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Abstract

The topic of this thesis is random growth processes. These occur naturally in many real
world settings such as in the growth of tumours and lightning strikes. As such we would like
to model the processes so that we can effectively study their properties. In particular, we
are interested in what the shape of the process is as it grows and so we wish to evaluate the

scaling limits of the random processes.

In Chapter 1, we will provide the background material needed in order to study the random
growth models. We will give examples of real world processes that we would like to study
before describing the models used to study them. We then provide some previous results in

the area to provide context for the independent research that follows.

Chapter 2 will follow |[LT21al closely. In this paper we evaluate a strongly regularised
version of the Hastings-Levitov model HL(«) for 0 < o < 2. We consider the scaling limit of
the model under capacity rescaling. We first consider the case where o = 0 and show that
the limiting structure of the cluster is not a disk, unlike in the small-particle limit. Then
when 0 < a < 2 we show that under the same rescaling the cluster approaches a disk and

we analyse the fluctuations.

In Chapter 3, we present results from a second paper [LT21b|. In this paper we study
the anisotropic version of the Hastings-Levitov model AHL(rv). We consider the evolution
of the harmonic measure on logarithmic timescales and show that there exists a logarithmic
time window on which the harmonic measure flow, started from the unstable fixed point,

moves stochastically from the unstable point towards a stable point.

Finally, in Chapter 4, we give the conclusions of this thesis and the scope for future work.
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CHAPTER 1

Background

1.1. Introduction

A random growth process is an object that evolves over time as a succession of particles
is attached to its boundary according to some underlying random structure. More explicitly,
a random growth process is defined as a increasing sequence of compact sets { K, },>1 where
K41 is formed by attaching a particle at a random point on the boundary of K,,. These
processes are regularly exhibited in the natural world [Turl9]|. Examples include tumoral
growth, lightning strikes and mineral aggregation. Often we would like to understand the
growth of the underlying natural process. For example, consider tumoral growth, the fol-
lowing figures by [GA10] display simulations on the spatial distribution of cancer cells after
90 cell generations at different consumption rates. The value k represents the consumption
rate with a low consumption rate corresponding to a large amount of oxygen in the tissue
surrounding the tumour. The authors model the process in two dimensions and show that

by changing the amount of oxygen in the surrounding tissue exhibits a change in the shape

of the cell growth [GA10].

FIGURE 1. FIGURE 2. FIGURE 3.
k = 2rc from k = 5rc from k = 10rc from

|GA10] |GA10] |GA10]
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In Figure 1, the low consumption rate produces growth in which the shape is close to a
disk. However, as the amount of oxygen available to the tumour is reduced the growth be-
comes less disk-like and Figure 3 demonstrates growth to a branched diffusion process where
the tumour only grows in directions in which oxygen becomes available. This experiment
highlights a feature that will be demonstrated throughout the rest of this thesis; by changing
a variable, such as the amount of oxygen, we see a phase transition from growth to a disk

to growth to a non-disk.

Similar growth patterns have been exhibited in several other real world processes, exam-
ples include bacteria grown in a Petri dish and soot deposits within an engine [Turl9]. In
order to study the behaviour of these real world processes we need to build mathematical
models. Since the 1960’s, models have been built in order to describe individual processes.
The most famous examples include the Eden model [Ede61] and Diffusion Limited Aggrega-
tion (DLA) [WS83]. The Eden model is used to describe bacterial colony growth, whereas
DLA describes mineral aggregation. Determining the shape of these random clusters as
they increase in size is fundamental to understanding the real world processes the models
describe. For example, understanding in which direction a tumour is likely to grow is vital
for providing better medical treatment. This therefore poses both an interesting and chal-
lenging mathematical problem which is presented as the aim of this thesis; to discover the

scaling limits of these models.

1.2. Lattice based models

Perhaps the most common way to model these random growth processes is to model them
on a lattice. Modelling on a lattice has the benefit that the models are simple to define.
Start with a particle at some point on the lattice, most often the origin, then attach the next
particle at one of the unoccupied adjacent lattice points. Repeat this process iteratively,
attaching one particle at each iteration to one of the unoccupied lattice points adjacent to
the growing cluster. The choice of attaching point is made according to some probability
measure specific to each individual model. This allows us to model a large class of real world

growth models under this lattice based template.
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FIGURE 4. The evolution of a lattice based model.

One example of such a model is the Eden model used to model biological cell growth.
This model describes a process where the organism starts at a point and then divides into
daughter cells at each generation [Ede61]. The model is defined on the lattice Z2. Thus,

first for a subset A — Z? define the boundary of the set A as
0A = {yeZQ\A : Hz‘eA,ywm}

where y ~ x if = is one of the four lattice points of Z? adjacent to y. Then the Eden model
is defined as a discrete Markov process {Ey}_, where, Ey = {0} and Ep4+1 = E, U{yn+1}
for some y,11 € 0E,. In the case of the Eden model we wish to model cell growth, thus,

the attaching points y,+1 are chosen uniformly from 0F,. Note that this is proportional

FIGURE 5. An example of how an Eden cluster may evolve.

to the number of unoccupied cells surrounding a particle on the cluster. Given this choice,
one might expect that as the number of particles tends to infinity the growth would become
isotropic. However, in contrast, simulations and consequent results have shown that the Eden

cluster grows anisotropically as the number of particles converges to infinity (see [Ede61],

[Ric73] and [Kes93]).
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Another well studied growth model is Diffusion Limited Aggregation (DLA) introduced
in [WS83|. In this case the model is used to describe mineral aggregation. The model is a
variation of the Eden model. As above, we will define the model on Z?2. First, the definition

of harmonic measure on Z?2, as seen from infinity, is provided as follows.

DEFINITION 1.2.1 (Harmonic measure on Z2). Let {S.(n) : n € N} be a 2-dimensional
simple random walk started at some point x € Z? and fix a closed set A  Z2. Define a
measure Ha(.) by

Ha(y) := lim P(Sy(7) =y, 7 < ©)

|| —c0

forye A where T = inf{n > 0: S, (n) € A} and |.| is the Fuclidean norm.

Similar to the construction of the Eden model, DLA is constructed as the discrete random
process {Dy,}°_, where, Dy = {0} and Dy4+1 = Dy, | J{yn+1} for some y,41 € 0D,,. However,
instead of attaching a particle uniformly, in order to model mineral aggregation the attaching

points are chosen according to harmonic measure, P (y,+1 = y) = Hop,, ().

~
\
S

4
— \ /. —
N/ ’ S

N

FIGURE 6. An example of how a DLA cluster may evolve.

Note that we have provided definitions for the Eden model and DLA in two dimensions
but it is possible to define both models in higher dimensions. However, more care is needed

when defining DLA in higher dimensions since the random walk is transient for d > 3.

Since its introduction in 1981 DLA has been widely studied yet there have been very
few subsequent results, highlighting the difficulty of the problem. One major result is the
following result by Kesten [Kes90| which provides a bound on the maximum distance from

the origin for a lattice point belonging to the cluster. Let K, be the DLA cluster with n
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particles. Then if we let

r(n) = max{|z|: z € K,}

the following result holds.

THEOREM 1.2.2 (Kesten 1990). There exist constants C(d) such that with probability 1

eventually of d = 2 but d # 3,

eventually if d = 3.

Kesten’s upper bound proves that we do not converge to a one dimensional line, however,
it does not rule out the possibility of convergence to a disk. Nevertheless, this is perhaps
the only truly significant result on DLA since its introduction. Whilst the use of lattice
based models is advantageous in that they are simple to define, this highlights one of the
disadvantages of lattice based models, they are often very difficult to study because they
do not provide many techniques for us to use in order to analyse the cluster. Furthermore,

under this restriction, the models do not correspond to many real world examples.

1.3. Conformal models

One way we can combat the restrictions of lattice-based models is to form models using
conformal maps instead. This method has the benefit of allowing us to use complex analysis
techniques, amongst others, in order to study the processes. These models are described as
follows. We start by defining the conformal map that attaches a particle to the boundary of
the unit disk in the complex plane C at a particular angle. We then compose several of the

maps in order to form a cluster.

Define A as the exterior unit disk in the complex plane, A = {z € C : |z| > 1}. Let
P < A be a compact set such that P n A is non-empty and A¢u P is simply connected. We

call P a particle. Then by the Riemann mapping theorem there exists a unique conformal
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map f: A — A\P of the form
f(z) =¢€2+ O(1)

as z — o for some real valued ¢ > 0. The value € is called the logarithmic capacity of the
union A° U P. In the planar aggregation literature it has become standard to refer to P as
a particle of capacity c¢. In addition, although a slight abuse of notation, for any conformal
map f : A — C it is convenient to refer to the capacity of the map to be,

lim log (f'(z)) := log f'(o0).

z2—00

The capacity provides a notion of size, in particular, for particles P, and P, with correspond-
ing capacities ¢; and co respectively, it follows that if P, < P, then ¢; < co. Furthermore, as
¢ — 0 the map converges locally uniformly to the identity map (see for example Proposition
3.55 in [LawO08]), encapsulating that the particle size shrinks to 0 as ¢ — 0. The explicit
formula for the map f: A — A\[1,1 + d(c)] that attaches a radial slit of length d = d(c) to
the boundary at z = 1 is given by [STV19],

C

(1.1) f(z) = % (22 +201—e )z + 1+ (2 + 1)v/22 + 2(1 — 2e %)z + 1)

with a continuous branch of the square root taken on A, which is possible because the roots
of the quadratic inside the square root lie on the unit circle. The relation between the
capacity ¢ and length d in this case is,

d2

C=1+4-—-r.
c +4(1+d)

Hence, ¢ = % + 0o(1). Thus, now that we have a way to describe the size of the conformal

maps we can define the single particle mapping. Define
fe(2) : A - A\P

as the map which takes A to itself minus a particle P of capacity ¢ > 0 on the boundary at
z = 1. Thus, given a sequence of attaching angles {6,}°_; and capacities {c,}"_; we can

define a sequence of maps {f,}~_; with the n'? particle map defined as,

Falz) = €% fo, (ze7%")



1.3. CONFORMAL MODELS 7

where 6, is the attaching angle and ¢, is the capacity of the n®® particle map f., (z). By

continuity we can extend this definition to the boundary of the disk by defining f. (e?") =

lim, 1 fe, (rew").

fa
e

FIGURE 7. Mapping a single particle.

@n
!4b

Dn+
fr:+1 n+l

FIGURE 8. Mapping a cluster.

Now we can define the growing cluster. Define the map ¢, inductively,

Oni1=frofa0....0 fuy1 = dpo fara.

Then by our assumptions on the particle P, this forms a growing sequence of compact sets

{K;}n>1, such that ¢, : A —» C\K,, which we call a cluster. By varying the size, shape
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and attaching angle of the particles this general method allows us to form a wide range of

models.

1.4. Construction of conformal models from lattice based models

Whilst the models that are constructed on a lattice present challenges we do not wish
to discard them completely. In fact they remain highly significant because we still want to
understand the properties of the underlying real world processes that they were introduced to
model. As such, we want to construct off-lattice versions of the models using the conformal
map method described in the last section so that we can study the properties of these models
more easily. In this section we will describe how an off-lattice version of DLA is constructed,

to do so we will closely follow the method of Turner in [Turl9].

To construct DLA using conformal maps we will use the same set up as in Section
1.3. The distinguishing feature is how the attaching angles and capacities are chosen to be
distributed. Recall, in the DLA model, at each generation, a random walk is started on
the lattice sufficiently far away from the origin and is run until the walk reaches one of the
unoccupied particles on the boundary of the cluster, then this particle becomes part of the
cluster and the process is repeated. Thus, instead of performing a random walk on lattice we
now want to choose the attaching angles 6,, so that ¢,_1(e?") shares the same distribution
as the hitting distribution of Brownian motion on the boundary of the cluster K, started
at infinity. The following definition of harmonic measure, as seen from infinity, will be used

extensively throughout this thesis.

DEFINITION 1.4.1 (Harmonic measure). Let {B;(t) : t = 0} be a 2-dimensional Brownian
motion started at some point x and fix a compact and non-polar set A < C. Define a measure
Ha(.) by

Ha(B):= lim P(B,(7)€ B,7 < o)

]| —o0

for B < A Borel where 7 = inf{t > 0: B(t) € A} and |.| is the Euclidean norm.

Thus, we want the local growth rate to be chosen according to harmonic measure. Under

the image of the map z — % this is equivalent to requiring the distribution of e?» to be the



1.5. HASTINGS-LEVITOV MODEL 9

hitting distribution of qﬁ;il (%ﬁ) on the unit disk where B; is a Brownian motion started at 0.
But since Brownian motion is conformally invariant, gb;ll <B%) is a time change of Brownian
motion. Then, by the symmetry properties of Brownian motion, the hitting distribution of

a Brownian motion on a disk is uniform. So in this case we distribute 6,, ~ Unif[0, 27].

For the capacities, we will instead consider the diameter d,, of each particle. For a slit this
means the n'" attached particle is P, = ew"(l, 1+ d,]. The map 6 — e maps the interval
to P,. Specifically, it maps 6,, to the tip of the particle and 6 + p,, for some pu, € [0, 27],
to the base of the particle. Thus there exists an interval [0y, 0, + 1] such that the map f,
maps the interval to P,. The length of attached particle is distorted by the map ¢,_1 and
given by,

[ Ol e,

Therefore the length of the attached particle is

dn|¢;z—1(33n€w")|

for some z,, € [1,1+d,]. In the real world models, including DLA, we often want the particles
to be roughly the same size at each attachment. Therefore, using that ¢, = % + o(1) the

capacity ¢, of the added particle is chosen as,
Cn = |1 ()|

where 0 < ¢ < o0 is the capacity of the first particle. With this choice each particle
is approximately the same size. This demonstrates how the off-lattice version of DLA is
constructed using the conformal mappings method. It is possible to do the same for the

Eden model and various other lattice based models [Tur19J.

1.5. Hastings-Levitov model

Diffusion Limited Aggregation is an example of a random growth process where the local
growth rate is determined by harmonic measure. The class of growth processes that satisfy
this condition are said to demonstrate Laplacian growth [HL98| and they occur regularly

within the real world. Therefore, we would like a collection of models that allows us to study
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this class of processes as whole. The Hastings-Levitov model HL(«) introduced in [HL98| is
a collection of models used to describe Laplacian growth and is formed by using conformal
mappings as described above. It is particularly useful because it allows us to vary between

previously well known models such as DLA and Eden simply by varying the parameter «.

The structure of the model is the same as the general conformal model described in the
previous section. All that remains is to choose how the attaching angles and capacities are
distributed on the maps {f,}n>0. As in the construction of an off-lattice version of DLA
we want to model Laplacian growth with the local growth rate determined by harmonic
measure. Thus, choose the angles #,, to be independently distributed uniformly on the unit

disk.

The capacities are chosen as,

cn = clgf_y ()]

for some ¢ > 0. This choice allows us to vary between the off-lattice models and, as seen
above, provides an off-lattice version of DLA when o = 2. Although the physical construction
differs, Hastings and Levitov put forward numerical evidence to argue that HL(1) corresponds
to an off-lattice version of the Eden model. In very recent work [NST21] Turner et al show

how this is satisfied explicitly in a regularised setting.

The final element to consider in construction of the Hastings-Levitov model is the shape
of the attaching particle. The choice we make is determined by which real world process we
are trying to model. Hastings and Levitov introduce both the strike and bump mappings in
[HL98|. The bump map attaches a non-empty interior on the boundary whereas the strike
map attaches a slit. An explicit form of the strike map is provided above in equation (|1.1)).
In most cases we fix our choice our particle before evaluating the scaling limits of the models,
however, we do not want to produce results that are dependent on the choice of particle,
thus we often use a general family of particles (see for example [LT21al) that allow us to

recover all of the classical maps.

An extension of the Hastings-Levitov model exists in the form of the Aggregate Loewner

Evolution (ALE) model ALE(«,n) introduced in [STV19|. In this model the attaching
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angles are chosen proportional to the density of harmonic measure on the cluster bound-
ary, raised to some power 7. We will focus on the Hastings-Levitov model in this thesis

corresponding to ALE(«, 0) but interested readers should see [NST19| and [Hig20].

Another variation of the Hastings-Levitov model is the anisotropic version introduced in
[JVST12| as AHL(v). This model is constructed in the same way as the Hastings-Levitov
model with o = 0 but instead of attaching uniformly the attaching angles are i.i.d distributed
randomly on the unit circle according to a non-uniform measure v. This model is analysed

in the second paper presented in Chapter 3.

1.6. Scaling limits

Now we have all we need in order to start evaluating the models. Several natural ques-

tions arise when studying the models including,

e Does a scaling limit exist as n — 07

e What is the shape of the cluster in its scaling limit?

o What is the behaviour of the fluctuations in this limit?

e Each particle comes with a natural notion of ancestry determined by which particle
it attached to. This particle also has a direct ancestor and so on. We can repeat
the process of considering the direct ancestor of a succession of particles in order to
trace an ancestral path of a particle on the boundary. Thus a natural question is,

what is the ancestral path of a particle attached on the boundary of the cluster?

This thesis will attempt to answer some of these questions. In order to answer the first
two questions it is necessary to define the scaling limit in this context. There are two natural
ways that have previously been used to evaluate the scaling limit of the clusters formed using
conformal maps. The first, and perhaps the most natural, is known as the small-particle
limit. This method was first used to evaluate HL(«) in [NT12] when o = 0. Under this
scaling limit we send the capacity, and hence the size, of the attached particle to zero as
n — o0, with nc ~ t for some fixed value t. Most of the research into the Hastings-Levitov
model has been done in the small-particle limit and in the next section we will highlight the

results which will be most relevant to our own research.
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The second way in which we can take the scaling limit is known as the limit under
capacity rescaling. Using this method, rather than sending the particle size to zero, the
particle size is fixed. Then we rescale the whole cluster by its total logarithmic capacity at
each stage so that it is contained inside the unit disk and then evaluate the shape of the
rescaled cluster as we send the number of particles to infinity. This method was introduced
in [RZO05], the details of which are described in the next section, and will be the focus of

our first paper in Chapter 2.

Once we have shown the existence of a scaling limit and evaluated it we can then evaluate
the fluctuations on this limit. Consider for example the Strong Law of Large Numbers,
whilst this is a strong result, the Central Limit Theorem allows us to fully understand
the distribution. Similarly, we will need to establish a shape theorem and evaluate the

fluctuations in order to understand the scaling limit of the Hastings-Levitov model.

Finally, once we understand the shape of the growing cluster we may also want to evaluate
how the particles are attached at each stage so that we can understand the ancestry of each
attached particle. To do so we will analyse the harmonic measure on the boundary of the

cluster.

1.7. Existing results

In this section we will describe the existing results relevant to the independent research
that follows in later sections. We will split this into two subsections. In the first subsection
we will discuss previous work in the small-particle limit. Most of the previous research into
the scaling limits of the Hastings-Levitov model and its variants has analysed the limit in
the small-particle limit and, as such, this first subsection will consist of a summary of three
papers (INT12|, [JVST15| and [JVST12|) most relevant to this thesis but the reader
is directed to [STV19| and [TT20] amongst others for further discussion. In the second
subsection we consider previous results using the capacity rescaling limit. There has been
little work in this area and therefore we consider in detail a paper by Rohde and Zinsmeister

[RZ05] which introduces the method.
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1.7.1. Results in the small particle limit.

1.7.1.1. Hastings-Levitov Aggregation in the small-particle limit. We start by describing
the results of a paper by Norris and Turner [NT12]. This paper is of particular significance
because it is the first to use the small-particle limit to evaluate the Hastings-Levitov model.
The model is described as in Section [[.5] and the authors evaluate the model for v = 0. They
establish a shape theorem and furthermore evaluate the harmonic measure on the boundary

of the cluster.

We have seen above that the capacities of the Hastings-Levitov model are given by,
_ / 0n\|—a
n = |y _1(e™)]

for some ¢ > 0 and a parameter & > 0. When « > 0 the capacities have a non-trivial
dependence on the past which makes the process very hard to analyse. However, when o = 0
the capacities are given by a deterministic value ¢, = ¢ and therefore the total capacity of
the map ¢, at infinity is ¢n. This greatly increases the accessibility of the problem. Thus,
this paper first evaluates the model in the case where a = 0 before a > 0 is tackled under

regularisation in later papers.

We start by describing the shape theorem for @ = 0. One of the defining and most
useful features of the o = 0 case is that the process (¢, 1(2))n>0 is a Markov process for all
z€ (Cuow)\Ky [NT12]. As a result the authors are able to use fluid limit analysis on the

random maps. This produces the following shape theorem.

THEOREM 1.7.1. Let P, = K, \K,—1. Then consider for e € (0,1] and m € N the event

Q[m, €] specified by the following conditions: for alln < m and alln’ >m + 1,
|z — e | < e for all z € P,

and

dist(w, K,) < ee”"  whenever |w| < e

and

|z > (1 —€)e™  for all z € P,.



1.7. EXISTING RESULTS 14

Then if we assume that € = c3 (log(1))® and m = [¢73]. Then P(Q[m,€]) — 1 as ¢ — 0.

Informally, this result tells us that the cluster grows like an expanding disk of radius
e™. Note that the powers in the theorem above are crucial and the authors state that some

effort was made in order to maximise the power % INT12].

This theorem provides an understanding of what the shape of the o = 0 cluster looks like
in the small-particle limit. However, we often want to understand the underlying structure
of the cluster and thus it is necessary to understand the ancestry of each of the particles.
To do so the authors evaluate how the harmonic measure evolves on the boundary of the

cluster. When « = 0, this concept can be explained as follows. For a point x € (0, 1), define,

() = - log(f71(e27)

2mi
choosing the branch of logarithm which results in z = % being fixed. This can be extended

to the real line as follows, if x = k + a where a € (0,1] then define y(x) = k + y(a). Then
for all x € R define

7n(x) = ’)/({L' - en) + 0.

Observe that using this definition 7, (z) = 2%” log(f,, 1 (e?™*)) with the branch of logarithm
inferred from the definition above. Figure |§| demonstrates how the function v, (z) describes
the change in angle of a point x on the boundary under the transformation f,(z) and thus

Yn(2) tells us how the harmonic measure evolves under the map f,(x).

FIGURE 9. How the harmonic measure evolves on the boundary of the cluster
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Let (z) = v(z) — = then define the discrete harmonic measure flow under the map ¢,

for x € R and n > m as,

(1.2) Xmn(x) = Xpmn-1(x) + Y(Xmn-1(x) — 6p)

with X,y (2) = . Therefore,

Xn<$) = 'Yn(Xn—l(x))'
Thus if Ty () = f7l o frl(z) then

1 - ) T
Xm,n(fE) = Tmlog(fn 1(62 Xm,n—1( )))

— QLm log(fr ' (T n—1(e™)))

1

= —log(T'y nle

2mix
211 )-

Note that X, ,(x) is defined in this way to make sure the branch of the logarithm respects

the composition structure. Then the harmonic measure flow can be rewritten as

Ximn(7) = D (X1 (x) — 0;) + .
i=1

This details how the cluster is evolving as each particle is attached and hence the ancestry
of each particle. We will study this concept in more detail when we analyse the harmonic

measure on the boundary of the anisotropic Hastings-Levitov cluster in Chapter 3.
The authors make the following assumptions in order to analyse the harmonic measure
1 .
de <0,3> and Pc{zeC:|z—1]<d}and 1+de Pand P={z:z€ P}.

Furthermore, in order to see a non-trivial limit the authors rescale time, thus, let

Xst(z) = Xa(s),n@) (@)

where n(t) = [tcfgj. With this definition, and the assumptions above the authors reach the

following result on the convergence of the rescaled harmonic measure flows {)_( s,t(w)}o <s<t'
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THEOREM 1.7.2. Assume that the basic particle P satisfies the conditions above. Then

the rescaled harmonic measure flow converges to the Brownian web, uniformly in P, asc — 0.

In addition, the rescaled Harmonic measure flow also converges to the Brownian web
on the line [NT12|. Therefore, this paper provides an understanding of both the shape of
the Hastings-Levitov cluster when o = 0 and its underlying structure. We would like to
understand the same properties for a > 0 and in order to do so a regularisation to the model

is introduced.

1.7.1.2. Scaling limits in a reqularised setting. We now summarise [JVST15| where a
regularised version of the Hastings-Levitov model is analysed for a > 0. We will consider a
similar regularisation in the independent work presented in Chapter 2. The authors show
that in the small-particle limit the Hastings-Levitov model converges to a growing disk
provided the regularisation is sufficient. Then they analyse the harmonic measure flow on
the boundary of the cluster and show that by changing the rate at which @ — 0 the harmonic
measure flows converge to either the identity map or a version of the Brownian web on the

circle.

As seen above, with capacities defined as
YINE
cn = ¢l 1 ()7

it is clear that for a > 0 the growth of the cluster is strongly dependent on its history. This
makes the model very difficult to study and thus the introduction if a regularisation on the
capacities is necessary in order to analyse the shape of the cluster in its limit. Therefore,
Turner et al [JVST15| introduce the regularisation factor o so that the capacities are

redefined as
c

|(J5/n71(6‘7+i9")|a

with o > 0. This allows us to move away from the bad behaviour of ¢/, _; near the boundary

Cp =

of the unit disk and to deduce estimates on ¢,. Notice that as ¢ — 0 the model converges

back to the original Hastings-Levitov model HL ().
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The authors then introduce the deterministic sequence,

* C

n = 1+ ac(n—1)

for n = N. They show that provided o does not converge to zero too quickly then the
capacities ¢, are close to ¢ with high probability. This is provided in the form of the

following result [JVST15].

THEOREM 1.7.3. Let o » (log(cfl))%1 and let N € N be fized. Then there exists some

log <CZ) > acﬁ> -0
CTL

absolute constant B > 0 such that

P <sup
n<N

as ¢ — 0.

With the ¢ notation defined, it is possible to introduce equivalent notation f¥(z) for
the conformal maps defined with the star capacities and then analyse the cluster formed
using these conformal maps. Then the authors use two key facts [JVST15| in order to
transition between the different models and prove a shape theorem for the o regularised
version of the Hastings-Levitov model. The first is that the convergence supy LCC:' -0
implies weak convergence of driving measures for the Loewner representation of the growth
process. Secondly, weakly convergent driving measures lead to sequences of conformal maps
that converge in the sense of Caratheodory. With these two facts the authors state the

following shape theorem [JVST15].

T
c

THEOREM 1.7.4. Let T > 0 and o > 0 be fized. Then suppose n = |=| and o »
(log(c_l))%l. Then, as ¢ — 0 the laws of the maps ¢n(z) converge weakly with respect to

uniform convergence on compact subsets to a point mass at (1 + aT)éz.

Thus, the shape of the regularised cluster converges in the small-particle limit to a
growing disk in the sense of Caratheodory. Whilst this regularisation means that the authors
are not studying the true Hastings-Levitov model for o > 0 they argue that the regularised
model with o = 2 is consistent with a model where all particles are attached of the same
size, as in the case of DLA. Similarly, when a = 1 the result is consistent with a model which

exhibits growth proportional to local arc length as in the case of the Eden model.
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However, as in the previously studied paper [NT12] the authors would like to study the
evolution of harmonic measure on the cluster boundary in order to better understand the
underlying structure of the cluster. As in the previous section consider the rescaled harmonic

measure flow

Xsi(x) = Xﬁ(s),ﬁ(t) (z)
where n(t) = [tc_%J. In this case, the following result [JVST15| demonstrates the three

possible cases that can occur dependent on the behaviour of o = a(c) as ¢ — 0.

THEOREM 1.7.5. Suppose that o > log(cfl)_?l. Then as ¢ — 0, on timescales of order

0%3, one of the following three situations arises.

=

e I[fac 2 — 0, the rescaled harmonic measure flow converges to the Brownian web.
o [f ac”3 — oo (sufficiently slowly), the rescaled harmonic measure flow converges to
the identity flow.

1 . .
o Ifac 2 — a € (0,00), the rescaled harmonic measure flow converges to a time-

change of the Brownian web, stopped at a finite time that is decreasing in a.

The interpretation of this result is given as follows [JVST15]. For o « ¢ the harmonic
measure flow converges to the Brownian web. However, as all Brownian motion on a circle
starting from a fixed time coalesce to a single Brownian motion eventually this tells us that
the points on the boundary of the regularised cluster arriving after a certain time all share the
same ancestor. However, when a » ¢3 the number of infinite branches becomes unbounded
in the limit as ¢ — 0. Finally, if ac? — a then there exists a random number of infinite

branches in the regularised cluster.

1.7.1.3. Anisotropic growth. Finally, we describe the results of the paper [JVST12|
which introduced the anisotropic version of the Hastings-Levitov model. This model will
be the focus of Chapter 3. The model is formulated in the same way as the Hastings-Levitov
model introduced in Section 1.5 with @ = 0, however, rather than choosing the attaching
angles uniformly, instead, choose the angles 6; to be independent identically distributed

random variables on the unit circle with common law . More explicitly, throughout the
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remainder of this subsection denote

Ont1 = Pn 0 fup1 = frofao..o fup

with f,,(2) = € f. (z¢7") where ¢, = c for some fixed ¢ and the angles 6, are i.i.d
distributed randomly on the unit circle according to some non-uniform probability measure

v .

The paper is split into two main sections, in the first section the authors consider the
scaling limit of the cluster in the small particle limit and show a shape theorem exists.
In the second section the authors consider the evolution of the harmonic measure on the
cluster boundary and show that in compact time it converges to the solution of an ordinary
differential equation before studying its fluctuations. In Chapter 3, I will extend these results

by considering the harmonic measure flow on logarithmic timescales.

The authors start by providing a shape theorem. In order to do so they write the sequence
of conformal maps that form the cluster as a Loewner chain driven by the measure v. The
construction is as follows; start by supposing we have a growing sequence of compact sets
{K}i+>0 as in the construction of the Hastings-Levitov model above. Now let D be the unit

disk in the complex plane. Then there exists a family of conformal maps
ft :D— (C\Kt

which fixes infinity and where f;(oo) > (. This family of maps is called a Loewner chain
and can be parametrised with respect to a family of measures {14};>0. The conformal maps
then satisfy the Loewner-Kufarev equation |[JVST12|,

z+C
z—=¢

oufi(z) = 2£(2) jT ().

The authors then use this construction to show that in the small particle limit the the cluster

converges to the solution of the Loewener-Kufarev equation [JVST12].

THEOREM 1.7.6. Let ¢ denote the solution to the Loewner-Kufarev equation driven by

the measures {vi}1=0 and evaluated at time T for some fixzed T € (0,00) and vy = v for all t.
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Setn = [%J, and define the conformal map as above ¢, = f10 foo....0f,. Then ¢, converges

to ¢ uniformly on compacts almost surely as ¢ — 0.

Therefore, with this shape theorem the authors describe how the cluster behaves away
from the boundary. But as in the previous two papers they want to understand the underly-
ing structure of the cluster and so need to analyse the harmonic measure flow. As in Section

[I.71.1] for x € R and m < n, define the harmonic measure flow as

1

Xnn(@) = 5= log(T'mn(e

o 2mix
211 )

where I, ;,, is defined as the restriction to the boundary,

Fn,m = fn_l ©...0 fr:LleO

The harmonic measure flow can be embedded into continuous time as follows. Suppose
0 <Ti < Ty < ... are times of a Poisson process, independent of the attaching angles 6;
with rate 1. Then for an interval [s,t] < [0,0), define fs,t = I'yy,n where m and n are the
smallest and largest integers such that both T),, € [s,t] and T), € [s,t] [JVST12]. Then, as

in the discrete case above, for s < ¢, define the continuous harmonic measure flow

~

1 - )
Xs,t(x) = Tmlog(rs,t(e%m))-

Note that some of this notation is not consistent with that in Chapter 3, where instead
we consider the discrete harmonic measure flow, and this should be read independently.
However, as in Chapter 3, define b(z) as the Hilbert transform of the measure v,

1

b() = cohw (2) + % L cot(12) (hw (z — 2) — ho(2))dz,

for some constant ¢y, where h, is the density of v on R. Furthermore, for ¢ > s, define

s +(x) as solution to the ordinary differential equation

sr(x) = bt ()

for z € R and 9, s(z) = x. With these definitions in mind the authors state the following
result [JVST12].
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THEOREM 1.7.7. For X&t and s defined above, then for for a fived T and any € > 0,

lim P ( sup | Xy () — ¥sy(x)| > 6) =0.
c—0 s<t<T
Finally, the authors consider the fluctuations on this convergence. They show they are

of order ¢ so as in [JVST12| for fixed (s,z) € (0,00) x R define,

1

th(m) = cfl(f’(&t(x) - ¢s,t($))

and let Z;(x) be the solution to the linear stochastic differential equation

dZi(x) = A/ b (2)(s 1 (2)dBy + V' (Y541 (2)) Ze () dt

for t > s starting from Zs(z) = 0, where B; is a standard Brownian motion. This leads us

to the following result [JVST12].

THEOREM 1.7.8. As ¢ — 0, the processes Zf — Zy in distribution.

Therefore, this paper classifies both the convergence of the harmonic measure and the
fluctations up to a bounded time. In Chapter 3, we will extend these results to consider the
harmonic measure on logarithmic timescales and show that there exists a critical logarithmic
time window in which the harmonic measure flow, started from the unstable point of the
ordinary differential equation, moves stochastically from an unstable trajectory towards a

stable trajectory.

1.7.2. Results under capacity rescaling. In this section we outline the existing
results on the scaling limits of HL(«) under capacity rescaling. In this setting, rather than
sending the size of the particle to zero as we send the number of particles to infinity, instead,
we keep the value c¢ fixed and rescale the cluster by its total logarithmic capacity at each
iteration before sending the number of particles to infinity. This method has been less studied
than the small particle limit and the results consist of those introduced in a paper by Rohde

and Zinsmeister [RZ05].

The paper studies the Hastings-Levitov model introduced in the previous sections under

capacity rescaling and is split into two parts. First, the authors show that when a = 0 the
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logarithmic capacity of the limiting cluster grows exponentially and under capacity rescaling
the rescaled cluster has finite length. In the second half of the paper the case when a > 0
is considered under a regularisation and it is shown that the logarithmic capacity of the

growing cluster at each iteration grows fast but not exponentially.

As described in the previous sections, if & > 0 the Hastings-Levitov model is very difficult
to study due to correlations between the capacities. Thus, in order to study the model the
authors first introduce a regularisation on the model. This regularised version of the model
is denoted RHL(«) and is defined as follows [RZ05]. Let be d be the length of a slit with
capacity c. The relation is then given by ¢ = log (1 + 4(1617_7_6[)). Let u, = €. Then the
regularisation is chosen as,

dp = d'" 2 en(tn, d)?

where

en(u,d) = inf{e >0 : €@, ((1+ €)u)| = d}

and ¢pi1 = ¢ O fuy1 = f10 f20 .0 foyr with fn(2) = €7 f,, (ze7") as above. This
regularisation provides a ‘dual’ relationship between RHL(0) and RHL(2) [RZ05]. With
this choice of regularisation the article is split into three main cases that determine how
the total capacity is affected when the value of 0 < o < 2 is changed. This in turn allows
us to make statements about the dimension of the limiting cluster for different values of a.
Start with the case where o = 0. Note that we will evaluate this case further in Chapter
2. When a = 0 the choice of regularisation means that d, = d for a fixed d. Therefore,
bn = f10 fao..ofy with fi(2) = € f.(2e7%) and f.: A — A\[1,1 + d] for some fixed
d > 0. Furthermore,

fe(z) =2+ 0(1)

at oo with ¢ = log (1 + él(fliid)). So the total logarithmic capacity of the cluster K, at

infinity is given by C,, = e“". Denote )}, as the space of univalent normalised functions on

A. Then we have a measure P, induced on >0, given by

]Bn = (on)«(1")
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oye!
* e

FIGURE 10. Examples of growing cluster for n=10,100,500,1000, from [RZ05].

where " is just the product of Lebesgue measures [RZ05] under the map
On i (01, .y ...0p) = e "y

The authors then go on to prove that when o = 0 the scaling limit exists via the following

theorem [RZ05].

THEOREM 1.7.9. There is a probability measure ]300 on g such that the sequence of

measures P, converges weakly to Pys.

So now we know the scaling limit exists the authors want to deduce properties of this
limit. Before they do, they provide the following definitions [RZ05]. First let [, be defined

as follows;
1+d
lp = J |, (ruy,)|dr.
1

Then define L,, to be the length of K, so that

ln-‘rl = Ln-‘rl - Ln

Finally, define the rescaled cluster If(\'; as
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where A, = lim,_,4 ¢, (2) — z. Similarly,

Using these definitions the authors prove the following two theorems [RZ05]. Firstly in the

case where d is large the following theorem holds,

THEOREM 1.7.10. There is a constant dg such that for d > dg and all choices of 01, 605....0,,

for some constant C'(d) > 0 and thus,

L, <C(d).

Then for small d > 0 the following theorem holds.

THEOREM 1.7.11. There exists a constant C = C(d) such that

and thus,

Note that the difference here is that in Theorem [I.7.10] the inequality holds for all n,
whereas, in the case of Theorem the bound is on the expected value of L,. Now we
move on to the case where 0 < o« < 1. First the authors adapt the regularisation. Fix
d < ¢, then redefine the component of regularisation € as follows [RZ05|. Decompose the
unit circle into dyadic intervals. Now for an interval with order k define x; as its centre and
set

zr = (1427

Then, let u be a point on the circle, and suppose k is the order of the minimal dyadic interval

containing u such that 27%|¢/ (z7)| > d then set

e(u,d) = 27%.
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Of course, as « is no longer equal to zero the regularisation no longer gives us a constant
slit length. The authors manage to show that, with « in this region, the total capacity C,
grows fast, as a polynomial in n but not exponentially unlike the case where oo = 0. We

combine results from the paper to give the result in the following form [RZ05].

THEOREM 1.7.12. If0 < a < 1 is small enough, then almost surely there exists a constant

K > 0 such that for every n = 0,

2

Kna0=a) < 0 < C(d)na

where C(d) is the constant dependent on d from Theorem |1.7.10

The authors use this theorem to gain an inequality involving both the length and loga-

rithmic capacity of the cluster [RZ05].

THEOREM 1.7.13. For small a > 0 and for 8 > «a, almost surely there exists a constant

K > 0 such that for every n = 0,
Ly <KCy ™7

Therefore, by combining all of the theorems above we can summarise as follows. We
first see that there is a phase transition that occurs when o = 0. In addition, when a = 0
the capacity grows exponentially but when a > 0 the growth is only polynomial. Finally,
the bounds provided by Rohde and Zinsmeister leave open the possibility of another phase

transition at o = 1 but it is unclear whether or not this holds.

1.8. Outline of thesis

We are now in a position to present the independent research for the award of this thesis.
This will be presented in the form of two papers. In the first paper we evaluate a strongly
regularised version of the Hastings-Levitov model HL(«) for 0 < o < 2. We first consider
the case where @ = 0 and show that under capacity rescaling, the limiting structure of the
cluster is not a disk, unlike in the small-particle limit. Then we consider the case where
0 < a < 2 and show that under the same rescaling the cluster approaches a disk. We also

evaluate the fluctuations and show that, when represented as a holomorphic function, they
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behave like a Gaussian field dependent on «. In the second paper we study the anisotropic
version of the Hastings-Levitov model AHL(v). We consider the evolution of the harmonic
measure and first show that we have convergence of the harmonic measure flow up to a
logarithmic time. We then evaluate the fluctuations on compact time and show that their
behaviour is stochastic. Finally we show there exists a critical logarithmic time window
where on this timescale the harmonic measure flow, started from the unstable point, moves
from an unstable trajectory towards a stable trajectory. Presenting the research in this way
may lead to some repetition, particularly in the introduction to each paper, however, we

believe that as independent bodies of work they should be presented as such.



CHAPTER 2

Scaling limits and fluctuations for random growth under

capacity rescaling

In this chapter we present our first paper [LT21a]. We evaluate a strongly regularised
version of the Hastings-Levitov model HL(«a) for 0 < a < 2. Previous results have concen-
trated on the small-particle limit where the size of the attaching particle approaches zero in
the limit. However, we consider the case where we rescale the whole cluster by its logarith-
mic capacity before taking limits, whilst keeping the particle size fixed. We first consider
the case where o« = 0 and show that under capacity rescaling, the limiting structure of the
cluster is not a disk, unlike in the small-particle limit. Then we consider the case where
0 < a < 2 and show that under the same rescaling the cluster approaches a disk. We also
evaluate the fluctuations and show that, when represented as a holomorphic function, they
behave like a Gaussian field dependent on «. Furthermore, this field becomes degenerate as

« approaches 0 and 2, suggesting the existence of phase transitions at these values.

2.1. Introduction

Random growth occurs in many real world settings, for example we see it exhibited in the
growth of tumours and bacterial growth. We would like to be able to model such processes
to determine their behaviour in their scaling limits. Since the 1960’s, models have been built
in order to describe individual processes. Perhaps the most famous examples of such models
are the Eden model [Ede61] and Diffusion Limited Aggregation (DLA) [WS83|. The Eden
model is used to describe bacterial colony growth, whereas, DLA describes mineral aggrega-

tion (see for example [RZO05]).

In their 1998 paper [HL98|, Hastings and Levitov introduced a one parameter family of

conformal maps HL(«) which can be used to model Laplacian growth processes and allows

27
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us to vary between the previous models by varying the parameter . In contrast to many
well studied lattice based models, HL(«) is formed by using conformal mappings [HL98|.
We can then use complex analysis techniques to evaluate the growth. We consider a regu-
larised version of this model and show that at certain values of o a phase transition on the

scaling limits occurs.

2.1.1. Outline of the model. In order to define our model we start by defining the
single particle map. Define A as the exterior of the unit disk in the complex plane,
A = {|z| > 1}. For any conformal map f: A — C we define the capacity of the map to be,

lim log (f'(z)) := log f’(0).

z2—00

For each ¢ > 0, we then choose a general single particle mapping f. : A — C\K which takes
the exterior of the unit disk to itself minus a particle of capacity ¢ > 0 at z = 1. Note
that we can then rescale and rotate the mapping f.(z) to allow any attaching point on the
boundary of the unit disk by letting f,,(2) = € f. (ze7"") where 6, is the attaching angle

and ¢, is the capacity of the n'® particle map f., (2).

We can now form the cluster by composing the single particle maps. Let Ky = A¢ =
{|z| < 1}. Suppose that we have some compact set K,, made up of n particles. We can find a
bi-holomorphic map which fixes o0 and takes the exterior of the unit disk to the complement

of K,, in the complex plane, ¢, : A — C\K,,. We then define the map ¢, inductively;

Gnt1 = Pn O frny1 = f10 f20....0 fria.

There are several possible choices for the family of maps {f.}c~0. The choice we make is
determined by what shape we would like the attaching particles to have. Hastings and
Levitov introduce both the strike and bump mappings in [HL98|. The strike map attaches
a single slit onto the boundary at z = 1 whereas the bump map attaches a particle with
non-empty interior. We would like results to exhibit some universality in the specific choice

of particle shapes. However, we do need to impose some restrictions on how the particles
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localise around the attachment points as ¢ — 0. The specific condition we require is

(2.1) fo(z) = ez exp (ZQ_CI + 6. (z)>

<3 -
Aczz| y and A€ [0,00) is a constant that

where §.(z) is some function of z with [d.(2)| < BB

depends only on the family of particles and not on ¢ nor z. In [NST19], Norris et al show
there exists some absolute constant ¢y such that, provided 0 < ¢ < ¢, families of slit maps,
bump maps and indeed many other natural choices, satisfy the condition. Therefore, we
take our single particle mappings from a class of particles satisfying 1} for fixed X. In the
proofs that follow it will become clear that our results do not depend on the precise value

of d.(z).

Now it just remains to define how the attaching points 6,, and capacities ¢, are chosen.
We want to model Laplacian growth and so we choose the 6,, to be uniformly distributed,
independent for each n, on the circle. This choice is made because after renormalisation of
¢n, the Lebesgue measure of the unit circle under the image of ¢,, is harmonic measure as
seen from infinity [RZ05|, and the harmonic measure of a portion of the unit circle is just

the arclength of that portion rescaled by 2.

Finally, we must choose how the capacities ¢, are distributed. Hastings and Levitov [HL98|
introduced a parameter « in order to distinguish between the various individual models they

would like to encode within this one model for Laplacian growth. They choose,
Cn = @1 ()7

for some ¢ > 0. This gives an off-lattice version of the Eden model when o = 1 and
DLA when « = 2. In Section 2.3, we show that the total logarithmic capacity, ¢/, (00) is well
approximated by (1 +acn)i. Therefore, if we define a version of HL(«) using the very strong
regularisation é, = c|¢),_;(0)|™%, we show in Proposition that ¢, is approximately
given by

C

(2.2) c = TTocn—1)

n *
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Therefore, for a lot of computations we do the analysis using the deterministic sequence ¢
rather than é,. In particular, in what follows, we denote ¢, = f1 o ... 0 f, where f,(z) =
eifn fcﬁ(ze*w") with 6,, i.i.d uniform on [0,27]. Throughout the paper we keep ¢ fixed.
Occasionally we may require ¢ to be bounded by some constant which may depend on «
but, crucially, not on n. We then rescale the cluster by its total logarithmic capacity and

evaluate the shape of the rescaled map e~ el ¢n as N — 0.

2.1.2. Previous work. With the model now defined we can outline the work already
done in this area. Most work has been done in the small-particle limit. This method in-
volves evaluating the limiting cluster ¢,, as we send the particle capacity ¢ — 0 while sending
n — o0 with nc ~ t for some ¢t. Using this method Turner and Norris show that for a = 0 the
limiting cluster in the small particle case behaves like a growing disk [NT12|]. Furthermore,
Turner, Viklund and Sola show that in the small particle limit the shape of the cluster in a
regularised setting approaches a circle for all a > 0 provided the regularisation is sufficient
[JVST15|. Moreover, Silvestri [Sil17] shows that the fluctuations on the boundary, for

HL(0), in this small particle limit can be characterised by a log-correlated Gaussian field.

A different approach to that of the small-particle limit is to not let ¢ — 0 as n — oo, but
instead, the limit of the cluster is found by rescaling the whole cluster by the logarithmic
capacity of the cluster at time n, before taking limits as the number of particles tends to in-
finity. Rohde and Zinsmeister show that in the case of & = 0 the rescaled cluster converges to

a (random) limit with respect to the topology of normalised exterior Riemann maps [RZ05].

Our work will follow the second approach. We will use results and ideas from the papers
listed above, and in particular methods from [NST19], in order to characterise the limiting
shape of the cluster in a regularised setting for 0 < o < 2 and then evaluate the fluctuations.

Our results break down for a = 2. This will be the subject of future work.
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2.1.3. Statement of results. We first consider the case where a = 0 and show that
under capacity rescaling, if the the limiting rescaled cluster exists then it can not be a disk.

This comes in the form of the following theoremﬂ appearing later as Theorem m

THEOREM. Given any sequence {0x}1<k<n 0f angles between 0 and 27 and ¢ > 0, set
U, = fio..0f, where fr(2) = €% fo(e72) and let f.(2) be any fized capacity map such
that fn(z) # e€°z. There exists an € > 0 such that for all™ > 1 and ¢ > 0,

limsup sup |e” "V, (z) — z| > €.
n—o0 |z|>r

In particular if {0k} 1<k<n are i.i.d uniform on [0,27] and f.(z) is a fixed capacity map in
the class of particles given by then W, is the HL(0) process and the statement above

shows that HL(0) does not converge to a disk under capacity rescaling.

This result is particularly interesting because it is independent of our choice of angles.
If we have a constant capacity map of the right form then there is no possible way to choose
the angles so that under capacity rescaling the limiting cluster (should it exist) looks like a

disk.

Next we consider the case where 0 < a < 2 and show that under capacity rescaling the
HL(«) cluster approaches a disk. We then evaluate the fluctuations and show that they
behave like a Gaussian field dependent on «. Our two main results, appearing later as

Theorem and Theorem [2.6.10] respectively, are stated as follows.

THEOREM. For0 < a < 2, let the map ¢, be defined as above with ¢}, as defined in

and 6y, i.i.d uniform on [0,2r]. Then for any r > 1,

n logn
P [ limsup< sup |e” Zi:lc?gb z)—z| > = 0.
< n—0o0 {|22r| n( ) | \/ﬁ

This result tells us we have uniform convergence of our cluster in the exterior disk to a
disk. The following result shows that the fluctuations behave like a Gaussian field.

INote that we make no assumption on the choice of angles {fx}1<k<n in this theorem and so we use the
notation ¥,, to differentiate from ¢, where the angles are chosen uniformly.
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THEOREM. Let 0 < o < 2 and ¢y, be defined as in Theorem[2.5.1 Then as n — 0,
Vi (e Z T g(z) - 2) - F(2)

in distribution on H, where H is the space of holomorphic functions on |z| > 1, equipped with

a suitable metric dy defined later, and where

F(z) = (Ap, +iBp)z" ™"

gl

0

with Ay, By ~ N (0, m> and Ay, By independent for all choices of m and k.
Notice that it is clear this result does not hold for & = 0 or & = 2. This is in contrast to

[JVST15| where results hold for all @ > 0 and suggests a phase transition at these values.

2.1.4. Outline of the paper. The outline of the paper is as follows. In Section 2.2
we will show that for clusters formed by composing maps of constant capacity and of a
certain form, we can not pick a sequence of angles so that the limiting cluster under capacity
rescaling approaches a disk. In particular, under capacity rescaling HL(0) is not a growing
disk. Then in Section 2.3 we will show that our choice of capacities is a good approximation
to the regularisation of HL(«) at co. In Section 2.4, we show that the pointwise limit of the
cluster for 0 < o < 2 is a disk and then in Section 2.5 we will use a Borel-Cantelli argument
to show we have uniform convergence on the exterior disk. Finally, in Section 2.6 we will
evaluate the fluctuations for 0 < a < 2 and show that they are distributed according to a

Gaussian field dependent on a.

2.2. The case where aa =0

We want to evaluate the limiting shape of our random cluster. We first deal with the
case where o = 0. We will show in this section that in the limit HL(0) does not approach a
disk. Furthermore, we will prove a stronger statement that for clusters formed by composing
maps of constant capacity, in the class of particles defined in , we can not approach a
disk under capacity rescaling. We note that in the case where a = 0 our regularisation

does not effect the model, so this result holds for HL(0) under no regularisation. One might
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expect that the scaling limit is a growing disk, this would agree with the result in the small

particle limit [NT12|. However, the following theorem proves this does not hold.

THEOREM 2.2.1. Given any sequence {0y }1<k<n of angles between 0 and 2w and ¢ > 0,
set W, = f1o...of, where fr(2) = € f.(e7%2) and let f.(2) be any fired capacity map

such that f,(z) # e“z. There exists an € > 0 such that for all r > 1 and ¢ > 0,

limsup sup |e” "V, (z) — z| > €.
n—o0 |z|>r

In particular if {0k} 1<p<n are i.i.d uniform on [0,27] and f.(z) is a fived capacity map in
the class of particles given by then W, is the HL(0) process and the statement above

shows that HL(0) does not converge to a disk under capacity rescaling.

PROOF. Under our assumptions we know that for all » > 1 there exists €, > 0 such that

sup e “fn(z) — 2| = €.
|z|>r

Suppose for a contradiction that for all € > 0,

limsup sup |e” "V, (z) — z| <e.
n—0 |z|>r

In particular, under this assumption,

limsup sup |e” "V, (2) — 2| < &
n—uw0 |z|>r 2

Then we can write,

7™M (2) = 2| = |(e7Falz) = 2) 7 (I (fal2) ~ Fal2))

which we can bound below for all |z| > r as follows,

le™ W (2) = 2| = |7 fulz) — 2| = sup e~[e” VW, 1 (ful2) = ful2)].

|z|>7
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We can then take the supremum of both sides, and by the Schwarz lemma we can use that

|fn(z)| > r for all |z| > r, to reach the following bound on the supremum,

(2.3) sup e~ "W, (2) — z| = sup e f(2) — 2| — sup |e VW, _1(2) — 2|.
|z|>r |z|>r |z|>r
Therefore,
limsup sup |e” "V, (2) — z| = i
n—0 |z|>r 2
a contradiction. O

This is a strong result because it proves that if we have a cluster which is composed of
functions of the right form, no matter how we pick our sequence of attaching angles {6, }
the limiting structure of the cluster, when rescaled by its logarithmic capacity, does not

approach a disk.

2.3. Regularisation

The aim of this section is to provide some justification for the choice of ¢} as an approx-
imation to the regularisation of HL(«) at c0. Recall that we choose,

% C

n = 1+ ac(n—1)

We start by providing some notation used throughout the remainder of the paper. Let ¢y

and ¢ be defined as above, then we denote
n
Cin = Z o
i=k

2.3.1. Error term evaluation. In order to more easily apply complex analysis meth-
ods to our cluster we would like to write the sum Cf,, in a simplified form. We do so by
providing the following approximation on the sum, subject to an error term which converges

to 0, uniformly in k, as n — 0.

LEMMA 2.3.1. For ¢} = m we have the following equality;

1+ acn

1
* _ Zog [ —— " (g
Cin a 08 <1 + ac(k — 1)> (14 €xn)
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where

a?t(n—k+1) - ac

(14 ac(k —1))(1 + acn)log (%) ~ log(1 + acn)’

0< €kn <

Therefore, €, — 0, uniformly in k, as n — oo.

PROOF. We will approximate the sum with

1 o 1+ acn f““ c d
— — | = ———dx.
o 8 1+ ac(k—1) . 1+ac(zr—1)

Then
1 14+ acn ¥ i+l c
Ci,—— —_— -
kun a <1+ac ) Z( JZ 1+Ozc(a:—1)dx>
Z z+1

B ac*(n —k+1)
(I +ac(k—1)(1+acn)’

Thus,

a?(n—k+1)

0< €kn <
ﬂ+adk—Dﬂ1+mmﬂ%< L+acn

1+ac(k—1)

So we consider,

a?ct(n—k+1)
sup

k<n (1 4+ ac(k —1))(1 + acn) log (Hl(jci?‘]gﬁl))

a?c? n—k+1

1+ acn en 1+ '
k<n (1 + ac(k — 1)) log <1+T%$1)>

So let us find,
n—k+1
sup

k@w1+adk—1»mg(ﬂgﬁgﬁ)

Let x = 14 ac(k — 1) and find the derivative

d <1+am—w) (14 aen) — (1t acn) log (H22) — g

df T log (1+acn) $2 (log (1+acn))2

;

35
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The numerator in this fraction is increasing and from this it is clear that the derivative is
negative. Therefore the maximum occurs when k£ = 1. Thus,

Oé262 n ac
<

0< epn < < .
P ST aen log (1 + acn) ~ log(1l + acn)

Furthermore, taking the limit as n — o0 we have €, — 0, uniformly in £, as claimed. [

The following corollary provides a nice bound on (1 + ack)! T~ which will make com-

putations in later sections easier.

COROLLARY 2.3.2. Let g be defined as in Lemma [2.3.1, Then for 1 < k < n and

a = 0 the following bound holds,

(1 + ack)™ern < (14 ace™)(1 + ack).

Proor. We can write
(1 + ack)Tmn = (1 + ack)(1 + ack)® " = (1 + ack)(1 + (1 + ack)¥n —1).
So let 0y = (1 + ack)®*m — 1, then
Som = (€% log(1-+ack) _ 1) < en log(1 + ack)e log(1+ack)

We have just shown that

| B ac
€hm| < — .
Pl Tog (1+ acn)
So,

0 < |[0n| < ace™.
Therefore,

(1 + ack)Tern < (14 ack) (1 + ace™).

2.3.2. Regularisation approximation. With the estimates provided above we can
now provide justification for our choice of ¢}. We start by providing some more notation.

For each n € N, ¢ defined as above we denote ¢% = ¢* ;o f% where fX(z) = e'n fz (ze~n)
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with 6, i.i.d uniform on [0, 27] and

Furthermore, we define,

Crn = Y &.

i=k

The maps ¢;° correspond to the true model for HL(«) regularised at co. The aim of the

remainder of this section will be to prove the following theorem.
PROPOSITION 2.3.3. For CY,, and C~'17n defined as above, the following inequality holds,

‘Ci‘jn — g <126

Furthermore,

Cn=ch(1+€r)

where €,° — 0, uniformly in n, as ¢ — 0.

Therefore if we choose our ¢ sufficiently small we see that our regularisation is a good
approximation to regularisation at infinity. In order to prove Proposition [2.3.3] we first form

a difference equation on CY,,.

LEMMA 2.3.4. With CF,, defined as above the following equality holds

aC¥

Ci,=Cf g +ce “int 4 gy,

2ac?
1+ac(n—1) "

where 0 < Ky, <

PROOF. Let

* * —aC¥
Rp = (CI,TL — Cl,n—l) — Cce 1n—1,

Then by the definition of CT,,,

%
% faCLn_l ]

Knp = €, — C€
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Thus, using the approximation from Lemma

c
o
fin = Cn (1 + ac(n —1))1+en

1+ ozc?n —-1) (1 1+ ac(nl— 1))61,n—1>

= H—Tjn—l) (1 —exp (—€1,n—1log(l + ac(n —1)))).

Since €; ,,—1 is small for small ¢ we can Taylor expand the exponential to get,

Cc

= m (61,n71 log(1 + ac(n — 1)) —r(n,c)).

Kn

where r(n,c) is the remainder term in the Taylor expansion. From Lemma we know

77 Moreover, 0 < r(n,c) < e*(e1n—1log(l + ac(n — 1)))?, so for ¢

ac
0< €1n—1 S log(14+ac(n—1

sufficiently small,

202

O<kpn< — .
fin 1+ ac(n—1)

O

We can now show that CT,, and C~'1,n are sufficiently close by proving Proposition m

PROOF OF PROPOSITION [2.3.3] We will prove the statement inductively. By definition,

Cf1 — C11 = 0. So assume,

‘Cin—l — Cl,n—l‘ < 12¢c.

Then note that since,

then
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Furthermore,

CN(l,n = CN(l,n—l + En
Therefore,

~ ¢
Cin=Cin1+————<a
(ecl,n—l)

Thus, by Lemma [2:3.4]

~ ~ _ * —aC
Cin —Cip = (Cf,n—l - Cl,n—1> +c <€ *Cln-1 — ¢ aC’1,n_1> + Kn

~ o A
= (Cin—l - Cl,n—l) + ce Al (1 — 606(01»”*1 01»"—1>> + Ky,

_C’l,nfl)

Taylor expanding the Ol term gives,

~ _ * ~
Ciin - Cl,’ﬂ = (Cf’n—l - Cl/nfl) + cae aCl,"L—l <Cl,n71 - C’ik,’l’l,—l - r(n, C)) + Rn

~ % %
= (C’fn_l - Cl,n—1> (1 - coze_aCL”*l) + (Fan —r(n, c)cae_aclvn%) :

- 2
where r(n, c) is the Taylor remainder term. We know r(n,c) = %a (C’in_l - 01,7%1) for
some & between 0 and « <C’i"7n_1 — C’Ln_l). Thus, under our assumption that

|CF i1 — C1n—1| < 12¢, we have,

3.2 ,12ac
—aC¥,_, 144c’a”e

< ) S ———~.
0 < r(n,c)cae T+ ac(n = 1)

Then if ¢ is small enough,

2
— _O‘C{k,n71 > &
r(n,c)cae e e—

c¥ —2ac? ~ 20c?
fnot, then —=22¢ < &, < —

1+ac(n—1) ac(n—1)" Hence,

Let Ry, = Ky, — 1(n, c)cae™®

Cik,n - CI,TL = (Cin—l - C~11,n—1> Pn—1+ Kn
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where pp,—1 =1 — cae™ Cfin-1, So,
Cin - CN’l,n = (Cin72 - él,n—Q) Pn—2Pn—1 + Kn—1Pn—1 + Kn
~ n—1 n—1 n—1
= (Cf,l - CLl) [Toi+ 2 (&[T ow |+ 5n
i=1 j=2 k=3
but since (Ci",l — 0171) =0,

n—
Cin —Cipn= Kj H pr | + Fn.
2 .

<.
Il

We first analyse HZ;]I Pk,

n—1
] ek
k=

<1—cae O 1)

ac

( (1 + ac(k —

n:u:ll

)

n—1
acC

P Z og< (1 + ac(k —

k=j

)

Using the Taylor expansion of log (1 — ) we have,

ac
(1+ac(k—1)) TeLr-1

n—1 n—1 —ac n—1
H Pk = €Xp Z T+e; oo eXp f(ka C)
il = (1 + ac(k —1)) Fere—1 Py’

where 7(k, ¢) is the Taylor remainder term. But since for each 2 < k <n—1 ZZ;; 7(4,¢) <0

. L _ ac
in the expansion of log (1 (Ltac(h—1) T Lh1 )»
n—1 - ac
(24) 0 < k:j g 1+ OCC 1))1+61’k,1
By Corollary

0< (1+ ac(k — 1)kt < (14 ace®) (1 + ac(k — 1)).
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Therefore,

ac

ac
=
(1 + ac(k —1))t+erke

(14 ace*)(1 + ac(k — 1))

Thus,

; 1+ ac( 1))1“171@*1 > (1 + ace®) Z (1+ ac(k—1))

d
1+aceac f +acx—1)) v
1+ac(n1)>

1
(1 + ace®) ©8 <1 +ac(j —1)
where the second inequality follows using a Riemann sum approximation. Hence by .,
n-l 1 P 1)\ (racas 1 1)\ 2
0<Hpk<<+0‘c(=7—)> <<+‘¥CU—)>
iy 1+ ac(n—1) 1+ ac(n—1)

for ¢ chosen sufficiently small. Finally we see that,

n—1 1
Z Kj H Pk | S 1
j=2

e (1+ ac(n —1))2 ;5 (1 +ac(j—1))

[ SIS

< 6¢

where the last inequality follows by approximating with a Riemann integral

Thus for ¢
small enough,

n—1 n—1

Z Kj H Pr || < 6c.
k=j

Hence, since for all n, and ¢ sufficiently small,

|kn| < 6c

it follows that,

(2.5) ’C’fn — Gyl < 126

41
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Cn

Finally, consider o
n

¢ (I +ac(n—1))
C* a eaél,n
_ ea(é log(l—&-ac(n—l))—Ci’in)ea(Cfn—C'l,n)
Thus by (2.3)),
% < oo log(l+ac(n—1))-C¥, ) J120¢
Cn

Therefore, using the bound in Lemma [2.3.1],

< e -1 log(1+ac(n—1))el2ac

™\
S

12
<e ac.

Thus,
Cn = Ch(1+€X)

where €° — 0 uniformly as ¢ — 0.
Now define the following measures on the space S = [0, 27| x [0,0) ,

dpt(0,1) = dex(ydt,  dfic(0,1) = 0 (i

0o)
i 2 Hk]l[él,k—l,él,k](t)> ’

where,
( k=1

6]
EX(t) = exp (z Z ekl[cik,kpcﬁk](t))’ &(t) = exp
k=1

Using the theory of Loewner chains (see, for example, Section 7 of [JVST15]), ¢, is a

good approximation to ¢;° provided the measures p and fi. are close in the sense stated in

Corollary [2.3.5] below. For a function g and a measure u, denote,

(o) = ng,wdu(e,t»
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It follows that, for the measures p*(0,t), fi.(0,t) defined above,

©  ~CY
(g, be) = Z 9Ok, t)dt, g, iy =Y, | g(bx,t)dt
k=1YC1k-1

Then the following corollary holds.

COROLLARY 2.3.5. Let g : § — R be a continuous function with compact support. Then,

<9, ey — <9, fic)] = 0

uniformly as ¢ — 0.

PROOF. Since g has compact support, there exists some 0 < T < oo such that g(z,t) =0

whenever ¢ > T'. Thus,

Cix

f g0, t)dt — ZJ g(0p, 1)

C1k-1

g, 1z) — <9, fic)| =

where kr = inf{k : C}, A CN'Lk > T}. By the continuity of the function g there exists
sy € [Cik_l, ka] and 3, € [C’Lk_l, C’lk] such that,

kT
Kg, 12> = (g, fie)| < D |cig(On, %) — kg (On, 31|
k=1

We can bound the term in the summation as follows,
|9 (O, s1.) — kg (O, 1) <ci [9(Ok si.) — (O, 3)| + ¢k — Cxl19(Ok, 1)

<cj ( sup |90k, s) — g(Ok, )| + 6;?|goo>

|s—t|<14c

where €} is the uniform bound from Proposition Therefore, since bounded continuous
functions on compact time are uniformly continuous we can find a uniform bound on the

first term and hence a uniform bound on the sum,

kT
g, ey — <9, eyl < (Z CZ) ( sup 9(6,s) —g(0,1)[ + sup 6?9!00)
0<k<oo

k—1 |s—t|<14c,0€[0,27]

|s—t|<14c,0€[0,27] 0<k<o0

<(T + 12¢) < sup lg(0,s) — g(0,t)] + sup ef|\g|w>
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which converges to 0 uniformly as ¢ — 0.

As a remark we note that it is straightforward to prove the almost sure version of
Corollary [2.3.5] For notational simplicity all subsequent results are proved for ¢, however,

it is straightforward to verify that ¢ can be chosen sufficiently small such that analogous

results hold for ¢; .

2.4. Pointwise convergence for 0 < a < 2

2.4.1. Estimates. In this section we will provide estimates for several variables which
we will then call on throughout the rest of the paper. Whilst this work is an essential part
of the analysis, we advise that the reader may skip the proofs of this section if they are only

interested the main results of the paper.

We start by providing some notation used throughout the remainder of the paper. Let

1

¢ and ¢ be defined as above. Recall, we denote C;n = > pcf. Then for any z € C we

define our increments Xy, ,(2) as;

(2.6) Xin(z) = e Ctn (¢k (ec’jﬂmz) — Pp_1 (ec’inz>> .

Let Fx_1 be the o-algebra, o (0; ;1 <i <k —1). We first show that for all 0 < k& < n,
E(Xkn(2)|Fr—1) = 0.

This is shown in the following lemma and highlights the power of using conformal maps.

LEMMA 2.4.1. Define the sequence { X, (2)}1_o and corresponding filtration (Fi)p_o as

above. For each z € C, the following property is satisfied for all 0 < k < n,

E(Xkn(2)|Fr—1) = 0.
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ProoF. We first show;

21
; ¢k71(ewfc;§(67wz))§ = fr1(e% 2).

Let w = €', then the integral can be rewritten as

2 , o dd 1 [ Pea(wfx(z/w))
e ] R

where C' is the unit circle centered at 0. The map w —— ¢p_1(w fex (z/w)) is analytic on the
disk of radius ‘71| with a removable singularity at 0 and so by Cauchy’s integral formula,

1 P (z/w)

27 o w dw = 1})1_1({10 d),g,l(wfc:(z/w))

= Gr—1(lim w fox (2/w))

2
. w
= dr_1 (hm (ec;:z +aow +a1— + >>
w—0 z

for some complex number sequence of a;’s. Thus,

2m ) ) do *
¢k71(610fc;§ (6_292))5 = ¢p—1(e% 2)

as required. So now let us consider E(¢y(z)|Fk—1). This can be rewritten as

E(¢1(2)|Fi—1) = E(r—1 (e fox (€7 2))| Fiom1)-

The only randomness here comes from 6y, the ¢ are pre-determined, and so,

21 ) ] .
E(¢r(2)|Fr-1) = . ¢k—1(e’9fc;:(€_wz»% = pp—1(e%z).

Therefore,
* d
E(¢pr(e“F+1m2)| Fio1) = dp_1(e“Fn2).

Thus,

E(Xpnl Fi1) = e (B(g(e741m2) | Fi) = b1 (enz)) =0

as required.
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We also define the sum,

(2.7) My(2) = Y Xpn(2) = € “nga(2) - 2.
k=1
Lemma shows that for each fixed n, we have for k = 0, ..., n that E(M,,|F) = Z?:l Xin

which is a martingale with respect to k. We will also need to define the variance
n
(2.8) To(2) == > E(|Xin(2)]” | Fior).
k=1

Our aim is to show that we approach a disk pointwise, equivalently, for a fixed value z,
|My(z)] — 0 as n — oo. Throughout we use A to denote strictly positive, unless stated
otherwise, constants which may change from line to line. Where these constants depend on

parameters from the model we indicate these explicitly.

We will find pointwise bounds on Xy, ,(2) and T5,(z). By definition;
[Xin(2)] = el g(e%rinz) — gp_1(e%nz)|

= e_cik,n |¢k‘71 (elak fc;: (e_iek 60:4»1,71 Z)) — ¢k71 (ecick,n z) | 3

We start by showing that for |z| > r, for some r > 1, we can bound 0, (e*wkecﬁﬂmz) by a

constant via the following lemma.

LEMMA 2.4.2. For C}, and 6.(z) defined as above, and for |z| > r for some r > 1, the

following bound holds,

\56;: <e*i0’“eclj+1vnz> | < )\(Oz,c,r)ké*%n*é < May, c,r)k*% < Maye,r)

where Aa, ¢,r) is a positive constant dependent on «, ¢ and r.

PROOF. From equation (2.1) we know

6.(2)] <
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where )\ is some constant. Therefore,

A(cg)2 ez

‘e—iekec;ck+l,nz — 1‘(’€C:+l,nz| — 1) '

. %
Since |z| > r,

C
5. k
k eck+1,n7~ i 1)2

(e*wkeclfﬂ,nz)‘ < Acg)ze k+1mr'
(

~ *
Note that A could equal zero here. So using the estimates on eCk+1n and €i,n from Lemmas

and Corollary [2.3.2] respectively we have the following bound,

Ck

—i * 1_3 _1
5 (6 z@keCkJrl,nz)‘ < A(OJ,C,T)]{W 2N o

3
2

< Ma,e,m)k™2 < Ma, ¢, )

where A(a, ¢, ) is a constant dependent on «, ¢ and r. O

Note that we will need the intermediate bound in a later proof. We introduce the

following parametrisation.

DEFINITION 2.4.3. For eachn € N, z€ C, k < n and §.(z) defined as in , we define

the following parametrisation for 0 < s <1,

o 2¢; —iby, CF
Nkn(S,2) =e *knzexp | s . + e (e ke k+1vnz> .
7 e=i0kekriny — 1

Using this parametrisation we see,
Men (0, 2) = ec'j”z, Men(l,2) = eiekfcz (e*w’“ec;:ﬂvnz)
where [ (z) is defined as in Section 2.1. Therefore,
X (2)] = €l (men(L2)) = St (a0, 2))1:

Before finding pointwise bounds on Xy, (2) and 7T),(z), we first find pointwise bounds on

elements of 7, (s, z) and its derivative with respect to s which we denote by 7y, (s, 2).
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LEMMA 2.4.4. For nyn(s, z) defined in , for each z € C with |z| > r and each

0 < s <1, the following pointwise bound holds,

2¢; —ify, ,Cf
exp |( s = + 9% (e e k+1,nz) < AMa, e, 1)
e~ WreCkting — 1 k

where N« ¢, ) is a constant dependent on o, ¢ and r. Furthermore,

*

e

cre kn

’ < Mo, ¢, 1) —gt—.
e ktlnp —1

C*
cpe kmnz

(5, 2)| < A, )| — Ko
e~ Wk ktingy — 1

PROOF. Let A(a,c,r) be some constant that we allow to vary throughout the proof.

First notice that since ¢ < ¢ and ecffﬂ’"[z\ > r it follows that

2c}; - 2c
s .
e=ibreChring —1)|  r—1

2c5 , s
exp (s ( . . + O <e*19k ¢Cr+in z>)> ‘
e_lekeckJrl,nz —1 k

*
26k 0% (e_wkecfjﬂ,nz) D
k

C
we use the bound above along with Lemma [2.4.2] to reach the following bound

2c; . 2
eXp s B k + 60* (eflek eC;:Jrl,n Z) < exp 76 + )\(a7 c7 74)
e_igkeck+1,nz — 1 K r — 1

= ANa,c,r).

Therefore as,

+

<exp<

. *
e~ ke kriny — 1

Now consider 7y, (5, z). Recalling that

* 2c*F . *
M (8,2) = eCkmn 2 exp <5 ( k + 50: (ew’“eckﬂ,nz)))

. %
e=WreCk+ing — 1

we see that

k
2c;;
c

|7.7k',n($, Z)’ < ‘ ( + 50: (e_iekeclzk+l,nz>)’ ’nk7n($, Z)‘

. *
e~ ke kriny —1

Then using the bound we found above,

%k
2c;;
C

Men(s, 2)| < AMa,c,r)le ’j’nz
9 A C

+

. %
O (e_w’“ ecﬂlvnz) D

. *
e_leke k+lny — 1
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where A(a, ¢, r) is some constant. Now using the fact that |z| > r and the bound from the

proof of Lemma [2.4.2] we see that

C¥ C¥

2cte ki z 2cE e kn
[T (s,2)] < )\(a,c,r)’ ‘ kc* < e, 6,1)— kG 7T
e_Zeke k+lny — 1 e k+lnp — 1
where the second inequality follows by using that |z| > r again. O

Now we can use the bounds above to give us a pointwise bound on X, ,(2). We will use

the following distortion theorem in the proof [PomT5].

THEOREM 2.4.5. For a function from the exterior disc into the complex plane F': A — C
that is univalent except for a simple pole at 0 and Laurent expansion of the form
e}
F(z)=z+ap+ Z apz” "
n=1
we have the estimate

|2 2]

< e A.
P15 -1 7

Our bound on X}, ,,(2) is given by the following lemma.

LEMMA 2.4.6. For the sequence { Xy, »(2)}}_, and corresponding filtration Fj, defined as

above, and for a fized |z| > r, the following property is satisfied for all 0 < k < n;

C*
[ Xin(2)] < Ao, e,7)—= k
e k:+1,n7~ —_ 1

where N, ¢, ) is a constant dependent on «, ¢ and r. Furthermore, for 0 < a < 1,

1
sup |Xk,n(z)| < )\(Oé, ¢, T)ﬁ

k<n
and for a > 1,

1
sup | Xy n(2)| < Ma, e, 7)—.

k<n Nnao

PROOF. By definition

| Xpn(2)] = € T |1 M (1, 2)) — k1 (M (0, 2))]-
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Hence,

vk
| Xpn(2)] = € “lin

1
L ¢;<;71(77k,n(37 Z)) ﬁk,n(su Z)dS

1
_C* .
Se Cl’"f |01 (e (5, 2))| ik (5, 2)] ds.
0

Using Lemma [2:4.4] we have,
*
2cj; eChnp

*
eC

’ﬁk,n(sv Z)‘ < A(057 c, T')
k+l,n7" —_ 1

where A, ¢, r) is a non-zero constant that will vary throughout this proof. Moreover, we

can find a bound on Sé |¢)._1 (Mn (s, 2))| ds using Theorem @,

1
. c* |77k n(87z)|
_1(Mkn(s,2))| ds < e Lkl sup ———————.
JO ’(bk l(n n( ))‘ 0<s<1 |77k,n(372)‘ -1

Note that in order to apply the distortion theorem to our function ¢_; we had to rescale by

a factor of eCTr1. Tt is easy to show that info<s<i |7k (s, 2)| = |z| and therefore for |z| > r,

1
J |¢§<:—1(77k,n(5,2))| ds < St
0 r—1

Thus, by compiling the bounds above,

C¥* %« CF
* 1,k—1 26 e k,nr
-cf, € o

Xien(2)] < Ma,c,r)e
| k‘,n( )| ( ) r—1 GC:“»"T—l

C*
< Ma,c,r) k

¥ .
eck+1,n/r — 1

Using the estimates in Lemma and Corollary we have,

1

1 X5n(2)] < Mo, e, r)kana.

First consider the case where 0 < o < 1. Then 1?70‘ > 0. Hence, it is clear that the maximum

occurs when k = n and thus

1
sup | X (2)] < Aa, ¢, T)ﬁ

k<n
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l—a
However, when a > 1, k= <1, so

1
sup |Xk,n(z)| < )\(Oé, ¢, r)j

kSTL n o

where A(a, ¢, r) is a constant dependent on «, ¢ and 7. O

It is now clear to see that as n approaches infinity the bound on X}, ,,(2) approaches zero

pointwise.

COROLLARY 2.4.7. For Xy, ,(z) defined as above;

lim sup | X}, (2)] = 0.

Now we want to calculate a bound on the variation T, (z) = Y7_; E(|Xgn(2)?|Fr-1).

This is given by the following lemma.
LEMMA 2.4.8. The following inequality holds for sufficiently large n. If 0 < o < 2,
1
Tn(z) < )\(Oé, C, r)i
n

where A« ¢,r) > 0 is some constant.

PROOF. First let us look at | X} ,(2)|?. As before we can bound

_ * .
| Xpon(2)]? < 720 sup | mi.n(s)[%.

‘2
0<s<1

1
jo S 1 (on(s, 2)) ds

Therefore,

2 —20%* ! / 2 . 2
E(|Xpn(2)I? | Foor) < e>CInE (| f Shoa(n(5,2)) ds| sup () | Fir )
0 <s<

We can find an upper bound on the integral using a distortion theorem again and then
remove it from the expectation. By Theorem [2.4.5] above,
r2

1 2
C*
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So all that remains to calculate is E(supg<s<q |7kn (8, 2)|?|Fx—1). Firstly by Lemma
forall 0 < s <1,

| R wl

itn(5,2)] < Ao ) S0

Cc* : :
where w = e~ k+t.ny. Moreover, since the ¢f are predetermined, the only randomness here

comes from the ;. and thus,

2m 2
E( sup_[7je,n(s, 2)|” | 1) <4(Ci)262ﬂ .
0

0<s<1

It is easily shown that for w e C,

o lem%w —1)2 lw| — 1
Therefore,
C;:—l—l,n
E( sup [in(s,2) 2| Fi 1) < 24(cf)2eF — .
0<s<1 ',"eCk+1 n 1
It is clear for all k < n, ¢}, < ¢, therefore,
reCim
E( sup |ign(s, 2)|* | Fe-1) < 24626<CZ)27
0<s<1 Ck+1 n—1

Finally we can use the bound

1 1 e‘r

* =~ ol
reCriin — 1 pelrn —17—1

and bring together the previous bounds to reach the following bound on 7),(z).
Let A(a, ¢,r) > 0 be some constant that will vary throughout. Then,

n C;:’n
To(2) < Maye,r) Y ( 20fn 2Can (c;:>2‘1>

k1 reSrn — 1
C*

n
OéCT’ —
kz_ll ( Ic'n,fr 1)

" *
Mo, e,r) Z —20k,
k=1
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We can substitute in the known values for ¢ and C}, to reach the following bound on 7}, (),

To(2) < Maver) Y RS
niE S ABGT =\ 1L+ ack—1) 1+ acn '

Let o = 122kl hen,

1+ acn

1 1
Th(z) < )\(a,c,r)f ) va2dz.

1+acn

This integral is bounded above by a constant if 0 < a < 2. Therefore we bound above by

1
Tn(2) < Ma,c,r)—.
n

Moreover since T, (z) = 0, we have the following corollary.

COROLLARY 2.4.9. For 0 < a < 2,

lim T, =
i, Tnl2)

2.4.2. Results. We are now in a position to analyse the limiting structure of the map
¢n as n — oo for 0 < @ < 2. Our aim is to use the bounds on the increments Xy ,,(2)
and T),(z) found in the previous section to produce a pointwise estimate on the difference
between the cluster map and the disk of logarithmic capacity ¢“in. Tn order to do so we

will apply the following theorem which is an immediate consequence of Proposition 2.1 in

[Fre75].

THEOREM 2.4.10. Let n be any positive integer. Suppose Xy, is Fp-measurable and
E{Xkn | Fr—1} = 0 and define My, = D5 Xppp and Tp, = >y Var{Xy,, | Fr—1}. Let M
be a positive real number and suppose P{| Xy, | < M for all k < n} = 1. Then for all positive
numbers a and b,

P{M,, = d T, <b} < — .
{ @ an J eXp[z(MHb)]
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Consequently, for all positive numbers a and b,

2

—Qa
P{|M,,| > dT,<b <2exp|—0o" |,
{IMn] > a an J eXp[2(Ma+b)]

Recall, e_Cﬁnqﬁn(z) — 2z = Y1 Xpn(2). Hence, we can now apply Theorem [2.4.10| to

our cluster to obtain pointwise results for 0 < a < 2.

THEOREM 2.4.11. Let ¢ and ¢y be defined as above. Then for 0 < a < 2, and any

sufficiently small positive real number a and n sufficiently large,

2
P (| ngn(2) — 2| > a) < 4 Noim

for some strictly positive constant X(«a,c,r). Therefore, for all 0 < a < 2 if we let a(n) =

log(n) ‘
I then for all z € C with |z| > 1,

nli_r)IC}OIP) <|ecikn¢n(z) —z| > 103%”) =0.

ProoF. First note, we have shown in Lemma [2.4.1} E(X}, ,(2)|Fx—1) = 0 where

Xin(z) = E_Cﬁ” (¢k (60:“*”2) — Qr—1 (BC:’"Z» .

Recall, M, (z) = >p_1 Xk n(2), and note that we can split M, into real and imaginary parts,

thus,

P (|M,|>a) <P <§R(Mn) > \%) +P (%(Mn) > \%) .

Moreover,

sup R(Xgn(2)) < sup | Xj n(2)]

k<n k<n

sup (Xgn(2)) < sup | Xgn(2)].

k<n k<n

It is easy to see that both R(X} ,,(2)) and (X ,(2)) satisfy the property that the expecta-
tion with respect to the filtration is zero and so by applying Theorem [2.4.10|with M = bx(n)



2.4. POINTWISE CONVERGENCE FOR 0 < o < 2 55

and b = bp(n), for any positive real number a,

P (\ ];Xk,n(z)‘ = a> <P (% (;lem(z)) > \/§> +P (g (;le,n(z)> > \/§>

—a?
stew [4<bx<n>5i v bT<n>>]

where bx (n), br(n) are the bounds on | X}, (2)| and T, (z) from Lemma and Lemma

[2.4.8| respectively. We first deal with the case that 0 < a < 1. In Lemma [2.4.6] we have seen

1
sup | X (2)] < M(a,c, T);

k<n

for some positive constant Ai(,¢,r) and by Lemma [2.4.8]
1
Tn(z) < )\Z(Qa ¢, 7‘)7
n

for some positive constant \o(a, ¢, r). Therefore,

—a2n

4 ()\1(04, c, r)% + Xa(a, ¢, 7"))

P (|6_Z?=1C;k¢>n(z) —z| > a) < 4dexp

But for a sufficiently small, A\ (o, ¢, r)% < Ao, ¢,7) so let A(ay e, r) = 8Aa(av, ¢, 1) then

[\

P <‘efzﬂ 1C*¢ (2) — z| > a) <de —a’n
=15 — <dexp| —— | .
" P Maye,r)
Now for 1 < a < 2,

1
sup | X (2)] < M(asc, r)—

k<n na

for some positive constant Ai(«,c,r) and
1
Tn(z) < /\2(a7 ¢, T)g

for some positive constant \o(a, ¢, r). Therefore,

1
—a’na

4 ()\1(04, c,r)% + Ao (av, c,r)n%>

P <|e_2?=lczk¢n(z) —z| > a) < 4dexp
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Now for a = a(n) = %, and n sufficiently large, Ai(«, ¢, T)% < Xe(a, ¢, r)nl_Ta There-

)

fore, using the same A(«, ¢, r) as above, for all 0 < a < 2,

2
P(le— 2is cf n — <4 _—an_ .
(]e 1% ¢ (2) — 2| > a) exp ()\(a,r, 3

Thus, for a(n) = log(n)

B

lim P <|e—01’in¢n(z) — 2> loxg/%l)> = 0.

2.5. Uniform convergence in the exterior disk for 0 < a < 2

In the previous section we showed that the rescaled functions e~ Ctn ¢n(z) converge point-
wise in probability to the identity. Now we need to show that the maps converge locally

uniformly. Thus, our aim of this section will be to prove the following theorem.

THEOREM 2.5.1. For 0 < o < 2, let the map ¢y, be defined as above with c; as defined in

and 0, i.i.d, uniform on [0,2x]|. Then for any r > 1 we have the following inequality

_ym log(n) _ Jog(n)?
P | sup |e Zi:10f¢ (2) — z| > < AM(a,c,r)e R2leen
<Iz>r ! vn

where A\ (a,e,r), Aa(a,e,m) > 0 are constants. Hence, by Borel-Cantelli,
n 1
P | sup 6*21-:102"(;5”(2) — z’ =0 ( ogn) asn— o | = 1.
|2|=r

Vn
The proof of the theorem will be constructed as follows. We will show that for a finite

number of equally spaced points along the circle |z| = r the inequality holds. Then we will
show that between these points the probability that the difference between the maps when

evaluated at these points is sufficiently small. First define

with M,,(z) defined in equation ([2.7). Then we must choose the spacing between the finite

set of points. With the choice of o and ¢ fixed we choose points, on a radius |z| = r, to be
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equally spaced at angles % where

(VI

Lr,n = ’Y(aa c, 7’)77,

and (o, ¢,r) is a constant,

(2.9) y(a,cr) = 47r1%(ec + 1)(1 + ac)(1 + ae™) <log <ril> + 1) (log(1 +ac) +1).

The reason for this choice of spacing will become clear in the proof of the lemmas that
follow. We start by proving that we can find a finite number of equally spaced points, with

the above spacing along the circle |z| = r, such that the inequality in Theorem holds.

LEMMA 2.5.2. Let {zz}f;f be defined as finite set of points on the boundary of the unit

circle of radius |z| = r with equally spaced at angles LQT—”" and Ly, defined as above. Then,

for sufficiently large n, we have the following inequality

1 _ (log(n))?
P (32' Mo (2)| > Og”> ¢

oy ) S (@ er)e tateen

where A\ (a, ¢, 1), A2(a, ¢,7) > 0 are constants.

PRrROOF. We have shown using Theorem [2.4.11] that for 0 < o < 2 and for any 1 < i <
Lrn

)

l _lo (n)2
P (‘ M ()] > Ogn> B

2v/n

for some constant A(«, ¢, r) > 0. Therefore,

L
logn DV log(n)?
]P) (37/ : |Mn(2‘z)| > > <4 Z e /\(a,c,r)'
24/n =

The terms in the sum have no dependence on k and as such we can find an upper bound,

log n) log(n)?

P <E|Z : ‘Mn(zz)‘ > m < 4Lr’n6_k(a,c,r)

5 _ log(n)?
=4dvy(a,c,r)nze Mawr)
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where y(a, ¢,7) > 0 is the constant defined in equation (2.9). Let \i(a,¢,7) = 4vy(a, ¢, 1),

then
. log n §1 _ log(n)2
P (Elz | M(2i)] > 2\/ﬁ> < M(a,e,r)e? B Aeen
For sufficiently large n > e3>‘(aﬂc77"),
%logn 1
log(n)2 ~ 9°
AMa,e,r)

Therefore, let Aa(a, ¢, ) = 2A(a, ¢, r) and then for n sufficiently large,

logn

>2\/5

with A1 (e, ¢,7), Aa(a, ¢, 1) > 0. O

_ (log(n))?
P (E]Z : |Mn(22)| > < )\1(0[,C7 7")6 Ao (a,c,r)

We now prove that for points w € C in between the points in the set {zl}f:’ln the difference

M, (z;, w) is negligible.
LEMMA 2.5.3. For |z| = |w| = r with arg(z) = 0,, arg(w) = 6, and |0, — 0] < % and

L., defined as above we have the following bound;

log(n)
2y/n

| M (2, w)] <

and hence,

2 1
P (Hw,z eC:|z| =|w| =7, |arg(z) — arg(w)| < L:n, | M, (z,w)| > Z‘fﬁg)) =0.

PRrROOF. We want to find a bound on |M,,(z, w)| so we first find a bound on | X}, , (2, w)| =

|Xk,n(z) - Xk:,n(w) |

| Xk (2, w)|

%
=e 22:1 G

o () s (5-0) = o () - ()]

Let 0 < s,t < 1 and then

Tk’n(s) zec;:Jrl,n |Z|€i(925+9w(1_5))

Prn(t) :ecff,n’Z‘ei(eztww(pt))_
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Thus,

| Xk (2, w) < |r(Thn (1)) = Ok (T (0))] + |Pr—1(Pk,n (1) — Pr—1(pk,n(0))]-

If we consider the 7 terms in the upper bound, we have

1
01(7in(1)) = Ou(rin O] < | |64 ()] (5]t

Using Theorem [2.4.5]

(66(rin(1)) = u(rin(0)] < Tt sup Tl _ctiinig g 1121

0<s<1 ’Tk,n(s)‘ -1

Therefore,

o
eck+1,n

|0k (T (1)) — D (o (0))] < €70 |26 — | —

—_—.
e k+in|z] —1
By a similar argument

C*
* ece k+1,n
[Dr—1(Prn(1)) = Dk-1(prn(0))] < 700220, — O] —

e k+ln|z| — 1
Therefore using the fact |z| =7,

*
eck+l,n

%
eck+1,nfr — 1

| X g (2, w)] <72 +1)]0, — 0,

1

1+acn )E and take the sum to write

imation eCrn a
We can therefore use the approximation e 'k & (m

1+5k,n

n (1+a07’;> o
1+ac

| My (2,w)| < 72(e° + 1)102 — O] | D] o
k=1 1 e

()

where €, is the same error term from Section 2.2. We can use the bound from Corollary
2.3.2 to remove the ¢, term,

1+5k,n

1 1
1+aen\« 1+ acn a 1+aen\ e«
—_— <|—— < (1+ Y| —

(1+ack:> (1+ack> (1+ace )<1+ack‘>
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60
1 1
Then z = (}igiﬁ) ® and integrating between z = <1ﬂ%) “ and z = 1 gives
1+€k,n
1+ E acn\ &
n [ () L] ) 1 e
» S Liack,,
k=1 1+acn a N ¢l re—1
r (1+ack> -1
1
1 () 1
< —(1+ acn) f dz|.
c 1 re —1
Thus,
1+Ek,n
n (1+acn> a
14+ack 1 r—1
2 — < E(l + acn) |log -
= «a ’ 1+ a
S () T () -
1
1 1+ a
< —(1 + acn) log (7’(04071)) )
er r—1
Therefore,
7(a7 C? /r‘)
|Mn(sz)’ < 7|‘92 - 0w|nlogn
4
where (a, ¢, r) is the constant defined in equation ([2.9)). Then we use the fact that [0, —60,,| =
L2:rn and write
Moz w)] < 258
z,w)| < —=.
" 24/n
So,
27 log(n)>
P(Jw,zeC: |z| = |w| =71, |arg(z) — arg(w)| < , | My (z,w)| > =
( o1 = ol = 7, Jar(z) — ()] < 7 M )| >
O

So we can combine these two lemmas to give our proof of Theorem [2.5.1]
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PrRoOOF OoF THEOREM [2.5.1] As in the previous two lemmas we separate the circle into

2

7. apart. We can then form the following bound;

points

NG

11
<P <3i | My (2i)] > 5 i?;)

+P(3w,ze(c:|02—9w|<

1
: (Sup e n g (2) — 2| > Ogn>
|z|=r

Using Lemmas [2.5.2] and [2.5.3] we see,

_ logn _ (og(n)?
P ct, > < )\ g (arer)
<i1|l_pr|e On(2) — 2| Jn ) < Mo, ¢, r)e

where A\ (o, ¢,7), A2(a, ¢, ) > 0 are constants. Then using the maximum modulus principle

we see that that the maximum occurs on the boundary and so,

N

logn _ (log(m))®
P (sup ]efcindm(z) —z| > & ) < M(a, e, r)e Raleen,
|z|=r

It is clear to see the upper bound is summable and hence by a Borel-Cantelli argument,

. _C* logn
P | limsup sup |e Cla”gb z)—z| > =
(M e~ rg(z) 2| >

2.6. Fluctuations for 0 < o < 2

2.6.1. Discarding the lower order terms. In the previous sections we have shown
that the rescaled functions e_Cﬁnqﬁn(z) converge locally uniformly to the identity with prob-
ability one. It immediately follows that the image domain almost surely converges to A in
the Carathéodory topology. Now we would like to see how much we fluctuate from the disk.
To do so we aim to produce a central limit theorem that will tell us what the distribution

of the fluctuations is. Up until this point we have used

Xin(2) = e Cin <¢k (60:“*”2) — Qr—1 (60:’”27)) :
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We aim to prove that the fluctuations of M, (z) = e_cfnqﬁn(z) — z| are of order ﬁ First,
we want to establish the leading order behaviour of the increments Xj ,(z) in order to

simplify the calculation of the fluctuations. Therefore, we introduce the quantity,

2cE\/nz
Xk,n(z) = ;\/7

e~ ke

) .
k+1,nZ — ]_

Using similar methods as in the proof of Lemma [2.4.7] it is simple to show that for all
0<k<n,

E(Xyn(2)|Fr—1) = 0.

The following lemma shows that X}, ,,(2) is a good approximation to /nXj ,(2).

LEMMA 2.6.1. Let Yi n(2) = v/nXpn(2) — Xy pn(2). Then if 0 < a < 2, for any e > 0

>e>=0

PROOF. Fix some r > 1. Then in Theorem [2.5.1] we showed that,

_ logn
P | limsu sup le Cin z)—z| > = 0.
( ’Hoop{zwpr' P }>

and r > 1,

Z Yk,n(z)

P (hm sup sup
k=1

n—o0 |z|>r

Denote the event,

_ logn
w(r) = < liminf { su ecinnz—zé )
(r) {M {Wy ou(z) - 2] ﬁ}}

Now choose ' = ™1 We have shown that P (w(r')) = 1. Therefore,

2
< e | =P [ limsup sup w(r’) | .
n—0 |z|>r

For |z| > 7’ on the event w(r’) there exists an integer ko > 2 such that if k > kg then,

n

Z Yk,n(z)
k=1

Z Ykz,n (Z)

k=1

<€

P <lim sup sup

n—0 |z|>r

_ 2log(k — 1
(2.10) le 1y _1(2) — 2| < L_
k—1
Thus, we split into two cases. First consider the case where k < ky. Then by Lemma [2.4.6

for0<a <1,

Sup |v/nXpn(2)| < Mo, e, )2
k<n
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and for a > 1,

Sup |Xl~c,n(2)| < )\(Oz,c,r)n%_é
k<n

for some constant A(a, c,r) > 0. Similarly, using the definition of X} (%) and bounds from

Lemma [2:3.T] and Corollary 2:3.2] for 0 < o < 2

X2 < Alaer)id ndh

for some constant A(«a, ¢, ) > 0. It follows that for k < ko, if 0 < a < 1,
sup |Yin(2)| < )\(oz,c,r)nfé
k<n

and if 1 < o < 2,

Q=

sup Vi (2)] < Ma, ¢, r)nz~
k<n

for some constant A(a, ¢, ) > 0. Thus, if 0 < o < 2, for any € > 0 and r > 1,

>6>—0

Now we consider when k > kg and calculate a bound on |Y}, ,,(2)| in this case. Let

ko

Z Yk,n(z)

(2.11) P (hm sup sup
k=1

n—w0 |z|>r

1
Ko=) = v/ (&7 fi(eFrinz) — 2) = Ve~ % f i (5, 2)ds
0
where 7, (s, 2) is defined as in Section 2.3. Note that in the case where k = 1,

X1n(2) = X1,n(2). Then,
~ * 1 *
\/ﬁXk,n(Z) - Xk,n(z) = \/ﬁe_cl’" (J;) ﬁk,n(sa Z) <¢2—1(77k,n(5a Z)) - ecl’kﬂ) d8> .

Let g(z) = e Ol ¢r—1(z) — z. For fixed z, the function g(¢) is holomorphic on the closed

disc of radius R := |z| — 7’ with centre z. So by Cauchy’s theorem for 0 < o < 2,

, 1
g =5 CR@“’fCi)zdc

where Cp is the circle of radius R centred at z. Therefore, using the bound from equation

(12.10)),
2log(k —1)
(|z| =)VE -1

l9'(2)] <
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So on w(r'),

|\/5Xk,n(z> - Xk,n(z)‘

< 2v/ne °t f Mk (85 2) ! e log(h — 1) ds
= " k,n\9, .
0 ([7en (s, 2)[ = 17) k-1

Then since, infocyen [0 (5 2)| > 2],

2\/> —ct, log

r—r

|\/EXk,n(Z) - Xk,n(zﬂ <

j (s, 2)]ds

og(k‘ -1) c,’:eck!n

x 1
< Mo, eyr ne” Ckn
( )\/> V kj - ]. eC;ck+l,n7= — 1

< A 0.y Y 0B

na k2

where the second inequality follows from Lemma [2.4.4] Now consider,

p?k,n(z) - ka(z)‘

2¢; « (!

k —C

< — e k| pn(s,z)ds —z

e~ Wke kt1ny — 1 0
1
_CO* o *

n <e Cem J nk,n(sy Z)d8> 5(3;: (6 ZerCkJrl,nZ)

0

20* 1
<+/n ((C*k) <TJ ehn(s) — 1‘ ds> + AMa, ¢, r)
| 0

where A(a, ¢, r) is some positive constant that we will vary and

2ck . *
Tpna(s) =s k 46 (e eChting) )
) . C* Ck
e_'leke k+lny — 1

< vn

: *
i (¢ e Fonns) D

Furthermore,

|emk" — 1] < Moy, ¢, 7)|xpn(s)] < Moy, c,r)kéfln*é

where the second inequality follows from Lemmas [2.3.1] and 2:4.2] and Corollary [2.3:2] Hence

by using the bound on d. from Lemma we see that,

~ 2
| Xkn(2) = Xen(2)] < Ma, e,7")/n <<ki1ni) + k:clv2na) :
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. 1 1
Since k= < na we have

DZ’kﬂ(Z) N Xk’n<z)’ < )\(OZ,C, r)ka_ini_a.

Therefore,

Then we split into cases, if 0 < o < %,

sup |Yin(2)| < Mo, ¢, 7)
k<n n

as n — 00. However, if £ < o < 2 then

2
3

Q=
!
o

sup | YVin(2)] < A(a, ¢, 7) log(n)n?

k<n

as n — o0. Moreover,

n log(n 2k%
E([Yion (=) | Fiot) < Ay o, )1 0BIRE

na k

Thus if 0 < a < 1,

n log(n)3
S E(Yin ()2 [Ficr) < A1) 2B g
n
k=ko
asn—oo. Ifl<a<?2,
n log(n)3n
S E(Yin ()2 [ Fir) < M) BT
k=ko o

65

as n — 0. Therefore, since Y ,(2) is also a martingale difference array we can use these

bounds to apply the same methods to the difference Yy, ,,(2) as we did to X}, ,,(2) in Sections

2.4 and 2.5 along with a Borel-Cantelli argument to show that

P (limsup sup Z Y n(2)] > 6) = 0.

n—00 |z|>r k=ko
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Therefore, combining this with equation (2.11)) gives,

P (hmsup sup Z |Yin(2)| > e) =0.

n—0o0 ||>rk 0

2.6.2. Laurent coefficients. In the previous section we showed that we could discard
the lower order terms of X}, ,,(2). We now wish to calculate the Laurent coefficients of the
remaining higher order terms &}, ,,(2) and hence evaluate the fluctuations of the cluster. We
first notice that

E(Xyn(2)|Fr—1) =0
and therefore X}, (2) is also a martingale difference array. We aim to use the following
result of Mcleish [McL74] to produce a central limit theorem. Whilst Mcleish’s result is

more powerful than we need in this paper, it provides a framework to use similar techniques

even when we do not have a nice decomposition.

THEOREM 2.6.2 (McLeish). Let (D n)1<k<n be a martingale difference array with respect

to the filtration Fyn = 0(D1pn,Dap, ..., Dp). Let My, = 33" | D;r and assume that;

(I) for all p>0, >p_4 Dl%,n 1(|Dgyn| > p) — 0 in probability as n — oo.

(1) >5_, Dl%,n — s% in probability as n — o for some s> > 0.

Then M, converges in distribution to N'(0, s?).

Note that condition (I) in Theorem combines two conditions in [McL74]. Theorem
2.6.2 only applies to real valued random variables and as such we will split X}, ,,(2) into real
and imaginary parts. We start by calculating the Laurent coefficients.

2¢ci/n 1

*
Ck+1,n 1 —

Xk,n (Z) = 1

e~ ke 0. CF
e Wke k+l,ny

1
j E3
e~ 0ke k+1lmny

We can choose |z| > r such that < 1, then

6 z@ke k+1 n)m-i—l zm’

X i 2ck\F 1

m=0
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So the m™ coefficient is dependent on n and k and we can rewrite Xim as

Xin(2) = Y ainlm)

m=0

- . So we can calculate real and imaginary parts of these
(eck+1,n)m+1

where ay, ,(m) =
coefficients,
2ci/n

R(akn(m)) = (ecg+1,n)m+1 cos(Ox(m + 1)),

2ci/n

(ecffﬂ,n)mﬂ sin(fx(m + 1)).

S(akn(m)) =

In order to use Theorem 2.6.2] we need to calculate the second moments of the coefficients.
We will just consider the case of the real coefficients here but the imaginary coefficients give

the same results. Thus, we calculate,

c)2n 2m
E((R(agn(m)))?|Fr-1) = (Cf(k;f cos?(8(m + 1))do

It is clear to see here why we have the same expected value of the imaginary coefficients. So

now we can take the sum over n,

. n . n c¥ 2
T, 3% B((Rara(m))?Fe 1) = Jim |20 3 —E
k=1 ket (e Hl’n)

Recall that ¢ = and we have shown we can approximate the term in the denomi-

__c
1+ac(k—1)
nator in the following way;
1+6k+1,n

C* 1+ acn a
e kE+1,n — -
1+ ack

where €341,y is the error defined in Lemma Therefore, we can write

<(1+5k+1,n)(2(m+1))>72
(1 + ack) “
(1+ek+1,n)(2(m+1>>>

1+ acn)< “

lim i E((R(akn(m)))*|Fr—1) = lim | 2nc? i
k=1

n—00
k=1
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We know €41, — 0 so our aim is to show that this term in the sum is insignificant. We
define the function h : R — R as the term inside the sum;

(1+2)(2(m+1))
1 (rGtl)
h(z) = (1 + ack)

((1+z)(2<m+1))>
(1 + acn) o

Our aim is to show,

lim 2nc? Z (h(€ek+1,0n) — 1(0))| = 0.
k=1

n—o0

If we can show this then we can just ignore the €, and find the limit,

lim 2nc? Z h(0)

n—0o0

which we will show converges to a real number. We provide this in the form of the following

lemma.

LEMMA 2.6.3. With h : R — R defined as above we have

n—0o0

lim 2nc? an (h(ert1,n) — h(O))| =0

k=1
Proor. Consider

<(1+ek+1,n>(2(m+1))>72 <(2(m+1))) )

_|(1 + ack) “ (14 ack)\ = )

‘h(‘fk-i-l,n) h(O)‘ <(1+€k+17n)(2(m+1))> ((2(m+1)))
(1+aem)\ =« (1 + acn)
2m+2
Then let yy ,, = (iiggﬁ) “ , thus we can write
retnn) — RO = syl i — 1]
' (1 + ack)2 7" [ Tkn

Furthermore, since log(yk.n) < 1,

€k+1,n _ _
yk,n 1‘ -

JN 1‘ < lets 1.0l 108 Yin]-
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So using the first bound on €, from Lemma we have,

2m+2
o  (2) )|

mt? ¢ (acQ(n — k))

|h(€kt+1.0) — R(0)] < 1 <1 + ack)

(14 ack)? \1+ acn (14 ack)(1 + acn)log (%igiﬁ)
2m—+2
1 k) o 3
< (2m + 2)ozc2n( Tac )2m+2 .
(14 acn) o 1

Now we take the sum over k,

1 2m+2 _g

2nc” Z [h(€ks1,0) = h(0)] < 4n2(m + 1)(104 iz Z (1+ ack) @
k=1 (1+acn) « P

Which we can approximate with a Riemann integral;

n
1
2nc? Z \h(eks1n) — R(0)] < 4n?(m + 1)ac P

k=1 (1+ acn)™a

2m+2

J(l—i—acm) o 3du.
0

Now we need to consider cases, firstly in the case where we have W — 3 # —1 and so

lim 2nc? i (h(ekt1,n) — h(()))‘
k=1

n—00
< lim 4n*(m + 1)ac? ! ! (1+ acm)2m+2 —2 '
x n—00 (1 + acn)%-‘rl ac (% _ 2) 0

. 2(m + 1)ac? n? n?
= lim — ST .
noe\ mtl—a \(I+an)® (14 qcp)™a +!

Hence, since 0 < a < 2,

lim 2nc? Zn: (h(€rt1,n) — h(O))‘ =0.

n—00
k=1

69
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Now consider the case where 2%” —3=—1 and so

n—o0

lim 2nc? Zn: (h(€kt1n) — h(O))|
k=1

n

1 1
< lim 4n? Dac! — log(1
e s e (1 +acn)2";+2+l [ac ol +acx)L
— lim 4n20310g(1 + acn)
n—o0 (14 acn)?

= 0.
Therefore in all cases we have

lim 2nc? i (h(ex+1,n) — R(0))] = 0.

n—o0
k=1

Hence by using the above lemma we can ignore the €41, term in our summation. We

now want to check the conditions of Theorem [2.6.2] We introduce the notation,

A = Y Rlaga(m)), By = Y Slaga(m)).
k=1

We aim to apply Theorem [2.6.2] to show convergence of the finite dimensional distributions
of (A}, B})i =0 to some multivariate Gaussian distribution. The Cramér-Wold Theorem
(see for example [Durl9]) tells us that it is sufficient to show convergence in distribution of

all finite linear combinations of A7, B}l. Therefore, let

X = 2, piR(arn (D) + D 158 (arn(4))
i=1 j=1

for some 1 < p,q < o and sequences of scalars (11;)1<i<p, (Vj)1<j<q- It follows that Xy,
is also a martingale difference array. Therefore, we will apply Theorem to Xk, to
show that we have convergence in distribution of finite linear combinations and hence joint

convergence in distribution to a multivariate distribution. We start by checking condition

(II) of Theorem holds.
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LEMMA 2.6.4. Assume m >0 and 0 < a < 2. Then

2

Tim 2 E((R(ax,n(m)))?| Fy1) = lim ;1E((%(ak,n(m)))2|fk1> e ——

=1
Furthermore, for any my,mo = 0,
Cov(R(ak,n(m1), S(axn(mz))) =0
and if my # mo,

Cov(R(akn(mi), R(agn(m2))) = Cov(I(akn(m1), F(akn(ms))) = 0.

PRrROOF. We have shown above that, in the case of the real coefficients, calculating

limp, o Doy E((R(agn(m)))?|Fr_1) reduces to calculating the expression

o ()
lim 2nc” Z = (L)
k=1 (14 acn)\ @

The imaginary coefficients follow by the same argument. We can approximate this with a

Riemann integral

" (14 ack) (5) 2nc? " ((tmen)
2ne Z (Gt (2l J (1 +ace) © dx + &,
k=1 (1+ acn)\  © (1+acn)\ @ 0

where &, is the error left by the Riemann approximation with |&,| < ’\( 9if0<a<1and

1€n] < M, e)nt™ 2% i 1 < o < 2 for some constant A(a, ¢) > 0. Since for all m > 0 and

(2(m+1))

0<a<?2, — 2> —1, we have,

(@tmei)

@

1 + ack)
2nc? Z (
k=1 (1+ acn)

((2(m+1))>

o

2nc? { 1 (M>_1 "
= I+ acx)\ « +&n
(2(m+1)) _
(1+ Ozcn)(T) 2c(m+ 1) — ac 0
2¢? n n

= - + &y
2¢c(m+1) —ac | (14 acn) (1+ acn)(iﬁ(":rm) n
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We know for allm > 0and 0 < a < 2, W > 1 and so when we take the limit as n — o
we have, i
Q@Unt1) _

lim 2ni1+a0( - )2: 2 .

n—o0 S oag acn)(w) al(m+1)—a)
Therefore,

N S 2
7}1{&2 R(ar.n(m)))*| Fr1) Z ((S(akn(m ))2’fk71)=m-

Furthermore, calculating the covariance pairwise of each combination of the random variables

we see that for any mi, ms

COV(%(ak,n(ml))7 %(ak,n(m2)>) = E(é}%(ak’,n(ml))%<ak,n(m2>))

An(c*)? 2 |
= o C:ﬂ( )k)1+ — L cos(f(my + 1)) sin(f(ma + 1))do
e n\m m

=0.
Moreover for my # ma,

Cov(R(ak,n(m1)), R(akn(m2))) = ER(akn(m1))R(akn(ms)))

An(c*)? o
- o C;:ﬂ( )k)1+ 2+2L cos(f(my + 1)) cos(f(me + 1))do
(e ,n \m m

=0.
For my # mo,

Cov(S(akn(mi)), S(akn(m2))) = E(S(akn(m1))S(akn(ms)))

* 27
_ dn(ci)” f sin(0(mq + 1)) sin(0(ms + 1))d6

271-(60:+1,n)m1 +ma2+2 Jg

=0.

So we have shown that sum of the second moments of the real and imaginary parts

converge. Note that it is clear to see that letting o = 2 will not provide a finite limit using
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the above lemma. To apply Theorem we need to show that Y;_; (Xj.,)? also converges.

We prove this with the following lemma, using a similar method to that of Silvestri in [Sil17].

LEMMA 2.6.5. Let 0 < a < 2 and assume for each m = 0, the following limit holds in
probability for some s* > 0,
n n
lim R(apn(m)))?|Fro1) = lim > B(S(arn(m)))*|Fr) = s°

n—»oo n—00
k=1 k=1

Then for each m = 0, in probability,

n n

Jim 3 (Rl (m)? = lm 3 (Sapa(m))? = 2.

k=1 k=1

Therefore, if the following limit holds in probability for some s*> > 0,

n—0o0

lim i E((Xk,n)?Fr-1) =
1

then in probability,

n

.2
lim Y (Xen)® = 5

k=1

PRrROOF. First we note that

Vi(2) = (R(arn(m)))® = E((R(axn(m)))?| Fi-1)

is a martingale difference array with respect to the filtration (Fj 1, )r<n

We need to show P(| >, Vk(z)| > n) — 0 as n — 0. So we first notice that by Markov’s

inequality,
P(|Zyk’>77> <2E<\2yk| ) **22
k=1 " k=1 k=1
and so finally by using the property that for a random variable X, E((X —E(X))?) < E(X?)
we see

n 1 n
P<|zyk|>n) < L 3 E R ().
k=1

)

We have shown,

2¢i4/n
R(agn(m)) = W cos(Ox(m + 1)).
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1/
So using the property that ¢} = m and e Ckein < GI%EQ) we reach the upper
bound,
k) o !
(2.12) Rl (m)) < 2(1 + ac)yir OB
(14 acn) o
Thus,
4(m+1)
n?(1 + ack) -4
R(akn(m))* < (2e(1+ ac))’ FrEEy)
(14 acn)™ @

Then we consider cases. If 0 < a < %(m+ 1) then when we sum over k we reach the following

bound,
(21@ (i )))4)) <Moo

where A(a, ¢) is some constant. This converges to zero as n — c0. Moreover, if

4

3(m +1) < a < 2 then when we sum over k& we reach the following bound,

where A(a, ¢) is some constant. This converges to zero as n — o0. Therefore in both cases
we have convergence to zero. The proof of the imaginary case holds by the same argument.

Now we consider limy, o > p_ E((Xk.n)?|Fr—1). By the same argument as above,

(8 Jebgons

Since the function f(x) = 2%, where f : R — R, is convex, by Jensen’s inequality,

Doy Il (R(arn () + 230 |31 (S(arn ()"
Doy ] + 2550 vyl '

3 (R — E(@en)|Fi)| >

(%k’,n>4 <
Therefore,

2 E((&ka)h)
k=1

<i< T B ((Rakn (i)") + 2020 v [E (S akn(J))4)>

pinflgigp ’Mz| + qinfléjéq ‘l/j’

< PSUPi<i<p (‘Nz’ 22:1 E ((%(ak,n(i))4)) + qsup1<igq (|Vj’ 22:1 E ((%(ak,n(j))4))

pinficicy [l + ¢infi<i<q V5]

— 0
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as n — o0 by above. O

Therefore, we have shown, in the form of the following corollary, that the condition (II)

of Theorem [2.6.2] is satisfied.

COROLLARY 2.6.6. For ay,(m) defined as above, then for each m > 0 the following limit
holds in probability,

. n n 2
hm Z %(ak’n( Z=: akn m

n—0o0
k=1

Therefore, with Xy, , defined as above,

p

T}E}é}é]l(%kn Z(Mzw_a)> i( (2]+22—a)>

So now we just need show condition (I) of Theorem holds in order to apply it. We

will again use a similar method to Silvestri [Sil17].

LEMMA 2.6.7. Let 0 < o < 2 and let Xy, be defined as above. Let p > 0 then the

following limit holds in probability,
Z%kn |xkn|>p)4’0
k=1

as n — 0.

PROOF. We use a similar method as [Sil17]. Let 6 > 0 then

<k<
1
<25 (o %1,
p \1sk<
1 p q
< ;“ZEC@%J% (i ) ;1 (lglggnld(akn@))l)
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with the second inequality following by Markov’s inequality. As in the proof of Lemma [2.6.5]

we have shown that for each m > 0,

(1+ ack)mTH_l

[R(an(m))| < 2¢(1 + ac)y/n
(1 + acn) a
Soifm+1>a«
R < 2¢(1 \f !
. [R(ann(m))] < 261 +ac)ng—— .
Then if m + 1 < a,
[R(apn(m))] < 26(1 + ac)y/i—
max akn X 2C ac n—m.
o<k<n 1+ O‘C”)Tﬂ

In both cases maxo<r<n R(agn(m)) converges to zero as n — 0. The imaginary case follows

by the same argument. Thus the finite sums also converge to zero,

;(ng (F,?fnm e ) i (1@$§nl\s(akn(J))’)> —0

Jj=1
as n — o0. Therefore,

Z:{kn |xkn|>p)_>0
k=1

in probability as n — oo. O

So now we have all we need in order to apply Theorem [2.6.2] This leads to the following

result.

THEOREM 2.6.8. Let 0 < a < 2 and A}, By, defined as above. Then the following limit

holds for finite dimensional distributions,

A(T]L + ’LBS Ag By

A + B, A B,
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where (A;, Bj)ij=o0 is a multivariate Gaussian distribution with E(A;) = E(B;) = 0 for all

1,7 = 0 and covariance structure given by,
COV(Ai, BJ) =0

2
Cort ) = CoviB: ) =0 (57 5= )

for any i,j = 0 where d; ; is the Kronecker delta function.

2.6.3. Convergence as a holomorphic function. Now that we have proved that the
Laurent coefficients converge, we wish to show that we also have the convergence of the

fluctuations as a holomorphic function. We first define the functions,

Fln,2) = v (7 ngn(z) - 2)

and
o0

F(2) = > (Am +iBp)z ™"

m=0
where A,,, By, are defined as in Theorem Our aim is to show that F(n,z) — F(z) in

distribution as n — oo on the space of holomorphic functions, H, equipped with the metric,

dy(fg)= ), 27" (1 A sup [f(2) —9(2)I> :

m=0 |z[=1+2—™

By the maximum principle this metric topologizes the topology of locally uniform conver-

gence. We use a similar method as in [NST19| by defining,

d,(f,g) = sup |f(z) — g(2)|.

|z|>r

To make notation easier, we also define M (n,m) = >/, a.n(m). We first need the following

lemma used to discard the tail terms.

LEMMA 2.6.9. Let r > 1 and N > 0 then for any € > 0

Tlim sup P (dr <mz_:TM(n,m)z_m,O) > e) = 0.

—On>N
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PRrOOF. Using the definition of d,(f, g) we see that,

o0 oe}
d, ( Z M(n,m)z_m,0> = sup M(n,m)z"™|.
m=T IZ‘>T m=T
By Markov’s inequality,
P (d']‘ ( Z M(n,m)z_m,0> > e) < 5E | sup M(n,m)z""™
m=T € ‘Z|>T m=T

2
1 & N
< B | sup (Z |M(n,m)||z| m)

|z[>7 \ o=

/N
(T\w‘ —_
!
A/~
8
=
3
S
3
~

[N}

Using the Cauchy-Schwarz inequality we have,

P (dr ( i M(n,m)zm,0> > 6) <
m=T

w"—‘

((Eem) (£))

where A(r) is some constant dependent on r. Then we can take the expectation inside the

sum, thus,

P (dr ( ZTM(n,m)z_m,()) ) < Z (|M(n,m) |2) .

Now notice that,

E (|M(n,m)|*) =E

n
Z agn(m
k=1

But in equation (2.12) we show that

2(m+1) | 2(m+l) o

(§)?(a;g’n(m))2 + (%(ak,n(m))2 < Ma, ¢, 7)nt™
where A(a, ¢, ) is some constant. Taking the sum over k we see that,

E (|M(n,m)[*) < Ma, e, 7).



2.6. FLUCTUATIONS FOR 0 < a < 2 79
Therefore,

x 0
1
lim sup P <dr< E M(n,m)zm,(]) > 6) < lim <A (a,c,r) g P

T—0 >N =T T—o0 62 =T

—0asT — o0.

Therefore, through Theorem [2.6.8] we have shown that we have convergence of the Lau-
rent coefficients. Moreover, Lemma [2.6.9] shows that the tails of the Laurent series tend to
zero in the limit. We can then combine these two results to show that we have convergence

as a holomorphic function and therefore the fluctuations behave like a Gaussian field.

THEOREM 2.6.10. Let 0 < a < 2 and ¢, be defined as in Theorem |2.5.1. Then as

n — oo,

*

Vi (e ER () - 2) = F(2)

in distribution on H, where H is the space of holomorphic functions on |z| > 1, equipped with

metric dy defined above, and where

F(z) = (A +iBp)z"™

8

0

and Ay, By ~ N (O, m> and A, By independent for all choices of m and k.



CHAPTER 3

Scaling limits of anisotropic growth on logarithmic timescales

In this chapter we present the second paper [LT21b|. We study the anisotropic version
of the Hastings-Levitov model AHL(v). Previous results have shown than on bounded
timescales the harmonic measure on the boundary of the cluster converges in the small-
particle limit to the solution of a deterministic ordinary differential equation. We consider
the evolution of the harmonic measure on logarithmic timescales and show there exists a
critical logarithmic time window in which the harmonic measure flow, started from the

unstable fixed point, moves stochastically from the unstable point towards a stable point.

3.1. Introduction

The aim of this paper is to study the behaviour of a class of random growth processes
modelled using conformal mappings. In recent years, many models have been introduced
in order to study various real world random growth processes from lightning strikes and
mineral aggregation to tumoral growth. The most well known examples include the Eden
model [Ede61] and DLA [WS83|. These models, built on a lattice, have been well studied
but rigorous results have proved difficult to come by (see for example [Kes90|). One reason
for this is that lattice based models provide little in the way of mathematical techniques that
can be used to study their behaviour. One way to combat this difficulty is to form off-lattice
versions of the models using conformal mappings which allows us to study the processes
in the complex plane and use complex analysis techniques. The models are constructed as
follows. For any conformal map f : {|z| > 1} — C we define the capacity of the map to be,

lim log (f'(z)) := log f’(o0).

zZ—00

We will consider slit particles corresponding to maps of the form,

f(z) =¢€2+ O(1)

80
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at infinity with capacity ¢ > 0. Then there is a one-to-one correspondence between capacities
and conformal maps attaching a slit onto the boundary of the disk. More explicitly, for each

¢ > 0, we can find a unique single slit mapping
fe Azl > 13 = {lz] > T\, 1 + d]

which takes the exterior of the unit disk to itself minus a slit of length d = d(c) at z = 1.
The relation between the length of the attached slit d and corresponding capacity c is given
by

d2

C=1+4—r.
c +4(1+d)

We rescale and rotate the mapping f.(z) to allow any attaching point on the boundary of
the unit disk by defining

(3.1) fal(2) = X0 f, (ze2m0n)

where 6,, is the attaching angle, identified with the interval [0,1], and ¢, is the capacity
of the n'® particle map f. (z). The cluster is formed by composing the slit maps. Let
Ky = {|z| < 1} and suppose that we have some compact set K, made up of n slits. We
can find a bi-holomorphic map which fixes o0 and takes the exterior of the unit disk to the
complement of K, in the complex plane, ¢, : A — C\K,. We then define the map ¢,1

inductively;
Gnt1 = Pn O frny1 = f10 f20....0 fria.

By choosing the attaching angles and capacities effectively we can model a wide class of

growth processes.

3.1.1. AHL(v) model and the discrete harmonic measure flow. In this paper,
we study the anisotropic Hastings-Levitov model introduced in [JVST12| as AHL(v). The
model is constructed as above with the attaching angles chosen to be i.i.d on the unit
circle according to some non-uniform probability measure v and the capacities are chosen
to be a fixed value ¢. The shape of the cluster in the small particle limit is described
in [JVST12|, however, we often want to understand the ancestral path of each attached

particle. Evaluating how the harmonic measure evolves on the boundary of the cluster
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allows us to do so. For the purpose of the introduction we define the discrete harmonic

measure flow for x € R as

X, (z) — %mg(rn(e?m)).

where T'y(z) = ¢ (x) = fi'o..f; (x). However, some care is needed as T',(z) is not
defined on the cluster boundary and thus we define this more explicitly in later sections.
The function X,,(x) tells us how the harmonic measure evolves under the map ¢, (z). Our
aim is to evaluate how this function evolves in its scaling limit. We will consider the scaling
limit of X,,(;)(x) on logarithmic timescales as ¢ — 0 where n(t) = |%| embeds continuous

time into discrete time steps.

3.1.2. Previous work. The AHL(v) model is a variation of the Hastings-Levitov model
HL(«) (introduced in [HL98|). The Hastings-Levitov model is formed using conformal maps
as described above and the attaching angles are chosen uniformly, in contrast to AHL(v)
where the attaching points are distributed according to a non-uniform measure. This choice
represents a good model for many of the real world processes where particles diffuse onto
the boundary at each iteration (for a more detailed description see, for example, [LT21al).

Furthermore, the capacities are chosen as,
/ 10n\|—
Cn = ¢y 1 (™)

The parameter « allows us to vary between off-lattice versions of the previously well studied
models by varying the size of the attached slits. By choosing the capacities and attaching
angles in this way we can model a wide class of real world Laplacian growth processes where
the local growth rate is chosen according to harmonic measure. In recent years research into
the Hastings-Levitov model has been fruitful. The majority of the results have concentrated
on the scaling limits of the model in in the small-particle limit where we evaluate the cluster
¢n as we send the particle capacity ¢ — 0 while sending n — o0 with nc ~ t for some
t. In [NT12] Norris and Turner show that in the small-particle limit, for & = 0, the
limiting cluster behaves like a growing disk . Furthermore, in [JVST15| Turner, Viklund
and Sola show that in the small particle limit the shape of the cluster in a regularised setting

approaches a disk for all & > 0 provided the regularisation is sufficient. Moreover, Silvestri
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[Sil17] shows that the fluctuations on the boundary, for HL(0), in the small-particle limit

can be characterised by a log-correlated Gaussian field.

The Hastings-Levitov model has also been evaluated under another scaling limit where
rather than letting ¢ — 0 as n — o0, instead, the limit of the cluster is found by rescaling
the whole cluster by the logarithmic capacity of the cluster at time n, before taking limits
as the number of particles tends to infinity. In [RZ05] Rohde and Zinsmeister introduce a
regularisation to the model and show that in the case of o = 0 the rescaled cluster converges
to a (random) limit with respect to the topology of normalised exterior Riemann maps.
In [LT21al, Liddle and Turner show that for v = 0 the scaling limit of the cluster under
capacity rescaling is not a disk. Furthermore the authors study a regularised version of the
model and show that for 0 < o < 2 the scaling limit under capacity rescaling is a disk and

the fluctuations behave like a Gaussian field.

However, we would also like to study a wider class of processes where the particles are not
attached uniformly. The ALE(«,n) model introduced in [STV19| generalises the Hastings-
Levitov by choosing the local growth rate to be determined by |¢),|~" where n € R. The
authors show that there exists a phase transition at = 1 when a = 0 where the limiting
shape in the small particle limit transitions from a disk to a radial slit. In [Hig20|, Higgs
considers the model for a = 0 and for large negative values of the parameter n where the
particles are attached in areas of low harmonic measure and shows that there exists a phase

transition where the ALE cluster converges to an SLE, curve.

The final generalisation is the anisotropic version of the Hastings-Levitov model AHL(v)
which will be the subject of this paper. In [JVST12| Turner, Viklund and Sola show
that if ¢ is the solution to Loewner-Kufarev equation driven by the measure v and ¢, =
f1o...fn then ¢, — ¢ uniformly on compact sets in the exterior unit disk almost surely
as ¢ — 0. Furthermore, the authors study the scaling limits of the harmonic measure flows
in continuous time and show that on bounded timescales they can be described by the
solution to a deterministic ordinary differential equation related to the Loewner equation.
In contrast, in this paper we will study the model in a discrete time setting and evaluate the

scaling limits of the harmonic measure flows on logarithmic timescales.
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3.1.3. Summary of the main results and physical interpretation. The aim of
the paper is to understand the scaling limit of the harmonic measure flow X,,(;)(z). In this
section we describe the physical interpretation of the main results of the paper. To do so
we include cartoons (Figure Figure [14] and Figure [15( below) to aid our descriptions. It
should be noted that these illustrations are not accurate simulations and are not drawn to
scale but instead serve as an example of one potential evolution of a AHL(v) cluster. In our
example we consider an AHL(v) cluster where the measure v is concentrated on a segment
of the disk such as dv(e*™®) = 2sin?(mnz)dr for a fixed m € N (as chosen in Figure 2
from [JVST12| which has been reproduced in this thesis as Figures 12 and 13). In order to
state our main results we need to use notation that we define explicitly in later sections. In
equation we define 14 (z), the solution to a deterministic ordinary differential equation
and we define Z4, as a Gaussian random variable with mean 0 and variance given explicitly in
Corollary @ in terms of v. We first consider the evolution of the harmonic measure X,
illustrated in Figure Our first main result, appearing later as Theorem describes

the evolution up to a logarithmic time.

THEOREM. Let the ordinary differential equation (x) be defined as in equation .

Let Ty = m (log(c™!) — 3log(log(c™))) then if 0 < t < Ty, Xy () converges to iy (x)

in probability as ¢ — 0.

Xau((z) noT hi+T

N

FI1GURE 11. The evolution of X, .

Then in Section 3.3 we evaluate the fluctuations Z,(z) = e (Yne (Xn(z)) — z) and
showed that they converge to the solution of a stochastic differential equation Z;(x) defined

in equation (3.7). This result appears later as Theorem and is stated as follows.
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THEOREM. The stochastic process Zn(t) (x) = Z(z) in distribution as ¢ — 0 with respect

to the Skorohod topology.

These results combine to classify the evolution of harmonic measure on compact
intervals. The results show that on this timescale the trajectories of the harmonic measure
Xn(t) (x) process remain close to the deterministic trajectories of the ordinary differential
equation 1 (z). We demonstrate this in Figure [11] with each blue trajectory remaining close
to the solution to the ODE up to this time. Yet, consider the simulations in Figure
and Figure [13] taken from [JVST12].  Figure [12] is an example of a separate AHL(v)

FIGURE 12. An example of a AHL(v) cluster (left) and the corresponding
Loewner hull (right) from [JVST12].

0.8
06 g % %
04 ‘%%

0.2

00 L
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FIGURE 13. Harmonic measure X,,;)(z) on the boundary of AHL(v) plotted
against time with the departure point z indicated on the y-axis (left) and the
solution to a corresponding deterministic ODE (right) from [JVST12].

cluster that we may wish to study, whereas, Figure [13| provides the corresponding evolution
of harmonic measure on the boundary of the cluster and a deterministic ODE. The figures

demonstrate how, on compact time intervals, the harmonic measure on the boundary of the
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cluster converges to the solution of the deterministic ODE. However, we observe that the
harmonic measure started at an unstable point of the deterministic ODE initially remains

close to the fixed point before eventually moving away.

Consequently, in Section 3.4 we study the behaviour of the harmonic measure flow,

started from the unstable point on longer timescales. We prove the following result which

appears later as Corollary

COROLLARY. Let a, be an unstable fized point of i(x). Then for 0 <t < 00, Xy (aw)
converges to (au + ciZoo(au)) in probability as ¢ — 0, where Zy(ay) is a Gaussian with

mean 0 and variance which can be given explicitly in terms of the measure v.

This result tells us that there exists a logarithmic time window where X, (a,) moves
a macroscopic distance away from the fixed point a,. Once the process reaches this macro-
scopic distance it remains close to the trajectory started from that distance. But we know
that the trajectories started significantly far away from the unstable point converge to the
stable point. Therefore, once the process gets close enough to the stable point we remain
close. Thus, now consider the process stopped on this logarithmic time window and evaluate
the origin of trajectories stopped at this time. As points started near the unstable point
have moved towards the stable point, the region in which all trajectories originate from near

the unstable point is extended.

We have also demonstrated this behaviour in Figure The red trajectory represents
the behaviour of the harmonic measure started at the unstable point. If we converged to the
solution of the ODE we would expect this trajectory to remain close to the unstable point,
however, the cartoon demonstrates the stochastic nature of the path the trajectory takes

from the unstable point towards a stable point on the critical time window.

Now we consider what the physical interpretation of this is on the AHL(v) cluster itself.
We will describe this using the notion of gap paths. The explicit definition of gap paths
is provided in [NT12], however, intuitively the gap path from a point z € C represents
the shortest path from z to outside the boundary of the cluster. This is demonstrated in
Figure [T4] with particles represented as disks. We consider the point z and imagine a piece of

string attached at z and pulled tight vertically until we leave the boundary of cluster. This
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FIGURE 14. An example FIGURE 15. An example
of a gap path of a possible AHL(v)
cluster

represents the gap path of the point z and is indicated by the red line in Figure [I4 Note
that the gap paths are dependent on the number of particles n attached to the cluster. The
gap paths can not intersect the particles unless z initially is contained inside a particle in
which case we choose the shortest path to leave the particle we are contained in and then
proceed as above. It is shown in [N'T'12] that in the limit as ¢ — 0 the trajectories of the gap

paths are described by the harmonic measure flow, under a deterministic transformation.

With the notion of gap paths in mind we can describe the behaviour of the cluster
on longer timescales. We demonstrate this with the cartoon in Figure [15| The harmonic
measure flows allow us to map the ancestry of each the particles on the boundary of the
growing cluster to an origin on the boundary of the unit disk. In Figure the unstable
point is at the centre of the arc on the unit disk and the stable points on either edge.
Consider the gap path of a point near the origin. On compact time intervals we expect
particles attached away from the stable points to have ancestors attached near the unstable
point and thus as the gap path can not intersect the particles we would expect the gap
path of a particle near the origin to be vertical. However, as we enter the critical time
window the harmonic measure flow is no longer close to solution of the ODE started from
the unstable point but instead follows a trajectory started at a macroscopic distance from

the unstable point. Therefore, the successive particles are not attached vertically and the
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gap path becomes antisymmetric as indicated by the red path in Figure [I5] The direction
the gap path follows is dependent on the sign of Zy(a,). Therefore, in summary, we show
that on bounded timescales the process remains symmetric however as we enter the critical

time window the process becomes asymmetric about the origin.

The outline of the paper is as follows. In Section 3.2 we provide estimates that will be
used in the remainder of the paper and then show that the harmonic measure flow defined
on discrete time steps X, ;) converges to a deterministic ODE up to a logarithmic time.
In Section 3.3 we classify the fluctuations and show they demonstrate stochastic behaviour.
Finally, in Section 3.4 we prove the existence of a critical logarithmic time window and show
that on this interval the harmonic measure flow, started from the unstable point follows a

stochastic path away from the unstable trajectory and towards a stable trajectory.

Throughout the remainder of the paper we introduce a large amount of notation, there-
fore, for the benefit of the reader we provide a list of symbols at the end of the paper so that

it can be referred to throughout the article.

3.2. Convergence on logarithmic timescales

3.2.1. Definitions and estimates. The aim of this subsection is to introduce the
notation and estimates which we will call upon in the remainder of the paper. Much of what
is presented here is a reformulation of the continuous time estimates produced in [JVST12].
This is an essential part of the analysis but the reader is advised that our main results
will follow in later sections. The goal of this paper is to analyse the evolution of harmonic
measure on the boundary of the AHL(v) clusters. Thus, as above we consider the cluster
formed by the conformal maps f, : {|z| > 1} — C\K,, defined in with attaching angles
01,05, ... independently randomly distributed on the unit circle with law v. We identify the
circle with the interval (0,1) and assume v has a twice continuously differentiable density

hy. Furthermore, as above, for a point z € (0,1),

1 ~1

1) = 5 log(f ()
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choosing the branch of logarithm which results in x = % being fixed. An explicit form is

given by

(@) = L tan~! <\/ectan2(7rx) beo— 1>

T

where the branch of arctan is chosen to map [0, 7] — [0,7]. We can extend this to the real
line as follows, if x = k + a where a € (0, 1] then define y(z) = k + y(a). Then for all z € R
we define

Yn(2) = Yn(T) = Y(@ — 0p) + On.

It immediately follows that y,(z) = 5= log(f,!(e2™®)) for the corresponding branch of
logarithm. This function then describes the change in angle of a point z on the boundary
under the transformation f,(x) and thus 7, (z) tells us how the harmonic measure evolves

under the map f,(x). Let ¥(x) = y(z) —« then we can define the discrete harmonic measure

flow under the map ¢, for x € R as,
(3.2) Xn(z) = Xp1(x) + (X p—1(z) — 6,)
with Xo(z) = z. Therefore,

Xn(x) = mn(Xn-1(2)).

Thus if T'y(z) = ¢5'(2) = f7' o...f; ' (2) then

Note that we define X,,(z) in this way to make sure the branch of the logarithm respects

the composition structure. We can then rewrite the harmonic measure flow as
n
Xn(x) = D A(Xio1(z) — 0;) + .
i=1

Let F,, be the o-algebra generated by the set {#; : 1 < i < n}. Then as in [JVST12], in
order to evaluate the conditional expectation of each increment 4 (X;_;(x) — 0;) with respect

to F;_1, we define,

1
Bu(x) = J Y(x — 2)hy(2)dz

0
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where, as above, h, is the twice continuously differentiable density of v on R. Now define,

Yn(x) = :Y(Xn—l(a:) - en) - /Bu(Xn—l(«T))

and then let S, (x) = X1, Yi(x). We can write

(3.3) Xn(x) =2+ Sp(z) + . Bu(Xio1 ().
i=1
The following lemma then holds.

LEMMA 3.2.1. S,(x), as defined above, is a martingale with respect to JF,.

Proor. Taking the expectation with respect to F;_1,

1

E (Yi(2)| Fi-1) = fo V(X1 () — 0)h,, (0)d0 — 5, (Xi1(x))

Hence,

E (S (2)|Fne1) = Spe1 (@) + E (Y (2)|Foe1) = Sni ().

Therefore, S, () is a martingale with respect to F,. O

Throughout the remainder of the paper we will rely on estimates on each of the terms
defined above. In [JVST12| the authors provide the estimates, for a symmetric particle,

stated in the following lemma.

LEMMA 3.2.2. For 7 defined as above,

f 1 A(z)dz = 0

0

and there exists a constant pg such that

C

(NI

1
fwﬁw~m
0

as ¢ — 0. Furthermore, there exists a constant 6 > 0 such that the following estimates hold,

17l < d+/e,
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and

1
j 5@ — 0)h, (0)d0 — poct h (2)| < 6, o log(c™)
0

for ¢ sufficiently small.

With the harmonic measure flow in the form of equation ([3.3]) we aim to study its scaling
limit. To do so we start by defining the function b(z) as the Hilbert transform of the measure

v,

1
(3.4) b(z) = % L cot(72) (o (& — 2) — ho(2))dz.

With this definition, the proof of Proposition 2 in [JVST12| provides the following bound

on the difference ‘% By(x) — b(z)| for c sufficiently small.
LEMMA 3.2.3. For each x and c < %, there exists a constant & > 0 such that,

‘iﬁy(m) — b(z)| < bk log(c D).

Thus throughout the remainder of the paper we assume 0 < ¢ < % Then using these

bounds, we can make further estimates on S, (z) and Y, (x).

LEMMA 3.2.4. For ,(x) and Y, (x) defined as above, there exists a constant 6 > 0 such

that the following estimate holds,
B ()] < dc

and for each n,

|Yn(2)| < 0v/e.
PROOF. Using Lemma [3:2:3] it immediately follows,

18, (2)] < c|b(z)] + d1c2 log(c™) < e
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for some universal constants 6; and ¢. For the second bound we use that

Vo ()] < |3(Xn-1(z) — 0,)| + |80 (Xn—1(2))| < 5/c.

3.2.2. Results. In this section we consider the evolution of harmonic measure flows on
the boundary of the cluster as ¢ — 0. We will consider X,,;)(z) on logarithmic timescales
where n(t) = |%]. Define the function ¢ to be the solution to the following ordinary

differential equation,

(3.5) hi(z) = by ())

for z € R and ¢o(z) = 2 where b(z) is defined in equation (3.4). As above, throughout
the paper we assume that h, is twice continuously differentiable. By properties of Hilbert
transforms it follows that b(x) is also twice continuously differentiable. Furthermore, during
calculations, for simplicity purposes we will often treat n(t)c as t, however, we note that the
difference is of order ¢ and this as we take the limit as ¢ — 0 our results will be unchanged.
The aim for the rest of this section is to to show that up to a logarithmic time X, )(z)

converges to 1;(x). Recall for each n € N,
Xn(x) =2+ Su(z) + ) Bu(Xi1(2)).
i=1

So,

n(t) ¢
|Xn(t) ($) - ¢t(9€)| = Sn(t) ($) + Z ﬁy(X¢,1(1'>) - J;) b(%(fﬂ))ds
=1
n(t) t
<[Su @) + | Bu(Ximi () - f b(ws(x))ds| .
i=1 0

We first consider the latter term and find an upper bound.

LEMMA 3.2.5. Let the functions 3,(x) and b(x) be defined as above, then for each x € R,

n(t

) ¢ . t
B(Xir(2)) — f b(ths () ds| < Slog(c ™ )cEn(t) + ||boof0 Xy () — ()

i=1 0
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for some positive constant §.

PROOF. Let § be some positive constant that we allow to vary. First we find an upper

bound,

n(t) .
; Bu(Xi-1(x)) — L b(¢s(z))ds

n(t) n(t)

n(t)
ZBZ/ 11 Z zl ZCb was

Then,

From Lemma [3.2.3]

]im:) ~ b(w)| < et log(e ™)

for some universal constant §. Therefore,

n(t) n(t)
% Ao - Yy

=1

S
—~

~
=

< (5log(c*1)c%n(t).

[NIES

< dclog(c™) ) ¢

H
Il
—

Now consider,

n(t) t
>, b(Xima (@) = | WXy )]

i=1 0

Then Z?:(tl) cb(X;—1(x)) is the Riemann approximation to SS b(Xp(ry(7))dr on intervals of
length ¢ with the error less than ¢|b| . Finally,

[ oo = [ sevutonas

0

t
< bl f Xy (@) — () dr

and thus by combining the bounds above the statement follows. O

We now aim to use that S, (x) is a martingale and then apply the following result from

|[Fre75].
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THEOREM 3.2.6. Suppose Yy is Fr-measurable and E{Y} | Fp_1} = 0. Then let S, =
S_1 Yi, let M be a positive real number and let T, (2) = Yp_ E{Yy(x)? | Fx_1}. Suppose

P{|Yx| < M for all k < n} = 1. Then for all positive numbers € and b,

2
P{S,, =€ and T,(z) < b for some n > 0} < exp [2(:_1_1))] .

Now in order to apply Theorem we need to find a bound on > p_; E{Y)(2)? | Fx_1}.

The following lemma provides such a bound.

LEMMA 3.2.7. For Y;(z) defined as above there exists a constant 0 < 09 < o0 such that,
n(t) .
Z E (Yi(z)?|Fi—1) < doczn(t).

=1

PROOF. By the definition of 3,

1
E (Yi(2)2|Fi1) = fo 3p(Xi () — 0)hy (0)d0 — B, (Xi 1 (2))2.

Therefore,

E (Yi(2)?|Fi—1) =poc? hy(Xi—1(2)) — B (Xi1(2))?

1
+ ( JO Ap(Xio1(z) — 0)2h, (0)d6 — pocgh,,(Xi_l(x))> .

From the bounds in Lemmas [3.2.2] and [3.2.4] there exists a constant & > 0 such that
|6y (Xi—1(z))] < dc and ‘Sé F(x — 0)%h, (0)dO — poc%hy(m)‘ < 0c%log(c™t). Therefore, there

exists a constant 0 < dg < 00 such that,

Thus,

If we apply Theorem [3:2.6] to these bounds the following theorem follows.
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LEMMA 3.2.8. Let S,, be defined as above and let 8y be defined as in Lemma[3.2.7. Then

there exists a & > 0 such that for any fized real number Ty and any positive real number

0 <e< Ty,
2
—€
P( su S, ) >e|l <exp| —— ] .
(3 180 > ) <o (g7 )

PROOF. We know Y;(z) is a martingale difference array. Using the estimates provided
in Lemmas and we know for each i > 0, |Y;(z)| < d14/c for some constant ; > 0
and Z:L:(tl) E (K‘(x)2|.7:¢71) < 50Toc%. Hence, we can apply Theorem

—e2
P Sy > < .
<Oésll<pTo ’ ®) («T)| 6) P <2(51 \ﬁe + (50T0\/E)>

Therefore, let § = g—‘f then if 0 < e < 0Ty,

2
p s, >e) < S
(0223% 1Sy () 6) P <450T0ﬁ>

Finally, we can combine the two results above to show that there exists a logarithmic
time, up to which we have convergence of X, (z) for each . We will show the existence

of a critical time window and evaluate this in more detail in Section 3.4.

THEOREM 3.2.9. Let X,y (x) and () be defined as above. Let

1

Th = ——
O 4y

(log(c_l) — 310g(10g(c_1))) .

Then for any € > 0,
lim P ( sup | X, (@) — ()] > e) =0.

c—0 o<t<Ty

PrOOF. We can write,

n(t) t
Xty () = (@) = |Suy (@) + D, Bu(Xia (@) — JO b(Ys(z))ds
i=1

n(t) t
< [Sut (@] + |3, Aol Xima () — | Bou(a))ds).
i=1

0
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From the proof from Lemma we know that for ¢ sufficiently small,

n(t) t
sup |33 A(Xia(w) = | b))

0<t<To ;1

5 t
< sup (5 log(c™)ezn(t) + Ib’ooj0 [ Xy (@) — ¢r($)|dr>

0<t<To

To
< 5T()C% log(cfl) + \b'oof sup |X ( ) — () |dr.
0

o<t<r

Then with ¢ chosen sufficiently small,

sup | Xy ) () — i ()]

0<t<Ty

To
< ( sup | Sy ()] + 6Tnc 10%(6_1)) +||b’||oof sup | X1y () — te()|dr
0

0<t<Ty o<t<r

< ( sup | S, (2)] +5c§(1og(c—1))2> eltloTo

0<t<To

where the second inequality follows by Gronwall’s inequality [Gro1l9|. Thus,

limsup P ( sup | X, (@) — ()| > e)

c—0 0<t<Ty

< limsupP (( sup | S ()| + scz (log(c™1))?

c—0 0<t<Tp >

<mpn ()] + 6¢% (log(c™))?
0<t<To

= limsup P

c—0

c—0 0<t<T,

< limsup P

c—0

l\D\m

sup [Sy ()] >
0<t<Ty

(
~timsup (s [S,00(0)] > ech(oge ) — dck (e 1))
( cHog(c )1 ).

By Lemma |3.2.8

2 1 1 3
. : —e“c2 (log(c™))2
limsupP | sup |X z)| > €] <limsupex
nsup <0<t<PTO| () (@) — V()] ) nsup p( 160,Th /e

—2Iyll( —1\\4%
—

c—0 40
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Therefore,

lim sup P ( sup | Xy (x) — ()| > e) = 0.

c—0 0<t<Ty

3.3. Analysis of fluctuations

Now that we have shown convergence of the harmonic measure flow up to a logarithmic
time we aim to analyse the fluctuations up to a bounded time and then use this in Section
3.4 to determine the existence of a critical time window where the evolution of the harmonic

measure flow changes. We consider how the discrete fluctuations

Ui (X (@) — @

behave for a fixed time t > 0. We know that for any ¢, s we have ¢ s(z) = ¥ (s(x)), thus,

U (K (@) = 678 oW Ky ().

Moreover, for the embedding n(t) = |£| we can bound 0 < ¢ — n(t)c < 1, therefore, Q/Jt__ln(t)c
is close to the identity and with an appropriate continuity argument we can consider the

difference,
Ype (Xn(x)) — 2

with n = n(t). We will show the fluctuations are of order ci, therefore, for each fixed x € R,

let

(3.6) Zn(x) = 7 (Pt (Xn(a)) — ) .

For notational simplicity we will denote ®;(2) = 1, '(x). Then let Z;(x) be the solution to

the stochastic differential equation,

(3.7) dZy(x) = /po®; (¢e(2))\/ by (Ve () d By

with Zy(x) = 0. The main result of this section is stated as follows.
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THEOREM 3.3.1. The stochastic process Zn(t) (x) = Zi(x) in distribution as ¢ — 0 with

respect to the Skorohod topology.

Note that as the limit process is almost surely continuous, it follows immediately that
the process converges in distribution with respect to the topology of uniform convergence.
The proof will consist of showing that in the limit En(t) (x) and Z(x) share the same finite
dimensional distributions and then by using an appropriate tightness argument we can show
that the theorem is satisfied. We start by evaluating the finite dimensional distributions.

Notice that we can rewrite the fluctuations as the following sum,

Ve Xa(@)) =z = 3 (Pie(Xi(w)) = D(1)e(Xim1(2))) -

i=1
Then the following result holds.
LEMMA 3.3.2. With En(t) () and ®;.(z) defined as above we can write
n(t)
~ 1 , ~
Znwy () = €75 Y B (Xi1 (2))Yi(@) + Epp) (2)
i=1
where c‘j’n(t)(m) is an error term such that, for a fized t > 0, suppcs<y g’n(s)(x) — 0 in

probability as ¢ — 0.

PROOF. As above, we can write

n(t)
Zny(x) = 5 | D] (Pic(Xi(@)) = R_nye(Xio1 (@)
i=1

So we start by considering the difference,
Pie(Xi(2)) — P(i—1)e(Xim1(z))

= (Pic(Xi(2)) — Pic(Xi—1(2))) + (Pic(Xi1(x)) — B_1)e(Xi1(2)))

= O} (Xi—1(2))(Xi(z) — Xi—1(2)) + Pic(Xi1(z))c + Ri(x)



3.3. ANALYSIS OF FLUCTUATIONS 99

where R;(z) is the remainder term left by the Taylor expansion. Recall X;(x) — X;_1(z) =
Yi(z) + Bu(Xi—1(x)), so

Die(Xi(7)) — @i1)e(Xi1())

= O} (Xi—1(2))(Yi(2) + Bu(Xi—1(2))) + Pic(Xi1(2))e + Ri(w).
Let &(z) = Ri(z) + ®}.(Xi-1(2)) (B (Xi-1(2)) — cb(Xi-1(2))), then,

Dic(Xi(2)) = Pi1)e(Xic1(2) = Ofo(Xio1(2))Yi(x)+

+ ¢ ((@(Xima (2)b(Xi-1(2)) + Bic(Xi1(2))) + Eilw).

However, ®,(y(z)) = x for every z € R, t € R, therefore, taking the derivative with respect

to t gives,
) (e (2)) () + Do(the(w)) = 0.

By definition, v (z) = b(1(z)). Thus,
(1 (x)) + @ (ve())b(v(x)) = 0.

This holds for any z € R, by substituting ®;(X;_1(z)) in for , it follows that,
bie(Xi1(7)) + ¥ (Xi-1(2))b(Xi -1 (z)) = 0.

Therefore,

and



3.3. ANALYSIS OF FLUCTUATIONS 100

All that remains is to find upper bounds on the error g’n(t) (x) = o1 (Z?:(tl) SZ(:L')> The

error &(x) is defined above as
&i(x) = Ri(@) + i (Xi—1(2)) (By(Xim1(@)) — cb(Xi—1(2)))
with the Taylor remainder term given by,

Ri(z) = 3,(¢)(Xi(x) — Xi—1(2))? + p(Xi—1(2))e?

for some X;_1(z) < ¢ < X;(x) and (i — 1)c < p < ic. Thus, by the definition of ¢ (x) along
with the assumption that h, is twice continuously differentiable there exists a constant,

dependent on ¢, such that |®7 ({)| < . Furthermore, using that
Xi(z) — Xi—1(z) = Yi(2) + By (Xi—1(x))
there exists a constant § > 0, dependent on ¢, such that,
Ru(a)| < 6 (@) + ).
Furthermore by Lemma there exists a constant § > 0 such that,
|®7(Xi-1(2)) (B (Xiz1(z)) — eb(Xi-1(x)))| < €] @o(Xi-1(2))] éﬁu(Xifl(fU)) — b(Xi-1(z))
< et log(c™1).

Therefore,
E(@)] < 8(IYi(@)] + ¢ log(c™))
for some positive constant § dependent on t. Thus, for a fixed ¢ > 0 by Lemma and

Markov’s inequality it follows that supy,<; |€~n(5) ()] — 0 in probability as ¢ — 0. O

So all that remains is to analyse the fluctuations of the martingale term. To do so we

will apply the following result of Mcleish [McL74].

THEOREM 3.3.3 (McLeish). Let (Xyn)i<k<n be a martingale difference array with re-

spect to the filtration Fpp, = 0(X1,5, Xom, ooy Xin). Let My, = 30" | X5 and assume that;
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(1) for all p >0, Yp_; X2 1(|Xn| > p) — 0 in probability as n — .
(2) Yp_i X2, — s* in probability as n — oo for some s* > 0.
Then M, converges in distribution to N'(0,s?).

In order to use this result we first show that the following lemma holds.

LEMMA 3.3.4. Let Y;(x) and ®;.(z) be defined as above. Then for a fized t > 0,
n(t) ) t )
D1 (¢ (PG @)* 175e1) = o [ (01000
in probability as ¢ — 0.

PROOF. As [0,t] is a compact time interval, by the proof of Lemma it follows that,

n(t) t
DVE (7 (BXia @)Vi@)* 1) = o [ (@Ko (0o (Ko ()

i=1

.

+ R(c% log(c¢™1)t)

where R(c% log(c71)t) is a remainder term which for a fixed ¢ is bounded by sc2 (log(c™HH)t,

for some constant § > 0, and thus converges to 0 as ¢ — 0. Then by Theorem [3.2.9

i B (ot (Vi) Fir) = po [ (@00 @)
4 Xi1 i k—1 L0 o s\Ys v\Ws

in probability as ¢ — 0. 0

LEMMA 3.3.5. Let Y;(x) and ®;.(z) be defined as above. Then for a fized t > 0,

n(t)
2

in probability as ¢ — 0.

[\.’J\H

X1 (@)Yi())* = po L (DL (Ws()))*ho (s ())ds

PRrROOF. First we define

Vi) = € (@(Xi1 (2)Yi(@))” — B (¢7F (@h(Xi1 (2)Yilw))* 1 i)
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which is a martingale difference array with respect to the filtration (F;);<,. We need to
show

P(| Z?:(tl) Yi(z)] >n) — 0 as ¢ — 0. So we first use that by Markov’s inequality,
n(t) 1 n(t) 1 n(t)
P |Zyi|>7} < 5E |Zyi|2 =—QZE(3@2)
i1 n i=1 n =1

and so finally by using the property that for a random variable X, E((X —E(X))?) < E(X?)

we see

n(t) n(t)
PNV 0] < 50 Y E(@Xa@)Yi@)),
=1

i=1

On a compact time interval ®/ (X;_1(x)) is bounded and thus by using the bounds from

Lemma and that for each 0 <1 < n(t), |Yi(x)| < d4/c it follows that

Njo

E((‘I’Iic(Xi—l(x))E($))4) < dc

for some positive contant & dependent on ¢. Thus, there exists a constant d > 0 such that
n(t) 1
c2t
P | Z yz| > < ) 5
i=1 N

which converges to zero as ¢ — 0. U

By Lemma condition (2) of Theorem is satisfied and all that remains is to

show that condition (1) is also satisfied. We prove this in the form of the following lemma.

LEMMA 3.3.6. For Y;(x) defined as above. For each x € R, t > 0 fized and for all p > 0,
the following statement is satisfied.

n

—~

t)

C

[NIES

(®ho(Xim1(2)Yi(2))” L(le™ 1Dl (X1 (2))Yi(2)| > p) — 0
1

<.
I

i probability as ¢ — 0.
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PRrROOF. Let p > 0 then,

B Y e? (Ru(Xina (@)Yil@)” L(le™ 1@ (Xima(2) Yila)| > p) >

with the second inequality following by Markov’s inequality. From Lemma [3.2.4] we know
for all 0 < i < n(t), |Yi(x)| < d4/c for some positive constant §. Therefore, as on a compact

time interval @ (X;_1(x)) is bounded, there exists a constant 6 > 0, dependent on ¢, such

that,
n(t)
_1 9., 1 1.1
(Y et (@)1 i) > p) > | < ~dch.
~ P
i=1
Thus,
1 n(t) 1
¢2 Y Yi(@)*1(|e 3 Yi(@) > p) = 0
=1
in probability as ¢ — 0. Il

Therefore, both conditions of Theorem are satisfied. In order to show convergence in
distribution of the process (Zn(t) (x))¢=0 all that remains is to check the covariance structure
and prove that the family of processes (Zn(t) (x))i=0 is tight with respect to ¢ under the
Skorohod topology |[Bil99]. We know (Z;(x)):~0 has independent increments so we start by

analysing the covariance structure of (En(t) (x))t>0 in the limit.

LEMMA 3.3.7. Let Zn(t) (x) be defined as above. Suppose 0 <ty < ta, then,

Cov (Zn(tg)(:E) — Zpiy (), me(@) -0

as ¢ — 0.
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PROOF. First we can write,

Cov (Zute () = Zugen) (), Zuor) ()

~

=E ((En(@)(fﬁ) - én(h)(x)) Zn(tl)(l’)) —E <§n(t2)(l’) - me(ﬂﬁ)) E (Nn(tl)($)>

Recall in Lemma [3.3.2) we showed,

n(t)
)=c 4Z® Yi(z) + Enry (2)
where gn(t) () — 0 in probability as ¢ — 0 . Therefore,

n(t)

E (Zug (@) = ¢ 42E fe(Xim1 (2))Yi(@)) + E(Enp ().

However, we know E(Y;(z)|Fi_1) = 0, therefore, by tower law,
& (Zu0(#)) = B(&,((x). Honce

~

E (Zn(12)(@) = Zney (@)) E (Zae) (@) = En(ea) @) EEn ) (@) ~EEn) (@) E(Eney) ().

Now consider,
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By the tower law and that E(Yy(z)|Fr—1) = 0, it follows that,

~

E ((Znes) (@) = Zngi)(@)) Zna (@) = €73 D B (e X1 (2)) (% ())?)

Therefore,
Cov (Zn(tQ)(J?) ~ Zn(i) (@), Zn(tl)(x))
— (B @)EEnen) () = E ey (@) E ) (@)))
+ (E (5n(t2)($)5n(tl)($)) —E (5n(t1)($)5~n(t1)(93)))
which by Lemma [3.3.2] converges to 0 as ¢ — 0. O

Therefore, in the limit, the process (Zn(t) (x))t=0 shares the same covariance structure
as (Zp())t=0 and hence we have convergence of finite dimensional distributions. All that
remains before we can prove convergence as a process is to prove that the family of processes

(Zn(t) (x))i=0 is tight with respect to c¢. We prove this in the form of the following lemma.

LEMMA 3.3.8. The family of processes (Zn(t) (x))i=0 is tight with respect to c.

PROOF. In order to show the process is tight, we need to show that Aldous’s condition
holds (see for example [Bil99, Theorem 16.10]). Explicitly, we need to show that, for each

x, and for T' > 0 not dependent on c,

lim ( sup P <|Zn(t)(a:)| > R)) =0

R—o0 \ogt<T

and if 73 is a stopping time and J; converges to 0 as ¢ — 0 then,

|§n(’rt+5t)(x) - Zn(n)(x” - 0

in probability as ¢ — 0. For the first condition, recall in Lemma [3.3.2] we showed,

n(t)
Zyy (@) = €75 > (X1 () Yi(x) + Eypy ()
=1
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where gn(t) () — 0 in probability as ¢ — 0. Thus, it suffices to show that

n(t)
lim sup P c i EQQC(Xi,1($))K($) >R |=0.
i=1

R—m ogt<T

Since Y;(z) is a martingale difference array, by Markov’s inequality,

n(t)
sup P | |c1 Z O (X;—1(2))Y;(z)| = R

0<t<T i=1
[ ’
< sup —5E|[c 2 P! (X;—1(2))Y;(z
S 3} (X ()i
1 ) n(t) n(t)
< sup opcE E (®5(Xi-1(2))Yi(2) ®je(X;j-1(2)) Y (@)

Suppose 0 < k <[ < n(t). By the Tower Law,

E(Yi(2)Yi(z)) =E(E(Yy(2)Yi(z)|F — 1))
=E(Yi(z)E(Y;(z)|Fi — 1))

=0.
Therefore,

n(t) n(t)
1
sup P (|71 D] @ (X, 1 (2))Yi(x)| > R <73 STE(e 2 (@ (Xi-1(2))Yi(2))?)
=1 i=1

ost<T

By using the Tower law again we can consider the conditional expectation with respect to

Fi—1, then by Lemma [3.3.4]

n(t) . ) ¢
DL E (73 (@h(Ximt(@)Yi(@) | Fict ) = p0 fo (4 (855 ()))h () ds
i=1

in probability as ¢ — 0. Thus, since ®;(x) is twice differentiable, for 0 < ¢t < T', we can

bound | (1)s(x))| < 01 for some positive constant d1, hence, there exists a constant § > 0
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such that for ¢ sufficiently small,

n(t)

1

sup P (|71 ) Yi(z)| > R < 30T -
=1

o<st<T

Consequently, if we take the limit as R — oo then the upper bound converges to 0 and
we have proved the first condition. For the second condition, it is sufficient to show that for

any € > 0 and for all 0 < t; < t3 where (t3 —t;) — 0 as ¢ — 0,

c—0 ti<t<to

lim P < sup |Zn(t) (z) — Zn(tl)(xﬂ > e) =0.

We use a similar approach to the first condition. Using the bounds provided above and

Markov’s inequality,

N . . ([ ) ?
P (50, 1Z00(@) = Zuy(@) > ) < [ |3 @)
t<t<to € i
i=n(t1)
By taking conditional expectations and using the same arguments as above,
~ ~ 1
P sup ’Zn(t) (.%') — Zn(tl)(x)‘ > € géthHoo(tQ — tl)fQ
t1<t<ta €
for some constant § > 0. Then since (to — t1) — 0 as ¢ — 0 the result follows. g

Therefore, we have proved both convergence of finite dimensional distributions and tight-

ness, hence, Theorem follows.

3.4. Analysis of critical time window

In the previous two sections we showed that the harmonic measure flow X, ;) converges

to the the solution of the ODE given in (3.5]) provided that

1
0<t< 7 (log(c™') — 3log(log(c™))) .
P
Furthermore, we analysed the fluctuations Zm (z) on bounded timescales and showed they
converge to an SDE. In this final section we show there exists a critical time window where

the harmonic measure flow started at the unstable fixed point of the differential equation
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¢(x), moves a macroscopic distance from the unstable point before following a stochastic

trajectory towards the stable fixed point.

We start this section by introducing some new notation and listing some subsequent

properties of the random variables that will be used later. First, recall,

() = b(er(x))
and, as above, we assume h,, and thus b(x), is twice continuously differentiable. We also
assume that the ODE has at least one unstable fixed point which we denote a,. By the
periodicity of b(x) it follows that there are stable fixed points a} and a such that a, — 1 <
ay < ay <al <ay,+1and we assume that there are no other fixed points in the interval
(ag,al). Then let A\, denote the derivative of b(x) at a,, and let A}, A\, denote the derivative
of b(x) at af and a, respectively. By the properties of fixed points, we can deduce that
Ay > 0and A7, \; < 0. Throughout this section we will make the additional assumption that
b(z) is concave between a, and af and convex between a; and a,. We will use properties
of the ODE to interchange between vy () and (7 (x)). We would like to consider the
behaviour of the harmonic measure flow started at this unstable point and to do so we will

consider the behaviour of

Deto(Xko (au)) = (¥, (X (au)))

En(to) (au))

=

= ¢t(au +c

where kg = [%OJ for some fixed to which we will take to be large. In the previous section we
showed Zz(to)(au) — Zt,(ay) in distribution as ¢ — 0 where Z;,(a,,) is Gaussian with mean
zero and variance given by

to
oo j (B! (150 (1)) () ds.

0
By definition we know ®;(¢(z)) = x, thus, by the chain rule ®} (¢ (x)) = ﬁ(x) Further-
t
more, by the definition of v,

(3.8) () () = V' (v () 94 ().
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Then as ay is a stationary point it follows that () (au) = Aut¥i(ay) and therefore,
Yi(ay) = M.

Hence, as a,, was chosen as a stationary point it follows that the variance of Z;,(a,) is given

by,

to
Cohys _pohulaw) (0 “ant
pofo e hy(ay)ds = Ton (1 e ) .

For the remainder of this section we assume h,(a,) > 0 so that the variance above is finite

and non-zero. This assumption is not restrictive because if h,(a,) = 0 we can replace

b(z)

hy(ay,) with h(@)+9 for some constant § > 0, which would in turn replace b(z) with 15.

146
In particular, the fixed points remain in the same location and share the same stability

properties.

Furthermore, by the L? martingale convergence theorem it follows that Z;, — Z, in L?,
and hence in probability, as tg — co0. For notational convenience we will assume 2n(t0) and
Zy, are constructed on the same sample space. Hence, by restricting to a subsequence of ¢’s
if necessary, we can state our results in terms of the convergence in probability of random
variables on this space and thus by Theorem the stochastic process Zn(to) — Z, in

probability as ¢ — 0 with respect to the Skorohod topology.

We will consider () between the two stable points a; < z < a and thus as a further

consequence of equation (3.8) and the assumptions on b(x), for 0 < s < ¢, it follows that

min{A\l, A} < (W) (z) < Ay

()

Therefore, since A7, \; <0

and we can deduce that

(3.9) |9t < €M

With the properties and assumptions stated above we can outline the structure of the
remainder of this section as follows. The results in previous sections indicate a change in

the behaviour of X,,;)(x) on a window around ¢ ~ ﬁ log(c™!). Thus, the remainder of this
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section focuses on discovering the behaviour of X,,)(a,) on this timescale. We first analyse
the process. To do so we construct a stopping time 7} and a time window [T} — T, T} + T,

for a fixed time T', on which

Xn(t)(au> — (au + ci Zn(to)(au)>‘ -0

in probability as ¢ — 0 and ¢ty — c0. Then in Section 3.4.2 we analyse the stopping time 77}
and show 17" ~ ﬁ log(c™1) and by this time we have moved a macroscopic distance §* > 0
away from the unstable trajectory and towards a stable trajectory. This notion of distance
will be defined explicitly in equation before we go on to prove our main result that
there exists a critical time window [ﬁ log(c™!) - 1T, ﬁ log(c™1) +T7, for a fixed T = 0, on
which

X (au) = v (@ + ¢ Zo(an) )| = 0

in probability as ¢ — 0 and tg — 0. Finally we show that that once we get close enough to
the stable fixed point we remain on the stable trajectory.
3.4.1. Analysing the process. As above we fix some time tg > 0 and let kg = [%J

We aim to analyse the difference

[ Xty (@) = -ty (X (au)) |

for t = tg. We first introduce the notation
to

b1, = [ ¥ 0umsy (X ).
t1

We then let

g(tv y) = eil(ojt) (y - wt—cko (Xko (au)))

and aim to understand the behaviour of g(nc, X, (a,)) with n = n(t). To do so we will write

(3.10) g(ne, X, (ay)) = M(ay,n) + L(ay,n)

n—1

£ ST (@ (W (X () — I((0 — Desic) glic, Xi(a,)))

i=ko
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where
n—1

M(amn) = Z e_l(o’ic)Y%Jrl(au)

i=ko
is a martingale term that we will apply Theorem to and L(ay,,n) is a remainder term

which we will show is small in Lemma m By our assumptions on b(x) and the intermediate

value theorem, there exists unique z, and x_ such that,
V(zy)=b(z_) = (1 —=05%)

where §* > 0 is a constant and a; < x_ < a, < z+ < a. Therefore, we introduce a

stopping time T defined as,

Ty = inf{s > to : Ys—t,(Xpo(au)) ¢ [z, z4]}.
Thus, by the assumptions on b(z), if tg < s < T then
(3.11) (1= 0")Au <V (Vs—to (X (au)) < A

However, in order to prove convergence of |Xn(t) — Vt—chy (Xko(au))| we will also need to
assume that both 77 and /(%) are not too large and thus we introduce a second stopping

time,

1(0,tp)
(3.12) T = min (Tl, inf {3 L el©09) 5 T s },cé>
s>t
and evaluate g(t, X;,(1)(au)) for to <t < Tf. In Section we will analyse this stopping
time and show the process leaves the interval [x_, x| before either of the other upper bounds
in 77" and hence T7* = Tj. Therefore, we first need to find upper bounds on |M (a,,n(t))|
and |L(ay,n(t))| for to < t < T7. We start by bounding |M (a,,n(t))| with the following

result.

LEMMA 3.4.1. Let M(ay,n(t)) be defined as above then,

lim limP | sup |M(ay,n(s))| > ciemsl0t0) | — .
to—00 c—0 t0<8<T1*

PROOF. Recall,
n(t)
M(ay,n(t) = >, e 'Oy (q,).
i=ko+1
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As in the previous section we will use Theorem First, by equation (3.11)), for every

x € (0,1), each kg +1 < i < n(t) and to < t < T7, there exists a constant 6 > 0 such that,
|6—1(0,(i—1)6)yi(x)| < 56—I(O,to)\/g
for sufficiently small c. Furthermore, in the previous sections we have shown for each x,
2 2 2
E (Yi(2)?|Fiz1) =poc2 hy(Xi—1(2)) = Bu(Xi1(x))

1
+ < L Fp (X1 (z) — 0)%h, (0)do — pocghV(Xi_l(x))> .

From the bounds in Lemmas [3.2.2] and [3.2.4] there exists a constant § > 0 such that
|8, (Xi—1(x))| < dc and ‘Sé F(x — 0)?h,(0)dO — pocghy(ﬁ) < 6c?log(c™1), therefore for
0<i<n(t)and tog <t < T},

E (6_21(0’@_1)6)3@'(%)2|fifl)

< €—2I(D,(i—1)c)poc%hV(Xi_l(au)) + 6—21(07(1'—1)0)5(02 + 02 log(c_l))

< 200k (Xi—1(ay))cze 2 O:(=1))

for sufficiently small ¢, where the last bound follows from equation (3.11]). Therefore,

n(t) n(t)
Z E <672I(0,(i71)c)Y2(au)2|fi_1> < 2plouHooC% Z ce—21(0,(i=1)0)
i=ko+1 i=ko+1

we can approximate this sum with a Riemann integral to show

()
_ - hollw 1 _
Z E (210, 1)C)Yi(au)2|]_-,_l < pol|wloo c3e21(0t0)
i=ko+1 ( ) )\U<1 - 5*)

for ¢ sufficiently small. Thus let § > ,\pf(th—Vl‘Sf) then for sufficiently small c,

n(t)
2 E <6721(0,(i71)c)}/;(au)2|]_—i_1> < §ese21(0t0)

i=ko
By Theorem [3.2.6

2.3 —21(0,t0)
récze ’
IP’( sup M(ay,n(s)) > ”r’c}lel(o’to)> <exp 5 -

to<s<t 9 (TCZG—QI(O,tO) i 5656—21(0,1&0))
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. _1
Hence, if r < dc™ 1, then,

2
IF’( sup | M (au,n(s)| > rcie—f<0¢o>) <2exp (25) .

to<s<t

Thus we choose 7 = esZ(0:0) then for ty < t < Ty,

lim lim]P’( sup |M(ay,n(s))| > c}le_gf(o’to)> =0.

top—00 c—0 to<s<t

g

LEMMA 3.4.2. Let L(ay,n(t)) be defined as in equation and let tg < t < T}

Assume that

W=
(‘b
mw
~
—~
=
&#
o
N2

sup [g(s, Xn(s)(au))| < c

to<s<t
then it follows that,

sup |L(amn(8))| < C%e_%l(ovto)‘

to<s<t

Proor. We will show we can write g(nc, X, (a,)) in the form of equation (3.10) and
then we will find bounds on L(a,,n(s)) under our assumption. We can write g(nc, X,,(ay,))
as a telescopic sum,

n—1

g(ne, Xp(au)) = Z (9((i + Ve, Xira(au)) — glic, Xi(au)))
i=ko
n—1
= 3 (906 + D Xia(@) = e (i + Ve, X (au)))
i=ko

n Z ( e (5 + 1)e, Xir1(an)) —g(ichz'(au))>-

i=ko

By Taylor expanding (1 — el(ic’(iﬂ)c)) the first summation can be written as

n—1

> (906 + Ve Xiga(a)) = e D (4 1)e, X (au)))

i=ko

= — Z (1 — Deyic)g(ic, Xi(ay)) — Ri(ay,n)
i=ko
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where Rj(ay,n) is a remainder term,

n_l1 eC'L
Rl(am TL) = 2 9 I<icv (’L + 1)0)29((i + 1)07 Xi+1(au))

i=ko

+ I((n — 1)e,ne)g(ne, Xp(ay)) — L((ko — 1)c, koc)g(koc, Xk, (aw))

for some 0 < ¢; < I(ic, (i + 1)c). With the assumption on g(s, Xp(5)(ay)) it follows that,

n(s)—1 e PYPE I n(s)—1
> 5 e, (i + 1)e)2g((i + 1)e, Xip1(aw))| < “2 ciem sl O]\ N I(ic, (i + 1)c)
i=ko i=ko
AuC
= )\u€2 cie 1100 (1 1)

Ay erue
2

N

ciem11(0:0) (log(c_i) + )\ut;>

where the last inequality follows from the definition of 77*. Consequently,

e
sup |Ri(au,n(s))] < u2
to<s<t

5o 21(0,t0) <log(0‘1‘) + A7“‘7580> ‘

Now recall X;(ay) = ay + Si(ay) + Zﬁc:l By (Xk—1(ay)), therefore,

n—1

Z <el(ic,(i+1)c)g((i +1)e, Xir1(ay)) — g(ic, Xi(au))>

i=ko

n—1
= M(ay,n) + Z e*I(O’iC)By(Xi(au))

i=ko

n—1
N Z e 1(00) (Vi 1)0—cko (Ko (@u)) = Dic—cho (Xko (au)))

i=ko
n—1 ‘
= M(au,n) + Z e~ 1(0e) (B (Xi(au)) = cb(Yic—cko (Xko(au)))) + Ra(au, n)
i=ko
where Ry (ay,n) is a remainder term left by the Taylor expansion,

n(t)—1
Ry(ay,n) = ¢ Z @Z’pi—cko(Xko(au))e_l(o’w)

i=ko
for some ic < p; < (i + 1)c. Thus,

n(s)—1
| Ra(au,n(5))] < [Blon |V coc | > ce 1)

i=ko
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By approximating the summation by a Riemann integral we see that,

HbHOOHb,Hoo —I(0,t0)
R U < — 't
tosgusl';t| 2(a n(S))| )\u(l 5*)66

Then, by Lemma we know |5, (X;—1(ay)) — cb(Xi—1(ay))| < scs log(c™!) where § > 0
is a constant. Therefore,

n—1

Z (el(iC»(iH)C)g((i + 1)e, Xita1(ay)) — glic, Xi(a“»)

i=ko
n—1

= M(au7 n) + Z eil(o’ic)c (b(Xz(au)) - b(¢io—cko (Xko (au)))) + Rz(au, n) + R?,(Clu, n)
i=ko

where R3(ay,n) is a remainder term, R3(ay,n) = Z?:_klo e~ 109 (8 (X;(ay)) — cb(X;(ay))).
Thus, using the same Riemann integral approximation as above along with the bound from
Lemma 18y (Xi—1(z)) — eb(Xi—1(x))| < sc3 log(c™1), for some constant § > 0, we see
that

Sc2 log(c™h)
Rs(au,n(s))] < S spye O
S [ Rs(aw, n(s)) Nl — o) ©

Finally, we can Taylor expand once more to write,

n—1

> <€I(ic’(i+1)c)g((i + e, Xivi(au)) — g(iC,Xz‘(au))>

i=ko
n—1

= M(aw n) + 2 Cb/(wicfcko (Xko (au))>e—l(0,ic) (Xz(au) - wicfcko (ng (au)))
i=ko

+ RQ(au7n) + R3(au7n) + R4(GU7n)

n—1

= M(ay,n) + Z b (Vie—cko (X (an)))g(ic, Xi(ay)) + Ro(au,n) + Rs(ay,n) + Ra(ay,n)

i=ko

where Ry(ay,n) = Z?;klo e~ 1O et (1) (Xi () — VYie—cho (Xio (au)))?, for some
Yie—cko (X (@) < pi < Xi(ay), is the remainder term left by the Taylor expansion. By our

assumption on g(s, Xy (s)(ay)) it follows that,

sup |g(ic, Xi(au))(Xi(au) — Wie—cko (X (au)))| < c2e721O0)I0€)

ko<i<n(t)
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Therefore,
n(s)—1
1 3 .
sup | Ra(au, n(s))| < [ |scie3700) sup 37 cel0i),
to<s<t to<s<t ;5

We can approximate this sum with a Riemann integral again to reach the upper bound,

11" lo 1 _3100.40) 1(0.0)
Ry(aw, < Mo 3o—310t0)100)
tos;gpg[ 1(ay,n(s))| ol _6*)0 e e

. _ 1 I(0tg)
However, since tg < ¢t < 77", we can use the upper bound !0 < ¢=1e¢7 5  to deduce that

_ 1 I(0tp)
!0 < =15 | thus,

16" 0 L _1L7(0,t0)
< o7,
tos;pgt |Rq(ay,n(s))] - 6*)C4e 8
So combining the summations above we see that,
g(ne, Xp(ay)) = M(ay,n) + L(ay,n)
n—1
£ S (W (Gie—eho (Ko (@) — I((i = e ie)) glic, Xi(an)))

i=ko

where L(ay,n) = Ra(ay,n) + R3(ay,n) + Ry(ay,n) — Ri(ay,n). Thus,

sup |L(ay,n(s))| < sup |Ri(ay,n(s))|+ sup |Ra(ay,n(s))]

to<s<t to<s<t to<s<t

+ sup [Rz(au,n(s))|+ sup [Ra(au,n(s))]

to<s<t to<s<t

If we combine all of the upper bounds above, we see that for ¢ sufficiently small it holds that,

sup | L(ay, n(s))| < cie”s/(0:0),

to<<s<t

THEOREM 3.4.3. Let ty and the stopping time T} be defined as above then,

lim Im P sup | Xy (au) — Ys—tg (Xiy (au))| > e—3100) | _ .
to—o0 c—0 tOSSSTl*
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PROOF. In equation (3.10)) we showed that,

g(ne, Xp(z)) = M(ay,n) + L(ay,n)

n—1

+ 3 (b (Wie—eky (Ko (@) = I((i = 1)e,ic)) glic, Xi(an))

i=ko
So consider,
ic

eV (tie-aky (X () — f V(o (Ko ()

(i—1)c

|Cb/(1/;ic_cko (Xko (au)) — ]((Z — 1)6, w)‘ =

< f IV (et (Xrg (@) — b (o (X (a2))| dr
(i—1)c

ic

< 16" o bl j fic — 7| dr

i—1)c

Sl ) P 1

where the penultimate inequality follows from the Mean Value Theorem. Thus, by letting

n = n(t) we see that,

9(t, Xoy ()] < sup [M(au,n(s))| + sup [L(au,n(s))l

to<s<t to<s<t

¢
el Lelble [ lats X @)l
0
Then define the stopping time

T = inf {s: |g(s, Xn(o(au))| > cie 1100},

s=to

Then if tg < ¢ < min(7,T}") by Lemma’s and it holds that,

lim lim P <( sup |M(ay,n(s))|+ sup ]L(au,n(s))|> > 2016_21(0’t0)> =0.

to—00 c—0 to<s<t to<s<t

Therefore by Gronwall’s inequality, if ¢y < ¢ < min(7,71) then with high probability,
19(t, Xy (2))] < 2ci ™ 51(00) (= t)elV" bl

However, for tg sufficiently large and c sufficiently small then 92¢i e~ 51(0t0) lt—to)elb" oo bloc

1 3[

cie~11(00) and thus high probability the stopping time 7 did not occur. Therefore, for
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toétéTl*,

lim lim P ( sup {Xn(s) () — Ys—ty (Xkq (au))‘ = 6%I(O,to)> - 0.

to—00 c—0 to<s<t
Il

We can now use Theorem [3.4.3] along with Theorem [3.2.9] to classify the harmonic mea-

sure on a critical time window. The following result holds.

THEOREM 3.4.4. Let the stopping time T} be defined as above and let T = 0 be fized.
Then for any e > 0

lim lim P < . sup | Xty (au) — ity (Xio (au)) | > 6) = 0.
Tl

to—0 c—0 —T<t<T}+T

PRrROOF. Recall that

Xo(w) = 5 log(Tale™)

with T, () = ¢ (x) = f; o ...0 f{ ' (2). Then for n > k we first define

n

Toi(z) = filo. o fili(2)

with I'yo = I'yy and I'y, = 'y o Iy i for & < m < n. With this definition we can also

define for k < n,

1 A
Xop(x) = Tmlog(f‘mk(e%w)).

Therefore, for 0 < k < n,

1 .
Xn(r) = o log (T 0 T 0(e2™%))

_ % log (T © (exp {1Og(Fk,0(€2mx>)}))
_ % log (I'y, 1 © (exp {2mi X} (2)}))

= Xk (Xg(x)).
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We assume that T} <t < T} + T then,

Xy (au) = Xy m() (Xn(Tl*)(au)> -

Therefore,

X0 (@) = t-te (Xiy (@) | < Kooy iy (K@) = ory (Ko@) |

g (Xup (@) = e (V1m0 Xk (@) |

We note that X,,  and X,,_j are measurable with respect to separate o-algebras dependent
on the choice of angles but are equal in distribution. Therefore, we can use this fact along
with a version of Theorem to show that for any € > 0 and fixed T' = 0,

limsup P (Tl* sup | Xon(t)n(r) (Xn(Tl*)(au)> — Py (Xn(Tl*)(au)) | > €> = 0.

c—0 —T<t<T{+T
Then for the second term,
sup |¢t—T1* (Xn(Tl*)(au)) - 1/1t—T1* (le*—to (X (au))> |
T -T<t<T{+T

< swp g (@)X (an) = Grp gy (X (au))]
THF-T<t<T{+T

< T ) (@) — sy (Xig (@)

for any x and where the last inequality follows by equation (3.9)). Therefore, by Theorem

B.4.3|

_ MNT—31(0t0) | _,
P (Tf“ sup [ty _px (Xn(Tl*)(au)) Yy _rx (%*40 (Xko (au))) | > et TRt ) 0

—T<t<T{+T

as ¢ — 0 and then tg — 0. Thus, as T" = 0 is fixed for any € > 0 we can choose t; large

enough such that 0 < AT e=310t0) < ¢ Therefore, for any € > 0

lim lim P < , sup | Xy (@) = Yr—tq (X (au)) | > e> =0.
Tl

to—w0c=0 —T<t<TF+T

3.4.2. Analysing the stopping time. The aim for this section is to analyse the stop-

ping time 77 and show that with high probability it is close to ﬁ log(c™!) plus an error
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term which is tight in ¢. Recall the definition of the stopping time 7} from equation (3.12]),
Tl* = min <T1’ inf {S : eSS b’(wr—to(xko(au))dT = c,iel(Oéto) } 7Cé>
s>tg

with

Ty = inf {s: Ys—ty(Xio(au)) ¢ [2—, 24}

s=to

and the values z_ and z, are defined such that
V(ws) = ¥(a-) = Au(1— 0

for 0 < 6* <1land a; <z_ <a, <2z <al. We first show that with high probability
Ty =Ty and as ¢ — 0 and ¢y — o0 the stopping time 7} occurs within a bounded time of

ﬁ log(c™1). We state the result as follows.

THEOREM 3.4.5. With the stopping time T} defined as above then with high probability

Ty =T1 and for any € > 0 there exists a constant T. > 0 such that

1
T — —log(c™)

lim lim P
im lim < .

to—00 c—0

>ﬁ><6

PROOF. The proof of this theorem is split into two parts. First we will analyse the
time at which the process ¥s_¢, (Xg,(ay)) leaves the interval [z_, 2] and show that for ¢
sufficiently small and ¢y sufficiently large this occurs before both other bounds on 77" and
thus show that 77 = T7. Then, in the second part of the proof, we will use this to show that,

with high probability, as ¢ — 0 and ¢ty — o0, T} is within a compact time of ﬁ log(c™1).

First, since Zy(ay,) is a Gaussian with mean 0 and finite variance it follows that for every

€ > 0 there exists a constant C, > 0 such that

(3.13) P (ce < |Zo(an)| < é) <%

But we know that Z;,(a,) — Zu(ay,) in distribution as tg — oo, thus if ¢( is sufficiently large

then,

(3.14) P (ce < |Zu(an)] < 1) <
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Moreover, by Theorem m En(to)(au) — Z,(ay) in distribution as ¢ — 0, thus if ¢ is

sufficiently small then,
~ 1
(3.15) P\ Ce < Zp)(au)] < c <e

Note that C¢ is only dependent on the choice of € and not ¢ nor t5. We define the following

additional random variable,

X4 if Zn(to) > 0;
\Tlto = z_ if En(to) < 0;

ay if Zyg) = 0.

Then, on the event defined in equation (3.15)),

min{zr; —ay,a, —x_} < \\Tlto —ay| < max{xy —ay,a, —x_},

thus we let
~ 1 1 ~ 1 2max {T4 — ay,ay — T_}
T = =1 TH= 21 ! .
€ Ay 08 (min {ry —ay,ay — :E}C€> e A o8 ( C.

We will restrict to this event and evaluate the stopping time 77, which is the first time
s > to such that ¥s_¢ (Xi,(an)) = \Tlto. We know that ¢s_t, (X, (ay)) = 1/15(1?;)1()(%(%))
and thus by Theorem it follows that

=

Vs—to (Xko(au)) = s(au + ¢ Zn(to)(au))-

Hence, we need to evaluate the first time s > 3 such that

NI

Vs(au + ¢t Zygy(au)) = V.

We can Taylor expand this term,

~

i) (@) = Vs (a) + L) (€ Zpa) (@)

N

Ys(ay, + ¢
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for some a, <1 < ay + i? n(t )(au). Thus, we want to calculate the first time s > ¢y such

that,

@y + G0 D) (@) = Wi,

or equivalently 77 is the first time s > ¢y such that,

(3.16) W) = “_“)

However, by the definition of ¢;(z), for all x € (0,1) it holds that b'(¢¢(x)) = :ﬁ%gg Fur-

thermore, we chose the points 2} and z_ such that, (x4 ) = b'(z_) = Ay (1 — 0%), so for

Ay <N < Gy + ig()(au)andalltoéséﬂ,

Sk
6(1 0*)Aus < w;(n) < 6)\“8.

Now, by substituting the equality from equation (3.16| into this expression we see that,

LR Y LR Y AP S Y (L
Au ZZ( )(au) A“(l_é ) ciz (to)(au)

Consequently, by restricting to the event defined in equation (3.15) it follows that,

1 ~ 1 1~
(3.17) K1og( DT << ———— ey

Hence, on this event,

1 1 ~
] log(c™) + (7TJr <c2

<o a—s

[

and thus we can discard the ¢~2 upper bound in T}. Moreover, since b/(z) is strictly
decreasing away from a,, and a, < n < a, + ci Zn(to)(au), by equation (|3.16]) we can deduce

that,

~

n(to) (au))

_ 6S V' ($r—to (Xig (au))dr

1
> 1%«1 (au + c1

(¥ z ay)
iZ (tg)(au)
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1 I(0,tg)

Now suppose that there exists an to < s < T} such that e/®%) > ¢~7e¢~ s~ then

B g
c4 Zn(to) (au)

However, as ¢ — 0, ew — eMétO, and eM% — o0 as tg — o0, therefore, by equation ,
the above inequality is a contradiction for ¢ sufficiently small and ¢y chosen sufficiently large.
Consequently, after restricting to the event above, it follows that with high probability
¢ =T

Now all that remains to show is that, as ¢ — 0 and ty — oo, T}" is within a compact

time of ﬁu log(c™!). The lower bound follows by equation lb and thus we just need to

find the upper bound. To do so recall that T} is defined as the first time s > ty such that,

N

Us(au + €1 Zp 10y (au)) = Ty

Without loss of generality we suppose Zn(to)(au) > 0. Then, as above, by restricting to the
event defined in equation ({3.15)),

1 1~
ay + c1Ce <ay + 1 Zy 4y (au)

hence, since 14(x) is monotone in x,

=

s (au + ciC}) < <au +c 2n(t0)(au)> )

We can Taylor expand the lower bound around a,, to reach,

=

1 1 s
Ay + 6)\”30406 + ¢;/(p)02062 <ts (au +c Zn(to) (au))
with a, < p < a, + ciCe. Now let s = ﬁ“ log(cfl) + i* and assume s < 11, then

Gy + T Ce. + wg(p)c%Cf <y (au +ci Zz(t@(%)) .

By the definition of ¢ (z) we can show

200 = oo ([ ¥ or) [ (#wton e ([ #wntoan) ) an
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Thus, since a, < p < ay + ciC'6 and s < T it follows that,
b ° |6 16" o1
" < H 0 QJ‘ b/ d < 0 2 u S _ o0 2. T¢ .
0 < g o (2 [ Blomonar) < e - T )
So for C, sufficiently small
1 A T‘F 1~
au+§e“506<1/1s<au et Zp () (@ ))

Thus by our choice of T-,
l ~
Ty < s (au + c3 Zn(to)(au))
which contradicts our assumption that s < T, hence, T] < ﬁ log(c™1) + Tj. We can prove

a similar argument for Zn(to)(au) < 0 by considering at which time the process leaves the

interval at z_. Therefore, let T, = max(i_,Tj) then for any € > 0 there exists a T. >0

>i)<e

such that

— L log(e )

lim lim P
im 1m( .

to—00 ¢c—0

Therefore, we know now that the difference between the stopping time 77 and

ﬁ log(c™!) is tight, and we can state our main result.

THEOREM 3.4.6. Let Xy, (7) and () be defined as above. Let T = 0 be fized, then

lim sup Xn(t) (@) — Py <au + Ci Zoo(au))’ =0
c—0 0<t<—log(c D+T

in probability.

PROOF. We first consider the following upper bound,

Kooy (@) = 1 (au + ¢ Zoo (@) )| < X (@) = e (a0 + ¢t Zogegy (@)
’1/1( ié (to) au)> n <au CiZoo(%))‘-

First, we evaluate ’Xn(t) (ay) — Pt (au + et Zn(to)(au)> ‘ In Theorem [3.4.4] we showed that
for fixed T > 0,

1 ~
sup ’Xn(t (an) — Yy (au ct )(au))‘ —0
to<t<TF+T
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in probability as ¢ — 0 and ty — c0. Let T' = ﬁ log(c™t) — T + T for some fixed T then
by Theorem it follows that for any € > 0 there exists a T, ¢ > 0 such that

>i)<e

Thus, with high probability T is compact and so by combining Theorem’s and [3.4.5]

1
: . * —1
i,y (|77 — 5ot

~

lim lim sup ‘Xn(t) (ay) — Pt (au + et n(to)(au))’ =0

to—=® c—0 to <t<— log(c—1)+T

in probability. Hence, all that remains to show is that
e (au + ¢ Zngugy (@) ) = v (00 + €4 Zio(a) )|

also converges to 0 in probability. We can Taylor expand each term to write

~

o) (@) = i (a0 + 4 Zin(an) )| = ¢ wz<p>2n<to><au> — i) 2o a0)

04 [k

‘¢t (au ci

(GU) Zoo(au)

where a, < p < ay —I—C%Zn(to)(au) and a, < n < ay+ ci Zy(ay). However, by equation 1 ,
for 0 <t < - log(c™) + 1T,

’wt <au ciZ n(to) (@ )) — Uy (au + C%Zoo(au)ﬂ
N

< M\ Zoio) (@u) — Zoo(au)

~

<eMd Zn(to)(GU) — Zty(aw)

+ T Zy (an) — Zoo(an)] -

By our assumptions at the start of this section Zn(to)(au) — Zy,(ay,) in probability as ¢ — 0
and Z;,(ay) — Zy(ay,) in probability as tg — o0. As a result, if we take the limit as ¢ — 0

followed by the limit as t) — o0 we see that,

lim lim sup ’zﬁt (au ciZ n(to ( )) Wy (au ciZoo(au)N =0

to—00 =0 0<t< gy log(c™1)+T

in probability. O

Finally we can now prove that if the harmonic measure flow gets close enough to the

stable point then we will remain close to the stable trajectory.
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THEOREM 3.4.7. Let x be chosen close to one of the stable fized points of ¥ (x) such that
b'(z) < 0. Then for any € > 0,

lirr(l)IP’( sup | X, (@) — ¥y ()] > e> = 0.

0<t<oo

ProOOF. The proof will follow a similar method to results presented above where the

process is close to the unstable point. We start by defining the stopping time
N~ 1
Ty = il {r ¢ [ X, (2) — b (2)] > cb).

Let A\s denote the eigenvalue of at the stable fixed points, then throughout the remainder of
the proof we can assume (1 — g)|A8| < |b'(pe(x))] < |As| for some constant 0 < § < 1. Now

denote
ﬂmm%=ﬁbW%@Ms
1
and let
hit,y) == e 10D (y — ().

Then using a similar method to Lemmas [3.4.1] [3.4.2| and [3.4.3] we can write,

(3.18)

h(ne, Xa(2)) = M(as,n) + L(as,n E(ww% — (i = 1)e,ie) ) hic, Xi(x)))
where ]T/[\(as, n) = > 01 e 100, )Y, 1(x) and by our choice of stopping time, if 0 < t < Tp,

Sup |E(as, n(?"))| < C%e_f(ovt)

o<r<t
with the difference in the upper bound resulting from the change of sign of ¥’ near the stable
point. Furthermore, using a similar method as in Lemma we can show that there exists
a 0 > 0 such that,

P < sup \M(as,n(r))\ >4(1 + (5)0% log(c_l)e_f(o’t)> < Zexp <2(_1)

o<r<t



3.4. ANALYSIS OF CRITICAL TIME WINDOW 127
Thus, we restrict to this event. Then, by equation 1) fo<t< IA’O with high probability,

(r)—
Ih(t, X (2))] < 2657100 4 sup Z (cb (Wie(z) — 1((i — 1)e, zc))h(ic,Xi(x)) .

o<sr<t i—0

Then we can use a similar method to Lemma and by the definition of the stopping
time fo, fo<t< ZA’O then,

n(t)—1

n(r)—1 ~
sup | > (b (iele)  1((6 = Devic)) hie Xiw))| < e ¥ clblo Y, ce™"

o<sr<t i=0 =0

- ~
céllp” bl e 1(0:t)
- Y olle 700

Aol (1-9)

Therefore, if 0 <t < T 0, for ¢ sufficiently small, with high probability,

o=

‘Xn(t) (x) — (33)‘ <c

and thus the stopping time fg did not occur. Hence,

lim 1imIP><sup | X ) )—¢r(x)|>e> =0.

c—0t—00 o<r<t

Let €); be the event,

= { sup X, (2) — 0y 0)] = ]

o<sr<t

where ¢ is an integer. However, since the events {{;},, are increasing in ¢ it follows that

limyoo P (UL Q) = P (U2, ), thus,

limIP< sup ’Xn(t z) — 1y (z)] > 6) = 0.

c—0 0<t<oo

g

Theoremshows that when 0 < t < ﬁ log(c™1)+T the harmonic measure started at
the unstable point X, ;)(a,) moves a macroscopic distance from a,,. Once at this macroscopic
distance the process will remain close to the trajectory started at <au + ci Zoo(au)> which
will converge towards the stable point. However, by Theorem [3.4.7] once the process gets

close to the stable point it will remain close. Therefore, we can deduce the following corollary.
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COROLLARY 3.4.8. Let Xy, 4)(z) and 1y be defined as above. Then
lim sup | X, (au) — 1 (au tci Zoo(au))‘ =0
c=00<t<o

in probability, where Zy(ay) is a Gaussian with mean 0 and variance given by %(ua“).



List of Symbols for Chapter 3

Conformal random growth models

c The capacity of each of the conformal maps in HL(0).

fe The unique single particle mapping f. : {|z| > 1} — {|z| > 1}\(1,1 + d] which takes
the exterior of the unit disk to itself minus a slit of length d = d(c) at z = 1.

fn The n'® particle map defined as where 6, is the attaching angle and ¢, is the capacity
of the ' particle map f., (z). For AHL(v), the attaching angles chosen to be i.i.d
on the unit circle according to some non-uniform probability measure v and the
capacities are chosen to be a fixed value ¢

On The conformal map which attaches a cluster of n particles to the boundary of the
unit disk ¢, = f1o...0 fy.

T, The inverse map I',, = ¢, 1.

Anistotropic Hastings-Levitov model AHL(v)

v The measure which defines the distribution of the attaching angles on the unit circle.

hy(z) The twice continuously differentiable density of v on R.

@) (@) = g log(f 1 (€*™7)).
(

V(@) (@) = () -
X, (z) The discrete harmonic measure flow at 2. X,(z) = 5 log(I, (€*™)).
n(t) The continuous embedding with time jumps %, n(t) = |L].

Bu(x) Bu(x) = §3 7 — 2)h(2)dz.
Yi(z) Yi(z) = y(Xiz1(z) — 0;) — o (Xi—1(2)).
b(z) The Hilbert transform b(z) = 5= S(l) cot(mz)(hy(x — z) — hy(x

&

))dz.
Y(z) The solution to the ordinary differential equation 9 (z) = b(ty(z)) for & € R and
Yo(x) = x.
®4(x) The inverse map ®(z) = ;7 ().
Z(x) The solution to the stochastic differential equation

dZy(x) = /po®i(i(x))\/ho (Ve (z))d By with Zg(x) = 0.
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Zy(x) The fluctuations Z,(z) = i (Ve (Xp () — ).
ay, al, a; The unstable fixed point, a,, and stable fixed points, a/, a;, of b(x) with

ay < ay <al.

Ay The derivative of b(x) at ay,.

to Some fixed compact time kyc where ky does not depend on c.

I(t1,t2) The integral I(t1,t2) = E U (Vs—to( Xy (an))ds.

g(t,y) The rescaled difference g(t,y) = e 1O (y — 1y opy (X (an)))-

M (ay,n(t)) The martingale sum M (a,,n(t)) = Z?:(t]zoﬂ e~ 10.G=1)Yy, (a,).

x_\z4+ There exists x4 and z_ such that, V/(z;) = b'(z_) = (1 — §*)\,, for a fixed macro-
scopic distance 6* with a; <z_ < a, <24 <af.

T, Stopping time 17 = infgzy, {5 Ys—to (X (an)) ¢ [2—,24]}.

5* A macroscopic distance such that b'(zy) = b'(z_) = A\, (1 — 6*).

V;, Random variable with values E/to =z, if En(to) > 0 or qfto =g_ if Zn(to) < 0 or

Uy, = ay if Zy ) = 0.



CHAPTER 4

Thesis Conclusions

This aim of this thesis was to evaluate the scaling limits of random growth processes
formed using conformal maps. In recent years, many attempts have been made to study
individual processes such as the Eden model and DLA with varying degrees of success. As
described earlier a consequence of their random nature is that they are often extremely
difficult to study and most of the models are built on a lattice which further adds to the
difficulties because there are few mathematical tools available in order to study the model.
The introduction of the Hastings-Levitov model (HL(«)) model in [HL98| and subsequently
Aggregate Loewner Evolution (ALE(n,a)) model in [STV19| has greatly increased the
accessibility of the problems and this has resulted in significant progress in attempts to

understand the scaling limits of these models.

In this thesis we have studied two versions of the Hastings-Levitov model and con-
tributed independent research to both. First in Chapter 2 we presented a paper accepted
for publication in Annales de I'Institut Henri Poincaré (B) Probabilités et Statistiques in
which we study a regularised version of the Hastings-Levitov model under capacity rescal-
ing. We show that that under capacity rescaling the scaling limit of a regularised version
of the Hastings-Levitov model converges to a disk in the case where 0 < a < 2 and we
classify the fluctuations on this limit and show when represented as a holomorphic function,
they behave like a Gaussian field dependent on «. In addition we show that there exists a
phase transition at a = 0 where the model no longer converges to a disk in contrast to the
small-particle limit. In the second paper presented in Chapter 3 we study the anisotropic
version of the Hastings-Levitov model AHL(v). In this case, rather than attaching particles
uniformly on the boundary of the cluster, we choose to attach according to some probability
measure. We study the ancestry of the attached particles by evaluating how the harmonic
measure on the boundary of the clusters evolves. We show that up to a logarithmic time the
harmonic measure converges to a solution of a deterministic ODE but there exists a critical
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logarithmic time window where the harmonic measure flow, started from the unstable point

of the ODE, moves stochastically from an unstable trajectory towards a stable trajectory.

The overall goal of the research in this field is to have a full understanding of the scaling
limits of the individual models built to describe the real world processes, such as DLA and
the Eden model. This is a particularly challenging problem but there are vast opportunities
for future research towards this. Just a select number of these research topics include, but

are not limited to, the following:

e We have recently shown that if you regularise the model at oo, under capacity
rescaling the scaling limit is a disk for 0 < a < 2. However, this regularisation
means that the model is no longer a good representation of the real world models.
If we can remove the regularisation completely we will understand the scaling limit
for a model extremely close to DLA. The first step would be to understand exactly
what regularisation is needed for this to still hold.

e The Stationary Hastings-Levitov model SHL(«) recently introduced in [BPT20]
has provided a candidate for stationary off-lattice version of DLA. One of the open
questions on this model is can we define and then find properties of the model when
a > 07 We would also like to discover the relation between the stationary case and
non-stationary models. If we can determine answers to both of these problems this
may provide a route to tackle HL(«) for o > 0 by tackling SHL(«).

e The ALE model is an extension of the Hastings-Levitov model where the attaching
angles are chosen proportional to harmonic measure. Recent results have shown
interesting scaling limits and phase transitions on the parameter 1. There are
several open problems on this model, one of which is whether these phase transitions

still occur when the limit is taken under capacity rescaling.

This therefore presents many interesting and challenging problems that will hopefully

eventually lead to a greater understanding of the real world processes we are modelling.
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