
Scaling limits of random growth

processes

George Liddle

Department of Mathematics and Statistics

Lancaster University

This thesis is submitted for the degree of

Doctor of Philosophy

April 2021



Declaration

I declare that the work in this thesis has been done by myself and has not been submitted

elsewhere for the award of any other degree. Chapter 2 presents a paper which has

accepted for publication in Annales de l’Institut Henri Poincaré (B) Probabilités et

Statistiques. Chapters 2 and 3 are based on joint work with my supervisor Amanda Turner

but have been written by myself and I have contributed fully to every aspect of this work.

George Liddle

April 2021

i



Acknowledgements

Writing a thesis during a global pandemic was always going to be challenging. It is

for this reason that I am especially appreciative of the support and encouragement I have

received from friends, family and colleagues during this pursuit.

I would first like to thank my excellent supervisor Amanda Turner for her patience and

encouragement during my 4 years at Lancaster. I am grateful for the skills I have developed

under her tutelage and I believe they will serve me very well in my future career.

During my PhD I have been fortunate enough to attend numerous conferences and dis-

cuss mathematics with many brilliant academics. In particular, my thanks go to Steffen

Rohde, Vincent Beffara and Alan Sola for helpful conversations which contributed to this

thesis.

I feel very lucky to have such supportive parents, siblings and family members who have

encouraged me, not just during these last 4 years but throughout my life. I will always be

particularly grateful to my parents for the sacrifices they have made to provide me with all

of the opportunities I have had.

I have made many great friends during my time at Lancaster, particularly through

rowing. I am thankful for the endless laughs that have got me through a freezing cold 6am

outing or a tough day in the office.

Finally, I would like to thank my partner Hope for her unwavering and unconditional love

and support during both the good and the most challenging times when writing this thesis.

ii



ACKNOWLEDGEMENTS iii

The best part of my decision to do a PhD at Lancaster was that it led to meeting you and

I am excited for all the adventures post-PhD life will hold for us both.

April 2021

I would also like to thank my examiners, Edward Crane and Dirk Zeindler for taking the

time to read my thesis so carefully and for their many useful comments which have improved

the thesis.

June 2021



Abstract

The topic of this thesis is random growth processes. These occur naturally in many real

world settings such as in the growth of tumours and lightning strikes. As such we would like

to model the processes so that we can effectively study their properties. In particular, we

are interested in what the shape of the process is as it grows and so we wish to evaluate the

scaling limits of the random processes.

In Chapter 1, we will provide the background material needed in order to study the random

growth models. We will give examples of real world processes that we would like to study

before describing the models used to study them. We then provide some previous results in

the area to provide context for the independent research that follows.

Chapter 2 will follow [LT21a] closely. In this paper we evaluate a strongly regularised

version of the Hastings-Levitov model HLpαq for 0 ď α ă 2. We consider the scaling limit of

the model under capacity rescaling. We first consider the case where α “ 0 and show that

the limiting structure of the cluster is not a disk, unlike in the small-particle limit. Then

when 0 ă α ă 2 we show that under the same rescaling the cluster approaches a disk and

we analyse the fluctuations.

In Chapter 3, we present results from a second paper [LT21b]. In this paper we study

the anisotropic version of the Hastings-Levitov model AHLpνq. We consider the evolution

of the harmonic measure on logarithmic timescales and show that there exists a logarithmic

time window on which the harmonic measure flow, started from the unstable fixed point,

moves stochastically from the unstable point towards a stable point.

Finally, in Chapter 4, we give the conclusions of this thesis and the scope for future work.
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CHAPTER 1

Background

1.1. Introduction

A random growth process is an object that evolves over time as a succession of particles

is attached to its boundary according to some underlying random structure. More explicitly,

a random growth process is defined as a increasing sequence of compact sets tKnuně1 where

Kn`1 is formed by attaching a particle at a random point on the boundary of Kn. These

processes are regularly exhibited in the natural world [Tur19]. Examples include tumoral

growth, lightning strikes and mineral aggregation. Often we would like to understand the

growth of the underlying natural process. For example, consider tumoral growth, the fol-

lowing figures by [GA10] display simulations on the spatial distribution of cancer cells after

90 cell generations at different consumption rates. The value k represents the consumption

rate with a low consumption rate corresponding to a large amount of oxygen in the tissue

surrounding the tumour. The authors model the process in two dimensions and show that

by changing the amount of oxygen in the surrounding tissue exhibits a change in the shape

of the cell growth [GA10].

Figure 1.
k = 2rc from
[GA10]

Figure 2.
k = 5rc from
[GA10]

Figure 3.
k = 10rc from
[GA10]
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1.2. LATTICE BASED MODELS 2

In Figure 1, the low consumption rate produces growth in which the shape is close to a

disk. However, as the amount of oxygen available to the tumour is reduced the growth be-

comes less disk-like and Figure 3 demonstrates growth to a branched diffusion process where

the tumour only grows in directions in which oxygen becomes available. This experiment

highlights a feature that will be demonstrated throughout the rest of this thesis; by changing

a variable, such as the amount of oxygen, we see a phase transition from growth to a disk

to growth to a non-disk.

Similar growth patterns have been exhibited in several other real world processes, exam-

ples include bacteria grown in a Petri dish and soot deposits within an engine [Tur19]. In

order to study the behaviour of these real world processes we need to build mathematical

models. Since the 1960’s, models have been built in order to describe individual processes.

The most famous examples include the Eden model [Ede61] and Diffusion Limited Aggrega-

tion (DLA) [WS83]. The Eden model is used to describe bacterial colony growth, whereas

DLA describes mineral aggregation. Determining the shape of these random clusters as

they increase in size is fundamental to understanding the real world processes the models

describe. For example, understanding in which direction a tumour is likely to grow is vital

for providing better medical treatment. This therefore poses both an interesting and chal-

lenging mathematical problem which is presented as the aim of this thesis; to discover the

scaling limits of these models.

1.2. Lattice based models

Perhaps the most common way to model these random growth processes is to model them

on a lattice. Modelling on a lattice has the benefit that the models are simple to define.

Start with a particle at some point on the lattice, most often the origin, then attach the next

particle at one of the unoccupied adjacent lattice points. Repeat this process iteratively,

attaching one particle at each iteration to one of the unoccupied lattice points adjacent to

the growing cluster. The choice of attaching point is made according to some probability

measure specific to each individual model. This allows us to model a large class of real world

growth models under this lattice based template.
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Figure 4. The evolution of a lattice based model.

One example of such a model is the Eden model used to model biological cell growth.

This model describes a process where the organism starts at a point and then divides into

daughter cells at each generation [Ede61]. The model is defined on the lattice Z2. Thus,

first for a subset A Ă Z2 define the boundary of the set A as

BA “
 

y P Z2zA : Dx P A, y „ x
(

where y „ x if x is one of the four lattice points of Z2 adjacent to y. Then the Eden model

is defined as a discrete Markov process tEnu8n“0 where, E0 “ t0u and En`1 “ En
Ť

tyn`1u

for some yn`1 P BEn. In the case of the Eden model we wish to model cell growth, thus,

the attaching points yn`1 are chosen uniformly from BEn. Note that this is proportional

Figure 5. An example of how an Eden cluster may evolve.

to the number of unoccupied cells surrounding a particle on the cluster. Given this choice,

one might expect that as the number of particles tends to infinity the growth would become

isotropic. However, in contrast, simulations and consequent results have shown that the Eden

cluster grows anisotropically as the number of particles converges to infinity (see [Ede61],

[Ric73] and [Kes93]).
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Another well studied growth model is Diffusion Limited Aggregation (DLA) introduced

in [WS83]. In this case the model is used to describe mineral aggregation. The model is a

variation of the Eden model. As above, we will define the model on Z2. First, the definition

of harmonic measure on Z2, as seen from infinity, is provided as follows.

Definition 1.2.1 (Harmonic measure on Z2). Let tSxpnq : n P Nu be a 2-dimensional

simple random walk started at some point x P Z2 and fix a closed set A Ă Z2. Define a

measure HAp.q by

HApyq :“ lim
}x}Ñ8

PpSxpτq “ y, τ ă 8q

for y P A where τ “ inftn ě 0 : Sxpnq P BAu and }.} is the Euclidean norm.

Similar to the construction of the Eden model, DLA is constructed as the discrete random

process tDnu
8
n“0 where, D0 “ t0u and Dn`1 “ Dn

Ť

tyn`1u for some yn`1 P BDn. However,

instead of attaching a particle uniformly, in order to model mineral aggregation the attaching

points are chosen according to harmonic measure, P pyn`1 “ yq “ HBDnpyq.

Figure 6. An example of how a DLA cluster may evolve.

Note that we have provided definitions for the Eden model and DLA in two dimensions

but it is possible to define both models in higher dimensions. However, more care is needed

when defining DLA in higher dimensions since the random walk is transient for d ě 3.

Since its introduction in 1981 DLA has been widely studied yet there have been very

few subsequent results, highlighting the difficulty of the problem. One major result is the

following result by Kesten [Kes90] which provides a bound on the maximum distance from

the origin for a lattice point belonging to the cluster. Let Kn be the DLA cluster with n
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particles. Then if we let

rpnq “ maxt|x| : x P Knu

the following result holds.

Theorem 1.2.2 (Kesten 1990). There exist constants Cpdq such that with probability 1

rpnq ď Cpdqn
2
d`1

eventually if d ě 2 but d ‰ 3,

rpnq ď Cp3qpn logpnqq
1
2

eventually if d “ 3.

Kesten’s upper bound proves that we do not converge to a one dimensional line, however,

it does not rule out the possibility of convergence to a disk. Nevertheless, this is perhaps

the only truly significant result on DLA since its introduction. Whilst the use of lattice

based models is advantageous in that they are simple to define, this highlights one of the

disadvantages of lattice based models, they are often very difficult to study because they

do not provide many techniques for us to use in order to analyse the cluster. Furthermore,

under this restriction, the models do not correspond to many real world examples.

1.3. Conformal models

One way we can combat the restrictions of lattice-based models is to form models using

conformal maps instead. This method has the benefit of allowing us to use complex analysis

techniques, amongst others, in order to study the processes. These models are described as

follows. We start by defining the conformal map that attaches a particle to the boundary of

the unit disk in the complex plane C at a particular angle. We then compose several of the

maps in order to form a cluster.

Define ∆ as the exterior unit disk in the complex plane, ∆ “ tz P C : |z| ą 1u. Let

P Ă ∆ be a compact set such that P X∆ is non-empty and ∆cYP is simply connected. We

call P a particle. Then by the Riemann mapping theorem there exists a unique conformal
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map f : ∆ Ñ ∆zP of the form

fpzq “ ecz `Op1q

as z Ñ 8 for some real valued c ą 0. The value ec is called the logarithmic capacity of the

union ∆c Y P . In the planar aggregation literature it has become standard to refer to P as

a particle of capacity c. In addition, although a slight abuse of notation, for any conformal

map f : ∆ Ñ C it is convenient to refer to the capacity of the map to be,

lim
zÑ8

log
`

f 1pzq
˘

:“ log f 1p8q.

The capacity provides a notion of size, in particular, for particles P1 and P2 with correspond-

ing capacities c1 and c2 respectively, it follows that if P1 Ă P2 then c1 ă c2. Furthermore, as

cÑ 0 the map converges locally uniformly to the identity map (see for example Proposition

3.55 in [Law08]), encapsulating that the particle size shrinks to 0 as c Ñ 0. The explicit

formula for the map f : ∆ Ñ ∆zr1, 1` dpcqs that attaches a radial slit of length d “ dpcq to

the boundary at z “ 1 is given by [STV19],

(1.1) fpzq “
ec

2z

´

z2 ` 2p1´ e´cqz ` 1` pz ` 1q
a

z2 ` 2p1´ 2e´cqz ` 1
¯

with a continuous branch of the square root taken on ∆, which is possible because the roots

of the quadratic inside the square root lie on the unit circle. The relation between the

capacity c and length d in this case is,

ec “ 1`
d2

4p1` dq
.

Hence, c “ d2

4 ` op1q. Thus, now that we have a way to describe the size of the conformal

maps we can define the single particle mapping. Define

fcpzq : ∆ Ñ ∆zP

as the map which takes ∆ to itself minus a particle P of capacity c ą 0 on the boundary at

z “ 1. Thus, given a sequence of attaching angles tθnu8n“1 and capacities tcnu8n“1 we can

define a sequence of maps tfnu8n“1 with the nth particle map defined as,

fnpzq “ eiθnfcnpze
´iθnq
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where θn is the attaching angle and cn is the capacity of the nth particle map fcnpzq. By

continuity we can extend this definition to the boundary of the disk by defining fcnpeiθnq “

limrÑ1 fcnpre
iθnq.

Figure 7. Mapping a single particle.

Figure 8. Mapping a cluster.

Now we can define the growing cluster. Define the map φn`1 inductively,

φn`1 “ f1 ˝ f2 ˝ .... ˝ fn`1 “ φn ˝ fn`1.

Then by our assumptions on the particle P , this forms a growing sequence of compact sets

tKnuně1, such that φn : ∆ Ñ CzKn, which we call a cluster. By varying the size, shape



1.4. CONSTRUCTION OF CONFORMAL MODELS FROM LATTICE BASED MODELS 8

and attaching angle of the particles this general method allows us to form a wide range of

models.

1.4. Construction of conformal models from lattice based models

Whilst the models that are constructed on a lattice present challenges we do not wish

to discard them completely. In fact they remain highly significant because we still want to

understand the properties of the underlying real world processes that they were introduced to

model. As such, we want to construct off-lattice versions of the models using the conformal

map method described in the last section so that we can study the properties of these models

more easily. In this section we will describe how an off-lattice version of DLA is constructed,

to do so we will closely follow the method of Turner in [Tur19].

To construct DLA using conformal maps we will use the same set up as in Section

1.3. The distinguishing feature is how the attaching angles and capacities are chosen to be

distributed. Recall, in the DLA model, at each generation, a random walk is started on

the lattice sufficiently far away from the origin and is run until the walk reaches one of the

unoccupied particles on the boundary of the cluster, then this particle becomes part of the

cluster and the process is repeated. Thus, instead of performing a random walk on lattice we

now want to choose the attaching angles θn so that φn´1pe
iθnq shares the same distribution

as the hitting distribution of Brownian motion on the boundary of the cluster Kn started

at infinity. The following definition of harmonic measure, as seen from infinity, will be used

extensively throughout this thesis.

Definition 1.4.1 (Harmonic measure). Let tBxptq : t ě 0u be a 2-dimensional Brownian

motion started at some point x and fix a compact and non-polar set A Ă C. Define a measure

HAp.q by

HApBq :“ lim
}x}Ñ8

PpBxpτq P B, τ ă 8q

for B Ă A Borel where τ “ inftt ě 0 : Bxptq P Au and }.} is the Euclidean norm.

Thus, we want the local growth rate to be chosen according to harmonic measure. Under

the image of the map z Ñ 1
z this is equivalent to requiring the distribution of eiθn to be the
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hitting distribution of φ´1
n´1

´

1
Bt

¯

on the unit disk where Bt is a Brownian motion started at 0.

But since Brownian motion is conformally invariant, φ´1
n´1

´

1
Bt

¯

is a time change of Brownian

motion. Then, by the symmetry properties of Brownian motion, the hitting distribution of

a Brownian motion on a disk is uniform. So in this case we distribute θn „ Unifr0, 2πs.

For the capacities, we will instead consider the diameter dn of each particle. For a slit this

means the nth attached particle is Pn “ eiθnp1, 1` dns. The map θ Ñ eiθ maps the interval

to Pn. Specifically, it maps θn to the tip of the particle and θ ` µn, for some µn P r0, 2πs,

to the base of the particle. Thus there exists an interval rθn, θn ` µns such that the map fn

maps the interval to Pn. The length of attached particle is distorted by the map φn´1 and

given by,
ż µn

0
|φ
1

n´1pfnpe
ipθn`θqqq||pf 1npe

ipθn`θqq|dθ.

Therefore the length of the attached particle is

dn|φ
1
n´1pxne

iθnq|

for some xn P r1, 1`dns. In the real world models, including DLA, we often want the particles

to be roughly the same size at each attachment. Therefore, using that cn “
d2n
4 ` op1q the

capacity cn of the added particle is chosen as,

cn “ c|φ1n´1pe
iθnq|´2

where 0 ă c ă 8 is the capacity of the first particle. With this choice each particle

is approximately the same size. This demonstrates how the off-lattice version of DLA is

constructed using the conformal mappings method. It is possible to do the same for the

Eden model and various other lattice based models [Tur19].

1.5. Hastings-Levitov model

Diffusion Limited Aggregation is an example of a random growth process where the local

growth rate is determined by harmonic measure. The class of growth processes that satisfy

this condition are said to demonstrate Laplacian growth [HL98] and they occur regularly

within the real world. Therefore, we would like a collection of models that allows us to study
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this class of processes as whole. The Hastings-Levitov model HLpαq introduced in [HL98] is

a collection of models used to describe Laplacian growth and is formed by using conformal

mappings as described above. It is particularly useful because it allows us to vary between

previously well known models such as DLA and Eden simply by varying the parameter α.

The structure of the model is the same as the general conformal model described in the

previous section. All that remains is to choose how the attaching angles and capacities are

distributed on the maps tfnuně0. As in the construction of an off-lattice version of DLA

we want to model Laplacian growth with the local growth rate determined by harmonic

measure. Thus, choose the angles θn to be independently distributed uniformly on the unit

disk.

The capacities are chosen as,

cn “ c|φ1n´1pe
iθnq|´α

for some c ą 0. This choice allows us to vary between the off-lattice models and, as seen

above, provides an off-lattice version of DLA when α “ 2. Although the physical construction

differs, Hastings and Levitov put forward numerical evidence to argue that HLp1q corresponds

to an off-lattice version of the Eden model. In very recent work [NST21] Turner et al show

how this is satisfied explicitly in a regularised setting.

The final element to consider in construction of the Hastings-Levitov model is the shape

of the attaching particle. The choice we make is determined by which real world process we

are trying to model. Hastings and Levitov introduce both the strike and bump mappings in

[HL98]. The bump map attaches a non-empty interior on the boundary whereas the strike

map attaches a slit. An explicit form of the strike map is provided above in equation (1.1).

In most cases we fix our choice our particle before evaluating the scaling limits of the models,

however, we do not want to produce results that are dependent on the choice of particle,

thus we often use a general family of particles (see for example [LT21a]) that allow us to

recover all of the classical maps.

An extension of the Hastings-Levitov model exists in the form of the Aggregate Loewner

Evolution (ALE) model ALEpα, ηq introduced in [STV19]. In this model the attaching
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angles are chosen proportional to the density of harmonic measure on the cluster bound-

ary, raised to some power η. We will focus on the Hastings-Levitov model in this thesis

corresponding to ALEpα, 0q but interested readers should see [NST19] and [Hig20].

Another variation of the Hastings-Levitov model is the anisotropic version introduced in

[JVST12] as AHLpνq. This model is constructed in the same way as the Hastings-Levitov

model with α “ 0 but instead of attaching uniformly the attaching angles are i.i.d distributed

randomly on the unit circle according to a non-uniform measure ν. This model is analysed

in the second paper presented in Chapter 3.

1.6. Scaling limits

Now we have all we need in order to start evaluating the models. Several natural ques-

tions arise when studying the models including,

‚ Does a scaling limit exist as nÑ8?

‚ What is the shape of the cluster in its scaling limit?

‚ What is the behaviour of the fluctuations in this limit?

‚ Each particle comes with a natural notion of ancestry determined by which particle

it attached to. This particle also has a direct ancestor and so on. We can repeat

the process of considering the direct ancestor of a succession of particles in order to

trace an ancestral path of a particle on the boundary. Thus a natural question is,

what is the ancestral path of a particle attached on the boundary of the cluster?

This thesis will attempt to answer some of these questions. In order to answer the first

two questions it is necessary to define the scaling limit in this context. There are two natural

ways that have previously been used to evaluate the scaling limit of the clusters formed using

conformal maps. The first, and perhaps the most natural, is known as the small-particle

limit. This method was first used to evaluate HLpαq in [NT12] when α “ 0. Under this

scaling limit we send the capacity, and hence the size, of the attached particle to zero as

n Ñ 8, with nc « t for some fixed value t. Most of the research into the Hastings-Levitov

model has been done in the small-particle limit and in the next section we will highlight the

results which will be most relevant to our own research.
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The second way in which we can take the scaling limit is known as the limit under

capacity rescaling. Using this method, rather than sending the particle size to zero, the

particle size is fixed. Then we rescale the whole cluster by its total logarithmic capacity at

each stage so that it is contained inside the unit disk and then evaluate the shape of the

rescaled cluster as we send the number of particles to infinity. This method was introduced

in [RZ05], the details of which are described in the next section, and will be the focus of

our first paper in Chapter 2.

Once we have shown the existence of a scaling limit and evaluated it we can then evaluate

the fluctuations on this limit. Consider for example the Strong Law of Large Numbers,

whilst this is a strong result, the Central Limit Theorem allows us to fully understand

the distribution. Similarly, we will need to establish a shape theorem and evaluate the

fluctuations in order to understand the scaling limit of the Hastings-Levitov model.

Finally, once we understand the shape of the growing cluster we may also want to evaluate

how the particles are attached at each stage so that we can understand the ancestry of each

attached particle. To do so we will analyse the harmonic measure on the boundary of the

cluster.

1.7. Existing results

In this section we will describe the existing results relevant to the independent research

that follows in later sections. We will split this into two subsections. In the first subsection

we will discuss previous work in the small-particle limit. Most of the previous research into

the scaling limits of the Hastings-Levitov model and its variants has analysed the limit in

the small-particle limit and, as such, this first subsection will consist of a summary of three

papers ([NT12], [JVST15] and [JVST12]) most relevant to this thesis but the reader

is directed to [STV19] and [TT20] amongst others for further discussion. In the second

subsection we consider previous results using the capacity rescaling limit. There has been

little work in this area and therefore we consider in detail a paper by Rohde and Zinsmeister

[RZ05] which introduces the method.
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1.7.1. Results in the small particle limit.

1.7.1.1. Hastings-Levitov Aggregation in the small-particle limit. We start by describing

the results of a paper by Norris and Turner [NT12]. This paper is of particular significance

because it is the first to use the small-particle limit to evaluate the Hastings-Levitov model.

The model is described as in Section 1.5 and the authors evaluate the model for α “ 0. They

establish a shape theorem and furthermore evaluate the harmonic measure on the boundary

of the cluster.

We have seen above that the capacities of the Hastings-Levitov model are given by,

cn “ c|φ1n´1pe
iθnq|´α

for some c ą 0 and a parameter α ě 0. When α ą 0 the capacities have a non-trivial

dependence on the past which makes the process very hard to analyse. However, when α “ 0

the capacities are given by a deterministic value cn “ c and therefore the total capacity of

the map φn at infinity is cn. This greatly increases the accessibility of the problem. Thus,

this paper first evaluates the model in the case where α “ 0 before α ą 0 is tackled under

regularisation in later papers.

We start by describing the shape theorem for α “ 0. One of the defining and most

useful features of the α “ 0 case is that the process pφ´1
n pzqqně0 is a Markov process for all

z P pCY8qzK0 [NT12]. As a result the authors are able to use fluid limit analysis on the

random maps. This produces the following shape theorem.

Theorem 1.7.1. Let P̃n “ KnzKn´1. Then consider for ε P p0, 1s and m P N the event

Ωrm, εs specified by the following conditions: for all n ď m and all n1 ą m` 1,

|z ´ ecn´iθn | ď εecn for all z P P̃n

and

distpw,Knq ď εecn whenever |w| ď ecn

and

|z| ą p1´ εqecm for all z P P̃n1 .
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Then if we assume that ε “ c
1
3 plogp1

c qq
8 and m “ tc´3u. Then PpΩrm, εsq Ñ 1 as cÑ 0.

Informally, this result tells us that the cluster grows like an expanding disk of radius

ecn. Note that the powers in the theorem above are crucial and the authors state that some

effort was made in order to maximise the power 1
3 [NT12].

This theorem provides an understanding of what the shape of the α “ 0 cluster looks like

in the small-particle limit. However, we often want to understand the underlying structure

of the cluster and thus it is necessary to understand the ancestry of each of the particles.

To do so the authors evaluate how the harmonic measure evolves on the boundary of the

cluster. When α “ 0, this concept can be explained as follows. For a point x P p0, 1q, define,

γpxq “
1

2πi
logpf´1

c pe2πixqq

choosing the branch of logarithm which results in x “ 1
2 being fixed. This can be extended

to the real line as follows, if x “ k ` a where a P p0, 1s then define γpxq “ k ` γpaq. Then

for all x P R define

γnpxq “ γpx´ θnq ` θn.

Observe that using this definition γnpxq “ 1
2πi logpf´1

n pe2πixqq with the branch of logarithm

inferred from the definition above. Figure 9 demonstrates how the function γnpxq describes

the change in angle of a point x on the boundary under the transformation fnpxq and thus

γnpxq tells us how the harmonic measure evolves under the map fnpxq.

Figure 9. How the harmonic measure evolves on the boundary of the cluster
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Let γ̃pxq “ γpxq ´ x then define the discrete harmonic measure flow under the map φn

for x P R and n ą m as,

(1.2) Xm,npxq “ Xm,n´1pxq ` γ̃pXm,n´1pxq ´ θnq

with Xm,mpxq “ x. Therefore,

Xnpxq “ γnpXn´1pxqq.

Thus if Γm,npxq “ f´1
n ˝ ...f´1

m pxq then

Xm,npxq “
1

2πi
logpf´1

n pe2πiXm,n´1pxqqq

“
1

2πi
logpf´1

n pΓm,n´1pe
2πixqqq

“
1

2πi
logpΓm,npe

2πixqq.

Note that Xm,npxq is defined in this way to make sure the branch of the logarithm respects

the composition structure. Then the harmonic measure flow can be rewritten as

Xm,npxq “
n
ÿ

i“1

γ̃pXm,i´1pxq ´ θiq ` x.

This details how the cluster is evolving as each particle is attached and hence the ancestry

of each particle. We will study this concept in more detail when we analyse the harmonic

measure on the boundary of the anisotropic Hastings-Levitov cluster in Chapter 3.

The authors make the following assumptions in order to analyse the harmonic measure

d P

ˆ

0,
1

3

˙

and P Ă tz P C : |z ´ 1| ď du and 1` d P P and P “ tz̄ : z P P̃ u.

Furthermore, in order to see a non-trivial limit the authors rescale time, thus, let

sXs,tpxq “ Xn̄psq,n̄ptqpxq

where n̄ptq “ ttc´
3
2 u. With this definition, and the assumptions above the authors reach the

following result on the convergence of the rescaled harmonic measure flows
 

sXs,tpxq
(

0ďsăt
.
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Theorem 1.7.2. Assume that the basic particle P satisfies the conditions above. Then

the rescaled harmonic measure flow converges to the Brownian web, uniformly in P , as cÑ 0.

In addition, the rescaled Harmonic measure flow also converges to the Brownian web

on the line [NT12]. Therefore, this paper provides an understanding of both the shape of

the Hastings-Levitov cluster when α “ 0 and its underlying structure. We would like to

understand the same properties for α ą 0 and in order to do so a regularisation to the model

is introduced.

1.7.1.2. Scaling limits in a regularised setting. We now summarise [JVST15] where a

regularised version of the Hastings-Levitov model is analysed for α ě 0. We will consider a

similar regularisation in the independent work presented in Chapter 2. The authors show

that in the small-particle limit the Hastings-Levitov model converges to a growing disk

provided the regularisation is sufficient. Then they analyse the harmonic measure flow on

the boundary of the cluster and show that by changing the rate at which αÑ 0 the harmonic

measure flows converge to either the identity map or a version of the Brownian web on the

circle.

As seen above, with capacities defined as

cn “ c|φ1n´1pe
iθnq|´α

it is clear that for α ą 0 the growth of the cluster is strongly dependent on its history. This

makes the model very difficult to study and thus the introduction if a regularisation on the

capacities is necessary in order to analyse the shape of the cluster in its limit. Therefore,

Turner et al [JVST15] introduce the regularisation factor σ so that the capacities are

redefined as

cn “
c

|φ1n´1pe
σ`iθnq|α

with σ ą 0. This allows us to move away from the bad behaviour of φ1n´1 near the boundary

of the unit disk and to deduce estimates on cn. Notice that as σ Ñ 0 the model converges

back to the original Hastings-Levitov model HLpαq.
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The authors then introduce the deterministic sequence,

c˚n “
c

1` αcpn´ 1q

for n “ N. They show that provided σ does not converge to zero too quickly then the

capacities cn are close to c˚n with high probability. This is provided in the form of the

following result [JVST15].

Theorem 1.7.3. Let σ " plogpc´1qq
´1
2 and let N P N be fixed. Then there exists some

absolute constant β ą 0 such that

P
ˆ

sup
nďN

ˇ

ˇ

ˇ

ˇ

log

ˆ

cn
c˚n

˙

ą αcβ
ˇ

ˇ

ˇ

ˇ

˙

Ñ 0

as cÑ 0.

With the c˚n notation defined, it is possible to introduce equivalent notation f˚n pzq for

the conformal maps defined with the star capacities and then analyse the cluster formed

using these conformal maps. Then the authors use two key facts [JVST15] in order to

transition between the different models and prove a shape theorem for the σ regularised

version of the Hastings-Levitov model. The first is that the convergence supk
|ck´c

˚
k |

c Ñ 0

implies weak convergence of driving measures for the Loewner representation of the growth

process. Secondly, weakly convergent driving measures lead to sequences of conformal maps

that converge in the sense of Caratheodory. With these two facts the authors state the

following shape theorem [JVST15].

Theorem 1.7.4. Let T ą 0 and α ą 0 be fixed. Then suppose n “ tTc u and σ "

plogpc´1qq
´1
2 . Then, as c Ñ 0 the laws of the maps φnpzq converge weakly with respect to

uniform convergence on compact subsets to a point mass at p1` αT q
1
α z.

Thus, the shape of the regularised cluster converges in the small-particle limit to a

growing disk in the sense of Caratheodory. Whilst this regularisation means that the authors

are not studying the true Hastings-Levitov model for α ą 0 they argue that the regularised

model with α “ 2 is consistent with a model where all particles are attached of the same

size, as in the case of DLA. Similarly, when α “ 1 the result is consistent with a model which

exhibits growth proportional to local arc length as in the case of the Eden model.
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However, as in the previously studied paper [NT12] the authors would like to study the

evolution of harmonic measure on the cluster boundary in order to better understand the

underlying structure of the cluster. As in the previous section consider the rescaled harmonic

measure flow

sXs,tpxq “ Xn̄psq,n̄ptqpxq

where n̄ptq “ ttc´
3
2 u. In this case, the following result [JVST15] demonstrates the three

possible cases that can occur dependent on the behaviour of α “ αpcq as cÑ 0.

Theorem 1.7.5. Suppose that σ ě logpc´1q
´1
2 . Then as c Ñ 0, on timescales of order

c
´3
2 , one of the following three situations arises.

‚ If αc´
1
2 Ñ 0, the rescaled harmonic measure flow converges to the Brownian web.

‚ If αc´
1
2 Ñ 8(sufficiently slowly), the rescaled harmonic measure flow converges to

the identity flow.

‚ If αc´
1
2 Ñ a P p0,8q, the rescaled harmonic measure flow converges to a time-

change of the Brownian web, stopped at a finite time that is decreasing in a.

The interpretation of this result is given as follows [JVST15]. For α ! c
1
2 the harmonic

measure flow converges to the Brownian web. However, as all Brownian motion on a circle

starting from a fixed time coalesce to a single Brownian motion eventually this tells us that

the points on the boundary of the regularised cluster arriving after a certain time all share the

same ancestor. However, when α " c
1
2 the number of infinite branches becomes unbounded

in the limit as c Ñ 0. Finally, if αc
3
2 Ñ a then there exists a random number of infinite

branches in the regularised cluster.

1.7.1.3. Anisotropic growth. Finally, we describe the results of the paper [JVST12]

which introduced the anisotropic version of the Hastings-Levitov model. This model will

be the focus of Chapter 3. The model is formulated in the same way as the Hastings-Levitov

model introduced in Section 1.5 with α “ 0, however, rather than choosing the attaching

angles uniformly, instead, choose the angles θi to be independent identically distributed

random variables on the unit circle with common law ν. More explicitly, throughout the
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remainder of this subsection denote

φn`1 “ φn ˝ fn`1 “ f1 ˝ f2 ˝ .... ˝ fn`1

with fnpzq “ eiθnfcnpze
´iθnq where cn “ c for some fixed c and the angles θn are i.i.d

distributed randomly on the unit circle according to some non-uniform probability measure

ν .

The paper is split into two main sections, in the first section the authors consider the

scaling limit of the cluster in the small particle limit and show a shape theorem exists.

In the second section the authors consider the evolution of the harmonic measure on the

cluster boundary and show that in compact time it converges to the solution of an ordinary

differential equation before studying its fluctuations. In Chapter 3, I will extend these results

by considering the harmonic measure flow on logarithmic timescales.

The authors start by providing a shape theorem. In order to do so they write the sequence

of conformal maps that form the cluster as a Loewner chain driven by the measure ν. The

construction is as follows; start by supposing we have a growing sequence of compact sets

tKtutě0 as in the construction of the Hastings-Levitov model above. Now let D be the unit

disk in the complex plane. Then there exists a family of conformal maps

ft : DÑ CzKt

which fixes infinity and where f 1tp8q ą 0. This family of maps is called a Loewner chain

and can be parametrised with respect to a family of measures tνtutě0. The conformal maps

then satisfy the Loewner-Kufarev equation [JVST12],

Btftpzq “ zf
1

tpzq

ż

T

z ` ζ

z ´ ζ
dνtpζq.

The authors then use this construction to show that in the small particle limit the the cluster

converges to the solution of the Loewener-Kufarev equation [JVST12].

Theorem 1.7.6. Let φ denote the solution to the Loewner-Kufarev equation driven by

the measures tνtutě0 and evaluated at time T for some fixed T P p0,8q and νt “ ν for all t.
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Set n “ tTc u, and define the conformal map as above φn “ f1 ˝f2 ˝ ....˝fn. Then φn converges

to φ uniformly on compacts almost surely as cÑ 0.

Therefore, with this shape theorem the authors describe how the cluster behaves away

from the boundary. But as in the previous two papers they want to understand the underly-

ing structure of the cluster and so need to analyse the harmonic measure flow. As in Section

1.7.1.1, for x P R and m ă n, define the harmonic measure flow as

Xm,npxq “
1

2πi
logpΓm,npe

2πixqq

where Γn,m is defined as the restriction to the boundary,

Γn,m “ f´1
n ˝ ... ˝ f´1

m |BK0.

The harmonic measure flow can be embedded into continuous time as follows. Suppose

0 ă T1 ă T2 ă ... are times of a Poisson process, independent of the attaching angles θi

with rate 1
c . Then for an interval rs, ts Ă r0,8q, define rΓs,t “ Γm,n where m and n are the

smallest and largest integers such that both Tm P rs, ts and Tn P rs, ts [JVST12]. Then, as

in the discrete case above, for s ă t, define the continuous harmonic measure flow

rXs,tpxq “
1

2πi
logprΓs,tpe

2πixqq.

Note that some of this notation is not consistent with that in Chapter 3, where instead

we consider the discrete harmonic measure flow, and this should be read independently.

However, as in Chapter 3, define bpxq as the Hilbert transform of the measure ν,

bpxq “ c0hνpxq `
1

2π

ż 1

0
cotpπzqphνpx´ zq ´ hνpxqqdz,

for some constant c0, where hν is the density of ν on R. Furthermore, for t ą s, define

ψs,tpxq as solution to the ordinary differential equation

9ψs,tpxq “ bpψs,tpxqq

for x P R and ψs,spxq “ x. With these definitions in mind the authors state the following

result [JVST12].
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Theorem 1.7.7. For rXs,t and ψs,t defined above, then for for a fixed T and any ε ą 0,

lim
cÑ0

P
ˆ

sup
sătăT

| rXs,tpxq ´ ψs,tpxq| ą ε

˙

“ 0.

Finally, the authors consider the fluctuations on this convergence. They show they are

of order c
1
4 so as in [JVST12] for fixed ps, xq P p0,8q ˆ R define,

ZPt pxq “ c´
1
4 p rXs,tpxq ´ ψs,tpxqq

and let Ztpxq be the solution to the linear stochastic differential equation

dZtpxq “
b

hνpxqψps,tspxqdBt ` b
1pψps,tspxqqZtpxqdt

for t ě s starting from Zspxq “ 0, where Bt is a standard Brownian motion. This leads us

to the following result [JVST12].

Theorem 1.7.8. As cÑ 0, the processes ZPt Ñ Zt in distribution.

Therefore, this paper classifies both the convergence of the harmonic measure and the

fluctations up to a bounded time. In Chapter 3, we will extend these results to consider the

harmonic measure on logarithmic timescales and show that there exists a critical logarithmic

time window in which the harmonic measure flow, started from the unstable point of the

ordinary differential equation, moves stochastically from an unstable trajectory towards a

stable trajectory.

1.7.2. Results under capacity rescaling. In this section we outline the existing

results on the scaling limits of HLpαq under capacity rescaling. In this setting, rather than

sending the size of the particle to zero as we send the number of particles to infinity, instead,

we keep the value c fixed and rescale the cluster by its total logarithmic capacity at each

iteration before sending the number of particles to infinity. This method has been less studied

than the small particle limit and the results consist of those introduced in a paper by Rohde

and Zinsmeister [RZ05].

The paper studies the Hastings-Levitov model introduced in the previous sections under

capacity rescaling and is split into two parts. First, the authors show that when α “ 0 the
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logarithmic capacity of the limiting cluster grows exponentially and under capacity rescaling

the rescaled cluster has finite length. In the second half of the paper the case when α ą 0

is considered under a regularisation and it is shown that the logarithmic capacity of the

growing cluster at each iteration grows fast but not exponentially.

As described in the previous sections, if α ą 0 the Hastings-Levitov model is very difficult

to study due to correlations between the capacities. Thus, in order to study the model the

authors first introduce a regularisation on the model. This regularised version of the model

is denoted RHL(α) and is defined as follows [RZ05]. Let be d be the length of a slit with

capacity c. The relation is then given by c “ log
´

1` d2

4p1`dq

¯

. Let un “ eiθn . Then the

regularisation is chosen as,

dn “ d1´α
2 εnpun, dq

α
2

where

εnpu, dq “ inftε ą 0 : ε|φ1npp1` εquq| “ du

and φn`1 “ φn ˝ fn`1 “ f1 ˝ f2 ˝ .... ˝ fn`1 with fnpzq “ eiθnfcnpze
´iθnq as above. This

regularisation provides a ‘dual’ relationship between RHLp0q and RHLp2q [RZ05]. With

this choice of regularisation the article is split into three main cases that determine how

the total capacity is affected when the value of 0 ď α ă 2 is changed. This in turn allows

us to make statements about the dimension of the limiting cluster for different values of α.

Start with the case where α “ 0. Note that we will evaluate this case further in Chapter

2. When α “ 0 the choice of regularisation means that dn “ d for a fixed d. Therefore,

φn “ f1 ˝ f2 ˝ ... ˝ fn with fkpzq “ eiθkfcpze
´iθkq and fc : ∆ Ñ ∆zr1, 1 ` ds for some fixed

d ą 0. Furthermore,

fcpzq “ ecz `Op1q

at 8 with c “ log
´

1` d2

4p1`dq

¯

. So the total logarithmic capacity of the cluster Kn at

infinity is given by Cn “ ecn. Denote
ř

0 as the space of univalent normalised functions on

∆. Then we have a measure rPn induced on
ř

0, given by

rPn “ pσnq˚pl
nq
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Figure 10. Examples of growing cluster for n=10,100,500,1000, from [RZ05].

where ln is just the product of Lebesgue measures [RZ05] under the map

σn : pθ1, ..., ...θnq Ñ e´cnφn.

The authors then go on to prove that when α “ 0 the scaling limit exists via the following

theorem [RZ05].

Theorem 1.7.9. There is a probability measure rP8 on Σ0 such that the sequence of

measures rPn converges weakly to rP8.

So now we know the scaling limit exists the authors want to deduce properties of this

limit. Before they do, they provide the following definitions [RZ05]. First let ln be defined

as follows;

ln “

ż 1`d

1
|φ1nprunq|dr.

Then define Ln to be the length of Kn so that

ln`1 “ Ln`1 ´ Ln.

Finally, define the rescaled cluster ĂKn as

ĂKn “
Kn ´An

Cn
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where An “ limzÑ8 φnpzq ´ z. Similarly,

ĂLn “
Ln
Cn

.

Using these definitions the authors prove the following two theorems [RZ05]. Firstly in the

case where d is large the following theorem holds,

Theorem 1.7.10. There is a constant d0 such that for d ą d0 and all choices of θ1, θ2....θn

Ln ď CpdqCn

for some constant Cpdq ą 0 and thus,

ĂLn ď Cpdq.

Then for small d ą 0 the following theorem holds.

Theorem 1.7.11. There exists a constant C “ Cpdq such that

EpLnq ď CpdqCn.

and thus,

EpĂLnq ď Cpdq.

Note that the difference here is that in Theorem 1.7.10 the inequality holds for all n,

whereas, in the case of Theorem 1.7.11 the bound is on the expected value of Ln. Now we

move on to the case where 0 ă α ă 1. First the authors adapt the regularisation. Fix

d ă c, then redefine the component of regularisation ε as follows [RZ05]. Decompose the

unit circle into dyadic intervals. Now for an interval with order k define xI as its centre and

set

zI “ p1` 2´kqxI .

Then, let u be a point on the circle, and suppose k is the order of the minimal dyadic interval

containing u such that 2´k|φ1npzIq| ě d then set

εpu, dq “ 2´k.
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Of course, as α is no longer equal to zero the regularisation no longer gives us a constant

slit length. The authors manage to show that, with α in this region, the total capacity Cn

grows fast, as a polynomial in n but not exponentially unlike the case where α “ 0. We

combine results from the paper to give the result in the following form [RZ05].

Theorem 1.7.12. If 0 ă α ă 1 is small enough, then almost surely there exists a constant

K ą 0 such that for every n ě 0,

Kn
1
α
p1´7

?
αq ď Cn ď Cpdqn

2
α

where Cpdq is the constant dependent on d from Theorem 1.7.10.

The authors use this theorem to gain an inequality involving both the length and loga-

rithmic capacity of the cluster [RZ05].

Theorem 1.7.13. For small α ą 0 and for β ą α, almost surely there exists a constant

K ą 0 such that for every n ě 0,

ĂLn ď KC
2β

1´7
?
β

n

Therefore, by combining all of the theorems above we can summarise as follows. We

first see that there is a phase transition that occurs when α “ 0. In addition, when α “ 0

the capacity grows exponentially but when α ą 0 the growth is only polynomial. Finally,

the bounds provided by Rohde and Zinsmeister leave open the possibility of another phase

transition at α “ 1 but it is unclear whether or not this holds.

1.8. Outline of thesis

We are now in a position to present the independent research for the award of this thesis.

This will be presented in the form of two papers. In the first paper we evaluate a strongly

regularised version of the Hastings-Levitov model HLpαq for 0 ď α ă 2. We first consider

the case where α “ 0 and show that under capacity rescaling, the limiting structure of the

cluster is not a disk, unlike in the small-particle limit. Then we consider the case where

0 ă α ă 2 and show that under the same rescaling the cluster approaches a disk. We also

evaluate the fluctuations and show that, when represented as a holomorphic function, they
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behave like a Gaussian field dependent on α. In the second paper we study the anisotropic

version of the Hastings-Levitov model AHLpνq. We consider the evolution of the harmonic

measure and first show that we have convergence of the harmonic measure flow up to a

logarithmic time. We then evaluate the fluctuations on compact time and show that their

behaviour is stochastic. Finally we show there exists a critical logarithmic time window

where on this timescale the harmonic measure flow, started from the unstable point, moves

from an unstable trajectory towards a stable trajectory. Presenting the research in this way

may lead to some repetition, particularly in the introduction to each paper, however, we

believe that as independent bodies of work they should be presented as such.



CHAPTER 2

Scaling limits and fluctuations for random growth under

capacity rescaling

In this chapter we present our first paper [LT21a]. We evaluate a strongly regularised

version of the Hastings-Levitov model HLpαq for 0 ď α ă 2. Previous results have concen-

trated on the small-particle limit where the size of the attaching particle approaches zero in

the limit. However, we consider the case where we rescale the whole cluster by its logarith-

mic capacity before taking limits, whilst keeping the particle size fixed. We first consider

the case where α “ 0 and show that under capacity rescaling, the limiting structure of the

cluster is not a disk, unlike in the small-particle limit. Then we consider the case where

0 ă α ă 2 and show that under the same rescaling the cluster approaches a disk. We also

evaluate the fluctuations and show that, when represented as a holomorphic function, they

behave like a Gaussian field dependent on α. Furthermore, this field becomes degenerate as

α approaches 0 and 2, suggesting the existence of phase transitions at these values.

2.1. Introduction

Random growth occurs in many real world settings, for example we see it exhibited in the

growth of tumours and bacterial growth. We would like to be able to model such processes

to determine their behaviour in their scaling limits. Since the 1960’s, models have been built

in order to describe individual processes. Perhaps the most famous examples of such models

are the Eden model [Ede61] and Diffusion Limited Aggregation (DLA) [WS83]. The Eden

model is used to describe bacterial colony growth, whereas, DLA describes mineral aggrega-

tion (see for example [RZ05]).

In their 1998 paper [HL98], Hastings and Levitov introduced a one parameter family of

conformal maps HLpαq which can be used to model Laplacian growth processes and allows

27
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us to vary between the previous models by varying the parameter α. In contrast to many

well studied lattice based models, HLpαq is formed by using conformal mappings [HL98].

We can then use complex analysis techniques to evaluate the growth. We consider a regu-

larised version of this model and show that at certain values of α a phase transition on the

scaling limits occurs.

2.1.1. Outline of the model. In order to define our model we start by defining the

single particle map. Define ∆ as the exterior of the unit disk in the complex plane,

∆ “ t|z| ą 1u. For any conformal map f : ∆ Ñ C we define the capacity of the map to be,

lim
zÑ8

log
`

f 1pzq
˘

:“ log f 1p8q.

For each c ą 0, we then choose a general single particle mapping fc : ∆ Ñ CzK which takes

the exterior of the unit disk to itself minus a particle of capacity c ą 0 at z “ 1. Note

that we can then rescale and rotate the mapping fcpzq to allow any attaching point on the

boundary of the unit disk by letting fnpzq “ eiθnfcnpze
´iθnq where θn is the attaching angle

and cn is the capacity of the nth particle map fcnpzq.

We can now form the cluster by composing the single particle maps. Let K0 “ ∆c “

t|z| ď 1u. Suppose that we have some compact set Kn made up of n particles. We can find a

bi-holomorphic map which fixes 8 and takes the exterior of the unit disk to the complement

of Kn in the complex plane, φn : ∆ Ñ CzKn. We then define the map φn`1 inductively;

φn`1 “ φn ˝ fn`1 “ f1 ˝ f2 ˝ .... ˝ fn`1.

There are several possible choices for the family of maps tfcucą0. The choice we make is

determined by what shape we would like the attaching particles to have. Hastings and

Levitov introduce both the strike and bump mappings in [HL98]. The strike map attaches

a single slit onto the boundary at z “ 1 whereas the bump map attaches a particle with

non-empty interior. We would like results to exhibit some universality in the specific choice

of particle shapes. However, we do need to impose some restrictions on how the particles
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localise around the attachment points as cÑ 0. The specific condition we require is

(2.1) fcpzq “ ecz exp

ˆ

2c

z ´ 1
` δc pzq

˙

where δcpzq is some function of z with |δcpzq| ă
λ̃c

3
2 |z|

|z´1|p|z|´1q and λ̃ P r0,8q is a constant that

depends only on the family of particles and not on c nor z. In [NST19], Norris et al show

there exists some absolute constant c0 such that, provided 0 ď c ă c0, families of slit maps,

bump maps and indeed many other natural choices, satisfy the condition. Therefore, we

take our single particle mappings from a class of particles satisfying (2.1) for fixed λ̃. In the

proofs that follow it will become clear that our results do not depend on the precise value

of δcpzq.

Now it just remains to define how the attaching points θn and capacities cn are chosen.

We want to model Laplacian growth and so we choose the θn to be uniformly distributed,

independent for each n, on the circle. This choice is made because after renormalisation of

φn, the Lebesgue measure of the unit circle under the image of φn is harmonic measure as

seen from infinity [RZ05], and the harmonic measure of a portion of the unit circle is just

the arclength of that portion rescaled by 2π.

Finally, we must choose how the capacities cn are distributed. Hastings and Levitov [HL98]

introduced a parameter α in order to distinguish between the various individual models they

would like to encode within this one model for Laplacian growth. They choose,

cn “ c|φ1n´1pe
iθnq|´α

for some c ą 0. This gives an off-lattice version of the Eden model when α “ 1 and

DLA when α “ 2. In Section 2.3, we show that the total logarithmic capacity, φ1np8q is well

approximated by p1`αcnq
1
α . Therefore, if we define a version of HLpαq using the very strong

regularisation c̃n “ c|φ1n´1p8q|
´α, we show in Proposition 2.3.1 that c̃n is approximately

given by

(2.2) c˚n :“
c

1` αcpn´ 1q
.
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Therefore, for a lot of computations we do the analysis using the deterministic sequence c˚n

rather than c̃n. In particular, in what follows, we denote φn “ f1 ˝ ... ˝ fn where fnpzq “

eiθnfc˚npze
´iθnq with θn i.i.d uniform on r0, 2πs. Throughout the paper we keep c fixed.

Occasionally we may require c to be bounded by some constant which may depend on α

but, crucially, not on n. We then rescale the cluster by its total logarithmic capacity and

evaluate the shape of the rescaled map e´
řn
i“1 c

˚
i φn as nÑ8.

2.1.2. Previous work. With the model now defined we can outline the work already

done in this area. Most work has been done in the small-particle limit. This method in-

volves evaluating the limiting cluster φn as we send the particle capacity cÑ 0 while sending

nÑ8 with nc „ t for some t. Using this method Turner and Norris show that for α “ 0 the

limiting cluster in the small particle case behaves like a growing disk [NT12]. Furthermore,

Turner, Viklund and Sola show that in the small particle limit the shape of the cluster in a

regularised setting approaches a circle for all α ě 0 provided the regularisation is sufficient

[JVST15]. Moreover, Silvestri [Sil17] shows that the fluctuations on the boundary, for

HLp0q, in this small particle limit can be characterised by a log-correlated Gaussian field.

A different approach to that of the small-particle limit is to not let c Ñ 0 as n Ñ 8, but

instead, the limit of the cluster is found by rescaling the whole cluster by the logarithmic

capacity of the cluster at time n, before taking limits as the number of particles tends to in-

finity. Rohde and Zinsmeister show that in the case of α “ 0 the rescaled cluster converges to

a (random) limit with respect to the topology of normalised exterior Riemann maps [RZ05].

Our work will follow the second approach. We will use results and ideas from the papers

listed above, and in particular methods from [NST19], in order to characterise the limiting

shape of the cluster in a regularised setting for 0 ď α ă 2 and then evaluate the fluctuations.

Our results break down for α ě 2. This will be the subject of future work.
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2.1.3. Statement of results. We first consider the case where α “ 0 and show that

under capacity rescaling, if the the limiting rescaled cluster exists then it can not be a disk.

This comes in the form of the following theorem1 appearing later as Theorem 2.2.1.

Theorem. Given any sequence tθku1ďkďn of angles between 0 and 2π and c ą 0, set

Ψn “ f1 ˝ ... ˝ fn where fkpzq “ eiθkfcpe
´iθkzq and let fcpzq be any fixed capacity map such

that fnpzq ‰ ecz. There exists an ε ą 0 such that for all r ą 1 and c ą 0,

lim sup
nÑ8

sup
|z|ąr

|e´cnΨnpzq ´ z| ą ε.

In particular if tθku1ďkďn are i.i.d uniform on r0, 2πs and fcpzq is a fixed capacity map in

the class of particles given by (2.1) then Ψn is the HLp0q process and the statement above

shows that HLp0q does not converge to a disk under capacity rescaling.

This result is particularly interesting because it is independent of our choice of angles.

If we have a constant capacity map of the right form then there is no possible way to choose

the angles so that under capacity rescaling the limiting cluster (should it exist) looks like a

disk.

Next we consider the case where 0 ă α ă 2 and show that under capacity rescaling the

HLpαq cluster approaches a disk. We then evaluate the fluctuations and show that they

behave like a Gaussian field dependent on α. Our two main results, appearing later as

Theorem 2.5.1 and Theorem 2.6.10 respectively, are stated as follows.

Theorem. For 0 ă α ă 2, let the map φn be defined as above with c˚n as defined in (2.2)

and θn i.i.d uniform on r0, 2πs. Then for any r ą 1,

P

˜

lim sup
nÑ8

#

sup
|z|ěr

|e´
řn
i“1 c

˚
i φnpzq ´ z| ą

log n
?
n

+¸

“ 0.

This result tells us we have uniform convergence of our cluster in the exterior disk to a

disk. The following result shows that the fluctuations behave like a Gaussian field.

1Note that we make no assumption on the choice of angles tθku1ďkďn in this theorem and so we use the
notation Ψn to differentiate from φn where the angles are chosen uniformly.
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Theorem. Let 0 ă α ă 2 and φn be defined as in Theorem 2.5.1. Then as nÑ8,

?
n
´

e´
řn
i“1 c

˚
i φnpzq ´ z

¯

Ñ Fpzq

in distribution on H, where H is the space of holomorphic functions on |z| ą 1, equipped with

a suitable metric dH defined later, and where

Fpzq “
8
ÿ

m“0

pAm ` iBmqz
´m

with Am, Bm „ N
´

0, 2
αp2m`2´αq

¯

and Am, Bk independent for all choices of m and k.

Notice that it is clear this result does not hold for α “ 0 or α “ 2. This is in contrast to

[JVST15] where results hold for all α ě 0 and suggests a phase transition at these values.

2.1.4. Outline of the paper. The outline of the paper is as follows. In Section 2.2

we will show that for clusters formed by composing maps of constant capacity and of a

certain form, we can not pick a sequence of angles so that the limiting cluster under capacity

rescaling approaches a disk. In particular, under capacity rescaling HLp0q is not a growing

disk. Then in Section 2.3 we will show that our choice of capacities is a good approximation

to the regularisation of HLpαq at 8. In Section 2.4, we show that the pointwise limit of the

cluster for 0 ă α ă 2 is a disk and then in Section 2.5 we will use a Borel-Cantelli argument

to show we have uniform convergence on the exterior disk. Finally, in Section 2.6 we will

evaluate the fluctuations for 0 ă α ă 2 and show that they are distributed according to a

Gaussian field dependent on α.

2.2. The case where α “ 0

We want to evaluate the limiting shape of our random cluster. We first deal with the

case where α “ 0. We will show in this section that in the limit HLp0q does not approach a

disk. Furthermore, we will prove a stronger statement that for clusters formed by composing

maps of constant capacity, in the class of particles defined in (2.1), we can not approach a

disk under capacity rescaling. We note that in the case where α “ 0 our regularisation

does not effect the model, so this result holds for HLp0q under no regularisation. One might
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expect that the scaling limit is a growing disk, this would agree with the result in the small

particle limit [NT12]. However, the following theorem proves this does not hold.

Theorem 2.2.1. Given any sequence tθku1ďkďn of angles between 0 and 2π and c ą 0,

set Ψn “ f1 ˝ ... ˝ fn where fkpzq “ eiθkfcpe
´iθkzq and let fcpzq be any fixed capacity map

such that fnpzq ‰ ecz. There exists an ε ą 0 such that for all r ą 1 and c ą 0,

lim sup
nÑ8

sup
|z|ąr

|e´cnΨnpzq ´ z| ą ε.

In particular if tθku1ďkďn are i.i.d uniform on r0, 2πs and fcpzq is a fixed capacity map in

the class of particles given by (2.1) then Ψn is the HLp0q process and the statement above

shows that HLp0q does not converge to a disk under capacity rescaling.

Proof. Under our assumptions we know that for all r ą 1 there exists εr ą 0 such that

sup
|z|ąr

ˇ

ˇe´cfnpzq ´ z
ˇ

ˇ “ εr.

Suppose for a contradiction that for all ε ą 0,

lim sup
nÑ8

sup
|z|ąr

|e´cnΨnpzq ´ z| ă ε.

In particular, under this assumption,

lim sup
nÑ8

sup
|z|ąr

|e´cnΨnpzq ´ z| ă
εr
2
.

Then we can write,

|e´cnΨnpzq ´ z| “
ˇ

ˇ

ˇ

`

e´cfnpzq ´ z
˘

` e´c
´

e´cpn´1qΨn´1pfnpzqq ´ fnpzq
¯ˇ

ˇ

ˇ

which we can bound below for all |z| ą r as follows,

|e´cnΨnpzq ´ z| ě |e
´cfnpzq ´ z| ´ sup

|z|ąr
|e´c||e´cpn´1qΨn´1pfnpzqq ´ fnpzq|.
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We can then take the supremum of both sides, and by the Schwarz lemma we can use that

|fnpzq| ą r for all |z| ą r, to reach the following bound on the supremum,

(2.3) sup
|z|ąr

|e´cnΨnpzq ´ z| ě sup
|z|ąr

|e´cfnpzq ´ z| ´ sup
|z|ąr

|e´cpn´1qΨn´1pzq ´ z|.

Therefore,

lim sup
nÑ8

sup
|z|ąr

|e´cnΨnpzq ´ z| ě
εr
2

a contradiction. �

This is a strong result because it proves that if we have a cluster which is composed of

functions of the right form, no matter how we pick our sequence of attaching angles tθnu

the limiting structure of the cluster, when rescaled by its logarithmic capacity, does not

approach a disk.

2.3. Regularisation

The aim of this section is to provide some justification for the choice of c˚n as an approx-

imation to the regularisation of HLpαq at 8. Recall that we choose,

c˚n “
c

1` αcpn´ 1q
.

We start by providing some notation used throughout the remainder of the paper. Let φk

and c˚i be defined as above, then we denote

C˚k,n “
n
ÿ

i“k

c˚i .

2.3.1. Error term evaluation. In order to more easily apply complex analysis meth-

ods to our cluster we would like to write the sum C˚1,n in a simplified form. We do so by

providing the following approximation on the sum, subject to an error term which converges

to 0, uniformly in k, as nÑ8.

Lemma 2.3.1. For c˚n “
c

1`αcpn´1q we have the following equality;

C˚k,n “
1

α
log

ˆ

1` αcn

1` αcpk ´ 1q

˙

p1` εk,nq
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where

0 ă εk,n ă
α2c2pn´ k ` 1q

p1` αcpk ´ 1qqp1` αcnq log
´

1`αcn
1`αcpk´1q

¯ ď
αc

logp1` αcnq
.

Therefore, εk,n Ñ 0, uniformly in k, as nÑ8.

Proof. We will approximate the sum with

1

α
log

ˆ

1` αcn

1` αcpk ´ 1q

˙

“

ż n`1

k

c

1` αcpx´ 1q
dx.

Then

C˚k,n ´
1

α
log

ˆ

1` αcn

1` αcpk ´ 1q

˙

“

n
ÿ

i“k

ˆ

c˚i ´

ż i`1

i

c

1` αcpx´ 1q
dx

˙

ď

n
ÿ

i“k

`

c˚i ´ c
˚
i`1

˘

“
αc2pn´ k ` 1q

p1` αcpk ´ 1qqp1` αcnq
.

Thus,

0 ă εk,n ă
α2c2pn´ k ` 1q

p1` αcpk ´ 1qqp1` αcnq log
´

1`αcn
1`αcpk´1q

¯ .

So we consider,

sup
kďn

α2c2pn´ k ` 1q

p1` αcpk ´ 1qqp1` αcnq log
´

1`αcn
1`αcpk´1q

¯

“
α2c2

1` αcn
sup
kďn

n´ k ` 1

p1` αcpk ´ 1qq log
´

1`αcn
1`αcpk´1q

¯ .

So let us find,

sup
kďn

n´ k ` 1

p1` αcpk ´ 1qq log
´

1`αcn
1`αcpk´1q

¯ .

Let x “ 1` αcpk ´ 1q and find the derivative

d

dx

˜

1` αcn´ x

x log
`

1`αcn
x

˘

¸

“
p1` αcnq ´ p1` αcnq log

`

1`αcn
x

˘

´ x

x2
`

log
`

1`αcn
x

˘˘2 .
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The numerator in this fraction is increasing and from this it is clear that the derivative is

negative. Therefore the maximum occurs when k “ 1. Thus,

0 ď εk,n ď
α2c2

1` αcn

n

log p1` αcnq
ď

αc

logp1` αcnq
.

Furthermore, taking the limit as nÑ8 we have εk,n Ñ 0, uniformly in k, as claimed. �

The following corollary provides a nice bound on p1` αckq1`εk,n which will make com-

putations in later sections easier.

Corollary 2.3.2. Let εk,n be defined as in Lemma 2.3.1. Then for 1 ď k ď n and

α ě 0 the following bound holds,

p1` αckq1`εk,n ď p1` αceαcqp1` αckq.

Proof. We can write

p1` αckq1`εk,n “ p1` αckqp1` αckqεk,n “ p1` αckqp1` p1` αckqεk,n ´ 1q.

So let δk,n “ p1` αckqεk,n ´ 1, then

δk,n “ pe
εk,n logp1`αckq ´ 1q ď εk,n logp1` αckqeεk,n logp1`αckq.

We have just shown that

|εk,n| ď
αc

log p1` αcnq
.

So,

0 ď |δk,n| ď αceαc.

Therefore,

p1` αckq1`εk,n ď p1` αckqp1` αceαcq.

�

2.3.2. Regularisation approximation. With the estimates provided above we can

now provide justification for our choice of c˚n. We start by providing some more notation.

For each n P N, c defined as above we denote φ8n “ φ8n´1 ˝f
8
n where f8n pzq “ eiθnfc̃npze

´iθnq
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with θn i.i.d uniform on r0, 2πs and

c̃n “
c

ˇ

ˇ

ˇ

`

φ8n´1

˘1
p8q

ˇ

ˇ

ˇ

α .

Furthermore, we define,

C̃k,n “
n
ÿ

i“k

c̃i.

The maps φ8n correspond to the true model for HLpαq regularised at 8. The aim of the

remainder of this section will be to prove the following theorem.

Proposition 2.3.3. For C˚1,n and C̃1,n defined as above, the following inequality holds,

ˇ

ˇ

ˇ
C˚1,n ´ C̃1,n

ˇ

ˇ

ˇ
ď 12c

Furthermore,

c̃n “ c˚np1` ε
8
n q

where ε8n Ñ 0, uniformly in n, as cÑ 0.

Therefore if we choose our c sufficiently small we see that our regularisation is a good

approximation to regularisation at infinity. In order to prove Proposition 2.3.3 we first form

a difference equation on C˚1,n.

Lemma 2.3.4. With C˚1,n defined as above the following equality holds

C˚1,n “ C˚1,n´1 ` ce
´αC˚1,n´1 ` κn

where 0 ď κn ď
2αc2

1`αcpn´1q .

Proof. Let

κn “
`

C˚1,n ´ C
˚
1,n´1

˘

´ ce´αC
˚
1,n´1 .

Then by the definition of C˚1,n,

κn “ c˚n ´ ce
´αC˚1,n´1 .
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Thus, using the approximation from Lemma 2.3.1,

κn “ c˚n ´
c

p1` αcpn´ 1qq1`ε1,n´1

“
c

1` αcpn´ 1q

ˆ

1´
1

p1` αcpn´ 1qqε1,n´1

˙

“
c

1` αcpn´ 1q
p1´ exp p´ε1,n´1 logp1` αcpn´ 1qqqq .

Since ε1,n´1 is small for small c we can Taylor expand the exponential to get,

κn “
c

1` αcpn´ 1q
pε1,n´1 logp1` αcpn´ 1qq ´ rpn, cqq .

where rpn, cq is the remainder term in the Taylor expansion. From Lemma 2.3.1 we know

0 ď ε1,n´1 ď
αc

logp1`αcpn´1qq . Moreover, 0 ď rpn, cq ď eαcpε1,n´1 logp1` αcpn´ 1qqq2, so for c

sufficiently small,

0 ď κn ď
2αc2

1` αcpn´ 1q
.

�

We can now show that C˚1,n and C̃1,n are sufficiently close by proving Proposition 2.3.3.

Proof of Proposition 2.3.3. We will prove the statement inductively. By definition,

C˚1,1 ´ C̃1,1 “ 0. So assume,

ˇ

ˇ

ˇ
C˚1,n´1 ´ C̃1,n´1

ˇ

ˇ

ˇ
ď 12c.

Then note that since,

c̃n “
c

ˇ

ˇ

ˇ

`

φ8n´1

˘1
p8q

ˇ

ˇ

ˇ

α

then

c̃n “
c

´

eC̃1,n´1

¯α .
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Furthermore,

C̃1,n “ C̃1,n´1 ` c̃n.

Therefore,

C̃1,n “ C̃1,n´1 `
c

´

eC̃1,n´1

¯α .

Thus, by Lemma 2.3.4,

C˚1,n ´ C̃1,n “

´

C˚1,n´1 ´ C̃1,n´1

¯

` c
´

e´αC
˚
1,n´1 ´ e´αC̃1,n´1

¯

` κn

“

´

C˚1,n´1 ´ C̃1,n´1

¯

` ce´αC
˚
1,n´1

´

1´ eαpC
˚
1,n´1´C̃1,n´1q

¯

` κn.

Taylor expanding the eαpC
˚
1,n´1´C̃1,n´1q term gives,

C˚1,n ´ C̃1,n “

´

C˚1,n´1 ´ C̃1,n´1

¯

` cαe´αC
˚
1,n´1

´

C̃1,n´1 ´ C
˚
1,n´1 ´ rpn, cq

¯

` κn

“

´

C˚1,n´1 ´ C̃1,n´1

¯´

1´ cαe´αC
˚
1,n´1

¯

`

´

κn ´ rpn, cqcαe
´αC˚1,n´1

¯

.

where rpn, cq is the Taylor remainder term. We know rpn, cq “ eξ

2 α
´

C˚1,n´1 ´ C̃1,n´1

¯2
for

some ξ between 0 and α
´

C˚1,n´1 ´ C̃1,n´1

¯

. Thus, under our assumption that

|C˚1,n´1 ´ C̃1,n´1| ď 12c, we have,

0 ď rpn, cqcαe´αC
˚
1,n´1 ď

144c3α2e12αc

1` αcpn´ 1q
.

Then if c is small enough,

´ rpn, cqcαe´αC
˚
1,n´1 ě

´2αc2

1` αcpn´ 1q
.

Let κ̃n “ κn ´ rpn, cqcαe
´αC˚1,n´1 , then ´2αc2

1`αcpn´1q ď κ̃n ď
2αc2

1`αcpn´1q . Hence,

C˚1,n ´ C̃1,n “

´

C˚1,n´1 ´ C̃1,n´1

¯

ρn´1 ` κ̃n
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where ρn´1 “ 1´ cαe´αC
˚
1,n´1 . So,

C˚1,n ´ C̃1,n “

´

C˚1,n´2 ´ C̃1,n´2

¯

ρn´2ρn´1 ` κ̃n´1ρn´1 ` κ̃n

“

´

C˚1,1 ´ C̃1,1

¯

n´1
ź

i“1

ρi `
n´1
ÿ

j“2

¨

˝κ̃j

n´1
ź

k“j

ρk

˛

‚` κ̃n

but since
´

C˚1,1 ´ C̃1,1

¯

“ 0,

C˚1,n ´ C̃1,n “

n´1
ÿ

j“2

¨

˝κ̃j

n´1
ź

k“j

ρk

˛

‚` κ̃n.

We first analyse
śn´1
k“j ρk,

n´1
ź

k“j

ρk “
n´1
ź

k“j

´

1´ cαe´αC
˚
1,k´1

¯

“

n´1
ź

k“j

ˆ

1´
αc

p1` αcpk ´ 1qq1`ε1,k´1

˙

“ exp

¨

˝

n´1
ÿ

k“j

log

ˆ

1´
αc

p1` αcpk ´ 1qq1`ε1,k´1

˙

˛

‚.

Using the Taylor expansion of log
´

1´ αc

p1`αcpk´1qq
1`ε1,k´1

¯

we have,

n´1
ź

k“j

ρk “ exp

¨

˝

n´1
ÿ

k“j

´αc

p1` αcpk ´ 1qq1`ε1,k´1

˛

‚exp

¨

˝

n´1
ÿ

k“j

r̃pk, cq

˛

‚

where r̃pk, cq is the Taylor remainder term. But since for each 2 ď k ď n´1,
řn´1
k“j r̃pj, cq ď 0

in the expansion of log
´

1´ αc

p1`αcpk´1qq
1`ε1,k´1

¯

,

(2.4) 0 ď
n´1
ź

k“j

ρk ď exp

¨

˝

n´1
ÿ

k“j

´αc

p1` αcpk ´ 1qq1`ε1,k´1

˛

‚.

By Corollary 2.3.2,

0 ď p1` αcpk ´ 1qq1`ε1,k´1 ď p1` αceαcqp1` αcpk ´ 1qq.
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Therefore,

αc

p1` αcpk ´ 1qq1`ε1,k´1
ě

αc

p1` αceαcqp1` αcpk ´ 1qq
.

Thus,

n´1
ÿ

k“j

αc

p1` αcpk ´ 1qq1`ε1,k´1
ě

1

p1` αceαcq

n´1
ÿ

k“j

αc

p1` αcpk ´ 1qq

ě
1

p1` αceαcq

ż n

j

αc

p1` αcpx´ 1qq
dx

“
1

p1` αceαcq
log

ˆ

1` αcpn´ 1q

1` αcpj ´ 1q

˙

.

where the second inequality follows using a Riemann sum approximation. Hence by (2.4),

0 ď
n´1
ź

k“j

ρk ď

ˆ

1` αcpj ´ 1q

1` αcpn´ 1q

˙
1

p1`αceαcq

ď

ˆ

1` αcpj ´ 1q

1` αcpn´ 1q

˙
1
2

for c chosen sufficiently small. Finally we see that,

n´1
ÿ

j“2

¨

˝κ̃j

n´1
ź

k“j

ρk

˛

‚ď
2αc2

p1` αcpn´ 1qq
1
2

n´1
ÿ

j“2

1

p1` αcpj ´ 1qq
1
2

ď 6c

where the last inequality follows by approximating with a Riemann integral. Thus for c

small enough,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

j“2

¨

˝κ̃j

n´1
ź

k“j

ρk

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 6c.

Hence, since for all n, and c sufficiently small,

|κ̃n| ď 6c

it follows that,

(2.5)
ˇ

ˇ

ˇ
C˚1,n ´ C̃1,n

ˇ

ˇ

ˇ
ď 12c.
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Finally, consider c̃n
c˚n
,

c̃n
c˚n
“
p1` αcpn´ 1qq

eαC̃1,n

“ eαp
1
α

logp1`αcpn´1qq´C˚1,nqeαpC
˚
1,n´C̃1,nq

Thus by (2.5),

c̃n
c˚n
ď eαp

1
α

logp1`αcpn´1qq´C˚1,n´1qe12αc.

Therefore, using the bound in Lemma 2.3.1,

c̃n
c˚n
ď e´ε1,n´1 logp1`αcpn´1qqe12αc

ď e12αc.

Thus,

c̃n “ c˚np1` ε
8
n q

where ε8n Ñ 0 uniformly as cÑ 0. �

Now define the following measures on the space S “ r0, 2πs ˆ r0,8q ,

dµ˚c pθ, tq “ δξ˚c ptqdt, dµ̃cpθ, tq “ δξ̃cptqdt

where,

ξ˚c ptq “ exp

˜

i
8
ÿ

k“1

θk1rC˚1,k´1,C
˚
1,ks
ptq

¸

, ξ̃cptq “ exp

˜

i
8
ÿ

k“1

θk1rC̃1,k´1,C̃1,ks
ptq

¸

.

Using the theory of Loewner chains (see, for example, Section 7 of [JVST15]), φn is a

good approximation to φ8n provided the measures µ˚c and µ̃c are close in the sense stated in

Corollary 2.3.5 below. For a function g and a measure µ, denote,

xg, µy “

ż

S
gpθ, tqdµpθ, tq.
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It follows that, for the measures µ˚c pθ, tq, µ̃cpθ, tq defined above,

xg, µ˚c y “
8
ÿ

k“1

ż C˚1,k

C˚1,k´1

gpθk, tqdt, xg, µ̃cy “
8
ÿ

k“1

ż C̃1,k

C̃1,k´1

gpθk, tqdt.

Then the following corollary holds.

Corollary 2.3.5. Let g : S Ñ R be a continuous function with compact support. Then,

|xg, µ˚c y ´ xg, µ̃cy| Ñ 0

uniformly as cÑ 0.

Proof. Since g has compact support, there exists some 0 ă T ă 8 such that gpx, tq “ 0

whenever t ą T . Thus,

|xg, µ˚c y ´ xg, µ̃cy| “

ˇ

ˇ

ˇ

ˇ

ˇ

kT
ÿ

k“1

ż C˚1,k

C˚1,k´1

gpθk, tqdt´
kT
ÿ

k“1

ż C̃1,k

C̃1,k´1

gpθk, tqdt

ˇ

ˇ

ˇ

ˇ

ˇ

.

where kT “ inftk : C˚1,k ^ C̃1,k ą T u. By the continuity of the function g there exists

s˚k P rC
˚
1,k´1, C

˚
1,ks and s̃k P rC̃1,k´1, C̃1,ks such that,

|xg, µ˚c y ´ xg, µ̃cy| ď
kT
ÿ

k“1

|c˚kgpθk, s
˚
kq ´ c̃kgpθk, s̃kq| .

We can bound the term in the summation as follows,

|c˚kgpθk, s
˚
kq ´ c̃kgpθk, s̃kq| ďc

˚
k |gpθk, s

˚
kq ´ gpθk, s̃kq| ` |c

˚
k ´ c̃k| |gpθk, s̃kq|

ďc˚k

˜

sup
|s´t|ă14c

|gpθk, sq ´ gpθk, tq| ` ε
8
k }g}8

¸

where ε8k is the uniform bound from Proposition 2.3.3. Therefore, since bounded continuous

functions on compact time are uniformly continuous we can find a uniform bound on the

first term and hence a uniform bound on the sum,

|xg, µ˚c y ´ xg, µ̃cy| ď

˜

kT
ÿ

k“1

c˚k

¸˜

sup
|s´t|ă14c,θPr0,2πs

|gpθ, sq ´ gpθ, tq| ` sup
0ďkă8

ε8k }g}8

¸

ďpT ` 12cq

˜

sup
|s´t|ă14c,θPr0,2πs

|gpθ, sq ´ gpθ, tq| ` sup
0ďkă8

ε8k }g}8

¸
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which converges to 0 uniformly as cÑ 0.

�

As a remark we note that it is straightforward to prove the almost sure version of

Corollary 2.3.5. For notational simplicity all subsequent results are proved for φn, however,

it is straightforward to verify that c can be chosen sufficiently small such that analogous

results hold for φ8n .

2.4. Pointwise convergence for 0 ă α ă 2

2.4.1. Estimates. In this section we will provide estimates for several variables which

we will then call on throughout the rest of the paper. Whilst this work is an essential part

of the analysis, we advise that the reader may skip the proofs of this section if they are only

interested the main results of the paper.

We start by providing some notation used throughout the remainder of the paper. Let

φk and c˚i be defined as above. Recall, we denote C˚k,n “
řn
i“k c

˚
i . Then for any z P C we

define our increments Xk,npzq as;

(2.6) Xk,npzq :“ e´C
˚
1,n

´

φk

´

eC
˚
k`1,nz

¯

´ φk´1

´

eC
˚
k,nz

¯¯

.

Let Fk´1 be the σ-algebra, σ pθi ; 1 ď i ď k ´ 1q. We first show that for all 0 ă k ď n,

EpXk,npzq|Fk´1q “ 0.

This is shown in the following lemma and highlights the power of using conformal maps.

Lemma 2.4.1. Define the sequence tXk,npzqu
n
k“0 and corresponding filtration pFkqnk“0 as

above. For each z P C, the following property is satisfied for all 0 ă k ď n,

EpXk,npzq|Fk´1q “ 0.
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Proof. We first show;

ż 2π

0
φk´1pe

iθfc˚k
pe´iθzqq

dθ

2π
“ φk´1pe

c˚k zq.

Let w “ eiθ, then the integral can be rewritten as

ż 2π

0
φk´1pe

iθfc˚k
pe´iθzqq

dθ

2π
“

1

2πi

ż

C

φk´1pwfc˚k
pz{wqq

w
dw

where C is the unit circle centered at 0. The map w ÞÝÑ φk´1pwfc˚k
pz{wqq is analytic on the

disk of radius 1
|z| with a removable singularity at 0 and so by Cauchy’s integral formula,

1

2πi

ż

C

φk´1pwfc˚k
pz{wqq

w
dw “ lim

wÑ0
φk´1pwfc˚k

pz{wqq

“ φk´1p lim
wÑ0

wfc˚k
pz{wqq

“ φk´1

ˆ

lim
wÑ0

ˆ

ec
˚
k z ` a0w ` a1

w2

z2
` ...

˙˙

for some complex number sequence of ai’s. Thus,

ż 2π

0
φk´1pe

iθfc˚k
pe´iθzqq

dθ

2π
“ φk´1pe

c˚k zq

as required. So now let us consider Epφkpzq|Fk´1q. This can be rewritten as

Epφkpzq|Fk´1q “ Epφk´1pe
iθkfc˚k

pe´iθkzqq|Fk´1q.

The only randomness here comes from θk, the c˚k are pre-determined, and so,

Epφkpzq|Fk´1q “

ż 2π

0
φk´1pe

iθfc˚k
pe´iθzqq

dθ

2π
“ φk´1pe

c˚k zq.

Therefore,

EpφkpeC
˚
k`1,nzq|Fk´1q “ φk´1pe

C˚k,nzq.

Thus,

EpXk,n|Fk´1q “ e´C
˚
1,n

´

EpφkpeC
˚
k`1,nzq|Fk´1q ´ φk´1pe

C˚k,nzq
¯

“ 0

as required.

�
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We also define the sum,

(2.7) Mnpzq :“
n
ÿ

k“1

Xk,npzq “ e´C
˚
1,nφnpzq ´ z.

Lemma 2.4.1 shows that for each fixed n, we have for k “ 0, ..., n that EpMn|Fkq “
řk
j“1Xj,n

which is a martingale with respect to k. We will also need to define the variance

(2.8) Tnpzq :“
n
ÿ

k“1

Ep|Xk,npzq|
2 | Fk´1q.

Our aim is to show that we approach a disk pointwise, equivalently, for a fixed value z,

|Mnpzq| Ñ 0 as n Ñ 8. Throughout we use λ to denote strictly positive, unless stated

otherwise, constants which may change from line to line. Where these constants depend on

parameters from the model we indicate these explicitly.

We will find pointwise bounds on Xk,npzq and Tnpzq. By definition;

|Xk,npzq| “ e´C
˚
1,n |φkpe

C˚k`1,nzq ´ φk´1pe
C˚k,nzq|

“ e´C
˚
1,n |φk´1pe

iθkfc˚k
pe´iθkeC

˚
k`1,nzqq ´ φk´1pe

C˚k,nzq|.

We start by showing that for |z| ą r, for some r ą 1, we can bound δc
´

e´iθkeC
˚
k`1,nz

¯

by a

constant via the following lemma.

Lemma 2.4.2. For C˚k,n and δcpzq defined as above, and for |z| ą r for some r ą 1, the

following bound holds,

|δc˚k

´

e´iθkeC
˚
k`1,nz

¯

| ă λpα, c, rqk
1
α
´ 3

2n´
1
α ď λpα, c, rqk´

3
2 ă λpα, c, rq

where λpα, c, rq is a positive constant dependent on α, c and r.

Proof. From equation (2.1) we know

|δc˚k
pzq| ď

λ̃pc˚kq
3
2 |z|

|z ´ 1|p|z| ´ 1q
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where λ̃ is some constant. Therefore,

ˇ

ˇ

ˇ
δc˚k

´

e´iθkeC
˚
k`1,nz

¯
ˇ

ˇ

ˇ
ď

λ̃pc˚kq
3
2 |eC

˚
k`1,nz|

|e´iθkeC
˚
k`1,nz ´ 1|p|eC

˚
k`1,nz| ´ 1q

.

Since |z| ą r,

ˇ

ˇ

ˇ
δc˚k

´

e´iθkeC
˚
k`1,nz

¯ˇ

ˇ

ˇ
ď
λ̃pc˚kq

3
2 eC

˚
k`1,nr

peC
˚
k`1,nr ´ 1q2

.

Note that λ̃ could equal zero here. So using the estimates on eC
˚
k`1,n and εk,n from Lemmas

2.3.1 and Corollary 2.3.2 respectively we have the following bound,

ˇ

ˇ

ˇ
δc˚k

´

e´iθkeC
˚
k`1,nz

¯ˇ

ˇ

ˇ
ď λpα, c, rqk

1
α
´ 3

2n´
1
α

ď λpα, c, rqk´
3
2 ă λpα, c, rq

where λpα, c, rq is a constant dependent on α, c and r. �

Note that we will need the intermediate bound in a later proof. We introduce the

following parametrisation.

Definition 2.4.3. For each n P N, z P C, k ď n and δcpzq defined as in (2.1), we define

the following parametrisation for 0 ď s ď 1,

ηk,nps, zq “ eC
˚
k,nz exp

ˆ

s

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

` δc

´

e´iθkeC
˚
k`1,nz

¯

˙˙

.

Using this parametrisation we see,

ηk,np0, zq “ eC
˚
k,nz, ηk,np1, zq “ eiθkfc˚k

pe´iθkeC
˚
k`1,nzq

where fc˚k pzq is defined as in Section 2.1. Therefore,

|Xk,npzq| “ e´C
˚
1,n |φk´1pηk,np1, zqq ´ φk´1pηk,np0, zqq|.

Before finding pointwise bounds on Xk,npzq and Tnpzq, we first find pointwise bounds on

elements of ηk,nps, zq and its derivative with respect to s which we denote by 9ηk,nps, zq.
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Lemma 2.4.4. For ηk,nps, zq defined in (2.4.3), for each z P C with |z| ą r and each

0 ď s ď 1, the following pointwise bound holds,
ˇ

ˇ

ˇ

ˇ

exp

ˆ

s

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

` δc˚k

´

e´iθkeC
˚
k`1,nz

¯

˙˙ˇ

ˇ

ˇ

ˇ

ď λpα, c, rq

where λpα, c, rq is a constant dependent on α, c and r. Furthermore,

| 9ηk,nps, zq| ď λpα, c, rq
ˇ

ˇ

ˇ

c˚ke
C˚k,nz

e´iθkeC
˚
k`1,nz ´ 1

ˇ

ˇ

ˇ
ď λpα, c, rq

c˚ke
C˚k,n

eC
˚
k`1,nr ´ 1

.

Proof. Let λpα, c, rq be some constant that we allow to vary throughout the proof.

First notice that since c˚k ă c and eC
˚
k`1,n |z| ą r it follows that

ˇ

ˇ

ˇ

ˇ

s

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

˙ˇ

ˇ

ˇ

ˇ

ď
2c

r ´ 1
.

Therefore as,
ˇ

ˇ

ˇ

ˇ

exp

ˆ

s

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

` δc˚k

´

e´iθkeC
˚
k`1,nz

¯

˙˙ˇ

ˇ

ˇ

ˇ

ď exp

ˆ
ˇ

ˇ

ˇ

ˇ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
δc˚k

´

e´iθkeC
˚
k`1,nz

¯ˇ

ˇ

ˇ

˙

we use the bound above along with Lemma 2.4.2 to reach the following bound
ˇ

ˇ

ˇ

ˇ

exp

ˆ

s

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

` δc˚k

´

e´iθkeC
˚
k`1,nz

¯

˙˙ˇ

ˇ

ˇ

ˇ

ď exp

ˆ

2c

r ´ 1
` λpα, c, rq

˙

“ λpα, c, rq.

Now consider 9ηk,nps, zq. Recalling that

ηk,nps, zq “ eC
˚
k,nz exp

ˆ

s

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

` δc˚k

´

e´iθkeC
˚
k`1,nz

¯

˙˙

we see that

| 9ηk,nps, zq| ď

ˇ

ˇ

ˇ

ˇ

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

` δc˚k

´

e´iθkeC
˚
k`1,nz

¯

˙ˇ

ˇ

ˇ

ˇ

|ηk,nps, zq|.

Then using the bound we found above,

| 9ηk,nps, zq| ď λpα, c, rq|eC
˚
k,nz|

ˆ
ˇ

ˇ

ˇ

ˇ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
δc˚k

´

e´iθkeC
˚
k`1,nz

¯ˇ

ˇ

ˇ

˙
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where λpα, c, rq is some constant. Now using the fact that |z| ą r and the bound from the

proof of Lemma 2.4.2 we see that

| 9ηk,nps, zq| ď λpα, c, rq
ˇ

ˇ

ˇ

2c˚ke
C˚k,nz

e´iθkeC
˚
k`1,nz ´ 1

ˇ

ˇ

ˇ
ď λpα, c, rq

2c˚ke
C˚k,n

eC
˚
k`1,nr ´ 1

.

where the second inequality follows by using that |z| ą r again. �

Now we can use the bounds above to give us a pointwise bound on Xk,npzq. We will use

the following distortion theorem in the proof [Pom75].

Theorem 2.4.5. For a function from the exterior disc into the complex plane F : ∆ Ñ C

that is univalent except for a simple pole at 8 and Laurent expansion of the form

F pzq “ z ` a0 `

8
ÿ

n“1

anz
´n

we have the estimate

|z|2 ´ 1

|z|2
ď |F 1pzq| ď

|z|2

|z|2 ´ 1
ď

|z|

|z| ´ 1
z P ∆.

Our bound on Xk,npzq is given by the following lemma.

Lemma 2.4.6. For the sequence tXk,npzqu
n
k“0 and corresponding filtration Fk defined as

above, and for a fixed |z| ą r, the following property is satisfied for all 0 ă k ď n;

|Xk,npzq| ă λpα, c, rq
c˚k

eC
˚
k`1,nr ´ 1

where λpα, c, rq is a constant dependent on α, c and r. Furthermore, for 0 ă α ď 1,

sup
kďn

|Xk,npzq| ă λpα, c, rq
1

n

and for α ą 1,

sup
kďn

|Xk,npzq| ă λpα, c, rq
1

n
1
α

.

Proof. By definition

|Xk,npzq| “ e´C
˚
1,n |φk´1pηk,np1, zqq ´ φk´1pηk,np0, zqq|.
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Hence,

|Xk,npzq| “ e´C
˚
1,n

ˇ

ˇ

ˇ

ˇ

ż 1

0
φ1k´1pηk,nps, zqq 9ηk,nps, zqds

ˇ

ˇ

ˇ

ˇ

ď e´C
˚
1,n

ż 1

0

ˇ

ˇφ1k´1pηk,nps, zqq
ˇ

ˇ | 9ηk,nps, zq| ds.

Using Lemma 2.4.4 we have,

| 9ηk,nps, zq| ď λpα, c, rq
2c˚ke

C˚k,nr

eC
˚
k`1,nr ´ 1

.

where λpα, c, rq is a non-zero constant that will vary throughout this proof. Moreover, we

can find a bound on
ş1
0

ˇ

ˇφ1k´1pηk,nps, zqq
ˇ

ˇ ds using Theorem 2.4.5,

ż 1

0

ˇ

ˇφ1k´1pηk,nps, zqq
ˇ

ˇ ds ă eC
˚
1,k´1 sup

0ăsă1

|ηk,nps, zq|

|ηk,nps, zq| ´ 1
.

Note that in order to apply the distortion theorem to our function φk´1 we had to rescale by

a factor of eC
˚
1,k´1 . It is easy to show that inf0ďsď1 |ηk,nps, zq| ě |z| and therefore for |z| ą r,

ż 1

0

ˇ

ˇφ1k´1pηk,nps, zqq
ˇ

ˇ ds ă eC
˚
1,k´1

r

r ´ 1
.

Thus, by compiling the bounds above,

|Xk,npzq| ă λpα, c, rqe´C
˚
1,n
eC

˚
1,k´1r

r ´ 1

2c˚ke
C˚k,nr

eC
˚
k`1,nr ´ 1

ă λpα, c, rq
c˚k

eC
˚
k`1,nr ´ 1

.

Using the estimates in Lemma 2.3.1 and Corollary 2.3.2 we have,

|Xk,npzq| ă λpα, c, rqk
1
α
´1n´

1
α .

First consider the case where 0 ă α ď 1. Then 1´α
α ě 0. Hence, it is clear that the maximum

occurs when k “ n and thus

sup
kďn

|Xk,npzq| ă λpα, c, rq
1

n
.
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However, when α ą 1, k
1´α
α ă 1 , so

sup
kďn

|Xk,npzq| ă λpα, c, rq
1

n
1
α

where λpα, c, rq is a constant dependent on α, c and r. �

It is now clear to see that as n approaches infinity the bound on Xk,npzq approaches zero

pointwise.

Corollary 2.4.7. For Xk,npzq defined as above;

lim
nÑ8

sup
kďn

|Xk,npzq| “ 0.

Now we want to calculate a bound on the variation Tnpzq “
řn
k“1 Ep|Xk,npzq|

2|Fk´1q.

This is given by the following lemma.

Lemma 2.4.8. The following inequality holds for sufficiently large n. If 0 ă α ă 2,

Tnpzq ď λpα, c, rq
1

n

where λpα, c, rq ą 0 is some constant.

Proof. First let us look at |Xk,npzq|
2. As before we can bound

|Xk,npzq|
2 ă e´2C˚1,n

ˇ

ˇ

ˇ

ż 1

0
φ1k´1pηk,nps, zqq ds

ˇ

ˇ

ˇ

2
sup

0ďsď1
| 9ηk,npsq|

2.

Therefore,

Ep|Xk,npzq|
2 | Fk´1q ď e´2C˚1,nE

ˆ

ˇ

ˇ

ˇ

ż 1

0
φ1k´1pηk,nps, zqq ds

ˇ

ˇ

ˇ

2
sup

0ďsď1
| 9ηk,npsq|

2 | Fk´1

˙

.

We can find an upper bound on the integral using a distortion theorem again and then

remove it from the expectation. By Theorem 2.4.5 above,

ˇ

ˇ

ˇ

ż 1

0
φ1k´1pηk,nps, zqq ds

ˇ

ˇ

ˇ

2
ă e2C˚1,k´1

r2

pr ´ 1q2
.
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So all that remains to calculate is Epsup0ďsď1 | 9ηk,nps, zq|
2|Fk´1q. Firstly by Lemma 2.4.4,

for all 0 ď s ď 1,

| 9ηk,nps, zq| ď λpα, c, rq
|c˚k e

c˚kw|

|e´iθkw ´ 1|
.

where w “ eC
˚
k`1,nr. Moreover, since the c˚k are predetermined, the only randomness here

comes from the θk and thus,

Ep sup
0ďsď1

| 9ηk,nps, zq|
2 | Fk´1q ď 4pc˚kq

2e2c˚k

ż 2π

0

|w|2

|e´iθw ´ 1|2
dθ.

It is easily shown that for w P C,
ż 2π

0

|w|2

|e´iθw ´ 1|2
dθ ď

6|w|

|w| ´ 1
.

Therefore,

Ep sup
0ďsď1

| 9ηk,nps, zq|
2|Fk´1q ď 24pc˚kq

2e2c˚k
reC

˚
k`1,n

reC
˚
k`1,n ´ 1

.

It is clear for all k ď n, c˚k ă c, therefore,

Ep sup
0ďsď1

| 9ηk,nps, zq|
2 | Fk´1q ď 24e2cpc˚kq

2 reC
˚
k,n

reC
˚
k`1,n ´ 1

.

Finally we can use the bound

1

reC
˚
k`1,n ´ 1

ď
1

reC
˚
k,n ´ 1

ecr

r ´ 1

and bring together the previous bounds to reach the following bound on Tnpzq.

Let λpα, c, rq ą 0 be some constant that will vary throughout. Then,

Tnpzq ď λpα, c, rq
n
ÿ

k“1

˜

e´2C˚1,n e2C˚1,k´1 pc˚kq
2 eC

˚
k,n

reC
˚
k,n ´ 1

¸

ď λpα, c, rq
n
ÿ

k“1

pc˚kq
2 e´C

˚
k,n

´

eC
˚
k,nr ´ 1

¯

ď λpα, c, rq
n
ÿ

k“1

pc˚kq
2e´2C˚k,n .
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We can substitute in the known values for c˚k and C˚k,nto reach the following bound on Tnpzq,

Tnpzq ď λpα, c, rq
n
ÿ

k“1

ˆ

c

1` αcpk ´ 1q

˙2 ˆ1` αcpk ´ 1q

1` αcn

˙
2
α
p1`εk,nq

.

Let x “ 1`αcpk´1q
1`αcn . Then,

Tnpzq ď λpα, c, rq
1

1` αcn

ż 1

1
1`αcn

x
2
α
´2dx.

This integral is bounded above by a constant if 0 ă α ă 2. Therefore we bound above by

Tnpzq ď λpα, c, rq
1

n
.

�

Moreover since Tnpzq ě 0, we have the following corollary.

Corollary 2.4.9. For 0 ă α ă 2,

lim
nÑ8

Tnpzq “ 0.

2.4.2. Results. We are now in a position to analyse the limiting structure of the map

φn as n Ñ 8 for 0 ă α ă 2. Our aim is to use the bounds on the increments Xk,npzq

and Tnpzq found in the previous section to produce a pointwise estimate on the difference

between the cluster map and the disk of logarithmic capacity eC
˚
k,n . In order to do so we

will apply the following theorem which is an immediate consequence of Proposition 2.1 in

[Fre75].

Theorem 2.4.10. Let n be any positive integer. Suppose Xk,n is Fk-measurable and

EtXk,n | Fk´1u “ 0 and define Mn “
řn
k“1Xk,n and Tn “

řn
k“1 VartXk,n | Fk´1u. Let M

be a positive real number and suppose Pt|Xk,n| ďM for all k ď nu “ 1. Then for all positive

numbers a and b,

PtMn ě a and Tn ď bu ď exp

„

´a2

2pMa` bq



.



2.4. POINTWISE CONVERGENCE FOR 0 ă α ă 2 54

Consequently, for all positive numbers a and b,

Pt|Mn| ě a and Tn ď bu ď 2 exp

„

´a2

2pMa` bq



.

Recall, e´C
˚
1,nφnpzq ´ z “

řn
k“1Xk,npzq. Hence, we can now apply Theorem 2.4.10 to

our cluster to obtain pointwise results for 0 ă α ă 2.

Theorem 2.4.11. Let c˚i and φk be defined as above. Then for 0 ă α ă 2, and any

sufficiently small positive real number a and n sufficiently large,

P
´

|e´C
˚
1,nφnpzq ´ z| ą a

¯

ď 4e
´ a2n
λpα,c,rq

for some strictly positive constant λpα, c, rq. Therefore, for all 0 ă α ă 2 if we let apnq “
logpnq
?
n

then for all z P C with |z| ą 1,

lim
nÑ8

P
ˆ

|e´C
˚
1,nφnpzq ´ z| ą

logpnq
?
n

˙

“ 0.

Proof. First note, we have shown in Lemma 2.4.1, EpXk,npzq|Fk´1q “ 0 where

Xk,npzq “ e´C
˚
1,n

´

φk

´

eC
˚
k`1,nz

¯

´ φk´1

´

eC
˚
k,nz

¯¯

.

Recall,Mnpzq “
řn
k“1Xk,npzq, and note that we can splitMn into real and imaginary parts,

thus,

P
`ˇ

ˇMn

ˇ

ˇ ą a
˘

ď P
ˆ

<pMnq ą
a
?

2

˙

` P
ˆ

=pMnq ą
a
?

2

˙

.

Moreover,

sup
kďn

<pXk,npzqq ă sup
kďn

|Xk,npzq|

sup
kďn

=pXk,npzqq ă sup
kďn

|Xk,npzq|.

It is easy to see that both <pXk,npzqq and =pXk,npzqq satisfy the property that the expecta-

tion with respect to the filtration is zero and so by applying Theorem 2.4.10 withM “ bXpnq
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and b “ bT pnq, for any positive real number a,

P

˜

ˇ

ˇ

n
ÿ

k“1

Xk,npzq
ˇ

ˇ ě a

¸

ď P

˜

<

˜

n
ÿ

k“1

Xk,npzq

¸

ě
a
?

2

¸

` P

˜

=

˜

n
ÿ

k“1

Xk,npzq

¸

ě
a
?

2

¸

ď 4 exp

«

´a2

4pbXpnq
a?
2
` bT pnqq

ff

where bXpnq, bT pnq are the bounds on |Xk,npzq| and Tnpzq from Lemma 2.4.6 and Lemma

2.4.8 respectively. We first deal with the case that 0 ă α ď 1. In Lemma 2.4.6 we have seen

sup
kďn

|Xk,npzq| ă λ1pα, c, rq
1

n

for some positive constant λ1pα, c, rq and by Lemma 2.4.8,

Tnpzq ď λ2pα, c, rq
1

n

for some positive constant λ2pα, c, rq. Therefore,

P
´

|e´
řn
i“1 c

˚
i φnpzq ´ z| ą a

¯

ď 4 exp

¨

˝

´a2n

4
´

λ1pα, c, rq
a?
2
` λ2pα, c, rq

¯

˛

‚.

But for a sufficiently small, λ1pα, c, rq
a?
2
ď λ2pα, c, rq so let λpα, c, rq “ 8λ2pα, c, rq then

P
´

|e´
řn
i“1 c

˚
i φnpzq ´ z| ą a

¯

ď 4 exp

ˆ

´a2n

λpα, c, rq

˙

.

Now for 1 ă α ă 2,

sup
kďn

|Xk,npzq| ă λ1pα, c, rq
1

n
1
α

for some positive constant λ1pα, c, rq and

Tnpzq ď λ2pα, c, rq
1

n

for some positive constant λ2pα, c, rq. Therefore,

P
´

|e´
řn
i“1 c

˚
i φnpzq ´ z| ą a

¯

ď 4 exp

¨

˝

´a2n
1
α

4
´

λ1pα, c, rq
a?
2
` λ2pα, c, rqn

1´α
α

¯

˛

‚.
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Now for a “ apnq “ logpnq
?
n

, and n sufficiently large, λ1pα, c, rq
a?
2
ď λ2pα, c, rqn

1´α
α . There-

fore, using the same λpα, c, rq as above, for all 0 ă α ă 2,

P
´

|e´
řn
i“1 c

˚
i φnpzq ´ z| ą a

¯

ď 4 exp

ˆ

´a2n

λpα, r, cq

˙

.

Thus, for apnq “ logpnq
?
n

,

lim
nÑ8

P
ˆ

|e´C
˚
1,nφnpzq ´ z| ą

logpnq
?
n

˙

“ 0.

�

2.5. Uniform convergence in the exterior disk for 0 ă α ă 2

In the previous section we showed that the rescaled functions e´C
˚
1,nφnpzq converge point-

wise in probability to the identity. Now we need to show that the maps converge locally

uniformly. Thus, our aim of this section will be to prove the following theorem.

Theorem 2.5.1. For 0 ă α ă 2, let the map φn be defined as above with c˚n as defined in

(2.2) and θn i.i.d, uniform on r0, 2πs. Then for any r ą 1 we have the following inequality

P

˜

sup
|z|ěr

|e´
řn
i“1 c

˚
i φnpzq ´ z| ą

logpnq
?
n

¸

ă λ1pα, c, rqe
´

logpnq2

λ2pα,c,rq

where λ1pα, c, rq, λ2pα, c, rq ą 0 are constants. Hence, by Borel-Cantelli,

P

˜

sup
|z|ěr

ˇ

ˇ

ˇ
e´

řn
i“1 c

˚
i φnpzq ´ z

ˇ

ˇ

ˇ
“ o

ˆ

log n
?
n

˙

as nÑ8

¸

“ 1.

The proof of the theorem will be constructed as follows. We will show that for a finite

number of equally spaced points along the circle |z| “ r the inequality holds. Then we will

show that between these points the probability that the difference between the maps when

evaluated at these points is sufficiently small. First define

Mnpz, wq :“Mnpzq ´Mnpwq

with Mnpzq defined in equation (2.7). Then we must choose the spacing between the finite

set of points. With the choice of α and c fixed we choose points, on a radius |z| “ r, to be
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equally spaced at angles 2π
Lr,n

where

Lr,n “ γpα, c, rqn
3
2

and γpα, c, rq is a constant,

(2.9) γpα, c, rq “ 4πr
1

c
pec ` 1qp1` αcqp1` αeαcq

ˆ

log

ˆ

r

r ´ 1

˙

` 1

˙

plogp1` αcq ` 1q .

The reason for this choice of spacing will become clear in the proof of the lemmas that

follow. We start by proving that we can find a finite number of equally spaced points, with

the above spacing along the circle |z| “ r, such that the inequality in Theorem 2.5.1 holds.

Lemma 2.5.2. Let tziu
Lr,n
i“1 be defined as finite set of points on the boundary of the unit

circle of radius |z| “ r with equally spaced at angles 2π
Lr,n

and Lr,n defined as above. Then,

for sufficiently large n, we have the following inequality

P
ˆ

Di : |Mnpziq| ą
log n

2
?
n

˙

ď λ1pα, c, rqe
´
plogpnqq2

λ2pα,c,rq

where λ1pα, c, rq, λ2pα, c, rq ą 0 are constants.

Proof. We have shown using Theorem 2.4.11 that for 0 ă α ă 2 and for any 1 ď i ď

Lr,n

P
ˆ

|Mnpziq| ą
log n

2
?
n

˙

ď4e
´

logpnq2

λpα,c,rq

for some constant λpα, c, rq ą 0. Therefore,

P
ˆ

Di : |Mnpziq| ą
log n

2
?
n

˙

ă4

Lr,n
ÿ

k“1

e
´

logpnq2

λpα,c,rq .

The terms in the sum have no dependence on k and as such we can find an upper bound,

P
ˆ

Di : |Mnpziq| ą
log n

4
?
n

˙

ď 4Lr,ne
´

logpnq2

λpα,c,rq

“ 4γpα, c, rqn
3
2 e
´

logpnq2

λpα,c,rq
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where γpα, c, rq ą 0 is the constant defined in equation (2.9). Let λ1pα, c, rq “ 4γpα, c, rq,

then

P
ˆ

Di : |Mnpziq| ą
log n

2
?
n

˙

ď λ1pα, c, rqe
3
2

logn´ logpnq2

λpα,c,rq .

For sufficiently large n ą e3λpα,c,rq,
3
2 log n
logpnq2

λpα,c,rq

ď
1

2
.

Therefore, let λ2pα, c, rq “ 2λpα, c, rq and then for n sufficiently large,

P
ˆ

Di : |Mnpziq| ą
log n

2
?
n

˙

ď λ1pα, c, rqe
´
plogpnqq2

λ2pα,c,rq

with λ1pα, c, rq, λ2pα, c, rq ą 0. �

We now prove that for points w P C in between the points in the set tziu
Lr,n
i“1 the difference

Mnpzi, wq is negligible.

Lemma 2.5.3. For |z| “ |w| “ r with argpzq “ θz, argpwq “ θw and |θz ´ θw| ă 2π
Lr,n

and

Lr,n defined as above we have the following bound;

|Mnpz, wq| ď
logpnq

2
?
n

and hence,

P
ˆ

Dw, z P C : |z| “ |w| “ r, | argpzq ´ argpwq| ă
2π

Lr,n
, |Mnpz, wq| ą

logpnq

2
?
n

˙

“ 0.

Proof. We want to find a bound on |Mnpz, wq| so we first find a bound on |Xk,npz, wq| “

|Xk,npzq ´Xk,npwq|.

|Xk,npz, wq|

“ e´
řn
k“1 c

˚
i

ˇ

ˇ

ˇ

´

φk

´

eC
˚
k`1,nz

¯

´ φk´1

´

eC
˚
k,nz

¯¯

´

´

φk

´

eC
˚
k`1,nw

¯

´ φk´1

´

eC
˚
k,nw

¯¯ˇ

ˇ

ˇ
.

Let 0 ď s, t ď 1 and then

τk,npsq “e
C˚k`1,n |z|eipθzs`θwp1´sqq

ρk,nptq “e
C˚k,n |z|eipθzt`θwp1´tqq.
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Thus,

|Xk,npz, wq ď |φkpτk,np1qq ´ φkpτk,np0qq| ` |φk´1pρk,np1qq ´ φk´1pρk,np0qq|.

If we consider the τ terms in the upper bound, we have

|φkpτk,np1qq ´ φkpτk,np0qq| ď

ż 1

0

ˇ

ˇ

ˇ
φ
1

kpτk,npsqq
ˇ

ˇ

ˇ
| 9τk,npsq|ds.

Using Theorem 2.4.5,

|φkpτk,np1qq ´ φkpτk,np0qq| ď eC
˚
1,k sup

0ďsď1

|τk,npsq|

|τk,npsq| ´ 1
eC

˚
k`1,n |θz ´ θw||z|.

Therefore,

|φkpτk,np1qq ´ φkpτk,np0qq| ď eC
˚
1,n |z|2|θz ´ θw|

eC
˚
k`1,n

eC
˚
k`1,n |z| ´ 1

.

By a similar argument

|φk´1pρk,np1qq ´ φk´1pρk,np0qq| ď eC
˚
1,n |z|2|θz ´ θw|

eceC
˚
k`1,n

eC
˚
k`1,n |z| ´ 1

.

Therefore using the fact |z| “ r,

|Xk,npz, wq| ď r2pec ` 1q|θz ´ θw|
eC

˚
k`1,n

eC
˚
k`1,nr ´ 1

.

We can therefore use the approximation eC
˚
k,n «

´

1`αcn
1`αcpk´1q

¯
1
α and take the sum to write

|Mnpz, wq| ď r2pec ` 1q|θz ´ θw|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

¨

˚

˚

˝

´

1`αcn
1`αck

¯

1`εk,n
α

r
´

1`αcn
1`αck

¯

1`εk,n
α

´ 1

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

where εk,n is the same error term from Section 2.2. We can use the bound from Corollary

2.3.2 to remove the εk,n term,

ˆ

1` αcn

1` αck

˙
1
α

ă

ˆ

1` αcn

1` αck

˙

1`εk,n
α

ď p1` αceαcq

ˆ

1` αcn

1` αck

˙
1
α
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Then x “
´

1`αcn
1`αck

¯
1
α and integrating between x “

´

1`αcn
1`αc

¯
1
α and x “ 1 gives

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

¨

˚

˚

˝

´

1`αcn
1`αck

¯

1`εk,n
α

r
´

1`αcn
1`αck

¯

1`εk,n
α

´ 1

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż p 1`αcn1`αc q
1
α

1

1` αck

rx´ 1
dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

c
p1` αcnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż p 1`αcn1`αc q
1
α

1

1

rx´ 1
dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Thus,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

¨

˚

˚

˝

´

1`αcn
1`αck

¯

1`εk,n
α

r
´

1`αcn
1`αck

¯

1`εk,n
α

´ 1

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

cr
p1` αcnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

log

¨

˚

˝

r ´ 1

r
´

1`αcn
1`αc

¯
1
α
´ 1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

cr
p1` αcnq log

˜

r p1` αcnq
1
α

r ´ 1

¸

.

Therefore,

|Mnpz, wq| ď
γpα, c, rq

4π
|θz ´ θw|n log n

where γpα, c, rq is the constant defined in equation (2.9). Then we use the fact that |θz´θw| “
2π
Lr,n

and write

|Mnpz, wq| ď
log n

2
?
n
.

So,

P
ˆ

Dw, z P C : |z| “ |w| “ r, | argpzq ´ argpwq| ă
2π

Lr,n
, |Mnpz, wq| ą

logpnq

2
?
n

˙

“ 0.

�

So we can combine these two lemmas to give our proof of Theorem 2.5.1.
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Proof of Theorem 2.5.1. As in the previous two lemmas we separate the circle into

points 2π
Lr,n

apart. We can then form the following bound;

P

˜

sup
|z|“r

|e´C
˚
1,nφnpzq ´ z| ą

log n
?
n

¸

ď P
ˆ

Di : |Mnpziq| ą
1

2

log n
?
n

˙

` P
ˆ

Dw, z P C : |θz ´ θw| ă
2π

Lr,n
, Mnpz, wq ą

1

2

log n
?
n

˙

.

Using Lemmas 2.5.2 and 2.5.3 we see,

P

˜

sup
|z|“r

|e´C
˚
1,nφnpzq ´ z| ą

log n
?
n

¸

ď λ1pα, c, rqe
´
plogpnqq2

λ2pα,c,rq

where λ1pα, c, rq, λ2pα, c, rq ą 0 are constants. Then using the maximum modulus principle

we see that that the maximum occurs on the boundary and so,

P

˜

sup
|z|ěr

|e´C
˚
1,nφnpzq ´ z| ą

log n
?
n

¸

ď λ1pα, c, rqe
´
plogpnqq2

λ2pα,c,rq .

It is clear to see the upper bound is summable and hence by a Borel-Cantelli argument,

P

˜

lim sup
nÑ8

sup
|z|ěr

|e´C
˚
1,nφnpzq ´ z| ą

log n
?
n

¸

“ 0.

�

2.6. Fluctuations for 0 ă α ă 2

2.6.1. Discarding the lower order terms. In the previous sections we have shown

that the rescaled functions e´C
˚
1,nφnpzq converge locally uniformly to the identity with prob-

ability one. It immediately follows that the image domain almost surely converges to ∆ in

the Carathéodory topology. Now we would like to see how much we fluctuate from the disk.

To do so we aim to produce a central limit theorem that will tell us what the distribution

of the fluctuations is. Up until this point we have used

Xk,npzq “ e´C
˚
1,n

´

φk

´

eC
˚
k`1,nz

¯

´ φk´1

´

eC
˚
k,nz

¯¯

.
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We aim to prove that the fluctuations of Mnpzq “
ˇ

ˇ

ˇ
e´C

˚
1,nφnpzq ´ z

ˇ

ˇ

ˇ
are of order 1?

n
. First,

we want to establish the leading order behaviour of the increments Xk,npzq in order to

simplify the calculation of the fluctuations. Therefore, we introduce the quantity,

Xk,npzq “
2c˚k
?
nz

e´iθkeC
˚
k`1,nz ´ 1

.

Using similar methods as in the proof of Lemma 2.4.1 it is simple to show that for all

0 ă k ď n,

EpXk,npzq|Fk´1q “ 0.

The following lemma shows that Xk,npzq is a good approximation to
?
nXk,npzq.

Lemma 2.6.1. Let Yk,npzq “
?
nXk,npzq ´ Xk,npzq. Then if 0 ă α ă 2, for any ε ą 0

and r ą 1,

P

˜

lim sup
nÑ8

sup
|z|ąr

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Yk,npzq

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

“ 0

Proof. Fix some r ą 1. Then in Theorem 2.5.1 we showed that,

P

˜

lim sup
nÑ8

#

sup
|z|ěr

|e´C
˚
1,nφnpzq ´ z| ą

log n
?
n

+¸

“ 0.

Denote the event,

ωprq “

#

lim inf
nÑ8

#

sup
|z|ěr

|e´C
˚
1,nφnpzq ´ z| ď

log n
?
n

++

.

Now choose r1 “ r`1
2 . We have shown that P pωpr1qq “ 1. Therefore,

P

˜

lim sup
nÑ8

sup
|z|ąr

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Yk,npzq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε

¸

“ P

˜

lim sup
nÑ8

sup
|z|ąr

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Yk,npzq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε

ˇ

ˇ

ˇ

ˇ

ˇ

ωpr1q

¸

.

For |z| ą r1 on the event ωpr1q there exists an integer k0 ě 2 such that if k ě k0 then,

(2.10) |e´C
˚
1,k´1φk´1pzq ´ z| ď

2 logpk ´ 1q
?
k ´ 1

.

Thus, we split into two cases. First consider the case where k ď k0. Then by Lemma 2.4.6

for 0 ă α ď 1,

sup
kďn

|
?
nXk,npzq| ă λpα, c, rqn´

1
2
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and for α ą 1,

sup
kďn

|Xk,npzq| ă λpα, c, rqn
1
2
´ 1
α

for some constant λpα, c, rq ą 0. Similarly, using the definition of Xk,npzq and bounds from

Lemma 2.3.1 and Corollary 2.3.2, for 0 ă α ď 2

|Xk,npzq| ď λpα, c, rqk
1
α
´1n

1
2
´ 1
α

for some constant λpα, c, rq ą 0. It follows that for k ď k0, if 0 ă α ď 1,

sup
kďn

|Yk,npzq| ă λpα, c, rqn´
1
2

and if 1 ă α ă 2,

sup
kďn

|Yk,npzq| ă λpα, c, rqn
1
2
´ 1
α

for some constant λpα, c, rq ą 0. Thus, if 0 ă α ă 2, for any ε ą 0 and r ą 1,

(2.11) P

˜

lim sup
nÑ8

sup
|z|ąr

ˇ

ˇ

ˇ

ˇ

ˇ

k0
ÿ

k“1

Yk,npzq

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

“ 0

Now we consider when k ě k0 and calculate a bound on |Yk,npzq| in this case. Let

rXk,npzq “
?
n
´

e´C
˚
k,nfkpe

C˚k`1,nzq ´ z
¯

“
?
ne´C

˚
k,n

ż 1

0
9ηk,nps, zqds

where ηk,nps, zq is defined as in Section 2.3. Note that in the case where k “ 1,

rX1,npzq “ X1,npzq. Then,

?
nXk,npzq ´ rXk,npzq “

?
ne´C

˚
1,n

ˆ
ż 1

0
9ηk,nps, zq

´

φ1k´1pηk,nps, zqq ´ e
C˚1,k´1

¯

ds

˙

.

Let gpzq “ e´C
˚
1,k´1φk´1pzq ´ z. For fixed z, the function gpζq is holomorphic on the closed

disc of radius R :“ |z| ´ r1 with centre z. So by Cauchy’s theorem for 0 ă α ă 2,

g1pzq “
1

2πi

ż

CR

gpζq

pζ ´ zq2
dζ

where CR is the circle of radius R centred at z. Therefore, using the bound from equation

(2.10),

|g1pzq| ď
2 logpk ´ 1q

p|z| ´ r1q
?
k ´ 1

.
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So on ωpr1q,

|
?
nXk,npzq ´ rXk,npzq|

ď 2
?
ne´C

˚
1,n

˜

ż 1

0
9ηk,nps, zq

˜

1

p|ηk,nps, zq| ´ r1q

eC
˚
1,k´1 logpk ´ 1q
?
k ´ 1

¸

ds

¸

.

Then since, inf0ďkďn |ηk,nps, zq| ě |z|,

|
?
nXk,npzq ´ rXk,npzq| ď

2
?
n

r ´ r1
e´C

˚
k,n

logpk ´ 1q
?
k ´ 1

ż 1

0
| 9ηk,nps, zq|ds

ď λpα, c, rq
?
ne´C

˚
k,n

logpk ´ 1q
?
k ´ 1

c˚ke
C˚k,n

eC
˚
k`1,nr ´ 1

ď λpα, c, rq

?
n

n
1
α

logpkqk
1
α

k
3
2

,

where the second inequality follows from Lemma 2.4.4. Now consider,

| rXk,npzq ´ Xk,npzq|

ď
?
n

ˇ

ˇ

ˇ

ˇ

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

˙ˆ

e´C
˚
k,n

ż 1

0
ηk,nps, zqds´ z

˙ˇ

ˇ

ˇ

ˇ

`
?
n

ˇ

ˇ

ˇ

ˇ

ˆ

e´C
˚
k,n

ż 1

0
ηk,nps, zqds

˙

δc˚k

´

e´iθkeC
˚
k`1,nz

¯

ˇ

ˇ

ˇ

ˇ

ď
?
n

ˆˆ

2c˚k

eC
˚
k`1,nr ´ 1

˙ˆ

r

ż 1

0

ˇ

ˇ

ˇ
exk,npsq ´ 1

ˇ

ˇ

ˇ
ds

˙

` λpα, c, rq
ˇ

ˇ

ˇ
δc˚k

´

e´iθkeC
˚
k`1,nz

¯
ˇ

ˇ

ˇ

˙

where λpα, c, rq is some positive constant that we will vary and

xk,npsq “ s

ˆ

2c˚k

e´iθkeC
˚
k`1,nz ´ 1

` δc˚k

´

e´iθkeC
˚
k`1,nz

¯

˙

.

Furthermore,

|exk,npsq ´ 1| ď λpα, c, rq|xk,npsq| ď λpα, c, rqk
1
α
´1n´

1
α

where the second inequality follows from Lemmas 2.3.1 and 2.4.2 and Corollary 2.3.2. Hence

by using the bound on δc from Lemma 2.4.2 we see that,

| rXk,npzq ´ Xk,npzq| ď λpα, c, r1q
?
n

ˆ

´

k
1
α
´1n´

1
α

¯2
` k

1
α
´ 3

2n´
1
α

˙

.
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Since k
1
α ď n

1
α we have

| rXk,npzq ´ Xk,npzq| ď λpα, c, rqk
1
α
´ 3

2n
1
2
´ 1
α .

Therefore,

|Yk,npzq| ď λpα, c, rq logpnqn
1
2
´ 1
αk

1
α
´ 3

2 .

Then we split into cases, if 0 ă α ď 2
3 ,

sup
kďn

|Yk,npzq| ď λpα, c, rq
logpnq

n
Ñ 0

as nÑ8. However, if 2
3 ď α ă 2 then

sup
kďn

|Yk,npzq| ď λpα, c, rq logpnqn
1
2
´ 1
α Ñ 0

as nÑ8. Moreover,

Ep|Yk,npzq|2 |Fk´1q ď λpα, c, rq
n

n
2
α

logpnq2k
2
α

k3
.

Thus if 0 ă α ď 1,

n
ÿ

k“k0

Ep|Yk,npzq|2 |Fk´1q ď λpα, c, rq
logpnq3

n
Ñ 0

as nÑ8. If 1 ă α ă 2,

n
ÿ

k“k0

Ep|Yk,npzq|2 |Fk´1q ď λpα, c, rq
logpnq2n

n
2
α

Ñ 0

as n Ñ 8. Therefore, since Yk,npzq is also a martingale difference array we can use these

bounds to apply the same methods to the difference Yk,npzq as we did to Xk,npzq in Sections

2.4 and 2.5 along with a Borel-Cantelli argument to show that

P

˜

lim sup
nÑ8

sup
|z|ąr

n
ÿ

k“k0

|Yk,npzq| ą ε

¸

“ 0.



2.6. FLUCTUATIONS FOR 0 ă α ă 2 66

Therefore, combining this with equation (2.11) gives,

P

˜

lim sup
nÑ8

sup
|z|ąr

n
ÿ

k“0

|Yk,npzq| ą ε

¸

“ 0.

�

2.6.2. Laurent coefficients. In the previous section we showed that we could discard

the lower order terms of Xk,npzq. We now wish to calculate the Laurent coefficients of the

remaining higher order terms Xk,npzq and hence evaluate the fluctuations of the cluster. We

first notice that

EpXk,npzq|Fk´1q “ 0

and therefore Xk,npzq is also a martingale difference array. We aim to use the following

result of Mcleish [McL74] to produce a central limit theorem. Whilst Mcleish’s result is

more powerful than we need in this paper, it provides a framework to use similar techniques

even when we do not have a nice decomposition.

Theorem 2.6.2 (McLeish). Let pDk,nq1ďkďn be a martingale difference array with respect

to the filtration Fk,n “ σpD1,n, D2,n, ..., Dk,nq. Let Mn “
řn
i“1Di,n and assume that;

(I) for all ρ ą 0,
řn
k“1D

2
k,n 1p|Dk,n| ą ρq Ñ 0 in probability as nÑ8.

(II)
řn
k“1D

2
k,n Ñ s2 in probability as nÑ8 for some s2 ą 0.

Then Mn converges in distribution to N p0, s2q.

Note that condition (I) in Theorem 2.6.2 combines two conditions in [McL74]. Theorem

2.6.2 only applies to real valued random variables and as such we will split Xk,npzq into real

and imaginary parts. We start by calculating the Laurent coefficients.

Xk,npzq “
2c˚k
?
n

e´iθkeC
˚
k`1,n

¨

˝

1

1´ 1

e´iθke
C˚
k`1,nz

˛

‚.

We can choose |z| ą r such that
ˇ

ˇ

ˇ

ˇ

1

e´iθke
C˚
k`1,nz

ˇ

ˇ

ˇ

ˇ

ă 1, then

Xk,npzq “
8
ÿ

m“0

2c˚k
?
n

pe´iθkeC
˚
k`1,nqm`1

1

zm
.
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So the mth coefficient is dependent on n and k and we can rewrite Xk,n as

Xk,npzq “
8
ÿ

m“0

ak,npmq
1

zm

where ak,npmq “
2c˚k

?
n

pe
C˚
k`1,n qm`1

eiθkpm`1q. So we can calculate real and imaginary parts of these

coefficients,

<pak,npmqq “
2c˚k
?
n

peC
˚
k`1,nqm`1

cospθkpm` 1qq,

=pak,npmqq “
2c˚k
?
n

peC
˚
k`1,nqm`1

sinpθkpm` 1qq.

In order to use Theorem 2.6.2 we need to calculate the second moments of the coefficients.

We will just consider the case of the real coefficients here but the imaginary coefficients give

the same results. Thus, we calculate,

Epp<pak,npmqqq2|Fk´1q “
4pc˚kq

2n

peC
˚
k`1,nq2pm`1q

1

2π

ż 2π

0
cos2pθpm` 1qqdθ

“
2pc˚kq

2n

peC
˚
k`1,nq2pm`1q

.

It is clear to see here why we have the same expected value of the imaginary coefficients. So

now we can take the sum over n,

lim
nÑ8

n
ÿ

k“1

Epp<pak,npmqqq2|Fk´1q “ lim
nÑ8

¨

˚

˝

2n
n
ÿ

k“1

pc˚kq
2

´

eC
˚
k`1,n

¯2pm`1q

˛

‹

‚

.

Recall that c˚k “
c

1`αcpk´1q and we have shown we can approximate the term in the denomi-

nator in the following way;

eC
˚
k`1,n “

ˆ

1` αcn

1` αck

˙

1`εk`1,n
α

where εk`1,n is the error defined in Lemma 2.3.1. Therefore, we can write

lim
nÑ8

n
ÿ

k“1

Epp<pak,npmqqq2|Fk´1q “ lim
nÑ8

¨

˚

˝

2nc2
n
ÿ

k“1

p1` αckq

ˆ

p1`εk`1,nqp2pm`1qq

α

˙

´2

p1` αcnq

ˆ

p1`εk`1,nqp2pm`1qq

α

˙

˛

‹

‚
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We know εk`1,n Ñ 0 so our aim is to show that this term in the sum is insignificant. We

define the function h : RÑ R as the term inside the sum;

hpxq :“
p1` αckq

´

p1`xqp2pm`1qq
α

¯

´2

p1` αcnq

´

p1`xqp2pm`1qq
α

¯ .

Our aim is to show,
ˇ

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

2nc2
n
ÿ

k“1

phpεk`1,nq ´ hp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

If we can show this then we can just ignore the εk,n and find the limit,

lim
nÑ8

2nc2
n
ÿ

k“1

hp0q

which we will show converges to a real number. We provide this in the form of the following

lemma.

Lemma 2.6.3. With h : RÑ R defined as above we have
ˇ

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

2nc2
n
ÿ

k“1

phpεk`1,nq ´ hp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

Proof. Consider

|hpεk`1,nq ´ hp0q| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p1` αckq

ˆ

p1`εk`1,nqp2pm`1qq

α

˙

´2

p1` αcnq

ˆ

p1`εk`1,nqp2pm`1qq

α

˙ ´
p1` αckq

´

p2pm`1qq
α

¯

´2

p1` αcnq

´

p2pm`1qq
α

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then let yk,n “
´

1`αck
1`αcn

¯
2m`2
α , thus we can write

|hpεk`1,nq ´ hp0q| “
1

p1` αckq2
|yk,n|

ˇ

ˇ

ˇ
y
εk`1,n

k,n ´ 1
ˇ

ˇ

ˇ
.

Furthermore, since logpyk,nq ă 1,

ˇ

ˇ

ˇ
y
εk`1,n

k,n ´ 1
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
eεk`1,n log yk,n ´ 1

ˇ

ˇ

ˇ
ď |εk`1,n|| log yk,n|.
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So using the first bound on εk,n from Lemma 2.3.1 we have,

|hpεk`1,nq ´ hp0q| ď
1

p1` αckq2

ˆ

1` αck

1` αcn

˙
2m`2
α

α
`

αc2pn´ kq
˘

ˇ

ˇ

ˇ

ˇ

log

ˆ

´

1`αck
1`αcn

¯
2m`2
α

˙ˇ

ˇ

ˇ

ˇ

p1` αckqp1` αcnq log
´

1`αcn
1`αck

¯

ď p2m` 2qαc2n
p1` αckq

2m`2
α

´3

p1` αcnq
2m`2
α

`1
.

Now we take the sum over k,

2nc2
n
ÿ

k“1

|hpεk`1,nq ´ hp0q| ď 4n2pm` 1qαc4 1

p1` αcnq
2m`2
α

`1

n
ÿ

k“1

p1` αckq
2m`2
α

´3.

Which we can approximate with a Riemann integral;

2nc2
n
ÿ

k“1

|hpεk`1,nq ´ hp0q| ď 4n2pm` 1qαc4 1

p1` αcnq
2m`2
α

`1

ż n

0
p1` αcxq

2m`2
α

´3dx.

Now we need to consider cases, firstly in the case where we have 2m`2
α ´ 3 ‰ ´1 and so

ˇ

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

2nc2
n
ÿ

k“1

phpεk`1,nq ´ hp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
nÑ8

4n2pm` 1qαc4 1

p1` αcnq
2m`2
α

`1

«

1

αc
`

2m`2
α ´ 2

˘p1` αcxq
2m`2
α

´2

ffn

0

“ lim
nÑ8

˜

2pm` 1qαc3

m` 1´ α

˜

n2

p1` αcnq3
´

n2

p1` αcnq
2m`2
α

`1

¸¸

.

Hence, since 0 ă α ă 2,

ˇ

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

2nc2
n
ÿ

k“1

phpεk`1,nq ´ hp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.
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Now consider the case where 2m`2
α ´ 3 “ ´1 and so

ˇ

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

2nc2
n
ÿ

k“1

phpεk`1,nq ´ hp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
nÑ8

4n2pm` 1qαc4 1

p1` αcnq
2m`2
α

`1

„

1

αc
logp1` αcxq

n

0

“ lim
nÑ8

4n2c3 logp1` αcnq

p1` αcnq3

“ 0.

Therefore in all cases we have
ˇ

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

2nc2
n
ÿ

k“1

phpεk`1,nq ´ hp0qq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

�

Hence by using the above lemma we can ignore the εk`1,n term in our summation. We

now want to check the conditions of Theorem 2.6.2. We introduce the notation,

Anm “
n
ÿ

k“1

<pak,npmqq, Bn
m “

n
ÿ

k“1

=pak,npmqq.

We aim to apply Theorem 2.6.2 to show convergence of the finite dimensional distributions

of pAni , B
n
j qi,jě0 to some multivariate Gaussian distribution. The Cramér-Wold Theorem

(see for example [Dur19]) tells us that it is sufficient to show convergence in distribution of

all finite linear combinations of Ani , B
n
j . Therefore, let

Xk,n “

p
ÿ

i“1

µi<pak,npiqq `
q
ÿ

j“1

νj=pak,npjqq

for some 1 ď p, q ă 8 and sequences of scalars pµiq1ďiďp, pνjq1ďjďq. It follows that Xk,n

is also a martingale difference array. Therefore, we will apply Theorem 2.6.2 to Xk,n to

show that we have convergence in distribution of finite linear combinations and hence joint

convergence in distribution to a multivariate distribution. We start by checking condition

(II) of Theorem 2.6.2 holds.
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Lemma 2.6.4. Assume m ě 0 and 0 ă α ă 2. Then

lim
nÑ8

n
ÿ

k“1

Epp<pak,npmqqq2|Fk´1q “ lim
nÑ8

n
ÿ

k“1

Epp=pak,npmqqq2|Fk´1q “
2

αp2m` 2´ αq
.

Furthermore, for any m1,m2 ě 0,

Covp<pak,npm1q,=pak,npm2qqq “ 0

and if m1 ‰ m2,

Covp<pak,npm1q,<pak,npm2qqq “ Covp=pak,npm1q,=pak,npm2qqq “ 0.

Proof. We have shown above that, in the case of the real coefficients, calculating

limnÑ8
řn
k“1 Epp<pak,npmqqq2|Fk´1q reduces to calculating the expression

lim
nÑ8

¨

˝2nc2
n
ÿ

k“1

p1` αckq

´

p2pm`1qq
α

¯

´2

p1` αcnq

´

p2pm`1qq
α

¯

˛

‚.

The imaginary coefficients follow by the same argument. We can approximate this with a

Riemann integral

2nc2
n
ÿ

k“1

p1` αckq

´

p2pm`1qq
α

¯

´2

p1` αcnq

´

p2pm`1qq
α

¯ “
2nc2

p1` αcnq

´

p2pm`1qq
α

¯

ż n

0
p1` αcxq

´

p2pm`1qq
α

¯

´2
dx` En

where En is the error left by the Riemann approximation with |En| ă λpα,cq
n if 0 ă α ď 1 and

|En| ă λpα, cqn1´ 2pm`1q
α if 1 ă α ă 2 for some constant λpα, cq ą 0. Since for all m ě 0 and

0 ă α ă 2, p2pm`1qq
α ´ 2 ą ´1, we have,

2nc2
n
ÿ

k“1

p1` αckq

´

p2pm`1qq
α

¯

´2

p1` αcnq

´

p2pm`1qq
α

¯

“
2nc2

p1` αcnq

´

p2pm`1qq
α

¯

„

1

2cpm` 1q ´ αc
p1` αcxq

´

p2pm`1qq
α

¯

´1
n

0

` En

“
2c2

2cpm` 1q ´ αc

»

–

n

p1` αcnq
´

n

p1` αcnq

´

p2pm`1qq
α

¯

fi

fl` En.
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We know for all m ě 0 and 0 ă α ă 2, p2pm`1qq
α ą 1 and so when we take the limit as nÑ8

we have,

lim
nÑ8

¨

˝2nc2
n
ÿ

k“1

p1` αckq

´

p2pm`1qq
α

¯

´2

p1` αcnq

´

p2pm`1qq
α

¯

˛

‚“
2

αp2pm` 1q ´ αq
.

Therefore,

lim
nÑ8

n
ÿ

k“1

Epp<pak,npmqqq2|Fk´1q “ lim
nÑ8

n
ÿ

k“1

Epp=pak,npmqqq2|Fk´1q “
2

αp2m` 2´ αq
.

Furthermore, calculating the covariance pairwise of each combination of the random variables

we see that for any m1,m2

Covp<pak,npm1qq,=pak,npm2qqq “ Ep<pak,npm1qq=pak,npm2qqq

“
4npc˚kq

2

2πpeC
˚
k`1,nqm1`m2`2

ż 2π

0
cospθpm1 ` 1qq sinpθpm2 ` 1qqdθ

“ 0.

Moreover for m1 ‰ m2,

Covp<pak,npm1qq,<pak,npm2qqq “ Ep<pak,npm1qq<pak,npm2qqq

“
4npc˚kq

2

2πpeC
˚
k`1,nqm1`m2`2

ż 2π

0
cospθpm1 ` 1qq cospθpm2 ` 1qqdθ

“ 0.

For m1 ‰ m2,

Covp=pak,npm1qq,=pak,npm2qqq “ Ep=pak,npm1qq=pak,npm2qqq

“
4npc˚kq

2

2πpeC
˚
k`1,nqm1`m2`2

ż 2π

0
sinpθpm1 ` 1qq sinpθpm2 ` 1qqdθ

“ 0.

�

So we have shown that sum of the second moments of the real and imaginary parts

converge. Note that it is clear to see that letting α “ 2 will not provide a finite limit using
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the above lemma. To apply Theorem 2.6.2 we need to show that
řn
k“1pXk,nq

2 also converges.

We prove this with the following lemma, using a similar method to that of Silvestri in [Sil17].

Lemma 2.6.5. Let 0 ă α ă 2 and assume for each m ě 0, the following limit holds in

probability for some s2 ą 0,

lim
nÑ8

n
ÿ

k“1

Epp<pak,npmqqq2|Fk´1q “ lim
nÑ8

n
ÿ

k“1

Epp=pak,npmqqq2|Fk´1q “ s2.

Then for each m ě 0, in probability,

lim
nÑ8

n
ÿ

k“1

p<pak,npmqqq2 “ lim
nÑ8

n
ÿ

k“1

p=pak,npmqqq2 “ s2.

Therefore, if the following limit holds in probability for some s2 ą 0,

lim
nÑ8

n
ÿ

k“1

EppXk,nq2|Fk´1q “ s2

then in probability,

lim
nÑ8

n
ÿ

k“1

pXk,nq
2 “ s2.

Proof. First we note that

Ykpzq “ p<pak,npmqqq2 ´ Epp<pak,npmqqq2|Fk´1q

is a martingale difference array with respect to the filtration pFk,nqkďn.

We need to show Pp|
řn
k“1 Ykpzq| ą ηq Ñ 0 as n Ñ 8. So we first notice that by Markov’s

inequality,

P

˜

|

n
ÿ

k“1

Yk| ą η

¸

ď
1

η2
E

˜

|

n
ÿ

k“1

Yk|2
¸

“
1

η2

n
ÿ

k“1

EpY2
kq.

and so finally by using the property that for a random variable X, EppX´EpXqq2q ď EpX2q

we see

P

˜

|

n
ÿ

k“1

Yk| ą η

¸

ď
1

η2

n
ÿ

k“1

Ep<pak,npmqqq4q.

We have shown,

<pak,npmqq “
2c˚k
?
n

peC
˚
k`1,nqm`1

cospθkpm` 1qq.
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So using the property that c˚k “
c

1`αcpk´1q and e´C
˚
k`1,n ď

´

1`αck
1`αcn

¯1{α
we reach the upper

bound,

(2.12) <pak,npmqq ď 2cp1` αcq
?
n
p1` αckq

m`1
α
´1

p1` αcnq
m`1
α

.

Thus,

<pak,npmqq4 ď p2cp1` αcqq4
n2p1` αckq

4pm`1q
α

´4

p1` αcnq
4pm`1q

α

.

Then we consider cases. If 0 ă α ď 4
3pm`1q then when we sum over k we reach the following

bound,
1

η2

˜

n
ÿ

k“1

E
`

p<pak,npmqqq4
˘

¸

ď λpα, cq
1

n

where λpα, cq is some constant. This converges to zero as nÑ8. Moreover, if
4
3pm` 1q ă α ă 2 then when we sum over k we reach the following bound,

1

η2

˜

n
ÿ

k“1

E
`

p<pak,npmqqq4
˘

¸

ď λpα, cq
n

n
4pm`1q

α

where λpα, cq is some constant. This converges to zero as n Ñ 8. Therefore in both cases

we have convergence to zero. The proof of the imaginary case holds by the same argument.

Now we consider limnÑ8
řn
k“1 EppXk,nq2|Fk´1q. By the same argument as above,

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

`

pXk,nq
2 ´ EppXk,nq2|Fk´1q

˘

ˇ

ˇ

ˇ

ˇ

ˇ

ą η

¸

ď
1

η2

n
ÿ

k“1

EppXk,nq4q.

Since the function fpxq “ x4, where f : RÑ R, is convex, by Jensen’s inequality,

pXk,nq
4 ď

řp
i“1 |µi|p<pak,npiqq4 `

řq
j“1 |νj |p=pak,npjqq4

řp
i“1 |µi| `

řq
j“1 |νj |

.

Therefore,

n
ÿ

k“1

EppXk,nq4q

ď

n
ÿ

k“1

˜

řp
i“1 |µi|E

`

p<pak,npiqq4
˘

`
řq
j“1 |νj |E

`

p=pak,npjqq4
˘

p inf1ďiďp |µi| ` q inf1ďjďq |νj |

¸

ď p sup1ďiďp

`

|µi|
řn
k“1 E

`

p<pak,npiqq4
˘˘

` q sup1ďjďq

`

|νj |
řn
k“1 E

`

p<pak,npjqq4
˘˘

p inf1ďiďp |µi| ` q inf1ďjďq |νj |

Ñ 0
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as nÑ8 by above. �

Therefore, we have shown, in the form of the following corollary, that the condition (II)

of Theorem 2.6.2 is satisfied.

Corollary 2.6.6. For ak,npmq defined as above, then for each m ě 0 the following limit

holds in probability,

lim
nÑ8

n
ÿ

k“1

<pak,npmqqq2 “ lim
nÑ8

n
ÿ

k“1

=pak,npmqqq2 “
2

αp2m` 2´ αq
.

Therefore, with Xk,n defined as above,

lim
nÑ8

n
ÿ

k“1

pXk,nq
2 “

p
ÿ

i“1

ˆ

µ2
i

2

αp2i` 2´ αq

˙

`

q
ÿ

j“1

ˆ

ν2
j

2

αp2j ` 2´ αq

˙

So now we just need show condition (I) of Theorem 2.6.2 holds in order to apply it. We

will again use a similar method to Silvestri [Sil17].

Lemma 2.6.7. Let 0 ă α ă 2 and let Xk,n be defined as above. Let ρ ą 0 then the

following limit holds in probability,

n
ÿ

k“1

pXk,nq
2
1p|Xk,n| ą ρq Ñ 0

as nÑ8.

Proof. We use a similar method as [Sil17]. Let δ ą 0 then

P

˜

n
ÿ

k“1

pXk,nq
2
1p|Xk,n| ą ρq ą δ

¸

ď P
ˆ

max
1ďkďn

|Xk,n| ą ρ

˙

ď
1

ρ
E
ˆ

max
1ďkďn

|Xk,n|

˙

ď
1

ρ

˜

p
ÿ

i“1

µiE
ˆ

max
1ďkďn

|<pak,npiqq|
˙

`

q
ÿ

j“1

νjE
ˆ

max
1ďkďn

|=pak,npjqq|
˙

¸
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with the second inequality following by Markov’s inequality. As in the proof of Lemma 2.6.5,

we have shown that for each m ě 0,

|<pak,npmqq| ď 2cp1` αcq
?
n
p1` αckq

m`1
α
´1

p1` αcnq
m`1
α

.

So if m` 1 ě α,

max
0ďkďn

|<pak,npmqq| ď 2cp1` αcq
?
n

1

p1` αcnq
.

Then if m` 1 ă α,

max
0ďkďn

|<pak,npmqq| ď 2cp1` αcq
?
n

1

p1` αcnq
m`1
α

.

In both cases max0ďkďn<pak,npmqq converges to zero as nÑ8. The imaginary case follows

by the same argument. Thus the finite sums also converge to zero,

1

ρ

˜

p
ÿ

i“1

µiE
ˆ

max
1ďkďn

|<pak,npiqq|
˙

`

q
ÿ

j“1

νjE
ˆ

max
1ďkďn

|=pak,npjqq|
˙

¸

Ñ 0

as nÑ8. Therefore,
n
ÿ

k“1

pXk,nq
2
1p|Xk,n| ą ρq Ñ 0

in probability as nÑ8. �

So now we have all we need in order to apply Theorem 2.6.2. This leads to the following

result.

Theorem 2.6.8. Let 0 ă α ă 2 and Anm, Bn
m defined as above. Then the following limit

holds for finite dimensional distributions,
¨

˚

˚

˚

˚

˚

˚

˚

˝

An0 ` iB
n
0

...

Anm ` iB
n
m

...

˛

‹

‹

‹

‹

‹

‹

‹

‚

Ñ

¨

˚

˚

˚

˚

˚

˚

˚

˝

A0

...

Am
...

˛

‹

‹

‹

‹

‹

‹

‹

‚

` i

¨

˚

˚

˚

˚

˚

˚

˚

˝

B0

...

Bm
...

˛

‹

‹

‹

‹

‹

‹

‹

‚
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where pAi, Bjqi,jě0 is a multivariate Gaussian distribution with EpAiq “ EpBjq “ 0 for all

i, j ě 0 and covariance structure given by,

CovpAi, Bjq “ 0

CovpAi, Ajq “ CovpBi, Bjq “ δi,j

ˆ

2

αp2i` 2´ αq

˙

for any i, j ě 0 where δi,j is the Kronecker delta function.

2.6.3. Convergence as a holomorphic function. Now that we have proved that the

Laurent coefficients converge, we wish to show that we also have the convergence of the

fluctuations as a holomorphic function. We first define the functions,

F̃pn, zq “
?
n
´

e´C
˚
1,nφnpzq ´ z

¯

and

Fpzq “
8
ÿ

m“0

pAm ` iBmqz
´m

where Am, Bm are defined as in Theorem 2.6.8. Our aim is to show that F̃pn, zq Ñ Fpzq in

distribution as nÑ8 on the space of holomorphic functions, H, equipped with the metric,

dHpf, gq “
ÿ

mě0

2´m

˜

1^ sup
|z|ě1`2´m

|fpzq ´ gpzq|

¸

.

By the maximum principle this metric topologizes the topology of locally uniform conver-

gence. We use a similar method as in [NST19] by defining,

drpf, gq “ sup
|z|ąr

|fpzq ´ gpzq|.

To make notation easier, we also defineMpn,mq “
řn
k“1 ak,npmq. We first need the following

lemma used to discard the tail terms.

Lemma 2.6.9. Let r ą 1 and N ą 0 then for any ε ą 0

lim
TÑ8

sup
nąN

P

˜

dr

˜

8
ÿ

m“T

Mpn,mqz´m, 0

¸

ą ε

¸

“ 0.
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Proof. Using the definition of drpf, gq we see that,

dr

˜

8
ÿ

m“T

Mpn,mqz´m, 0

¸

“ sup
|z|ąr

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

m“T

Mpn,mqz´m

ˇ

ˇ

ˇ

ˇ

ˇ

.

By Markov’s inequality,

P

˜

dr

˜

8
ÿ

m“T

Mpn,mqz´m, 0

¸

ą ε

¸

ď
1

ε2
E

¨

˝ sup
|z|ąr

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

m“T

Mpn,mqz´m

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

ď
1

ε2
E

¨

˝ sup
|z|ąr

˜

8
ÿ

m“T

|Mpn,mq||z|´m

¸2
˛

‚

ď
1

ε2
E

¨

˝

˜

8
ÿ

m“T

|Mpn,mq|r´m

¸2
˛

‚.

Using the Cauchy-Schwarz inequality we have,

P

˜

dr

˜

8
ÿ

m“T

Mpn,mqz´m, 0

¸

ą ε

¸

ď
1

ε2
E

˜˜

8
ÿ

m“T

|Mpn,mq|2r´m

¸˜

8
ÿ

m“T

r´m

¸¸

ď
λprq

ε2
E

˜

8
ÿ

m“T

|Mpn,mq|2r´m

¸

where λprq is some constant dependent on r. Then we can take the expectation inside the

sum, thus,

P

˜

dr

˜

8
ÿ

m“T

Mpn,mqz´m, 0

¸

ą ε

¸

ď
1

ε2

8
ÿ

m“T

E
`

|Mpn,mq|2
˘

r´m.

Now notice that,

E
`

|Mpn,mq|2
˘

“ E

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

ak,npmq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ď E

˜

n
ÿ

k“1

p<pak,npmqq2 ` p=pak,npmqq2
¸

.

But in equation (2.12) we show that

p<pak,npmqq2 ` p=pak,npmqq2 ď λpα, c, rqn1´ 2pm`1q
α k

2pm`1q
α

´2

where λpα, c, rq is some constant. Taking the sum over k we see that,

E
`

|Mpn,mq|2
˘

ď λpα, c, rq.
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Therefore,

lim
TÑ8

sup
nąN

P

˜

dr

˜

8
ÿ

m“T

Mpn,mqz´m, 0

¸

ą ε

¸

ď lim
TÑ8

1

ε2
λpα, c, rq

8
ÿ

m“T

r´m

Ñ 0 as T Ñ8.

�

Therefore, through Theorem 2.6.8 we have shown that we have convergence of the Lau-

rent coefficients. Moreover, Lemma 2.6.9 shows that the tails of the Laurent series tend to

zero in the limit. We can then combine these two results to show that we have convergence

as a holomorphic function and therefore the fluctuations behave like a Gaussian field.

Theorem 2.6.10. Let 0 ă α ă 2 and φn be defined as in Theorem 2.5.1. Then as

nÑ8,
?
n
´

e´
řn
i“1 c

˚
i φnpzq ´ z

¯

Ñ Fpzq

in distribution on H, where H is the space of holomorphic functions on |z| ą 1, equipped with

metric dH defined above, and where

Fpzq “
8
ÿ

m“0

pAm ` iBmqz
´m

and Am, Bm „ N
´

0, 2
αp2m`2´αq

¯

and Am, Bk independent for all choices of m and k.



CHAPTER 3

Scaling limits of anisotropic growth on logarithmic timescales

In this chapter we present the second paper [LT21b]. We study the anisotropic version

of the Hastings-Levitov model AHLpνq. Previous results have shown than on bounded

timescales the harmonic measure on the boundary of the cluster converges in the small-

particle limit to the solution of a deterministic ordinary differential equation. We consider

the evolution of the harmonic measure on logarithmic timescales and show there exists a

critical logarithmic time window in which the harmonic measure flow, started from the

unstable fixed point, moves stochastically from the unstable point towards a stable point.

3.1. Introduction

The aim of this paper is to study the behaviour of a class of random growth processes

modelled using conformal mappings. In recent years, many models have been introduced

in order to study various real world random growth processes from lightning strikes and

mineral aggregation to tumoral growth. The most well known examples include the Eden

model [Ede61] and DLA [WS83]. These models, built on a lattice, have been well studied

but rigorous results have proved difficult to come by (see for example [Kes90]). One reason

for this is that lattice based models provide little in the way of mathematical techniques that

can be used to study their behaviour. One way to combat this difficulty is to form off-lattice

versions of the models using conformal mappings which allows us to study the processes

in the complex plane and use complex analysis techniques. The models are constructed as

follows. For any conformal map f : t|z| ą 1u Ñ C we define the capacity of the map to be,

lim
zÑ8

log
`

f 1pzq
˘

:“ log f 1p8q.

We will consider slit particles corresponding to maps of the form,

fpzq “ ecz `Op1q

80
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at infinity with capacity c ą 0. Then there is a one-to-one correspondence between capacities

and conformal maps attaching a slit onto the boundary of the disk. More explicitly, for each

c ą 0, we can find a unique single slit mapping

fc : t|z| ą 1u Ñ t|z| ą 1uzp1, 1` ds

which takes the exterior of the unit disk to itself minus a slit of length d “ dpcq at z “ 1.

The relation between the length of the attached slit d and corresponding capacity c is given

by

ec “ 1`
d2

4p1` dq
.

We rescale and rotate the mapping fcpzq to allow any attaching point on the boundary of

the unit disk by defining

(3.1) fnpzq “ e2πiθnfcnpze
´2πiθnq

where θn is the attaching angle, identified with the interval r0, 1s, and cn is the capacity

of the nth particle map fcnpzq. The cluster is formed by composing the slit maps. Let

K0 “ t|z| ď 1u and suppose that we have some compact set Kn made up of n slits. We

can find a bi-holomorphic map which fixes 8 and takes the exterior of the unit disk to the

complement of Kn in the complex plane, φn : ∆ Ñ CzKn. We then define the map φn`1

inductively;

φn`1 “ φn ˝ fn`1 “ f1 ˝ f2 ˝ .... ˝ fn`1.

By choosing the attaching angles and capacities effectively we can model a wide class of

growth processes.

3.1.1. AHLpνq model and the discrete harmonic measure flow. In this paper,

we study the anisotropic Hastings-Levitov model introduced in [JVST12] as AHLpνq. The

model is constructed as above with the attaching angles chosen to be i.i.d on the unit

circle according to some non-uniform probability measure ν and the capacities are chosen

to be a fixed value c. The shape of the cluster in the small particle limit is described

in [JVST12], however, we often want to understand the ancestral path of each attached

particle. Evaluating how the harmonic measure evolves on the boundary of the cluster
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allows us to do so. For the purpose of the introduction we define the discrete harmonic

measure flow for x P R as

Xnpxq “
1

2πi
logpΓnpe

2πixqq.

where Γnpxq “ φ´1
n pxq “ f´1

n ˝ ...f´1
1 pxq. However, some care is needed as Γnpxq is not

defined on the cluster boundary and thus we define this more explicitly in later sections.

The function Xnpxq tells us how the harmonic measure evolves under the map φnpxq. Our

aim is to evaluate how this function evolves in its scaling limit. We will consider the scaling

limit of Xnptqpxq on logarithmic timescales as c Ñ 0 where nptq “
X

t
c

\

embeds continuous

time into discrete time steps.

3.1.2. Previous work. The AHLpνqmodel is a variation of the Hastings-Levitov model

HLpαq (introduced in [HL98]). The Hastings-Levitov model is formed using conformal maps

as described above and the attaching angles are chosen uniformly, in contrast to AHLpνq

where the attaching points are distributed according to a non-uniform measure. This choice

represents a good model for many of the real world processes where particles diffuse onto

the boundary at each iteration (for a more detailed description see, for example, [LT21a]).

Furthermore, the capacities are chosen as,

cn “ c|φ1n´1pe
iθnq|´α.

The parameter α allows us to vary between off-lattice versions of the previously well studied

models by varying the size of the attached slits. By choosing the capacities and attaching

angles in this way we can model a wide class of real world Laplacian growth processes where

the local growth rate is chosen according to harmonic measure. In recent years research into

the Hastings-Levitov model has been fruitful. The majority of the results have concentrated

on the scaling limits of the model in in the small-particle limit where we evaluate the cluster

φn as we send the particle capacity c Ñ 0 while sending n Ñ 8 with nc „ t for some

t. In [NT12] Norris and Turner show that in the small-particle limit, for α “ 0, the

limiting cluster behaves like a growing disk . Furthermore, in [JVST15] Turner, Viklund

and Sola show that in the small particle limit the shape of the cluster in a regularised setting

approaches a disk for all α ě 0 provided the regularisation is sufficient. Moreover, Silvestri
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[Sil17] shows that the fluctuations on the boundary, for HLp0q, in the small-particle limit

can be characterised by a log-correlated Gaussian field.

The Hastings-Levitov model has also been evaluated under another scaling limit where

rather than letting c Ñ 0 as n Ñ 8, instead, the limit of the cluster is found by rescaling

the whole cluster by the logarithmic capacity of the cluster at time n, before taking limits

as the number of particles tends to infinity. In [RZ05] Rohde and Zinsmeister introduce a

regularisation to the model and show that in the case of α “ 0 the rescaled cluster converges

to a (random) limit with respect to the topology of normalised exterior Riemann maps.

In [LT21a], Liddle and Turner show that for α “ 0 the scaling limit of the cluster under

capacity rescaling is not a disk. Furthermore the authors study a regularised version of the

model and show that for 0 ă α ă 2 the scaling limit under capacity rescaling is a disk and

the fluctuations behave like a Gaussian field.

However, we would also like to study a wider class of processes where the particles are not

attached uniformly. The ALEpα, ηq model introduced in [STV19] generalises the Hastings-

Levitov by choosing the local growth rate to be determined by |φ1n|´η where η P R. The

authors show that there exists a phase transition at η “ 1 when α “ 0 where the limiting

shape in the small particle limit transitions from a disk to a radial slit. In [Hig20], Higgs

considers the model for α “ 0 and for large negative values of the parameter η where the

particles are attached in areas of low harmonic measure and shows that there exists a phase

transition where the ALE cluster converges to an SLE4 curve.

The final generalisation is the anisotropic version of the Hastings-Levitov model AHLpνq

which will be the subject of this paper. In [JVST12] Turner, Viklund and Sola show

that if φ is the solution to Loewner-Kufarev equation driven by the measure ν and φn “

f1 ˝ ...fn then φn Ñ φ uniformly on compact sets in the exterior unit disk almost surely

as c Ñ 0. Furthermore, the authors study the scaling limits of the harmonic measure flows

in continuous time and show that on bounded timescales they can be described by the

solution to a deterministic ordinary differential equation related to the Loewner equation.

In contrast, in this paper we will study the model in a discrete time setting and evaluate the

scaling limits of the harmonic measure flows on logarithmic timescales.
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3.1.3. Summary of the main results and physical interpretation. The aim of

the paper is to understand the scaling limit of the harmonic measure flow Xnptqpxq. In this

section we describe the physical interpretation of the main results of the paper. To do so

we include cartoons (Figure 11, Figure 14 and Figure 15 below) to aid our descriptions. It

should be noted that these illustrations are not accurate simulations and are not drawn to

scale but instead serve as an example of one potential evolution of a AHLpνq cluster. In our

example we consider an AHL(ν) cluster where the measure ν is concentrated on a segment

of the disk such as dνpe2πxq “ 2 sin2pmπxqdx for a fixed m P N (as chosen in Figure 2

from [JVST12] which has been reproduced in this thesis as Figures 12 and 13). In order to

state our main results we need to use notation that we define explicitly in later sections. In

equation (3.5) we define ψtpxq, the solution to a deterministic ordinary differential equation

and we define Z8 as a Gaussian random variable with mean 0 and variance given explicitly in

Corollary 3.4.8 in terms of ν. We first consider the evolution of the harmonic measure Xnptq

illustrated in Figure 11. Our first main result, appearing later as Theorem 3.2.9, describes

the evolution up to a logarithmic time.

Theorem. Let the ordinary differential equation ψtpxq be defined as in equation (3.5).

Let T0 “
1

4}b1}8

`

logpc´1q ´ 3 logplogpc´1qq
˘

then if 0 ď t ă T0, Xnptqpxq converges to ψtpxq

in probability as cÑ 0.

Figure 11. The evolution of Xnptq.

Then in Section 3.3 we evaluate the fluctuations rZnpxq “ c´
1
4

`

ψ´1
nc pXnpxqq ´ x

˘

and

showed that they converge to the solution of a stochastic differential equation Ztpxq defined

in equation (3.7). This result appears later as Theorem 3.3.1 and is stated as follows.
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Theorem. The stochastic process rZnptqpxq Ñ Ztpxq in distribution as cÑ 0 with respect

to the Skorohod topology.

These results combine to classify the evolution of harmonic measure on compact

intervals. The results show that on this timescale the trajectories of the harmonic measure

Xnptqpxq process remain close to the deterministic trajectories of the ordinary differential

equation ψtpxq. We demonstrate this in Figure 11 with each blue trajectory remaining close

to the solution to the ODE up to this time. Yet, consider the simulations in Figure 12

and Figure 13 taken from [JVST12]. Figure 12 is an example of a separate AHLpνq

Figure 12. An example of a AHLpνq cluster (left) and the corresponding
Loewner hull (right) from [JVST12].

Figure 13. Harmonic measure Xnptqpxq on the boundary of AHLpνq plotted
against time with the departure point x indicated on the y-axis (left) and the
solution to a corresponding deterministic ODE (right) from [JVST12].

cluster that we may wish to study, whereas, Figure 13 provides the corresponding evolution

of harmonic measure on the boundary of the cluster and a deterministic ODE. The figures

demonstrate how, on compact time intervals, the harmonic measure on the boundary of the
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cluster converges to the solution of the deterministic ODE. However, we observe that the

harmonic measure started at an unstable point of the deterministic ODE initially remains

close to the fixed point before eventually moving away.

Consequently, in Section 3.4 we study the behaviour of the harmonic measure flow,

started from the unstable point on longer timescales. We prove the following result which

appears later as Corollary 2.4.11.

Corollary. Let au be an unstable fixed point of ψtpxq. Then for 0 ă t ă 8, Xnptqpauq

converges to ψt
´

au ` c
1
4Z8pauq

¯

in probability as cÑ 0, where Z8pauq is a Gaussian with

mean 0 and variance which can be given explicitly in terms of the measure ν.

This result tells us that there exists a logarithmic time window where Xnptqpauq moves

a macroscopic distance away from the fixed point au. Once the process reaches this macro-

scopic distance it remains close to the trajectory started from that distance. But we know

that the trajectories started significantly far away from the unstable point converge to the

stable point. Therefore, once the process gets close enough to the stable point we remain

close. Thus, now consider the process stopped on this logarithmic time window and evaluate

the origin of trajectories stopped at this time. As points started near the unstable point

have moved towards the stable point, the region in which all trajectories originate from near

the unstable point is extended.

We have also demonstrated this behaviour in Figure 11. The red trajectory represents

the behaviour of the harmonic measure started at the unstable point. If we converged to the

solution of the ODE we would expect this trajectory to remain close to the unstable point,

however, the cartoon demonstrates the stochastic nature of the path the trajectory takes

from the unstable point towards a stable point on the critical time window.

Now we consider what the physical interpretation of this is on the AHLpνq cluster itself.

We will describe this using the notion of gap paths. The explicit definition of gap paths

is provided in [NT12], however, intuitively the gap path from a point z P C represents

the shortest path from z to outside the boundary of the cluster. This is demonstrated in

Figure 14 with particles represented as disks. We consider the point z and imagine a piece of

string attached at z and pulled tight vertically until we leave the boundary of cluster. This
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Figure 14. An example
of a gap path

Figure 15. An example
of a possible AHLpνq
cluster

represents the gap path of the point z and is indicated by the red line in Figure 14. Note

that the gap paths are dependent on the number of particles n attached to the cluster. The

gap paths can not intersect the particles unless z initially is contained inside a particle in

which case we choose the shortest path to leave the particle we are contained in and then

proceed as above. It is shown in [NT12] that in the limit as cÑ 0 the trajectories of the gap

paths are described by the harmonic measure flow, under a deterministic transformation.

With the notion of gap paths in mind we can describe the behaviour of the cluster

on longer timescales. We demonstrate this with the cartoon in Figure 15. The harmonic

measure flows allow us to map the ancestry of each the particles on the boundary of the

growing cluster to an origin on the boundary of the unit disk. In Figure 15, the unstable

point is at the centre of the arc on the unit disk and the stable points on either edge.

Consider the gap path of a point near the origin. On compact time intervals we expect

particles attached away from the stable points to have ancestors attached near the unstable

point and thus as the gap path can not intersect the particles we would expect the gap

path of a particle near the origin to be vertical. However, as we enter the critical time

window the harmonic measure flow is no longer close to solution of the ODE started from

the unstable point but instead follows a trajectory started at a macroscopic distance from

the unstable point. Therefore, the successive particles are not attached vertically and the
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gap path becomes antisymmetric as indicated by the red path in Figure 15. The direction

the gap path follows is dependent on the sign of Z8pauq. Therefore, in summary, we show

that on bounded timescales the process remains symmetric however as we enter the critical

time window the process becomes asymmetric about the origin.

The outline of the paper is as follows. In Section 3.2 we provide estimates that will be

used in the remainder of the paper and then show that the harmonic measure flow defined

on discrete time steps Xnptq converges to a deterministic ODE up to a logarithmic time.

In Section 3.3 we classify the fluctuations and show they demonstrate stochastic behaviour.

Finally, in Section 3.4 we prove the existence of a critical logarithmic time window and show

that on this interval the harmonic measure flow, started from the unstable point follows a

stochastic path away from the unstable trajectory and towards a stable trajectory.

Throughout the remainder of the paper we introduce a large amount of notation, there-

fore, for the benefit of the reader we provide a list of symbols at the end of the paper so that

it can be referred to throughout the article.

3.2. Convergence on logarithmic timescales

3.2.1. Definitions and estimates. The aim of this subsection is to introduce the

notation and estimates which we will call upon in the remainder of the paper. Much of what

is presented here is a reformulation of the continuous time estimates produced in [JVST12].

This is an essential part of the analysis but the reader is advised that our main results

will follow in later sections. The goal of this paper is to analyse the evolution of harmonic

measure on the boundary of the AHLpνq clusters. Thus, as above we consider the cluster

formed by the conformal maps fn : t|z| ą 1u Ñ CzKn defined in (3.1) with attaching angles

θ1, θ2, ... independently randomly distributed on the unit circle with law ν. We identify the

circle with the interval p0, 1q and assume ν has a twice continuously differentiable density

hν . Furthermore, as above, for a point x P p0, 1q,

γpxq “
1

2πi
logpf´1

c pe2πixqq
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choosing the branch of logarithm which results in x “ 1
2 being fixed. An explicit form is

given by

γpxq “
1

π
tan´1

ˆ

b

ec tan2pπxq ` ec ´ 1

˙

where the branch of arctan is chosen to map r0, πs Ñ r0, πs. We can extend this to the real

line as follows, if x “ k ` a where a P p0, 1s then define γpxq “ k ` γpaq. Then for all x P R

we define

γnpxq “ γnpxq “ γpx´ θnq ` θn.

It immediately follows that γnpxq “ 1
2πi logpf´1

n pe2πixqq for the corresponding branch of

logarithm. This function then describes the change in angle of a point x on the boundary

under the transformation fnpxq and thus γnpxq tells us how the harmonic measure evolves

under the map fnpxq. Let γ̃pxq “ γpxq´x then we can define the discrete harmonic measure

flow under the map φn for x P R as,

(3.2) Xnpxq “ Xn´1pxq ` γ̃pXn´1pxq ´ θnq

with X0pxq “ x. Therefore,

Xnpxq “ γnpXn´1pxqq.

Thus if Γnpxq “ φ´1
n pxq “ f´1

n ˝ ...f´1
1 pxq then

Xnpxq “
1

2πi
logpf´1

n pe2πiXn´1pxqqq

“
1

2πi
logpf´1

n pΓn´1pe
2πixqqq

“
1

2πi
logpΓnpe

2πixqq.

Note that we define Xnpxq in this way to make sure the branch of the logarithm respects

the composition structure. We can then rewrite the harmonic measure flow as

Xnpxq “
n
ÿ

i“1

γ̃pXi´1pxq ´ θiq ` x.

Let Fn be the σ-algebra generated by the set tθi : 1 ď i ď nu. Then as in [JVST12], in

order to evaluate the conditional expectation of each increment γ̃pXi´1pxq´θiq with respect

to Fi´1, we define,

βνpxq “

ż 1

0
γ̃px´ zqhνpzqdz
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where, as above, hν is the twice continuously differentiable density of ν on R. Now define,

Ynpxq “ γ̃pXn´1pxq ´ θnq ´ βνpXn´1pxqq

and then let Snpxq “
řn
i“1 Yipxq. We can write

(3.3) Xnpxq “ x` Snpxq `
n
ÿ

i“1

βνpXi´1pxqq.

The following lemma then holds.

Lemma 3.2.1. Snpxq, as defined above, is a martingale with respect to Fn.

Proof. Taking the expectation with respect to Fi´1,

E pYipxq|Fi´1q “

ż 1

0
γ̃pXi´1pxq ´ θqhνpθqdθ ´ βνpXi´1pxqq

“ βνpXi´1pxqq ´ βνpXi´1pxqq

“ 0.

Hence,

E pSnpxq|Fn´1q “ Sn´1pxq ` E pYnpxq|Fn´1q “ Sn´1pxq.

Therefore, Snpxq is a martingale with respect to Fn. �

Throughout the remainder of the paper we will rely on estimates on each of the terms

defined above. In [JVST12] the authors provide the estimates, for a symmetric particle,

stated in the following lemma.

Lemma 3.2.2. For γ̃ defined as above,

ż 1

0
γ̃pzqdz “ 0

and there exists a constant ρ0 such that

c´
3
2

ż 1

0
γ̃pzq2dz Ñ ρ0

as cÑ 0. Furthermore, there exists a constant δ ą 0 such that the following estimates hold,

}γ̃}8 ď δ
?
c,
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and
ˇ

ˇ

ˇ

ˇ

ż 1

0
γ̃px´ θq2hνpθqdθ ´ ρ0c

3
2hνpxq

ˇ

ˇ

ˇ

ˇ

ď δ}h1ν}8c
2 logpc´1q

for c sufficiently small.

With the harmonic measure flow in the form of equation (3.3) we aim to study its scaling

limit. To do so we start by defining the function bpxq as the Hilbert transform of the measure

ν,

(3.4) bpxq “
1

2π

ż 1

0
cotpπzqphνpx´ zq ´ hνpxqqdz.

With this definition, the proof of Proposition 2 in [JVST12] provides the following bound

on the difference
ˇ

ˇ

1
cβνpxq ´ bpxq

ˇ

ˇ for c sufficiently small.

Lemma 3.2.3. For each x and c ă 1
2 , there exists a constant δ ą 0 such that,

ˇ

ˇ

ˇ

ˇ

1

c
βνpxq ´ bpxq

ˇ

ˇ

ˇ

ˇ

ă δc
1
2 logpc´1q.

Thus throughout the remainder of the paper we assume 0 ă c ă 1
2 . Then using these

bounds, we can make further estimates on βνpxq and Ynpxq.

Lemma 3.2.4. For βνpxq and Ynpxq defined as above, there exists a constant δ ą 0 such

that the following estimate holds,

|βνpxq| ď δc

and for each n,

|Ynpxq| ď δ
?
c.

Proof. Using Lemma 3.2.3 it immediately follows,

|βνpxq| ď c |bpxq| ` δ1c
3
2 logpc´1q ď δc
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for some universal constants δ1 and δ. For the second bound we use that

|Ynpxq| ď |γ̃pXn´1pxq ´ θnq| ` |βνpXn´1pxqq| ď δ
?
c.

�

3.2.2. Results. In this section we consider the evolution of harmonic measure flows on

the boundary of the cluster as c Ñ 0. We will consider Xnptqpxq on logarithmic timescales

where nptq “ t tc u. Define the function ψt to be the solution to the following ordinary

differential equation,

(3.5) 9ψtpxq “ bpψtpxqq

for x P R and ψ0pxq “ x where bpxq is defined in equation (3.4). As above, throughout

the paper we assume that hν is twice continuously differentiable. By properties of Hilbert

transforms it follows that bpxq is also twice continuously differentiable. Furthermore, during

calculations, for simplicity purposes we will often treat nptqc as t, however, we note that the

difference is of order c and this as we take the limit as cÑ 0 our results will be unchanged.

The aim for the rest of this section is to to show that up to a logarithmic time Xnptqpxq

converges to ψtpxq. Recall for each n P N,

Xnpxq “ x` Snpxq `
n
ÿ

i“1

βνpXi´1pxqq.

So,

|Xnptqpxq ´ ψtpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Snptqpxq `

nptq
ÿ

i“1

βνpXi´1pxqq ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇSnptqpxq
ˇ

ˇ`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

βνpXi´1pxqq ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

We first consider the latter term and find an upper bound.

Lemma 3.2.5. Let the functions βνpxq and bpxq be defined as above, then for each x P R,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

βνpXi´1pxqq ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă δ logpc´1qc
3
2nptq ` }b}8

ż t

0
|Xnprqpxq ´ ψrpxq|dr
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for some positive constant δ.

Proof. Let δ be some positive constant that we allow to vary. First we find an upper

bound,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

βνpXi´1pxqq ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

βνpXi´1pxqq ´

nptq
ÿ

i“1

cbpXi´1pxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

cbpXi´1pxqq ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

βνpXi´1pxqq ´

nptq
ÿ

i“1

cbpXi´1pxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

pβνpXi´1pxqq ´ cbpXi´1pxqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď c

nptq
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

1

c
βνpXi´1pxqq ´ bpXi´1pxqq

ˇ

ˇ

ˇ

ˇ

.

From Lemma 3.2.3,
ˇ

ˇ

ˇ

ˇ

1

c
βνpxq ´ bpxq

ˇ

ˇ

ˇ

ˇ

ă δc
1
2 logpc´1q

for some universal constant δ. Therefore,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

βνpXi´1pxqq ´

nptq
ÿ

i“1

cbpXi´1pxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δc logpc´1q

nptq
ÿ

i“1

c
1
2 ď δ logpc´1qc

3
2nptq.

Now consider,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

cbpXi´1pxqq ´

ż t

0
bpXnprqpxqqdr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then
řnptq
i“1 cbpXi´1pxqq is the Riemann approximation to

şt
0 bpXnprqpxqqdr on intervals of

length c with the error less than c}b}8. Finally,
ˇ

ˇ

ˇ

ˇ

ż t

0
bpXnprqpxqqdr ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ď }b}8

ż t

0
|Xnprqpxq ´ ψrpxq|dr

and thus by combining the bounds above the statement follows. �

We now aim to use that Snpxq is a martingale and then apply the following result from

[Fre75].
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Theorem 3.2.6. Suppose Yk is Fk-measurable and EtYk | Fk´1u “ 0. Then let Sn “
řn
k“1 Yk, let M be a positive real number and let Tnpzq “

řn
k“1 EtYkpxq2 | Fk´1u. Suppose

Pt|Yk| ďM for all k ď nu “ 1. Then for all positive numbers ε and b,

PtSn ě ε and Tnpzq ď b for some n ą 0u ď exp

„

´ε2

2pMε` bq



.

Now in order to apply Theorem 3.2.6 we need to find a bound on
řn
k“1 EtYkpxq2 | Fk´1u.

The following lemma provides such a bound.

Lemma 3.2.7. For Yipxq defined as above there exists a constant 0 ď δ0 ă 8 such that,

nptq
ÿ

i“1

E
`

Yipxq
2|Fi´1

˘

ď δ0c
3
2nptq.

Proof. By the definition of βν ,

E
`

Yipxq
2|Fi´1

˘

“

ż 1

0
γ̃P pXi´1pxq ´ θq

2hνpθqdθ ´ βνpXi´1pxqq
2.

Therefore,

E
`

Yipxq
2|Fi´1

˘

“ρ0c
3
2hνpXi´1pxqq ´ βνpXi´1pxqq

2

`

ˆ
ż 1

0
γ̃P pXi´1pxq ´ θq

2hνpθqdθ ´ ρ0c
3
2hνpXi´1pxqq

˙

.

From the bounds in Lemmas 3.2.2 and 3.2.4, there exists a constant δ ą 0 such that

|βνpXi´1pxqq| ď δc and
ˇ

ˇ

ˇ

ş1
0 γ̃px´ θq

2hνpθqdθ ´ ρ0c
3
2hνpxq

ˇ

ˇ

ˇ
ď δc2 logpc´1q. Therefore, there

exists a constant 0 ď δ0 ă 8 such that,

E
`

Yipxq
2|Fi´1

˘

ă δ0c
3
2 .

Thus,
nptq
ÿ

i“1

E
`

Yipxq
2|Fi´1

˘

ď δ0c
3
2nptq.

�

If we apply Theorem 3.2.6 to these bounds the following theorem follows.
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Lemma 3.2.8. Let Sn be defined as above and let δ0 be defined as in Lemma 3.2.7. Then

there exists a δ ą 0 such that for any fixed real number T0 and any positive real number

0 ď ε ă δT0,

P
ˆ

sup
0ďtďT0

|Snptqpxq| ą ε

˙

ď exp

ˆ

´ε2

4δ0T0
?
c

˙

.

Proof. We know Yipxq is a martingale difference array. Using the estimates provided

in Lemmas 3.2.4 and 3.2.7 we know for each i ě 0, |Yipxq| ď δ1
?
c for some constant δ1 ą 0

and
řnptq
i“1 E

`

Yipxq
2|Fi´1

˘

ď δ0T0c
1
2 . Hence, we can apply Theorem 3.2.6,

P
ˆ

sup
0ďtďT0

|Snptqpxq| ą ε

˙

ď exp

ˆ

´ε2

2pδ1
?
cε` δ0T0

?
cq

˙

.

Therefore, let δ “ δ0
δ1

then if 0 ď ε ă δT0,

P
ˆ

sup
0ďtďT0

|Snptqpxq| ą ε

˙

ď exp

ˆ

´ε2

4δ0T0
?
c

˙

.

�

Finally, we can combine the two results above to show that there exists a logarithmic

time, up to which we have convergence of Xnptqpxq for each x. We will show the existence

of a critical time window and evaluate this in more detail in Section 3.4.

Theorem 3.2.9. Let Xnptqpxq and ψtpxq be defined as above. Let

T0 “
1

4}b1}8

`

logpc´1q ´ 3 logplogpc´1qq
˘

.

Then for any ε ą 0,

lim
cÑ0

P
ˆ

sup
0ďtďT0

ˇ

ˇXnptqpxq ´ ψtpxq
ˇ

ˇ ą ε

˙

“ 0.

Proof. We can write,

|Xnptqpxq ´ ψtpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Snptqpxq `

nptq
ÿ

i“1

βνpXi´1pxqq ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇSnptqpxq
ˇ

ˇ`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

βνpXi´1pxqq ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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From the proof from Lemma 3.2.5, we know that for c sufficiently small,

sup
0ďtďT0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nptq
ÿ

i“1

βνpXi´1pxqq ´

ż t

0
bpψspxqqds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
0ďtďT0

ˆ

δ logpc´1qc
3
2nptq ` }b1}8

ż t

0
|Xnprqpxq ´ ψrpxq|dr

˙

ď δT0c
1
2 logpc´1q ` }b1}8

ż T0

0
sup

0ďtďr
|Xnptqpxq ´ ψtpxq|dr.

Then with c chosen sufficiently small,

sup
0ďtďT0

|Xnptqpxq ´ ψtpxq|

ď

ˆ

sup
0ďtďT0

|Snptqpxq| ` δT0c
1
2 logpc´1q

˙

` }b1}8

ż T0

0
sup

0ďtďr
|Xnptqpxq ´ ψtpxq|dr

ď

ˆ

sup
0ďtďT0

|Snptqpxq| ` δc
1
2 plogpc´1qq2

˙

e}b
1}8T0

where the second inequality follows by Gronwall’s inequality [Gro19]. Thus,

lim sup
cÑ0

P
ˆ

sup
0ďtďT0

ˇ

ˇXnptqpxq ´ ψtpxq
ˇ

ˇ ą ε

˙

ď lim sup
cÑ0

P
ˆˆ

sup
0ďtďT0

|Snptqpxq| ` δc
1
2 plogpc´1qq2

˙

ą εe´}b
1}8T0

˙

“ lim sup
cÑ0

P
ˆˆ

sup
0ďtďT0

|Snptqpxq| ` δc
1
2 plogpc´1qq2

˙

ą εc
1
4 plogpc´1qq

3
4

˙

“ lim sup
cÑ0

P
ˆ

sup
0ďtďT0

|Snptqpxq| ą εc
1
4 plogpc´1qq

3
4 ´ δc

1
2 plogpc´1qq2

˙

ď lim sup
cÑ0

P
ˆ

sup
0ďtďT0

|Snptqpxq| ą
ε

2
c
1
4 plogpc´1qq

3
4

˙

.

By Lemma 3.2.8,

lim sup
cÑ0

P
ˆ

sup
0ďtďT0

ˇ

ˇXnptqpxq ´ ψtpxq
ˇ

ˇ ą ε

˙

ď lim sup
cÑ0

exp

˜

´ε2c
1
2 plogpc´1qq

3
2

16δ0T0
?
c

¸

“ lim sup
cÑ0

exp

˜

´ε2}b1}8plogpc´1qq
1
2

4δ0

¸
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Therefore,

lim sup
cÑ0

P
ˆ

sup
0ďtďT0

ˇ

ˇXnptqpxq ´ ψtpxq
ˇ

ˇ ą ε

˙

“ 0.

�

3.3. Analysis of fluctuations

Now that we have shown convergence of the harmonic measure flow up to a logarithmic

time we aim to analyse the fluctuations up to a bounded time and then use this in Section

3.4 to determine the existence of a critical time window where the evolution of the harmonic

measure flow changes. We consider how the discrete fluctuations

ψ´1
t pXnptqpxqq ´ x

behave for a fixed time t ą 0. We know that for any t, s we have ψt`spxq “ ψtpψspxqq, thus,

ψ´1
t pXnptqpxqq “ ψ´1

t´nptqcpψ
´1
nptqcpXnptqpxqqq.

Moreover, for the embedding nptq “ t tc u we can bound 0 ď t´ nptqc ă 1, therefore, ψ´1
t´nptqc

is close to the identity and with an appropriate continuity argument we can consider the

difference,

ψ´1
nc pXnpxqq ´ x

with n “ nptq. We will show the fluctuations are of order c
1
4 , therefore, for each fixed x P R,

let

(3.6) rZnpxq “ c´
1
4

`

ψ´1
nc pXnpxqq ´ x

˘

.

For notational simplicity we will denote Φtpxq “ ψ´1
t pxq. Then let Ztpxq be the solution to

the stochastic differential equation,

(3.7) dZtpxq “
?
ρ0Φ1tpψtpxqq

a

hνpψtpxqqdBt

with Z0pxq “ 0. The main result of this section is stated as follows.



3.3. ANALYSIS OF FLUCTUATIONS 98

Theorem 3.3.1. The stochastic process rZnptqpxq Ñ Ztpxq in distribution as c Ñ 0 with

respect to the Skorohod topology.

Note that as the limit process is almost surely continuous, it follows immediately that

the process converges in distribution with respect to the topology of uniform convergence.

The proof will consist of showing that in the limit rZnptqpxq and Ztpxq share the same finite

dimensional distributions and then by using an appropriate tightness argument we can show

that the theorem is satisfied. We start by evaluating the finite dimensional distributions.

Notice that we can rewrite the fluctuations as the following sum,

ψ´1
nc pXnpxqq ´ x “

n
ÿ

i“1

`

ΦicpXipxqq ´ Φpi´1qcpXi´1pxqq
˘

.

Then the following result holds.

Lemma 3.3.2. With rZnptqpxq and Φicpxq defined as above we can write

rZnptqpxq “ c´
1
4

nptq
ÿ

i“1

Φ1icpXi´1pxqqYipxq ` rEnptqpxq

where rEnptqpxq is an error term such that, for a fixed t ą 0, sup0ďsďt
rEnpsqpxq Ñ 0 in

probability as cÑ 0.

Proof. As above, we can write

rZnptqpxq “ c´
1
4

¨

˝

nptq
ÿ

i“1

`

ΦicpXipxqq ´ Φpi´1qcpXi´1pxqq
˘

˛

‚.

So we start by considering the difference,

ΦicpXipxqq ´ Φpi´1qcpXi´1pxqq

“ pΦicpXipxqq ´ ΦicpXi´1pxqqq `
`

ΦicpXi´1pxqq ´ Φpi´1qcpXi´1pxqq
˘

“ Φ1icpXi´1pxqqpXipxq ´Xi´1pxqq ` 9ΦicpXi´1pxqqc`Ripxq
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where Ripxq is the remainder term left by the Taylor expansion. Recall Xipxq ´Xi´1pxq “

Yipxq ` βνpXi´1pxqq, so

ΦicpXipxqq ´ Φpi´1qcpXi´1pxqq

“ Φ1icpXi´1pxqqpYipxq ` βνpXi´1pxqqq ` 9ΦicpXi´1pxqqc`Ripxq.

Let Eipxq “ Ripxq ` Φ1icpXi´1pxqq pβνpXi´1pxqq ´ cbpXi´1pxqqq, then,

ΦicpXipxqq ´ Φpi´1qcpXi´1pxqq “ Φ1icpXi´1pxqqYipxq`

` c
´

pΦ1icpXi´1pxqqbpXi´1pxqq ` 9ΦicpXi´1pxqq
¯

` Eipxq.

However, Φtpψtpxqq “ x for every x P R, t P R, therefore, taking the derivative with respect

to t gives,

Φ1tpψtpxqq
9ψtpxq ` 9Φtpψtpxqq “ 0.

By definition, 9ψtpxq “ bpψtpxqq. Thus,

9Φtpψtpxqq ` Φ1tpψtpxqqbpψtpxqq “ 0.

This holds for any x P R, by substituting ΦtpXi´1pxqq in for x, it follows that,

9ΦicpXi´1pxqq ` Φ1icpXi´1pxqqbpXi´1pxqq “ 0.

Therefore,

ΦicpXipxqq ´ Φpi´1qcpXi´1pxqq “ Φ1icpXi´1pxqqYipxq ` Eipxq

and

rZnptqpxq “ c´
1
4

¨

˝

nptq
ÿ

i“1

Φ1icpXi´1pxqqYipxq ` Eipxq

˛

‚.
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All that remains is to find upper bounds on the error rEnptqpxq “ c´
1
4

´

řnptq
i“1 Eipxq

¯

. The

error Eipxq is defined above as

Eipxq “ Ripxq ` Φ1icpXi´1pxqq pβνpXi´1pxqq ´ cbpXi´1pxqqq

with the Taylor remainder term given by,

Ripxq “ Φ2icpζqpXipxq ´Xi´1pxqq
2 ` :ΦρpXi´1pxqqc

2

for some Xi´1pxq ă ζ ă Xipxq and pi´ 1qc ă ρ ă ic. Thus, by the definition of ψtpxq along

with the assumption that hν is twice continuously differentiable there exists a constant,

dependent on t, such that |Φ2icpζq| ă δ. Furthermore, using that

Xipxq ´Xi´1pxq “ Yipxq ` βνpXi´1pxqq

there exists a constant δ ą 0, dependent on t, such that,

|Ripxq| ď δ
`

|Yipxq|
2 ` c2

˘

.

Furthermore by Lemma 3.2.3 there exists a constant δ ą 0 such that,

ˇ

ˇΦ1icpXi´1pxqq pβνpXi´1pxqq ´ cbpXi´1pxqqq
ˇ

ˇ ď c|Φ1icpXi´1pxqq|

ˇ

ˇ

ˇ

ˇ

1

c
βνpXi´1pxqq ´ bpXi´1pxqq

ˇ

ˇ

ˇ

ˇ

ď δc
3
2 logpc´1q.

Therefore,

|Eipxq| ď δp|Yipxq|
2 ` c

3
2 logpc´1qq

for some positive constant δ dependent on t. Thus, for a fixed t ą 0 by Lemma 3.2.7 and

Markov’s inequality it follows that sup0ďsďt |
rEnpsqpxq| Ñ 0 in probability as cÑ 0. �

So all that remains is to analyse the fluctuations of the martingale term. To do so we

will apply the following result of Mcleish [McL74].

Theorem 3.3.3 (McLeish). Let pXk,nq1ďkďn be a martingale difference array with re-

spect to the filtration Fk,n “ σpX1,n, X2,n, ..., Xk,nq. Let Mn “
řn
i“1Xi,n and assume that;
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p1q for all ρ ą 0,
řn
k“1X

2
k,n 1p|Xk,n| ą ρq Ñ 0 in probability as nÑ8.

p2q
řn
k“1X

2
k,n Ñ s2 in probability as nÑ8 for some s2 ą 0.

Then Mn converges in distribution to N p0, s2q.

In order to use this result we first show that the following lemma holds.

Lemma 3.3.4. Let Yipxq and Φicpxq be defined as above. Then for a fixed t ą 0,

nptq
ÿ

i“1

E
´

c´
1
2

`

Φ1icpXi´1pxqqYipxq
˘2
|Fi´1

¯

Ñ ρ0

ż t

0
pΦ1spψspxqqq

2hνpψspxqqds

in probability as cÑ 0.

Proof. As r0, ts is a compact time interval, by the proof of Lemma 3.2.7 it follows that,

nptq
ÿ

i“1

E
´

c´
1
2

`

Φ1icpXi´1pxqqYipxq
˘2
|Fk´1

¯

“ ρ0

ż t

0
pΦ1spXnpsqpxqqq

2hνpXnpsqpxqqds

`Rpc
1
2 logpc´1qtq

where Rpc
1
2 logpc´1qtq is a remainder term which for a fixed t is bounded by δc

1
2 plogpc´1qqt,

for some constant δ ą 0, and thus converges to 0 as cÑ 0. Then by Theorem 3.2.9,

nptq
ÿ

i“1

E
´

c´
1
2

`

Φ1icpXi´1pxqqYipxq
˘2
|Fk´1

¯

Ñ ρ0

ż t

0
pΦ1spψspxqqq

2hνpψspxqqds

in probability as cÑ 0. �

Lemma 3.3.5. Let Yipxq and Φicpxq be defined as above. Then for a fixed t ą 0,

nptq
ÿ

i“1

c´
1
2

`

Φ1icpXi´1pxqqYipxq
˘2
Ñ ρ0

ż t

0
pΦ1spψspxqqq

2hνpψspxqqds

in probability as cÑ 0.

Proof. First we define

Yipzq :“ c´
1
2

`

Φ1icpXi´1pxqqYipxq
˘2
´ E

´

c´
1
2

`

Φ1icpXi´1pxqqYipxq
˘2
|Fi´1

¯
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which is a martingale difference array with respect to the filtration pFiqiďn. We need to

show

Pp|
řnptq
i“1 Yipzq| ą ηq Ñ 0 as cÑ 0. So we first use that by Markov’s inequality,

P

¨

˝|

nptq
ÿ

i“1

Yi| ą η

˛

‚ď
1

η2
E

¨

˝|

nptq
ÿ

i“1

Yi|2
˛

‚“
1

η2

nptq
ÿ

i“1

EpY2
i q

and so finally by using the property that for a random variable X, EppX´EpXqq2q ď EpX2q

we see

P

¨

˝|

nptq
ÿ

i“1

Yi| ą η

˛

‚ď
1

η2

1

c

nptq
ÿ

i“1

Ep
`

Φ1icpXi´1pxqqYipxq
˘4
q.

On a compact time interval Φ1icpXi´1pxqq is bounded and thus by using the bounds from

Lemma 3.2.7 and that for each 0 ď i ď nptq, |Yipxq| ă δ
?
c it follows that

Ep
`

Φ1icpXi´1pxqqYipxq
˘4
q ď δc

5
2

for some positive contant δ dependent on t. Thus, there exists a constant δ ą 0 such that

P

¨

˝|

nptq
ÿ

i“1

Yi| ą η

˛

‚ď δ
c
1
2 t

η2

which converges to zero as cÑ 0. �

By Lemma 3.3.5, condition (2) of Theorem 3.3.3 is satisfied and all that remains is to

show that condition (1) is also satisfied. We prove this in the form of the following lemma.

Lemma 3.3.6. For Yipxq defined as above. For each x P R, t ą 0 fixed and for all ρ ą 0,

the following statement is satisfied.

c´
1
2

nptq
ÿ

i“1

`

Φ1icpXi´1pxqqYipxq
˘2
1p|c´

1
4 Φ1icpXi´1pxqqYipxq| ą ρq Ñ 0

in probability as cÑ 0.



3.3. ANALYSIS OF FLUCTUATIONS 103

Proof. Let µ ą 0 then,

P

¨

˝

nptq
ÿ

i“1

c´
1
2

`

Φ1icpXi´1pxqqYipxq
˘2
1p|c´

1
4 Φ1icpXi´1pxqqYipxq| ą ρq ą µ

˛

‚

ď P
ˆ

max
1ďiďnptq

|c´
1
4 Φ1icpXi´1pxqqYipxq| ą ρ

˙

ď
1

ρ
E
ˆ

max
1ďiďnptq

|c´
1
4 Φ1icpXi´1pxqqYipxq|

˙

with the second inequality following by Markov’s inequality. From Lemma 3.2.4 we know

for all 0 ď i ď nptq, |Yipxq| ă δ
?
c for some positive constant δ. Therefore, as on a compact

time interval Φ1icpXi´1pxqq is bounded, there exists a constant δ ą 0, dependent on t, such

that,

P

¨

˝

nptq
ÿ

i“1

c´
1
2 pYipxqq

2
1p|c´

1
4Yipxq| ą ρq ą µ

˛

‚ď
1

ρ
δc

1
4 .

Thus,

c´
1
2

nptq
ÿ

i“1

Yipxq
2
1p|c´

1
4Yipxq| ą ρq Ñ 0

in probability as cÑ 0. �

Therefore, both conditions of Theorem 3.3.3 are satisfied. In order to show convergence in

distribution of the process p rZnptqpxqqtą0 all that remains is to check the covariance structure

and prove that the family of processes p rZnptqpxqqtą0 is tight with respect to c under the

Skorohod topology [Bil99]. We know pZtpxqqtą0 has independent increments so we start by

analysing the covariance structure of p rZnptqpxqqtą0 in the limit.

Lemma 3.3.7. Let rZnptqpxq be defined as above. Suppose 0 ď t1 ă t2, then,

Cov
´

rZnpt2qpxq ´
rZnpt1qpxq,

rZnpt1qpxq
¯

Ñ 0

as cÑ 0.
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Proof. First we can write,

Cov
´

rZnpt2qpxq ´
rZnpt1qpxq,

rZnpt1qpxq
¯

“ E
´´

rZnpt2qpxq ´
rZnpt1qpxq

¯

rZnpt1qpxq
¯

´ E
´

rZnpt2qpxq ´
rZnpt1qpxq

¯

E
´

rZnpt1qpxq
¯

Recall in Lemma 3.3.2 we showed,

rZnptqpxq “ c´
1
4

nptq
ÿ

i“1

Φ1icpXi´1pxqqYipxq ` rEnptqpxq

where rEnptqpxq Ñ 0 in probability as cÑ 0 . Therefore,

E
´

rZnptqpxq
¯

“ c´
1
4

nptq
ÿ

i“1

EpΦ1icpXi´1pxqqYipxqq ` EprEnptqpxqq.

However, we know EpYipxq|Fk´1q “ 0, therefore, by tower law,

E
´

rZnptqpxq
¯

“ EprEnptqpxqq. Hence,

E
´

rZnpt2qpxq ´
rZnpt1qpxq

¯

E
´

rZnpt1qpxq
¯

“ EprEnpt2qpxqqEprEnpt1qpxqq´EprEnpt1qpxqqEprEnpt1qpxqq.

Now consider,

E
´´

rZnpt2qpxq ´
rZnpt1qpxq

¯

rZnpt1qpxq
¯

“ E
´

rZnpt2qpxq
rZnpt1qpxq

¯

´ E
´

rZnpt1qpxq
2
¯

.

We first evaluate,

E
´

rZnpt2qpxq
rZnpt1qpxq

¯

“c´
1
2E

¨

˝

npt2q
ÿ

i“1

npt1q
ÿ

j“1

`

Φ1icpXi´1pxqqYipxq
˘ `

Φ1jcpXj´1pxqqYjpxq
˘

˛

‚

` c´
1
4E

¨

˝
rEnpt2qpxq

¨

˝

npt1q
ÿ

j“1

`

Φ1jcpXj´1pxqqYjpxq
˘

˛

‚

˛

‚

` c´
1
4E

¨

˝
rEnpt1qpxq

¨

˝

npt2q
ÿ

i“1

`

Φ1icpXi´1pxqqYipxq
˘

˛

‚

˛

‚

` E
´

rEnpt2qpxqrEnpt1qpxq
¯

.
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By the tower law and that EpYkpxq|Fk´1q “ 0, it follows that,

E
´´

rZnpt2qpxq ´
rZnpt1qpxq

¯

rZnpt1qpxq
¯

“ c´
1
2

npt1q
ÿ

j“1

E
`

pΦ1jcpXj´1pxqqq
2pYjpxqq

2
˘

` E
´

rEnpt2qpxqrEnpt1qpxq
¯

´ E
´

rZnpt1qpxq
2
¯

“ E
´

rEnpt2qpxqrEnpt1qpxq
¯

´ E
´

rEnpt1qpxqrEnpt1qpxq
¯

.

Therefore,

Cov
´

rZnpt2qpxq ´
rZnpt1qpxq,

rZnpt1qpxq
¯

“

´

EprEnpt2qpxqqEprEnpt1qpxqq ´ EprEnpt1qpxqqEprEnpt1qpxqq
¯

`

´

E
´

rEnpt2qpxqrEnpt1qpxq
¯

´ E
´

rEnpt1qpxqrEnpt1qpxq
¯¯

which by Lemma 3.3.2 converges to 0 as cÑ 0. �

Therefore, in the limit, the process p rZnptqpxqqtą0 shares the same covariance structure

as pZnptqqtą0 and hence we have convergence of finite dimensional distributions. All that

remains before we can prove convergence as a process is to prove that the family of processes

p rZnptqpxqqtą0 is tight with respect to c. We prove this in the form of the following lemma.

Lemma 3.3.8. The family of processes p rZnptqpxqqtą0 is tight with respect to c.

Proof. In order to show the process is tight, we need to show that Aldous’s condition

holds (see for example [Bil99, Theorem 16.10]). Explicitly, we need to show that, for each

x, and for T ą 0 not dependent on c,

lim
RÑ8

ˆ

sup
0ďtăT

P
´

| rZnptqpxq| ě R
¯

˙

“ 0

and if τt is a stopping time and δt converges to 0 as cÑ 0 then,

| rZnpτt`δtqpxq ´
rZnpτtqpxq| Ñ 0

in probability as cÑ 0. For the first condition, recall in Lemma 3.3.2 we showed,

rZnptqpxq “ c´
1
4

nptq
ÿ

i“1

Φ1icpXi´1pxqqYipxq ` rEnptqpxq
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where rEnptqpxq Ñ 0 in probability as cÑ 0. Thus, it suffices to show that

lim
RÑ8

sup
0ďtăT

P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c´
1
4

nptq
ÿ

i“1

Φ1icpXi´1pxqqYipxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě R

˛

‚“ 0.

Since Yipxq is a martingale difference array, by Markov’s inequality,

sup
0ďtăT

P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c´
1
4

nptq
ÿ

i“1

Φ1icpXi´1pxqqYipxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě R

˛

‚

ď sup
0ďtăT

1

R2
E

¨

˝c´
1
2

¨

˝

nptq
ÿ

i“1

Φ1icpXi´1pxqqYipxq

˛

‚

2˛

‚

ď sup
0ďtăT

1

R2
c´

1
2

¨

˝

nptq
ÿ

i“1

nptq
ÿ

j“1

E
`

Φ1icpXi´1pxqqYipxqΦ
1
jcpXj´1pxqqYjpxq

˘

˛

‚.

Suppose 0 ď k ă l ď nptq. By the Tower Law,

EpYkpxqYlpxqq “EpEpYkpxqYlpxq|Fl ´ 1qq

“EpYkpxqEpYlpxq|Fl ´ 1qq

“0.

Therefore,

sup
0ďtăT

P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c´
1
4

nptq
ÿ

i“1

Φ1icpXi´1pxqqYipxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě R

˛

‚ď
1

R2

¨

˝

nptq
ÿ

i“1

Epc´
1
2 pΦ1icpXi´1pxqqYipxqq

2q

˛

‚.

By using the Tower law again we can consider the conditional expectation with respect to

Fk´1, then by Lemma 3.3.4,

nptq
ÿ

i“1

E
´

c´
1
2

`

Φ1icpXi´1pxqqYipxq
˘2
|Fi´1

¯

Ñ ρ0

ż t

0
pΦ1spψspxqqq

2hνpψspxqqds

in probability as c Ñ 0. Thus, since Φtpxq is twice differentiable, for 0 ď t ă T , we can

bound |Φ1spψspxqq| ď δ1 for some positive constant δ1, hence, there exists a constant δ ą 0
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such that for c sufficiently small,

sup
0ďtăT

P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c´
1
4

nptq
ÿ

i“1

Yipxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě R

˛

‚ď δ}hν}8T
1

R2
.

Consequently, if we take the limit as R Ñ 8 then the upper bound converges to 0 and

we have proved the first condition. For the second condition, it is sufficient to show that for

any ε ą 0 and for all 0 ă t1 ă t2 where pt2 ´ t1q Ñ 0 as cÑ 0,

lim
cÑ0

P
ˆ

sup
t1ătăt2

| rZnptqpxq ´ rZnpt1qpxq| ą ε

˙

“ 0.

We use a similar approach to the first condition. Using the bounds provided above and

Markov’s inequality,

P
ˆ

sup
t1ătăt2

| rZnptqpxq ´ rZnpt1qpxq| ą ε

˙

ď
1

ε2
E

¨

˝c´
1
2

¨

˝

npt2q
ÿ

i“npt1q

Φ1icpXi´1pxqqYipxq

˛

‚

2˛

‚.

By taking conditional expectations and using the same arguments as above,

P
ˆ

sup
t1ătăt2

| rZnptqpxq ´ rZnpt1qpxq| ą ε

˙

ďδ}hν}8pt2 ´ t1q
1

ε2

for some constant δ ą 0. Then since pt2 ´ t1q Ñ 0 as cÑ 0 the result follows. �

Therefore, we have proved both convergence of finite dimensional distributions and tight-

ness, hence, Theorem 3.3.1 follows.

3.4. Analysis of critical time window

In the previous two sections we showed that the harmonic measure flow Xnptq converges

to the the solution of the ODE given in (3.5) provided that

0 ď t ď
1

4}b1}8

`

logpc´1q ´ 3 logplogpc´1qq
˘

.

Furthermore, we analysed the fluctuations rZnptqpxq on bounded timescales and showed they

converge to an SDE. In this final section we show there exists a critical time window where

the harmonic measure flow started at the unstable fixed point of the differential equation
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ψtpxq, moves a macroscopic distance from the unstable point before following a stochastic

trajectory towards the stable fixed point.

We start this section by introducing some new notation and listing some subsequent

properties of the random variables that will be used later. First, recall,

9ψtpxq “ bpψtpxqq

and, as above, we assume hν , and thus bpxq, is twice continuously differentiable. We also

assume that the ODE has at least one unstable fixed point which we denote au. By the

periodicity of bpxq it follows that there are stable fixed points a`s and a´s such that au´ 1 ă

a´s ă au ă a`s ă au ` 1 and we assume that there are no other fixed points in the interval

pa´s , a
`
s q. Then let λu denote the derivative of bpxq at au and let λ`s , λ´s denote the derivative

of bpxq at a`s and a´s respectively. By the properties of fixed points, we can deduce that

λu ą 0 and λ`s , λ´s ă 0. Throughout this section we will make the additional assumption that

bpxq is concave between au and a`s and convex between a´s and au. We will use properties

of the ODE to interchange between ψt´spxq and ψtpψ´1
s pxqq. We would like to consider the

behaviour of the harmonic measure flow started at this unstable point and to do so we will

consider the behaviour of

ψt´t0pXk0pauqq “ ψtpψ
´1
t0
pXk0pauqqq

“ ψtpau ` c
1
4 rZnpt0qpauqq

where k0 “ t t0c u for some fixed t0 which we will take to be large. In the previous section we

showed rZnpt0qpauq Ñ Zt0pauq in distribution as cÑ 0 where Zt0pauq is Gaussian with mean

zero and variance given by

ρ0

ż t0

0
pΦ1spψspxqqq

2hνpψspxqqds.

By definition we know Φtpψtpxqq “ x, thus, by the chain rule Φ1tpψtpxqq “
1

ψ1tpxq
. Further-

more, by the definition of ψt,

(3.8) p 9ψtq
1pxq “ b1pψtpxqqψ

1
tpxq.
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Then as au is a stationary point it follows that p 9ψtq
1pauq “ λuψ

1
tpauq and therefore,

ψ1tpauq “ eλut.

Hence, as au was chosen as a stationary point it follows that the variance of Zt0pauq is given

by,

ρ0

ż t0

0
e´2λushνpauqds “

ρ0hνpauq

2λu

´

1´ e´2λut0
¯

.

For the remainder of this section we assume hνpauq ą 0 so that the variance above is finite

and non-zero. This assumption is not restrictive because if hνpauq “ 0 we can replace

hνpauq with
hνpauq`δ

1`δ for some constant δ ą 0, which would in turn replace bpxq with bpxq
1`δ .

In particular, the fixed points remain in the same location and share the same stability

properties.

Furthermore, by the L2 martingale convergence theorem it follows that Zt0 Ñ Z8 in L2,

and hence in probability, as t0 Ñ 8. For notational convenience we will assume rZnpt0q and

Zt0 are constructed on the same sample space. Hence, by restricting to a subsequence of c’s

if necessary, we can state our results in terms of the convergence in probability of random

variables on this space and thus by Theorem 3.3.1, the stochastic process rZnpt0q Ñ Zt0 in

probability as cÑ 0 with respect to the Skorohod topology.

We will consider ψtpxq between the two stable points a´s ă x ă a`s and thus as a further

consequence of equation (3.8) and the assumptions on bpxq, for 0 ď s ď t, it follows that

mintλ`s , λ
´
s u ď

p 9ψsq
1pxq

ψ1spxq
ď λu.

Therefore, since λ`s , λ´s ă 0

0 ď ψ1tpxq ď eλut,

and we can deduce that

(3.9) }ψ1t}8 ď eλut.

With the properties and assumptions stated above we can outline the structure of the

remainder of this section as follows. The results in previous sections indicate a change in

the behaviour of Xnptqpxq on a window around t « 1
4λu

logpc´1q. Thus, the remainder of this
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section focuses on discovering the behaviour of Xnptqpauq on this timescale. We first analyse

the process. To do so we construct a stopping time T ˚1 and a time window rT ˚1 ´T, T ˚1 `T s,

for a fixed time T , on which

ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4 rZnpt0qpauq

¯
ˇ

ˇ

ˇ
Ñ 0

in probability as cÑ 0 and t0 Ñ8. Then in Section 3.4.2 we analyse the stopping time T ˚1

and show T ˚1 «
1

4λu
logpc´1q and by this time we have moved a macroscopic distance δ˚ ą 0

away from the unstable trajectory and towards a stable trajectory. This notion of distance

will be defined explicitly in equation (3.11) before we go on to prove our main result that

there exists a critical time window r 1
4λu

logpc´1q´T, 1
4λu

logpc´1q`T s, for a fixed T ě 0, on

which
ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4Z8pauq

¯ˇ

ˇ

ˇ
Ñ 0

in probability as cÑ 0 and t0 Ñ8. Finally we show that that once we get close enough to

the stable fixed point we remain on the stable trajectory.

3.4.1. Analysing the process. As above we fix some time t0 ą 0 and let k0 “ t t0c u.

We aim to analyse the difference

|Xnptqpauq ´ ψt´t0 pXk0 pauqq |

for t ě t0. We first introduce the notation

Ipt1, t2q “

ż t2

t1

b1pψs´t0pXk0pauqqds.

We then let

gpt, yq :“ e´Ip0,tq py ´ ψt´ck0pXk0pauqqq

and aim to understand the behaviour of gpnc,Xnpauqq with n “ nptq. To do so we will write

gpnc,Xnpauqq “Mpau, nq ` Lpau, nq(3.10)

`

n´1
ÿ

i“k0

`

cb1pψic´ck0pXk0pauqq ´ Ippi´ 1qc, icq
˘

gpic,Xipauqqq
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where

Mpau, nq :“
n´1
ÿ

i“k0

e´Ip0,icqYi`1pauq

is a martingale term that we will apply Theorem 3.2.6 to and Lpau, nq is a remainder term

which we will show is small in Lemma 3.4.2. By our assumptions on bpxq and the intermediate

value theorem, there exists unique x` and x´ such that,

b1px`q “ b1px´q “ λup1´ δ
˚q

where δ˚ ą 0 is a constant and a´s ă x´ ă au ă x` ă a`s . Therefore, we introduce a

stopping time T1 defined as,

T1 “ inf ts ě t0 : ψs´t0pXk0pauqq R rx´, x`su .

Thus, by the assumptions on bpxq, if t0 ď s ď T1 then

(3.11) p1´ δ˚qλu ď b1pψs´t0pXk0pauqq ď λu.

However, in order to prove convergence of
ˇ

ˇXnptq ´ ψt´ck0pXk0pauqq
ˇ

ˇ we will also need to

assume that both T1 and eIp0,tq are not too large and thus we introduce a second stopping

time,

(3.12) T ˚1 “ min

ˆ

T1, inf
sąt0

!

s : eIp0,sq ą c´
1
4 e

Ip0,t0q
8

)

, c´
1
2

˙

and evaluate gpt,Xnptqpauqq for t0 ď t ă T ˚1 . In Section 3.4.2 we will analyse this stopping

time and show the process leaves the interval rx´, x`s before either of the other upper bounds

in T ˚1 and hence T ˚1 “ T1. Therefore, we first need to find upper bounds on |Mpau, nptqq|

and |Lpau, nptqq| for t0 ď t ď T ˚1 . We start by bounding |Mpau, nptqq| with the following

result.

Lemma 3.4.1. Let Mpau, nptqq be defined as above then,

lim
t0Ñ8

lim
cÑ0

P

˜

sup
t0ďsďT

˚
1

|Mpau, npsqq| ą c
1
4 e´

7
8
Ip0,t0q

¸

“ 0.

Proof. Recall,

Mpau, nptqq “

nptq
ÿ

i“k0`1

e´Ip0,pi´1qcqYipauq.
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As in the previous section we will use Theorem 3.2.6. First, by equation (3.11), for every

x P p0, 1q, each k0 ` 1 ď i ď nptq and t0 ď t ď T ˚1 , there exists a constant δ ą 0 such that,

|e´Ip0,pi´1qcqYipxq| ď δe´Ip0,t0q
?
c

for sufficiently small c. Furthermore, in the previous sections we have shown for each x,

E
`

Yipxq
2|Fi´1

˘

“ρ0c
3
2hνpXi´1pxqq ´ βνpXi´1pxqq

2

`

ˆ
ż 1

0
rγP pXi´1pxq ´ θq

2hνpθqdθ ´ ρ0c
3
2hνpXi´1pxqq

˙

.

From the bounds in Lemmas 3.2.2 and 3.2.4 there exists a constant δ ą 0 such that

|βνpXi´1pxqq| ď δc and
ˇ

ˇ

ˇ

ş1
0 γ̃px´ θq

2hνpθqdθ ´ ρ0c
3
2hνpxq

ˇ

ˇ

ˇ
ď δc2 logpc´1q, therefore for

0 ď i ď nptq and t0 ď t ď T ˚1 ,

E
´

e´2Ip0,pi´1qcqYipauq
2|Fi´1

¯

ď e´2Ip0,pi´1qcqρ0c
3
2hνpXi´1pauqq ` e

´2Ip0,pi´1qcqδpc2 ` c2 logpc´1qq

ď 2ρ0hνpXi´1pauqqc
3
2 e´2Ip0,pi´1qcq

for sufficiently small c, where the last bound follows from equation (3.11). Therefore,

nptq
ÿ

i“k0`1

E
´

e´2Ip0,pi´1qcqYipauq
2|Fi´1

¯

ď 2ρ0}hν}8c
1
2

nptq
ÿ

i“k0`1

ce´2Ip0,pi´1qcq

we can approximate this sum with a Riemann integral to show

nptq
ÿ

i“k0`1

E
´

e´2Ip0,pi´1qcqYipauq
2|Fi´1

¯

ď
ρ0}hν}8
λup1´ δ˚q

c
1
2 e´2Ip0,t0q

for c sufficiently small. Thus let δ ě ρ0}hν}8
λup1´δ˚q

then for sufficiently small c,

nptq
ÿ

i“k0

E
´

e´2Ip0,pi´1qcqYipauq
2|Fi´1

¯

ď δc
1
2 e´2Ip0,t0q.

By Theorem 3.2.6,

P
ˆ

sup
t0ďsďt

Mpau, npsqq ą rc
1
4 e´Ip0,t0q

˙

ď exp

¨

˝

´r2c
1
2 e´2Ip0,t0q

2
´

rc
3
4 e´2Ip0,t0q ` δc

1
2 e´2Ip0,t0q

¯

˛

‚.
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Hence, if r ă δc´
1
4 , then,

P
ˆ

sup
t0ďsďt

|Mpau, npsqq| ą rc
1
4 e´Ip0,t0q

˙

ď2 exp

ˆ

´r2

2δ

˙

.

Thus we choose r “ e
1
8
Ip0,t0q, then for t0 ď t ď T ˚1 ,

lim
t0Ñ8

lim
cÑ0

P
ˆ

sup
t0ďsďt

|Mpau, npsqq| ą c
1
4 e´

7
8
Ip0,t0q

˙

“ 0.

�

Lemma 3.4.2. Let Lpau, nptqq be defined as in equation (3.10) and let t0 ď t ă T ˚1 .

Assume that

sup
t0ďsďt

|gps,Xnpsqpauqq| ď c
1
4 e´

3
4
Ip0,t0q

then it follows that,

sup
t0ďsďt

|Lpau, npsqq| ă c
1
4 e´

7
8
Ip0,t0q.

Proof. We will show we can write gpnc,Xnpauqq in the form of equation (3.10) and

then we will find bounds on Lpau, npsqq under our assumption. We can write gpnc,Xnpauqq

as a telescopic sum,

gpnc,Xnpauqq “
n´1
ÿ

i“k0

pgppi` 1qc,Xi`1pauqq ´ gpic,Xipauqqq

“

n´1
ÿ

i“k0

´

gppi` 1qc,Xi`1pauqq ´ e
Ipic,pi`1qcqgppi` 1qc,Xi`1pauqq

¯

`

n´1
ÿ

i“k0

´

eIpic,pi`1qcqgppi` 1qc,Xi`1pauqq ´ gpic,Xipauqq
¯

.

By Taylor expanding p1´ eIpic,pi`1qcqq the first summation can be written as

n´1
ÿ

i“k0

´

gppi` 1qc,Xi`1pauqq ´ e
Ipic,pi`1qcqgppi` 1qc,Xi`1pauqq

¯

“ ´

n´1
ÿ

i“k0

Ippi´ 1qc, icqgpic,Xipauqq ´R1pau, nq
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where R1pau, nq is a remainder term,

R1pau, nq “
n´1
ÿ

i“k0

eζi

2
Ipic, pi` 1qcq2gppi` 1qc,Xi`1pauqq

` Ippn´ 1qc, ncqgpnc,Xnpauqq ´ Ippk0 ´ 1qc, k0cqgpk0c,Xk0pauqq

for some 0 ď ζi ď Ipic, pi` 1qcq. With the assumption on gps,Xnpsqpauqq it follows that,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

npsq´1
ÿ

i“k0

eζi

2
Ipic, pi` 1qcq2gppi` 1qc,Xi`1pauqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
λue

λuc

2
c
5
4 e´

3
4
Ip0,t0q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

npsq´1
ÿ

i“k0

Ipic, pi` 1qcq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
λue

λuc

2
c
5
4 e´

3
4
Ip0,t0qIpt0, tq

ď
λue

λuc

2
c
5
4 e´

3
4
Ip0,t0q

ˆ

logpc´
1
4 q ` λu

t0
8

˙

where the last inequality follows from the definition of T ˚1 . Consequently,

sup
t0ďsďt

|R1pau, npsqq| ď
λue

λu

2
c
5
4 e´

3
4
Ip0,t0q

ˆ

logpc´
1
4 q ` λu

t0
8

˙

.

Now recall Xipauq “ au ` Sipauq `
ři
k“1 βνpXk´1pauqq, therefore,

n´1
ÿ

i“k0

´

eIpic,pi`1qcqgppi` 1qc,Xi`1pauqq ´ gpic,Xipauqq
¯

“Mpau, nq `
n´1
ÿ

i“k0

e´Ip0,icqβνpXipauqq

´

n´1
ÿ

i“k0

e´Ip0,icqpψpi`1qc´ck0pXk0pauqq ´ ψic´ck0pXk0pauqqq

“Mpau, nq `
n´1
ÿ

i“k0

e´Ip0,icq pβνpXipauqq ´ cbpψic´ck0pXk0pauqqqq `R2pau, nq

where R2pau, nq is a remainder term left by the Taylor expansion,

R2pau, nq “ c2
nptq´1
ÿ

i“k0

:ψρi´ck0pXk0pauqqe
´Ip0,icq

for some ic ď ρi ď pi` 1qc. Thus,

|R2pau, npsqq| ď }b}8}b
1}8c

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

npsq´1
ÿ

i“k0

ce´Ip0,icq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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By approximating the summation by a Riemann integral we see that,

sup
t0ďsďt

|R2pau, npsqq| ď
}b}8}b

1}8

λup1´ δ˚q
ce´Ip0,t0q.

Then, by Lemma 3.2.3 we know |βνpXi´1pauqq ´ cbpXi´1pauqq| ă δc
3
2 logpc´1q where δ ą 0

is a constant. Therefore,

n´1
ÿ

i“k0

´

eIpic,pi`1qcqgppi` 1qc,Xi`1pauqq ´ gpic,Xipauqq
¯

“Mpau, nq `
n´1
ÿ

i“k0

e´Ip0,icqc pbpXipauqq ´ bpψic´ck0pXk0pauqqqq `R2pau, nq `R3pau, nq

where R3pau, nq is a remainder term, R3pau, nq “
řn´1
i“k0

e´Ip0,icq pβνpXipauqq ´ cbpXipauqqq.

Thus, using the same Riemann integral approximation as above along with the bound from

Lemma 3.2.3, |βνpXi´1pxqq ´ cbpXi´1pxqq| ă δc
3
2 logpc´1q, for some constant δ ą 0, we see

that

sup
t0ďsďt

|R3pau, npsqq| ď
δc

1
2 logpc´1q

λup1´ δ˚q
e´Ip0,t0q.

Finally, we can Taylor expand once more to write,

n´1
ÿ

i“k0

´

eIpic,pi`1qcqgppi` 1qc,Xi`1pauqq ´ gpic,Xipauqq
¯

“Mpau, nq `
n´1
ÿ

i“k0

cb1pψic´ck0pXk0pauqqqe
´Ip0,icq pXipauq ´ ψic´ck0pXk0pauqqq

`R2pau, nq `R3pau, nq `R4pau, nq

“Mpau, nq `
n´1
ÿ

i“k0

cb1pψic´ck0pXk0pauqqqgpic,Xipauqq `R2pau, nq `R3pau, nq `R4pau, nq

where R4pau, nq “
řn´1
i“k0

e´Ip0,icqcb2pµiqpXipauq ´ ψic´ck0pXk0pauqqq
2, for some

ψic´ck0pXk0pauqq ď µi ď Xipauq, is the remainder term left by the Taylor expansion. By our

assumption on gps,Xnpsqpauqq it follows that,

sup
k0ďiďnptq

|gpic,XipauqqpXipauq ´ ψic´ck0pXk0pauqqq| ă c
1
2 e´

3
2
Ip0,t0qeIp0,icq.



3.4. ANALYSIS OF CRITICAL TIME WINDOW 116

Therefore,

sup
t0ďsďt

|R4pau, npsqq| ď }b
2}8c

1
2 e´

3
2
Ip0,t0q sup

t0ďsďt

npsq´1
ÿ

i“k0

ceIp0,icq.

We can approximate this sum with a Riemann integral again to reach the upper bound,

sup
t0ďsďt

|R4pau, npsqq| ď
}b2}8

λup1´ δ˚q
c
1
2 e´

3
2
Ip0,t0qeIp0,tq.

However, since t0 ď t ď T ˚1 , we can use the upper bound eIp0,tq ď c´
1
4 e

Ip0,t0q
8 to deduce that

eIp0,tq ď c´
1
4 e

Ip0,t0q
8 , thus,

sup
t0ďsďt

|R4pau, npsqq| ď
}b2}8

λup1´ δ˚q
c
1
4 e´

11
8
Ip0,t0q.

So combining the summations above we see that,

gpnc,Xnpauqq “Mpau, nq ` Lpau, nq

`

n´1
ÿ

i“k0

`

cb1pψic´ck0pXk0pauqq ´ Ippi´ 1qc, icq
˘

gpic,Xipauqqq

where Lpau, nq “ R2pau, nq `R3pau, nq `R4pau, nq ´R1pau, nq. Thus,

sup
t0ďsďt

|Lpau, npsqq| ă sup
t0ďsďt

|R1pau, npsqq| ` sup
t0ďsďt

|R2pau, npsqq|

` sup
t0ďsďt

|R3pau, npsqq| ` sup
t0ďsďt

|R4pau, npsqq|.

If we combine all of the upper bounds above, we see that for c sufficiently small it holds that,

sup
t0ďsďt

|Lpau, npsqq| ă c
1
4 e´

7
8
Ip0,t0q.

�

Theorem 3.4.3. Let t0 and the stopping time T ˚1 be defined as above then,

lim
t0Ñ8

lim
cÑ0

P

˜

sup
t0ďsďT

˚
1

ˇ

ˇXnpsq pauq ´ ψs´t0 pXk0 pauqq
ˇ

ˇ ą e´
1
2
Ip0,t0q

¸

“ 0.
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Proof. In equation (3.10) we showed that,

gpnc,Xnpxqq “Mpau, nq ` Lpau, nq

`

n´1
ÿ

i“k0

`

cb1pψic´ck0pXk0pauqq ´ Ippi´ 1qc, icq
˘

gpic,Xipauqqq

So consider,

ˇ

ˇcb1pψic´ck0pXk0pauqq ´ Ippi´ 1qc, icq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

cb1pψic´ck0pXk0pauqq ´

ż ic

pi´1qc
b1pψr´t0pXk0pauqqdr

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż ic

pi´1qc

ˇ

ˇb1pψic´ck0pXk0pauqq ´ b
1pψr´t0pXk0pauqq

ˇ

ˇ dr

ď }b2}8}b}8

ż ic

pi´1qc
|ic´ r| dr

ď c2}b2}8}b}8

where the penultimate inequality follows from the Mean Value Theorem. Thus, by letting

n “ nptq we see that,

|gpt,Xnptqpxqq| ď sup
t0ďsďt

|Mpau, npsqq| ` sup
t0ďsďt

|Lpau, npsqq|

` c}b2}8}b}8

ż t

t0

|gps,Xnpsqpauqqq|ds.

Then define the stopping time

T “ inf
sět0

ts : |gps,Xnpsqpauqq| ą c
1
4 e´

3
4
Ip0,t0qu.

Then if t0 ď t ă minpT , T ˚1 q by Lemma’s 3.4.1 and 3.4.2 it holds that,

lim
t0Ñ8

lim
cÑ0

P
ˆˆ

sup
t0ďsďt

|Mpau, npsqq| ` sup
t0ďsďt

|Lpau, npsqq|

˙

ą 2c
1
4 e´

7
8
Ip0,t0q

˙

“ 0.

Therefore by Gronwall’s inequality, if t0 ď t ă minpT , T1q then with high probability,

|gpt,Xnptqpxqq| ď 2c
1
4 e´

7
8
Ip0,t0qept´t0qc}b

2}8}b}8 .

However, for t0 sufficiently large and c sufficiently small then 2c
1
4 e´

7
8
Ip0,t0qept´t0qc}b

2}8}b}8 ă

c
1
4 e´

3
4
Ip0,t0q and thus high probability the stopping time T did not occur. Therefore, for
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t0 ď t ď T ˚1 ,

lim
t0Ñ8

lim
cÑ0

P
ˆ

sup
t0ďsďt

ˇ

ˇXnpsq pauq ´ ψs´t0 pXk0 pauqq
ˇ

ˇ ą e´
1
2
Ip0,t0q

˙

“ 0.

�

We can now use Theorem 3.4.3 along with Theorem 3.2.9 to classify the harmonic mea-

sure on a critical time window. The following result holds.

Theorem 3.4.4. Let the stopping time T ˚1 be defined as above and let T ě 0 be fixed.

Then for any ε ą 0

lim
t0Ñ8

lim
cÑ0

P

˜

sup
T˚1 ´TătăT

˚
1 `T

|Xnptqpauq ´ ψt´t0 pXk0 pauqq | ą ε

¸

“ 0.

Proof. Recall that

Xnpxq “
1

2πi
logpΓnpe

2πixqq

with Γnpxq “ φ´1
n pxq “ f´1

n ˝ ... ˝ f´1
1 pxq. Then for n ą k we first define

Γn,kpxq “ f´1
n ˝ ... ˝ f´1

k`1pxq

with Γn,0 “ Γn and Γn,k “ Γn,m ˝ Γm,k for k ă m ă n. With this definition we can also

define for k ă n,

Xn,kpxq “
1

2πi
logpΓn,kpe

2πixqq.

Therefore, for 0 ă k ă n,

Xnpxq “
1

2πi
log

`

Γn,k ˝ Γk,0pe
2πixq

˘

“
1

2πi
log

`

Γn,k ˝
`

exp
 

logpΓk,0pe
2πixqq

(˘˘

“
1

2πi
log pΓn,k ˝ pexp t2πiXkpxquqq

“ Xn,kpXkpxqq.
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We assume that T ˚1 ď t ď T ˚1 ` T then,

Xnptqpauq “ Xnptq,npT˚1 q

´

XnpT˚1 q
pauq

¯

.

Therefore,

|Xnptqpauq ´ ψt´t0 pXk0 pauqq | ď |Xnptq,npT˚1 q

´

XnpT˚1 q
pauq

¯

´ ψt´T˚1

´

XnpT˚1 q
pauq

¯

|

` |ψt´T˚1

´

XnpT˚1 q
pauq

¯

´ ψt´T˚1

´

ψT˚1 ´t0pXk0 pauqq
¯

|

We note that Xn,k and Xn´k are measurable with respect to separate σ-algebras dependent

on the choice of angles but are equal in distribution. Therefore, we can use this fact along

with a version of Theorem 3.2.9 to show that for any ε ą 0 and fixed T ě 0,

lim sup
cÑ0

P

˜

sup
T˚1 ´TďtďT

˚
1 `T

|Xnptq,npT˚1 q

´

XnpT˚1 q
pauq

¯

´ ψt´T˚1

´

XnpT˚1 q
pauq

¯

| ą ε

¸

“ 0.

Then for the second term,

sup
T˚1 ´TďtďT

˚
1 `T

|ψt´T˚1

´

XnpT˚1 q
pauq

¯

´ ψt´T˚1

´

ψT˚1 ´t0pXk0 pauqq
¯

|

ď sup
T˚1 ´TďtďT

˚
1 `T

|ψ1t´T˚1
pxq||XnpT˚1 q

pauq ´ ψT˚1 ´t0pXk0 pauqq|

ď eλuT |XnpT˚1 q
pauq ´ ψT˚1 ´t0pXk0 pauqq|

for any x and where the last inequality follows by equation (3.9). Therefore, by Theorem

3.4.3,

P

˜

sup
T˚1 ´TďtďT

˚
1 `T

|ψt´T˚1

´

XnpT˚1 q
pauq

¯

´ ψt´T˚1

´

ψT˚1 ´t0pXk0 pauqq
¯

| ą eλuT´
1
2
Ip0,t0q

¸

Ñ 0

as c Ñ 0 and then t0 Ñ 8. Thus, as T ě 0 is fixed for any ε ą 0 we can choose t0 large

enough such that 0 ă eλuT e´
1
2
Ip0,t0q ă ε. Therefore, for any ε ą 0

lim
t0Ñ8

lim
cÑ0

P

˜

sup
T˚1 ´TătăT

˚
1 `T

|Xnptqpauq ´ ψt´t0 pXk0 pauqq | ą ε

¸

“ 0.

�

3.4.2. Analysing the stopping time. The aim for this section is to analyse the stop-

ping time T ˚1 and show that with high probability it is close to 1
4λu

logpc´1q plus an error
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term which is tight in c. Recall the definition of the stopping time T ˚1 from equation (3.12),

T ˚1 “ min

ˆ

T1, inf
sąt0

!

s : e
şs
0 b
1pψr´t0 pXk0 pauqqdr ą c´

1
4 e

Ip0,t0q
8

)

, c´
1
2

˙

with

T1 “ inf
sět0

ts : ψs´t0pXk0pauqq R rx´, x`su

and the values x´ and x` are defined such that

b1px`q “ b1px´q “ λup1´ δ
˚q

for 0 ď δ˚ ă 1 and a´s ă x´ ă au ă x` ă a`s . We first show that with high probability

T ˚1 “ T1 and as c Ñ 0 and t0 Ñ 8 the stopping time T ˚1 occurs within a bounded time of
1

4λu
logpc´1q. We state the result as follows.

Theorem 3.4.5. With the stopping time T ˚1 defined as above then with high probability

T ˚1 “ T1 and for any ε ą 0 there exists a constant rTε ą 0 such that

lim
t0Ñ8

lim
cÑ0

P
ˆ
ˇ

ˇ

ˇ

ˇ

T ˚1 ´
1

4λu
logpc´1q

ˇ

ˇ

ˇ

ˇ

ą rTε

˙

ă ε.

Proof. The proof of this theorem is split into two parts. First we will analyse the

time at which the process ψs´t0pXk0pauqq leaves the interval rx´, x`s and show that for c

sufficiently small and t0 sufficiently large this occurs before both other bounds on T ˚1 and

thus show that T ˚1 “ T1. Then, in the second part of the proof, we will use this to show that,

with high probability, as cÑ 0 and t0 Ñ8, T ˚1 is within a compact time of 1
4λu

logpc´1q.

First, since Z8pauq is a Gaussian with mean 0 and finite variance it follows that for every

ε ą 0 there exists a constant Cε ą 0 such that

P
ˆ

Cε ă |Z8pauq| ă
1

Cε

˙

ă
ε

3
.(3.13)

But we know that Zt0pauq Ñ Z8pauq in distribution as t0 Ñ8, thus if t0 is sufficiently large

then,

P
ˆ

Cε ă |Zt0pauq| ă
1

Cε

˙

ă
2ε

3
.(3.14)
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Moreover, by Theorem 3.3.1, rZnpt0qpauq Ñ Zt0pauq in distribution as c Ñ 0, thus if c is

sufficiently small then,

P
ˆ

Cε ă | rZnpt0qpauq| ă
1

Cε

˙

ă ε.(3.15)

Note that Cε is only dependent on the choice of ε and not c nor t0. We define the following

additional random variable,

rΨt0 “

$

’

’

’

&

’

’

’

%

x` if rZnpt0q ą 0;

x´ if rZnpt0q ă 0;

au if rZnpt0q “ 0.

Then, on the event defined in equation (3.15),

min tx` ´ au, au ´ x´u ă |rΨt0 ´ au| ă max tx` ´ au, au ´ x´u ,

thus we let

rT´ε “
1

λu
log

ˆ

1

min tx` ´ au, au ´ x´uCε

˙

, rT`ε “
1

λu
log

ˆ

2 max tx` ´ au, au ´ x´u

Cε

˙

.

We will restrict to this event and evaluate the stopping time T1, which is the first time

s ą t0 such that ψs´t0pXk0pauqq “
rΨt0 . We know that ψs´t0pXk0pauqq “ ψspψ

´1
t0
pXk0pauqq

and thus by Theorem 3.3.1 it follows that

ψs´t0pXk0pauqq “ ψspau ` c
1
4 rZnpt0qpauqq.

Hence, we need to evaluate the first time s ą t0 such that

ψspau ` c
1
4 rZnpt0qpauqq “

rΨt0 .

We can Taylor expand this term,

ψspau ` c
1
4 rZnpt0qpauqq “ ψspauq ` ψ

1
spηqpc

1
4 rZnpt0qpauqq

“ au ` ψ
1
spηqpc

1
4 rZnpt0qpauqq
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for some au ă η ă au ` c
1
4 rZnpt0qpauq. Thus, we want to calculate the first time s ą t0 such

that,

au ` ψ
1
spηqpc

1
4 rZnpt0qpauqq “

rΨt0 ,

or equivalently T1 is the first time s ą t0 such that,

(3.16) ψ1spηq “
prΨt0 ´ auq

c
1
4 rZnpt0qpauq

.

However, by the definition of ψtpxq, for all x P p0, 1q it holds that b1pψtpxqq “
9ψ1tpxq
ψ1tpxq

. Fur-

thermore, we chose the points x` and x´ such that, b1px`q “ b1px´q “ λup1 ´ δ˚q, so for

au ă η ă au ` c
1
4 rZnpt0qpauq and all t0 ď s ď T1 ,

ep1´δ
˚qλus ď ψ1spηq ď eλus.

Now, by substituting the equality from equation (3.16) into this expression we see that,

1

λu
log

˜

rΨt0 ´ au

c
1
4 rZnpt0qpauq

¸

ď T1 ď
1

λup1´ δ˚q
log

˜

rΨt0 ´ au

c
1
4 rZnpt0qpauq

¸

Consequently, by restricting to the event defined in equation (3.15) it follows that,

1

4λu
logpc´1q ´ rT´ε ď T1 ď

1

4λup1´ δ˚q
logpc´1q `

1

p1´ δ˚q
rT`ε .(3.17)

Hence, on this event,

T1 ă
1

2λup1´ δ˚q
logpc´1q `

1

p1´ δ˚q
rT`ε ă c´

1
2

and thus we can discard the c´
1
2 upper bound in T ˚1 . Moreover, since b1pxq is strictly

decreasing away from au, and au ă η ă au` c
1
4 rZnpt0qpauq, by equation (3.16) we can deduce

that,

prΨt0 ´ auq

c
1
4 rZnpt0qpauq

ą ψ1T1

´

au ` c
1
4 rZnpt0qpauq

¯

“ e
şT1
0 b1pψr´t0 pXk0 pauqqdr.
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Now suppose that there exists an t0 ď s ă T1 such that eIp0,sq ą c´
1
4 e

Ip0,t0q
8 then

prΨt0 ´ auq

c
1
4 rZnpt0qpauq

ą c´
1
4 e

Ip0,t0q
8 .

However, as cÑ 0, e
Ip0,t0q

8 Ñ e
λut0

8 , and e
λut0

8 Ñ8 as t0 Ñ8, therefore, by equation (3.13),

the above inequality is a contradiction for c sufficiently small and t0 chosen sufficiently large.

Consequently, after restricting to the event above, it follows that with high probability

T ˚1 “ T1.

Now all that remains to show is that, as c Ñ 0 and t0 Ñ 8, T ˚1 is within a compact

time of 1
4λu

logpc´1q. The lower bound follows by equation (3.17) and thus we just need to

find the upper bound. To do so recall that T1 is defined as the first time s ą t0 such that,

ψspau ` c
1
4 rZnpt0qpauqq “

rΨt0 .

Without loss of generality we suppose rZnpt0qpauq ą 0. Then, as above, by restricting to the

event defined in equation (3.15),

au ` c
1
4Cε ăau ` c

1
4 rZnpt0qpauq

hence, since ψspxq is monotone in x,

ψs

´

au ` c
1
4Cε

¯

ăψs

´

au ` c
1
4 rZnpt0qpauq

¯

.

We can Taylor expand the lower bound around au to reach,

au ` e
λusc

1
4Cε ` ψ

2
spρqc

1
2C2

ε ăψs

´

au ` c
1
4 rZnpt0qpauq

¯

with au ď ρ ď au ` c
1
4Cε. Now let s “ 1

4λu
logpc´1q ` rT`ε and assume s ă T1, then

au ` e
λu rT

`
ε Cε ` ψ

2
spρqc

1
2C2

ε ăψs

´

au ` c
1
4 rZnpt0qpauq

¯

.

By the definition of ψtpxq we can show

ψ2spρq “ exp

ˆ
ż s

0
b1pψrpρqqdr

˙
ż s

0

ˆ

b2pψrpρqq exp

ˆ
ż r

0
b1pψupρqqdu

˙˙

dr.
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Thus, since au ď ρ ď au ` c
1
4Cε and s ă T1 it follows that,

|ψ2spρq| ď
}b2}8

λup1´ δ˚q
exp

ˆ

2

ż s

0
b1pψrpρqqdr

˙

ď
}b2}8

λup1´ δ˚q
e2λus “

}b2}8
λup1´ δ˚q

e2λu rT
`
ε c´

1
2 .

So for Cε sufficiently small

au `
1

2
eλu

rT`ε Cε ă ψs

´

au ` c
1
4 rZnpt0qpauq

¯

.

Thus by our choice of rT`ε ,

x` ă ψs

´

au ` c
1
4 rZnpt0qpauq

¯

which contradicts our assumption that s ă T1, hence, T1 ă
1

4λu
logpc´1q` rT`ε . We can prove

a similar argument for rZnpt0qpauq ă 0 by considering at which time the process leaves the

interval at x´. Therefore, let rTε “ maxp rT´ε , T
`
ε q then for any ε ą 0 there exists a rTε ą 0

such that

lim
t0Ñ8

lim
cÑ0

P
ˆ
ˇ

ˇ

ˇ

ˇ

T ˚1 ´
1

4λu
logpc´1q

ˇ

ˇ

ˇ

ˇ

ą rTε

˙

ă ε.

�

Therefore, we know now that the difference between the stopping time T ˚1 and
1

4λu
logpc´1q is tight, and we can state our main result.

Theorem 3.4.6. Let Xnptqpxq and ψtpxq be defined as above. Let T ě 0 be fixed, then

lim
cÑ0

sup
0ătă 1

4λu
logpc´1q`T

ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4Z8pauq

¯
ˇ

ˇ

ˇ
“ 0

in probability.

Proof. We first consider the following upper bound,

ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4Z8pauq

¯ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4 rZnpt0qpauq

¯ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
ψt

´

au ` c
1
4 rZnpt0qpauq

¯

´ ψt

´

au ` c
1
4Z8pauq

¯ˇ

ˇ

ˇ
.

First, we evaluate
ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4 rZnpt0qpauq

¯
ˇ

ˇ

ˇ
. In Theorem 3.4.4 we showed that

for fixed T̂ ě 0,

sup
t0ătăT

˚
1 `T̂

ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4 rZnpt0qpauq

¯ˇ

ˇ

ˇ
Ñ 0
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in probability as c Ñ 0 and t0 Ñ 8. Let T̂ “ 1
4λu

logpc´1q ´ T ˚1 ` T for some fixed T then

by Theorem 3.4.5 it follows that for any ε ą 0 there exists a rTε ą 0 such that

lim
t0Ñ8

lim
cÑ0

P
ˆˇ

ˇ

ˇ

ˇ

T ˚1 ´
1

4λu
logpc´1q

ˇ

ˇ

ˇ

ˇ

ą rTε

˙

ă ε.

Thus, with high probability T̂ is compact and so by combining Theorem’s 3.4.4 and 3.4.5,

lim
t0Ñ8

lim
cÑ0

sup
t0ătă

1
4λu

logpc´1q`T

ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4 rZnpt0qpauq

¯
ˇ

ˇ

ˇ
“ 0

in probability. Hence, all that remains to show is that

ˇ

ˇ

ˇ
ψt

´

au ` c
1
4 rZnpt0qpauq

¯

´ ψt

´

au ` c
1
4Z8pauq

¯ˇ

ˇ

ˇ

also converges to 0 in probability. We can Taylor expand each term to write

ˇ

ˇ

ˇ
ψt

´

au ` c
1
4 rZnpt0qpauq

¯

´ ψt

´

au ` c
1
4Z8pauq

¯
ˇ

ˇ

ˇ
“ c

1
4

ˇ

ˇ

ˇ
ψ1tpρq

rZnpt0qpauq ´ ψ
1
tpηqZ8pauq

ˇ

ˇ

ˇ

ď c
1
4 }ψ1t}8

ˇ

ˇ

ˇ

rZnpt0qpauq ´ Z8pauq
ˇ

ˇ

ˇ

where au ď ρ ď au` c
1
4 rZnpt0qpauq and au ď η ď au` c

1
4Z8pauq. However, by equation (3.9),

for 0 ă t ă 1
4λu

logpc´1q ` T ,

ˇ

ˇ

ˇ
ψt

´

au ` c
1
4 rZnpt0qpauq

¯

´ ψt

´

au ` c
1
4Z8pauq

¯ˇ

ˇ

ˇ

ď eλuT
ˇ

ˇ

ˇ

rZnpt0qpauq ´ Z8pauq
ˇ

ˇ

ˇ

ď eλuT
ˇ

ˇ

ˇ

rZnpt0qpauq ´ Zt0pauq
ˇ

ˇ

ˇ
` eλuT |Zt0pauq ´ Z8pauq| .

By our assumptions at the start of this section rZnpt0qpauq Ñ Zt0pauq in probability as cÑ 0

and Zt0pauq Ñ Z8pauq in probability as t0 Ñ 8. As a result, if we take the limit as c Ñ 0

followed by the limit as t0 Ñ8 we see that,

lim
t0Ñ8

lim
cÑ0

sup
0ătă 1

4λu
logpc´1q`T

ˇ

ˇ

ˇ
ψt

´

au ` c
1
4 rZnpt0qpauq

¯

´ ψt

´

au ` c
1
4Z8pauq

¯ˇ

ˇ

ˇ
“ 0

in probability. �

Finally we can now prove that if the harmonic measure flow gets close enough to the

stable point then we will remain close to the stable trajectory.
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Theorem 3.4.7. Let x be chosen close to one of the stable fixed points of ψtpxq such that

b1pxq ă 0. Then for any ε ą 0,

lim
cÑ0

P
ˆ

sup
0ďtă8

ˇ

ˇXnptqpxq ´ ψt pxq
ˇ

ˇ ą ε

˙

“ 0.

Proof. The proof will follow a similar method to results presented above where the

process is close to the unstable point. We start by defining the stopping time

pT0 “ inf
rě0
tr :

ˇ

ˇXnprqpxq ´ ψr pxq
ˇ

ˇ ą c
1
6 u.

Let λs denote the eigenvalue of at the stable fixed points, then throughout the remainder of

the proof we can assume p1 ´ pδq|λs| ă |b
1pψtpxqq| ă |λs| for some constant 0 ď pδ ă 1. Now

denote

pIpt1, t2q :“

ż t2

t1

b1pψspxqds

and let

hpt, yq :“ e´
pIp0,tq py ´ ψtpxqq .

Then using a similar method to Lemmas 3.4.1, 3.4.2 and 3.4.3 we can write,

hpnc,Xnpxqq “ xMpas, nq ` pLpas, nq `
n´1
ÿ

i“0

´

cb1pψic´pxq ´ pIppi´ 1qc, icq
¯

hpic,Xipxqqq

(3.18)

where xMpas, nq “
řn´1
i“0 e

´pIp0,icqYi`1pxq and by our choice of stopping time, if 0 ď t ă T0,

sup
0ďrďt

|pLpas, nprqq| ď c
1
5 e´

pIp0,tq

with the difference in the upper bound resulting from the change of sign of b1 near the stable

point. Furthermore, using a similar method as in Lemma 3.4.1 we can show that there exists

a δ ą 0 such that,

P
ˆ

sup
0ďrďt

|xMpas, nprqq| ą 4p1` δqc
1
4 logpc´1qe´

pIp0,tq

˙

ď c2 exp

ˆ

´1

2p1` δq

˙

ď c2.
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Thus, we restrict to this event. Then, by equation (3.18), if 0 ď t ă pT0 with high probability,

|hpt,Xnptqpxqq| ď 2c
1
5 e´

pIp0,tq ` sup
0ďrďt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nprq´1
ÿ

i“0

´

cb1pψicpxq ´ pIppi´ 1qc, icq
¯

h pic,Xipxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then we can use a similar method to Lemma 3.4.3 and by the definition of the stopping

time pT0, if 0 ď t ă pT0 then,

sup
0ďrďt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nprq´1
ÿ

i“0

´

cb1pψicpxq ´ pIppi´ 1qc, icq
¯

hpic,Xipxqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď c
7
6 }b2}8}b}8

nptq´1
ÿ

i“0

ce´
pIp0,icq

ď
c
7
6 }b2}8}b}8e

´pIp0,tq

|λs|
´

1´ pδ
¯ .

Therefore, if 0 ď t ă pT0, for c sufficiently small, with high probability,

ˇ

ˇXnptqpxq ´ ψt pxq
ˇ

ˇ ă c
1
6

and thus the stopping time pT0 did not occur. Hence,

lim
cÑ0

lim
tÑ8

P
ˆ

sup
0ďrďt

ˇ

ˇXnprqpxq ´ ψr pxq
ˇ

ˇ ą ε

˙

“ 0.

Let Ωt be the event,

Ωt :“

"

sup
0ďrďt

ˇ

ˇXnprqpxq ´ ψr pxq
ˇ

ˇ ą ε

*

where t is an integer. However, since the events tΩtutě0 are increasing in t it follows that

limtÑ8 P
`
Ťt
r“1 Ωr

˘

“ P
`
Ť8
r“1 Ωr

˘

, thus,

lim
cÑ0

P
ˆ

sup
0ďtă8

ˇ

ˇXnptqpxq ´ ψt pxq
ˇ

ˇ ą ε

˙

“ 0.

�

Theorem 3.4.6 shows that when 0 ă t ă 1
4λu

logpc´1q`T the harmonic measure started at

the unstable pointXnptqpauqmoves a macroscopic distance from au. Once at this macroscopic

distance the process will remain close to the trajectory started at ψt
´

au ` c
1
4Z8pauq

¯

which

will converge towards the stable point. However, by Theorem 3.4.7 once the process gets

close to the stable point it will remain close. Therefore, we can deduce the following corollary.
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Corollary 3.4.8. Let Xnptqpxq and ψt be defined as above. Then

lim
cÑ0

sup
0ătă8

ˇ

ˇ

ˇ
Xnptqpauq ´ ψt

´

au ` c
1
4Z8pauq

¯ˇ

ˇ

ˇ
“ 0

in probability, where Z8pauq is a Gaussian with mean 0 and variance given by ρ0hνpauq
2λu

.



List of Symbols for Chapter 3

Conformal random growth models

c The capacity of each of the conformal maps in HLp0q.

fc The unique single particle mapping fc : t|z| ą 1u Ñ t|z| ą 1uzp1, 1 ` ds which takes

the exterior of the unit disk to itself minus a slit of length d “ dpcq at z “ 1.

fn The nth particle map defined as where θn is the attaching angle and cn is the capacity

of the nth particle map fcnpzq. For AHLpνq, the attaching angles chosen to be i.i.d

on the unit circle according to some non-uniform probability measure ν and the

capacities are chosen to be a fixed value c

φn The conformal map which attaches a cluster of n particles to the boundary of the

unit disk φn “ f1 ˝ ... ˝ fn.

Γn The inverse map Γn “ φ´1
n .

Anistotropic Hastings-Levitov model AHLpνq

ν The measure which defines the distribution of the attaching angles on the unit circle.

hνpxq The twice continuously differentiable density of ν on R.

γpxq γpxq “ 1
2πi logpf´1

c pe2πixqq.

γ̃pxq γ̃pxq “ γpxq ´ x.

Xnpxq The discrete harmonic measure flow at x. Xnpxq “
1

2πi logpΓnpe
2πixqq.

nptq The continuous embedding with time jumps 1
c , nptq “

X

t
c

\

.

βνpxq βνpxq “
ş1
0 γ̃px´ zqhνpzqdz.

Yipxq Yipxq “ γ̃pXi´1pxq ´ θiq ´ βνpXi´1pxqq.

bpxq The Hilbert transform bpxq “ 1
2π

ş1
0 cotpπzqphνpx´ zq ´ hνpxqqdz.

ψtpxq The solution to the ordinary differential equation 9ψtpxq “ bpψtpxqq for x P R and

ψ0pxq “ x.

Φtpxq The inverse map Φtpxq “ ψ´1
t pxq.

Ztpxq The solution to the stochastic differential equation

dZtpxq “
?
ρ0Φ1tpψtpxqq

a

hνpψtpxqqdBt with Z0pxq “ 0.
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rZnpxq The fluctuations rZnpxq “ c´
1
4

`

ψ´1
nc pXnpxqq ´ x

˘

.

au, a`s , a´s The unstable fixed point, au, and stable fixed points, a`s , a´s , of bpxq with

a´s ă au ă a`s .

λu The derivative of bpxq at au.

t0 Some fixed compact time k0c where k0 does not depend on c.

Ipt1, t2q The integral Ipt1, t2q “
şt2
t1
b1pψs´t0pXk0pauqqds.

gpt, yq The rescaled difference gpt, yq “ e´Ip0,tq py ´ ψt´ck0pXk0pauqqq.

Mpau, nptqq The martingale sum Mpau, nptqq “
řnptq
i“k0`1 e

´Ip0,pi´1qcqYipauq.

x´zx` There exists x` and x´ such that, b1px`q “ b1px´q “ p1´ δ
˚qλu, for a fixed macro-

scopic distance δ˚ with a´s ă x´ ă au ă x` ă a`s .

T1 Stopping time T1 “ infsět0 ts : ψs´t0pXk0pauqq R rx´, x`su .

δ˚ A macroscopic distance such that b1px`q “ b1px´q “ λup1´ δ
˚q.

rΨt0 Random variable with values rΨt0 “ x` if rZnpt0q ą 0 or rΨt0 “ x´ if rZnpt0q ă 0 or

rΨt0 “ au if rZnpt0q “ 0.



CHAPTER 4

Thesis Conclusions

This aim of this thesis was to evaluate the scaling limits of random growth processes

formed using conformal maps. In recent years, many attempts have been made to study

individual processes such as the Eden model and DLA with varying degrees of success. As

described earlier a consequence of their random nature is that they are often extremely

difficult to study and most of the models are built on a lattice which further adds to the

difficulties because there are few mathematical tools available in order to study the model.

The introduction of the Hastings-Levitov model (HLpαq) model in [HL98] and subsequently

Aggregate Loewner Evolution (ALEpη, αq) model in [STV19] has greatly increased the

accessibility of the problems and this has resulted in significant progress in attempts to

understand the scaling limits of these models.

In this thesis we have studied two versions of the Hastings-Levitov model and con-

tributed independent research to both. First in Chapter 2 we presented a paper accepted

for publication in Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques in

which we study a regularised version of the Hastings-Levitov model under capacity rescal-

ing. We show that that under capacity rescaling the scaling limit of a regularised version

of the Hastings-Levitov model converges to a disk in the case where 0 ă α ă 2 and we

classify the fluctuations on this limit and show when represented as a holomorphic function,

they behave like a Gaussian field dependent on α. In addition we show that there exists a

phase transition at α “ 0 where the model no longer converges to a disk in contrast to the

small-particle limit. In the second paper presented in Chapter 3 we study the anisotropic

version of the Hastings-Levitov model AHLpνq. In this case, rather than attaching particles

uniformly on the boundary of the cluster, we choose to attach according to some probability

measure. We study the ancestry of the attached particles by evaluating how the harmonic

measure on the boundary of the clusters evolves. We show that up to a logarithmic time the

harmonic measure converges to a solution of a deterministic ODE but there exists a critical
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logarithmic time window where the harmonic measure flow, started from the unstable point

of the ODE, moves stochastically from an unstable trajectory towards a stable trajectory.

The overall goal of the research in this field is to have a full understanding of the scaling

limits of the individual models built to describe the real world processes, such as DLA and

the Eden model. This is a particularly challenging problem but there are vast opportunities

for future research towards this. Just a select number of these research topics include, but

are not limited to, the following:

‚ We have recently shown that if you regularise the model at 8, under capacity

rescaling the scaling limit is a disk for 0 ă α ă 2. However, this regularisation

means that the model is no longer a good representation of the real world models.

If we can remove the regularisation completely we will understand the scaling limit

for a model extremely close to DLA. The first step would be to understand exactly

what regularisation is needed for this to still hold.

‚ The Stationary Hastings-Levitov model SHLpαq recently introduced in [BPT20]

has provided a candidate for stationary off-lattice version of DLA. One of the open

questions on this model is can we define and then find properties of the model when

α ą 0? We would also like to discover the relation between the stationary case and

non-stationary models. If we can determine answers to both of these problems this

may provide a route to tackle HLpαq for α ą 0 by tackling SHLpαq.

‚ The ALE model is an extension of the Hastings-Levitov model where the attaching

angles are chosen proportional to harmonic measure. Recent results have shown

interesting scaling limits and phase transitions on the parameter η. There are

several open problems on this model, one of which is whether these phase transitions

still occur when the limit is taken under capacity rescaling.

This therefore presents many interesting and challenging problems that will hopefully

eventually lead to a greater understanding of the real world processes we are modelling.
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