications for ecological and socio-

ecological systems functioning and health, understanding the causes and effects of resource 

heterogeneity is crucial for guiding preservation, restoration, and management efforts. 

1.1.2. From heterogeneity to inequality 

The heterogeneous distribution of natural resources has profound impacts on human society as 

well. Many modern societies are physically distant from the natural resources that supply them, 

creating a sense that globalisation and international supply chains have severed the connection 

between heterogeneity of resources and of individuals and groups. In pre-modern societies, 

however, the spatial distribution and characteristics of resources, as well as the cultural dynamics 

that emerged around resource ownership and use, played a dominant role in determining social 

hierarchy and the origins of inequality. Here, ‘inequality’ is used to refer to differing levels of access 

that individuals of the same species have to the basic resources they require for survival and health, 

rather than higher-level resources within society. The focus of this work specifically is on energetic 

resources, such as food and fuel, which are typically classed in anthropological and sociological 

studies with material resources, including housing, livestock, and possessions. However, inequality 

in these energetic and other material resources is often linked to inequality in embodied wealth 

(physical health, abilities, and skills) or relational wealth (social status and connections) (Smith, 

Hill, et al., 2010).  



Chapter 1: Introduction 

6 
Natalie Davis – June 2021 

It is posited that historically, the ‘defensibility’ of certain types of resources, due to their reliable 

and dense but patchy occurrence, led to the development of territoriality and ownership 

behaviours in certain societies (Mattison et al., 2016). For example, while undomesticated animal 

herds or nuts and seeds are widely distributed and difficult to predict or control, food-rich areas 

of streams or forests would have been more worth the energetic costs associated with defence, 

leading to territorial behaviour in groups with respect to these resources (Dyson-Hudson and 

Smith, 1978; Mattison et al., 2016). As all these resources are geographically distributed, some 

individuals and groups had greater access, leading to inequality. The concentrated, predictable, and 

therefore defensible resources also allowed for the accrual of surplus (Gurven et al., 2010), which 

increased inequality further, and encouraged some groups to remain more geographically fixed.  

Similarly, the rise of agriculture during the Holocene epoch and the storage of surplus food that 

came with it effectively created a new type of patchy, defensible resource (Summers, 2005; 

Mattison et al., 2016). As with the natural resources with similar characteristics, domesticated plants 

and livestock led to increased inequality between those who owned them and those who did not. 

This also brought an increased focus on material wealth, as groups became less nomadic and began 

accumulating possessions. Together, these changes led to the development of inheritance, or 

intergenerational wealth transmission, which cemented inequality in society (Smith, Hill, et al., 

2010; Shennan, 2011; Mattison et al., 2016). Although inheritance took different forms depending 

on the society in question, it led to the children of wealthy parents becoming wealthier themselves, 

materially but also often physically, due to better nutrition, and relationally, due to good 

connections fostered by their parents (Smith, Bowles, et al., 2010). 

Over time, the development of modern society and its reliance on resource redistribution through 

elaborate, interconnected networks distanced most individuals from the original source of their 

energy resources, such as food and electricity. While the rise of distributed, renewable energy 

sources and local agricultural movements counteract this somewhat (e.g. Sattler, 2016), the overall 
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trend is still that resources are relocated considerable distances from their starting points. 

Therefore, it is now most relevant to discuss inequality from the perspective of access to re-

distributed resources, rather than access to the resource’s point of origin. This inequality can take 

the form of different quantity, cost, or quality of resources. Two particularly relevant examples are 

the food and energy insecurity faced by some, both of which can result in limited access to other 

goods and services that rely on these forms of energy, and significant health and educational 

disparities. 

Food insecurity, or physical or financial inability to access enough quality food, is at its heart a 

problem of access. It often occurs in areas described as ‘food deserts:’ typically inner city or rural 

areas where there are few or no grocery stores providing reliable, inexpensive access to healthy 

food options (Hendrickson, Smith and Eikenberry, 2006). Residents of food deserts may be unable 

to afford a car or public transport to more distant grocery stores, or they may feel unsafe, be 

physically unable, or too busy to walk long distances to different shopping options (Walker, Keane 

and Burke, 2010). Cost also plays a role: while convenience stores and smaller grocery stores may 

charge more for what they sell than larger chain supermarkets, the combined cost of transport to 

distant stores, and higher prices of fresh fruit and vegetables may dissuade low-income customers 

from these options (see review in Walker, Keane and Burke, 2010). As a result, food deserts have 

been linked to higher rates of obesity, as well as health conditions such as diabetes, cancer, and 

cardiovascular disease where diet can play a significant role (Caspi et al., 2012).  

Energy insecurity is another redistribution problem facing a substantial percentage of the 

population. Currently, up to 770 million people, predominantly in sub-Saharan Africa, are without 

electricity, and more than 2.6 billion people worldwide still rely on traditional fuel sources such as 

biomass to cook and heat their homes (IEA, 2020). The use of this type of fuel is associated with 

many health hazards, including exposure to severe weather, wild animals, and assault during 

collection (Gaye, 2007; Sovacool, 2012), and a range of respiratory conditions during burning, 
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especially in the women, children, and elderly who spend the most time in the home (Gaye, 2007). 

Its use can also cause families to avoid or undercook protein-rich foods such as beans or meat, 

which take a long time to cook, or to not boil water to sanitise it before use (Murphy, 2001; 

Sovacool, 2012). Additionally, the time spent collecting and working with biomass energy sources 

prevents individuals, disproportionally women and girls, from attending school or engaging in 

income-generating activities to lift themselves and their families out of poverty (Sovacool, 2012).  

As discussed, however, resource heterogeneity in natural systems, where species can adapt or 

disperse to take advantage of resource niches, results in biodiverse and stable ecosystems. These 

negative impacts of socio-ecological inequality and positive impacts of ecological heterogeneity are 

frequently the focus of mitigation or preservation efforts, respectively. To direct these efforts, it is 

crucial to understand what causes and maintains these phenomena as systems develop, and their 

effect on end consumers and overarching systems. The following sections will focus on resource 

distribution networks: what they are, how they function, and how they contribute to heterogeneity 

and inequality. This will establish a clearer understanding of the relationship between the structure 

and dynamics of these networks and resource distribution in ecological and socio-ecological 

systems, and present directions for future study. 

1.2. RADE networks 

Given the universal requirement of energetic resources for maintenance, growth, and 

development, and the heterogeneous distribution of these resources as discussed above, 

considerable energy must be spent relocating resources from points of acquisition to points of 

consumption and end use. The infrastructure enabling this relocation can be conceptualised as a 

series of nested, interconnected resource acquisition, distribution, and end-use networks (‘RADE’ 

networks, e.g. Jarvis, Jarvis and Hewitt, 2015). Examples of RADE networks include the vascular 

networks of plants and animals, food distribution systems, foraging trails, electricity and water 

grids, rivers, and soil macropore networks. In each of these examples, the overarching system is 
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comprised of resources, which move or are moved through the network of links from points of 

generation to consumption, and consumers, who are the end users and recipients of the resource 

flows (Table 1.1). While the specifics of resource and consumer mobility, link materials, and spatial 

scale differ among networks, the vocabulary of consumer, resource, and link remains useful to 

distinguish the parts within each system and make comparisons between them.  

In the following sections, the main characteristics of RADE networks are introduced, and 

examples are presented to illustrate these characteristics in RADE networks across a range of earth 

systems. Also highlighted is the relationship between each of these characteristics and the 

heterogeneity that RADE networks encompass, and inequality that they can perpetuate. 

Table 1.1 Some examples of resource acquisition, distribution, and end-use (RADE) networks. 

System Consumers Resources Links 

Vascular network Body tissues Blood, photosynthates Arteries and veins; 
xylem and phloem 

Electricity grids Houses, businesses, 
schools 

Electricity Power lines 

Food distribution 
systems 

Humans and 
domesticated animals 

Raw and processed 
food products, feed 

Freight networks 
(road, rail, aviation) 

Soil matrix Soil biota, plants Minerals, water, lower 
trophic level 
producers and 
consumers 

Macropores 

 

1.2.1. Nested networks 

While the vocabulary of resources, consumers, and links is useful for describing and comparing 

RADE networks, and all RADE networks can be conceptualised in this way, the networks are also 

inherently interconnected and nested. For example, a plant consuming nutrients and water is a 

consumer when viewed from the perspective of the soil matrix, but also contains a vascular 

network with xylem and phloem moving nutrients throughout the structure of the plant. To an 

herbivore, the plant may be the resource it seeks when it is following foraging routes. Similarly, 

food is grown with inputs from the energy grid and sourced through the freight network, and later 
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enters a human’s digestive system, where it is transported throughout their body. Therefore, a 

caveat to this vocabulary is that it can quickly become complex to differentiate between consumers, 

resources, and links, when the relevant focus area includes nested systems of each.  

To constrain analyses, much previous work has drawn boundaries to differentiate between 

‘internal’ resource distribution networks, such as metabolic and vascular networks (West, Brown 

and Enquist, 1997; Banavar et al., 2010), and ‘external’ networks, such as foraging (Charnov, 1976; 

Bianchi, Schellhorn and Van Der Werf, 2009), transport (Levinson and Yerra, 2006), or energy 

distribution networks (Dalgaard and Strulik, 2011). However, these boundaries are arguably 

imposed somewhat arbitrarily, and being ‘internal’ or ‘external’ is likely less relevant to the 

dynamics of resource flow than other topological and material aspects influencing network 

construction, evolution, and use. This has led others to focus more on the resource flowing 

through the network, and various transformations it undergoes along the way (Odum, 1988). 

When resource distribution networks are studied from the perspective of energy flows, it is easier 

to ensure physical consistency of the system, as will be discussed in later sections, and observe 

more systemic phenomena, such as inequality in resource flows and points of resource scarcity.  

Originally, energy flow-based analyses focussed on the dynamics of energy and material flows 

through food webs. This led to Lindeman (1942) pioneering the concept of trophic levels to 

describe the hierarchical organisation of these flows in ecosystems. This structure has been linked 

to increased energy dispersal in natural systems, by showing that each trophic level acts as an 

energy gradient for the consumers of higher trophic levels to exploit (Annila and Kuismanen, 2009; 

Meysman and Bruers, 2010). Others have used similar methods on networks of species interactions 

to quantify system-wide properties that are difficult to measure from individual observations, such 

as modularity, homogenisation, synergism, and the impact of indirect effects (Fath, 2004; Fath et 

al., 2007; Fath and Patten, 2013; Jørgensen, Nielsen and Fath, 2015; Dormann, Fründ and 

Schaefer, 2017; Tylianakis and Morris, 2017; Delmas et al., 2019; Fath and Scharler, 2019).  
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Other examples of nested, energy-centric analyses are H.T. Odum’s energy flow models (e.g. 

Odum, 1971), and other analyses based on similar concepts (see review in Brown and Ulgiati, 2004; 

also Yi et al., 2017; Giannetti et al., 2019). Odum used simple electrical analogues to model the 

flows of energy through macrosystems, such as entire ecosystems or socio-ecological systems. He 

pointed out that each transformation of energy, such as the uptake of a resource flow by a 

consumer or another state change in the resource prior to end use, resulted in the loss of some 

energy in the creation of a higher order of energy. He termed this energy consumed in creating 

higher forms of energy a ‘transformity’ (Odum, 1988). The concept of transformities allowed 

Odum to calculate the complexity and interconnectedness of natural and human-engineered 

systems, by tracking the number of transformations or interactions between a given resource and 

the primary solar energy input to the ecosystem.  

Although more from a perspective of individuals, the Metabolic Theory of Ecology (‘MTE’, e.g. 

Brown et al., 2004), also attempts to track energy flows throughout nested systems, starting from 

the perspective of organismal metabolism as determined by their internal metabolic network. This 

metabolic rate is considered the fundamental rate controlling individual life history, and therefore 

dynamics at scales from the individual, to population, and whole ecosystem (Brown et al., 2004). 

An alternative metabolic theory called Dynamic Energy Budget theory (‘DEB’ e.g. Kooijman, 2009; 

Jusup et al., 2017), attempts to make similar predictions of population- and ecosystem-level energy 

flows, but with different foundational assumptions: it focusses not on the internal metabolic 

networks of individuals, but how they allocate energy to different functions of maintenance and 

growth. Both MTE and DEB can provide insights into how the energy dynamics of an individual 

scale to higher levels of organisation, without imposing strict trophic levels.  

1.2.2. Active and passive transport 

Across all levels of organisation, resource distribution occurs via active transport and passive flows. 

Active transport applies reserves or external sources of energy to extract and redistribute resources. 
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It is therefore often conceptualised as an intentional choice on the part of the consumer (Haff, 

2012), even when the resource distribution is necessary for survival. One example is foraging 

networks (e.g. Charnov, 1976; Menzel et al., 2005; Silva et al., 2013; Trapanese, Meunier and Masi, 

2019), where organisms use energy stores to seek out resources in their environment, which they 

consume immediately, or bring back to a central point for storage and later consumption. Similarly, 

transportation networks in human society rely on fossil fuels, electricity, and other energy sources 

to transport stocks of primary energy such as oil and coal, as well as humans, food, and 

construction materials. As this type of resource distribution relies on reserves from previous 

resource flows, it can allow consumers who have more reserves to multiply these further, while 

consumers with fewer reserves are less able to engage in network development to increase resource 

flows to themselves. In this way, inequality that existed externally to the network can be 

perpetuated within the structure or flows of the network, and therefore increased, unless the 

external energy reserves are explicitly applied to equalise distribution. This will be discussed more 

in Section 1.3. 

In contrast, passive flow networks are those which rely on gradients of gravitational energy, or 

forms of energy stored within the resource itself, to move the resource along the network. This 

consumes some of the potential energy of the resource but does not require external energy to be 

applied in transport. Two such examples are electricity and river networks. In these, the voltage 

and pressure respectively decrease as the flow moves through the network, such that the final 

energy, or energy at points of consumption and use, is lower than the primary energy at points of 

acquisition. As these networks rely on heterogeneously distributed resources, they are likely to 

perpetuate this heterogeneity through the network to create inequality among points of final 

consumption.  

Although passive flow and active transport networks are typically studied separately, both forms 

of resource distribution require energy consumption, albeit from different sources. As will be 
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discussed, the total energy input into the network, either as primary energy in the passive flow 

networks, or primary energy plus energy used for distribution in the active transport networks, is 

always more than the final energy at the points of end use (Panda, 1981). Therefore, although the 

mechanisms of transport are different, these two types of RADE networks are energetically 

comparable, and analogies can be drawn between them for modelling and analysis (Odum, 1971, 

2002).  

Additionally, some networks facilitate both forms of resource transport, such as soil macropore 

networks where passive flows of water and nutrients occur alongside active foraging of organisms 

(Table 1.1). By accounting for the energy required for both forms of transport in a comparable 

manner, a clearer picture of the total energy used to create, expand, maintain, and use the network 

can emerge. This leads to a better understanding of the relationships between this energy 

consumption, network structure, and end consumer state. 

1.2.3. Energy, matter, and information 

Together, energy, matter, and information make up the three “joint pillars of living systems” 

(O’Connor et al., 2019, p. 2), and comprise the building blocks of RADE networks. In the 

following, definitions for and examples of these three components in RADE networks will be 

presented. As the focus of the work here is on networks, and many consumers and resources are 

comprised of networks themselves, the following section will primarily reference where energy, 

matter, and information are located within the network architecture. However, much of the same 

could be said for the consumers these networks serve, and the resources they transport. 
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Table 1.2 The definition and location of energy, matter, and information in resource acquisition, 
distribution, and end-use networks (RADE networks). 

Component Definition Location in RADE networks 

Energy The property required to 
change a substance 

• Contained in potential form 
by the resources moving 
through the network 

• Used to grow or maintain 
the network or the end 
consumers 

Matter A substance with mass and 
volume 

• The physical structure of the 
links of a network, such as 
asphalt; tissue; or 
permeated, packed, or 
smoothed soil 

• The physical structure 
containing the energy of the 
resources, such as chemical 
bonds 

Information The values of process outputs 
that determine the structure of 
the RADE network and 
differentiate it from its 
surrounding environment; or 
the difference between two 
system states 

• Encoding used to determine 
network structure, e.g. 
genetic material 

• Signals transmitted that 
indicate the existence and 
location of a resource, e.g. 
scent trails 

 

Energy is a fundamental component of all physical compounds, defined as the property required 

to change or heat the substance in some way. In the context of RADE networks, potential energy 

such as chemical bonds in food or charged ions in electricity are transported through the network 

to points of end use (Table 1.2). There, it is used for maintenance, such as the repair of tissues or 

other structures, and growth, through increases in size, organisation, or reserves of stored energy 

(Ulanowicz, 2011). This can occur at the level of end consumers, such as the energy used to grow 

or repair damaged tissues within a mammal’s vascular system (Sousa, Domingos and Kooijman, 

2008; Kearney and White, 2012). It can also occur as reinvestment at the level of the RADE 

network itself, such as the energy invested by humans in expanding and maintaining and electricity 

grid (e.g. Dalgaard and Strulik, 2011), or by foraging plants and animals in widening and connecting 

soil macropore networks (e.g. Hodge, 2004). The total of this energy consumption in maintenance 

and growth is defined as the embodied energy of the structure (Costanza, 1980). 
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The organisation of this energy into matter is a function of the information content of the structure 

(Table 1.2). In the context of RADE networks, information is the values of process outputs (Losee, 

1997) that determine the structure of the RADE network and differentiate it from its surrounding 

environment. For this reason, information in biological and ecological systems is often defined as 

the difference between two possible system states (O’Connor et al., 2019), and measured with 

Shannon entropy (a measurement of the complexity of a sequence, not to be confused with 

thermodynamic entropy, see Section 1.3.1) or similar metrics. For example, most studies of 

information within ecological systems have focussed on the genetic code of organisms, particularly 

with a view to the biodiversity of an area (Vallino, 2010; O’Connor et al., 2019). This genetic 

information results from the process of the organisms’ development, and determines, among other 

things, the structure and dynamics of the internal metabolic and circulatory networks of the 

organisms, with increasing information corresponding to increasing physical complexity (Vallino, 

2010). Additionally, this information allows for system-level coordination, as evolutionary pressure 

and selection for different sequences allows organisms evolve to take advantage of different 

resources within their environment (Vallino, 2010) (see Section 1.3.3). 

There are also RADE networks where the network structure is exclusively or predominantly 

comprised of information, rather than matter. For example, in the case of stigmergy (e.g. Klyubin, 

Polani and Nehaniv, 2004; Lecheval et al., 2021), organisms overlay information trails via cues, 

such as scent trails, across physical routes. This serves to structure and differentiate their RADE 

network from the surrounding environment, and guide future foraging efforts undertaken by them 

or their kin. Resources can also leave informational cues in the environment, such as scent 

gradients or visual cues, that alert foragers to their presence. These are often followed using highly 

developed, but often quite simple search mechanisms, such as optimising time spent in local and 

global search strategies to maximise information about a target (Calhoun, Chalasani and Sharpee, 

2014). Finally, some RADE networks are developed and maintained through direct transmission 
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of signals and information about the environment, without modifying the environment itself. 

Honeybee waggle dances (e.g. Seeley, 1995; Menzel et al., 2005) are one such example.  

In all these examples, information is used to structure and differentiate the RADE network from 

the surrounding environment, such that changes in the organisation or development of a network 

can also be conceptualised and measured as changes to its information content. As these changes 

also require energy, there is clearly a link between information and the energy invested in RADE 

network creation, development, and maintenance, suggesting parallels or equivalencies between 

embodied energy and embodied information. Although this has not yet been explored, work in 

this area could provide insight into the relationship between this energy investment, network 

structure, and end consumer or system outcomes.  

Although not explicitly including information or discussion of RADE networks, a significant body 

of previous work has focussed on the flows of energy and matter in both ecosystems and socio-

ecological systems. Alongside the work discussed in Section 1.2.2 is the meta-ecosystem theory, 

developed by Loreau et al. (2003) and later expanded (Guichard, 2017; Gounand et al., 2018). Meta-

ecosystem theory posits that ecosystems are connected through spatial flows of energy, matter, 

and organisms (Loreau, Mouquet and Holt, 2003). On smaller scales, local ecosystems take on 

roles as sources or sinks of given flows, and the properties of the encompassing meta-ecosystem 

emerge from these local dynamics. Similar ideas have been proposed by Polis et al. (1997) and 

Anderson et al. (2008) using the concept of spatially subsidised food webs, where dispersal of 

organisms, detritus, and nutrients from one habitat to another can create bottom-up or top-down 

effects that propagate through the food webs in both habitats. For example, inputs of nutrients 

and detritus can increase the secondary productivity of herbivores and decomposers, while 

dispersal of consumers can depress local resources, both of which affect the stability and 

functioning of the ecosystems (Polis, Anderson and Holt, 1997).  
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1.2.4. Spatial, temporal, and interactional dimensions 

These components of energy, matter, and information in RADE networks are expressed across 

three dimensions: spatial, temporal, and interactional. The spatial dimension describes the 

existence of the network across physical distances, even for networks comprised solely of 

information, such as some of those described above. The temporal dimension describes how the 

network emerges, is developed, and is maintained or eventually decays over time. The interactional 

dimension describes the relationships among consumers and resources connected via the network. 

While these are rarely studied simultaneously, understanding each dimension and its relationship 

with the others is crucial for an accurate and comprehensive description of resource distribution. 

In this section, these three dimensions will be described in more detail, and the role of each in the 

dynamics of the network will be discussed. 

Typically, the spatial dimension of RADE networks has been the focus of disciplines such as 

transport geography (e.g. Yerra and Levinson, 2005; Levinson and Yerra, 2006), electrical and 

hydrological engineering (e.g. Carradore and Turri, 2009; Dalgaard and Strulik, 2011; Yang et al., 

2017; Ma, Chen and Wang, 2018), and some subsets of metabolic biology and ecology (West, 

Brown and Enquist, 1997; Brown et al., 2004). It is often measured by some length metric 

describing the total, mean, or maximum link length; the area of the irregular polygon encompassing 

all points in the network; or the mean or maximum path length between any two given points 

(Rodrigue, 2017). As will be discussed, the energetic costs of moving resource flows increase with 

distance, which determine the financial or metabolic costs of constructing, maintaining, and using 

the network. Therefore, in disciplines such as transport geography or metabolic biology, where 

these costs are a key focus and networks tend to operate at a consistent state or predictable pattern, 

analyses have focussed predominantly on measuring the spatial extent of the network. 

In addition to the spatial size of RADE networks, another factor that affects resource flows is the 

spatial heterogeneity of the network structure, or the evenness of the spatial distribution and size 
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of links. For example, a highly branched or fractal network structure is much more spatially 

heterogeneous than a random or uniform network structure. While the branched architecture is a 

more efficient space-filling structure (West, Brown and Enquist, 1997), flows across a hierarchical 

structure are necessarily hierarchical themselves, leading to inequality in the resource distribution 

(Bejan and Errera, 2017). This connection between spatial heterogeneity and resource flows has 

also been illustrated empirically in soil networks, where the heterogeneity, connectivity, and 

tortuosity of the pore space is linked to soil functions, such as diffusion of water, gasses, and 

nutrients, and movement of organisms (Crawford, Ritz and Young, 1993; Young, Crawford and 

Rappoldt, 2001). Spatial heterogeneity should be able to be measured and compared between 

networks using measures of the network’s information content (see Section 1.2.3), such as the 

Shannon entropy (O’Connor et al., 2019). However, the relationship between spatial network 

heterogeneity and inequality of resource distribution has not yet been explored in this way. 

In other disciplines, such as economics and ecology, the focus of most RADE network analysis is 

the interactional component. In economics, this often takes the form of analysing the exchanges 

of money and resources that occur across RADE networks, while focussing less on the physical 

structure of the network itself (e.g. King, 2016, 2020). The financial or energetic costs of transport 

may also be considered part of the economic output of an area or sector, as opposed to necessary 

thermodynamic costs (see discussion in Jarvis, 2018). In ecology, due to the difficulty of 

establishing the exact foraging routes taken by organisms, the focus is similarly on quantifying who 

eats whom or what, perhaps with an acknowledgement of the temporal dimension in discussion 

of how often or how much they consume (e.g. Odum, 1968; Fath et al., 2007; Fath, 2012; Jørgensen 

and Nielsen, 2015). Although limited, there has been discussion of the importance of incorporating 

a spatial dimension into these analyses (e.g. Loreau and Holt, 2004), and the unrealistic results that 

nonspatial analyses can produce (McCann, Rasmussen and Umbanhowar, 2005). The increased 

use of GPS tracking, remote sensing, and isotopic analysis (e.g. Choy et al., 2010; de Lecea, Smit 
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and Fennessy, 2016; Fauchald et al., 2017) could lend a clearer spatial dimension to ecological 

network analysis, and wider availability of infrastructure data could do the same for human-

engineered networks. 

Similarly, the network analyses that are performed on social networks (see review in Borgatti, 

Everett and Johnson, 2018), focus less on physical distances between interactors. Instead, these 

are analysed with measures of connectivity to quantify who interacts with whom, and potentially 

how much or how often. For example, inequality in the connectivity of a network, measured by 

the node degree distribution, has been shown to dramatically impact the survival of nodes when 

they each rely on a certain amount of resource flow (Ingale and Shekatkar, 2020). Therefore, the 

interactional dimension of RADE networks is important for understanding the emergence of 

networks as links between end consumers and their resource bases, and the quantity of flows 

through the network to different consumers. These interactions are necessarily mediated over 

space and time, though, making the latter two dimensions equally critical for a clear picture of the 

impact of RADE network size, structure, and dynamics on consumer and system outcomes. 

In some disciplines, the temporal dimension of RADE networks is encompassed in the treatment 

of the spatial or interactional effects, as measurements of resource flow are often in units of mass 

per time. The rate at which resources are transferred across space or between entities can 

significantly impact the resulting state of end consumers, whose own metabolic rates, energy 

budgets, and lifecycles depend on the resources available to them (Brown et al., 2004; Kooijman, 

2009). For example, in foraging networks, the speed with which the forager navigates a patch 

affects the energy expended and the quantity of potential resources that are encountered (Charnov, 

1976; McNair, 1982). Similarly, the current of water or electricity, measured in metres or amps per 

second, determines the resulting power at end points and transformers along the network. The 

variance in availability of resources over time, such as pulsing or seasonality, can also affect the 

growth or activity rates of consumers: migration, nomadism, and hibernation are common 
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responses to seasonal changes in resource availability (Humphries, Thomas and Kramer, 2003; 

Mueller et al., 2011; Teitelbaum et al., 2015), and adaptation to pulsing resources has been shown 

to increase the total productivity of an ecosystem (Lee, 2014).  

1.2.5. Summary 

Although RADE networks are typically studied within specific disciplines, such that only one or a 

few of the characteristics highlighted here are discussed explicitly, each of these characteristics and 

the interactions among them can have considerable impact on the state of end consumers or the 

overarching system. For example, the heterogeneous spatial configuration of the network can lead 

to unequal resource flows to end consumers, who then have less energy to reinvest in developing 

the network, resulting in a feedback on inequality of resource distribution. Without due 

consideration of the spatial, energetic, and informational characteristics of the network, this 

feedback could easily be missed. Additionally, considering both active and passive transport 

occurring within a network, or the nested levels on which resource flows operate, can provide a 

clearer picture of the overall energy balance and flows through the system. In the following section, 

the dynamics of these energy flows will be discussed in more detail, further clarifying the 

importance of each of the different RADE network characteristics described here. 

1.3. How do RADE networks work? 

1.3.1. The thermodynamics of resource distribution 

The dynamics of resource flows across these dimensions are constrained by the same physical and 

thermodynamic laws that govern all physical substances on Earth. Here, these laws will be 

introduced as they relate to RADE networks, and in the following sections, their role in 

determining RADE network dynamics and development trajectories will be discussed.  

Briefly, the first law of thermodynamics states that energy is conserved, such that all energetic 

inputs to a system must be accounted for as outputs. This constrains the total energetic throughput 
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of a system. Similarly, the conservation of mass requires matter to be conserved throughout 

transformations and relocations in the system. Hereon, this conservation of energy and matter will 

be referred to as ‘flow consistency.’ Within the context of RADE networks, flow consistency 

constrains that the total output of the network must be equal to the inputs. Depending on the 

network, these outputs may take the form of energy lost as waste, such as through leakage or 

system by-products, and energy output to end consumers for useful work (Odum, 1988).  

In all systems, energy transformations also consume energy that is released from the system as an 

unusable form of energy called entropy, which often takes the form of heat. This is described by 

the second law of thermodynamics, which states that the entropy of a closed system cannot 

decrease, and it increases during energy transformations. In the context of RADE networks, 

energy transformations include any state change in the energetic resource, such as consumption 

and digestion by a higher-level consumer, or applying stored energy to move more resources. 

When coupled with the first law, the second law indicates that the proportion of potential energy 

available to the end consumers to do useful work is less than the original energetic inputs to a 

network. This can be stated in terms of all resource flows being ‘downgradient’ with respect to 

total energetic inputs: the final energy contained in the resource flow at points of consumption 

and end use is lower than the initial primary energy input to the network. As discussed previously, 

this is somewhat more complex in networks where the energetic inputs include both primary 

energy of the resource and additional energetic inputs for its extraction and transportation, sourced 

from reserves of previous flows. In these networks, the final energy is still less than the 

combination of all primary energy and inputs, but several networks and timescales may have to be 

included to fully establish the energy balance (Panda, 1981; Odum, 1988). 

1.3.2. Energy allocation 

The energy requirement for moving resources across a RADE network from points of supply to 

points of consumption and end-use consumes a sizeable quantity of this input or stored energy. 
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The energy required to move these resources is due to the friction experienced when moving 

matter over distance, which generates heat. This heat is a form of entropy, which is lost from the 

proportion of potential energy for useful work as discussed above. The friction can also be 

described as resistance, impedance, or drag, depending on the system in question. Frictional losses 

are proportional to the distance that the resources are transported and are also related to inherent 

roughness of the network surface or terrain over which the resource flow is moving. Therefore, 

accurate measures of both distance and roughness are crucial for calculations of the energy balance 

and understanding the state of the network and its end consumers. 

To minimise these frictional losses, networks have evolved toward theoretically optimal transport 

architectures. For example, the self-similar or fractal hierarchical branching structures, seen across 

a diverse range of both natural and human-engineered RADE networks, are hypothesised to be 

an adaptation to minimise the frictional losses of a space-filling network (West, Brown and 

Enquist, 1997). The ubiquity of the architecture suggests that the frictional losses it minimises are 

a dominant effect across different networks. As will be discussed, however, the spatial 

heterogeneity of this architecture may also increase the heterogeneity of resource flows through it, 

and therefore the inequality experienced by end consumers. 

After the energy consumption in moving the resources and maintaining both the network and the 

end consumers is considered, the net excess resource flow can be used for growth and 

development. As detailed earlier, this can take the form of expansion and improvement of the 

RADE network. These can increase the efficiency of future resource flows by minimising frictional 

losses incurred during transportation. For example, adding lanes to a congested road, increasing 

the strength of scent markers along a foraging route, or progressive widening and deepening of 

river channels are all ‘improvements’ to the network that can increase total and net future resource 

flows. These improvements can also be conceptualised as increasing the information content of 

the network, through using energy to increase the structuring of the network architecture itself. 
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Notably, any expansion or growth in the physical size of the network must necessarily be 

accompanied by these efficiency-increasing improvements as well, to offset the increased energy 

requirement for transporting resources across longer distances (Jarvis, 2018). Even then, larger 

networks can suffer from decreasing returns to scale, when the efficiency improvements cannot 

fully compensate for the increased size (Jarvis, 2018). This is perhaps most acutely felt by 

consumers who are less well-positioned in the network, especially as any improvements can only 

be implemented by consumers with already enough net energy to do so or will occur along 

preferential flow paths in passive flow networks. The next section will relate this back to the 

thermodynamics of resource flows introduced previously and describe how this feedback can 

effectively lock in the inequality of a network.  

1.3.3. Thermodynamic trajectories 

This coupling of increases in efficiency, resource flows, and physical size creates a growth-oriented 

positive feedback, inevitably evolving to some boundary or constraint, which can be considered a 

thermodynamic limit on efficiency (Kleidon, 2016). This trajectory of systems to grow toward a 

thermodynamic limit has been formalised in the theories of maximum power production (MPP), 

and its corollary, the maximum entropy production principle (MEPP). MPP states that systems 

self-organise to maximise the rate of free energy that they consume and apply to useful work, or 

their power production (Odum and Pinkerton, 1955). As the necessary result of this useful work 

is entropy production, maximising power production can be equivalent to maximising entropy 

production, depending on how the system is conceptualised. This is formalised in MEPP, which 

states that systems self-organise to maximise their rate of entropy production (see review in 

Kleidon, Malhi and Cox, 2010). Both MPP and MEPP describe an emergent property of the 

system, resulting from evolutionary pressure at points of end consumption A restatement of the 

same concept, instead viewing the system from the perspective of the resource flows and networks, 

highlights the opposite: by minimising the energy used for extracting, transporting, and consuming 
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resources, more energy can be applied to the growth and development of the end consumers. This 

drives systems to evolve increasingly efficient network structures for resource transport (Prigogine, 

1955, 1978). Therefore, RADE networks would evolve toward minimum entropy production, such 

that the energy consumption and energy production of the end consumers is maximised.  

The nested and interconnected nature of RADE networks (see Section 1.2.1) can complicate 

identifying the levels of selection within a system, and at which points power and entropy 

production are maximised. For example, the networks within an organism’s body evolve to 

minimise energy consumption in distributing nutrients and performing other basal functions, and 

to maximise energy for growth, development, and reproduction, such that the whole-organism 

power and entropy are maximised. Similarly, organisms compete for resources in the environment, 

evolving to take advantage of different niches through changes to their genetic material (see 

Section 1.2.3). This increase of information, represented by changing genetic material and the 

resulting increased physical complexity of organisms and their RADE networks, coordinates the 

system so that all available resources can be consumed (Vallino, 2010). MPP and MEPP should 

therefore be considered emergent properties at the higher, system-level of organisation, due to the 

coordination of system components under evolutionary pressure to maximise individual 

productivity (Vallino, 2010).  

This trajectory toward maximisation of power and entropy, and minimisation of energy required 

in the associated transport network, has been proven theoretically (Ziegler and Wehrli, 1987; 

Dewar, 2006) and demonstrated empirically in a diverse range of biological, ecological, and 

environmental systems (see reviews in Martyushev and Seleznev, 2006; Kleidon, Malhi and Cox, 

2010; as well as Meysman and Bruers, 2010; Salthe, 2010; Vallino, 2010; Unrean and Srienc, 2011). 

It is intuitively applicable to human-engineered and social systems as well, despite the lack of 

explicit research in this area. Although criticisms of these thermodynamic extremization principles 

have been raised (e.g. Ross, Corlan and Müller, 2012), these have mostly been resolved with 
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clarification of the theories (Martyushev, 2013; Martyushev and Seleznev, 2014). For example, to 

evolve toward maximum entropy, systems must have sufficient degrees of freedom, as well as 

feedbacks or other signalling mechanisms, to explore distinct states corresponding to a range of 

entropy production (Martyushev and Seleznev, 2014). This entails that MPP and MEPP are rarely 

applicable to highly linear or deterministic systems, which cannot explore different states. 

Additionally, MPP and MEPP should not be confused with measurements that describe the 

optimality of the system by any other criterion, such as efficiency. Outstanding research questions 

remain, especially in predicting the outcome of systems where the same amount of power and 

entropy can be produced through different means (Martyushev and Seleznev, 2014), but the 

theories remain useful for understanding overall system trajectories and guiding model 

parameterisation (e.g. Lorenz, 1960; Kleidon et al., 2003, 2006, 2013).  

While MPP and MEPP have been widely applied in understanding and predicting overall systems 

development, there has been less explicit discussion of how this trajectory affects RADE networks, 

and vice versa, outside of specific systems (e.g. metabolic systems in Unrean and Srienc, 2011; and 

rivers in Kleidon et al., 2013). For example, modelling of channel network evolution has been 

demonstrated to drive the system toward maximum entropy production, in a cycle that involves 

rainfall, sediment movement, and crust uplift (Kleidon et al., 2013). However, similar links between 

network evolution and thermodynamic limits have not been explored in socio-ecological or 

ecological systems, nor has the intersection between this development trajectory and the inequality 

or heterogeneity of end consumers or groups relying on those resource networks. If networks 

evolve toward flows occurring primarily down preferentially developed channels and often in a 

hierarchical branching pattern, to maximise power and entropy production, this will lead to 

resource saturation in some areas and deprivation in others. This suggests there could be a linkage 

between networks developing toward maximum power and entropy production and increasing 

inequality among end consumers. While co-evolution of network structure and state has been 
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discussed for non-spatial networks (e.g. Gross and Blasius, 2008), there has not yet been work that 

relates the development of systems along these known thermodynamic trajectories, the 

architecture or flows of the network, and the state of end consumers across that network.  

1.4. Previous work 

The ubiquity and importance of RADE networks has led to a significant amount of published 

work analysing them, but much of it has focussed on narrow, discipline-specific studies. While 

some studies have taken a somewhat broader approach to understanding optimal resource 

distribution and network structure from a more physics-based perspective, most have focussed on 

RADE networks within a specific discipline, such as biology, transport geography, ecology, or 

engineering. The similarity of the structures, purpose, and costs of RADE networks across diverse 

systems means that many of the conceptualisations and analytical methods are quite similar. 

Combining insights from different disciplines and methods, along with ensuring that all analyses 

explicitly consider the interacting dimensions of RADE networks (Section 1.2.5), could improve 

understanding of resource distribution, especially the effect of heterogeneity in networks and flows 

on end consumers and systems. In this section, different analytical methods focussing on 

allometric scaling, optimality, mass balance, and transport and movement networks will be 

presented and compared, and areas where future work could combine, improve, or apply these 

methods will be highlighted.  

1.4.1. Allometric scaling 

As introduced in Sections 1.3.2 – 1.3.3, the energetic costs of moving resources across space are 

theorised to drive RADE networks toward optimal forms, which minimise the costs associated 

with transport and maximise the energy that can be used by the system or end consumers for 

useful work. As these forms can often be classified as fractals, the study of the allometry of the 

network, underlying scaling exponent, and its effect on resource flows and system outcomes, has 

received considerable attention. 
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The study of allometric scaling in RADE networks began with the work of West et al. (1997), who 

hypothesised that the seemingly universal quarter-power scaling between mass and metabolic rate 

observed by Kleiber (1932) was due to the ubiquity of self-similar – or fractal – vascular network 

structures. Key assumptions of this ‘WBE model’ have been debated and revised (Savage, Deeds 

and Fontana, 2008; Banavar et al., 2010; Brummer, Savage and Enquist, 2017), and other causal 

mechanisms relating flow rates to structure have also been proposed (Banavar et al., 2010). While 

the WBE model focusses more on the spatial aspect of the RADE network, and the Banavar et al. 

(2010) model focusses more on the temporal aspect, both models clearly indicate the importance 

of RADE network structure and flows, in this case vascular network and blood or phloem flow, 

to the overall functioning of the system.  

The allometric scaling theories have since been picked up by other researchers and applied further 

to human-engineered systems. Dalgaard and Strulik (2011) used it to study scaling in electrical 

distribution networks, and Jarvis et al. (2015) applied it to the global energy network, showing that 

primary and final energy use scale equivalently to the ¾ power exponent observed by West et al. 

(1997). Jarvis et al. (2015) further emphasise that this is an artefact of the structure of the resource 

distribution networks used to transport energy, but do not extend their analysis to discussion of 

the inequality of energy distribution. Although inequality in energy distribution has been discussed 

in depth elsewhere (e.g. Sovacool, 2012), this is mostly outside of the context of network 

architecture.  

Together, these analyses highlight the importance of network structure and flows on resource 

distribution dynamics in both naturally-occurring and human-engineered systems. Notably, 

however, the tree-like structure identified by West et al. (1997) and Jarvis et al. (2015) leads to 

unequal flows to more peripheral areas. In the context of a body this is adaptive, as it causes lower 

blood pressure in areas of the body that are more likely to be damaged or lost, and higher blood 

flow to essential organs. In human-engineered systems, however, unequal distribution can lead to 



Chapter 1: Introduction 

28 
Natalie Davis – June 2021 

problems such as the food deserts and energy insecurity introduced in Section 1.2. This has not 

been discussed within the context of this previous work, however.  

1.4.2. Optimality 

The theorised and observed optimality of naturally-occurring and human-engineered RADE 

networks has also led to many analyses from a more physics-based perspective, focussing on the 

conditions under which different structures are optimal. Typically, the cost functions under 

optimisation are related to the energy consumption of moving resource flows through the network, 

such that these analyses have broad interdisciplinary applications. 

For example, Banavar et al. (2000) analysed the concavity of the cost function describing moving 

materials through a transportation network. They showed that concave cost functions were 

optimised by using all pathways, as the cost for transporting additional materials increases as the 

amount of material increases. Convex cost functions, however, had an economy of scale for 

transport, such that it was more economical to send all flows from one location to another directly. 

A similar model was developed by Han et al. (2019), who explored the interaction between 

economies of scale and transport distance in determining which nodes become dominant in a 

model of a socioeconomic supply network. Both Banavar et al. and Han et al. rely on a nonspatial 

definition for distance, involving number of connections, which may limit how fully their work 

can be applied to spatial networks.  

Other work focussed on optimality included Bottinelli et al. (2017), who showed that distinct 

strategies are required for optimising building and maintenance costs, when the location of new 

nodes is not known in advance. The former involves minimum spanning trees that optimise total 

link length, while dynamic minimum spanning trees that maximise transport efficiency emerge in 

the latter. 
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Similarly, Hu and Cai (2013) studied the role of local adaptation in giving rise to optimal biological 

transport networks, in systems where there is fluctuation in sinks and sources. They showed that 

loops are adaptive in systems with sufficiently strong flow fluctuations, and that networks can 

approach an optimal structure and minimum energy consumption with only local adaptation to 

changes in flow rate. The effect of flow fluctuations and how that relates to network topology was 

also analysed by Gavrilchenko and Katifori (2019) who showed that the topology of a network 

affects the ability of a given link to contain displacement of flow due to local perturbations.  

Finally, Ronellfitsch and Katifori (2016) focussed on how positive feedbacks driving growth in 

high-flow areas, combined with pruning of less-used areas, could identify globally optimal 

networks in terms of energy efficiency. They highlighted two phases of network dynamics: a dense 

and homogenous initial phase, and a more efficient phase after feedbacks preferentially strengthen 

and eliminate parts of the network based on flow.  

While it would be difficult to prove that any of the causal processes that these authors suggest is 

the true cause of observable network structures, an interesting picture begins to emerge relating 

local adaptation, growth, and optimal network architecture. As introduced, however, the 

relationship between this optimal structure and flows toward which networks evolve, and the 

heterogeneity of flows and how that affects end consumers, is a crucial area of future work. 

In more applied studies, human-engineered networks such as water and electrical grids have also 

been analysed extensively using equation-based modelling and simulations, mostly for the 

purposes of optimising criteria of efficiency and resilience (e.g. Miranda et al., 1994; Montesinos, 

Garcia-Guzman and Ayuso, 1999; Jebaraj and Iniyan, 2006; Mahmood and Kubba, 2009; 

Shrawane and Diagavane, 2013; Zischg, Rauch and Sitzenfrei, 2018; Bernstein and Dall’Anese, 

2019; Karimianfard and Haghighat, 2019; Huang et al., 2020). As these networks have specific 

criteria around locations of substations and generators, pipe thicknesses, and flow rates, among 

others, multi-objective optimisation provides a useful way to create the most efficient design that 
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also meets physical constraints. Rarely does the algorithm consider the equality of distribution, 

however, apart from meeting any constraints on flow rates, pressure, or voltage. 

1.4.3. Mass balance methods 

Mass balance or mass flow methods, such as input-output analysis, material flow analysis, and 

‘emergy’ analysis were also developed to analyse systems from a resource distribution perspective. 

One of the earliest examples of this was the emergy analysis of Odum (e.g. Odum, 1971). The 

concept of emergy was first introduced to describe the amount of available energy used up in 

transformations to create products or services (Brown and Ulgiati, 2004). Alongside this definition, 

Odum developed a method for analysing ecosystems and socio-ecological systems that attempted 

to quantify and balance the energy and matter inputs and outputs of a system, often illustrated 

with Sankey diagrams and his own energy flow analysis symbols (e.g. Odum, 1957, 1971, 2002). 

While his work did not take explicit account of spatial location of the sources and sinks, or energy 

required for consumers to move through the system, it highlighted the importance of energy and 

mass conservation and whole-systems analysis in ecological and socio-ecological systems. 

This theme of energy flows in socio-ecological systems was continued in the fields of industrial 

ecology and social metabolism. Both describe industrial or socio-ecological systems in ecological 

and metabolic terms, by balancing flows and conversions of energy and matter and noting 

interactions between and impacts of human systems on the environment, and vice versa (Bullard 

and Herendeen, 1975; Moffatt and Kohler, 2008; Liao, Heijungs and Huppes, 2012; Pauliuk and 

Hertwich, 2015; Bourg, Erkman and Chirac, 2017; Haberl et al., 2019). These fields use methods 

such as input-output (I/O), lifecycle assessment (LCA), and material flow analysis (MFA) to 

account for energy and matter inputs, storage, outputs, and wastes produced by a system. As with 

emergy analysis, however, not all work in these fields explicitly included the spatial and temporal 

dimensions of flows (Moffatt and Kohler, 2008), or cross-level analysis, such as including cycling 

of resources in both natural systems and anthropogenic processes. This view of the built 
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environment as embedded within resource flows, rather than isolated from the natural 

environment, still marks a considerable shift from traditional macroeconomic conceptualisations 

of human systems (Georgescu-Roegen, 1986). By highlighting the non-substitutability of natural 

resources with labour and capital, and the essential loss of some primary energy flows in 

conversions due to the second law of thermodynamics, it provides many useful insights to 

understand and potentially improve the sustainability of industries and economies. As with emergy 

analysis, these techniques have rarely, if ever, been used to study the inequality of resource 

distribution, but their application in this area could provide considerable insight. 

1.4.4. Transport and movement networks 

Another type of RADE network common to many species is movement or transport networks, 

including foraging networks in ecosystems, and road and rail networks in human society. Foraging 

has been studied extensively from an optimisation perspective, assuming that evolutionary 

pressures would drive many of the routes to be optimal. In this case, optimality is typically defined 

with respect to energy returned on energy invested, or energy returned on time invested, if the 

energy used while foraging is assumed to be constant or averaged over time. This energy optimality 

may be balanced by other goals of the species in question, such as territory surveillance, predator 

avoidance, finding a mate, or prey density management, which all affect the structure of the 

resulting RADE network (Hopkins, 2011; Schlägel, Merrill and Lewis, 2017).  

As the foraging network structure emerges from the decisions the animals make in responding to 

the signals available to them, theories around info- and chemotaxis and search strategies have been 

proposed and empirically validated to explain the network structure in some species (e.g. Klyubin, 

Polani and Nehaniv, 2004; Menzel et al., 2005; Calhoun, Chalasani and Sharpee, 2014). More recent 

work in animal cognition has attempted to separate the effects of memory and perception on 

foraging decisions in different species, showing the importance of memory to foragers such as 

primates and large herbivores (Trapanese, Meunier and Masi, 2019; Ranc et al., 2021). Other 
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theories, such as marginal value theorem (Charnov, 1976) and optimal giving-up time (McNair, 

1982), have focussed on discounting and temporal strategies, using equations to model organism 

behaviour in such a way that maximises energy consumption for each unit of energy or time 

expended. This has been expanded by the more recent energy landscapes theory (Wilson, Quintana 

and Hobson, 2012; Shepard et al., 2013; Halsey, 2016; Masello et al., 2017; Green, Boruff and 

Grueter, 2020), which describes animal foraging behaviour and routes as resulting from a 

combination of landscape features, such as slope, terrain, and speed and direction of wind and 

water currents; individual characteristics and state; and competing goals such as predator avoidance 

and mate attraction. While it would be difficult, if not impossible, to fully determine the cause of 

a given foraging network structure, these theories provide possible explanations for why a network 

might take the form that it does, and how that compares to the causal process or structure of 

another species’ network.  

Although some previous modelling work on foraging networks has explicitly accounted for the 

spatial dimension of the network (e.g. Baveco et al., 2016), many others rely on averaged energy 

consumption over time spent foraging (e.g. Ward, Austin and Macdonald, 2000), which may or 

may not be realistic, depending on the species in question and the terrain over which they forage. 

Increasingly, spatially explicit agent-based models (ABMs, also known as individual-based models 

in ecology), underpinned with theories such as energy landscapes, have been used to simulate and 

analyse foraging behaviour in a range of species (e.g. Epstein and Axtell, 1996; Nonaka and Holme, 

2007; Anderson, 2008; Beltran, Testa and Burns, 2017; Lihoreau et al., 2017; Liu et al., 2017; Miller 

et al., 2017; Sikk and Caruso, 2020; Chudzinska et al., 2021). These models can provide more 

insights into how distance and terrain affect energy intake and use in foragers, and how 

heterogeneity in spatial and temporal resource distribution can lead to the behavioural adaptations, 

specialisation, speciation, and possible extinction described in Section 1.1. 
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Beyond foraging networks, the emergent structure of other movement and transportation 

networks has been studied extensively in both naturally-occurring and human-engineered systems 

(e.g. Yerra and Levinson, 2005; Xie and Levinson, 2007, 2009; Roshier, Doerr and Doerr, 2008; 

Marleau, Guichard and Loreau, 2014; Perna and Latty, 2014; Strano et al., 2017). These networks 

have been shown to emerge from both positive reinforcement, resulting in least-cost paths being 

selected through the collective action of many individuals, which may be triggered by a single 

individual leaving a trail or signal of some kind to indicate the path that should be chosen (Xie and 

Levinson, 2007; Perna and Latty, 2014; Lecheval et al., 2021). Decentralised decision-making can 

also lead to a hierarchy emerging, nesting paths with less flow or slower speed within larger 

networks (Yerra and Levinson, 2005; Levinson and Yerra, 2006). Overall, these networks emerge 

through a combination of behavioural strategies and the spatial and temporal distribution of the 

resources to which they connect their users (Roshier, Doerr and Doerr, 2008).  

While the research on transport networks has provided insight into how their structure might 

emerge, less attention has been paid to the feedbacks between that structure and the end state of 

the users, and how inequality between users may play a role in shaping the evolution of network 

structure. Furthermore, the insights gained from any one discipline, such as behavioural ecology 

or transport geography, are rarely compared with those from other disciplines, creating a silo for 

both the methods and findings. These networks are likely emerging in similar structures due to 

analogous requirements of those constructing and using them, or because similar structures are 

optimal for a range of situations and requirements. Using comparable methods, and comparing 

results across disciplines, could therefore uncover new insights into the generality or uniqueness 

of the situations in which these networks emerge. 

1.5. Next steps 

Given the significant impacts of resource heterogeneity on both biodiversity and ecosystem 

functioning in natural systems, and inequality in socio-ecological systems, it is crucial to develop a 
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clear understanding of the relationship between the structure and flows of RADE networks, 

especially as systems develop along known thermodynamic trajectories; the heterogeneity of 

resource distribution; and the state of the overarching system or end consumers within it.  

Specifically, maximum power and entropy production are empirically verified theories for systems 

development, and clearly resource distribution plays a determining role in the power and entropy 

production of a system. However, no work to date has focussed on the intersection of maximum 

power and entropy, and resource distribution network development, especially regarding how that 

affects the inequality of resource flows to end consumers. As introduced in Section 1.3.3, the 

evolution of resource distribution networks toward more efficient structures maximises energy 

throughput, but the form of these structures is inherently heterogenous, such as fractal branching 

networks. To gain insight into the causes of heterogeneity and biodiversity in natural systems, and 

the inequality present in socio-ecological systems, there must be more focus on the impact of 

thermodynamic trajectories and network development on the heterogeneity of resource flows, and 

the inequality experienced by end consumers.  

In ecological systems, while the heterogeneity of resource spatial and temporal distribution has 

been shown to affect the biodiversity and dynamics of populations in an area (see Section 1.1), the 

impact of RADE network structure, in the form of foraging networks or passive flows and 

diffusion of nutrients, has not been widely studied. Specifically, there is limited understanding of 

the impacts of resource characteristics, consumer characteristics, and distribution network 

structure, and the relationships between them, on the size and heterogeneity of consumer 

populations. While the complexity of natural systems makes the impact of these factors and their 

relationship difficult to assess, a combination of empirical analyses and simulation modelling holds 

promise for generating more insight into this area. 

Finally, while there has been a substantial body of research focussing on networks that are optimal 

in some sense, there has been less emphasis on the relationship between network development 
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over time, structural heterogeneity, and inequality among end consumers. As described in Section 

1.2.5, consumption allows end consumers in some RADE networks to expand and improve the 

network further. A feedback may emerge between higher consumption levels of well-positioned 

agents within the network, and their ability to further increase resource flows to themselves. The 

effect of different resource and consumer characteristics on the emergent network architecture, 

consumer inequality, and feedbacks therein can provide a deeper understanding of how networks 

form, and how the emergent network structure impacts the state of agents operating within it, 

both as individuals and a collective.  

1.6. Thesis overview 

1.6.1. Thesis aims 

In response to these areas of future work, this thesis will take steps toward increasing 

understanding of RADE network structure, development, and dynamics. It will include explicit 

consideration of thermodynamic principles and known systems development trajectories, and a 

focus on the relationship between resource and network heterogeneity, and inequality among end 

consumers. This will be done primarily through equation-based and simulation modelling, along 

with analysis of empirical networks. The insights generated will provide a foundation for future 

work to increase the equality, sustainability, and resilience of these networks. 

To this end, included are three chapters that address the following objectives: 

Chapter 2: Trajectories toward maximum power and inequality in resource distribution networks 

Explore the relationship between the evolution toward maximum power production, network 

structure and characteristics at maximum power, and inequality in consumption among nodes, 

using mathematical modelling and simulations. 

Chapter 3: Measuring heterogeneity in soil networks: a network analysis and simulation-based approach 

Analyse soil networks as an example of ecological networks, using metrics adapted from network 

science and simulations to quantify the heterogeneity of soil networks and how that interacts with 
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resource and consumer characteristics to affect the heterogeneity of energy consumption across 

the simulated populations. 

Chapter 4: The co-evolution of network structure and consumer inequality in a spatially explicit model of resource 
acquisition 

Model the emergence of a network from agents making choices to attempt to maximise their time-

discounted utility of energy consumption, explicitly including laws of energy conservation and 

entropy production, and relate the landscape heterogeneity and network structure to the inequality 

in resource consumption among agents. 

1.6.2. Study approach and summary of findings 

Chapter 2 

The second chapter focusses on resource distribution networks developing toward maximum 

power, through increasing resource flows and changing state, re-configuring network architecture, 

or both. Equations were derived to determine the relationships between force, flow, friction, and 

power in the network as it increased toward and reached maximum power. The effects of this 

trajectory on the variance in power consumption across end consumers was highlighted, with 

additional equations derived to determine the relationship between this variance, and the resource 

flow through the network. A simple electrical analogue model was used to represent generalised 

energy resource distribution networks and illustrate the dynamics of power consumption at 

consumers as the resource flow through the network increased.  

The equations and simulation model demonstrated that increasing flows across structurally 

unequal networks exponentially increases power inequality. Specifically, it showed that the 

standard deviation in power consumption of the consumers was equal to the resource flow 

squared, times the standard deviation of the ‘effective resistance’ experienced by consumers, a 

derived measure that incorporated both spatial and interactional components of energetic losses 

in transport. This inequality in power consumption was most notable in the hierarchical branched 

networks, an optimal distribution architecture common to both natural and human-engineered 
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systems. This raises significant questions about the relationship between heterogeneity in natural 

systems and inequity in human systems, as well as how best to alleviate the latter. 

Key findings: 

• Increasing resource flow through networks with heterogeneous link length, connectivity, 

or both, increases inequality in resource consumption between end consumers. 

• Inequality is highest, and increases the most quickly, in hierarchical branching networks 

similar to those seen in a range of biological, environmental, and socio-ecological systems. 

Chapter 3 

The third chapter focusses on resource distribution networks in empirical ecological systems, and 

how heterogeneity in the network structure affects the outcomes of a consumer population. The 

work presents a novel method for extracting a soil macropore network from images of a soil 

profile, which is then analysed and used as the environment of a generic consumer species in 

simulations with an agent-based model (ABM). Two locations in Aberdeenshire, United Kingdom, 

with Cambisol and Arenosol soils, respectively, are used as test cases. 

The network extraction method uses an image of a soil profile, taken by a smartphone camera, 

and processes it with image morphology techniques to identify and retain the underlying pore 

network. The network structure is quantified with metrics from network science and transport 

geography, chosen to measure size, structure, and connectivity. A simple ABM of generic agents 

navigating the pore network, consuming food resources, and reproducing is also presented, and 

simulation experiments are run across a range of consumer and resource parameters combinations, 

and networks from both soil types. 

Overall, the network analysis showed that networks extracted from the Cambisol soil profiles were 

larger, more connected, and more structured as compared to those from Arenosols. This is to be 
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expected, given the known characteristics and development of these soils. In the simulation 

experiments, the larger Cambisol soil networks also supported higher populations of the simulated 

consumers. Although the model did not allow the consumers to be exposed to the full range of 

the network heterogeneity, the findings suggest an important effect of soil network structure on 

consumer population outcomes. Future work would be necessary to further validate the network 

extraction and analysis presented here with comparisons to measurements from more established 

methods, and the model could be extended with additional consumer behaviour and more species-

specific parameterisation.  

Key findings: 

• Network extraction from soil profile images and subsequent analysis can highlight 

differences in soil structure and suggest differences in ecological viability, helping to guide 

management practices and improve understanding of ecological changes. 

• Larger, more heterogeneous networks supported a larger, slightly more heterogeneous 

population of generic consumers, but the effect of environmental heterogeneity on 

consumer heterogeneity was limited by the network heterogeneity occurring at a larger 

spatial scale than consumers could access. 

Chapter 4 

The fourth chapter explores the co-evolution of network structure and consumer inequality, by 

developing and analysing a spatially-explicit, energetically consistent ABM of resource acquisition. 

In the model, agents (called ‘consumers’) built links between generic energy sources (‘resources’) 

by investing energy in the environment patches to reduce the patches’ roughness. The consumers 

chose target resources that maximised their time-discounted energy consumption. Once a 

consumer reached a threshold energy level, based on its initial energy reserves, it could reproduce 

and transfer some of this energy to an offspring. The network structure, measured by the total, 
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mean, and standard deviation (SD) of link lengths, and the consumer inequality, measured by the 

SD of energy reserves, were calculated, and their co-evolution was analysed over the course of the 

simulation. This was further compared across three different landscapes, or resource 

arrangements, to determine the effect of landscape heterogeneity on consumer and network 

outcomes. 

Over the course of the simulations, a negative feedback emerged between network pruning and 

inequality, constrained by the population size: networks with smaller populations, due to more 

consumers not surviving the initial construction phases, had fewer consumers to maintain links. 

As more links decayed, inequality increased; some consumers were effectively trapped in less 

connected areas, while other consumers could use previously-constructed links to move between 

optimal nearby resources. This inequality further limited the number of consumers who could 

construct or maintain links, or produce offspring, so the network structure, inequality, and 

population size reached a dynamic equilibrium state. While these dynamics were quite similar 

across the three landscapes, the spatial distribution of the resources constrained the networks that 

could emerge. As this constrained the rates and times of network structure dynamics, it also 

indirectly affected consumer inequality. In this way, the network mediated the landscape 

heterogeneity-consumer inequality relationship. 

Similar phenomena have been observed in empirical systems, such as adaptation and speciation of 

disconnected sub-populations, and relationships between poverty and heterogeneous connectivity 

and accessibility in cities. This work demonstrates a possible means by which network structure 

and consumer inequality can co-evolve, and how this is constrained by the spatial distribution of 

resources in the landscape.  
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Key findings: 

• Network structure and consumer inequality co-evolve in a landscape, with the rates of 

dynamics and system transitions also affected by the spatial distribution of resources and 

the life history and biology of consumers. 

• The rate of network growth and decay, as affected by population size, current levels of 

consumer inequality, and the spatial distribution of resources, also determines the extent 

to which inequality can emerge in a population over time. 

1.6.3. Thesis structure 

The rest of this thesis is structured as a series of three manuscripts written for publication, followed 

by a final discussion chapter that synthesises key findings and highlights areas for future research. 

References and supplementary information for each manuscript are included with it. For published 

manuscripts, a citation for the published version is included on the first page. 
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2 
2. Trajectories toward maximum power 

and inequality in resource distribution 
networks 

Abstract 

Resource distribution networks are the infrastructure facilitating the flow of resources in both 

biotic and abiotic systems. Both theoretical and empirical arguments have proposed that physical 

systems self-organise to maximise power production, but how this trajectory is related to network 

development, especially regarding the heterogeneity of resource distribution in explicitly spatial 

networks, is less understood. Quantifying the heterogeneity of resource distribution is necessary 

for understanding how phenomena such as economic inequality or energetic niches emerge across 

socio-ecological and environmental systems. Although qualitative discussions have been put 

forward on this topic, to date there has not been a quantitative analysis of the relationship between 

network development, maximum power, and inequality. This paper introduces a theoretical 

framework and applies it to simulate the power consumption and inequality in generalised, spatially 

explicit resource distribution networks. The networks illustrate how increasing resource flows 

amplify inequality in power consumption at network end points, due to the spatial heterogeneity 

of the distribution architecture. As increasing resource flows and the development of hierarchical 

branching can both be strategies for increasing power consumption, this raises important questions 

about the different outcomes of heterogeneous distribution in natural versus human-engineered 

networks, and how to prioritise equity of distribution in the latter. 
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2.1. Introduction 

Both biotic and abiotic systems require energy for maintenance and growth, necessitating the 

relocation of energetic resources from points of supply to points of consumption and end use. 

This need for energy drives the development of resource acquisition, distribution, and end-use 

(RADE) networks (Jarvis, Jarvis and Hewitt, 2015) in all earth systems. RADE networks are by 

definition spatial structures, constructed with both physical materials, such as asphalt, wire, or 

connective tissue, and informational cues, such as scent trails or memories. Additionally, all RADE 

networks can be conceptualised as a collection of resources, where the energy flow is generated 

and supplied; end-use consumers, where the energy flow is required; and the links between them. 

The construction, maintenance, and use of these networks inevitably requires a considerable 

proportion of the resources available to consumers. As it is evolutionarily advantageous to 

maximise the net resources available for further growth and development (Boltzmann, 1905; 

Lotka, 1922), there is significant adaptive pressure to drive RADE network development toward 

increasing efficiency. Additionally, these networks often share common forms such as hierarchical 

branching, and serve end consumers operating in highly heterogeneous states. Rarely, if ever, are 

these two observations explicitly associated, but given the role of RADE networks in determining 

the states of the consumers they support, correlation between network topology and variance in 

supply to these points of end use should be expected. Establishing this connection is crucial, not 

only in natural systems as a means of accounting for variability, but especially in social systems 

where inequality is of such profound importance. 

Inequality in access to basic resources in human society is typically conceived as an outcome of 

combined social, political, psychological, and economic influences. Although many theories about 

the origins of inequality include discussion of resources, such as their economic defensibility, most 

theories still invoke cultural or technological arguments as well (Mattison et al., 2016). Additionally, 

even arguments based on instincts and social behaviour rarely connect these to resource 
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distribution explicitly (Charlton, 1997), despite the essential role of resource movement in giving 

rise to any cultural, technological, and social forces. This gives the appearance of resource 

distribution and emergent inequality in social systems as having fundamentally different causes 

than hierarchies in environmental and biological systems, or energetic niches in ecosystems. 

Moreover, while energy consumption is not typically the named objective of economic 

management, the drive toward ever-increasing economic growth still requires energetic resources 

to build and maintain the infrastructure that generates returns (Georgescu-Roegen, 1986), 

paralleling the energy used for growth and maintenance within natural systems. As both natural 

and human-engineered systems rely on resource distribution networks to relocate energetic 

resources, it seems logical to consider heterogeneity within the networks and resources themselves 

as potentially foundational causes of inequality (Bejan and Errera, 2017). However, a formal, 

quantitative linkage between RADE network architecture, inequality in resource distribution, and 

the rate of increase of that inequality during network development, has not yet been elucidated. 

RADE networks are theorised to develop in a way that maximises the availability of resources to 

points of end use, such that these end consumers capture the maximum free energy for their own 

purposes in doing ‘useful work’ (Lotka, 1922), such as increases in growth, development, or storage 

(Ulanowicz, 2011). This is formalised in the Maximum Power Principle (MPP), which states that, 

given adequate degrees of freedom, a system will self-organise to maximise its power output, or 

capture and use of free energy per unit time (Odum and Pinkerton, 1955). An explanation for why 

such behaviour would emerge is that increasing the availability of useful energy currently within a 

system allows the system to capture more free energy in the future, such that MPP is simply the 

expression of a growth-orientated positive feedback, which inevitably evolves to some boundary 

or constraint. Often these constraints can be considered thermodynamic limits on efficiency 

(Kleidon, 2016). Hereon, this maximisation of energy consumption and power production will be 

referred to as ‘maximum power,’ to include the transfer or capture of free energy, and its 
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consumption in performing useful work. MPP is closely related or equivalent in many systems to 

the Maximum Entropy Production Principle (MEPP) and related thermodynamic extremisation 

principles (see e.g. Kleidon, Malhi and Cox, 2010; Kleidon et al., 2013). While criticisms of both 

MPP and MEPP (Mansson and McGlade, 1993; Ross, Corlan and Müller, 2012; Polettini, 2013) 

have been put forward, these have mostly been resolved through clarification and restrictions to 

the theories (Odum, 1983; Martyushev and Seleznev, 2014). As such, these extremisation 

principles provide a framework and directionality for evolution and systems progression, and can 

be used to help understand broader trajectories for systems development, and network 

development within that (Kleidon, Malhi and Cox, 2010). 

Specifically, systems often maximise power via changing state with respect to available energy 

inputs and constraints; changing network architecture to take advantage of untapped resources or 

minimise energy consumption in transporting resources; or both. Some theorise that the 

development of self-similar hierarchical branched networks, seen in a diverse array of naturally-

occurring and human-engineered systems, including vascular networks in plants and animals, 

power grids, and river basins, is an example of the latter strategy (West, Brown and Enquist, 1997; 

Banavar, Maritan and Rinaldo, 1999). Resource flows transmit energy using a mass carrier, such as 

food or electrons; and during transmission these carriers experience frictional dissipation when 

moving over distances. This creates the evolutionary pressure to minimise transmission distance 

to maximise the energy transferred, hence the development of optimal space-filling structures such 

as hierarchical branching. Despite the theoretical universal drive toward increasing levels of energy 

consumption, there has been limited study on the relationship between this increasing trajectory, 

the architectures favourable to it, and the impact that has on the inequality of energy distribution 

in ecological and socio-ecological systems, as introduced above. 

Since frictional dissipation derives from distance, spatially explicit modelling of RADE networks 

is crucial to understanding their development and dynamics, and the impacts these have on 
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inequality. The dynamics of energy-mass flows over distances are described by a group of 

phenomenological linear flow laws, including Ohm’s law for electrical current, Darcy’s law for 

fluid flow, Fick’s law for diffusion, and Fourier’s law for heat transport. These flow laws state how 

force and flux are closely related to one another (Kirkham, 2014), making them useful for 

modelling a diverse range of energy-mass flow systems. It is hypothesised that, when viewed from 

the appropriate perspective, physical systems such as ecosystems and socio-ecological systems 

should all follow these force-flux relationships (Odum, 1971). Odum in particular made extensive 

use of electrical analogue modelling, which calculated the flows through a system using Ohm’s 

law, by identifying the analogous concepts to voltage, current, and resistance or conductance in a 

system (see e.g. Odum, 1967, 2002). While his focus was on interactional models such as food 

webs, less work has been done applying this type of modelling to spatially-explicit networks, where 

the friction or resistance term, or equivalently the latter’s inverse, conductance, is related to the 

physical distance the flows must cover (although see specific case studies in Collier, 2010; Wang et 

al., 2012).  

Drawing analogies between resource flows in complex coupled socio-ecological systems and 

electrical circuits can be criticized because the formulas underlying analysis of electrical systems 

are linear, while those of the former are nonlinear. However, Wang et al. (2012) argue that many 

systems show linear behaviour at macroscales or microscales, and these can be modelled 

individually and recombined. While degrees of freedom to explore different system states and 

feedbacks and signalling between system components are required for systems to evolve toward 

maximum power or entropy production (Martyushev and Seleznev, 2014), these can be 

represented more simply within a model, as will be shown, for the purposes of exploring the 

minimal case. Such linear models thus remain useful analogies for exploring generalized realistic 

systems (Levins, 1966), and may still result in the emergence of complex properties. Exploration 

of the effects on our observations of nonlinear formulas is the potential subject of future work.  
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Given the theoretical argument and empirical evidence for systems to evolve toward a state of 

maximum power, this paper will explore the potential relationships between the trajectory towards 

maximum power, RADE network structure, and inequality. It will thereby generate further insight 

into the characteristics of complex spatially explicit RADE networks as they develop toward and 

operate at maximum power. Specifically, systems will be modelled with representative electrical 

circuits to elucidate the dynamics and characteristics of generalised RADE networks evolving 

toward maximum power transfer, explore characteristics of those networks and the evolutionary 

levers employed in their development, and discuss how these relate to the existence and 

development of inequality between end consumers in those networks. 

2.2. Inequality as a function of network architecture and 
resource flows 

2.2.1. Modelling framework using an electrical analogue 

In mass-flow networks, the flow through the network is generally conceptualised as a function of 

the driving potential gradient, and the characteristics of the material through which it flows. As 

introduced above, this relationship can be represented in a given system using an analogue of one 

of the phenomenological flow laws, such as Ohm’s law,  

 
𝐼 =

∆𝑉

𝑅
  . 

(1) 

In the framework here, 𝛥𝑉 is the potential gradient driving the flow between two points in the 

network, I  is the resource flow, and R  is the resistance of the associated link, a measure of the 

friction encountered by the flow, given by the ratio of link length to link strength or capacity,    

𝑅 =
𝐿

𝑆
. The power output P  delivered to a given end-point consumer 𝑐𝑖 in the network, or final 

power, is defined as 

 𝑃𝐶𝑖
= 𝐼𝐶𝑖

𝑉𝐶𝑖
 . (2) 
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Alternatively, 𝛥𝑉 can be conceptualised as the energy consumed in transport, whether active or 

passive, as the power consumed in transport between two points, 𝑃𝐿 , is given by combining Eq. 1 

and 2 as 

  𝑃𝐿 = 𝐼∆𝑉 = 𝐼2𝑅 . (3) 

The relationship between this power consumption in transport and the spatially-related resistance 

term clarifies the evolutionary pressure for a system to minimise resistance, such as through the 

development of increasingly efficient structures that are hypothesised to minimise frictional losses 

(West, Brown and Enquist, 1997). Specifically, minimising the frictional losses maximises the rate 

of energy transfer, or power, at the spatially disparate points of final dissipation or consumption.  

Along with reorganisation of network architecture to minimise resistance, systems can evolve 

toward higher final power by adapting network state with respect to the quantity and potential of 

available resources. For example, the increased availability of resources in summer months allows 

mammals to operate at a higher metabolism and in a greater geographic range, whereas hibernation 

is an adaptation to decreased resource availability in the same range during winter months 

(Humphries, Thomas and Kramer, 2003). In the framework here, adaptation of network state can 

be represented by changing I, or by changing the potentials that comprise 𝑉𝐶 . In the former case, 

increasing 𝐼 causes 𝑃𝐶𝑖
 to increase (Eq. 2), until the increased frictional losses from higher resource 

flow (Eq. 3) causes a large enough increase in 𝛥𝑉, such that 𝑃𝐶𝑖
 decreases. In this way, the trade-

off between I and ∆𝑉 is mediated by R, again providing evolutionary pressure for a system to 

develop lower resistance, as it increases resource flows.  

Due to this trade-off between I  and ∆𝑉, maximum final power occurs in this framework when 

the potential at the consumer is half the potential at the resource (see S1 for derivation). This is 

consistent with the Maximum Power Transfer theorem for electrical circuits (Paul, 2001), empirical 

findings of maximum power in natural systems such as streamflow (Bejan, 1996), muscle 
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contraction (Santillán and Angulo-Brown, 1997), sediment transport (Kleidon et al., 2013), and the 

Maximum Power Principle as extended to generalised interacting components (Odum and 

Pinkerton, 1955). In electrical circuits, simplification algorithms such as Thévenin’s theorem (Paul, 

2001) allow for complex circuits to be represented by simpler equivalents. Similarly, in the 

framework presented here, the relationship between consumer and resource potential can be 

extended over the entire network using the network mean values for power consumption, resource 

flow, resistance, and potentials. Specifically, the network-wide maximum final power state is then 

 𝑉𝐶
̅̅ ̅ =

𝑉𝑅̅̅ ̅̅

2
  , (4) 

where 𝑉𝐶
̅̅ ̅ and 𝑉𝑅

̅̅ ̅ are the network mean values for consumer and resource potential, respectively.  

In order to extend this framework to explore the heterogeneity among consumers within the 

network, and how this is affected by increasing consumption and changing network organisation, 

the relationship between consumer potential, resource flow, and resistance can also be expressed 

in terms of the respective standard deviations. Although it is more common to use the Gini 

coefficient or other relative measures to quantify inequality in economic and similar analyses, these 

can obfuscate increases in absolute inequality when the relationship between variables stays 

constant (Sutcliffe, 2005; Niño-Zarazúa, Roope and Tarp, 2017). For example, if each number in 

a distribution is increased by 50 %, the standard deviation of the distribution increases by 50 % 

and the range by 50 %, but the Gini coefficient remains the same as the relative relationships are 

unchanged. Moreover, the Gini coefficient and similar metrics are unitless measures, whereas the 

standard deviation has the same units as the mean. Any relationships elucidated involving standard 

deviation will therefore be more consistent with those identified above using means.  

The distributions of consumer potentials and final power consumption in a network are the result 

of the spatial distribution of consumer and resource nodes and links, and the magnitude of 

resource flow. In networks where there is a single direct connection from each consumer to a 
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resource point, equal resource flow to all consumers, and no interconnections between consumers, 

the standard deviation of the consumer potentials is 𝜎𝑉𝐶
= 𝜎𝑅𝐼, derived from Eq. 1, and the 

standard deviation of consumer final power is 𝜎𝑃𝐶
= 𝜎𝑅𝐼2. Therefore, in networks with equal 

resistances along all links, such as an idealised radial burst network, the standard deviations of 

consumer potentials and final power consumption would be zero. In contrast, increasing resource 

flows along links with unequal resistance would cause an increase in the standard deviations of 

potential and final power consumption, due to unequal decreases in consumer potentials. 

In more interconnected networks, however, the standard deviations of consumer potential and 

final power consumption are complex properties, as changes in potential at one node would 

propagate to interconnected nodes throughout the entire network. As such, determining the 

baseline structural heterogeneity of the network helps isolate the effects of spatial distribution and 

connectivity from those of resource flow in increasing the distributions of consumer potential and 

final power consumption. Here, the ‘effective resistance’ 𝑅𝐸𝑖
 is the resource flow-normalised drops 

in potential from a resource to a given consumer i, 

 
𝑅𝐸𝑖

=
𝑉𝑅−𝑉𝐶𝑖

𝐼𝑖
 . (5) 

As opposed to the traditional measure of resistance, which is calculated for a given link, the 

effective resistance is calculated along the whole path between a given consumer and resource, 

even if the two nodes are connected indirectly via multiple links. The effective resistance therefore 

considers the interaction effects along the links, as well as the real resistances of the link or links 

between a consumer and resource: its standard deviation relates the heterogeneity in physical 

distances around the network that the flows cross, network connectivity, and the quantity of flow, 

to the disparities in consumer potential or power. 
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In the special case of direct connections between consumers and a resource, the effective resistance 

simplifies to the link resistance. In all networks, therefore, the standard deviation of effective 

resistance is the constant of proportionality between the standard deviation of consumer potential 

or power, and resource flow, such that 𝜎𝑉𝐶
= 𝜎𝑅𝐸

𝐼, and 𝜎𝑃𝐶
= 𝜎𝑅𝐸

𝐼2. As with the traditional 

measure of resistance, effective resistance and its standard deviation are stationary for any quantity 

of resource flow through a given link in the network architecture. It is clearly influenced by the 

connectivity and symmetry of the network, as asymmetry in path length, Euclidean distance, or 

number of intermediary or downstream nodes all increase the inequality in consumer potential and 

final power consumption. Notably, since effective resistance includes the effects of both physical 

structure and connectivity, it could potentially be a useful mapping between spatial and relational 

dimensions of networks, which have typically been analysed separately.  

2.2.2. Simulations to illustrate framework 

To illustrate these described dynamics of resource flow in networks, generalised RADE networks 

were modelled using the relationships presented above. Initially, the networks comprised only two 

types of nodes distributed in space: resource supply nodes and consumer nodes. Consumer nodes 

could be connected to one another, such that the consumers who were more directly connected 

to resource nodes passed resource flow along the network to more distant consumers. However, 

this was limited to the excess resource flow remaining after the initial consumers had met their 

requirement: consumer nodes could not act as resources to generate additional flow. The resistance 

was held constant across all links, and was modelled as the ratio of link length to strength, as 

described previously. The networks were evolved toward maximum power by increasing the 

resource flows through them and determining the distribution of power consumption across the 

network using a matrix inversion. Assuming that the system would reach an equilibrium state 

around the level of maximum power, this incremental addition of resource flow and resulting 

adjustment of potential at the consumers replicated the ability of a more complex system to explore 
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different states, and self-organise to inhabit the state of maximum network power consumption. 

The full details are provided in Section 2.5. This approach, modified from load flow analysis in 

electrical grids (von Meier, 2006), ensured that the resource flows calculated for each node were 

consistent with the constraints of the first and second laws of thermodynamics, as resource flow 

was conserved, and power losses around the network were proportional to the size of the network. 

A sample of the networks simulated is shown in Figure 2.1, and complete results are in S2.   

 

Figure 2.1 A sample of the networks used to simulate evolution toward maximum power. The green 
squares are resource nodes, and the blue circles are consumer nodes. The grey lines are links between 
them. Maximum power was calculated by varying the resource flow through the network and 
calculating the total final power across all consumer nodes. 

The outcomes of a representative sample of the simulations are shown in Figure 2.2. As consistent 

with Eq. 4 above, in all simulations maximum power occurs when the mean consumer operates at 

50 % of the potential of the mean resource (Figure 2.2a). Moreover, the relationship between 

resource flow per consumer squared, 𝐼𝑐
2, and the standard deviation of consumer power, 𝜎𝑃𝐶

, is 
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linear (Figure 2.2b), with slope 𝜎𝑅𝐸
, as calculated by least-squares regression and plotted against 

the estimate using Eq. 5 (Figure 2.2c). This heterogeneity of distances and connections between 

the consumers and resource causes a distribution of consumer potentials, reflected in 𝜎𝑃𝐶
. The 

relationship between consumer potential and power heterogeneity for the different networks, and 

the resource flow per consumer, is also shown in Figure 2.3, where increasing IC  over the course 

of the simulation, and hence decreasing 𝑉𝐶
̅̅ ̅ 𝑉𝑅

̅̅ ̅⁄  , causes 𝜎𝑃𝐶
 to increase.  
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Figure 2.2. For the six example networks, (a) the relationship between total final power (P) and the ratio 
of mean consumer potential to mean resource potential (𝑽𝑪

̅̅̅̅ 𝑽𝑹
̅̅ ̅̅⁄ ), (b) the relationship between the 

standard deviation of consumer final power (σPC) and resource flow squared (I2), and (c) the relationship 
between the slope of (b) and the standard deviation of effective resistance (σRE). These illustrate the 
main equations derived in the presentation of the modelling framework. Here, each coloured point 
range represents a different network topology over which the simulations were run. The slope of (c) is 
exactly 1. Units are generalised units of power, potential, and resource flow. A copy of (a) with raw data 
is included in S3.  
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Figure 2.3. Density plots of normalised consumer final power (PC) for the six example networks, shown 
over decreasing ratios of mean consumer to mean resource potential, 𝑽𝑪

̅̅̅̅ 𝑽𝑹
̅̅ ̅̅⁄ . Each plot shows the 

density for the normalised consumer final power at 𝑉𝐶
̅̅ ̅ 𝑉𝑅

̅̅ ̅⁄   = 0.75, 0.5, and 0.25, from left to right, as 
the ratio decreases due to increased resource flow during the simulation. The data were normalised by 
subtracting the mean consumer power at each ratio level, and dividing by the standard deviation of 
consumer power at 𝑉𝐶

̅̅ ̅̅ 𝑉𝑅
̅̅ ̅⁄  = 0.75, such that the width of the first subplot for each network is one 

standard deviation.  

The networks that show more heterogeneity in the Euclidean distance, path distance, or both, and 

less connectivity between consumers, have higher inequality as measured by 𝜎𝑅𝐸
 (Figures 2.1 and 

2.2c). This suggests that connectivity among consumers can also play a role in limiting the 

inequality in frictional losses and the resultant consumer potential heterogeneity. This mechanism 

is perhaps similar to the translocation of nutrients through fungi, where symbiotic connections 

between the mycelium and plant root systems allow for the redistribution of heterogeneously-

located nutrients, providing more remote portions of the mycelial network greater access to 

resources (Boswell et al., 2002). 

While the resource nodes in these simulations operated at a constant potential, similarly to time-

averaged behaviour of renewable resources, or a system observed over a short timeframe, these 

results suggest that inequality would increase even more quickly in systems with diminishing 
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resources. This would be because the less optimally located and connected consumers would 

experience larger decreases in power, due to the decreasing resource potential amplifying the 

effects of their higher effective resistance. This is a current line of investigation for an extension 

of this work. 

2.3. Inequality in branching networks 

2.3.1. Branching as a strategy to increase the maximum power of a 
system 

Although changes in state variables, such as potential, allow any given network architecture to 

achieve its maximum power, this maximum can be increased further through the evolution of the 

network architecture itself, as discussed. In the framework presented here, this would be illustrated 

by network reorganisation or otherwise reducing R, such that higher resource flows do not cause 

as much frictional loss (Eq. 3). This does not necessarily require decreasing  𝜎𝑅𝐸
 however, as 

theoretically the distribution of effective resistances could remain the same for a different 

configuration of actual resistances.  

One means by which systems evolve toward increased consumption through network change is 

through self-organisation into hierarchical branching structures, which are prevalent in both 

naturally-occurring and human-engineered systems (West, Brown and Enquist, 1997; Banavar, 

Maritan and Rinaldo, 1999). In these networks, multiple downstream consumers may draw 

resource flow from the same resource, although this causes increased frictional losses by increasing 

the I term in Eq. 3. This is offset in many systems by the development of higher-capacity links 

along shared pathways, such as preferential flow paths (Zehe et al., 2012; Kleidon et al., 2013). This 

is equivalent to varying the link strength in the equation for R (see Methods).  

2.3.2. Branching simulations 

To illustrate the dynamics of branching networks more clearly, another set of simulations was 

performed, featuring idealised self-similar hierarchical branching networks. In these simulations, 
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two networks were constructed. In the first, the network had consumers arranged in a branching 

pattern around a single resource (‘fully branched’ network, Figure 2.4a). In the second, a branching 

network was artificially evolved from a nearly radial burst pattern, by adding in consecutive levels 

of non-demand junctions or ‘branch points,’ and re-calculating the consumption (‘evolved 

branching’ networks, Figure 2.4b). In the ‘evolved branching’ networks, at each iteration of the 

evolution, the average link length became shorter, and the network became more similar to a fractal 

branching structure. This was done to observe how power consumption was affected by changing 

the architecture to reflect known optimal distribution patterns, without increasing the number of 

consumers in the network.  

 

Figure 2.4. (a) A ‘fully branched’ network, with consumers at each junction, and (b) ‘evolved branching’ 
networks illustrating the addition of branch points and links over the course of the simulations. In each 
network, the green square is the resource, and the blue circles are consumers. In the ‘evolved 
branching’ networks, the branch points, represented by triangles, and links of the same colour denote 
when they were added during the evolution of branching: black links are the original network with no 
branch points, purple links and branch points are the first level of branching, and gold links and branch 
points are the second level, which also includes some branch points from previous levels. The network 
shown here is simplified for illustration purposes: the simulated ‘evolved branching’ networks 
contained seven levels of branch points at the final stage of development, and 512 consumers. 

In the ‘fully branched’ network, both the total quantity of power consumption, and inequality of 

consumer potential and power, were considerably higher than in the other architectures illustrated 

in Figure 2.1 (see S2). In contrast, the  ‘evolved branching’ simulations showed lower total power 

consumption and no inequality present in the final stage of network evolution, as the consumers 

were all placed equal path distances from the resource, despite being at slightly differing Euclidean 

distances. This demonstrates that the self-similar branching architecture itself does not lead to 

inequality, but rather the hierarchical or otherwise heterogeneous distribution of consumers.  
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Figure 2.5. The total final power consumption (P) against the ratio of mean consumer potential to mean 
resource potential (𝑽𝑪

̅̅̅̅ 𝑽𝑹
̅̅ ̅̅⁄ ) for each level of the ‘evolved branching’ networks. With additional levels 

of branching, the network became more similar to a fractal branching structure: average link length 
shortened, and resource flow was concentrated onto fewer, more shared links. Here, each coloured 
point series represents the trajectory of final power consumption as the network became more 
branched: Level 0 had no branch points, and Level 7 was a fully self-similar fractal. Relative total final 
power is the sum of final power consumption at all consumer nodes, normalised by the maximum 
power achieved by the network, which preserves relative differences. A copy of the figure with raw 
data is included in S4. 

In the fully branched network, the underlying hierarchical spatial distribution of consumer nodes 

and links led to a highly skewed distribution of consumer potentials and final power at network 

maximum final power, which appears to show power-law properties (Figure 2.6). While the focus 

of the work here is on spatial networks, hierarchies can also emerge in relational ‘scale-free’ 

networks. These are often represented as hub-and-spoke topologies, with power law distributions 

of node degrees. Power law or similarly heavy-tailed distributions in physical systems are typically 

described as resulting from interactions between interdependent components (Parunak, Brueckner 

and Savit, 2004), but the simulations here demonstrate how this distribution can also occur as a 

result of the spatial organisation of interacting components. It is therefore possible that similar 

processes give rise to scale-free characteristics both spatially, as in self-similar hierarchical 

branching, and relationally, as in a power-law distribution of node degrees.  
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Figure 2.6. The frequency distribution of consumer potentials (VC) at maximum network final power for 
a hierarchically branched network, plotted on log-log axes. The highly heterogeneous consumer 
potentials are due to the hierarchical network structure shown in Figure 2.4a.  

Notably, although self-similar hierarchical branching networks such as the ‘fully branched’ network 

can achieve a higher maximum power at the network level, most individual consumers would have 

higher power if they had direct links to the resource, such as in the radial burst networks. 

Therefore, branching is still only energetically advantageous to the overall system, and those 

positioned close to the resource within the network architecture. This corresponds to maximum 

power and entropy production being emergent, system-level properties, resulting from system 

components each attempting to maximise their own consumption (Vallino, 2010). In addition, 

these optimally located and connected consumers experience increased final power even after the 

total network final power begins to decrease (Figure 2.7), due to the larger frictional losses 

experienced by the more distant consumers along the bottom level of the network, who have 

higher effective resistance (Figure 2.4a). This suggests that hierarchical organisation is only 

beneficial to the system if the consumers located further from the resource benefit from the overall 

system operating at a higher maximum power: the more peripheral elements need to gain some of 

the system-level returns. One example of hierarchical branching as a system-optimal configuration 

in this way is in the circulatory system of some organisms, where more distant organs and limbs 

may benefit from the hierarchical organisation of the whole system, even if their individual blood 
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pressure and oxygen levels are lower. Alternatively, if the consumers in more energetically 

privileged locations exerted enough dominance over the system, the hierarchy could be enforced 

despite being sub-optimal for more distant consumers, and potentially the network as a whole 

(Figure 2.7).  

 

Figure 2.7. The relative final power of consumers (PC) at each level of the ‘fully branched’ network, as 
related to the relative resource flow to each consumer (IC). The vertical black line denotes the relative 
resource flow associated with network-wide maximum final power. Each series represents the relative 
final power consumption of consumers at that level in the network, where Level 0 is the consumers 
closest to the resource, and Level 7 are the consumers furthest from the resource in the network. As 
the resource flow increases across the network, the more distant consumers experience 
disproportionally greater frictional losses and therefore power losses, while consumers closer to the 
resource continue to increase in power. Values have been normalised by the maximum consumer final 
power and maximum consumer resource flow, which preserves relative differences. A copy of the figure 
with raw data is included in S5. 

2.4. Conclusion 

This work has explored the characteristics of complex networks evolving toward maximum power 

production, and the relationship between the development and dynamics of these networks and 

the inequality of resource distribution through them. The derived equations and illustrative 

simulations related the potential, resource flow, power, and resistance across a network of 

resources and consumers, and illustrated how those relationships changed as the network evolved 

toward maximum power, through adaptation in network state, architecture, or both. Specifically, 
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it was shown that if the network structure consists of unequal link resistances, resulting from 

heterogeneity in path distance or connectivity in the network, the inequality of resource 

distribution will increase as the quantity of resource flow across the network increases. The 

potential for this architecturally-driven inequality is seen most prominently in hierarchical 

structures, such as the branching architectures common across in biological, environmental, and 

human-engineered systems (see e.g. Banavar, Maritan and Rinaldo, 1999; West, Brown and Enquist, 

1999; Tero, Kobayashi and Nakagaki, 2007; Hines et al., 2010). 

Additionally, this hierarchical branching was shown to only increase the energy transferred through 

the network at maximum power at the scale of the entire network, and for the consumers located 

and connected closely to the resources. In contrast, more distant consumers in these architectures 

experienced rapid decreases in energy consumption as the resource flow through the network 

increased, due to higher frictional losses of energy in transport. While prescription is not a focus 

of the current work, it has illustrated how RADE networks, and specifically hierarchical branching 

architectures, can be fundamentally linked to the deep inequality experienced by those served by 

these networks. Explicitly structuring these networks in an attempt to equalise distribution could 

take the form of co-locating resources and end-users to the greatest extent possible, such as 

locating solar panels or other forms of renewable energy on homes and businesses (Alstone, 

Gershenson and Kammen, 2015), or increasing the integration of locally-sourced products into a 

community’s food system (Martinez, 2010). Additional efforts, such as intentionally improving 

RADE network infrastructure to currently underserved populations of end users (Brelsford et al., 

2018), could also be a significant step in the right direction. The question remains, however, as to 

whether even the best efforts at improving equality of distribution can offset the argued 

thermodynamic trajectory for systems to develop increasing patterns of consumption and 

dissipation (Kleidon, Malhi and Cox, 2010), which appears to be most effectively facilitated by 

inherently unequal distribution networks.  
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2.5. Materials and Methods 

2.5.1. Required simulation inputs 

The simulation code required a Comma-Separated Values (CSV) file to specify parameterisation, 

including the number of nodes of each type, the size and shape of the spatial topology where they 

were distributed, whether links were all unit strength or potentially heterogeneous, and the file 

paths of the CSV files storing the locations of the nodes, or specifying random consumer 

placement. A complete list of the parameters required, and a description of each, is listed in Table 

2.1. 

Table 2.1 Modified load flow methodology input parameters and description. 

Parameter name Description 
topology The name of the shape in or on which the nodes are distributed. Values:  

SPHERE (nodes located within a sphere of a given radius), 

SPHERE_SURFACE (nodes located on the surface of a sphere a given 
radius), PLANE (nodes located on the surface of a plane). 

pNoConnection The probability of two nodes not connecting, in a network with random 
links. 

noConnection The placeholder value in the connections matrix for non-connected nodes. 
resourcesFile The file path of the CSV file storing the coordinate locations and potentials 

of the resources. 
planeMaxCoords The maximum coordinates of the plane, stored as a pair of values 

separated with a semi-colon (e.g. 100;100). 
sphereR The radius of the sphere, or sphere surface. 
nBranchPoints The number of branch points. 
nConsumers The number of consumers. 
useStrength Whether or not to use link strength in calculating the resistance between 

nodes. Values: TRUE/FALSE. 
strengthExponent The exponent to which the link strength, if used, should be raised. 
manualNetwork Whether to read in a pre-specified connections matrix or generate the 

links randomly. Values: TRUE/FALSE. 
randomConsumers Whether to distribute the consumers randomly in the topology or use 

specified locations. Values: TRUE/FALSE. 
consumersFile The file path of the CSV file storing the coordinate locations of the 

consumers (if not random). 
matrixFile The file path of the CSV file storing the connections matrix, if a pre-

specified one is used. 
branchPointsFile The file path of the CSV file storing the coordinate locations of the branch 

points (if used). 
outputCSV The file path to the CSV file where the output of the code run is stored. 

Includes the resource flow specification per consumer, the power and 
potential at each resource and consumer, and the total link length of the 
network. 
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The topologies simulated here included planes, spheres, and sphere surfaces. Planes and spheres 

can be classed as two- and three-dimensional spaces, respectively, while sphere surfaces are of a 

more ambiguous dimension (Jarvis, Jarvis and Hewitt, 2015). The exploration of these three 

relevant topologies, commonly used to represent idealised spaces in physical systems, allowed 

identification of any effect on power consumption or resource distribution due to dimensionality. 

In these networks, the size of the topology, measured in generalised units as the radius of the 

sphere or sphere surface, or one side of the square plane, was determined by the number of nodes 

of each type, 

 𝑆𝑖𝑧𝑒 =  √10𝑛𝐶 ∗ 100𝑛𝑅 , (6) 

where nC is the number of consumers, and nR is the number of resources. This was chosen as it 

allowed for meaningfully large distances between nodes in networks with multiple consumer and 

resource nodes. The branched networks had set lengths for each link, such that topology size was 

not a factor.  

The relationship between spatial size and power distribution and consumption was not directly 

explored, such as by spreading the same network architecture across a larger area, but the linearity 

of the equation for resistance with unit-strength links suggests that inequality in consumer potential 

would increase linearly, and power consumption would decrease linearly, with increases in 

topological size. Similarly, the resource potentials were chosen to provide a clear visualisation of 

the maximum power ‘curve’ (Figure 2.2a), but a range was not explored, as increasing or decreasing 

the resource potential(s) would simply linearly increase or decrease the consumer potentials (see 

Eq. 1). 

In all simulations with random and radial burst topologies, link strength was set to 1. In the 

branching simulations, it was set to be proportional to the resource flow, squared, to offset the 

increased frictional losses from higher resource flow along shared links. Specifically, by re-
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arranging Eq. 1, the potential gradient along a link can be calculated as a product of resource flow 

I and link resistance R. Recall that power loss along a link 𝑃𝐿 is a product of this potential gradient 

and resource flow along it (Eq. 3), which when combined with Eq. 1 gives 

 𝑃𝐿 =
𝐼2𝐿

𝑆
   . (7) 

Since losses are proportional to the resource flow squared, it rapidly dominates the energy losses. 

Therefore, as branching networks combine resource flows onto shared branches, they experience 

higher flow-driven losses on those shared links, despite having lower total network resistance, due 

to the shared links shortening the total path length around the network. It follows that, for the 

branching to be energetically advantageous, the link strength must be a function of resource 

flow, 𝑆 = 𝑓{𝐼}.  If 𝑃𝐿 ∝ 𝐼2, then 𝑆 ∝ 𝐼2, resulting in the power loss becoming a function 

exclusively of link length (Eq. 7). This allows the advantages of shorter total link length in a 

branching network to be realised.  

2.5.2. Simulation code operation 

An overview of the simulation code is shown in Figure 2.8. After the program read in the specified 

parameters above, it created a customised data structure to store the node locations, resource 

potentials, and connections matrix. If the consumer locations were random, the program placed 

each consumer in space by drawing each coordinate from a uniform distribution bounded by the 

maximum topology coordinates supplied. If the links were random, the program put a link between 

each node, except for resources, with the probability of 1 – pNoConnection parameter 

described above (Table 2.1).  
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Figure 2.8. Code flow diagram for flow calculator program. The main controller of the program reads in 
the parameters and creates the network, and eventually terminates the program when complete, while 
the main calculations of the program are based on an iterative matrix inversion process in the flow 
calculator class. 
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To calculate the resource flows and power consumption of the network, the program constructed 

a Jacobian matrix representing the conductance of the network, or the inverse of the resistance, 

using the connections matrix. This was inverted to solve for the mismatch between specified and 

received resource flow at each consumer node, based on the consumer potentials. These were 

determined by the load flow equations using a matrix form of Eq. 1.  

The potentials at the consumers, and branch points if used, were then adjusted to counter the 

mismatch. The matrix inversion and mismatch calculations were repeated until the mismatches 

were within the specified error threshold of 0.001. After convergence, the total power 

consumption of the network 𝑃𝑁𝑒𝑡𝑤𝑜𝑟𝑘 was calculated as the sum of the power consumption at 

each consumer 𝑃𝐶𝑖
, which was the product of potential 𝑉𝐶𝑖

 and resource flow 𝐼𝐶𝑖
 (Eq. 2): 

 

𝑃𝑁𝑒𝑡𝑤𝑜𝑟𝑘 = ∑ 𝑃𝐶

𝑛𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠

𝑖=1

 . 
(8) 

Initially, the total power consumption was calculated for 1 unit of resource flow arriving at each 

consumer. With each iteration, the specification was incremented by 0.1 unit, and the resource 

flows were re-calculated. This was repeated until either 1000 units of resource flow was arriving at 

each consumer, or the power consumption of the network was negative, due to the inverse 

relationship between consumer potential and resource flow (Eq. 1). In the evolving branching 

simulations, an additional level of branch points was added, and the links between nodes re-

arranged, after the iterations had completed for a given network, until there were 7 levels of branch 

points between the resource and consumers (Figure 2.4b). 

For a simple network with direct connections between the resource and consumer nodes, such as 

the radial burst networks (Figure 2.1), the power consumption can be solved analytically with 

Ohm’s law, rather than using the Jacobian matrix inversion method. An example of this, used to 

validate the model, is shown in Davis (2018). 
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2.5.3. Simulation outputs 

The program output was a single CSV file, with the potential at each resource and consumer, and 

the power production and consumption of each resource and consumer, respectively, at each 

resource flow specification tested. It also included the total link length of the network, which does 

not change over the duration of the simulations. 

2.5.4. Code availability statement and languages used 

A complete copy of the code, along with usage instructions, a sample parameter file, and sample 

resource, consumer, branch point, and matrix CSVs, is available upon request. The code is written 

in Java Version 8. All figures and analyses were generated using R, including the base R package 

version 3.6.1 (R Core Team, 2018), ggplot2 (Wickham, 2009), and the rgl package (Adler and 

Murdoch, 2019).  
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2.7. Supplementary Information 

S1 Text. Maximum power derivation 

Recall from Eq. 2, assuming that the network is flow-preserving, such that the sum of all resource 

flows into the system is equal to the sum of the resource flows across all consumers, the equation 

for power consumption at the consumer nodes 𝑃𝐶  is: 

 
𝑃𝐶 = 𝐼𝐶𝑉𝐶 = (

𝑉𝑅 − 𝑉𝐶

𝑅
) 𝑉𝐶 = (

𝑉𝑅𝑉𝐶 − 𝑉𝐶
2

𝑅
) . 

(9) 

To find the maximum power, the first derivative of power with respect to potential is taken and 

set to zero, and the equation is solved to find the critical points: 

 𝜕𝑃𝐶

𝜕𝑉𝐶
= (−𝑅𝑉𝑅) + 2𝑅𝑉𝐶 = 0 , 

(10a) 

 
𝑉𝐶 =

𝑉𝑅

2
  , 

(10b) 

While this is most simply illustrated in the case of power transfer between two nodes on a single 

link, complex networks such as the ones in view here can be simplified using an algorithm such as 

Thévenin’s theorem. Although an explicit Thévenin equivalent was not computed for the networks 

here, their dynamics could be mapped to one, such that at maximum power, 

 
𝑉𝐶
̅̅ ̅ =

𝑉𝑅
̅̅ ̅

2
  , 

(11) 

This also implies that R in these equations is a mean term for the characteristics of all links across 

the network, or 𝑅̅, which is discussed further in the text as 𝑅𝐸 . 
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S2 Table. Parameterisation and power consumption details of networks simulated: a) branched networks, and b) random and radial burst networks. 
The slope of the linear relationship between 𝜎𝑃𝐶 and 𝐼2 shown in Fig. 1 was calculated for each plot using least-squares regression, and compared 

to the value of 𝜎𝑅𝐸 calculated using Eq. 5 and the consumer and resource potentials for each network, shown in the table here. The least-squares 

regression estimate of 𝜎𝑅𝐸 is shown in brackets below the original estimate using consumer and resource potentials, for the networks plotted. 

A. 

Topology Link strength 
No. of 
consumers 

Branch 
points 

Avg. consumer 
potential at 
maximum power 

Avg. resource 
potential at 
maximum power 

Maximum 
power ER  

Plane Proportional 510 0 1267.963 2560 3362638.240 10.117 

Plane Proportional 256 0 1280.465 2560 1802894.140 10.380 

Plane Proportional 256 2 1291.671 2560 1719472.636 5.208 

Plane Proportional 256 6 1287.332 2560 1680741.209 2.621 

Plane Proportional 256 14 1272.968 2560 1661986.846 1.327 

Plane Proportional 256 30 1291.163 2560 1652688.496 0.678 

Plane Proportional 256 62 1287.644 2560 1648183.681 0.350 

Plane Proportional 256 126 1285.886 2560 1645933.596 0.177 

Plane Proportional 256 254 1285.000 2560 1644800.000 0.000 

Plane Proportional squared 510 0 1280.114 2560 262514277.899 0.506 

Plane Proportional squared 256 0 1280.465 2560 1802894.140 10.380 

Plane Proportional squared 256 2 1285.688 2560 3587582.693 5.208 

Plane Proportional squared 256 6 1279.833 2560 7044199.485 2.621 

Plane Proportional squared 256 14 1280.543 2560 13375014.776 1.327 

Plane Proportional squared 256 30 1280.746 2560 23606702.551 0.678 

Plane Proportional squared 256 62 1279.803 2560 36563458.045 0.350 

Plane Proportional squared 256 126 1279.801 2560 47538966.426 0.177 

Plane Proportional squared 256 254 1280.000 2560 52428799.937 0.000 
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B.  

Topology Total network 
length 

Node distribution Resource 
potentials 

No. of 
consumers 

No. of 
resources 

Mean consumer 
potential at 
maximum power 

Mean resource 
potential at 
maximum 
power 

Maximum 
power 

ER  

Plane 74877.080 Random Equal 50 1 2501.289 5000.000 3251676.144 12.758 
(12.760) 

Plane 415061.500 Random Equal 100 1 4989.508 10000.000 11376078.579 3.249 

Plane 1510034.000 Random Equal 50 50 51.000 100.000 5864.995 4.974 

Plane 3531541.000 Random Equal 50 100 24.880 50.000 2114.770 2.898 

Plane 1487595.000 Random Varied 50 50 49.408 99.207 5681.931 4.602 

Plane 3422254.000 Random Varied 50 100 25.622 50.917 2177.879 2.941 

Plane 11200.000 Ring of consumers Equal 50 1 2491.200 5000.000 1395072.000 0.000 
(0.000) 

Plane 31600.000 Ring of consumers Equal 100 1 5007.200 10000.000 7911376.000 0.000 

Plane 25228.310 Ring of consumers Equal 50 10 2477.169 5000.000 619292.343 3.845 
(3.845) 

Plane 25228.310 Ring of consumers Varied 50 10 2508.767 5031.598 627191.844 70.955 

Plane 25228.310 Ring of resources Equal 10 50 99.093 200.000 990.925 0.000 

Plane 25228.310 Ring of resources Varied 10 50 98.335 199.261 983.353 5.802 

Plane 4099.363 Uniform random 
(low connectivity) 

Equal 81 1 500.452 1000.000 1741572.000 0.387 
(0.387) 

Plane 7680.167 Uniform random 
(med. connectivity) 

Equal 81 1 499.762 1000.000 4054065.000 0.102 
(0.102) 

Plane 277.362 Uniform radial Equal 81 1 500.056 1000.000 5768642.000 1.224 
(1.224) 

Sphere 119384.300 Random Equal 50 1 2517.610 5000.000 742694.886 6.084 

Sphere 970045.300 Random Equal 100 1 50006.146 100000.000 454555862.837 5.187 

Sphere 2345486.000 Random Equal 50 50 500.440 1000.000 357814.260 5.913 

Sphere 5728683.000 Random Equal 50 100 250.839 500.000 112877.518 4.952 

Sphere 2321974.000 Random Varied 50 50 501.006 1003.963 355714.309 7.556 

Sphere 5766936.000 Random Varied 50 100 249.526 501.682 121019.957 5.854 

Sphere surface 214750.300 Random Equal 50 1 24989.678 50000.000 40608226.348 16.033 

Sphere surface 1216917.000 Random Equal 100 1 49978.937 100000.000 525278626.787 13.582 

Sphere surface 4600103.000 Random Equal 50 50 497.706 998.014 194105.429 9.849 
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Sphere surface 10934860.000 Random Equal 50 100 250.887 500.000 63976.129 5.982 

Sphere surface 4607672.000 Random Varied 50 50 498.283 1000.000 176890.508 13.087 

Sphere surface 11111457.000 Random Varied 50 100 253.070 501.161 62002.112 6.912 

Sphere surface 8796.595 Ring of consumers Equal 50 1 25000.077 50000.000 177625544.692 0.000 

Sphere surface 24818.580 Ring of consumers Equal 100 1 49990.557 100000.000 1007309730.737 0.000 

Sphere surface 22606.750 Ring of consumers Equal 50 10 2513.257 5000.000 691145.733 12.537 

Sphere surface 22606.750 Ring of consumers Varied 50 10 2493.034 5024.990 698049.528 58.146 

Sphere surface 22606.750 Ring of resources Equal 10 50 997.010 2000.000 110668.165 0.000 

Sphere surface 22606.750 Ring of resources Varied 10 50 996.453 1999.405 110606.287 16.571 
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S3 Figure. Non-normalised version of Figure 2.2a, showing the relationship between total final power 
(P) and the ratio of mean consumer potential to mean resource potential (𝑉𝐶

̅̅ ̅ 𝑉𝑅
̅̅ ̅⁄ ) for six example 

networks. Each coloured point range represents a different network topology over which the 
simulations were run. The units are generalised units of power, rather than units only applicable to a 
specific type or types of resource distribution network. 

 

 

S4 Figure. Non-normalised version of Figure 2.5, showing total final power consumption (P) against the 
ratio of mean consumer potential to mean resource potential (𝑉𝐶

̅̅ ̅ 𝑉𝑅
̅̅ ̅⁄ ), for the ‘evolved branching’ 

networks. The units are generalised units of power, rather than units only applicable to a specific type 
or types of resource distribution network. 



Structure, flow, and inequality 

93 
Natalie Davis – June 2021 

 

S5 Figure. Non-normalised version of Figure 2.7, showing final power of consumers (PC) at each level of 
the ‘fully branched’ network, as related to the resource flow to each consumer (IC). The units are 
generalised units of power and resource flow, rather than units only applicable to a specific type or 
types of resource distribution network.
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3 
3. Measuring heterogeneity in soil networks: 

A network analysis and simulation-based 
approach 

Abstract 

Quantifying soil structural and ecological heterogeneity is crucial for understanding their 

interactions and their relationships to the resilience and health of the wider ecosystem. However, 

a clear understanding of how structural heterogeneity affects soil biodiversity is still emerging. 

Previous work has primarily used expensive, often laboratory-based methods to quantify soil pore 

network structure, and typically separated study of structural and biological dimensions. Here, we 

test whether standard network metrics can be used to quantify structural heterogeneity in soil pore 

networks, and how this network structure, along with characteristics of the consumer and resource 

populations, affects the heterogeneity of a population of consumers. Specifically, we extract 

simplified soil pore networks from digital photographs of soil profiles and apply established 

metrics from network science and transport geography to quantify and compare the networks. The 

networks are also used as the medium for an agent-based model of generalised consumers, to 

analyse the effects of consumer and resource parameterisations and network structure. Combining 

network analysis and simulation modelling in this way can provide insights on the structure, 

function, and diversity possible in the soil, as well as avenues for exploring the impact of future 

structural or environmental changes. 

3.1. Introduction 

The distribution of energetic resources in an ecosystem plays a key role in determining the 

complexity, quantity, and behaviour of organisms that it can support (e.g. Giller, 1996; Tews et al., 
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2004; Roshier, Doerr and Doerr, 2008; Stevens & Tello, 2011). To understand these systems more 

fully, and inform actions to protect those relying on them, we must understand how resource 

distribution networks develop and function. For example, resource location and movement can 

create heterogeneity that allows species to specialise and differentiate (e.g. Bardgett, Yeates and 

Anderson, 2009; Tews et al., 2004; Stevens & Tello, 2011), as well as cause inequality among 

individuals of the same species, topics that are relevant for both biologists and ecologists.  

The soil provides a unique and diverse ecosystem in which to study resource distribution, and its 

effect on organisms. Soil structure can be defined as the collection of soil particles and pore space 

among them (Oades, 1993). This pore space provides access to nutrients stored on the surface of 

soil particles, allows for preferential flow of water through the soil matrix, and serves as the 

resource distribution network through which micro-, meso-, and macrofauna (soil biota) forage. 

As this structure determines how air, water, and soil biota move through the soil, it allows or 

impedes the foraging of organisms, regulates the air and water balance in the soil matrix, and 

affects chemical signals used in foraging, such as those of bacterial decomposition (Young and 

Ritz, 2009). Furthermore, crevices and niches along soil pores provide habitats for smaller 

microbes to avoid predation, and the overall spatial and temporal heterogeneity of the soil 

environment allows for resource partitioning and habitat specialisation that limits the effect of 

competitive exclusion (Bardgett, Yeates and Anderson, 2009). This is similar to the hypothesised 

effect of heterogeneity in aboveground habitats (e.g. Tews et al., 2004; Stevens and Tello, 2011).  

Soil biota in turn can increase the porosity of soil, through burrowing and consuming organic 

matter, and releasing gases during decomposition, which create or expand soil pores (Kravchenko 

and Guber, 2017). Additionally, there is evidence of feedbacks between the soil biota and 

aboveground plant communities (e.g. Baer et al., 2005; Wijesinghe, John and Hutchings, 2005; 

García-Palacios et al., 2012), which alter soil structure as their roots burrow in pore networks, and 

roots and hyphae bind and stabilise soil particles (Vezzani et al., 2018). Through regulating 
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movement and diffusion of water and energy resources, gases, and fauna in the soil matrix; 

providing habitat; and mediating biological feedbacks; soil structure is the foundation of all earth 

systems. 

Past efforts to quantify and model soil structure have primarily focussed on measuring the stability 

of soil, by utilising soil aggregate size distribution as a measure of structure. While this does 

represent the spatial distribution in the soil, it is not a complete representation of physical 

properties (see e.g. Young, Crawford and Rappoldt, 2001). Several frequently used methods for 

visualising the pore network within a soil sample include CT scans and X-ray tomography, NMR, 

and SPECT scanning, mostly for the purposes of measuring solute flow and transport processes 

(see review in Young, Crawford and Rappoldt, 2001). Gas diffusion and solute flow have also been 

examined with modelling approaches, including neural networks, Boolean models, and cellular 

automata. Additionally, fractal modelling has also been used successfully to quantify the degree of 

connectivity, tortuosity, and heterogeneity of the soil pore network (Crawford, Ritz and Young, 

1993), three characteristics that have also been associated with a higher level of heterogeneity of 

resource distribution in generalised networks (Davis et al., 2020).  

Overall, past work has highlighted the important connections between soil function and structure, 

especially of the pore network. Much of this work has been done from a geometric or hydrological 

perspective, however, rather than an energetic one, leading to criticisms of unrealistic separation 

of soil physics and biology, and emphasis on the importance of integrating these spatially explicit 

approaches in future soil ecology research (Bardgett, Yeates and Anderson, 2009). Additionally, 

much of the imaging equipment required for the techniques above is large and expensive, requiring 

soil samples to be brought back to the laboratory. Even if disruption to the soil structure during 

extraction and transport is minimised, these methods are more suitable for intensive analyses of 

individual samples and smaller areas. 
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In contrast, some previous work has focussed on quantifying the structure of soil networks 

through image morphology techniques applied to a photograph of a sample, in order to extract 

the relevant network (e.g. Velde, Moreau and Terribile, 1996; Gargiulo, Mele and Terribile, 2013; 

Hartemink and Minasny, 2014). This method will not reveal the network at the same level of detail 

as CT scans or X-ray tomography, and may require use of resins and dyes to highlight the 

underlying structure (Hartemink and Minasny, 2014). Good arguments have also been raised 

regarding the importance of analysing soil structure from a three-dimensional perspective, as it 

reveals considerably more about the habitat of the soil (Young and Ritz, 2009). However, if 

rotational invariance is assumed, connectivity and structure of a two-dimensional sample can be 

assumed representative of any random two-dimensional plane taken through the system. This 

inference does not consider lateral flow, which would undoubtedly play an important influence in 

sloping areas by transporting nutrients laterally through the soil. In areas where the surface is flat 

and lateral flow effects are negligible, standard network metrics could usefully approximate soil 

structure and provide insights into its effect on biotic and abiotic processes within an environment.  

Moreover, the two-dimensional techniques are considerably more portable and feasible than the 

three-dimensional techniques, and processing time can be significantly faster. Image analysis 

methods, particularly those that can be performed entirely in the field, could potentially be 

incorporated into software for use by farmers and researchers who may otherwise not have access 

to the equipment necessary for the more costly and lab-intensive methods of quantifying structure 

(e.g. Aitkenhead et al., 2016). These methods could also act as preliminary investigations to 

highlight potential areas of future exploration using more intensive analyses. 

In this paper, we test whether standard network metrics can be used to quantify structural 

heterogeneity in soil pore networks, and how this network structure, along with characteristics of 

the consumer and resource populations, affects the heterogeneity of a population of consumers. 

Specifically, we develop a method for extracting approximate soil networks from digital 
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photographs using image morphology techniques, then apply metrics from network science and 

transport geography to quantify and compare the networks. The networks are also used as the 

medium for an agent-based model (ABM, which in ecology is more typically known as an 

individual-based model, e.g. Grimm et al., 2006), where the agents represent generalised consumers 

who explore the network and consume food resources. The variation in population size and 

resource consumption is compared across simulations, to evaluate how both the network structure 

and simulation parameters affect outcomes of the biotic community. This methodology is applied 

to a case study using soil images from two test sites in Aberdeenshire, United Kingdom. 

3.2. Methods 

3.2.1. Soil image collection 

Images were taken at two field sites in Aberdeenshire, United Kingdom. The first site had a brown 

forest soil, or Cambisol (Figure A1a); photographs were taken from seven locations in both 

forested and converted agricultural areas. The second site had a sandy beach soil, or Arenosol 

(Figure A1b); photographs were taken at five locations across a dune area, with sparse grass and 

shrub cover. Neither Cambisols nor Arenosols are highly developed, but Cambisols have some 

diagnostic features, while Arenosols are lacking diagnostic features and are defined only on the 

basis of being coarse (sandy) textured (FAO, 2015). The known difference between the two soils 

therefore provides a basis for preliminarily evaluating the methodology. Additionally, both soil 

types can be assumed to show limited profile variation with depth on the scale of the observed 

soil profile sections under study (FAO, 2015), such that a uniform network extraction method and 

analysis can be applied across the image. The specific sampling sites were also chosen as they 

provided easy access to multiple sampling locations for both soil types. As this work is an 

exploratory proof-of-concept, an exhaustive sampling regime across different soil, land use, and 

geographic regions was not undertaken. 
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The methodology for taking pictures was replicated from Aitkenhead et al. (2016). In summary, 

the photographs were taken of the soil profile of shallow (30 cm) pits in flat areas, using an angle 

that provided maximum natural light and minimum shadow (Figure A1a, b). No artificial lighting 

was required during photography. Additionally, each photograph included a 10 cm x 6 cm colour 

correction card within the frame. Colour correction has been used in past work (e.g. Aitkenhead 

et al., 2016) to correct colour variation in ambient lighting. However, in this work we were only 

interested in overall intensity, rather than light balance, so the cards were inserted into the image 

to provide a spatial scale reference for future work.  

In Figure A1a and A1b, the white area is an excised section of the image that is larger than the 

correction card. The imaging was taken with the card viewed straight on, without distortion, so 

the image distortion and impact on length of edges is not an issue. Extracting an area larger than 

the correction card also attempted to eliminate shading effects around the card. This may not have 

been done sufficiently to eliminate all the shading, possibly introducing some additional dark pixels 

and error into the network metric calculations. However, taking multiple pictures within the same 

profile can provide some robustness against this. Future work should attempt to remove this effect 

from near the correction card. 

In total, seven Cambisol profiles and five Arenosol pits were used for each soil type, with several 

images taken of the profile of each pit. In taking multiple images from each soil pit, we moved the 

camera slightly to present different viewing angles and thus generate different images. This was 

done to compare the robustness of extracted networks from each pit (see Section 2.2), and 

replication within pit was considered in all statistical analyses. 

3.2.2. Network extraction 

To extract the approximate soil network structure from the photographs, the photographs were 

converted to text files containing the red, green, and blue (RGB) triplet values for each pixel. All 

non-soil pixels were then identified as those whose triplet values exceeded the ranges expected for 
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soil particles, based on the average of the rest of the image. Using the average to determine this 

threshold customised it slightly for each image, so that outliers such as roots and rocks specific to 

that sample were captured, but samples having an overall more reddish tone were not stripped 

completely. The identified non-soil particles were removed, and variations in brightness across the 

remaining pixels were standardised using the mean pixel intensity.  

As soil structure and porosity are only loosely related, soils of the same porosity can have different 

structural properties. A common assumption made is that soils, unless compressed/compacted, 

have up to 50 % pore space. As the pixel resolution of the images here is between 0.3 – 0.5 mm, 

and therefore much higher than the smallest pore space possible (sub-micron scale), it follows that 

the pore space actually visible is less than this 50 %. An evaluation of the distribution of pixel 

values showed that for soil profile images used in this study, the greatest change in the distribution 

occurred around a pixel intensity where 30 – 40 % of the pixels were below this value (Figure A2). 

We have therefore assumed that 30 % of the soil is ‘void’ (i.e. dark pixels). Therefore, the darkest 

30 % of the soil pixels were retained as pores, and the image was inverted to convert these darker 

pixels to white, and vice versa (Figure A1e, f). The images from the same profile were visually 

compared after thresholding and showed a high degree of agreement in the pores identified (e.g. 

Figure A3). Network outlines were then drawn through a process known in image morphology as 

‘skeletonization,’ where lines of white pixels were iteratively stripped down until they were all one 

pixel in width (Figure. A1g, h). We then mapped the networks to a list of links, which were series 

of pixels that were more than one pixel long, and nodes, defined as junction points between two 

or more links. Redundant links between nodes were removed.  

For simplicity, all links in the final networks were represented with straight lines along the shortest 

distance between two nodes. This lost some of the details of the topology, such as pore size and 

shape. However, this work intended to create an abstraction of the network taken from the soil, 

rather than replicate and analyse the exact soil structure itself. This emphasised overall soil 
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structural characteristics and heterogeneity, rather than modelling how specific transport processes 

and biological activities would occur. Replicating the exact soil network would also have markedly 

increased the computational burden, as link lengths would have had to be calculated through pixel-

counting rather than the Euclidean geometry measuring shortest distances. As many of the links 

as represented were quite short (see Section 3.3.1), the difference between the true link length and 

the shortest distance between nodes was assumed to be negligible. Currently, we assume that the 

method requires further validation and improvement to provide a measure of soil structure that 

can be used in soil science or pedological characterisation of the soil. We also assume however, 

that the method, while not perfect in its current form, provides sufficient quality of network data 

to allow simplified networks to be extracted and analysed, and used as the basis for simulations. 

The process of rendering the network also identified which sections of the network were fully 

connected, and which nodes were part of disconnected subnetworks (Figure. A1i, j). An outline 

of the image morphology process, and images of each step, are available in Appendix 1.  

3.2.3. Network analysis 

Two types of analysis were used to quantify the heterogeneity present in the soil network images. 

The first involved applying metrics adapted from network science and transport geography to 

measure structural characteristics of the abstracted networks, which allows for easy comparison 

among soil types. These were calculated using R v4.0.2 (R Core Team, 2020), including the 

packages igraph, qgraph, and sp (Pebesma and Bivand, 2005; Csardi and Nepusz, 2006; Epskamp 

et al., 2012; Bivand, Pebesma and Gomez-Rubio, 2013). All additional data analysis and 

visualisations were also done in R, using the packages ARTool v0.10.7 (Kay and Wobbrock, 2020; 

Wobbrock et al., 2011), emmeans v1.5.0 (Lenth, 2020), lmerTest v3.1.2 (Kuznetsova, Brockhoff, 

and Christensen, 2017), dunn.test v1.3.5 (Dinno, 2017), rcompanion v2.3.25 (Mangiafico, 2020), 

dplyr v1.0.0 and ggplot2 v3.3.2 packages (Wickham, 2016; Wickham et al., 2019). The scripts for 

calculating network metrics are available at (Davis, 2020). 
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A brief description of each of the metrics chosen is given in Table 3.1. These were chosen to 

measure the size, connectivity, and structural heterogeneity of the networks from a range of node-

centric, link-centric, and global perspectives, to obtain a broad picture how the networks may 

differ. The metrics chosen also minimised assumptions about inaccessibility of the soil matrix 

between pores: for example, the convex hull area was chosen over the concave hull area as the 

former is a more generous estimate of the spatial area.  

Table 3.1 The name and description of the metrics used to analyse the soil networks. 

Metric name Description Type of 
measure 

Reference 

Mean and standard 
deviation (SD) of link 
length 

Quantifies the typical length and variability of 
lengths included within the network. 

Size N/A 

Beta index 
 

The ratio of links to nodes. Connectivity Rodrigue, 
2017 

Gamma index 
 

Number of observed vs. possible links: 
nLinks / (nNodes * (nNodes – 1)) 

Connectivity Rodrigue, 
2017 

Diameter The length of the longest geodesic (shortest 
path between two nodes) in the network – 
the shortest path between the two most 
distant nodes. 

Size Rodrigue, 
2017 

Node count The number of nodes in the network. Size Barabási, 
2016 

Edge count The number of edges (links) in the network. Size Barabási, 
2016 

Mean node degree Mean number of links per node.  Connectivity Barabási, 
2016 

Cost The total length of the network measured in 
real transport distances. 

Size Rodrigue, 
2017 

Global reach 
centrality (GRC) 

The difference between the maximum and 
average local reach centrality (LRC), where 
the LRC is the nodes that a given node can 
connect to, weighted by distance (here, 
spatial distance). 

Structure, 
connectivity 

Adapted from  
Mones, 
Vicsek and 
Vicsek (2012) 
 

Mean convex hull 
area 

The area of a polygon that minimally 
encompasses every node in the network.  

Size, 
connectivity 

Rockafellar, 
1970 

Network density The ratio of the number of nodes to the 
convex hull area. 

Structure N/A 
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As introduced, the imaging method and metrics used here are two-dimensional (2D), and we have 

been unable to find literature describing characterisations of three-dimensional (3D) soil structure 

metrics based on two-dimensional imaging. Aitkenhead et al. (1999) derived 3D models of soil 

pore systems based on 2D metrics but did not compare the two sets of structural metrics. Future 

work would be necessary to determine the extent to which 3D variation in soil structural metrics 

correlates to the variation seen in 2D. Here, we are assuming that it does correlate, and that this 

allows 2D imaging to provide structural metrics representative of different soil types.  

We calculated each metric for each of the networks, which contained all nodes and links in the 

image, hereon called ‘main networks.’ We also calculated each metric for each of the disconnected 

subnetworks within the main networks, hereon called ‘subnetworks.’ As the distributions of 

metrics in the main soil networks had similar variance across soil types and relatively normal 

distributions, these were compared with nested ANOVA, using profile ID as a random effect to 

account for replication. The distribution of metrics across the subnetworks did not meet the 

assumptions for classical ANOVA, so non-parametric Aligned-Ranks Transformation (ART) 

ANOVAs were used instead, also with profile ID as a random effect.   

3.2.4. Agent-based model overview 

The second analytical method used a simulated population of consumers to explore each network, 

using the resulting heterogeneity in consumer resource stocks to further elucidate the heterogeneity 

of the network. This provided a more functional perspective, alongside the structural 

quantification of the network metrics. The purpose was to investigate the structure’s generalised 

impact, rather than test the precision of this model in predicting outcomes for real species. 

Therefore, rather than using parameterisations that reflected specific species or groups, five generic 

model species with different sets of values for each trait were used, similarly to e.g. Polhill and 

Gimona (2014).  
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The same approach was taken for resources, with three sets of resource bases of different 

combinations of maximum capacity and maximum growth rates. Resources were assumed to be 

located at nodes within the network, as identified during the extraction process (see Section 2.2). 

Food resources in real soil networks are located throughout the soil matrix, but are often 

concentrated in ‘hotspots’ such as those created by plant roots and decomposition processes 

(Ettema and Wardle, 2002), which would be represented in the networks here as nodes. As 

exploring the effect of size of the generic species was not in scope for the work here, only the 

most accessible areas of the network were treated as potential resources. 

A brief description of the model purpose, variables, and processes is presented below, following 

the Overview, Design concepts, and Details (ODD) protocol (Grimm et al., 2006, 2010). The full 

ODD document, including description of design concepts, initialisation, input data, and sub-

models, is available in Appendix 2. The model source code, written in NetLogo 6.1, is available in 

the Modelling Commons repository as “Soil network simulation” (see also Davis and Polhill, 

2021). 

3.2.4.1  Overview section of Overview, Design Concepts, and Details (ODD) 

I. Model purpose 

The model is designed to be an analytical tool to explore the heterogeneity in resource supply 

potential of a network by populating it with idealised energy-consuming agents, and to quantify 

the effects of consumer, resource, and network characteristics on resulting consumer population 

outcomes. 
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II. Entities, state variables, and scales 

i. Consumer entities 

State variables 

Property  Description  

Location The resource on which the consumer is located 

Target location The resource to which the consumer will move next 

Active? Whether a consumer is active (or dead) 

Parameters 

Property  Description  

Basal metabolism How much resource an agent needs per day to stay alive 

Active metabolism How much resource an agent uses with each step 

Resource stock How much resource an agent has consumed but not metabolised 

Consumption rate Maximum number of resource units that an agent takes from a resource it 
visits, per timestep 

Spawn energy How much energy an agent requires to spawn (depletes this quantity from 
stocks and passed to offspring as starting quota) 

ii. Resource entities 

State variables 

Property  Description  

Current supply The current quantity of resource at this point 

Parameters 

Property  Description  

Resource capacity How much energy is stored in a resource when it is full 

Regrow rate The amount the resource regrows each timestep 

iii. Link entities 

State variables 

Property  Description  

Length The length of the link - determines energy and time required to traverse it 

Scales 

Property  Description  

Timestep A single unit of time in the model, defined as that which is required for consumers 
to move 1 pixel (approximately 0.3 – 0.5 mm), and for which they require basal-
metabolism units of energy.  

World size 400 x 500, determined by the size of the soil networks used as the environment. 

 



Chapter 3: Measuring heterogeneity in soil networks 

106 
Natalie Davis – June 2021 

III. Sequence of events 

1. Consumers start on random nodes around a pre-specified network, where nodes are 

resource patches. 

2. Consumers move around the network randomly following links. If they find a resource 

patch, they consume as much as they can from it, and the patch depletes. 

• Consumers require basal-metabolism units of resource per 

timestep. If they do not consume this resource, they die.  

• Consumers can stay put on a resource and consume it (consumption-

rate units consumed per timestep), but it depletes, and if there is no more 

resource there then they move on. 

• Consumers metabolise active-metabolism units of resource per 

patch of link that they cross. 

• If there is more than one agent on a resource patch, they each take 

consumption-rate units per timestep, or split the remainder if there 

is not enough resource remaining for them to each get consumption-

rate units. 

3. If consumers have twice as much energy as the set spawn-energy, they can spawn new 

consumers (who take the same amount of resource-stock from their parent that the 

parent started with, so now parent and offspring both have the same resource-

stock). 

4. Resources regrow at a constant rate (regrow-rate) per timestep, up to their maximum 

capacity (resource-capacity).  

3.2.4.2  Sensitivity analysis 

To determine the sensitivity of the ABM to input parameters, and the robustness of any emergent 

patterns of heterogeneity, we performed an extensive sensitivity analysis following 
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recommendations in the agent-based modelling literature. This is detailed in Appendix 3. Table 

3.2 shows the final parameter values used for the consumer populations, resource populations, 

and general model. In the actual simulation runs, each combination of the five consumer parameter 

sets, and three resource parameter sets, was tested against each network architecture, resulting in 

8700 total runs including replicates. 

Table 3.2 Final values for (a) consumer, (b) resource, and (c) general simulation parameters. 

Consumer parameters 

 Consumer type 
Parameter High 

metabolism, 
high 
consumption, 
high spawn 
energy 
(HHH) 

Low 
metabolism, 
low 
consumption, 
low spawn 
energy  
(LLL) 

Low 
metabolism, 
moderate 
consumption, 
low spawn 
energy (LML) 

Low 
metabolism, 
moderate 
consumption, 
moderate 
spawn energy 
(LMM) 

Moderate 
metabolism, 
moderate 
consumption, 
moderate 
spawn energy 
(MMM) 

Basal metabolism 3 1 1 1 2 
Active metabolism 3 1 1 1 2 
Consumption rate 10 5 7 7 7 
Spawn energy 100 50 50 75 75 
Initial resource stock 30 30 30 30 30 

Resource parameters 

 Resource type 

Parameter High capacity,  
low growth 
(HL) 

Moderate capacity, 
moderate growth 
(MM) 

Low capacity, high 
growth 
(LH) 

Maximum resource capacity 50 35 20 
Maximum regrow rate 10 15 20 

General parameters 

Parameter Value 

Initial population size 500 consumers 
Length of simulation 2000 timesteps 

 

3.2.4.3  Analytical method 

At each time step, the ABM calculated five metrics (Table 3.3), including measures of centre and 

spread of consumer resource stocks, the final population size, and two additional inequality 

metrics: the Gini coefficient and a modified form of the Shannon entropy. The latter estimates the 
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differential entropy of a continuous variable, by discretising the distribution into bins (Appendix 

4). These metrics were chosen to include measures of absolute and relative inequality, and a 

measure of evenness common to ecology. As the distributions of each metric across the soil types 

did not meet assumptions of most parametric tests, mixed-effects ART ANOVAs with profile ID 

as a random effect were again used to quantify how the outcome metrics differed, for each 

combination of resource and consumer population parameters and soil type. As the final 

population size and the entropy of consumer resource stocks both showed variance not fully 

explainable by consumer or resource population parameters, these were also tested with Kruskal-

Wallis tests comparing them across profile IDs and soil types. The significantly different pairs of 

profiles were identified with Dunn post-hoc analysis.  All data processing, analysis, and 

visualisation was done in R, using the packages listed previously, as well as the entropy v1.2.1 

(Hausser and Strimmer, 2014) and ineq v0.2.13 packages (Zeileis, 2014).  

Table 3.3. The name and description of outcome variables calculated for the agent-based model (ABM). 

Variable name Description 

Mean consumer 
resource stock 

The mean of the resource stocks held by all active consumers. Units are 
the same as those of the quantity measured. 

Standard deviation 
consumer resource 
stock 

The square root of the sum of squared absolute differences between 
each observation and the mean, normalised by the number of 
observations (minus one, to allow for sample estimation). Units are the 
same as those of the quantity measured. 

𝑠 =  √
∑|𝑥𝑖 − 𝑥̅|2

𝑛 − 1
 

Gini coefficient 
consumer resource 
stock 

Measures the deviation of a population from perfect equality. 
Mathematically, it can be calculated as half the relative mean absolute 
difference, or half the average absolute difference between all pairs of 
the population, divided by the average of the population to normalise. 
Unitless. 

𝐺 =  
∑ ∑ |𝑥𝑖 − 𝑥𝑗|𝑛

𝑗=1
𝑛
𝑖=1

2𝑛2𝑥̅
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Entropy consumer 
resource stock (Shannon 
index) 

Measures the amount of information that would be needed to 
represent the state of the system. Specifically, it is the negative sum of 
the probability of a consumer’s resource stock occurring within a given 
range,  and the log of that probability, normalised by the maximum 
value (log n). This is the discretised formula for entropy. The units 
depend on the base of the log: here we use base 2 (units: bits). 

𝐻(𝑋) =  
− ∑ 𝑓(𝑥𝑖) log2

𝑓(𝑥𝑖)
𝑤(𝑥𝑖)

𝐻𝑚𝑎𝑥
 

Final population size Count of currently active (‘alive’) consumers.  

3.3. Results 

3.3.1. Network metrics 

The network metrics showed several significant differences between the Cambisols and Arenosols, 

with the Cambisols having higher values for most metrics measuring size and structure. These are 

summarised in Table 3.4 and Figure 3.1. 
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Table 3.4. (a) Estimated marginal means, standard errors, and outcomes for mixed-effect nested ANOVAs comparing network metrics between Cambisol and 
Arenosol main soil networks, and (b) medians and 95 % confidence intervals and results of mixed-effect nested Aligned-Ranks Transformation (ART) ANOVAs 
comparing Cambisol and Arenosol subnetworks. Shown in (a) are the Type II Wald Chi-square statistic and p-values for models comparing each network metric 
across soil types. Profile ID was included as a mixed effect; its log-likelihood ratio test (LRT) statistic and p-value are also shown. Both the Chi-square and LRT 
used one degree of freedom to compare soil types. Estimated marginal means and standard errors were calculated from ANOVAs. In (b) ART ANOVAs were 
used as the data were non-normal; profile ID was also included as a mixed effect. Shown are Type III Wald F tests with Kenward-Roger degrees of freedom. The 
asterisks designate level of significance: p < 0.1: ·, p < 0.05: *, p < 0.01: **, p < 0.001: ***. Descriptions of the metrics are in Table 3.1. 

Main networks 

 

Arenosols 
(n = 25) 

Cambisols 
(n = 25) Soil type Profile ID (random effect) 

 
Est. marginal 
mean SE 

Est. marginal 
mean SE χ2  p LRT p 

No. of nodes 2670.000 9.570 3326.000 10.070 7.809 0.005 ** 21.384 < 0.001 *** 

No. of links 4225.000 344.000 5581.000 293.000 9.058 0.003 ** 19.280 < 0.001 *** 

Mean node degree 3.140 0.055 3.350 0.047 9.098 0.003 ** 9.005 0.003  ** 

Mean link length 3.570 0.023 3.700 0.022 17.667 0.000 *** 0.414 0.520       

SD link length 2.110 0.025 2.210 0.025 9.815 0.002 ** 0.000 1.000 

Gamma index 0.001 0.000 0.001 0.000 4.838 0.028 * 20.231 < 0.001 *** 

Beta index 1.570 0.028 1.680 0.024 9.098 0.003 ** 9.005 0.003 ** 

Diameter 154.000 11.100 201.000 10.700 10.017 0.002 ** 0.141 0.708 

Cost 15180.000 1257.000 20600.000 1072.000 10.840 0.001 *** 16.153 < 0.001 *** 
Global reach 
centrality 0.002 0.000 0.002 0.000 0.049 0.825 10.923 < 0.001 *** 

Convex hull area 166940.000 2949.000 167086.000 2514.000 0.001 0.970 11.730 < 0.001 *** 

Network density 0.016 0.001 0.020 0.001 8.037 0.005 ** 16.547 < 0.001 *** 

No. of subnetworks 163.000 3.382 158.000 3.236 0.009 0.924 6.302 0.012 * 
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Subnetworks 

 

Arenosols 
(n = 3906) 

Cambisols 
(n = 3834) 

ANOVA 

 Median Lower CI Upper CI Median Lower CI Upper CI F p 

Number of nodes 11.000 11.000 11.000 11.000 11.000 11.000 F(1, 8.614) = 1.542 0.247 

Number of links 15.000 14.000 15.000 15.000 15.000 16.000 F(1, 8.443) = 3.793 0.085 · 

Mean node degree 2.670 2.640 2.670 2.710 2.670 2.750 F(1, 7.971) = 9.239 0.016 * 

Mean link length 3.190 3.170 3.220 3.250 3.230 3.280 F(1, 7.011) = 11.322 0.012 * 

SD link length 1.620 1.600 1.640 1.670 1.640 1.690 F(1, 8.334) = 3.648 0.091 · 

Gamma index 0.132 0.127 0.136 0.133 0.128 0.136 F(1, 8.720) = 0.355 0.567 

Beta index 0.133 0.132 0.133 0.136 0.133 0.138 F(1, 7.971) = 9.239 0.016 * 

Diameter 19.000 18.600 19.500 19.300 18.800 19.700 F(1, 7.957) = 1.664 0.233 

Cost 46.700 45.200 48.700 49.200 47.500 51.600 F(1, 8.161) = 4.717 0.061 · 

Global reach centrality 0.058 0.057 0.059 0.058 0.057 0.059 F(1, 7.645) = 0.554 0.479 

Convex hull area 63.500 59.800 67.000 62.500 58.500 66.000 F(1, 8.132) = 0.385 0.552 

Network density 0.171 0.167 0.176 0.172 0.168 0.179 F(1, 8.117) = 0.013 0.913 
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A 
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B 

  

Figure 3.1. The distribution of each network metric by soil type, for (a) main soil networks and (b) 
subnetworks. The point and error bars in (a) represent the estimated marginal mean and standard error 
for that network type and soil type, as determined by the ANOVAs (Table 3.4a), and the point and error 
bars in (b) represent the median and upper and lower 95 % confidence intervals, respectively. 
Descriptions of the network metrics are in Table 3.1.  
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At the main network level, the networks extracted from the Cambisols had significantly more 

nodes and links, a larger mean node degree and standard deviation of link length, and longer mean 

link length (Table 3.4a). These networks also had a higher beta index, higher cost, and higher 

density. While the main networks of the two soil types had significantly different gamma indexes, 

the absolute difference in the estimated marginal means  between the two soil types was negligible 

(< 10-3) (Table 3.4a, Figure 3.1a). At the subnetwork level, Cambisol networks had longer mean 

link length, and higher mean node degree and beta index (Table 3.4b). While not significant, 

Cambisol subnetworks also had noticeably larger number of links and standard deviation of link 

length, and higher cost (Figure 3.1b).  

To control for the effect of replication on the significance, the profile ID was included in the 

ANOVAs as a mixed effect. This was significant for all metrics except mean and standard deviation 

of link length and diameter. Most profiles within each soil type at the main network level showed 

low absolute variation across the networks extracted from each however, and noticeably higher 

metric values for Cambisols than Arenosols (Figure A7a). At the subnetwork level, the 

distributions were quite similar across all profiles, but the Cambisol profiles showed more frequent 

and higher outliers. 

3.3.2. Agent-based model 

The ABM results showed significant differences across the different combinations of 

parameterisations and soil types, summarised in Tables 3.5 and 3.6 and Figure 3.2. The simulations 

run on the Cambisol networks had significantly higher final population sizes (Tables 3.5 and 3.6, 

Figure 3.2b), and interactions between soil type and consumer and resource parameterisation were 

significant for several outcome variables (Table 3.6).  
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Table 3.5. The medians, first and third quantiles for agent-based model (ABM) outcome variable values 
across the two soil types. These values represent the overall results across all consumer and resource 
parameterisations. Descriptions of the variables are in Table 3.3. 

 Arenosols (n = 375) Cambisols (n = 375) 

 Median 1st Quantile 3rd Quantile Median 1st Quantile 3rd Quantile 

Mean resource stock 69.970 47.086 71.391 69.940 47.077 71.397 

SD resource stock 33.266 22.262 34.123 33.300 22.276 34.112 

Entropy resource stock 0.956 0.955 0.958 0.957 0.956 0.958 

Gini resource stock 0.271 0.268 0.273 0.271 0.268 0.274 

Final population size 4049.728 1967.921 5102.043 4890.158 2279.1560 5842.834 
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B 

  

Figure 3.2. Distributions of (a) each agent-based model (ABM) outcome variable, grouped by resource 
parameterisation (columns, labelled at top) and consumer parameterisation (x axis within columns), 
across both soil types, and (b) ABM outcome variables that were significantly affected by soil type 
(represented by colour), grouped by resource parameterisation (columns) and consumer 
parameterisation (x axis within columns). The three-letter consumer parameterisation codes refer to 
the metabolism, consumption rate, and spawning threshold, respectively, where H is high, M is 
medium, and L is low. Descriptions of the resource and consumer parameterisations are in Table 3.2, 
and descriptions of the outcome variables are in Table 3.3.  

The ART ANOVAs showed that measured outcomes all differed significantly across consumer 

parameterisation, resource parameterisation, and consumer-resource parameterisation 

interactions. Final population size differed significantly by soil type, soil type-resource 

parameterisation interaction, and soil type-consumer parameterisation interaction. Mean resource 

stock also differed significantly by soil type-resource parameterisation interaction.  
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Table 3.6. Overview of Aligned Ranks Transformation ANOVA models of consumer population 
outcomes by consumer and resource parameterisation and soil type. The tests were Type III Wald F 
tests with Kenward-Roger degrees of freedom. Profile ID was included as a random effect. The asterisks 
designate level of significance: p < 0.1: ·, p < 0.05: *, p < 0.01: **, p < 0.001: ***. Descriptions of 
consumer and resource parameterisations are in Table 3.2 and descriptions of response variables are 
in Table 3.3.  

Response Predictors F Significance 

Mean 

consumer 

resource stock 

Consumer population F(4, 710.063) = 3585.924 < 0.001 *** 

Resource population F(2, 710.063) = 2585.400 < 0.001 *** 

Soil type F(1, 9.692) = 0.328 0.560 

Consumer pop. x resource pop. F(8, 710.094) = 998.152 < 0.001 *** 

Consumer pop. x soil type F(4, 710.106) = 1.460 0.213 

Resource pop. x soil type F(2, 710.103) = 3.513 0.030 * 

Consumer pop. x resource pop. x soil type F(8, 710.102) = 1.020 0.419 

SD consumer 

resource stock 

Consumer population F(4, 710.185) = 3629.337 < 0.001 *** 

Resource population F(2, 710.292) = 1137.215 < 0.001 *** 

Soil type F(1, 9.212) = 0.555 0.475 

Consumer pop. x resource pop. F(8, 710.233) = 677.837 < 0.001 *** 

Consumer pop. x soil type F(4, 710.315) = 2.164 0.071 · 

Resource pop. x soil type F(2, 710.32) = 0.538 0.584 

Consumer pop. x resource pop. x soil type F(8, 710.306) = 1.123 0.345 

Entropy 

consumer 

resource stock 

Consumer population F(4, 710.030) = 586.700 < 0.001 *** 

Resource population F(2, 710.036) = 59.661 < 0.001 *** 

Soil type F(1, 9.861) = 3.105 0.109 

Consumer pop. x resource pop. F(8, 710.025) = 67.989 < 0.001 *** 

Consumer pop. x soil type F(4, 710.037) = 2.364 0.052 · 

Resource pop. x soil type F(2, 710.037) = 0.241 0.786 

Consumer pop. x resource pop. x soil type F(8, 710.037) = 0.949 0.475 

Gini consumer 

resource stock 

Consumer population F(4, 710.677) = 1296.640 < 0.001 *** 

Resource population F(2, 711.086) = 2004.095 < 0.001 *** 

Soil type F(1, 7.791) = 2.445 0.158 

Consumer pop. x resource pop. F(8, 710.847) = 1005.251 < 0.001 *** 

Consumer pop. x soil type F(4, 711.364) = 0.470 0.758 

Resource pop. x soil type F(2, 711.281) = 2.502 0.083 · 

Consumer pop. x resource pop. x soil type F(8, 711.287) = 0.614 0.766 

Final 

population size 

Consumer population F(4, 710.001) = 1361.66 < 0.001 *** 

Resource population F(2, 710.001) = 604.376 < 0.001 *** 

Soil type F(1, 9.998) = 9.239 0.012 * 

Consumer pop. x resource pop. F(8, 710.001) = 33.651 < 0.001 *** 

Consumer pop. x soil type F(4, 710.001) = 41.516 < 0.001 *** 

Resource pop. x soil type F(2, 710.001) = 5.039 0.007 ** 

Consumer pop. x resource pop. x soil type F(8, 710.001) = 0.282 0.972 
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The entropy of consumer resource stocks and the final population size both showed considerable 

variation in the initial boxplots that was not explained by the consumer and resource 

parameterisation (Figure 3.2a), and the ANOVA results suggested that soil type was influential on 

final population size. Therefore, these were further explored with Kruskal-Wallis tests, first with 

profile ID as the grouping variable, then soil type (Table 3.7, also Figure 3.2b). Significant 

differences in profile ID were explored with Dunn post-hoc analysis. This showed that entropy 

differed significantly between profiles D and H, which were Cambisol and Arenosol, respectively, 

while final population size differed significantly between several pairs of profiles, including both 

intra- and inter-type profile pairings. 

Table 3.7. Results of Kruskal-Wallis tests and Dunn post-hoc analysis comparing entropy of consumer 
resource stocks and final population size by soil profile ID and soil type. The degrees of freedom for the 
Chi-square statistics were 11 and 1 for profile ID and soil type, respectively. Profile IDs A – G correspond 
to Cambisols, while profile IDs H – K correspond to Arenosols. Significant pairs of profiles were identified 
at the level of α/2, where α = 0.05. Profile pairings in italics denote inter-type pairs. 

Response variable Grouping variable 

Significance Significantly different 
pairs (p < 0.025) χ2 p 

Entropy consumer 
resource stock 

Profile ID 25.824 p = 0.007 ** D : H 

Soil type 4.965 p = 0.026 * Cambisol : Arenosol 
 

Final population size Profile ID 65.167 p < 0.001 *** A : C, A : H, A : I, A : K, 
A: L, B : H, B: I, B: K, D 

: H, D : I, D : K, G : H, 
G : I, G : K, H : J, I : J, 

J: K 

Soil type 21.974 p < 0.001 *** Cambisol : Arenosol 
 

3.4. Discussion 

3.4.1. Network analysis 

Given the known characteristics of the two soil types, the results of the network analysis suggest 

that the methodology developed here captures overall trends of soil structural development. 

Cambisols typically have more soil structure, higher porosity, higher levels of biotic activity, and 

greater stability than Arenosols (FAO, 2015). Correspondingly, the abstracted Cambisol soil 
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networks analysed here showed higher values for the metrics measuring size, structure, and 

connectivity than the abstracted Arenosol soil networks did.  

Specifically, the Cambisol soil networks had significantly more nodes and links, longer mean and 

standard deviation of link lengths, and higher total cost, density, and diameter (Table 3.4). This 

suggests more pore-creating activities modifying the soil, and a soil structural matrix that can 

support longer pores. This would also lead to higher water holding capacity, and increased internal 

drainage, both of which are commonly associated with Cambisols (FAO, 2015). In contrast, the 

smaller and less connected Arenosol networks have a low water-holding capacity, and the weaker 

coherence of their matrix material prevents longer pores from being stable, making them prone to 

erosion (FAO, 2015). Cambisols are also classified as more structurally developed than Arenosols, 

and contain more organic matter (FAO, 2015), both of which further validate the increased 

structure seen in the Cambisol networks here.  

The global reach centrality, gamma index, and convex hull area were not as clearly differentiated 

between the Cambisol and Arenosol soil networks, however. The global reach centrality values 

were small and functionally identical, with an estimated marginal mean of 0.001 and 0.058 for both 

soil types at the main and subnetwork level, respectively (Table 3.4). Similarly, the estimated 

marginal mean gamma index for main networks of both soil types was 0.001. This is likely due to 

the presence of a similar number of disconnected subnetworks within each soil network, limiting 

the total number of nodes that any given node can reach. The Cambisol main networks also had 

a slightly smaller range of convex hull areas, although the opposite trend emerges at the 

subnetwork level (Figure 3.1, Table 3.4). When this is decomposed by profile, the Cambisols show 

more variation and outliers across and within profiles for several metrics, including convex hull 

area (Figure A7), suggesting that soil type includes a greater heterogeneity of network sizes and 

structures. As with the other metrics, further work is required to establish ranges across different 

soil types and geographical regions, and to compare these metrics with those more commonly used 



Structure, flow, and inequality 

121 
Natalie Davis – June 2021 

in soil analysis. Overall, however, the differences between the Cambisols and Arenosols as 

captured in this analysis broadly reflects those expected, given the known differences in their 

properties. 

The improved profile development and heterogeneity of Cambisols highlights their potential for 

agriculture and forestry, and in underpinning the diversity of a range of ecosystems. It is vital to 

manage them in a way that preserves and enhances their soil structure, however, to maintain their 

porosity and biodiversity, and resulting stability, drainage, and aeration. Similarly, Arenosols should 

be managed in a way that minimises their propensity for erosion and soil loss. In both cases, this 

can be accomplished through limiting or eliminating tillage (e.g. Young and Ritz, 2000; Helgason, 

Walley and Germida, 2010; Kravchenko et al., 2011), and increasing cover crops and native species 

(e.g. Fernández et al., 2019; Kravchenko et al., 2011). These provide additional organic inputs to 

the soil to promote an active and diverse soil biota, and therefore the positive feedback between 

biota, and structural development and stability (e.g. Oades, 1993; Young and Ritz, 2009; Crawford 

et al., 2012). The feasibility of the measurement and analysis methods presented here could provide 

a basis for estimating changes in structure over time and under different management strategies or 

environmental changes. This would help inform actions taken to preserve or improve the soil 

structure. However, further work is required to standardise the approach and demonstrate its 

application over multiple soil types. 

As introduced in the Methods, the networks analysed here represent abstractions of the true soil 

structure present in the samples. This simplification is reasonable for analysing overall structural 

characteristics and heterogeneity and made the computation of the network metrics feasible. 

Although the short link lengths (Table 3.4) suggest that using Euclidean distance is likely negligibly 

different than measuring the path through the pixels, it does limit the interpretation of the findings 

we present. Specifically, the absolute values of the metrics cannot be taken to characterise the 

precise soil structure, but rather suggest general trends in structural development. As the exact size 
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and shape of the pores was not preserved, many of the finer distinctions between networks may 

also be lost. This could cause the magnitudes of differences found between soil samples here to 

appear lower than they are. As discussed above, the relatively rapid, low-cost, and lightweight 

approach used here for estimating soil structure should be compared against more established 

approaches and metrics to determine its effectiveness. This methodology provides simplified and 

potentially inaccurate measurements of soil structure, but with further improvement it could be a 

suitable approach for rapid assessment of soil structure in the field. The results presented suggest 

that the methodology can still capture general known trends of heterogeneity within soil networks, 

meriting further refinements and application. 

3.4.2. ABM analysis 

The ABM evaluated the effects of and interactions between consumer and resource characteristics, 

and the structure of the abstracted soil networks, on the measured consumer outcomes. Overall, 

the results showed that the size and energetic heterogeneity of the consumer population was 

heavily influenced by the parameterisation of the consumer population and resource base, and 

their interactions. Moreover, while outcome variables were less directly affected by soil network 

structure, they were more influenced by the interactions between this network structure and 

consumer or resource parameterisations.  

Across all simulations, measured outcomes varied most strongly across consumer and resource 

characteristics, and their combinations as overall consumer and resource parameterisations or 

types (Figure 3.2a, Table 3.6). Specifically, the mean, standard deviation, and entropy of consumer 

resource stocks, as well as the final population size, were most different across consumer types. 

These differences in outcome variables resulted from how each consumer population responded 

to the provided resource base. For example, the consumer populations with low metabolisms, low 

consumption rate, and a low energy requirement for spawning had a lower mean resource stock, 

and a higher final population size, for any given resource base. The consumers with high 
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metabolisms, high consumption rate, and a high energy requirement for spawning had a lower 

final population size, but higher mean resource stock. This is similar to the distinction between r-

strategists and K-strategists. In these simulations, the threshold for spawning and the active and 

basal metabolic rates appeared to have the largest impact on the measured outcome variables 

(Figure 3.2a). This is likely due to these parameters balancing one another in determining energy 

allocation between maintenance and reproduction (e.g. Brown et al., 2004; Kooijman, 2009).  

In addition to consumer and resource characteristics, the soil type, and therefore soil network 

structure, also affected population size and diversity (Table 3.6). Specifically, the mean consumer 

resource stock and final population size showed significant differences across resource and soil 

type interactions, and final population size also showed significant differences between soil types 

(Table 3.5). While the final population size and entropy also differed significantly across profiles 

(Table 3.6), post-hoc analysis revealed that for entropy this was only significant for inter-type 

profile pairings, and a slight difference was visible between groups when plotted (Figure 3.2b). 

This entropy is also known as the Shannon Index or Shannon-Wiener Index, and here measures 

the diversity or ‘evenness’ of the distribution of consumer resource stocks (Hill, 1973; Spellerberg 

and Fedor, 2003). Higher entropy therefore meant that given quantities of resource stock were 

represented in equal proportional abundance across the population. This is typically caused by 

groups of consumers emerging, where group members each have the same quantity of resource 

stock, but these quantities differ among groups. Over time, adaptations in this context could drive 

the system toward speciation. In these simulations, the larger populations supported by the larger 

Cambisol soil networks were more likely to have higher entropy, through different quantities of 

consumer resource stocks represented with equal proportional abundance. 

The relatively low Gini coefficients (Table 3.5, Figure 3.2a) can also suggest the emergence of 

distinct groups of consumers with equal resource stocks, with similar numbers of consumers 

across the groups. As the Gini coefficient measures relative inequality, both inequality in resource 
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stocks across groups, and more groups, cause it to increase. Equal group sizes can somewhat 

counter this. In both soil types however, as the consumers in a given simulation had identical 

characteristics, it is reasonable that they would have similar outcomes, slightly differing based on 

the subnetwork in which they found themselves, and the resource base available to them there. 

The similarity among subnetworks of the two soil types (Table 3.4b) suggests that the 

heterogeneity between soil types is more apparent at the main network level. As the consumers in 

these simulations were unable to move between subnetworks, they likely did not experience the 

full range of environmental heterogeneity between the soil types, which would have limited its 

effect on the measured outcomes. 

Overall, the simulations highlight the differences in population size and diversity across consumer 

and resource parameterisations and interactions, soil and resource type interactions, and to a lesser 

extent, soil type on its own. Spatial heterogeneity, through both resource and network structural 

heterogeneity, can increase the microhabitat diversity (Anderson, 1978; Giller, 1996; Ettema and 

Wardle, 2002; Nielson et al., 2010), which was shown here through the increased evenness of 

consumer groups with different resource stocks. Similarly, the heterogeneous habitat of soils can 

limit competitive exclusion by providing structural and resource niches for different species 

(Bardgett, Yeates and Anderson, 2009), such that more structurally heterogeneous Cambisols have 

larger and more diverse populations (FAO, 2015). This was reproduced by the larger populations 

that emerged in the Cambisol simulations here, although speciation was not explicitly modelled. 

As with the findings of the network analysis, this emphasises the importance of preserving soil 

structure and providing adequate substrate for maintaining an active soil biota (e.g. Young and 

Ritz, 2009; Crawford et al., 2012; Fernández et al., 2019). 

While the parameterisations presented here were limited, they revealed interesting effects of 

consumer and resource characteristics and interactions. The programming of the model itself, 

however, may also have had an impact on the outcome of consumer populations. For example, 
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consumers moved randomly among resources rather than following any sort of search strategy, 

and there was no energetic penalty imposed for turning, which are simplifying assumptions based 

on the limited sensory and processing capabilities of most soil biota. This eliminated free 

parameters that would have to be tuned and analysed or sourced from limited data about specific 

soil biota metabolism and cognition. It also eliminated any effect that tortuosity of the network 

would have on consumer resource stocks, though. This may not be a correct assumption if turning 

has a higher burden physically, cognitively, or both. Furthermore, as consumers were not able to 

extend the network or move between subnetworks, they were unlikely to experience the full 

difference between soil networks, as discussed above. This may have led to a smaller effect of soil 

type on measured consumer outcomes. 

Additionally, the extraction and simplification process used to create the soil networks may have 

affected the outcomes of the ABM. As the details of pore size and shape were not maintained, the 

consumers’ ability to forage or hide in crevices was not intended to mimic the true range of 

consumer sizes and behaviours. Since predation was not included in the model, however, we did 

not intend to explore the hypothesised effect of physical niches on populations by limiting 

competitive exclusion and predation. While this would be an interesting future extension, and 

these changes could increase the observed effect of the soil network structure on consumer 

population outcomes, it would require refining the network extraction process as discussed above, 

as well as estimating ranges of consumer sizes and predation dynamics. The model presented here 

instead focussed on exploring the overall trends that might emerge in a population of consumers, 

rather than attempting to predict how specific populations might evolve. While its design limits 

the precision of the implications, it maintains the level of realism and generality assumed within 

the overall methodology (Levins, 1966).  
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3.5. Conclusion 

This work has explored how analysing abstracted soil networks using standard network metrics, 

combined with simulations, can quantify the underlying structural and functional differences 

between soil types. We showed that networks derived from a brown forest soil, or Cambisol, were 

significantly larger, more connected, and more spatially heterogeneous than the networks derived 

from a less developed sandy beach soil, or Arenosol. These larger and more structured networks 

were in turn able to support larger populations of simulated consumers in an agent-based model 

(ABM). The ABM also demonstrated how the size and heterogeneity of the simulated population 

were significantly different across consumer and resource parameterisations, and interactions 

between these parameterisations and soil type.  

In conclusion, standard network metrics applied to images can be a useful way to quickly assess 

the structure of networks within a soil profile, by capturing the broad structural differences 

between distinct soil types, in a way that can suggest functional differences as well. These initial 

estimates can be used on their own to survey an area more extensively or affordably, or coupled 

with more intensive analyses, such as three-dimensional imaging techniques. Agent-based 

modelling can also be used, when seeded with networks obtained from images or scans, to evaluate 

interactions between consumer and resource characteristics and network structure, and to quantify 

the impact these and other environmental factors have on the outcomes of simulated populations. 

Overall, combining network analysis and simulation modelling can provide unique insights on the 

structure, function, and diversity of an area of soil, and provide avenues for exploring the impact 

of future management, structural, or environmental changes.  
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3.7. Appendices 

Appendix 1. Network extraction process 

For all images:  

1. Convert the image to a text file containing RGB triplets 
2. Identify and eliminate all non-soil pixels (set to -1) 
3. Calculate mean pixel intensity at all points 
4. Adjust pixel intensity to remove variations in brightness across image 
5. Threshold the image to retain the darkest 30 % soil pixels 
6. Carry out erosion and thinning operators 
7. Clean image to produce skeletal pixels 
8. Identify networks 
9. Remove redundant pathways 
10. Calculate distances between nodes 
11. Save the network 
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Figure A1. Soil image morphology process for a Cambisol (a) and Arenosol (b) profile image. Steps show 
include (c-d) colour correction, (e-f) thresholding, (g-h) erosion and thinning operations, and (i-j) 
subnetwork identification. White areas represent colour correction cards, which were excised. 
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Figure A2. The rate of change of mean fraction of pixels for each mean fraction below a given threshold 
value. The plot starts on the left with pixel values of 0, with no pixels below this value, and ends on the 
right with pixel values of 755 (with correction card removed from image). The y-axis shows the rate of 
change of the mean fraction of pixels below each value. 

 

Figure A3. Comparison of different images from the same pit after thresholding. The two pairs of images 
from each pit are arranged horizontally. The white rectangle is the correction card. The thresholding 
process was the same as described in Section 2.2, where the darkest 30 % of pixels have been retained 
as pores, and other pixels removed. 
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Appendix 2. ODD design concepts, initialisation, input data, and 
submodels 

 

Figure A4. A screenshot of the model. The inset at the top left shows an enlarged version of some of 
the resource nodes (yellow squares) and agents (red ants). 

IV. Model purpose 

The model is designed to be an analytical tool to explore the heterogeneity in resource supply 

potential of a network by populating it with idealised energy-consuming agents, and to quantify 

the effects of consumer, resource, and network characteristics on resulting consumer population 

outcomes. 

V. Entities, state variables, and scales 

i. Consumer entities 
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State variables 

Property  Description  

Location The resource on which the consumer is located 

Target location The resource to which the consumer will move next 

Active? Whether a consumer is active (or dead) 

Parameters 

Property  Description  

Basal metabolism How much resource an agent needs per day to stay alive 

Active metabolism How much resource an agent uses with each step 

Resource stock How much resource an agent has consumed but not metabolised 

Consumption rate Maximum number of resource units that an agent takes from a resource it 
visits, per timestep 

Spawn energy How much energy an agent requires to spawn (depletes this quantity from 
stocks and passed to offspring as starting quota) 

ii. Resource entities 

State variables 

Property  Description  

Current supply The current quantity of resource at this point 

Parameters 

Property  Description  

Resource capacity How much energy is stored in a resource when it is full 

Regrow rate The amount the resource regrows each timestep 

iii. Link entities 

State variables 

Property  Description  

Length The length of the link - determines energy and time required to traverse it 

Scales 

Property  Description  

Timestep A single unit of time in the model, defined as that which is required for consumers 
to move 1 pixel (approximately 0.3 – 0.5 mm), and for which they require basal-
metabolism units of energy.  

World size 400 x 500, determined by the size of the soil networks used as the environment. 

 

  



Chapter 3: Measuring heterogeneity in soil networks 

138 
Natalie Davis – June 2021 

VI. Sequence of events 

1. Consumers start on random nodes around a pre-specified network, where nodes are 

resource patches. 

2. Consumers move around the network randomly following links. If they find a resource 

patch, they consume as much as they can from it, and the patch depletes. 

• Consumers require basal-metabolism units of resource per timestep. If they 

do not consume this resource, they die.  

• Consumers can stay put on a resource and consume it (consumption-rate 

units consumed per timestep), but it depletes, and if there is no more resource there 

then they move on. 

• Consumers metabolise active-metabolism units of resource per patch of 

link that they cross. 

• If there is more than one agent on a resource patch, they each take 

consumption-rate units per timestep, or split the remainder if there is not 

enough resource remaining for them to each get consumption-rate units. 

3. If consumers have twice as much energy as the set spawn-energy, they can spawn new 

consumers (who take the same amount of resource-stock from their parent that the 

parent started with, so now parent and offspring both have the same resource-

stock). 

4. Resources regrow at a constant rate (regrow-rate) per timestep, up to their maximum 

capacity (resource-capacity).  
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VII. Design concepts 

a. Basic principles  

i. Consumers attempt to consume as much free energy from a resource as 

they are able, to maximise energy reserves for future movement, and 

spawning capability. 

ii. Conservation equations: energy and matter cannot be created (except at 

the start of the simulation) or destroyed. In spawning, this is represented 

by consumers transferring some of their energy to their offspring. 

Consumers only die when their energy reserves are completely depleted 

(starvation). 

iii. Entropy production: some resource energy is consumed in movement and 

cannot be recaptured. 

b. Emergence 

i. The distribution of consumers in space around the network and the 

distribution of resource stocks across the consumers both emerge from the 

interactions in the model. 

c. Objectives 

i. The consumers’ objective is to consume as much resource energy as 

possible, allowing them to stay alive, move, and potentially reproduce. 

d. Prediction 

i. Consumers do not ‘predict’ the results of their course of action per se, they 

are random walkers, but they do ‘predict’ that they will die if they stay in a 

non-resource patch, or depleted resource patch, so they keep moving. 

e. Sensing 
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i. Consumers can sense if they are on a resource patch or not, and if it has 

any resource energy in it. They also know the link-neighbours of the 

resource patch that they are currently on. 

f. Learning 

i. Consumers are random walkers; they do not learn in any capacity. 

g. Adaptation 

i. The population adapts to fill the network in a way that reflects the density 

of resource availability in that area, as consumers will cluster and reproduce 

around resources where they can consume what they need. 

h. Interaction 

i. Consumers interact stigmergically through their consumption of resources. 

While they do not interact directly in any meaningful way, their 

consumption of resources affects the availability of resources for others to 

consume.  

i. Collectives 

i. There are no collectives present. 

j. Stochastic elements 

i. Consumers are initialised in random locations and move randomly. 

Additionally, resources are all initialised with random maximum capacity 

between 1 and maximum-resource-capacity and regrow rates 

between 1 and maximum-regrow-rate. 

k. Observation 

i. Number of currently active (‘alive’) consumers at each timestep. 

ii. Mean, standard deviation (SD), Gini coefficient, and entropy of the 

distribution of consumer resource stocks at each timestep. 
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iii. The resource capacity and regrow rate of each resource at the start of the 

simulation. 

iv. The resource stock and location of each active consumer at 10, 100, 500, 

1000, and 2000 timesteps. 

VIII. Initialisation 

a. The network was supplied as two Comma-Separated Values (CSV) files: one of 

resource node locations and another of the connections between the resource 

nodes. The node locations and connections were determined during the process 

of extracting the soil network from a soil profile image, as described in the main 

text (Section 2.2). The resource and consumer types and parameters were specified 

in an Extended Markup Language (XML) file. The models were initialised with 500 

consumers located on random resource nodes throughout the network. The 

consumers each began with 30 resource units in their resource-stock, and 

metabolic rates, consumption rate, and spawn energy thresholds as specified in the 

XML file. Resources were all initialised with random maximum capacity between 

1 and maximum-resource-capacity and regrow rates between 1 and 

maximum-regrow-rate and began the simulation at full capacity.  

IX. Input data 

a. This model has no input data. 

X. Submodels 

a. Regrowth of resources: at each timestep, all resources that are less than their 

maximum capacity regrow by regrow-rate units.  

b. Consuming resources: at each timestep, all consumers currently located on a 

resource node check whether there is any resource available at that node. If there 

is enough for each consumer to take consumption-rate units, they do, and 

these are added to their resource-supply. If there is not enough, each 
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consumer receives what is at the resource, divided by the number of consumers at 

the resource. If there is no resource available at that node, the consumer identifies 

a new target-node, selecting randomly from the other resources connected to 

the first, and moves to the target-node. 

c. Spawning new consumers: at each timestep, consumers check whether they have 

twice the amount of energy specified as spawn-energy in their resource-

stock. If so, they spawn a new consumer who is an exact clone of themselves. 

The new consumer starts with spawn-energy units as their initial 

resource-supply, and the parent consumer loses spawn-energy units of 

resource from their resource-stock.  

d. Check consumer resource stocks: at each timestep, all consumers check whether 

they have more than resource-requirement units, or their basal 

metabolism, of resource in their resource-supply. If they do, they consume 

resource-requirement units, removing them from their resource-

supply, otherwise they die. 
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1.1.1. Appendix 3. Sensitivity Analysis 

First, a pre-test was conducted to determine the number of time steps for which to run the 

simulations, and the number of replicates of each parameter set that were necessary for the outputs 

to reach equilibrium (ten Broeke, van Voorn and Ligtenberg, 2016). The first set of 500 runs used 

varied parameter values and a fixed network architecture, determined by Latin Hypercube 

Sampling from the range of values for global analysis (Table A1). One replicate of each parameter 

set was run for 3000 timesteps, and the output variables were plotted to determine whether the 

model reached a stable state, and if so, when. As all runs showed stability in output parameters 

after 500 – 1000 timesteps (Figure A5), apart from small variations due to stochasticity, the final 

output variable values for all future runs were calculated as the mean of the values at timesteps 

500, 750, and 1000.  

Table A1. Parameter ranges used for testing to determine length of simulations. Values shown are the 
minimum and maximum for that parameter. Latin Hypercube Sampling was used to generate the 
values, which were then multiplied by the range plus the minimum, to get the value for the parameter 
for testing. 

Parameter Value 

Initial population size 50, 1000 
Consumer basal metabolism 1, 3 
Consumer active metabolism 1, 3 
Initial consumer resource stock 20, 50 
Consumer consumption rate 5, 10 
Consumer spawn energy 50, 100 
Maximum resource capacity 20, 50 
Maximum resource regrowth rate 10, 20 
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Figure A5. Stability plots from testing to determine the length of simulations. Shown are values 
averaged for each timestep over 500 runs. 

The second set of pre-test runs used the baseline parameter values for all parameters, and a fixed 

network, which we repeated 100 times. We then calculated a rolling coefficient of variation for the 

output variables, including progressively more replicates (Figure A6). The coefficients of variation 

for all output variables stabilised around 10 runs. Plotting the distribution of the output variables 

at that point show approximate normality, such that the mean value across runs is a reasonable 

measure of centre. Therefore, for all future simulations, the mean of the outcome variables across 

10 replicates was used to reduce the effects of stochasticity on the output. As the mean value 

across replicates was used, there was no effect from replication on the experimental results.  
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Figure A6. Plots of rolling Coefficient of Variation (CoV) for each outcome variable against the number 
of replicates included in its calculation. This was used to determine number of replicates needed to 
average across to minimise stochasticity in output variables. 

After the pre-test, we used the One-Factor-at-a-Time methodology to identify which of the control 

variables significantly affected the output variables, and which could be held constant. For this 

test, the four control variables (initial consumer population, initial consumer resource stock, 

maximum resource regrowth rate, and maximum resource capacity) were varied across four levels 

each, changing one variable at a time, while holding all other variables constant at middle values 

for each. Both the maximum resource regrow rate and maximum resource capacity significantly 

affected the output variables, while initial consumer resource stock did not (Table A2). The initial 

consumer population size significantly affected all but the standard deviation of consumer resource 
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stock (Table A2e), but as the magnitude of the effect was quite small, both the initial population 

size and initial consumer resource stock were held constant at middle values for the rest of the 

simulations. 

Table A2. Regression results from One-Factor-at-a-Time analysis. This was used to identify which 
control parameters could be fixed, and which significantly affected the outcome variables and needed 
to be explored. The asterisks designate level of significance: p < 0.1: ·, p < 0.05: *, p < 0.01: **, p < 
0.001: ***. 

a. Mean consumer resource stock 

  
Estimate 

Standard 
error 

 
t value p 

Intercept 54.360 0.100  543.566 0.000 *** 

Initial population size 0.000 0.000  -3.728 0.002*** 

Initial consumer resource stock 0.000 0.001  0.100 0.920 

Maximum resource regrow rate 0.054 0.004  12.874 0.000 *** 

Maximum resource capacity 0.060 0.001  41.088 0.000 *** 

F(4, 251) = 467(p < 0.001) R2 = 0.88  
 

  
    

  

b. SD consumer resource stock 
    

  
Estimate 

Standard 
error t value p 

Intercept 27.110 0.038 711.283 0.000 *** 

Initial population size 0.000 0.000 0.948 0.344 

Initial consumer resource stock 0.000 0.000 0.333 0.739 

Maximum resource regrow rate 0.016 0.002 10.073 0.000 *** 

Maximum resource capacity -0.010 0.000 -17.718 0.000 *** 

F(4, 251) = 104.1 (p < 0.001) R2 = 0.62    

c. Entropy consumer resource stock 

  
Estimate 

Standard 
error t value p 

Intercept 0.953 0.000 2288.704 0.000 *** 

Initial population size 0.000 0.000 6.500 0.000 *** 

Initial consumer resource stock 0.000 0.000 0.446 0.656 

Maximum resource regrow rate 0.000 0.000 19.891 0.000 *** 

Maximum resource capacity 0.000 0.000 2.891 0.004 ** 

F(4, 251) = 111.6 (p < 0.001) R2 = 0.63    
 

(cont.)  



Structure, flow, and inequality 

147 
Natalie Davis – June 2021 

d. Gini consumer resource stock 

  
Estimate 

Standard 
error t value p 

Intercept 0.283 0.000 431.434 0.000 *** 

Initial population size 0.000 0.000 3.472 0.001 *** 

Initial consumer resource stock 0.000 0.000 0.154 0.876 

Maximum resource regrow rate 0.000 0.000 -2.267 0.024* 

Maximum resource capacity 0.000 0.000 -38.517 0.000 *** 

F(4, 251) = 375.2 (p < 0.001) R2 = 0.85    

e. Final population size 

    

  Estimate Standard 
error 

t value p 

Intercept -2787.749    188.701 -14.773 0.000 *** 

Initial population size 2.496 0.118 21.110 0.000 *** 

Initial consumer resource stock 0.589 2.738 0.215 0.830 

Maximum resource regrow rate 191.341 8.038 23.805 0.000 *** 

Maximum resource capacity 61.961 2.738 22.634 0.000 *** 

F(4, 251) = 381.2 (p < 0.001) R2 = 0.86 
   

 

1.1.2. Appendix 4. Calculation of Entropy 

The entropy of the consumer resource stocks was calculated as the Shannon index, or Shannon 

entropy, of the resource stocks held by consumers. As the Shannon entropy is meant to be applied 

to discrete data, the consumer resource stocks were discretised into a fixed number of ‘bins’ using 

Sturges’ formula (Sturges, 1926), and the Shannon entropy was calculated for the bins.  

Sturges’ formula for the number of bins k for a population of size n is  

 k=⌈log2 n⌉+1. (1) 

Using a sample of 100 runs from the stability test for run length (Section A3), the normality of the 

consumer resource stocks at the sampling timesteps T = 500, T = 750, and T = 1000 was tested. 

Additionally, the entropy was calculated for 5, 10, 15, 20, 25, 50, 75, and 100 bins and compared 

with the entropy binned using Sturges’ formula. By normalising the calculated entropy by the 

maximum possible entropy for that number of bins, log(N), the differences in entropy between 
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different numbers of bins were < 0.001. As the data were found to be approximately normally 

distributed at the sampling timesteps, the assumptions for Sturges’ formula was met, and it was 

chosen to determine the final bin width.  

A 
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B 

 

Figure A7. Boxplots showing distributions of network metrics across soil profiles for (a) main networks 
and (b) subnetworks. Profiles A – G correspond to Cambisol soil profiles, and profiles H – L are Arenosol 
soil profiles. Descriptions of network metrics are in Table 3.1. 
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4 
4. The co-evolution of network structure and 

consumer inequality in a spatially explicit 
model of resource acquisition 

Abstract 

The inequality of resource distribution in society has been linked to significant public and 

individual health challenges, while in ecosystems heterogeneity is considered a driver of 

biodiversity and stability. Resource acquisition and distribution is mediated by complex networks 

that co-evolve with the system in question, to move resources from points of origin or acquisition 

to those of end use. Past research has focussed on effects of spatiotemporal resource heterogeneity 

in ecosystems, or socioeconomic drivers of inequality, but there has been less attention to the 

interactions between resource network structure and these population-level outcomes. Here, we 

investigate the relationships between landscape heterogeneity, resource network structure, and 

inequality between consumers. We develop a spatially-explicit, stock-flow consistent agent-based 

model of generic consumers building and crossing links between resources, attempting to 

maximise their own time-discounted consumption. We use this model to examine the co-evolution 

of the emergent network structure and inequality in the population across three distinct landscapes. 

Initially, the consumer inequality decreased during network construction, then increased rapidly as 

the network decayed to a more stable state. The spatial distribution of resources in each landscape 

constrained the structures that could emerge, and therefore the specific rates and timings of these 

dynamics. This work advances the understanding of possible relationships among a spatially-

distributed set of resources, the network structure that connects them to a population, and 

inequality in that population, which can inform further work to better understand causes of 

inequality and heterogeneity in empirical systems. 
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4.1. Introduction 

One of the most notable characteristics of ecological and socio-ecological systems is the difference 

in the quantities and types of energy sources that species and individuals consume. These inter- 

and intra-species differences in resource consumption are typically referred to as heterogeneity and 

inequality, respectively. Discussions of heterogeneity often focus on the environmental and 

ecological conditions governing the spatiotemporal distribution of resources, and the ways 

organisms move and adapt to exploit various resource niches (Tews et al., 2004). In contrast, 

inequality is usually discussed in terms of differences between consumers – usually humans – in 

the quality or quantity of resources they have to meet their basic needs, and any excess (Mattison 

et al., 2016). While the term ‘resources’ can refer to energy or water sources; habitats or housing; 

or the wealth, social status, skills, or ability to acquire these (Smith et al., 2010), this work will focus 

on energy sources.  

The movement of energetic resources to consumers, and vice versa, occurs through a diverse array 

of resource acquisition, distribution, and end-use (RADE) networks. These can take the form of 

flow networks, such as vascular systems or electrical grids, where the resource is transported 

through the network to the end consumers. Other networks are active transport networks, such 

as roads, railways, and foraging trails, where the consumers navigate through the network to obtain 

and use or relocate resources. These resources, whether naturally occurring in the landscape or 

artificially grown or generated, are heterogeneously located in space. The consumers are also 

heterogeneously located and may have a range of resource-related behaviours and preferences that 

determine how they construct, maintain, or interact with the RADE networks on which they rely. 

Therefore, the structure of the RADE networks connecting consumers and resources is rarely, if 

ever, uniformly distributed across the landscape. This can lead to inequality in resource access for 

the end consumers, either in the quantity or quality of resources they receive through the network, 
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or in the time and energy they spend navigating the network. In this way, the heterogeneous 

spatiotemporal distribution of resources in the environment is propagated through the network.  

The energy required for transportation of resources, consumers, or both through RADE networks 

results from the frictional losses incurred by moving mass through space, in addition to the 

necessary losses resulting from the conversion of stored energy into these movements. All energy 

is contained within a mass carrier, such as the chemical bonds in food molecules, or the charged 

particles in electricity. Transporting this matter over space causes friction, which is also known as 

resistance, impedance, or drag in some systems. Overcoming friction consumes energy: this can 

be drained from the potential energy of the resource in flow networks, such as voltage drop in 

electrical grids, or taken from reserves of stored energy from previous resource flows in active 

transport networks, such as metabolism of previously eaten food during later foraging efforts. As 

both matter and energy are conserved, these frictional losses entail that the net energy that 

consumers gain from a resource flow is less than the energy output by that resource. When stored 

energy is considered, the full energy balance may have to be resolved over multiple timescales, but 

the reduction in energy due to frictional losses still applies. Given that these losses are proportional 

to the distance the resource or consumer moves, the environmental and RADE network 

heterogeneity described above implies that consumers experience unequal energetic costs for 

moving resources or themselves through the network, and therefore unequal net energy 

consumption.  

There is an evolutionary pressure to maximise this net energy consumption, as it determines the 

fitness of the consumers, and the likelihood of their survival and reproduction (Lotka, 1922). This 

can be accomplished by minimising the energy used in transport, through reinvestment of net 

energy to expand and improve the RADE network. For example, widening or smoothing 

frequently used links in the network decreases the frictional losses incurred when moving 

consumers or resources through them. However, when consumers and groups direct the evolution 
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of the network to maximise their own consumption, the more well-endowed consumers can direct 

even more flow or create better access for themselves. This could lead to a self-perpetuating cycle 

of inequality. Many naturally-occurring and human-engineered RADE networks are in the form 

of hierarchical branching structures, or other minimum spanning tree networks, which are 

hypothesised to minimise the frictional losses of transportation when connecting heterogeneously 

located resources and consumers (West, Brown and Enquist, 1997; Banavar et al., 2000). While this 

maximises the energy throughput, the highly heterogeneous network structure causes unequal 

resource flows and net energy consumption, especially as flows increase (Davis et al., 2020).  

Notably, although heterogeneity across species and inequality within species share similar origins 

in landscape and RADE network structural heterogeneity, the difference in possible outcomes in 

natural and social systems means that the former is a valued driver of biodiversity, while the latter 

is considered a major public health concern. Within ecological systems, the quantities, types, and 

accessibility of resources determines the amount and complexity of life that an area can support. 

While the exact shape of the ‘heterogeneity-biodiversity’ relationship posited for ecosystems is 

debated (e.g. Naeem and Colwell, 2012; Heidrich et al., 2020), there is wide consensus on the 

presence of this relationship, and the positive outcomes for ecosystem stability (see reviews in 

Tews et al., 2004; Stein, Gerstner and Kreft, 2014). In contrast, inequality in society has typically 

been studied through an economic or sociological lens (e.g. Stiglitz, 2012; Charlton, 1997). While 

financial inequality undoubtably affects the distribution of physical resources such as food and 

energy, insecurity in these resources has also been implicated in increasing economic inequality 

and limiting the prospects of individuals to lift themselves out of poverty (see reviews in Olson, 

1999; Gaye, 2007; Perez-Escamilla and de Toledo Vianna, 2012; Sovacool, 2012; Laraia, 2013; 

Long et al., 2020). 

Despite the considerable effects of inequality and heterogeneity, and the importance of RADE 

networks in mediating resource-consumer relationships, previous work has rarely focussed on the 
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inequality emerging in RADE networks or its co-evolution with network structure. Instead, RADE 

networks have typically been studied from the perspective of understanding or optimising some 

measure of efficiency, rather than equality. For example, work on the underlying physics of RADE 

networks has shown which network structures are optimally efficient for transporting materials 

under a range of cost functions (Banavar et al., 2000), how varying economies of scale and network 

structures determine which nodes become more dominant (Han et al., 2019), and trade-offs 

between optimising building and maintenance costs in networks with new nodes being added 

(Bottinelli, Louf and Gherardi, 2017). These optimal networks have been shown to emerge 

through local adaptation in response to changes in flow rates, and positive feedbacks leading to 

preferential strengthening or pruning of links (Hu and Cai, 2013; Louf, Jensen and Barthelemy, 

2013; Ronellenfitsch and Katifori, 2016). The resilience of these networks has also been studied, 

such as by quantifying the relationship between network structures and their ability to contain 

perturbations in flow (Gavrilchenko and Katifori, 2019). While the hierarchical branching 

structures introduced above have been shown to be less resilient than structures with loops or 

redundancy (Hu and Cai, 2013; Gavrilchenko and Katifori, 2019), the efficiency of these structures 

means that they pervade many of the human-engineered systems such as electrical or water grids 

(Banavar, Maritan and Rinaldo, 1999; Jarvis, Jarvis and Hewitt, 2015), which are another frequent 

subject of optimisation (Miranda et al., 1994; Montesinos, Garcia-Guzman and Ayuso, 1999; 

Mahmood and Kubba, 2009; Shrawane and Diagavane, 2013; Zischg, Rauch and Sitzenfrei, 2018; 

Bernstein and Dall’Anese, 2019; Karimianfard and Haghighat, 2019; Huang et al., 2020).  

Another frequent area of study is the emergence and dynamics of transport networks, including 

road networks in human society, and foraging networks of animals and plant roots. Given the 

considerable energetic costs associated with movement, it is hypothesised that these networks 

experience  evolutionary pressure to optimise energy use. For foraging, the origin of this idea is 

often attributed to work on marginal value theorem (Charnov, 1976) and optimal giving-up time 
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(McNair, 1982), which have since been expanded with research on the role of cognition and 

memory in foragers (Trapanese, Meunier and Masi, 2019; Ranc et al., 2021); chemotaxis and 

adaptation (Klyubin, Polani and Nehaniv, 2004; Calhoun, Chalasani and Sharpee, 2014; Lecheval 

et al., 2021); and improved understanding of the interacting landscape and physiological factors 

and goals that give rise to foraging routes and behaviour (Hopkins, 2011; Wilson, Quintana and 

Hobson, 2012; Shepard et al., 2013; Halsey, 2016; Masello et al., 2017; Schlägel, Merrill and Lewis, 

2017; Green, Boruff and Grueter, 2020). Similarly, the structure of human transport networks 

often emerges from positive reinforcement through collective action (Yerra and Levinson, 2005; 

Levinson and Yerra, 2006; Xie and Levinson, 2009; Strano et al., 2012). Even when the network is 

centrally planned, the structure is similar to those that emerge through more decentralised 

decision-making (Chan, Donner and Lämmer, 2011). 

One method that has shown considerable promise in both understanding the emergence of 

complex phenomena such as inequality or network structure, and allowing for spatially-explicit 

system representations, is simulation modelling, such as agent-based models (ABMs, also known 

as individual-based models in ecology). These have been widely used to study inequality, such as 

how it emerges among foragers searching a landscape (e.g. Epstein and Axtell, 1996; Little and 

McDonald, 2007) or moving through a fixed network (e.g. Davis et al., 2021). In ABMs, the system-

level phenomena emerge from the decentralised decisions and interactions of autonomous agents. 

This can be used to explore feedbacks and other complex causal structures arising from simple 

behavioural rules and interactions, without requiring the structure of feedbacks or other system-

level dynamics to be specified in advance. 

To explore the relationship between RADE network structure and consumer inequality, the work 

presented here develops and analyses a spatially-explicit ABM of resource acquisition that 

rigorously adheres to the principle of energy conservation in the simulated system. The network 

structure develops over time, due to consumers building and maintaining links to maximise their 
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resource consumption, within their currently available resource capacity. By modelling the system 

from the perspective of individual actors, the network structure, consumer inequality, and their 

co-evolution are emergent, mimicking the dynamics of empirical systems. Additionally, model 

outcomes and dynamics are compared across three different resource arrangements (‘landscapes’), 

to explore how landscape heterogeneity constrains possible network structures and consumer 

inequality. The work focusses on two main questions: (1) What is the effect of landscape 

heterogeneity on network structure and consumer inequality, and (2) how do network structure 

and inequality co-evolve? While this model is highly stylised and theoretical, understanding of the 

relationship between network structure and inequality can inform further specific work to better 

understand causes of heterogeneity and inequality in empirical systems, and how it can be 

preserved or alleviated. 

The paper is structured as follows: the next section presents an overview of the model, including 

the sequence of events and equations governing agent behaviour and model dynamics. This is 

followed by a Methods section outlining the technical details of the model and analysis, then 

presentation and discussion of results, and conclusions.  

4.2. Model description 

To explore the co-evolutionary relationship between network structure and inequality, any model 

must incorporate the laws constraining transformations of matter and energy in earth systems. 

Namely, the first and second laws of thermodynamics specify that energy cannot be created or 

destroyed, but some is released as entropy, an unusable form such as heat, with any transformation. 

In the context of RADE network models, energy is required to build, maintain, and use the 

network, and the network transports future resource flows to consumers or consumers to resource 

points. Therefore, energetic and physical consistency ensures that only net energy flows can be re-

invested in maintaining or expanding the network, and the network structure and inequality that 

emerges reflects this. This constraint is similar to the stock-flow consistent methodologies such as 
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emergy analysis, social metabolism, and input-output analysis, where the stocks and flows of 

energy and matter are balanced (e.g. Odum, 1971; Liao, Heijungs and Huppes, 2012; Haberl et al., 

2019). This ensures the system is represented accurately and therefore can be used to analyse and 

predict resource consumption.  

In the model presented here, the equations governing agent decisions and describing model 

dynamics were based on the stock-flow consistent equations of systems dynamics models, ensuring 

that units were balanced, and the model maintained physical and energetic consistency as far as 

possible. Additionally, the model extends beyond typical stock-flow consistent analyses, by 

comparing resource consumption across a population, and analysing the interactions between the 

inequality of consumption and the emergent network structure. In the remainder of this section, 

the characteristics of the agents, sequence of events, and equations defining agent behavioural 

rules and model dynamics will be discussed. This is followed by a model description following the 

Overview, Design Concepts, and Details (ODD) protocol in the Methods and Appendix 1. 

The model consists of agents, called consumers, who build and use links to navigate between 

resources (Figure 4.1). The consumers store and use energy from the resources to meet their basal 

metabolic requirements and build and repair more links, by investing net energy to decrease 

patches’ roughness and make them crossable. The consumers’ aim is to maximise their individual 

energy reserves to allow for both reproduction and future network expansion and improvement. 

They accomplish this maximisation by using a simple discounting model to choose between 

resources within their vicinity, calculating the expected time-discounted energetic costs and returns 

for each, and choosing the resource with the maximum return.  
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Figure 4.1. Images from the simulations. The blue figures represent the consumers, the orange boxes 
represent resources, and the black lines show which patches have been transformed into links.  

At the start of each timestep, each consumer attempts to consume its basal metabolic requirement 

from its energy reserves. If the consumer does not have adequate energy to cover this, it dies. 

Otherwise, the consumer then updates its vision radius, which is the distance around itself in which 

it can scan for resources. The vision radius is calculated as 

 𝑉𝑖 = 𝑃𝑖𝐴𝑖 , (1) 

where Vi, Pi, and Ai are the vision radius, risk penchant, and accumulated energy reserves of 

consumer i, respectively. The risk penchant is a constant (in units of length per energy, or m·J-1) 

that determines what proportion of the energy supply the consumer is willing to risk on building, 

repairing, or walking along links.  

After this, consumers who are not currently building or walking assess the resources within their 

vision radius. Based on their expected consumption from the resource they are located on, and the 

expected provision of the resources they can evaluate, they decide whether to stay where they are, 

or move to a different resource by building a new link, repairing an existing link, or walking across 

an existing link. Consumers who are building or repairing links walk across them simultaneously. 

The consumers use a simple discounting model to choose between resources, which places a 

higher weight on quicker returns. Consumers each have a rate of time preference, or ρ, that they 

apply when discounting. They evaluate each resource in their vision radius, including their current 
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location, by applying a discounting function to the expected consumption gain G at each timestep 

t of their overall time horizon T. From this, they subtract the expected costs C of each timestep, 

and sum the differences to calculate a net discounted utility. The consumer then chooses the action 

with the maximum net discounted utility U. 

 

max 𝑈 = ∑
(𝐺𝑡

1−𝜌
− 1)(1 + 𝜌−𝑡)

1 − 𝜌

𝑇−1

𝑡=0

− 𝐶𝑡 . 
(2) 

Time preferences and discounting have been demonstrated across a range of species (see reviews 

in Hannon, 1994; Vanderveldt, Oliveira and Green, 2016; but see also Hayden, 2016) and are 

included in most microeconomic models since their introduction by Ramsey (1928). By 

discounting returns in the future, which are more uncertain given the possibility of other 

consumers simultaneously constructing links or consuming resources, each consumer prosecutes 

an energy investment strategy that attempts to minimise risk and maximise energy consumption, 

within the limits of the energy it can invest. 

Any consumers who are not currently building, repairing, or walking links, and have at least twice 

their initial energy allocation, produce an offspring. The offspring inherits all traits from its parent, 

such as risk penchant, time preference, and basal metabolism. Moreover, offspring are also given 

the same initial energy reserves as their parent, with the parent transferring this amount from their 

own energy reserves when they reproduce. This ensures consistency of the overall energy balance 

of the model. Reproduction was included to reflect empirical systems where population size 

evolves alongside the network structure and inequality, which can allow the system to explore a 

range of possible dynamic equilibrium states. 

Consumers who are building, repairing, or walking continue to do so, moving one patch per 

timestep. The patches closest to the shortest path between the consumers’ initial and target 

resources are altered by the consumers to form links. These links can be conceptualised as stocks 
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of infrastructure, or energy that has been embodied into the landscape through doing work to 

modify it (L, in J). The rate of change of this infrastructure at each timestep is 

 𝑑𝐿𝑖

𝑑𝑡
= 𝐸𝐵𝑖

− 𝑘𝐿𝑖  , 
(3) 

where 𝐸𝐵𝑖
 is the energy invested by a consumer in that patch, and k is the rate of decay, such that 

the decay of a link-patch is proportional to the current level of infrastructure.  

This infrastructure is in turn inversely proportional to the roughness or friction of the patch,  

 
𝑅𝑖 =

𝛽𝑖

𝐿𝑖
 , 

(4) 

where βi is a conversion factor equal to the baseline roughness of the patch, with units of N·J. 

Each patch is assumed to have a lower bounded embodied energy of 𝐿𝑖 = 1. This way, Ri has an 

upper bound of the baseline roughness when Li is at its minimum, and a lower bound of 1 when 

Li is at its maximum due to energy investment. As consumers cannot cross a patch that has not 

been built into a link, the roughness is technically infinite before energy investment. However, for 

the purposes of the model here, it is bounded to represent the amount of energy required to invest 

to make the patch crossable, and it varies by patch depending on the landscape.  

Therefore, the energy spent at a given timestep to build or repair that patch, which leads to the 

accumulation of embodied energy L, can be conceptualised as increasing the smoothness of the 

patch, or 𝐶 = 𝑅−1 (in N-1). In these simulations, this is simplified as  

 𝐸𝐵𝑖
= 𝜂(1 − 𝐶𝑖) , (5) 

or the energy required to increase the patch’s smoothness to the maximum (C = 1). The parameter 

η (in J·m·s-1) represents the energy that must be embodied in one patch per timestep to change 

the smoothness by 1 N-1, or the roughness by 1 N. For simplicity, here we set 𝜂 = 𝑅, so 𝐸𝐵𝑖
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reduces R to the minimum as it increases C to the maximum. Although a consumer could spend a 

lower amount to partially improve the patch, it would then spend more energy crossing it, such 

that the total building and walking energy requirement would be the same. This is because the 

roughness of the patch determines the energy required to cross it (assuming the constant speed 

defined above of SW = one patch per timestep): 

 𝐸𝑊𝑖
= 𝑆𝑊𝑅𝑖 . (6) 

At the end of each timestep, any consumers who are located on resources consume as much as 

they can, up to their maximum consumption rate, or the total supply of that resource, whichever 

is less. If there are more consumers on a resource than it can support, the consumers split the 

available resource supply evenly. In this way, there is competition for resources, but it is indirect 

rather than more overt territoriality. Resources that are below their maximum capacity also regrow 

a fixed rate per timestep. While this introduces new energy into the system, it is assumed that the 

boundaries of the ‘world’ inhabited by the consumers includes processes such as nutrient cycling 

and rainfall that govern resource regrowth, which are not modelled directly for simplicity. 

Therefore, the final energy balance of a consumer includes energy from consumption (gain G) 

minus energy spent on building or repairing links, walking links, individual maintenance (basal 

metabolism M, which also includes the energy required for converting resource energy into a form 

that can be invested in the landscape), and any energy passed on to offspring (O). The balance of 

these terms over time, A (from Eq 1), forms the energy reserves that are used for future 

metabolism and reproduction, and determine how much energy the consumer can reinvest in 

expanding and maintaining the network: 

 𝑑𝐴

𝑑𝑡
= 𝐸𝐺 − 𝐸𝐵 − 𝐸𝑊 − 𝐸𝑀 − 𝐸𝑂 . 

(7) 
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Although the resources in the model regrow each timestep, and consumers are not territorial over 

their occupied resources or built links, there is clearly a zero-sum component to the model that 

creates the possibility for competition and inequality. Consumers eat resources that others were 

targeting, and they move through spaces with varying degrees of patch roughness, existing 

architecture, and resource availability. While consumers follow the same rules for making choices, 

their individual rates of time preference and horizon, risk penchant, energy reserves, and location 

mean that they follow divergent life histories. When enacted over the landscape, these give rise to 

the interconnected inequality and network structure that will be explored. 

4.3. Methods 

The following sections outline the ABM, following the ODD template of Grimm et al. (2006, 2010, 

2020). Also discussed are the experimental design and analytical method. The model code is 

published as Davis and Polhill (2021). 

4.3.1. Overview, design concepts, and details (ODD) 

For simplicity, just the ‘overview’ part of the ODD description of the model is presented below. 

A complete ODD is included in Appendix 1. The model was developed using Netlogo 6.1.1 

(Wilensky, 1999). 

I. Model purpose 

The purpose of the model is to explore the co-evolution of network structure and inequality that 

emerge from the decentralised, autonomous decisions of consumers following a simple time-

discounted maximisation strategy, set within a stock-flow consistent, energy conserving 

framework.  
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II. Entities 

Consumers 

Property Description 
Constant 
for run 

Initial energy 
reserves 

The energy with which a consumer begins the simulation, and the 
amount that any offspring inherit. In joules (J). 

X 

Energy reserves The energy available to a consumer for metabolism and movement. 
In J. 

 

Basal metabolism The amount of energy a consumer requires per timestep to 
maintain basic functioning. In J timestep-1. 

X 

Consumption rate The rate at which consumers take up energy from a resource patch 
on which they are located. In J timestep-1. 

X 

Risk penchant The percentage of energy-reserves that a consumer is willing to 
spend on movement and/or link construction and improvement.  

X 

Vision radius The distance to which a consumer can scan for resources – based 
on energy reserves as consumers cannot ‘see’ resources that they 
do not have enough energy to access. In generic length units. 

 

Time horizon The number of timesteps over which the consumer makes 
predictions and decisions. In timesteps. 

X 

ρ The consumer’s rate of time preference, which determines how 
strongly discounted future consumption is when making decisions 
about building, repairing, and walking links. In timestep-1. 

 

Building? Whether a consumer is currently working on a construction project.  

Repairing? Whether a consumer is currently working on a repair project.  

Walking? Whether a consumer is currently walking along a link.  

Current intake 
table 

The data structure used to store predictions of intake at the 
consumer’s current resource. 

 

Expected 
consumption table 

The data structure used to store predictions of intake at the 
resources within the consumer’s vision radius. 

 

Costs table The data structure used to store the costs associated with each of 
the build, repair, and walk activities applicable to each resource 
within the consumer’s vision radius. 

 

Repairs table The data structure used to store data about repairs that could be 
done on links to resources within the consumer’s vision radius. 

 

Location The current resource where the consumer is located (or was 
located last). 

 

Target location The resource toward which the consumer is building, repairing, or 
walking. 
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Resources 

Property Description 
Constant 
for run 

Current supply The resource flow remaining in this resource. In joules (J).  

Resource 
capacity 

The maximum resource flow that could be in this resource, if not 
depleted by consumer consumption. In J. 

X 

Regrow rate The rate at which the resource regrows after depletion. In J timestep-

1. 
X 

Links 

Property Description 
Constant 
for run 

Patches list A list of the patches comprising the link – used to determine length, 
roughness. 

X 

Link roughness A measure of the condition of the link, used to calculate energy 
required for traversal by a consumer or resource flow (higher 
roughness requires more energy). Stored as a list of the roughness 
of each patch, in newtons (N). 

 

Mean roughness The mean roughness of the patches comprising the link. In N.  

Decay rate The rate of decay of energy embodied in the patch. In timestep-1. X 

Link crossing count Count of consumers who have crossed the link.   

Under 
construction? 

A flag to denote whether the link is under construction or if all 
patches it crosses have been built into the link 

 

Past lifespan? Whether the link has decayed past its maximum decay (see global 
variables) and will disappear after all consumers currently crossing 
it complete their journeys. Prevents consumers from beginning to 
cross the link. 

 

Environment patches 

Property Description 
Constant 
for run 

Initial patch 
roughness 

The baseline difficulty of crossing the terrain in this patch, if it has 
not been altered by construction or decay. In newtons (N). 

X 

Current patch 
roughness 

The current difficulty of crossing this patch, potentially altered by 
construction or decay. In N. 

 

Embodied energy The energy that has been embodied into the patch by consumers 
constructing or repairing a link over it. Used to determine patch 
roughness. In joules (J). 

 

Under link? Whether the patch has been built into a link or not  

Patch crossing 
count 

The number of times the patch has been crossed as part of a link.  
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Global variables 

Property Description 

Number of 
consumers 

The initial number of consumer consumers in the simulation. 

Link decay rate The proportion of the embodied energy (energy invested in construction and 
maintenance) in a link-patch that decays each timestep. In timestep-1. 

Mean resource 
regrow rate 

The mean number of units per timestep by which a resource can regrow if 
depleted. In joules (J) timestep-1. 

Standard deviation 
(SD) of resource 
regrow rate 

The standard deviation of number of units per timestep by which a resource 
can regrow by if depleted. In kcal timestep-1. 

Mean resource 
capacity 

The mean energy store that a resource can hold. In J. 

SD of resource 
capacity 

The standard deviation of energy store that a resource can hold. In J. 

Mean initial energy 
reserves 

The mean energy reserves with which consumers can be initialised. In J. 

SD of initial energy 
reserves 

The standard deviation of energy reserves with which consumers can be 
initialised. In J. 

Minimum initial 
patch roughness 

The minimum initial roughness of a patch (before alteration by construction). 
In newtons (N). 

Maximum initial 
patch roughness 

The maximum initial roughness of a patch (before alteration by construction). 
In N. 

All global variables are constant for the duration of a run. 

 

III. Sequence of events 

1. Consumers consume basal metabolism from energy reserves and update vision radius. 

2. Consumers who are not currently building, repairing, or walking a link may choose a 

resource to which they will build a new link or repair an existing link, or may choose not 

to change the architecture.  

3. Consumers who do not build, repair, or walk, and who have at least twice their initial-

energy-reserves, produce one offspring who inherits initial-energy-

reserves and all other characteristics from its parent. The parent’s energy is depleted 

by its original initial-energy-reserves to balance that which it gave to its 

offspring. 
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4. Consumers start building and repair work, walking, or continue work or walking that is 

already underway. 

5. Consumers who are located on resources consume what is available to them based on the 

resource’s current supply and the number of other consumers, up to each consumers’ 

maximum consumption-rate. 

6. Resources regrow, if applicable. 

7. The patches comprising links decay, and the link may disintegrate. Any link that is under 

construction is checked to make sure construction has not been completed (e.g. by two 

consumers working from opposite ends of the link). 

4.3.2. Generating the landscape 

The landscape of the model was represented by a grid of patches on a toroid, each of which had 

an inherent or baseline ‘roughness,’ which determined the energy required to build a link across 

them (Eq 4 – 6). The model also required a map of resource node locations. To explore the effect 

of patch and resource landscape in the sensitivity analysis, qualitatively different patch grids and 

resource location maps were generated. Both patch and resource maps for a given landscape were 

fixed for all runs, rather than randomly generated for each run; for example, uniformly random 

patch roughness was determined only once, then this baseline roughness of each patch was used 

for all runs with that patch map. The full description of landscape generation is included in 

Appendices 1 and 2, and only the landscapes used in the final experiments are listed in Table 4.1. 

For the experiments explored in the remainder of the text, only ‘random’ patches were used, where 

patches had uniformly random roughness between a specified minimum and maximum. 

The landscapes for the final experiments were chosen to represent three distinct combinations of 

denser clumps with shorter intra-group distances, and longer inter-group distances. While the 

names ‘Cities’, ‘Villages’ and ‘Transition’ were used to reflect how resources and consumers might 

be distributed in human settlements, comparable distributions could be easily identified in a range 
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of ecosystems. For the model exploration here, a uniform distribution was not explored, as those 

are rarely, if ever, seen in empirical systems. 

Table 4.1. Descriptions and diagrams of resource maps used in final experiments. The resources are 
shown as orange squares. 

Resource map name Description Illustration 

Cities Resources are grouped into two 
larger ‘cities.’  
Mean (standard deviation, SD) of 
distance between resources: 
2.81 (0.60) 
Min. distance: 2 
Max. distance: 3.61 

 

Transition Resources are grouped into one 
larger ‘city’ with some spread 
outward into the surrounding 
area. 
Mean (SD) of distance between 
resources: 3.88 (2.09) 
Min. distance: 1 
Max. distance: 7.21  

Villages Resources are grouped into 5 
smaller ‘villages.’ 
Mean (SD) of distance between 
resources: 3.42 (1.03) 
Min. distance: 2 
Max. distance: 5 

 

 

4.3.3. Final experiments 

Before the final experiments were run, a sensitivity analysis was performed (details in Appendix 

1). In summary, the distributions of outcome variables at differing run lengths (in timesteps) and 

number of replicates were compared for high, medium, and low input parameter levels, and a range 

of possible landscape types. The outcome variable distributions stabilised at 25 replicates and 3000 

timesteps, so these were chosen for the model exploration runs. 

For the model exploration, a 2K factorial approach was adopted (Lorscheid, Heine and Meyer, 

2012), which explored every possible combination of high and low values for input parameters, 
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across each of the final landscapes (Table 4.1). This experimental design was chosen to elucidate 

the dynamics across the parameter space, and to highlight individual and combined variables with 

particularly strong effects to explore in future work.  

While insightful, the full model exploration did not allow for the in-depth analysis of network and 

inequality co-evolution, so only a subset of the runs is presented here for clarity. The full model 

exploration is included in Appendix 3. Final values for each parameter of the runs presented in the 

main text, hereon called the final experiments, are given in Table 4.2. 

Table 4.2. The values for each parameter in the final experiments. 

Parameter Value 

Number of consumers 500 

Maximum patch roughness 6 N 

Minimum patch roughness 2 N 

Link decay rate 0.1 J timestep-1 

Mean resource capacity 45 J 

Standard deviation (SD) of resource capacity 2 J 

Mean resource regrowth rate 9 J timestep-1 

SD of resource regrowth rate 1 J timestep-1 

Mean time horizon 18 timesteps 

SD of time horizon 4 timesteps 

Mean initial energy reserves 70 J 

SD of initial energy reserves 15 J 

Mean basal metabolism 3 J timestep-1 

SD of basal metabolism 0.5 J timestep-1 

Mean consumption rate 5 J timestep-1 

SD of consumption rate 1 J timestep-1 

Mean rho 1 timestep-1 

SD of rho 0.025 timestep-1 

Mean risk penchant 72 % 

SD of risk penchant 4 % 

 

4.3.4. Analytical method 

After each run, simulation-level output variables were calculated using the consumer state variables 

and the currently constructed links. These covered a range of consumer population metrics, such 
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as the population size and inequality of energy reserves, measured by the standard deviation (SD), 

as well as metrics for network size and connectivity. The high-level variables and analyses chosen 

here were used to reflect the population-level statistics typically applied to measure heterogeneity 

or inequality in socio-ecological systems. They also allowed for quantification of the large, complex 

networks that emerged, from both link- and node-level perspectives, to compare with the overall 

population dynamics. These analyses helped demonstrate the overall behaviour of the model and 

general trends that emerged, which will help guide any future, more individually-focussed analyses. 

The reported outcome variables are shown in Table 4.3.  

Table 4.3. Outcome variables calculated for each simulation run. 

Variable name Description 

Population size The number of consumer agents currently active in the 
simulation 

Mean energy reserves The mean of consumer energy reserves 

Standard deviation (SD) of energy 
reserves 

The standard deviation of consumer energy reserves 

Number of links The number of links (bi-directional) in the network 

Number of (included) resource nodes The number of resource nodes included in the network 

Total link length The total link length around the network 

Mean link length The mean link length 

SD of link length The standard deviation of link length 

Mean node degree The mean number of links attached to each included 
resource node 

The analytical approach focussed on identifying the inequality and network structure that emerged 

in each run, and the dynamics of their co-evolution. First, Kruskal-Wallis tests were used to 

compare values of the outcome variables (Table 4.3) across landscapes, at fixed time points. This 

captured the role of landscape heterogeneity in the network and consumer outcomes. Non-

parametric tests were used as the data did not consistently meet the normality assumptions of 

ANOVA. 

Next, the evolution of the networks that emerged in each run was visualised, by plotting the links 

that occurred between resources, coloured by the number of times they were crossed. This 
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highlighted the links that were used most frequently, as opposed to those that were built and used 

only a few times but were maintained through the maintenance of intersecting links. Three 

networks that showed diverse evolutionary trajectories were then selected from each of the three 

landscapes, and the evolution of their structures and values of outcome variables were compared, 

to note any differences that the distinct structural features they displayed had on the measured 

outcomes.  

Finally, population size, mean and SD of consumer energy reserves, and total link length were 

plotted over time together, both with means across all replicates of a given landscape, and 

individually for each run. Total link length was chosen to represent network size, as it was a proxy 

for total energy investment in the network. This identified major shifts in the dynamics of the 

simulation, which could be observed from the averaged plots as changes in the slope (breakpoints) 

of the outcome variables over time. Visual estimates for the breakpoints were quantified for both 

averaged and individual plots with piecewise regressions, taking the identified slope before each 

breakpoint as the slope for that segment of the time series. The adjusted R2 was calculated for each 

piecewise regression model, and all were found to be over 0.9. The breakpoints were linked back 

to the events in the simulation by recording and watching animations of the simulations for the 

nine example networks selected previously. 

All analyses and visualisations were done in R version 4.0.3 (R Core Team, 2020), using the igraph 

(Csardi and Nepusz, 2006), segmented (Muggeo, 2008), and ggplot2 libraries (Wickham, 2016). 

4.4. Results 

Overall, the networks explored showed similar trends of consumer inequality and network 

structure evolution across the three landscapes. Consumer inequality, measured by SD of energy 

reserves, increased considerably before stabilising, and network size and connectivity first 

increased during an initial building phase, then decayed back to a dynamic equilibrium. This section 



Structure, flow, and inequality 

171 
Natalie Davis – June 2021 

first explores the network structures and consumer inequality that emerged in the three landscapes 

overall, and within specific example runs showing distinct patterns of evolution. It then describes 

the co-evolutionary dynamics of network structure and inequality, starting with the overall trend, 

then comparing it across the three landscapes. 

4.4.1. Network structure and consumer inequality 

4.4.1.1. Comparison among landscapes 

All simulations reached their dynamic equilibrium state at around 500 timesteps for each of the 

metrics calculated. While the inequality was quite similar across the three landscapes once the 

simulations had stabilised, it reached its highest point in the Cities networks (Figure 4.2). The 

inequality was only found to be significantly different between landscapes at timesteps 20 – 110; 

time periods before and after this were not significant (Appendix 5). In contrast, the network 

metrics were all significantly different across landscapes for all timesteps (Appendix 5), with the 

Transition networks showing the highest peaks for total and standard deviation (SD) of link length, 

and mean node degree (Figure 4.2). 
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Figure 4.2. Standard deviation (SD) of consumer energy reserves, total link length, mean node degree, 
and SD of link length over time, for Cities, Transition, and Villages landscapes. Point and error bars show 
median and interquartile range (IQR) respectively, over 25 replicates per landscape. The values at 
timestep 500 can be taken as indicative of the dynamic equilibrium state for that metric over the 
remainder of the simulation. 

The overall network development and link use is shown in Figure 4.3. Across all runs for each 

landscape, a similar pattern emerges of initially high network density and more uniform use of 

links, coupled with increasing skewness of energy reserves across the population. This is followed 

by a pruning phase in which the less frequently crossed links decay away, and both network 

structure and the distribution of energy reserves stabilise. This stability is marked by considerably 

higher consumer inequality than at initialisation (Figure 4.2), but the distribution of energy reserves 

is approximately normal. Additionally, the most used links in the networks (Figure 4.3), denoted 

by darker lines, are often quite short. While longer links do occur, especially during initial 

construction, the shorter links dominate throughout and are the ones most used and maintained 

in later timesteps. 
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Figure 4.3. The overall network development and consumer energy reserves distributions, for Cities, Transition, and Villages networks, by timestep (T). The 
lines show the links that were present at each timestep shown, across the 25 replicates per landscape. The line shading represents the total number of times 
the link was crossed up to that timestep, also across the 25 replicates. The density plot in the inset shows the distribution of consumer energy reserves. As the 
landscapes were on a torus (see Methods), some of the longer links shown in the Transition and Villages networks wrap around the ‘back’ of the world. 
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4.4.1.2. Example networks 

Within each of the landscapes, three example networks with diverse development trajectories were 

chosen for further exploration. Their consumer inequality and key network metrics are shown in 

Figure 4.4, and maps for each example network are shown in Figure 4.5.  As with the overall trends 

(Figure 4.2), Cities and Transition networks showed the highest values for metrics measuring 

network size, connectivity, and heterogeneity. Villages-1 and Villages-2 showed higher peaks for 

the consumer inequality metrics, while Villages-3 had consistently lower inequality and network 

metrics than other examples. The mean node degree is relatively consistent within landscapes, 

although Transition-3 had a peak in both total link length and connectivity between timesteps 200 

– 300. The SD of link length is quite consistent across the example networks. 

 

Figure 4.4. Standard deviation (SD) of consumer energy reserves, total link length, mean node degree, 
and SD of link length over time, for three example networks of each Cities, Transition, and Villages 
landscapes. Only the first 500 timesteps are shown as runs stabilise after this point. Points are jittered 
slightly to reduce overlap if possible. 
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Figure 4.5. The network development and consumer energy reserves distributions, for three examples of each (a) Cities, (b) Transition, and (c) Villages networks, 
by timestep (T). The lines show the links that were present at each timestep shown. The line shading represents the total number of times the link was crossed 
up to that timestep. The density plot in the inset shows the distribution of consumer energy reserves. As the landscapes were on a torus (see Methods), some 
of the longer links shown in the Transition and Villages networks wrap around the ‘back’ of the world. 
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In the Cities example networks (Figure 4.5a), as with the overall Cities network (Figure 4.3), there 

is an initial construction phase in the first 100 timesteps before pruning. Cities-2 and Cities-3 retain 

more links after pruning, and a resulting higher total link length and connectivity (Figure 4.4). 

There is typically a denser spatial distribution of links at the bottom of the upper cluster of 

resources, or ‘city,’ and the top of the lower city, which is likely driven by denser clustering of 

resources in those areas. The distributions of energy reserves also all followed similar patterns of 

becoming heavily skewed, then shifting back to a more normal distribution. Cities-1 showed higher 

spikes in SD of consumer energy reserves (Figure 4.4), and the distributions around timesteps 25 

– 75 suggest the presence of high outliers. In contrast, Cities-2 had consistently lower inequality, 

and a less sharply skewed distribution at the compared timesteps. Cities-3 did not maintain a highly 

skewed distribution for as long as the other two Cities examples; it shifted toward a more bimodal 

distribution by timestep 50. It also had a consistently higher total link length and connectivity 

(Figure 4.4). 

The Transition networks also went through an initial construction phase, followed by pruning, 

with the latter resulting in many of the more distant or ‘rural’ resources becoming disconnected 

from the main ‘city’ centre. In Transition-1, there are no links to or between any of the furthest 

rural resources; the disconnecting of these more distant areas from the main network is 

contemporary with a bimodal distribution of consumer energy reserves, which returns to a more 

normal distribution as the intra-connection among rural resources also disappears. Transition-2 

and Transition-3 show similar bimodality in energy reserves distribution in the timesteps when the 

rural resources have disconnected from the main network but remain intra-connected.  

As with the Transition networks, the Villages networks showed a high degree of pruning of longer, 

inter-village links, with the shorter, intra-village links being retained and much more frequently 

used. Notably, Villages-1 and Villages-2 had the highest peak across all example networks in SD 

of consumer energy reserves (Figure 4.3), especially between timesteps 100 and 500. This 
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corresponds to considerable pruning of both short intra-village links and longer inter-village links. 

In contrast, Villages-3 had a consistently low SD of consumer energy reserves (Figure 4.4), 

especially in timesteps before 200, which corresponds to the even spatial distribution and more 

frequent use of intra-village links, as compared with the other Villages examples. 

4.4.2. Co-evolution of network structure and inequality 

4.4.2.1. Overall dynamics 

Figure 4.6 shows the overall dynamics of the population size, mean and SD of energy reserves, 

and total link length, for the Cities landscape. As the general pattern is quite similar across the 

three landscapes, and individual simulations, this is used as an example to illustrate the general 

dynamics before comparing specific landscapes and runs. 

 

Figure 4.6. Time series showing evolution of total link length, mean and standard deviation of consumer 
energy reserves, and population size for Cities networks, with labels showing main simulation events. 
The population size is scaled by a factor of 0.2. The lines represent means across 25 replicates, and the 
shading shows standard deviations. The labelled events are described in the text. 
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The major events, labelled on Figure 4.6 as 1-4, are as follows: 

1. Consumers begin constructing links and moving through the network. The total link length 

increases rapidly with the new links, and the mean energy decreases. As many consumers do not 

survive the first round of building, the population decreases sharply, as do the mean energy 

reserves. The SD of energy reserves increases briefly before decreasing slightly.  

2. The network reaches its maximum size. The mean and SD of energy reserves are both quite 

low. Notably, this means that the coefficient of variation is at its highest; this is a more relative 

measure of inequality that is reflected in the highly skewed energy reserves distribution between 

timesteps 25 – 75 (Figures 4.3, 4.5). Consumer energy reserves, and inequality between them, begin 

to increase rapidly. Other links that are not maintained start to decay away slowly, giving rise to 

the more pruned architectures in later timesteps (Figures 4.3, 4.5). 

3. After their energy reserves reach the threshold for reproduction, consumers start producing 

offspring. The population increases in size again, and mean energy reserves and inequality 

stabilise.  

4. The network size and consumer inequality reach a stable equilibrium where almost all remaining 

links are frequently used and maintained (Figure 4.5), as consumers go back and forth between 

nodes that provide the optimal balance of resource capacity and proximity to other resources. 

While consumers cannot plan multiple trips in advance, the resulting network structure shows that 

links are well-maintained between denser resource patches as consumers frequently commute 

between these nodes (Figures 4.3, 4.5). 

4.4.2.2. Comparison among landscapes 

The overall dynamics illustrated in Figure 4.6 are shown for each landscape in Figure 4.7. While 

the specifics differ across networks, such as the maximum mean and SD of energy reserves or total 

link length reached, the major dynamics highlighted above occur at similar times in each landscape, 
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and each simulation (Table A7). Given the distinctions between the three landscapes, the similarity 

highlights the dominance of the consumer characteristics and decision-making in determining the 

dynamics. However, the differences in the rates of those dynamics and timings of shifts shows the 

role of landscape in mediating consumer and resource interactions through the possible network 

architectures. 

 

Figure 4.7. Time series showing evolution of total link length, mean and standard deviation (SD) of 
consumer energy reserves, and population size for (a) Cities, (b) Transition, and (c) Villages networks. 
The population size is scaled by a factor of 0.2. The lines represent means across 25 replicates, and the 
shading shows standard deviations.  

As observed in the metrics calculated for the example networks (Figure 4.4), the Villages and Cities 

networks show the highest peak in SD of consumer energy reserves, around timestep 100 (Figure 

4.7). The Cities networks show a larger decrease after the initial peak, however, while the SD of 

consumer energy reserves in Transition and Villages networks quickly stabilise. While the Cities 

and Transition networks have similar final total link lengths, the Transition network total link 

length has a higher peak during its initial construction phase. This is concurrent with the presence 

of longer ‘city-to-rural’ links in the evolution of the overall network and example networks (Figures 

4.3, 4.5).  

The breakpoints and slopes in the grouped time series plots (Figure 4.7), identified by the piecewise 

regression, are shown in Table 4.4. These were close to the mean breakpoint and slope for the 
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regressions calculated over the individual runs (Table A7). Overall, the breakpoints and slopes 

were similar across the three landscapes. Cities and Villages runs were more similar in their later 

dynamics, though, such as second and third slopes and breakpoints, while Transition runs were 

closer to those of the other landscapes in dynamics at the beginning of the runs, but then diverged. 

All runs showed little to no change once they reached their dynamic equilibrium point, shown by 

the final slope. 

Table 4.4. The breakpoints and slopes identified by piecewise regression, showing the time points of 
major state changes in the simulations, and the rate of change of measured variables before and after 
these changes. The estimates for the slopes are accompanied by their standard error (SE). Shown are 
the breakpoints and slopes for the three landscapes, with the mean of each outcome variable taken 
over the replicates at each timestep before calculating the breakpoints. 

Mean energy reserves 

Landscape Slope 1 (SE) Breakpoint 1 Slope 2 (SE) Breakpoint 2 Final slope (SE) 

Cities -0.58 (0.05) 26.58 0.49 (0.00) 163.63 0.00 (0.00) 

Transition -0.53 (0.03) 27.29 0.57 (0.01) 136.43 0.00 (0.00) 

Villages -0.53 (0.02) 27.55 0.51 (0.01) 159.44 0.00 (0.00) 

SD of energy reserves 

Landscape Slope 1 (SE) 
Breakpoint 

1 
Slope 2 (SE) 

Breakpoint 
2 

Slope 3 (SE) 
Breakpoint 

3 
Final slope 

(SE) 

Cities 0.14 (0.01) 11.82 -0.21 (0.01) 26.45 0.31 (0.01) 116.25 0.00 (0.00) 

Transition 0.14 (0.01) 11.51 
 

-0.15 (0.01) 26.70 
 

0.34 (0.00) 104.69 0.00 (0.00) 

Villages 0.12 (0.01) 12.30 -0.23 (0.01) 25.68 0.31 (0.00) 123.41 0.00 (0.00) 

Total link length 

Landscape Slope 1 (SE) Breakpoint 1 Slope 2 (SE) Breakpoint 2 Final slope (SE) 

Cities 20.32 (0.98) 28.03 -9.80 (0.00) 98.49 -0.07 (0.00) 

Transition 17.34 (1.15) 28.38 -14.31 (0.11) 98.50 -0.08 (0.00) 

Villages 12.53 (0.96) 27.39 -7.70 (0.06) 100.47 -0.04 (0.00) 

The Cities runs showed a slightly faster decrease in mean energy reserves before the first 

breakpoint, and slower increase after, as well as an earlier first breakpoint and later second 

breakpoint, corresponding to the shift to a more stable state. The Transition runs had a much 

faster increase in mean energy reserves after the first breakpoint, and earlier stabilisation. The 
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Villages runs had a similar rate of mean energy reserves decrease before the first breakpoint to 

Transition, and mean energy reserves increase after the first breakpoint to Cities.   

For SD of energy reserves, the runs across the landscapes showed similar initial increases, with 

Villages runs increasing slightly slower and having a slightly later breakpoint. The Transition runs 

had a much slower decrease in SD of energy reserves after the first breakpoint, and faster increase 

after the second. This increase in SD of energy reserves was contemporary with a faster decrease 

in total link length after the second breakpoint, during the decay of longer ‘city-to-rural’ links 

(Figures 4.3, 4.5b). Cities runs had the fastest initial total link length increase and earliest first 

breakpoint, concurrent with a high density of links constructed rapidly (Figures 4.3, 4.5a). In 

contrast, Villages runs had the slowest increase and latest first breakpoint, as the longer inter-

village links took longer to emerge (Figures 4.3, 4.5c). Cities and Villages were more similar in the 

rate of total link length decrease after the first breakpoint and the timing of the second breakpoint 

to the stable state.  

4.5. Discussion 

This analysis explored the effects of landscape heterogeneity on network structure and consumer 

inequality, and how that structure and inequality co-evolved, in a simple model of resource 

acquisition. In the following sections, the findings will be discussed, along with limitations and 

areas of future work. 

4.5.1. Effect of landscape heterogeneity on network structure and 
consumer inequality 

In the model presented here, landscape heterogeneity referred to the spatial variability of resources 

in the landscape, both within and across resource patches. In any system, the landscape constrains 

the network structures that can emerge to connect resources, but the networks themselves are a 

co-creation of landscape and consumer behaviour. For example, despite the distinct arrangement 

of resources in each landscape, the total and standard deviation (SD) of link length of the networks 
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presented here were quite similar across landscapes (Figure 4.2). The main difference in outcomes 

between the landscapes was instead the rates and times of network structure and population 

dynamics (Table 4.4). Network growth depended somewhat on the location of consumers and 

resources with high energy reserves and capacities, respectively. Given the low SD of resource 

capacity (see Table 4.2), though, most resources were quite similar. Consumers’ decisions would 

consequently be more influenced by the distance between themselves and a potential target 

resource, the presence of an existing link, and the resulting cost of moving to it. Therefore, the 

rate of total link length increase, and the similar mean link lengths in all landscapes, resulted from 

a combination of the consumers’ discounting causing them to prefer to build and maintain shorter 

links, and the density and spatial distribution of resources constraining what was available to them.  

For example, in the runs in the densely patchy Cities landscape, consumers could easily find 

resources within a range they could build to, and the total link length increased quickly (Table 4.4c, 

Figure 4.7a). In the smaller and more distant patches of the Villages landscape (Figure 4.7c), total 

link length increased more slowly, as there were fewer possibilities for short intra-Village links, and 

longer inter-Village links took more time to build (Table 4.4c). Additionally, the Transition and 

Cities landscapes had the highest peak network link lengths (Figure 4.2), due to a combination of 

many links within the dense ‘city’ sections in each, and the possibility of longer ‘city-to-rural’ and 

‘inter-city’ links, respectively. These two landscapes also showed the most rapid decay in total link 

length, after networks reached their maximum size, likely due to the loss of these longer links 

(Figures 4.3, 4.7a and 4.7b). These links would require a considerable amount of energy to maintain 

or cross, and therefore were often abandoned, shortening the total link length considerably. The 

similar dynamics of the network size of Cities and Transition networks suggests that the ‘city’ 

section of resources in the Transition landscape had a more dominant effect on network dynamics 

than the spread of ‘rural’ resources. This is possibly due in part to the likelihood of links being 

retained in the network, as links between close ‘city’ resources were more likely to be maintained, 
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and the overlapping links in these densely resourced areas meant that maintaining the link-patches 

of one link effectively maintained the intersecting links as well.  

As with the network metrics, consumer inequality, measured by the SD of energy reserves, was 

similar across the three landscapes (Figures 4.2, 4.7), with differences in maximum inequality and 

rates of change. Some of this inequality can be attributed to the heterogeneous spatial distribution 

and capacity of the resources. Even in a theoretical perfectly uniform landscape, however, slight 

differences between consumers in time preference or willingness to spend energy on movement 

could lead to distinct experiences of the same space. As these would cause consumers to have 

unique decision-making, energy consumption, and interaction trajectories, this ‘experienced 

heterogeneity’ could have a similar effect to physical heterogeneity in accelerating consumer 

inequality. It could also feed into network structure to create physical heterogeneity, making it 

difficult to separate the effects of physical and experienced heterogeneity on consumer inequality 

over time. The combination of physical and experienced heterogeneity is similar to the theory of 

energy landscapes in behavioural ecology, which posits that forager behaviour is a response to the 

unique environmental and physiological conditions they experience (see review in Halsey, 2016). 

Experienced heterogeneity even in the absence of physical heterogeneity has also been discussed 

in relation to food acquisition by human consumers (Caspi et al., 2012).  

In the model explored here, the random order of consumer decision-making and movement in 

each timestep meant that consumers also experienced varying degrees of influence from each 

other’s decisions and actions. This suggests that it is not solely the spatiotemporal heterogeneity 

of resources that drives network structural heterogeneity and consumer inequality, but rather a 

combination of environmental heterogeneity,  differences among consumers and among resources 

(however minor), and the level of interaction and interference consumers experience, which 

propagate through the network architecture to create markedly different outcomes for individual 

consumers. Exploring the individual and joint effects of physical resource heterogeneity and 
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experienced heterogeneity on consumer outcomes would be a potentially fruitful area of future 

work.  

4.5.2. Co-evolution of network structure and consumer inequality 

Across all three landscapes, the network structure and consumer inequality followed a similar 

pattern of co-evolution. Initially, consumer inequality increased with total link length (Figures 4.6, 

4.7), as consumers made different decisions and experienced a range of energetic costs and 

consumption possibilities while building. After this initial increase in inequality, construction 

continued, but inequality decreased as consumers with the lowest energy reserves died; this 

truncated the distribution of energy reserves in the population by removing consumers from the 

low end. This phenomenon is illustrated by the contemporary decrease in inequality and 

population size in Figures 4.6  and 4.7. After this point, the dynamics change to a negative feedback 

between consumer inequality and network growth, with inequality increasing faster in networks 

where the total link length decreases faster (Table 4.4), and more pruning occurring in networks 

with higher inequality.  

Specifically, in networks that had a larger decrease in population, such as the Transition networks 

where there were more isolated resources for consumers to become trapped (Figure 4.7b), there 

were fewer consumers to maintain and use the links built during the initial construction phase. 

Consequently, more links decayed, and more rapidly (Table 4.4). The links that were maintained 

allowed some consumers to navigate between resources while consuming less energy: Consumers 

in well-connected areas or who moved toward these could minimise construction costs by walking 

across and maintaining existing links, which required less energy than building new links. Similarly, 

consumers who were in more dense resource patches could spend less energy to move to another 

resource if their current resource were drained. Less well-positioned consumers had to spend more 

energy to rebuild links to denser or better-connected areas, or they became trapped in less energy-

rich parts of the network where they could not build up enough reserves to reconnect to the better 
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developed sections. This contrast was likely the cause of the bimodal distribution of consumer 

energy reserves in the Transition networks, when there were links between the distant ‘rural’ 

resources and the denser ‘city’ resources, but few, if any, links connecting these areas (Figure 4.5b). 

Similar effects could emerge in the disconnected Villages networks (Figure 4.5c), and in distant 

parts of the Cities networks (Figure 4.5a). Each of these networks created distinct trajectories for 

these sub-populations who have different amounts of resources and links available to them, which 

caused inequality to increase rapidly.  

The increase in inequality eventually stopped, as consumers with adequate energy reserves started 

to reproduce, shortening the upper tail of the distribution of energy reserves across the population. 

As described in the Methods, consumers who were not currently building or moving would 

produce an offspring after they reached at least twice their initial energy reserves, transferring an 

amount equal to their initial energy reserves to their new offspring. Reproduction thus limited 

inequality by preventing consumers from accumulating too much energy: they had to keep 

investing energy in the network, or in offspring. This is shown in Figures 4.6 and 4.7 where the 

mean and SD of energy reserves stabilise concurrently with an increase in population size, with 

the mean energy reserves close to the mean at initialisation.  

Given the multiple interactions between population and network outcomes, it is difficult to 

determine the exact causes of inequality due to different individual trajectories. Even the high-level 

analyses presented here, however, show that the dynamics and feedbacks that emerge between 

population size, inequality, and network structure are broadly similar across landscapes, but the 

density and location of resources in each landscape constrain the possible networks that can 

emerge, and therefore regulate the extent of and rates at which these dynamics occur. Consumers 

are constrained in their decisions and ability to reproduce by their energy reserves, which are 

determined by the resources and links available to them. In turn, however, their decisions shape 

the network structure for themselves, their contemporaries, and future generations.  
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4.5.3. Maximum power, entropy production, and inequality 

While understanding the specifics of the role played by these time-discounted, net consumption-

maximising consumer decisions would require further exploration of the discounting parameters 

and algorithm, two important points can be inferred: the range of time preference in the population 

would have allowed for a range of target resources at different distances from the consumers to 

be chosen, and the drive to maximise consumption kept consumers from remaining on resources 

that met their basal metabolic needs but were not the best within their reach. As discussed in 

Sections 4.1 and 4.2, both discounting and maximisation have been observed in or theoretically 

demonstrated for a range of species, including humans, due to the evolutionary pressure to increase 

fitness in a highly uncertain world. This individual-level competition and attempted maximisation 

in ecological and socio-ecological systems results in the emergence of system-level evolutionary 

trajectories, such as maximum power and entropy production (Vallino, 2010; also see reviews in 

e.g. Martyushev and Seleznev, 2006; Kleidon, Malhi and Cox, 2010; Kleidon, 2016). The 

appearance of a dynamically stable state in the model presented here, driven by the maximising 

decisions of each consumer, could suggest that the system has reached some sort of maximum 

operating state, governed by the capacity of the resources and the energy requirements of 

consumers for basal metabolism, movement, and reproduction.  

Notably, this dynamic equilibrium state is not characterised by a highly skewed or power-law 

distribution of energy reserves (Figures 4.3, 4.5), as might be expected of a system operating at a 

maximum (Banerjee and Yakovenko, 2010; Tao et al., 2019). This may be due in part to the 

theoretically unlimited reproduction of the consumers, which keep any one consumer from 

accumulating too much. However, depending on the structure of the network, maximum power 

and entropy production does not have to be associated with consumer inequality (Davis et al., 

2020), and the non-hierarchical connectivity of the networks here (Figures 4.3, 4.5) likely have 

contributed to a more normal distribution of energy reserves when the system stabilised. While 
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our previous work focussing on this theme used networks with fixed consumers and flowing 

resources, the model presented here suggests that systems operating at a state driven by the 

maximising decisions of constituents can exhibit patterns of inequality resembling the spread of a 

more normal distribution. This would suggest that power-law and other fat-tailed distributions are 

not the exclusive signature of maximisation, depending on other dynamics and constraints within 

the system.  

4.5.4. Limitations and future work 

Although the possibilities for expanding any given model are effectively endless, three main 

limitations of the current model are arguably the most important for improving in future work. 

These include expanding the spatial, temporal, and interactional domains of consumers’ decision-

making processes; varying more consumer parameters and resource dynamics, and levels within 

the parameters explored here; and more comparison between the model and empirical systems. 

These are each explored in more detail below. 

In this model, the consumers constructing and using the network only thought one action ahead 

at a time: they did not consider the proximity of a resource to other resources or links when making 

their decisions to build, improve, or walk a link. They also did not know about resource regrowth 

rates, apart from their current resource, and even this information could be obscured by the 

presence of other consumers on that node with them. This design choice was made to limit the 

number of free parameters, such as decision weightings, and to limit the consumers’ knowledge to 

local levels, both temporally and spatially. However, if the model were adapted to focus on 

decision-making processes in humans, or another species known for sophisticated cognition or 

perception, it would be relevant to include more elements of foresight.  

Relatedly, the consumers had little knowledge of or interaction with one another during the 

simulation. Consumers could tell if links were currently under construction and could ‘help’ by 

building or maintaining it simultaneously with other consumers. By building and modifying links 
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that other consumers could use, and consuming resources from shared nodes, consumers also 

affected one another indirectly through stigmergy (e.g. Klyubin, Polani and Nehaniv, 2004; 

Lecheval et al., 2021). However, there was no explicit consideration of other consumers or 

discussions involved in decision-making, such as resource sharing to build longer or better links. 

As with expanding the consumers’ spatial and temporal considerations in decisions, including 

elements of cooperation or even competition could provide insight on how social dynamics affect 

the emergence of inequality. 

Further exploration of consumer parameters and resource dynamics, such as pulsing or finite 

resources, a combination of fixed and flowing resources of multiple types, or more exploration of 

different landscapes, could also provide insight into other key variables for model behaviour. 

Different resource dynamics were not the focus of the work presented here, and so were fixed to 

limit the scope of the analysis. As the results indicate that the landscape is a key factor in 

determining rates and time spans of consumer and network outcomes, exploring spatiotemporal 

resource distribution further could also provide insight into how known empirical resource 

changes, such as seasonality and droughts, could affect resource distribution and consumer 

populations. Similarly, more exploration of levels of different parameters may highlight tipping 

points, especially around population-level events such as extinction or stabilisation.  

Lastly, while the model is quite theoretical and stylised, the outcomes presented show clear parallels 

to empirical systems, which would be important to explore further. For example, the indirect 

relationship between landscape heterogeneity and consumer inequality, through the development 

of the RADE network connecting them, is similar to the heterogeneity-diversity relationships 

observed in ecological systems (see Section 4.1), and the adaptation and speciation that can occur 

in geographically isolated groups. Less attention has been given to the role of RADE networks in 

previous work on heterogeneity-diversity relationships, but the results here suggest that it may play 

a significant role in mediating them. Similarly, links between lack of transport connectivity and 
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poverty have been observed in cities (Brelsford et al., 2018), which is comparable to the model 

showing the possibility of different trajectories experienced by consumers, depending on the 

connectivity of their area of the network. Models such as the one presented here could be used 

with more system-specific parameterisation to explore the emergence of relationships between 

landscape heterogeneity, network structure, and consumer inequality, and how this relationship is 

affected by external forces such as landscape and environmental change in ecological systems or 

increasing the connectivity of transport and other RADE networks in cities.  

4.6. Conclusion 

In the work presented here, a simple model was developed of consumers building, maintaining, 

and using a network to move between resources, trying to maximise their time-discounted 

consumption. The emergent network structure was quantified using metrics such as total, mean, 

and standard deviation (SD) of link length, and related to the inequality that emerged between 

consumers, as measured with the SD of their energy reserves. The structure, inequality, and their 

co-evolution was analysed over time and compared across three distinct landscapes: A Cities 

landscape, with two distinct patches of resources; a Transition landscape, with a single patch of 

resources and other resources scattered more distantly around it; and a Villages landscape, with 

five smaller patches of resources. 

Overall, the results showed broadly similar dynamics and outcomes across the landscapes, with 

differences in the size of the network or degree of consumer inequality at their maximum, and the 

rate at which inequality increased and the network size decreased during pruning of less-used links. 

During the initial build-up phase of the network, consumers experienced different conditions, 

causing inequality to increase. This was then offset by the energy consumption of all consumers 

during link building efforts, and the subsequent death of consumers with lower energy reserves. 

As the network was then maintained by and for consumers with high enough energy reserves to 

be able to do so, inequality increased considerably. At its stable state, the final structure acted to 
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‘fix’ the level of inequality in the population, by allowing consumers in more densely linked areas 

to move between resources without needing to rebuild links, while other consumers had to spend 

more energy, if they could, building links to access these areas. Additionally, reproduction meant 

that consumers could not go on accumulating energy reserves indefinitely, and therefore limited 

the extent of inequality.  

This work provides a simple but coherent picture of how network structure and inequality can 

emerge and co-evolve, and how each are related to other dynamics within the population. While 

highly theoretical, this could be compared with the network structures and inequality that emerge 

in a range of social species, including humans. Beyond expanding the exploration of the model 

here, such as increasing the realism of the consumer decision-making process, future work could 

use the model to examine this network and inequality co-evolution in empirical systems to identify 

their relationship and any mechanisms controlling inequality. This would provide insight into how 

beneficial ecological heterogeneity could be maintained, and how the harmful effects of socio-

ecological inequality could be mitigated. 
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4.8. Appendices 

Appendix 1. Model Description (ODD) 

Overview, design concepts, and details (ODD) 

Following the template of Grimm et al. (2006, 2010, 2020), the overview, design concepts, and 

details (ODD) of the model are presented below. 

Model purpose 

The purpose of the model is to explore the co-evolution of network structure and inequality that 

emerge from the decentralised, autonomous decisions of consumers following a simple time-

discounted maximisation strategy, set within a stock-flow consistent, energy conserving 

framework. 

Entities 

Consumers 

Property Description 
Constant 
for run 

Initial energy 
reserves 

The energy with which a consumer begins the simulation, and the 
amount that any offspring inherit. In joules (J). 

X 

Energy reserves The energy available to a consumer for metabolism and movement. 
In J. 

 

Basal metabolism The amount of energy a consumer requires per timestep to 
maintain basic functioning. In J timestep-1. 

X 

Consumption rate The rate at which consumers take up energy from a resource patch 
on which they are located. In J timestep-1. 

X 

Risk penchant The percentage of energy-reserves that a consumer is willing to 
spend on movement and/or link construction and improvement.  

X 

Vision radius The distance to which a consumer can scan for resources – based 
on energy reserves as consumers cannot ‘see’ resources that they 
do not have enough energy to access. In generic length units. 

 

Time horizon The number of timesteps over which the consumer makes 
predictions and decisions. In timesteps. 

X 

ρ The consumer’s rate of time preference, which determines how 
strongly discounted future consumption is when making decisions 
about building, repairing, and walking links. In timestep-1. 

 

Building? Whether a consumer is currently working on a construction project.  

Repairing? Whether a consumer is currently working on a repair project.  

Walking? Whether a consumer is currently walking along a link.  
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Current intake 
table 

The data structure used to store predictions of intake at the 
consumer’s current resource. 

 

Expected 
consumption table 

The data structure used to store predictions of intake at the 
resources within the consumer’s vision radius. 

 

Costs table The data structure used to store the costs associated with each of 
the build, repair, and walk activities applicable to each resource 
within the consumer’s vision radius. 

 

Repairs table The data structure used to store data about repairs that could be 
done on links to resources within the consumer’s vision radius. 

 

Location The current resource where the consumer is located (or was 
located last). 

 

Target location The resource toward which the consumer is building, repairing, or 
walking. 

 

Resources 

Property Description 
Constant 
for run 

Current supply The resource flow remaining in this resource. In joules (J).  

Resource 
capacity 

The maximum resource flow that could be in this resource, if not 
depleted by consumer consumption. In J. 

X 

Regrow rate The rate at which the resource regrows after depletion. In J timestep-

1. 
X 

Links 

Property Description 
Constant 
for run 

Patches list A list of the patches comprising the link – used to determine length, 
roughness. 

X 

Link roughness A measure of the condition of the link, used to calculate energy 
required for traversal by a consumer or resource flow (higher 
roughness requires more energy). Stored as a list of the roughness 
of each patch, in newtons (N). 

 

Mean roughness The mean roughness of the patches comprising the link. In N.  

Decay rate The rate of decay of energy embodied in the patch. In timestep-1. X 

Link crossing count Count of consumers who have crossed the link.   

Under 
construction? 

A flag to denote whether the link is under construction or if all 
patches it crosses have been built into the link 

 

Past lifespan? Whether the link has decayed past its maximum decay (see global 
variables) and will disappear after all consumers currently crossing 
it complete their journeys. Prevents consumers from beginning to 
cross the link. 
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Environment patches 

Property Description 
Constant 
for run 

Initial patch 
roughness 

The baseline difficulty of crossing the terrain in this patch, if it has 
not been altered by construction or decay. In newtons (N). 

X 

Current patch 
roughness 

The current difficulty of crossing this patch, potentially altered by 
construction or decay. In N. 

 

Embodied energy The energy that has been embodied into the patch by consumers 
constructing or repairing a link over it. Used to determine patch 
roughness. In joules (J). 

 

Under link? Whether the patch has been built into a link or not  

Patch crossing 
count 

The number of times the patch has been crossed as part of a link.  

Global variables 

Property Description 

Number of 
consumers 

The initial number of consumer consumers in the simulation. 

Link decay rate The proportion of the embodied energy (energy invested in construction and 
maintenance) in a link-patch that decays each timestep. In timestep-1. 

Mean resource 
regrow rate 

The mean number of units per timestep by which a resource can regrow if 
depleted. In joules (J) timestep-1. 

Standard deviation 
(SD) of resource 
regrow rate 

The standard deviation of number of units per timestep by which a resource 
can regrow by if depleted. In kcal timestep-1. 

Mean resource 
capacity 

The mean energy store that a resource can hold. In J. 

SD of resource 
capacity 

The standard deviation of energy store that a resource can hold. In J. 

Mean initial energy 
reserves 

The mean energy reserves with which consumers can be initialised. In J. 

SD of initial energy 
reserves 

The standard deviation of energy reserves with which consumers can be 
initialised. In J. 

Minimum initial 
patch roughness 

The minimum initial roughness of a patch (before alteration by construction). 
In newtons (N). 

Maximum initial 
patch roughness 

The maximum initial roughness of a patch (before alteration by construction). 
In N. 

All global variables are constant for the duration of a run. 
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Sequence of events 

1. Consumers consume basal metabolism from energy reserves and update vision radius. 

2. Consumers who are not currently building, repairing, or walking a link may choose a 

resource to which they will build a new link or repair an existing link, or may choose not 

to change the architecture.  

3. Consumers who do not build, repair, or walk, and who have at least twice their initial-

energy-reserves, produce one offspring who inherits initial-energy-

reserves and all other characteristics from its parent. The parent’s energy is depleted 

by its original initial-energy-reserves to balance that which it gave to its 

offspring. 

4. Consumers start building and repair work, walking, or continue work or walking that is 

already underway. 

5. Consumers who are located on resources consume what is available to them based on the 

resource’s current supply and the number of other consumers, up to each consumers’ 

maximum consumption-rate. 

6. Resources regrow, if applicable. 

7. The patches comprising links decay, and the link may disintegrate. Any link that is under 

construction is checked to make sure construction has not been completed (e.g. by two 

consumers working from opposite ends of the link). 

Design concepts 

1. Basic principles 

The basic principle at the core of this model is the maximum power principle, which states that 

systems self-organise to maximise their rate of free energy capture and consumption, or power. 
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To do this, consumers should attempt to minimise energy consumed in transport, by making their 

networks as efficient as possible. Additionally, this model relies on the principle of time 

discounting, which has been shown in humans and other species to influence decision making 

through discounting a reward (such as resource consumed) by the amount of time in the future 

that it will occur. 

2. Emergence 

The network structure emerges throughout the simulation from consumers’ decisions and the 

resulting free energy they have available to invest in network expansion and improvement. While 

some base level of inequality among consumers is specified at initialisation, the final level of 

inequality is also emergent.  

3. Adaptation 

The consumers adapt to their environment by building a network that allows them to attempt to 

maximise their own consumption within that environment: at each timestep, each consumer 

decides what resource within their vision radius will yield the most returns, based on their personal 

time discounting rate, then builds, repairs, or walks the link to move to that resource. The 

population also adapts over time, as consumers who are successful enough to accumulate energy 

reserves adequate to reproduce pass on their traits (parameter values) to their offspring. 

4. Objectives 

The consumers’ objectives are to survive, and to maximise their consumption of free energy, which 

in turn allows them to maximise their output in improving the network or reproducing. The 

consumers survive by maintaining a minimum level of energy reserves to support basic operation, 

i.e. basal metabolism. 

5. Learning 

Consumers can learn as they consume more resources and gain a larger field of vision (from higher 

energy stores), which allows them to survey further across their environment. Although they can 
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potentially include more resources in their vision radius if they move to more central locations, 

they do not ‘remember’ previously surveyed resources that are no longer in view. 

6. Prediction 

Consumers predict which resources within their field of vision will provide the highest energetic 

returns, based on the current energy supply of each resource, and their personal time discounting 

rate. They can then preferentially build and improve links to those resources. 

7. Sensing 

All consumers have a field of vision proportional to their energy reserves, that they use to survey 

their surroundings and choose which resource(s) to which they build or improve links. As their 

energy reserves fluctuate, and they move, which resources that are included within their field of 

vision may change.  

8. Interaction 

Consumers do not interact directly, but they can use and repair one another’s links between 

resources, and indirectly collaborate by contributing to building a link that is already under 

construction. They therefore interact stigmergically through the network they construct, what they 

reinforce or allow to decay, and the resources they consume. 

9. Stochasticity 

Consumers are initialised with state variable values (e.g. initial energy reserves, risk penchant, rho) 

from a normal distribution with a set mean and standard deviation and are placed on random 

resources across the network. Resource capacity and regrowth rate are also initialised with a 

normally-distributed level of energy reserves (see ‘Initialisation’). 

10. Collectives 

There are no collectives explicitly specified within the model, but consumers could aggregate into 

informal collectives who utilise the same resource(s) and links in a specific area of the network. 
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11. Observation 

At each timestep, the state variable values for consumers, patches, and links will be recorded. 

Additionally, the locations and state variable values for resources are recorded at the start of each 

run.  

Initialisation 

The resource, consumer, and link parameters are specified in an Extended Markup Language 

(XML) file. The landscape is specified in Comma-Separated-Values (CSV) files that store the 

initial-patch-resistance for each patch in the environment, and the location for each 

resource in the environment.  

The models were initialised with a population of consumers randomly located on resource nodes 

throughout the space. The consumers began with normally-distributed resource units their 

energy-reserves. The distributions from which the values were drawn were all truncated 

such that the lower bound was 1 (energy reserves, consumption rate, time horizon) or 0.01 (basal 

metabolism, risk penchant, rho). 

Resources were all initialised with normally-distributed resource capacity and resource regrow rate 

values, with the distributions of each truncated such that the minimum of each was 1. Resources 

all began the simulation at full capacity. 

Input data 

This model has no input data. 

Submodels 

1. Vision radius update 

At the start of each timestep, each consumer consumes its basal metabolic requirement from its 

reserves (see below) and updates its vision radius to the product of its risk penchant and energy 

reserves,  
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 𝑉𝑖 = 𝑃𝑖𝐴𝑖 , (8) 

where Vi, Pi, and Ai are the vision radius, risk penchant, and energy reserves of consumer i, 

respectively. The risk penchant is a fixed constant that determines what proportion of the energy 

supply the consumer is willing to risk on building, repairing, or walking along links.  

If the consumer does not have adequate energy to cover its basal metabolic requirement, it dies. 

2. Target resource selection 

At each timestep, consumers who are not currently building or walking assess the resources within 

their vision radius. Based on their expected consumption from the resource they are located on, 

and the expected provision of the resources they can evaluate, they decide whether to stay where 

they are, or move to a different resource by building a new link, repairing an existing link, or 

walking an existing link. The consumers use a simple discounting model to incorporate a rate of 

time preference into their decisions, which places a higher weight on quicker returns.  

Utility function 

Consumers each have a rate of time preference, or ρ, that they apply when discounting. To 

determine the action they will take, consumers apply a discounting function to the expected 

consumption gain G at each timestep t of their overall time horizon T. From this, they subtract 

the expected costs C of each timestep, and sum the differences to calculate a net discounted utility. 

The consumer then chooses the action with the maximum net discounted utility. 

 
max 𝑈 = ∑

(𝐺𝑡
1−𝜌 − 1)(1 + 𝜌−𝑡)

1 − 𝜌

𝑇−1

𝑡=0

− 𝐶𝑡 . 
(9a) 

When ρ = 1, this simplifies to 

 
max 𝑈 = ∑ log 𝐺𝑡 + log 𝐺𝑡

−𝑡
𝑇−1

𝑡=0

− 𝐶𝑡 . 

 
 

(10b) 
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3. Link construction, maintenance, and decay 

The links between resources can be conceptualised as stocks of infrastructure, or embodied energy 

(L, in J), comprised of the patches along the shortest path between two resources. At each timestep, 

the change of this infrastructure is 

 𝑑𝐿𝑖

𝑑𝑡
= 𝐸𝐵𝑖

− 𝑘𝐿𝑖 , 

 

(11) 

where 𝐸𝐵𝑖
 is the energy invested by a consumer in that patch, and k is the rate of decay, such that 

the decay of a link-patch is proportional to the current level of infrastructure. This infrastructure 

is in turn inversely proportional to the roughness or friction of the patch, such that 

 
𝑅𝑖 =

𝛽𝑖

𝐿𝑖
 , (12) 

where βi is a conversion factor equal to the baseline roughness of the patch, with units of N·J. 

This way, R has a lower bound of 1 and an upper bound of the baseline roughness of that patch 

(i.e. natural state), since L has a lower bound of 1 and an upper bound of the baseline roughness 

of the patch. 

Therefore, the energy spent at a given timestep to build or repair that patch, which leads to the 

accumulation of embodied energy L, can be conceptualised as increasing the smoothness of the 

patch, or 𝐶 = 𝑅−1 (in N-1). In these simulations, this is simplified as  

 𝐸𝐵𝑖
= 𝜂(1 − 𝐶𝑖) , (13) 

or the energy required to increase the patch’s smoothness to the maximum (C = 1). η (in J·m·s-1) 

represents the energy that must be embodied in one patch per timestep to change the smoothness 

by 1 N-1, or the roughness by 1 N.† Although a consumer could spend a lower amount to improve 

 
†For simplicity, here we set 𝜂 = 𝑅, such that 𝜂(1 − 𝐶) = 𝑅 − 1, so 𝐸𝐵𝑖

 reduces R to the minimum as it increases C 

to the maximum. 
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the patch, it would then spend a higher amount to cross it following construction or repair, such 

that the total building and walking energy requirement would be the same. This is because the 

roughness of the patch determines the energy required to cross it (assuming a constant speed SW 

= one patch per timestep): 

 𝐸𝑊𝑖
= 𝑆𝑊𝑅𝑖 . (14) 

 

4. Energy balance, resource consumption and basal metabolism 

The final energy balance of a consumer includes energy from consumption (gain G) minus energy 

spent on building or repairing links, walking links, individual maintenance (basal metabolism M), 

and any energy passed on to offspring (O): 

 𝑑𝐴

𝑑𝑡
= 𝐸𝐺 − 𝐸𝐵 − 𝐸𝑊 − 𝐸𝑀 − 𝐸𝑂. 

(15) 

 

Resource and patch maps 

Patch grid generation and evaluation 

For the sensitivity analysis, three layouts of patch resistance were explored: banded, where five 

bands of higher-resistance patches crossed the otherwise uniform landscape; random, where patch 

resistances were chosen from a uniform distribution between the minimum and maximum patch 

resistance; and uniform, where all patches had the same resistance. The random and banded maps 

were compared by calculating the spatial autocorrelation of patch resistances, to confirm that the 

replicates of each layout were similar to one another, but different from those of the other layouts. 

Overall, the spatial autocorrelation was significant for all banded resource maps (Moran’s I 0.20 – 

0.78, p < 0.05) and not significant for all random resource maps (Moran’s I -0.05 – 0.03, p > 0.05). 

Spatial autocorrelation could not be calculated for uniform maps, since all patches have the same 

resistance, so it is considered a maximum. 
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Resource map generation and evaluation 

Additionally, three resource location maps were used: patchy, where resources were grouped in 

patches centred around three random points in the space; random, where resources were located 

uniformly across the space; and patchy-random, where most resources were clumped as in the 

patchy maps, but 15% of them were located randomly between patches. Ten of each resource map 

were generated for each world size, each with a resource density of 3.3 %. As the presence or 

absence of resources at each point was binary, the resource location maps were compared within 

and across qualitative types using resource accumulation curves, based on the idea of species 

accumulation curves (Ugland, Gray and Ellingsen, 2003). These were generated by a simple 

Netlogo model of a random walker, who recorded the cumulative number of resources it 

encountered on a random walk through the space, with the walk length proportional to the size of 

the space (Appendix 2).  

The resource accumulation curves showed distinct patterns for each of the three resource maps 

(full results in Appendix 2). For the patchy resource maps, the curves had a large range of means, 

and very high standard deviations (SDs) across the repeated trials for each map. The random 

resource maps had smaller ranges of means and lower SDs, and the patchy-random resource maps 

were between random and patchy for the range of means and the size of the SDs.  

For the full model exploration, nine stylised landscapes were created using three resource maps 

(shown in main text), each with three patch maps (Table A1). The resource maps were styled to 

represent urban centres, urban to rural transition areas, and smaller villages. The urban centres and 

urban-to-rural transition resource maps were paired with uniform, random, and banded patches, 

with bands falling approximately between or around the resource clusters. The village resource 

maps were paired with random patches and two maps each of banded patches. These allowed for 

comparison of runs across a more limited range of landscapes, such that different arrangements 

of resources and patches were included, but clearer causal links between landscape features and 
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model dynamics and outcomes could be drawn. For the final experiments presented in the main 

text, only random patches were used. 

Table A1. Descriptions and diagrams of patch maps used in full model exploration. The patch maps are 
shown with each patch coloured to represent the roughness, with lighter colour representing lower 
roughness.  

Patch map name Description Illustration 

Banded  Patches have uniformly random 
roughness between a specified 
minimum and maximum, with 
bands of maximum roughness, 
located at random. 

 

Random Patches have uniformly random 
roughness between a specified 
minimum and maximum. 

 

Uniform Patches have uniform roughness 
(equal to the maximum roughness 
used in other patch maps).  

 

 

Sensitivity analysis 

As each simulation run contains stochastic elements in the initialisation and among resource and 

patch landscapes of the same qualitative type, replicates of each simulation run were performed. 

This minimised noise and ensured full coverage of the possible outcome variable distributions. As 

a stable value for each outcome variable was less of interest than the possible range of network 

structures and consumer outcomes, the distribution of each outcome variable rather than the final 

value was taken as the point of comparison between runs. 
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To determine the number of replicates needed per simulation run, a pre-test was conducted 

following Lorscheid et al. (2012). The high, middle, and low values for each parameter, combined 

with all possible combinations of resource and patch landscape, were run over 50 replicates. The 

distributions of outcome variables were compared, using the Kolmogorov-Smirnov test, between 

runs of the same parameter set, world size, and landscape for 3000 and 5000 timesteps, 25 and 50 

replicates, and 3000 timesteps/25 replicates and 5000 timesteps/50 replicates, as well as across 

landscapes and world sizes.  

Overall, the distributions were not significantly different for most outcome variables at different 

timesteps and replicates, except for variables measuring cumulative totals, which were more varied 

for longer runs. Comparisons between world sizes, resource maps, and patch maps were 

significant. The final simulations for the full model exploration were therefore performed over a 

smaller range of resource and patch maps, for 3000 timesteps and 25 replicates of each run. 
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Appendix 2. Random walker model 

To ensure that the landscapes generated for the sensitivity analysis were different enough to test 

model dynamics, they were each tested with a random walker model to generate the resource 

accumulation curve. For each timestep of the model, the random walker moved to one of the six 

neighbouring patches of its own patch, checked if there were any resources there that it had not 

yet encountered, and if so, added them to the list of resources it had encountered. This continued 

for a duration proportional to the size of the landscape and was repeated ten times for each 

landscape. The number of unique identified resources was plotted over time for each repetition to 

generate the resource accumulation curve. The mean and standard deviation were then compared 

for each landscape.  

The resource accumulation curves for each landscape are shown below. Overall, the patchy 

resource landscapes had quite high standard deviations and a large range of means, while the 

random resource landscapes had lower standard deviations and more similar means across 

replicates. The patchy-random resource landscapes had a range of means and standard deviations 

in between those of the patchy and random resource landscapes, as would be expected. This 

suggests that consumers could be expected to have qualitatively different outcomes given the 

resource landscape in which they are placed, when their specific behavioural rules are not directly 

considered.  
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a.  

 

b.  

c.  
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d.  

 

e.  

 

f.  

g.  
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h.  

 

i.  

Figure A1. Resource accumulation curves for 10x10 (a) patchy, (b) patchy-random, (c) random; 20x20 
(d) patchy, (e) patchy-random, (f) random; and 40x40 (g) patchy, (h) patchy-random, and (i) random 
landscapes. The points represent means for that timestep, and the bars represent standard deviations. 
Each colour series is one replicate. 
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Appendix 3. Full model exploration 

Table A2. The (a) low and high values for each explored variable, and (b) fixed value for each control 
variable, used to parameterise the final experiments. 

a.  

Explored parameter Low value High value 

Number of consumers 25 500 
Maximum patch roughness 6 N 10 N 
Minimum patch roughness 2 N 6 N 
Link decay rate 0.1 J 

timestep-1 

0.5 J 
timestep-1 

Mean resource capacity 25 kcal 45 kcal 
Standard deviation (SD) of 
resource capacity 

2 kcal 7 kcal 

Mean resource regrowth rate 9 kcal 
timestep-1 

15 kcal 
timestep-1 

SD of resource regrowth rate 1 kcal 
timestep-1 

3 kcal 
timestep-1 

b.  

Control parameter Fixed value 

Mean time horizon 18 timesteps 
SD of time horizon 4 timesteps 
Mean initial energy reserves 70 kcal 
SD of initial energy reserves 15 kcal 
Mean basal metabolism 3 kcal timestep-1 
SD of basal metabolism 0.5 kcal timestep-1 
Mean consumption rate 5 kcal timestep-1 
SD of consumption rate 1 kcal timestep-1 
Mean rho 1 
SD of rho 0.025 
Mean risk penchant 72 % 
SD of risk penchant 4 % 
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Table A3. Outcome variables calculated for each simulation run. 

Variable name Description 

Population size The number of consumer agents currently active in the 
simulation 

Mean energy reserves The mean of consumer energy reserves 
Standard deviation (SD) of energy 
reserves 

The standard deviation of consumer energy reserves 

Gini energy reserves The Gini coefficient of consumer energy reserves 
Theil energy reserves The Theil coefficient of consumer energy reserves 
Mean offspring produced The mean number of offspring produced  
SD of offspring produced The standard deviation of offspring produced 
Gini offspring produced The Gini coefficient of offspring produced 
Number of links The number of links (bi-directional) in the network 
Number of (included) resource nodes The number of resource nodes included in the network 
Total link length The total link length around the network 
Diameter The distance between the two furthest resource nodes 

included in the network 
Mean link length The mean link length 
SD of link length The standard deviation of link length 
Gamma index The ratio of possible links to observed links 
Beta index The ratio of links to total resource nodes in the 

landscape 
Mean node degree The mean number of links attached to each included 

resource node 
Percentage of resource nodes included The percentage of total resource nodes in the 

landscape that are included in the network 

 

Analytical approach 

The analytical approach emphasised visualisation and identification of visible and practical 

differences, rather than frequentist statistics. The latter are often overly sensitive in cases with large 

numbers of samples (here, replicates), making them likely to identify most differences as 

statistically significant (White et al., 2010). 

To identify the relationships among outcome variables, however, traditional correlations and 

regressions were used. For the correlations, a random sample of 500 parameterisations was selected 

for each world size, and the Spearman’s rank correlation coefficient was calculated for each set of 

replicates at 1000, 2000, and 3000 timesteps. Spearman’s rank was chosen as not all relationships 

were approximately linear. Additionally, linear regressions were performed at 1000, 2000, and 3000 

timesteps. The linear models were fit by selecting a sample of 100 parameterisations, fitting a 
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regression to model each outcome variable with all other outcome variables for each set of 

replicates, and testing the residuals for normality and heteroskedasticity. This was repeated for 

each world size. Models with normal residuals were kept, and the significant coefficients were 

identified. These were further compared across time steps.  

All analyses and visualisations were done in R version 4.0.3 (R Core Team, 2020), using the ineq 

(Zeileis, 2014), igraph (Csardi and Nepusz, 2006), and ggplot2 libraries (Wickham, 2016). 

Results 

Across a range of analyses, the input parameters of link decay rate, initial population size, and 

mean resource capacity were the most important, both individually and combined, in determining 

both consumer outcomes and network size and structure. In contrast, the standard deviations of 

resource capacity and regrow rate had little to no noticeable effect on the outcome variables.  

The results identified in the following sections were broadly stable across time and world size, with 

the range of the outcome variables sometimes increasing in larger world sizes, but the qualitative 

relationships remaining the same. In the next sections, the following will be explored: first, broad 

patterns of outcomes such as runs where the population went extinct or did not construct any 

links, followed by analyses relating both the outcome variable values with input parameters, and 

with one another.  

Extinctions 

In some runs, the population went extinct before the simulation completed. The frequency of 

these extinctions was compared across world sizes, landscapes, and input parameter values. For all 

pairs of world sizes, the frequency of extinctions was significantly correlated (Figure A4), and the 

pattern of extinctions by landscape and input parameters were similar, suggesting that world size 

did not strongly influence whether a population would survive in a run with a given landscape and 

starting parameterisation. Extinctions predominantly occurred in random cities and random 
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villages, with some occurring in uniform cities (10x10) and banded cities (20x20) (Figure A5). The 

frequency of extinctions was related to link decay rate, resource capacity and regrow rate, and 

population size, with most extinctions occurring in runs with high link decay rate, high mean 

resource capacity, and low initial population size (Figure A5). 

A 

 

B 

 
 

Figure A4. Correlations of the frequency of (a) extinction events and (b) non-construction runs between 
world sizes, for each parameterisation (replicate). Shown in the top left corner is the Spearman’s 
correlation coefficient for the correlation between events in the two world sizes. All correlations were 
significant (p < 0.001, N = 2304 pairs). 
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A 
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B 

 

Figure A5. Number of runs by landscape where the population (a) went extinct and (b) did not construct 
a network. The rows and columns in (a) are link decay rate and initial population size, respectively, and 
the outline and fill colour of both plots represent the maximum patch roughness and mean resource 
capacity, respectively. 
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Non-construction runs 

There were also runs where the consumers did not build or maintain links between resources, and 

instead remained in their starting positions throughout the simulation. While these populations 

sometimes went extinct, in other runs they survived the duration of the simulation, albeit with 

typically low population sizes. As with the extinctions, the frequency of non-construction runs was 

significantly correlated and similar in pattern of occurrence across world sizes (Figure A5). These 

runs occurred almost exclusively in uniformly high-roughness landscapes with low mean resource 

capacity.  

Correlations 

After determining the parameterisations related to extinctions and non-construction events, the 

relationships between outcome variables were explored. The correlations for each pair of outcome 

variables were calculated for a sample of runs in each world size (see Methods) and the distribution 

of correlation coefficients was plotted (Appendix 4). The distributions of correlation coefficients 

for each pair of outcome variables were quite similar across timesteps, world sizes, and landscapes. 

Moreover, several outcome variables were consistently strongly positively correlated, such that 

these were grouped for later analyses with one variable used as the representative of the grouping 

(Appendix 4).  

The identified groupings were consumer inequality, offspring produced, total network size, and 

network connectivity. In the first grouping, the Gini, Theil, and standard deviation of consumer 

energy reserves all consistently positively correlated, so the standard deviation (SD) of consumer 

energy reserves was used to represent consumer inequality in later analyses. For offspring 

production, mean and SD of offspring produced were quite strongly correlated, so the SD of 

offspring produced is used to represent offspring production across the population. For total 

network size, counts of links and included nodes, total link length, diameter, gamma index, beta 

index, and percentage of nodes used were all strongly positively correlated, with link length used 

to represent this grouping. Finally, the average node degree, gamma index, beta index, and 
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percentage of nodes used were highly or perfectly correlated, so average node degree was used to 

represent network connectivity in future analyses.  

Apart from the grouped variables of the same type, there were few meaningful correlations 

between outcome variables of different types (Table A4). One exception was the current 

population size, which was consistently positively correlated with total link length and mean node 

degree. Population size was slightly positively correlated with mean link length in most landscapes 

(Table A4, Appendix 4), though this was diminished in landscapes with less total construction, 

such as banded villages, and frequent non-construction events, such as uniform cities and uniform 

transition. Mean and SD of energy reserves were not notably correlated with link outcome 

variables but mean and SD of offspring produced were slightly negatively correlated with total link 

length. 
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Table A4. Mean and standard deviation of corelation coefficients for relationships between 
representative outcome variables. The standard deviations for the correlations reflect the sample of 
500 replicates from each world size used for calculations (see Methods of this section). For simplicity, 
only the correlations for the 40x40 world size at timestep 3000 are shown here, as all world sizes and 
timesteps followed the same pattern of relationships (Appendix 4).  

 Mean 
energy 
reserves 

SD of 
energy 
reserves 

SD of 
offspring 
produced 

Total link 
length 

Mean link 
length 

SD of link 
length 

Mean 
node 
degree 

Population 
size 

0.037 
(0.319) 

0.123  
(0.34) 

0.089 
(0.321) 

0.483 
(0.322) 

0.257 
(0.295) 

0.093 
(0.313) 

0.374 
(0.302) 

Mean energy 
reserves 

 0.448 
(0.227) 

-0.019 
(0.312) 

0.052 
(0.234) 

0.041 
(0.226) 

0.004 
(0.217) 

0.039 
(0.233) 

SD of energy 
reserves 

  0.084 
(0.31) 

0.019 
(0.249) 

0.033 
(0.234) 

-0.015 
(0.234) 

0.014 
(0.247) 

SD of 
offspring 
produced 

   -0.055 
(0.257) 

-0.024 
(0.238) 

-0.019 
(0.221) 

-0.022 
(0.247) 

Total link 
length 

    0.776 
(0.215) 

0.277 
(0.49) 

0.856  
(0.15) 

Mean link 
length 

     0.467 
(0.558) 

0.739 
(0.254) 

SD of link 
length 

      0.226 
(0.482) 

 

Faceting 

In addition to identifying relationships among outcome variables, the distributions of outcome 

variables by initial parameterisation were visualised. These plots were generated for the data at 

1000, 2000, and 3000 timesteps, and all world sizes, although as with the other analyses, the 

distributions did not show much difference over time or world size. 

Overall, the distributions showed that larger, more heterogeneous networks, as measured by the 

total and SD of link length, occurred in runs with low patch roughness, low link decay rate, and a 

high initial population size (Figure A6), though the latter levelled off some over time (Figure A7). 

Both the largest and most connected networks, as measured by mean node degree, occurred in 

banded and random cities and transition landscapes (Figure A6). 

 



Structure, flow, and inequality 

227 
Natalie Davis – June 2021 

 

Figure A6. The distribution of total network link length, SD of link length, and mean node degree, by 
landscape, maximum and minimum patch roughness. The total link length has been logged for clarity, 
and total and SD of link length are in generic length units. The rows and columns are link decay rate and 
initial population size, respectively. 
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Figure A7. Distributions of outcome variables by parameter levels. 
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Network heterogeneity and connectivity were also typically higher in runs with high initial 

population size, low link decay rate, and high mean resource capacity (Figure A6). Distributions 

of both variables also showed more high outliers in runs with low patch roughness and high mean 

resource regrow rate (Figure A7).  

Similarly, consumer inequality was affected by initial population size and mean resource capacity, 

with lower inequality related to each low initial population size, high mean resource capacity, and 

to a lesser extent, low patch roughness (Figures A6, A7). Link decay rate also appears to have 

affected consumer inequality, as SD of energy reserves had a slightly lower median and first quartile 

when link decay rate was high (Figure A7). There was also much less construction in these runs, 

however, and more extinctions associated with this parameterisation. The distribution of consumer 

outcome variables was quite similar across landscapes, except for random cities and villages, where 

there were more frequent extinction events. 

As discussed previously, the mean and standard deviation of offspring produced were closely 

correlated, as generally very few offspring were produced in most runs. Both variables showed 

higher medians and distributions in runs with low initial population size and high link decay rate, 

and more high values in runs with high mean resource capacity and low mean resource regrow rate 

(Figure A7). 

Most notably of the consumer-related variable outcomes, the distribution of mean energy reserves 

for any given input parameter value or landscape was quite small, with a median close to 70, 

whichw was the value used as the mean of the distribution of initial energy reserves of the 

population (Figure A7). However, the SD of energy reserves increased from 15 at initialisation to 

a distribution with a median close to 38 (Figure A7). Put another way, the variance of energy 

reserves increased considerably in most runs, but the mean stayed close to the original value. 
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Ergodicity and stationarity 

Before any timeseries analyses could be run, the stationarity and ergodicity of the outcome 

variables was tested for each outcome variable in each run or set of replicates, following the 

method of Grazzini (2012). No outcome variables were consistently both stationarity and ergodic, 

and the parameterisations associated with ergodicity and stationarity in link variables, and 

ergodicity in consumer variables, were the opposite of those associated with stationarity in 

consumer outcome variables.  

Specifically, stationarity in consumer outcome variables was associated with parameterisations that 

produced little to no network construction (Figure A8), such as high link decay rate, low resource 

capacity, and low initial population size. The opposite was true for both stationarity in link-related 

outcome variables, and ergodicity of all variable types: here, they were associated with 

parameterisation that produced larger, more interconnected networks and more inequality among 

consumers (Figure A8), such as low link decay rate, high resource capacity, and high initial 

population size. 
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Figure A8. The frequency of ergodicity and stationarity for population size, SD of consumer energy 
reserves, total link length, and mean node degree. For simplicity, only 40x40 world size is shown, as all 
world sizes followed the same pattern. Rows are link decay rate and columns are initial population size.  

Regressions 

As most of the outcome variables were only rarely both ergodic and stationary, as required by 

traditional time series analyses, linear regressions at 1000, 2000, and 3000 timesteps were used to 

examine the relationships among outcome variables. No clear, consistent relationships were 

present, once models with non-normal residuals and relationships that occurred during only one 

or two of the tested time points were removed (see Methods in this appendix). The number of 

consumers occasionally showed both positive (10x10, 40x40) and negative (10x10, 20x20) effects 

on the mean link length, though there were not clear patterns of other outcome variable 

relationships or input parameters that determined this directionality.  
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Appendix 4. Correlations 

Table A5. Mean and standard deviation of corelation coefficients for relationships between related outcome variables (all types). The standard deviations for 
the correlations reflect the sample of 500 replicates from each world size used for calculations (see Methods). For simplicity, only the correlations for the 40x40 
world size are shown here, as all world sizes followed the same pattern of relationships (see Figure A4).   

 Gini energy 
reserves 

Theil energy 
reserves 

Mean 
offspring 
produced 

SD of 
offspring 
produced 

No. of 
links 

No. of 
included 
nodes 

% of total 
resources 
included 

Cost Diameter Gamma 
index 

Beta 
index 

SD of energy 
reserves 

0.576  
(0.206) 

0.579 (0.207) 0.066  
(0.311) 

0.084  
(0.310) 

0.016  
(0.252) 

0.020  
(0.255) 

0.020  
(0.255) 

0.019  
(0.249) 

0.032  
(0.238) 

0.047  
(0.230) 

0.014  
(0.247) 

Gini energy 
reserves 

 0.977 (0.027) 0.144  
(0.294) 

0.160  
(0.296) 

0.036  
(0.273) 

0.034  
(0.272) 

0.034  
(0.272) 

0.039  
(0.273) 

0.044  
(0.257) 

0.062  
(0.243) 

0.043  
(0.261) 

Theil energy 
reserves 

  0.144  
(0.296) 

0.159  
(0.297) 

0.017  
(0.269) 

0.015  
(0.268) 

0.015  
(0.268) 

0.020  
(0.269) 

0.027  
(0.254) 

0.060  
(0.240) 

0.026  
(0.258) 

Mean 
offspring 
produced 

   0.823  
(0.094) 

-0.138  
(0.28) 

-0.146  
(0.281) 

-0.146  
(0.281) 

-0.136  
(0.277) 

-0.094  
(0.259) 

0.068  
(0.268) 

-0.079  
(0.26) 

SD of offspring 
produced 

    -0.056  
(0.26) 

-0.062  
(0.264) 

-0.062  
(0.264) 

-0.055 
(0.257) 

-0.035  
(0.251) 

0.05  
(0.24) 

-0.022  
(0.247) 

No of links      0.948  
(0.088) 

0.948  
(0.088) 

0.987 
(0.016) 

0.724 
(0.348) 

0.085 
(0.712) 

0.846 
(0.16) 

No of included 
nodes 

      1.000  
(0.000) 

0.930  
(0.102) 

0.708  
(0.338) 

-0.038  
(0.762) 

0.708  
(0.279) 

Percentage of 
total nodes 
included 

       0.930  
(0.102) 

0.708  
(0.338) 

-0.038  
(0.762) 

0.708  
(0.279) 
 

Cost         0.740  
(0.349) 

0.104  
(0.700) 

0.856  
(0.150) 

Diameter          0.150  
(0.613) 

0.680  
(0.374) 

Gamma index           0.389  
(0.516) 
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Figure A9. Density plots of correlation  coefficients for all pairs of unrelated outcome variables. Each colour series represents one world size/timestep 
combination. Shown are data for all world sizes (10x10, 20x20, 40x40) at timesteps 1000, 2000, and 3000. 
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Appendix 5. Kruskal-Wallis tests and piecewise regression tables 

Table A6. Kruskal-Wallis tests comparing consumer inequality and network metrics across the three 
simulated landscapes at distinct points in time. Consumer inequality is calculated as the standard 
deviation (SD) of consumer energy reserves. Timesteps after those chosen followed the same pattern 
of significance for network metrics, but not for inequality. Degrees of freedom for the Chi-squared 
statistic is always 2. 

Timestep 5 10 25 50 100 500 

Variable χ2 Sig. χ2 Sig. χ2 Sig. χ2 Sig. χ2 Sig. χ2 Sig. 

SD of 
energy 
reserves 

0.11 0.95 1.38 0.50 8.61 0.01 18.23 0.00 10.93 0.00 1.04 0.59 

Total link 
length 

39.81 
 

0.00 52.50 0.00 58.81 0.00 55.71 0.00 41.33 0.00 41.85 0.00 

Mean 
node 
degree 

39.40 0.00 53.50 0.00 57.00 0.00 54.24 0.00 43.19 0.00 42.62 0.00 

Mean 
link 
length 

49.31 
 

0.00 45.86 0.00 50.20 0.00 52.89 0.00 48.43 0.00 35.43 0.00 

SD of link 
length 

46.57 0.00 42.48 0.00 35.85 0.00 36.62 0.00 43.29 0.00 39.89 0.00 
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Table A7. The breakpoints and slopes identified by piecewise regression, showing the time points of 
major state changes in simulations and the speed of increase or decrease of measured variables on 
either side. Energy reserves is abbreviated ER. Shown is the mean and standard deviation for the 
breakpoints and slopes for the three landscapes individually, where breakpoints and slopes were 
calculated for each replicate then averaged. 

Landscape Mean ER slope 
1 (SE) 

Mean ER 
breakpoint 1 
(SD) 

Mean ER slope 
2 (SE) 

Mean ER 
breakpoint 2 
(SD) 

Mean ER slope 
final (SE) 

Cities -0.63 (0.13) 27.76 (3.34) 0.49 (0.01) 171.60 (26.69) 0.00 (0.00) 
Transition -0.57 (0.09) 28.52 (3.72) 0.54 (0.01) 161.02 (43.87) 0.00 (0.00) 
Villages -0.55 (0.08) 28.39 (2.85) 0.51 (0.01) 171.44 (32.38) 0.00 (0.00) 

 

Landscape SD of ER 
slope 1 
(SE) 

SD of ER 
breakpoint 1 
(SD) 

SD of ER 
slope 2 
(SE) 

SD of ER 
breakpoint 2 
(SD) 

SD of ER 
slope 3 
(SE) 

SD of ER 
breakpoint 3 
(SD) 

SD of ER 
slope 
final (SE) 

Cities 0.14 
(0.02) 

11.83 (1.00) -0.23 
(0.03) 

27.02 
(3.68) 

0.32 
(0.01) 

116.91 
(27.69 

0.00 
(0.00) 

Transition 0.14 
(0.02) 

11.72 
(1.86)  

-0.16 
(0.03) 

27.33 
(3.05) 

0.38 
(0.02) 

101.90 
(19.11) 

0.00 
(0.00) 

Villages 0.13 
(0.02) 

12.28 (1.03) -0.21 
(0.02) 

27.14 
(2.87) 

0.31 
(0.00) 

130.20 
(19.91) 

0.00 
(0.00) 

 

Landscape Total link 
length slope 1 
(SE) 

Total link 
length 
breakpoint 1 
(SD) 

Total link 
length slope 2 
(SE) 

Total link 
length 
breakpoint 2 
(SD) 

Total link 
length slope 3 
(SE) 

Cities 24.93 (2.40) 27.49 (2.10) -11.34 (0.31) 103.63 (26.73) -0.07 (0.00) 
Transition 18.88 (1.68) 28.48 (2.43) -15.28 (0.38) 103.18 (24.06) -0.08 (0.00) 
Villages 13.79 (1.90) 27.72 (2.88) -9.00 (0.28) 101.07 (26.93) -0.04 (0.00) 
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5 
5. Discussion 

To ensure long-term flourishing of ecological and socio-ecological systems, the respective 

heterogeneity and equality of resource distribution is crucial. This distribution takes place through 

interconnected resource acquisition, distribution, and end-use (RADE) networks, such that any 

attempt to manage or change heterogeneity or inequality must involve a clear understanding of the 

relationships among RADE network structure, resource flows, and consumer outcomes. The work 

presented here aimed to deepen that understanding, by using simulation modelling of stylised 

networks to elucidate general patterns in RADE network development and its interactions with 

consumer inequality.  

Overall, these chapters demonstrate that heterogeneity and inequality are fundamental aspects of 

ecological and socio-ecological systems, due to the heterogeneous structures of RADE networks 

and the spatial distribution of resources across the landscape. As shown in Chapter 2, increasing 

flows through heterogeneously structured networks, or increasing the hierarchical structure of the 

networks, leads to rapid increases in inequality between end consumers. As these changes also 

facilitate higher system-level power consumption, thus entropy production, they are seen across 

all earth systems evolving toward these thermodynamic extrema. In Chapter 3, this heterogeneity 

of network structure was shown to lead to greater consumer heterogeneity, which could result in 

speciation and biodiversity, but only if the heterogeneity occurred at a biologically relevant 

spatiotemporal scale for the consumers to experience. Lastly, Chapter 4 showed how inequality 

and network structure co-evolved, and how both were influenced by the spatial distribution of 

resources and the population size and biology of the consumers. Together, these findings highlight 



Chapter 5: Discussion 

248 
Natalie Davis – June 2021 

the ubiquity of heterogeneity and inequality due to the structure and dynamics of the networks 

facilitating resource consumption, and how both can be increased by the development trajectory 

of the overarching system, and feedbacks between network structure and consumer state. 

This chapter discusses the main findings presented in the thesis, considering the questions and 

proposed work outlined in the introductory chapter, and describes areas of future work. In the 

first section, the findings of each chapter are summarised and discussed, focussing on how they 

connect with each other and the overall context of the thesis. The second section then reviews 

common themes across the chapters, which are picked up in the programme of research outlined 

in the closing section. 

5.1. Discussion of findings 

5.1.1. Chapter 2 

In Chapter 2, a simple model of resource distribution was developed based on an electrical 

analogue, which modelled consumers’ resource intake as power consumption. Simulations were 

used to quantify individual and total network power consumption as the flows through the 

network increased. The increased flows drove the total power consumption of the network to a 

maximum, before decreasing again due to frictional losses. In networks with heterogeneous 

connectivity or link lengths, however, the outcomes of individual consumers diverged with 

increasing flow; power consumption of the most distant consumers decreased even as the total 

network power consumption approached its maximum. The inequality in consumption was found 

to be proportional to the effective resistance, a metric defined to include both link length and 

upstream connectivity.  

The work presented in Chapter 2 bridges the considerable literature on maximum power and 

entropy production in natural and socio-ecological systems (e.g. Odum and Pinkerton, 1955; 

Martyushev and Seleznev, 2006; Kleidon, Malhi and Cox, 2010) with that discussing resource 
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distribution network structure (e.g. West, Brown and Enquist, 1997; Banavar et al., 2010; Jarvis, 

Jarvis and Hewitt, 2015). The results show that networks develop along trajectories toward 

maximum power by increasing flows, becoming more hierarchical in structure, or both. As both 

the consumers and resources which these networks connect are distributed throughout space, the 

optimal, space-filling network structure to maximise resource throughput is a hierarchical 

branching structure. However, increasing flows across a heterogeneously structured network, 

especially a hierarchical structure, leads to a rapid increase in the inequality among end consumers. 

By connecting the established trajectory of systems to evolve toward maximum power and entropy 

production, and the optimality of heterogeneously structured networks in facilitating this, the 

chapter provides a possible explanation for the seemingly ubiquitous emergence of both beneficial 

heterogeneity in natural systems and damaging inequality in socio-ecological systems. 

For example, in ecological systems, the heterogeneity of resource distribution creates 

environmental niches and increases biodiversity (see reviews in Tews et al., 2004; Stein, Gerstner 

and Kreft, 2014). The networks in Chapter 2 could represent rivers, soil macropore networks, 

mycelia, or foraging trails, all of which move nutrients to points of consumption, such as individual 

organisms, groups, or areas. As shown, this relocation replicates or even increases the 

heterogeneity of the original spatial and temporal distribution of resources, especially as nutrient 

flows or cycling increases. A variety of types and quantities of resources in an area leads to diverse 

populations of primary producers, which in turn creates a range of resources for consumers in 

higher trophic levels. This increases the transformations the energy flows undergo, and the overall 

power and entropy production of the system. In this way, biodiversity across and within trophic 

levels is also part of this trajectory toward maximum power and entropy production (Vallino, 

2010). This biodiversity is linked to greater stability and resilience of ecosystems (Wang et al., 2019), 

so they can more consistently take advantage of the resources available to them, and are less 

vulnerable to collapse due to extinction of any given species (Ulanowicz et al., 2009). Therefore, in 
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natural systems, the larger trajectory toward maximum power and entropy production is associated 

with biodiversity and the healthy functioning of the biosphere.  

In human-engineered systems, the RADE networks relocating resources from farms, oil rigs, solar 

fields, and other production points, and the control of these networks by powerful individuals and 

groups, creates opportunities for natural heterogeneity to be exacerbated or replicated through the 

network. In modern society, however, heterogeneity of natural resources is not the sole contributor 

to inequality, at least at the timescale of individual lives. Instead, it is a combination of 

heterogeneity in socioeconomic resources such as wealth and influence causing unequal access to 

physical resources like food and fuel, and unequal access to physical resources diminishing 

prospects for socioeconomic stability. As Chapter 2 demonstrates, highly structurally 

heterogenous network architectures are the most energetically efficient for connecting the spatially 

distributed consumers. This in turn, especially when combined with powerful actors who can 

shape the network to their own benefit, causes heterogeneity of distribution.  

Chapter 2 also demonstrates the insufficiency of focussing only on the economic status of 

individuals when trying to understand and reduce inequality. Alleviating economic poverty, such 

as through direct cash payments for environmental services, may help reduce inequality 

temporarily (e.g. Pagiola, Arcenas and Platais, 2005; Edward, 2006). If there is a positive feedback 

between inequality in resource distribution and socioeconomic inequality, as described above, then 

it will also take restructuring the physical or economic architecture of RADE networks distributing 

those resources to disrupt this cycle. In society, when financial and network restructuring 

alleviation efforts are not coupled, increasing socioeconomic resources may actually cause 

environmental damage, as there is more money for extractive resource consumption, but no access 

to more sustainably sourced resources available through larger markets (Alix-Garcia et al., 2013). 

In short, if resources are not distributed to an area, then money will be useless unless it is enough 

to restructure resource distribution or allow people to move to better-resourced areas.  
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Overall, given that all earth systems tend toward maximum power and entropy production, and 

heterogeneous network structures have the highest maximum power throughput, the work 

presented in Chapter 2 would suggest that RADE network structure is a key factor in the ubiquity 

and persistence of inequality and heterogeneity. While the latter is beneficial in ecosystems, 

inequality in society has been linked with a range of individual- and societal-level health and social 

challenges, demanding restructuring efforts to address its emergence and increase. The results 

from this chapter show that the structurally symmetrical radial burst networks, with a central 

resource equally and directly linked to each consumer, had equal distribution for any amount of 

resource flow. However, restructuring all RADE networks to this level of equality is unlikely to be 

possible. Furthermore, the trajectory for networks to shift out of this state and into one with a 

higher power and entropy production, such as hierarchical branching, suggests that restructuring 

will need to occur on many interconnected social, political, economic, and physical levels, to limit 

the emergence and increase of inequality in a system. 

5.1.2. Chapter 3 

Chapter 3 also developed and used a model of RADE networks to understand relationships 

between structure and consumer heterogeneity, but instead focussed on understanding 

heterogeneity in soil ecosystems. Soil macropore networks were extracted from profile images, 

analysed with network science and transport geography metrics, and used as the environment in 

an agent-based model (ABM) of generic consumers foraging for resources. The larger, more 

connected, and more structurally heterogeneous networks, as measured by the network metrics, 

led to larger, more heterogeneous consumer populations in the simulations. This was also 

influenced by resource and consumer characteristics, however. For example, consumer 

populations with low metabolism, consumption rate, and energy threshold for spawning had a 

lower mean resource stock for any given resource base, while interaction between soil type and 
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resource type strongly influenced mean consumer resource stocks and final population size across 

all simulations. 

Overall, this chapter contributed insights into the relationship between resource heterogeneity and 

consumer diversity, by highlighting the role that RADE networks play in mediating consumer-

resource relationships. Here, the networks allowed consumers to move between resources, 

determining energy consumption in foraging and which resources a consumer could access. As 

the consumers here could not modify the network, the resource heterogeneity to which they were 

exposed was at the scale of the subnetwork in which they were located. Therefore, as they did not 

experience the level of heterogeneity as was measured here in the overall network, the relationship 

that emerged between heterogeneity and diversity was limited, though noticeable. The effect of 

scale on heterogeneity-diversity relationships has been discussed (Gazol et al., 2013; but see also 

Seiferling, Proulx and Wirth, 2014), but this work expands on that by connecting scale effects 

explicitly to the access that the RADE network provides. 

This chapter also contributes a new methodology for studying heterogeneity-diversity 

relationships, both with and without explicit RADE networks. Here, empirical data about an area, 

including imagery, is coupled with traditional and simulation-based analysis and modelling to 

explore possible dynamics in that area. By incorporating more empirical data in models, 

simulations can be used to test more realistic hypotheses about causal mechanisms and to observe 

effects of environmental change or population composition change, without modifying real 

systems. This can then generate and improve ideas for future empirical work. Similar methods 

have applied image analysis to measuring environmental complexity (Parrott, 2010) and identifying 

inaccessible and under-serviced parts of a city (Brelsford et al., 2018), but to our knowledge, this is 

the first coupled image analysis and simulation modelling paper.  

Although not as frequently discussed, this chapter and related work on environmental 

heterogeneity and biodiversity could be applied to understanding more generally how complex life 
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emerges and is sustained. Previous work on heterogeneity-diversity relationships has been mostly 

limited to identifying descriptive relationships between resources and species currently present in 

an ecosystem. Future applications could expand this to more predictive work, to see if the 

relationships observed in empirical systems could estimate the quantity and complexity of life that 

would emerge in a novel system. This could take the form of a heavily altered earth system, such 

as one impacted by environmental change, human activity, or invasive species, or even 

environments on other planets. As discussed in Chapters 1 and 2, there is a trajectory for systems 

to evolve toward maximum power and entropy production that is accelerated by heterogeneously 

structured networks, along with the heterogeneity in resources and habitats these networks create, 

and the resulting biodiversity. While the role of life in sustaining entropy production has been 

posited (Vallino, 2010), the tipping points or thresholds at which complex life could emerge, and 

their relationship with the RADE network structures present, have not yet been explored.  

Specifically, any such threshold must be related to the location of resources and resulting structure 

and dynamics of the RADE networks present in the system, such as those constructed by simpler 

life forms or gradient-based flows. In any system, the RADE networks that emerge to connect 

resources and consumers necessarily co-evolve with them, such that the quantity and complexity 

of life that emerges would both predict and be predicted by the size and complexity of the RADE 

networks which they construct and use. This is demonstrated in Chapter 3 by the larger and more 

heterogeneous populations that emerge in the larger and more heterogeneous networks. While 

consumers could not modify the network in the modelled system here, in observed soil 

ecosystems, larger consumers, plant roots, water, and geological processes all adapt the network 

further. As soil networks are used as both foraging networks for animals and plant roots, and 

facilitate the diffusion of nutrients through groundwater seepage, there is likely a positive feedback 

between increasingly complex network structures, and the biodiversity of both above- and below-

ground ecosystems. Understanding the specifics of this feedback, and its relationship to other 



Chapter 5: Discussion 

254 
Natalie Davis – June 2021 

characteristics of the systems in question, could provide insight into how it might emerge in novel 

systems.  

In novel or existing systems, however, the importance of soil biodiversity for ecosystem health, 

and the role of RADE networks in mediating heterogeneity-diversity relationships, must be 

considered in discussions of land management practices. As discussed in Chapter 3, the 

preservation of soil network structural heterogeneity can take the form of preserving wild spaces 

across a range of biomes, minimising or eliminating tilling, planting cover crops, and coincident 

planting of species with distinct root structures and foraging patterns. These management 

practices, and the resulting maintenance and increase of soil structural heterogeneity, allow for a 

diverse and healthy soil biota, which provides the foundation for stable and productive ecosystems. 

5.1.3. Chapter 4 

The fourth chapter focussed on the relationships between landscape heterogeneity, network 

structure, and consumer inequality. It developed and analysed a simple model of consumers 

building and using a network to move between resources, maximising their time-discounted 

consumption. The dynamics and outcomes were then compared across three distinct spatial 

distributions of resources, or landscapes. The consumer inequality, measured as the standard 

deviation of consumer energy reserves; the network size and connectivity, measured as the total 

link length and mean node degree; and the rates of change of each were widely similar in values 

and dynamics across the three landscapes studied. However, the networks in the ‘Cities’ and 

‘Transition’ landscapes were slightly larger and more connected, and the Cities networks showed 

the highest peak of consumer inequality. This suggests that characteristics shared across 

simulations, such as the discounting mechanism, reproduction threshold, metabolic rate, and 

consumption rate of consumers; and the regrowth rate and capacity of resources; drove the overall 

dynamics of the systems. The spatial distribution of the resources, and therefore the characteristic 

network link lengths associated with each landscape and the popularity of certain links, constrained 
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the rate of those dynamics and the times at which dynamics shifted. For example, the networks in 

the Transition landscape, which included many short links between nearby resources in the denser 

central area, and longer links to more distant resources, showed a much more rapid decay of total 

link length after initial construction, and more rapid contemporary increase in consumer inequality. 

This contemporary increase and decrease of consumer inequality and network size, respectively, 

was part of the distinctive co-evolutionary pattern between the two. Network size first increased 

rapidly, before decaying back to a more stable state as preferred links were more frequently used 

and maintained. Consumer inequality decreased during the initial construction phase, then 

increased rapidly as the network decayed back to a more stable state. This increased inequality is 

due to consumers having different access to established links in the smaller, stable network, and 

therefore using different amounts of energy to navigate between resources. As maps of the 

networks over time showed that consumers used and maintained links predominantly between 

local resources, the consumers with the highest energy reserves were those who could access many 

resources in a small area without building new links. The other consumers were often trapped in 

less well-resourced parts of the network and had to use more energy to move between resources 

or build links back to denser areas. Therefore, the consumers with the highest energy reserves were 

not necessarily those who could build links for their own benefit, but those who were positioned 

in space and time in such a way that they could take advantage of links built by others, thereby 

minimising the energy they spent traversing the network.  

This mechanism of inequality and structure co-evolution is comparable to consumers in 

preferential positions in flow networks, who can then reinvest energy in bringing more resources 

through the network toward themselves. While the consumers in the Chapter 4 model actively 

moved through the network, the pattern of preferentially maintaining links between some 

resources – such as those with the highest capacity, regrowth rate, or proximity to other resources 

– allowed nearby consumers to increase their own intake. The relationship between the energy 
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reserves of a given consumer, and the position and actions of other consumers building and 

maintaining links in the network, is similar to the models in Chapters 2 and 3, where consumers 

interact indirectly through their actions and resource consumption. In those models, however, 

consumers could not alter the network, and in Chapter 2, they also could not move. The emergence 

of inequality in each model, albeit with a range of distributions from heavily skewed to nearly 

normal, suggests that inequality is a robust outcome of consumers relying on heterogeneous spatial 

networks for resource acquisition. This thinking will be expanded in Section 5.2.2.  

The relationship between consumer state and indirect interactions with other consumers adds 

complexity to unravelling the specific causes and feedbacks around inequality and connecting 

individual-level interactions to system-level observations. While time series methods such as panel 

analysis could allow simultaneous visualisation and quantification of multiple individual 

consumers’ trajectories, many such methods impose stringent requirements such as stationarity. 

This highlights the need for new methods to analyse data produced by empirical and model 

complex systems, which include both individual-level interactions and systems-level emergence, 

and which may not meet the assumptions of traditional time series analysis methods. These new 

methods would likely take the form of analysing the life history or trajectory of individual actors, 

including location and decisions, and aligning that with simultaneous or proceeding events in the 

system. This would incorporate the path dependency of individual actions with the evolution of 

the system. In the context of Chapter 4, this could show how some consumers navigated to better-

resourced parts of the network and rapidly increased their consumption, while others remained in 

less accessible or resourced areas.  

This path dependence of consumer state, and feedback between consumer inequality and network 

structure, also provides further evidence for the importance of explicit structuring and governance 

of networks, if reducing or eliminating inequality is a goal. This is not necessarily the case for all 

systems that the model in Chapter 4 could represent, but it is a named objective in many modern 
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societies. As the consumers in the model made decisions to maximise their own consumption, the 

network emerged to favour those who could maintain it to their own benefit, and the network 

structure in turn helped maintain the status of those consumers. Unlike the naturally-occurring 

networks such as those discussed in Chapter 3, where heterogeneity and the resulting biodiversity 

are important to the sustained health and functioning of the system, most modern human societies 

claim equality in consumption and access as an ideal. Proponents of modern economic systems 

would likely argue that increasing flows through current resource networks would increase the 

standard of living for those relying on them, following a pro-growth logic championed by Kuznets 

(1955) and similar (though see references and discussion in Edward, 2006). According to this logic, 

allowing the networks to develop along maximally efficient routes would be of most benefit to all. 

The results of Chapters 2 and 4 demonstrate that a ‘free market’ approach to network construction, 

with the most well-endowed consumers making choices to benefit themselves, will inevitably 

interact with the natural heterogeneity of resources in the landscape and any starting level of 

inequality to increase the divergence of consumer outcomes over time.  

When eliminating inequality by explicitly structuring the network in a spatially homogenous way is 

not possible, due to factors such as heterogeneity of resource and consumer spatial distribution, 

increasing connectivity of the network can also reduce inequality between consumers. This was 

shown by the lower inequality in the higher connectivity networks in Chapter 2, and during the 

dense initial phases of network construction in Chapter 4. However, this introduction of potential 

redundancy goes against the tendency for these networks to evolve toward maximum power and 

entropy production, with maximally efficient, albeit less resilient, architectures. Therefore, to bring 

about distributional equity, it may be necessary to also restructure how society governs and relies 

on its resource networks, to overcome the heterogeneity that their physical structures tend toward. 

This will be discussed more in the following sections. 
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5.2. Common themes 

Beyond the main findings discussed in the sections above, several common themes emerged across 

the chapters of the thesis, including agency, comparability between networks, contrasting 

ecological heterogeneity with socio-ecological inequality, and different uses of systems-level and 

individual-level modelling and analysis. These are discussed in the following sections, and feed into 

the future work proposed in the closing section. 

5.2.1. Agency 

Any discussion of how to restructure RADE networks to become more equitable assumes that the 

actors operating on the network, whether they are the same as the end consumers or at a higher 

organizational level, hold some amount of individual- and group-level agency. Agency is typically 

described as the ability to act, which is understood to occur within social, cultural, and linguistic 

boundaries (Ahearn, 1999). Although less discussed, it is relevant here to acknowledge the 

resource-related constraints on agency as well: An actor of any species is only able to act insofar 

as it has the energetic capacity to do so. Additionally, the question of free will becomes relevant: 

Can actors use that energy in a manner of their own choice, or are they constrained by larger 

systemic trajectories? Within the context of the work presented here, agency and free will are 

relevant in discussions of whether network restructuring is possible, especially in the face of 

thermodynamic extremization principles, and the combination of individual- and group-level 

decisions and governance structures that would be required.  

The work presented in Chapters 2 and 4 highlights the need for explicit effort of the actors within 

a system to restructure the networks if equality is their goal, as is stated in many modern and 

historical human societies. As all actors are limited by their resources, restructuring necessitates 

action especially by the better-positioned and endowed actors, with net excess resources to reinvest 

in shaping the networks. In Chapter 4, consumers built the network from decentralised decisions 

to maximise their own consumption, which resulted in increased inequality over the course of the 
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simulation. As discussed, this has parallels with consumers shaping flow networks to preferentially 

increase their own intake. To successfully bring about restructuring and equality in networks 

shaped by agents working toward their own interests, system actors must all believe that changing 

the system toward equality is of benefit to themselves, even if it results in a reduction of their 

possible net resource flow.  

Notably, the consumers in Chapter 4 were not aware of the inequality emerging in the system, 

beyond the effect it had on the network structure. The level of other-, group-, and self-awareness 

that an actor possesses can considerably modify their actions, and the resulting inequality that 

emerges in a system. For example, actors who become aware of others with less resources may 

choose to share theirs, if they consider it to be the most beneficial action – either to the other 

actor, the group, themselves, or some combination thereof. If the consumers of Chapter 4 had 

shared resources to collaborate on building and repairing links, they may have been able to 

maintain a larger, more connected network, and supported a more equal population. In contrast, 

actors may become more territorial or competitive, observing the advantage provided by being 

more affluent in an unequal society, and actively working to maintain or improve their holdings. 

It would be considerably more difficult to engage in restructuring networks in the latter system, 

where powerful actors are prosecuting a self-preservation strategy that contributes to inequality.  

Although humans have shown a considerable capacity for altruism, especially toward their 

perceived ‘in-group’ (e.g. Kurzban, Burton-Chellew and West, 2015), RADE network restructuring 

to create equity in society would require a much broader, even global, conceptualisation of in-

group. It would also require acknowledgement that increasing the current flows in a heterogeneous 

network will increase inequality, and that systemic effects from network structure can cause 

reduced resource access and limited or no net excess. This physically prevents individuals from 

changing their own circumstances. While this shift in attitudes would be beneficial to restructuring 

efforts, if inequality has emerged or increased over the course of the system’s development, then 
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the entire trajectory of how that system develops must also be shifted. Otherwise, any enacted 

change would only be temporary, as further development would move the system back toward 

inequality and undo any changes.  

Given the thermodynamically-driven trajectory of the overall earth system to evolve toward 

maximum power and entropy production; the facilitation of this through maximally efficient, 

highly heterogeneous branching networks; and humanity’s position as a part of this evolving earth 

system, there seems little that can be done to change the trajectory of network development and 

the resulting inequality: Our agency and free will do not extend so far as to counteract physics. 

Perhaps then it would be more realistic to acknowledge this trajectory, and instead attempt to 

adapt our societies to become more equitable by changing how we rely on and interact with RADE 

networks. This will be discussed further in Section 5.2.3. 

5.2.2. Comparability of networks 

Importantly, the precise shape of any relationship between network heterogeneity and consumer 

inequality is likely determined by the attributes of the network, consumers, and resources in 

question. Therefore, any implications of the findings presented in these chapters must be 

understood within the context of the specifications of the models that generated them. The 

defining characteristics of the environment, resources, and consumers for each model are 

summarised in Table 5.1. 
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Table 5.1 Characteristics of environment, network, resources, and consumers in the models presented 
in Chapters 2-4. 

 Environment and network Resources Consumers 

Chapter 2 Uniform roughness, pre-
specified network 
structure, no decay. 

Point resources with 
linear, infinite flows. One 
resource type. 

Fixed consumers, no 
ability to change network 
or interact. No starting 
resource allocation. 

Chapter 3 Uniform roughness, pre-
specified network 
structure, no decay. 

Point resources, 
depletable but regrowing 
at a constant rate. One 
resource type. 

Mobile consumers, no 
ability to change network 
or interact, random search 
strategy. Identical starting 
resource allocations. 

Chapter 4 Varying roughness, no 
initial network structure, 
links decay. 

Point resources, 
depletable but regrowing 
at a constant rate. One 
resource type. 

Mobile consumers, can 
modify network but not 
directly interact, decisions 
based on limited 
information. Varying 
starting resource 
allocations. 

While the models in each chapter share some similarities, there are also clearly considerable 

differences in consumer behaviour and level of agency, environment heterogeneity, and resource 

dynamics. The most significant involves the consumers’ ability to relocate within or modify the 

network: in Chapter 2, consumers and links were fixed; in Chapter 3, consumers could move, albeit 

randomly; and in Chapter 4, consumers employed a more sophisticated algorithm to weigh 

options, and could build and maintain links. While any inequality that emerged in the models was 

a result of network structure and the location and consumption of other consumers, only in 

Chapter 4 could the consumers modify the network, within the bounds of the spatial configuration 

of the resources. With each layer of possible consumer actions and interactions in the models, 

understanding the exact causes of inequality among consumers becomes more difficult. Given the 

incredible level of complexity and interaction in empirical systems, this becomes even more 

relevant for understanding and addressing inequality and heterogeneity in them, and for 

generalising model outcomes to real-world scenarios. 
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Rather than attempt to capture this level of complexity, the models presented in this thesis were 

explicitly designed to incorporate the minimum requirements of resource distribution: consumers 

and resources, spatially explicit networks, and physical and thermodynamic consistency. The 

inequality that emerged and persisted or increased during the simulations showed that the starting 

conditions of each model, and these minimum requirements, were enough to generate at least 

qualitatively similar patterns of inequality and heterogeneity to those observed in empirical systems. 

Future work increasing the complexity of the models, as discussed in each chapter, may make them 

more specifically accurate. This could also identify additional features that empirical RADE 

networks incorporate to cause any divergence from the qualitative similarities present in the 

current results.  

For example, distinct types of resources are likely to have different energetic cost functions 

associated with their transportation (Banavar et al., 2000; Bohn and Magnasco, 2007; Han et al., 

2019). While one resource may have a linearly or exponentially increasing energetic cost associated 

with a higher flow rate, another may have an economy of scale. This may be further influenced by 

the materials forming the network architecture, whether pavement, wires, paths, or veins. In the 

models developed for this thesis, only one cost function for resource or consumer movement was 

explored in each. Therefore, more exploration of parameter spaces and design choices would be 

required to connect different cost functions with the emergence and increase of consumer 

inequality, and map this back to empirical systems.  

This exploration would also be necessary to clarify the implications and reasonable level of 

generalisation of findings from any specific RADE network model. For example, as covered in 

Chapters 1 and 2, many RADE networks share a similar hierarchical branching architecture, or 

more generally, minimum spanning tree architecture, despite their diverse contexts. This 

architecture is an optimal space-filling structure (e.g. West, Brown and Enquist, 1997) under certain 

conditions, such as when the incremental increase of cost for transporting more materials 
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decreases with the amount of material transported (Banavar et al., 2000; Bohn and Magnasco, 

2007). However, under other cost functions or constraints, redundancy and loops are more 

optimal, and more resilient (Banavar et al., 2000; Gavrilchenko and Katifori, 2019). The frequency 

with which branching architectures are observed in empirical systems suggests that the conditions 

for their optimality are widely experienced across systems, but perhaps not universally.  

Similarly, inequality emerges in many systems, including those with hierarchical branching or other 

spanning tree architectures. While inequality was not ubiquitous in the networks studied here, and 

emerged at different rates or extents, it emerges in all but explicitly equally structured RADE 

networks. Given the diversity of the contexts of these networks, the phenomenon of inequality is 

perhaps best described as a specific case that can arise from different initial conditions and 

evolutionary trajectories; this is known as equifinality. In the context of RADE networks, 

equifinality in consumer outcomes such as inequality means that it can be difficult to determine 

causality of inequality observed in one system, based on its causes in another system where it 

emerged, unless clear proofs for its emergence can be provided and compared. This is especially 

true for complex systems, where outcomes and drivers can co-evolve through feedbacks, as shown 

in Chapter 4. Therefore, further explorations could help identify the extent to which certain 

network structures, inequality, or both emerge, and how much and when structure and inequality 

are causally linked.  

For the purposes of the discussion of the chapters here, it is worth noting that the diverse range 

of contexts and characteristics of RADE networks clearly impacted the specific findings of each 

chapter, such as the precise values of consumer inequality, relationship between resource flows 

and inequality, and rates of population dynamics. Moreover, the highly stylised, theoretical nature 

of the models limits the extent to which these findings can be taken as predictive of specific 

dynamics or outcomes in empirical systems. For example, while increasing flows through 

heterogeneous network structures will necessarily drive the system toward increased inequality, the 
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specific rate of its emergence and increase may be different with nonlinear flows or multiple 

resource points. Similarly, larger, more heterogeneous soil macropore network structures will 

support larger, more heterogeneous populations of soil biota, ceteris paribus, but the emergence of 

population heterogeneity could be increased by consumers pursing more sophisticated search 

strategies or modifying the network. Given these caveats, the findings presented in these chapters 

must be interpreted and applied with care, though they remain useful, informative, and qualitatively 

comparable with empirical systems. 

5.2.3. Heterogeneity and inequality 

Despite the similar drivers of heterogeneity and inequality in naturally-occurring and human-

engineered systems, each has a very distinct conceptualisation and set of norms for understanding 

it. As discussed throughout this thesis, ecological, environmental, and biological heterogeneity is 

considered natural and vital to healthy system functioning (Tews et al., 2004; Tylianakis et al., 2008; 

Stein, Gerstner and Kreft, 2014). Even inequality between consumers within the same non-human 

species is usually regarded as normal and a driver of adaptation and evolution (Lotka, 1922), rather 

than a moral wrong. In contrast, inequality of basic resources in modern human society is often 

conceptualised as a moral wrong enacted on individuals by the socio-political and socio-economic 

systems and those with power in them, although it is sometimes still framed as being the fault of 

the individual – they were lazy or had some other character flaw (Furnham and Gunter, 1984; 

Franks, 2020). Notably, this conceptualisation only became relevant as humans began settling in 

larger groups; the smaller family groups and tribes associated with many indigenous societies were 

often highly egalitarian, which is usually ascribed to a combination of pragmatism regarding 

possessions in a mobile group, and enforcing egalitarian behaviour to maintain social cohesion 

(Smith et al., 2010; Mattison et al., 2016). 

There are at least two possible drivers for the transition in socio-political discourse and political 

and ethical norms in larger, modern societies, from the ‘survival of the fittest’ mentality popularised 
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by social Darwinists (e.g. Spencer, 1860), to repudiating inequality and attempting to limit it in the 

face of a highly heterogeneous world. First, it could have been driven by awareness of the 

deleterious impacts on individual and public health and wellbeing resulting from inequality, as 

discussed in Chapter 1. It is also possible that empathy and consciences have shifted over time, 

especially through globalisation, to become more widely aware of the inherent equality of all people 

and therefore the injustice of inequality, beyond one’s family group or tribe (Sheehy-Skeffington 

and Thomsen, 2019). It is likely some combination of these two possibilities that has led to the 

emphasis on and broadening understanding of equality and justice in economic and political 

systems, and the different conceptualisations of inequality in society and heterogeneity in 

ecological systems. Importantly, the inequality emerging in Chapter 4 would suggest that the 

complex interactions of individual maximising choices in a heterogeneous landscape can lead to 

inequality, even in systems with agents who are nearly identical, and use the same mechanisms for 

decision-making. This suggests the blame for inequality may also lie with the emergent system 

arising from these interactions, rather than only one of the more visible top-down political and 

economic systems, or the choices and work ethic of individuals. 

Regardless of the cause for shifting attitudes and norms, in many modern societies there are 

attempts to limit or eliminate poverty, provide food and energy more widely, and distribute other 

services publicly, such as healthcare and education (United Nations, 2015). Various levelling 

mechanisms may have also been common in egalitarian pre-modern societies (Mattison et al., 

2016). These groups also frequently moved or adapted their behaviour and technology to match 

available resources (e.g. Dyson-Hudson and Smith, 1978; Mattison et al., 2016), which limited 

within-group inequality and led to different resource specialisms across groups. Suggesting that 

people continue to respond to resource differentials through adaptation, migration, or speciation 

would be viewed as unethical and reprehensible. However, the reality of the over 66 million 

migrants, many fleeing food and water shortages and resource-related conflict, shows that 
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considerable migration still occurs (World Food Programme, 2017), and food insecurity is a 

problem for all nations (International Food Policy Research Institute, 2015). Clearly, there is much 

more that needs to be done for our ideals of equality and justice, if only of the most basic resources, 

to be matched by the outcomes of our systems. Incorporating a deeper understanding of the role 

of RADE networks in creating and reinforcing this inequality is crucial. 

While prescription was not the aim of the chapters presented here, given the very theoretical nature 

of the models, their findings suggest a few options for conserving heterogeneity in natural systems 

and reducing inequality in society. First, ecological heterogeneity can be maintained or encouraged 

by focussing on the diversity of habitats and resources at lower trophic levels, including below-

ground ecosystems. Ensuring a healthy, heterogeneous soil matrix will create habitat for diverse 

soil organisms and plants, which will carry up the trophic levels to higher-level consumers (Baer et 

al., 2005; García-Palacios, Maestre and Gallardo, 2011; Hutchings, John and Wijesinghe, 2011; 

Vezzani et al., 2018). Additionally, keeping corridors open for animals to hunt, forage, migrate, or 

maintain larger territories makes it less likely for species to be trapped in unsuitable or overcrowded 

habitats (Ziv and Davidowitz, 2019). In short, conserving wild spaces that cover connected, diverse 

areas, and promoting biodiversity through rewilding, cover-cropping, and similar efforts, will help 

maintain the heterogeneity needed for healthy ecosystem functioning. 

In human society, inequality could be addressed through restructuring RADE networks where 

possible, through decentralising, localising, and increasing connectivity. For example, decentralised 

energy systems, such as renewables, hold considerable promise for providing equitable energy 

access, if the needs of the population are truly prioritised (Fathoni, Setyowati and Prest, 2021). 

Localising food systems can also increase access to healthy, seasonal, sustainable food (Martinez, 

2010). In effect, these restructuring efforts would attempt to create RADE networks with a more 

structurally equal, centralised topology, such as the radial burst networks shown in Chapter 2 to 

have equal distribution. Where more physical resource distribution restructuring is not possible, 
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economic governance structures and social networks could be used to increase redistribution and 

offset the heterogeneity of the network architecture. This could include systems such as food 

sharing, which has been practiced in many pre-modern and contemporary societies (e.g. Ahedo et 

al., 2019). Similarly, systems such as universal basic income or energy provision, tiered to increase 

payments or provision to more vulnerable individuals and communities, could help increase access 

to resources.  

As this thesis focussed on inequality of necessary, basic, energy-related resources such as food or 

fuel, the findings and implications may not necessarily extend to inequality in higher-level societal 

resources. The connections between energy poverty, poor nutrition, and other individual outcomes 

such as educational attainment (see Chapter 1, Section 1.2) suggest that this inequality in access 

and inequality in opportunity are not separate issues. However, a discussion of the philosophical, 

moral, and political dimensions of the extent to which absolute equality should be pursued are 

beyond the scope of the work presented here.  

5.2.4. Systems-level and individual-level analysis 

To further study and implement these solutions, there also needs to be more standardised, widely 

used analytical methods for complex systems. For example, in addition to the ethical and moral 

considerations detailed above, another plausible reason for the different treatment of heterogeneity 

and inequality is the distinct data sources and analyses used for each. Systems with more granular 

data – individual or household – are often represented and studied at a more individual level, while 

systems with only estimates for individuals but more data on larger scales – populations, 

ecosystems, geographic regions – are approached from a more system-wide level. Much of the 

work to date done on system trajectories, such as maximum power and entropy production, has 

focussed on ecological, environmental, or large-scale socio-ecological systems (see reviews in 

Odum, 1971; Martyushev and Seleznev, 2006; Kleidon, Malhi and Cox, 2010). Any inequality 

among consumers has therefore largely been missed, or in analyses covering multiple species, is 
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considered beneficial heterogeneity. Analyses of inequality in society, however, have focussed 

more on deleterious effects on individuals and communities of resource-related inequality (for 

example, see reviews for outcomes linked to energy poverty in Gaye, 2007; Sovacool, 2012; and 

food insecurity in Laraia, 2013; Long et al., 2020) and how socioeconomic inequality is related to 

top-down forces like policy and economic growth (Edward, 2006; Hoy, 2015). There is 

considerably less focus on the interactions between individual and system level, and how those can 

give rise to inequality and heterogeneity.  

As discussed with regards to Chapter 4, there are no widely used methods yet for quantifying and 

capturing these conditions and interactions at the individual level that translate to inequality and 

heterogeneity at the system level. Both system-level and individual-level analyses can provide useful 

insights, but with contrasting conceptualisations of the system under study: System-level models, 

such as systems dynamics models or the network model in Chapter 2, treat the individual state as 

predominantly emerging from the system state, while the reverse is true for individual-level models 

such as the ABMs in Chapters 3 and 4. 

However, system state is rarely, if ever, entirely driven by top-down dynamics or bottom-up 

emergence. In the case of inequality, natural heterogeneity of resources and the energy they provide 

constrain the system, but the decisions made by and interactions between individuals also 

determine the inequality that emerges, as shown in Chapter 4. This becomes increasingly complex 

with higher levels of consumer agency, as feedbacks between consumer state and environmental 

dynamics can also emerge, causing shifts in what may have previously been considered a driving 

or constraining force. Anthropogenic climate change is a clear example of this. In the proceeding 

chapters, the first two models focussed on top-down effects of the RADE network on inequality, 

while the model in Chapter 4 demonstrated the emergence of inequality and network structure 

from individual decisions. This was still bounded by the energy supplied by the resources, and 

beyond building and maintaining the network, the consumers had no effect on the larger 
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environment. This limits the feedbacks to occurring only between network structure and consumer 

inequality, rather than incorporating any effect of consumers on resource dynamics. This could 

have increased the rate or quantity of inequality emerging in the system if network construction or 

maintenance somehow decreased resource capacity or regrowth, and consumers with more energy 

reserves or a better location could use these as temporary leverages against environmental changes.  

Interestingly, both the systems-level and individual-level conceptualisations and analyses in the 

literature focus little attention on the RADE networks connecting resources and consumers. These 

networks are the physical connection mapping the individual decisions and interactions and the 

constraints of the system level, showing how the outcomes at each level interact and mediate one 

another. For example, the networks modelled in this thesis can transfer the natural heterogeneity 

of the simulated landscape into inequality between consumers. In empirical systems, 

anthropogenic RADE networks also allow humans to act on the environment, by moving people 

and raw materials, all forms of embodied energy, across the landscape. Over the timescales for 

which we now have data, we can observe how resource extraction and anthropogenic changes to 

natural systems cause and accelerate environmental change, which in turn can impact the ability of 

communities around the world to grow food for themselves. Given the importance of 

understanding these feedbacks, and regulating the heterogeneity and inequality observed in natural 

and social systems, there should be a continued focus on how RADE networks translate resource 

heterogeneity to consumer heterogeneity, and how the latter feeds back into the networks and 

encompassing systems. This will necessarily be accompanied by new analytical methods for 

connecting the dynamics at individual and systemic levels through the network. 

5.3. Future work 

As each chapter contained a discussion of limitations and possible extensions, the future work 

associated with each is only briefly summarised below. After these, a programme of research is 
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laid out, which includes expansion of the models presented in the chapters here, as well as 

questions raised by the proceeding discussion of common themes in the work. 

5.3.1. Summary of future work from each chapter 

To continue the work of Chapter 2, the model presented could be expanded considerably, such as 

including multiple types of resources and resource flow dynamics, as well as non-linear flows. For 

example, the emergence of consumer inequality and maximum power in networks with two or 

three types of resources, or with pulsing as opposed to constant resources, could be explored. 

Additionally, the results could be compared with data from empirical networks, such as rivers and 

roads. This could determine how their materials, flow dynamics, and governance structures cause 

any divergence between their actual outcomes and those presented here. 

For Chapter 3, both the network extraction and analysis methodology and the agent-based model 

(ABM) could be improved and expanded. The chapter lists several improvements to the network 

extraction methodology, including retention of more detailed soil structure than straight-line 

distances between pores, and quantifying edge effects around colour correction cards and image 

borders. The network metrics calculated for each soil type could also be compared with traditional 

measures of soil structure, and across more soil types, to understand the range and interpretation 

of each metric. This would be an important next step to expanding the analysis methodology to 

wider field use, as is intended. Furthermore, the model could be made more biologically realistic 

and specific, by including predation, explicit speciation or multiple starting species, consumers 

who could expand or change the network, and more refined resource search strategies and energy 

accounting. This would allow for a greater degree of comparability between the model and 

empirical soil ecosystems, and therefore exploration of more detailed hypotheses around 

population responses to different network structures and soil conditions. 

The model in Chapter 4 could also be analysed further and expanded. Specifically, common 

network structures or motifs could be identified by cluster analysis of networks with similar values 
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for the calculated network metrics, as well as new metrics measuring frequency or probability of 

link construction and use between given nodes. These would likely take the form of information-

related measures such as Shannon entropy. The structural groupings could also be identified by 

comparing networks to known structures, such as small-world and scale-free networks, using the 

ranges of metrics values such as node degree and link length distribution. The identified structure 

for a given network could then be compared across time and related to consumer inequality. 

Furthermore, if the exact capacity and regrowth rate of each resource were fixed, rather than drawn 

from a distribution, the network structures that emerged across runs would likely be quite similar 

and could provide useful insights into the trajectories of consumers who started on one resource 

as opposed to another. This could allow for more individually-focussed analyses, such as 

examining the decisions and energy reserves of individual consumers over time.  

5.3.2. Programme of research 

Considering the areas of future work highlighted from each chapter, and the common themes 

discussed, the following programme of research could be undertaken. 

As the models in the chapters presented here have already generated a considerable database of 

results and could easily be explored further, expanding the model design and results analysis as 

discussed in the sections above would be a useful starting point. In particular, the ABMs in 

Chapters 3 and 4 could be easily expanded, to further the biological realism of the model in Chapter 

3, and to incorporate more consumer interaction and foresight, and different resource dynamics 

into the model in Chapter 4. These expansions would provide a better understanding of how and 

when certain network structures and inequality emerge, and how they co-evolve under different 

conditions and levels of consumer agency. As discussed previously, this would clarify how results 

from the models could be interpreted and mapped to empirical systems.  

Alongside this, work should be undertaken to improve and develop new analysis methods. These 

could incorporate some elements of the network extraction method in Chapter 3, such as 
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identifying and extracting networks in maps, images, and other visual data, and connecting that 

with modelling and analysis of the consumers constructing and using the network. For some 

networks, this could be combined with associated empirical resource flow data, such as rates of 

blood or phloem flow, traffic, amps, or shipments, or with data measuring inequality in resource 

consumption. Even if these data were not available, the network structures could be used as the 

basis for models, as done in Chapter 3, to explore possible dynamics and development trajectories. 

These models could also be used to estimate measures of inequality within and across groups of 

consumers to compare to the empirical data for that system. This would create a database of 

empirical networks, coupled with empirical or model-generated estimates of resource flows and 

inequality, to better relate network structures, flows, and outcomes. As discussed, while there has 

been some connection between extrapolated network structure of roads and inequality in urban 

areas (Brelsford et al., 2018), this is an underexplored area, especially in ecological and 

environmental systems. 

Future work could also expand methods for bottom-up analysis of models, especially ABMs, and 

how that could be connected to existing top-down analysis methods. Top-down analysis focusses 

on quantifying some aspect of the entire population, such as size or Gini coefficient, or looks at 

time series data for these population-level measures. In the chapters presented here, the 

measurements of population size and heterogeneity, and the network-level metrics, were all top-

down analyses. These provided a useful representation of the entire system state and the 

emergence of inequality across the population. In contrast, bottom-up analyses could take the form 

of analysing decision trees showing the decisions consumers made and different conditions 

surrounding each, panel analysis of time series data for individuals, or clustering of consumer 

states. Although to our knowledge these methods have not yet been tested, they could more clearly 

identify when and how inequality and heterogeneity emerge, persist, and increase, and the effects 

of any measures taken to alleviate or conserve it.  
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The increased understanding of the relationships among RADE network structure, development, 

and inequality, as presented in this thesis, is necessary to inform appropriate and useful controlling 

or intervening actions: we cannot fix that which we do not understand. Additionally, the work 

presented here highlights the possible limitations to our agency to modify RADE networks and 

their development trajectories, which is an important consideration when identifying strategies for 

inequality mitigation and heterogeneity conservation. Using the understanding generated by this 

thesis, and the future work proposed here, governance structures and interventions could be 

explored to reduce inequality and preserve heterogeneity. Models such as those presented here 

could be used to test some of the proposed heterogeneity preservation and inequality alleviation 

measures in previous sections. For example, what happens when we give people food or energy 

directly, such as through assistance programmes or installing solar panels on their homes? What 

about when we practice no-till agriculture, or build new roads, wildlife corridors, or railway lines? 

Identifying and simulating a range of possibilities within our agency to enact could identify 

effective strategies and unexpected externalities, as well as long-term outcomes beyond our agency 

to address. By increasing the theoretical knowledge base to support this work, the thesis presented 

here helps provide a basis to understand, modify, and adapt to RADE networks, and transition 

toward a more just, sustainable future. 
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