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Abstract

With the increasing installation of the wind turbines both onshore and offshore, condition monitoring technologies
and systems have become increasingly important in order to reduce the downtime and operations and maintenance
(O&M) cost, thus maximising economic benefits. This paper presents a novel machine learning model-based data-
driven approach to accurately evaluate the performance of the turbines and diagnose the faults. The approach is based
on Long-short term memory (LSTM) incorporating a statistical tool named Kullback-Leibler divergence (KLD). The
hybrid LSTM-KLD method has been applied to two faulty wind turbines with gearbox bearing fault and generator
winding fault respectively for fault detection and identification. The proposed method is then compared with three
other well-established machine-learning algorithms to investigate its superiority. The results show that the proposed
method can produce a more effective detection with accuracy reaching 94% and 92% for the turbines, respectively.
Furthermore, the proposed method can effectively distinguish the alarms from the faults, from which the distinguished
alarms can be considered as an early warning of the fault occurrence.
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1. Introduction

As a type of renewable energy, wind power has been continually growing over the past decades [1]. According to
the report by Global Wind Energy Council, the global wind energy sector installed a record 60.4 GW of new capacity
in 2019, which increased 19% from the installation in 2018 [2]. However, with the exponentially installed capacity
of wind power, the high cost of operations and maintenance (O&M) has become a vital issue, especially for offshore
wind farms. The annual O&M cost is on average 3% of the original cost of the turbines. For offshore wind farms,
the O&M cost contributes 30% of the total income of the turbines over 20 years of operating time [3]. Since wind
turbines (WTs) are usually installed in remote areas and moving further offshore, more effort and costs are required to
ensure their reliable operation. Therefore, it is important to detect the WT faults at the early stage and thus improve
their reliability. In order to reduce the O&M cost and minimise the economic loss caused by downtime, an appropriate
condition monitoring (CM) technique that is able to detect the early faults before being developed into the catastrophic
stage would be crucial.

As we know, there are various types of signals that can be used for WT condition monitoring (WTCM). The
signals mainly include acoustic emission, torque, temperature, lubrication oil, vibration, strain, electrical powers,
ranging from different signal domains. Monitoring data are usually acquired from the supervisory control and data
acquisition (SCADA) system for modern WTs [4]. In terms of the CM models, the data-driven model-based methods,
as compared to physical-based models, are focusing on constructing the relationship between inputs and outputs of the
system. It does not require building a mathematical model of the physical system [5]. Numerous statistical, machine
learning and hybrid data-driven approaches have been studied. In statistical approaches, the factors such as variance,
kurtosis, skewness, mean value and root mean square (RMS) values are acquired from time-series data to monitor the
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rotor performance, blade surface roughness and gearbox failures of the WTs [6–9]. Usually, the deviations of those
statistical values are monitored online during the operation. The statistical methods are proven as mature and flexible
to implement; however, inaccurate decisions might be made because of their high sensitivity to noise since the noise
tolerance of the statistical methods is lower.

Machine learning based methods such as artificial neural network (ANN) and support vector machine (SVM)
have been developed fast in the past decade. These nature-inspired methods have been widely applied in different
WT subsystems such as gearbox, generator, and power transmission systems [10–12]. In literature [13], the author
proposed a CM method based on fusion of spatial-temporal features of SCADA data by convolutional neural network
(CNN) and gated recurrent unit (GRU) to predict the output for recognising the WT condition. Wang et al [14]
developed a deep neural network (DNN) based framework to model lubricant pressure and the results showed that
the DNN model has more accurate results when compared with k-nearest neighbour, Lasso, Ridge, SVM, and ANN.
Hu et al. [15] proposed a deep belief network (DBN) based prognostic model to improve the prediction accuracy and
facilitate prognostic uncertainty for bearing degradation detection. In order to improve the accuracy and robustness
of the CM methods, hybrid methods have also been developed. A hybrid statistical-machine learning method based
on fast spectral kurtosis and multi-branch CNN was proposed for identifying the complex fault in WT gearbox [16].
It has been proved that this method can diagnose the gearbox fault with over 97% accuracy. Pan et al. [17] combined
DBN, self-organising map and particle filtering to evaluate the degradation process and predict the remaining useful
life of WT gearbox effectively. Several machine learning algorithms such as CNN, RNN (recurrent neural network)
and LSTM can also be combined together to provide a more accurate CM method at the cost of model complexity
[18–20].

Efforts have also be made to develop CM methods for early fault detection. Bangalore et al. proposed an ANN
based CM method that used SCADA data to produce the early fault warning on WT gearbox in order to arrange
maintenance resources [21]. Wang et al. employed operational condition clustering and optimised DBN modelling
for early fault detection of the main bearing [22]. However, most CM approaches have not yet utilised multiple
variables being monitored, e.g., temperatures and pressures, from the same WT subsystem to improve the CM ca-
pability. Besides, only few researches have taken SCADA alarms into consideration. In addition to the operational
and environmental parameters, SCADA system includes a detailed record of alarm logs, revealing the malfunction of
particular parameters of subsystems and components of the turbines. There are two types of alarm signals. The first
type is usually triggered when certain measurement value of the components exceeds the pre-set threshold, which is
considered as true alarms [23]. Another type is triggered when the system has experienced transient changes due to
such as acute changes and disturbances of wind speed, which is thus considered as false alarms [24]. Due to inherent
correlation between alarms and fault, it would be sensible to investigate if the WT alarm signals can be verified as
an early warning for performance monitoring. By analysing the alarms and using time-sequence probability-based
optimisation, the maintenance schedule can be well-organised and thus the WT reliability is improved [25]. Alarm
signals can also be used to find the root cause of a fault or stoppage because the early warning raised by the alarms
can be related to the fault occurrence [26]. Hence, alarm signals can be used to crosscheck potential faults identified
from the data against what was actually happening and thus can play a significant role in WTCM.

To address the issues mentioned above, in this paper, a novel CM approach is presented based on a deep learning
algorithm incorporating a statistic tool to estimate the operating condition of WTs. Multiple monitoring variables
that contribute to the specific subsystems are taken into consideration to improve the reliability of fault diagnosis.
Besides, the alarms are also fully used as significant evidences to support diagnostic results. Specifically, the LSTM
is adopted to achieve the behaviour prediction of the key subsystems and then the KLD is employed to detect the fault
by comparing probability distributions of the variables over the time. In the end, the monitoring data can be classified
as normal, fault, true alarm and false alarm while the severity of the fault is also evaluated.

The main contributions of this paper are given as follows:
• A novel data-driven model-based CM method based on LSTM with KLD is proposed. The proposed method

aims to implement a CM that can analyse the WT operating conditions automatically and detect both alarms and faults
simultaneously.
• LSTM is adopted to capture relation features in temporal dependencies among monitoring data in an iterative

manner, thus improving the prediction capability. The KLD is used as fault indicator which measures the severity
of the fault by comparing probability distributions. By adopting a COST function based on normal value probability
and alarm value probability of the calculated KLD values, the optimised thresholds are determined to distinguish the
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normal, alarm and fault conditions.
• The distinguished alarms can be cross-referenced with SCADA alarm logs in order to provoke early warning of

the fault. The proposed approach is validated by two faulty WTs with different but representative faults. By comparing
the results with other well-established methods, the effectiveness of the proposed method is demonstrated in terms of
detection accuracy and time complexity.

The remainder of this paper is organised as follows. The variable description and data pre-processing are presented
in Section II. Section III describes the hierarchy structure of the combined LSTM and KLD, where the working
principle of the proposed method is also presented. Case studies are undertaken in Section IV with both gearbox and
generator being targeted. The performance of the proposed approach is compared in Section V with other machine
learning methods, followed by conclusions in Section VI along with the future improvements.

2. Variable description and data pre-processing

A SCADA system is a control system architecture that consists of graphical user interfaces, data communications,
computers and sensors. It is often used for high-level supervisory management of machine industries and has been
used for monitoring the industrial, infrastructure and facility processes [27]. The SCADA data used in our model
building is from an operational wind farm over a one-year time period, which consists of 26 WTs where each tur-
bine has 128 monitoring variables. According to the functionalities of the monitoring variables, those 128 monitoring
variables are categorised into 14 subsystems including blades, yaw, generator, main bearing, gearbox, controller, oper-
ation states, grid states, cooling system, rotor, nacelle, transformer, environmental parameters and general parameters.
Among them, temperature related variables play an important role in fault diagnosis. In the commercial WT SCADA
system, the temperature related variables take 40% of the overall monitoring variables [28].

Due to data storage and transmission limitation, the SCADA system usually processes and stores data at ten minute
intervals despite being sampled at a rate of seconds. Although subtle changes may be lost due to low resolution data,
SCADA data provide valuable online information with depth and breadth regarding the performance and operational
history of the WTs. Therefore, SCADA data have been employed widely by researchers as the basis for CM systems
[3, 29, 30]. In this research, the turbine with the gearbox bearing fault and the turbine with the generator winding fault
have been tested. Because the turbine can be inactive for some periods of time, the performance of these data cannot
match the normal condition, which could bring unpredictable influences on the analysis. Hence, SCADA data cannot
be used directly and it is necessary to remove these data when no power is generated before modelling [31]. Besides,
the digital constants in the SCADA data also need to be removed in order to minimise the interference brought by
them.

Fig.1 Gearbox bearing temperature changes with wind speed and active power

Fig.1 and Fig.2 illustrate examples of the target turbines, where Fig.1 shows the relationship among bearing
temperature, wind speed and active power of the turbine with the gearbox bearing fault whereas Fig.2 shows the
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relationship among generator winding temperature, wind speed and active power of the turbine with the generator
winding fault. In the figures, blue dots represent fault-free data while red crosses represent fault data. It can be
observed that the active power and the temperature of these specific subsystems gradually increase with the wind speed
before the rated wind speed, which is 14 m/s. The active power and the temperature become stable after the rated
wind speed because pitch controls adjust pitch angle of the rotor blades to maintain the rotation speed of the turbine.
However, when the fault occurs at some points, the turbines operate with a reduced power output to prevent further
damage. During these abnormal operations, the temperatures keep rising, showing abnormal behaviour compared
with the normal operations. Clearly, there are strong correlations among wind speed, active power and temperatures,
which are therefore selected for implementing the proposed approach.

Fig.2 Generator winding temperature changes with wind speed and active power

3. Proposed hybrid condition monitoring approach

The LSTM algorithm was first proposed in 1995 by Sepp Hochreiter and Jürgen Schmidhuber [32]. It is a type
of deep learning algorithm whose structure is implemented based on RNN. Unlike other regression based machine
learning algorithms, the cell memory of LSTM can preserve the hidden state through time, while, in the meantime,
adding new information. The KLD used in this paper is also called relative entropy, which has been applied as
a measure of data representativeness. The KLD is a statistical tool developed to measure difference between two
probability density distributions. It has been widely used in neuroscience and machine learning due to its ability in
characterising relative entropy in information systems [33].

3.1. Long-short term memory

As mentioned, LSTM is developed based on RNN in order to solve the vanishing gradient problem. The feedback
loops are embedded in every recurrent layer of the RNN, and thus the information can be preserved. However, with
the increasing feedback loops in RNN, the gradient of the loss function decays exponentially with time. Compared to
RNN, the LSTM has four interacting layers (cell state, forget gate, input gate and output gate) inside a LSTM cell [34],
where, except for the standard units of RNN, a set of cell states and gates are added to control which memory should
be stored. With this structure, the gradient decent problem of RNN is solved and “long-term memory” is achieved.
The overall structure of the LSTM is illustrated in Fig.3.
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Fig.3 Schematic diagram of LSTM structure

At time step t, the LSTM cell has an input vector [ht−1, Xt]. The new cell state, denoted by Ct, and the new output,
denoted by ht, inherit information from former states (Ct−1 and ht−1) and are transmitted to the next cell at time step
t + 1. The output ht of the cell is determined by the current input Xt and the previous outputs ht−1, ht−2, while the cell
state Ct can preserve information to flow forward without any losses. The gates in a LSTM cell include a forget gate
( f ), an input gate (i), and an output gate (O). The forget gate determines what information will be added (or forgot)
to the cell state Ct−1 when new input enters the network. The input gate decides what new information from the input
will be updated into the cell state. The output gate decides what information updated in the cell state is sent to the
network as input for next time step t + 1, as represented by ht.

Mathematically, the output f t of the forget gate is given by

ft = σ
(
W f ⊙ [ht−1, Xt] + b f

)
(1)

where σ is the sigmoid activation function; W f and b f are the weight and bias of the forget gate, respectively, and the
operator ⊙ denotes element-wise multiplication. The output of the sigmoid function is a value between 0 and 1, with
0 representing to forget this value and 1 representing to preserve this value.

Two activation functions are then used to decide which information to be stored in the cell. The sigmoid function
σ at the input gate is used to decide which information to update while the hyperbolic tangent (tanh) function is used
to decide what new information to add to the cell state denoted by Ĉt.

it = σ (Wi ⊙ [ht−1, Xt] + bi) (2)

Ĉt = tanh(WC ⊙ [ht−1, Xt] + bC) (3)

where it is the output of the input gate; W i and bi are the weight and bias of the input gate whereas WC and bC are the
weight and bias of the tanh function, respectively.

This leads to the cell state Ct from Ct−1 by computing the function below.

Ct = Ct−1 ft + itĈt = Ct−1 ft + tanh (WC ⊙ [ht−1, Xt] + bC) it (4)

Then the LSTM cell is to compute the output Ot of the output gate by computing the following function.

Ot = σ (WO ⊙ [ht−1, Xt] + bO) (5)

where WO and bO are the weight and bias of the output gate, respectively. The sigmoid function σ in eq. (5) is used
to decide which part of the cell state should be outputted.
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The last step is to compute the output ht of the cell, as described below.

ht = Ottanh(Ct) (6)

where the tanh function is used to fit the output value in the range between 0 and 1.
The vanishing gradient problem in LSTM is solved by back-propagation. The gradient is calculated through back

propagation along time using the chain rule. With all gradients calculated according to the corresponding error term
(loss function), the weights associated with input gate, output gate, and forget gate are updated. More details about
the back-propagation process of the LSTM can be refereed in the literature [35].

Compared to other machine learning algorithms such as CNN and DBN, one of the significant advantages of
LSTM is that it can link the previous information to the current state. LSTM is a time related RNN, suitable for
processing and predicting important events with relatively long time intervals and delays in time series. Many re-
searches have employed LSTM and proved that it has advantages in solving time-series data especially for predicting
performance of the rotating machinery components [36–38]. Hence, LSTM is chosen as the data modelling method
in our study.

3.2. Kullback-Leibler Divergence

The KLD is used to compare the one probability distribution against another one [33]. For two discrete probability
distributions P and Q in the same probability space X, the KLD from Q with respect to P can be expressed as:

KLD(P,Q) =
∑
x∈X

P(x) log
(

P(x)
Q(x)

)
= −

∑
x∈X

P(x) log
(

Q(x)
P(x)

) (7)

If distributions P and Q are from continuous random variables, the KLD can be expressed as:

KLD(P,Q) =
∫ ∞

−∞

p(x) log
(

p(x)
q(x)

)
dx (8)

The KLD of the two distributions will be 0 if the two distributions are identical. The KLD value can be considered
as an index to evaluate the discrimination between two probability density distributions. A larger KLD value indicates
a larger difference between the two distributions. In KLD based condition monitoring, the probability density distri-
bution of normal data is usually used as a reference whereas the one produced by the current/online data is used for
comparison [39]. Xie et al. [40] proposed a KLD based fault detection method for dynamic systems such as gearbox,
where, as compared to principal component analysis and statistical local approach, the KLD based method showed a
better sensitivity in detecting the incipient fault. KLD can also be used to distinguish different types of faults based
on different fault features [41–44].

3.3. Hybrid method

To implement the proposed model, four steps are required following pre-processing of the raw data, as illustrated
in Fig.4. First, wind speed and active power output are selected as the model inputs, while temperature and pressure
variables, which reflect the operation condition of the subsystem as a whole, are selected as the target output. The
LSTM model is then built based on those variables. To train the LSTM model, the size of training dataset is vital,
which is trade-off between the prediction performance and computation time. Small datasets can ease computation
complexity but likely overfit the training data, resulting in poor performance. Larger datasets can help better learn
model parameters but the dataset may be over-representative of the problem along with high computation demand. In
our study, ten days’ data (1440 points per variable considering ten-minute interval of SCADA measurements) are used
to train the model. The data are then predicted on a daily basis, i.e., by sliding window with 24 hours, continuously
for 30 days to ensure the modelling accuracy. It was found that increasing the training dataset size does not have
significant improvement on the performance in our study. The probability density distributions of prediction data and
original data are then calculated respectively. The third step is to evaluate the discrimination between the prediction
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and the real data in terms of their KLD values. Note that daily data are considered to calculate the probability density
distribution. The prediction values are considered as the condition at which the turbine supposes to operate while the
measurement data represent the real operation condition of the turbine. Their difference can be evaluated by KLD
and a larger KLD value represents a worse condition of the turbine. Finally, the normal, alarm and fault conditions
are distinguished by introducing a two-level threshold strategy of the KLD values, which are defined as fault-free
condition (H0) and fault condition (H1).

The probability density function of the KLD can be described as:

f (x) =
1

σ
√

2π
e−(x−KLDM )2/2σ2

(9)

where KLDM and σ are the mean value and standard deviation of the KLD, respectively.

Fig.4 Structure of the proposed LSTM-KLD fault diagnosis method
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Referring to [45], to determine the thresholds, a normal value probability (PNV ) and an alarm value probability
(PAV ) are adopted here. The PNV and PAV can be calculated from the error function (10) of the KLD:

erf(x) =
2
√
π

∫ x

0
e−t2

dt (10)

PNV = 0.5
(
1 + erf

(
h − KLDM0

σ0
√

2

))
(11)

PAV = 1 − 0.5
(
1 + erf

(
h − KLDM1

σ1
√

2

))
(12)

where KLDM0, σ0, KLDM1 and σ1 are the mean and standard deviation values for two different conditions. By
combining eqs. (11) and (12), a COST function can be formed to evaluate the performance of the thresholds.

COST = PNV + PAV (13)

The optimal thresholds are chosen when the COST reaches its minimum [46], at which both PNV and PAV are
minimum as well. The threshold H0 is determined when KLDM=KLDM0 with a corresponding standard deviation
of σ0. It indicates the system is in a normal condition. When KLDM=KLDM1 and σ=σ1, the system is in an alarm
condition. The data lower than H0 are considered as normal condition while the data higher than H1 are considered
as faulty condition. The calculated KLD values between H0 and H1 are considered as alarm condition. Examples of
these thresholds for specific components of the faulty turbines will be given in the subsequent section.

4. Case studies

4.1. Case 1: Gearbox fault

The first subsystem to be studied is the gearbox that is used to transmit kinetic power to the generator from the
rotor. The WT torque control is made based on the gearbox by adjusting the rotation speed and torque accordingly.
The two common faults associated with the gearbox are bearing and gear teeth faults. The unpredictable wind profiles
can cause rapid changes of the torque, which may lead to misalignment of the gear teeth and uneven load for the
bearing. Besides, the failure of the gearbox cooling system can also result in failures of bearing and gear teeth [32].
The gearbox under our study has 6 monitoring variables, including gearbox bearing temperature 1 at the main speed
shaft bearing connected to the rotor, gearbox oil pressure, gearbox oil heat exchanger output temperature, gearbox
oil sump temperature, gearbox oil pressure behind pump, and gearbox bearing temperature 2 at the high-speed shaft
connected to the generator. To improve the diagnosis accuracy, all these six monitoring variables are analysed.

Fig.5 Prediction result during gearbox fault time

Fig.5 gives an example of the prediction result of the gearbox bearing temperature 1 as compared with the real
measurements from 30 days, i.e., 4320 data samples, where the faulty time period of 10 days is circled in red. Because
the prediction model is trained based on healthy data, the predicted results therefore can represent the performance of
the target subsystem under fault-free condition. It can be observed from the figure that the predicted temperature is

August 27, 2021



Table 1. Thresholds of the gearbox components

Threshold

Gearbox
bearing

temperature 1
(°C)

Gearbox oil
pressure

(bar)

Gearbox oil
heat

exchanger
output

temperature
(°C)

Gearbox oil sump
temperature

(°C)

Gearbox
oil

pressure
behind
pump
(bar)

Gearbox
bearing

temperature 2
(°C)

H0 0.3188 0.3477 0.5462 0.1197 0.1838 0.3381
H1 1.9213 4.3833 3.0523 2.3068 4.2164 1.9404

lower than the measured temperature during the fault time. The probability density distributions of both predicted and
measured data are shown in Fig.6, where the KLD value indicating overall divergence of the two probability density
distributions is 7.2893. Note that only 10-days data are shown in the Fig. 6, focusing on the period of fault occurrence.

Fig.6 Probability density distributions of predicted and measured data of gearbox bearing temperature 1

The predicted data of all six variables are compared with measured data on a daily basis to calculate the KLD be-
tween them. The performance of the gearbox is shown in Fig.7, where the components 1-6 represent gearbox bearing
temperature 1, gearbox oil pressure, gearbox oil heat exchanger output temperature, gearbox oil sump temperature,
gearbox oil pressure behind pump, and gearbox bearing temperature 2, respectively, and the fault index is measured
in terms of KLD. The corresponding thresholds H0 and H1 for each component are also displayed in the figure to
determine whether there is a fault or just alarms. Table 1 gives the thresholds associated with each component of the
gearbox.

Fig.7 shows that all the components are working normally for the first 5 days and alarms occur frequently since
day 6. By checking the alarm logs, it is found that both false alarms and true alarms were triggered accordingly. The
alarm named “Gearbox oil sump high temperature warning” and “Gearbox oil sump stop” were triggered before the
fault occurrence. The two alarms clearly indicated the gearbox malfunction and therefore considered as true alarms.
Thus the proposed method can give early warning of the fault 5 days in advance. After day 10, the gearbox bearing
temperature 2 exhibited the first fault behaviour which were then propagated to other gearbox components in the
following days. In day 16, all the gearbox components presented temporally normal behaviour due to the decreased
wind speed. With the fault severity increased, the fault index reached its maximum on day 18. Overall, the fault
lasted for ten days with a high fault index appearing on all components. Since all the faulty components related to
temperature or oil pressure, it can be concluded that the fault occurred in the cooling system of the gearbox. The
pressure sensors are usually installed at the end of the filter whereas the temperature sensors are installed in the oil
sump to monitor the temperature of the lubricating oil. With the dysfunction of the cooling system, the heat cannot be
dissipated actively, thus leading to further damage of the gearbox due to the fault.
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Fig.7 Fault index in terms of KLD of the gearbox variables

4.2. Case 2: Generator fault

The second subsystem to be studied is the generator that plays a key role in WT operation and produces electric
power by converting the rotation mechanical power. The most common fault occurring in the generator is associated
with the generator winding fault. This can be caused by phase-to-phase fault, phase to earth fault, or by additional
thermal and mechanical stresses on the machine winding resulting from these electrical faults. The fault in the gener-
ator usually results in rising of generator temperatures. The generator under our study also has 6 monitoring variables,
including generator stator top side temperature, generator stator bottom side temperature, generator bearing temper-
ature phase A, generator bearing temperature phase B, generator cooling water advance temperature, and generator
cooling water return temperature. Temperature sensors are embedded within the winding to monitor top and bottom
side temperatures of the generator stator whereas bearing temperature sensors are normally fitted to the bearing car-
tridge to monitor the temperatures of the generator bearings. Temperature sensors are also installed on the two ends
of the cooling water system to monitor the temperatures of cooling water.

As an example, Fig.8 shows predicted and measured values of the generator stator top side temperature from 30
days, i.e., 4320 data samples, where the faulty time period of 3 days is circled in red. Clearly the measured temperature
is different from the predicted one during this faulty time period, indicating that the component experienced abnormal
behaviour. As can be seen from the figure, the temperature is normally around 52° and there are several large spikes
in the temperature. The occurrence of these temperature spikes are due to larger wind speeds and hence the higher
power output during these time periods, as indicated from investigation of the SCADA data. The probability density
distributions of measurement and prediction values are shown in Fig.9, where the KLD of these two distributions is
16.1747. Note that only 3-days data are shown in the Fig. 9, focusing on the period of fault occurrence.
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Fig.8 Prediction result during generator fault time

Fig.9 Probability density distributions of predicted and measured data for top side temperature of the generator stator

Fig.10 Fault index in terms of KLD of the generator variables
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Table 2. Thresholds of generator components

Threshold

Generator
topside

temperature
(°C)

Generator
bottom side
temperature

(°C)

Generator bearing
phase A

temperature
(°C)

Generator bearing
phase B

temperature
(°C)

Generator
cooling water

advance
temperature

(°C)

Generator
cooling water

return
temperature

(°C)
H0 0.4377 0.0088 0.2865 0.7004 0.0861 0.4322
H1 1.3135 0.1199 1.3505 2.9033 0.9223 2.6908

Fig.10 demonstrates behaviour of these generator components during one month in terms of KLD values (i.e.,
fault index). Table 2 gives the thresholds associated with each component of the generator. For the first three days,
the generator operated normally since all the KLD of the monitoring variables were below H0. Alarms were triggered
after day 3. Having checked SCADA alarm logs, it is found that the “Machine interface high temperature warning”
alarm was triggered several times before the fault occurrence, which also confirm that the predicted alarms are correct.
On day 10, all fault indices raised to a comprehensive high level, where the two highest indices represent generator
stator top side temperature and generator stator bottom side temperature, respectively. This verifies that the fault
happens on the generator winding, which lasted for three days before being fixed by maintenance and then returned
to fault free condition.

5. Performance evaluation

It is clear that the proposed method can distinguish the normal, alarm and fault states of the operating turbines.
To further test the accuracy and effectiveness of the hybrid method, dataset size will be extended to 100 days. The
proposed LSTM-KLD will be compared with three other well-established machine-learning algorithms combined
with KLD, which are SVM-KLD, CNN-KLD and DBN-KLD, respectively. The implementation of these hybrid
methods are shown in Fig. 11, where the steps of these hybrid methods are essentially same. Only the SVM, CNN
and DBN are used to replace the LSTM to produce the prediction results, which are then incorporated with KLD to
calculate the fault index.

Fig.11 Schematic diagram of the hybrid method implementation

The performance of those four hybrid methods are evaluated by a confusion matrix to determine the accuracy rate
when classifying normal, alarm and fault data. As is well known, the confusion matrix is also called as the error matrix,
which is often used for solving classification issues [46]. It is essentially a visualised table showing the performance
of a classification algorithm, where the rows of the confusion matrix show the prediction results while the columns
show the actual data class [47]. For a confusion matrix, there are four main categories representing true positive, false
positive, true negative and false negative. In this specific application, true positive indicates that the normal condition
data are categorised correctly whereas false positive indicates that alarms and fault data are mistakenly considered as
normal. True negative means the alarm and fault are classified precisely whereas the false negative shows how many
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Table 3.Confusion matrices from four hybrid models for gearbox diagnosis
(a) LSTM-KLD (b) SVM-KLD (c) CNN-KLD (d) DBN-KLD

LSTM-KLD Normal Alarm Fault SVM-KLD Normal Alarm Fault
60 4 0 58 6 0Normal 93.8% 6.2% 0% Normal 90.6% 9.4% %0
0 24 1 0 22 3Alarm 0% 96% 4% Alarm 0% 88% 12%
1 0 10 0 1 10

Actual Class

Fault 9.1% 0% 90.9%

Actual Class

Fault 0% 9.1% 90.9%
Prediction Class (a) Prediction Class (b)

CNN-KLD Normal Alarm Fault DBN-KLD Normal Alarm Fault
58 6 0 28 34 2Normal 90.6% 9.4% 0% Normal 43.8% 53.1% 3.1%
2 19 4 0 16 9Alarm 8% 76% 16% Alarm 0% 64% 36%
0 0 11 0 0 11

Actual Class

Fault 0% 0% 100%

Actual Class

Fault 0% 0% 100%
Prediction Class (c) Prediction Class (d)

Table 4. The overall accuracy of four hybrid methods for gearbox fault diagnosis

Accuracy LSTM-KLD SVM-KLD CNN-KLD DBN-KLD
TRUE 94% 90% 88% 55%
FALSE 6% 10% 12% 45%

normal data are mistakenly considered as alarm or fault data. By combing the true positive rate and true negative rate,
the accuracy of the method is thus obtained. The decision of each class is made on a daily basis due to requirement of
KLD calculation as mentioned previously. Hence, 100 decisions are made for confusion matrix evaluation.

Table 3 and Table 4 show confusion matrices and the overall accuracy of these hybrid methods for gearbox fault
diagnosis, respectively. The true positive rate can be obtained by using the correct predictions divided by total samples
available in the same row. For example, the true positive rate of the proposed LSTM-KLD can be calculated as 60/
(60+4) = 93.8% whereas the true negative rate for alarm and fault are 96% and 90.9%, respectively. Clearly, the
LSTM-KLD outperforms three other hybrid methods.

Likewise, Tables 5 and 6 show confusion matrices and the overall accuracy of four hybrid methods for generator
winding fault diagnosis, respectively. Again, the LSTM-KLD outperforms three other hybrid methods.

The computation time of the four hybrid methods is also compared to evaluate the efficiency of the proposed
method. The programmes are run on MATLAB R2018a under the computer with Intel ® Core™ i7- 6820 HK CPU
@ 2.70GHz and 16.0 GB RAM. The GPU acceleration was disabled during the training process. The computation
process includes training process and judgement process. The training processing is completed by the machine learn-
ing algorithms whereas the judgement process is completed by KLD. The four methods are run 10 times each on both
faulty turbines and the average time is listed in Table 7. As can be seen from the table, the SVM-KLD consumes
the shortest computation time since SVM relies only on the kernel function. The other three methods are essentially
deep-learning algorithms and possess a much more complex structure in comparison to the SVM. Thus, those three
methods consume a longer computation time, among which the LSTM-KLD clearly consumes shortest computation
time.
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Table 5. Confusion matrices from four hybrid models for generator winding diagnosis
(a) LSTM-KLD (b) SVM-KLD (c) CNN-KLD (d) DBN-KLD

LSTM-KLD Normal Alarm Fault SVM-KLD Normal Alarm Fault
64 6 0 62 8 1Normal 90.1% 8.5% 1.4% Normal 87.3% 11.3% 1.4%
0 25 1 0 25 1Alarm 0% 96.2% 3.8% Alarm 0% 96.2% 3.8%
0 0 3 0 0 3

Actual Class

Fault 0% 0% 100%

Actual Class

Fault 0% 0% 100%
Prediction Class (a) Prediction Class (b)

CNN-KLD Normal Alarm Fault DBN-KLD Normal Alarm Fault
64 7 0 40 23 8Normal 90.1% 9.9% 0% Normal 56.3% 32.4% 11.3%
0 23 3 0 18 8Alarm 0% 88.5% 11.5% Alarm 0% 69.2% 30.8%
0 0 3 0 0 3

Actual Class

Fault 0% 0% 100%

Actual Class

Fault 0% 0% 100%
Prediction Class (c) Prediction Class (d)

Table 6. The overall accuracy of four hybrid methods for generator winding fault diagnosis

Accuracy LSTM-KLD SVM-KLD CNN-KLD DBN-KLD
TRUE 92% 90% 90% 61%
FALSE 8% 10% 10% 39%

Table.7 Average computation time required from four hybrid methods for fault diagnosis

Computation time LSTM-KLD SVM-KLD CNN-KLD DBN-KLD
Training (s) 167.536 32.101 306.808 279.027

Judgement (s) 21.683 12.994 21.148 27.495
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6. Conclusion

This paper presents a novel WTCM approach by a hybrid method of LSTM and KLD. The effectiveness of the
proposed method have been evaluated and validated by SCADA data acquired from an operational wind farm. Two
case studies are carried out to detect gearbox bearing fault and generator winding fault respectively from the turbines.
In order to improve the reliability of diagnostic results, multiple monitoring variables relating to the specific WT sub-
system are analysed. The probability density distributions of the measured data and the predicted data are compared
and calculated in order to bring a first intuitive impression of the health condition of the turbine subsystem. The KLD
values are calculated and used as a fault index to quantify the fault severity of the turbines. By cross-checking the
predicted alarms and SCADA alarm logs, an early warning of the fault can be detected 5 days in advance. In order to
further evaluate the performance and effectiveness, the proposed LSTM-KLD is compared with three other machine
learning algorithms combined with KLD and the results prove superiority of the LSTM-KLD method.

The results demonstrate that the proposed data-driven model-based approach is accurate and sensitive for fault
detection. It is capable of identifying different faults occurring in the different WT subsystems. With the proposed
method, normal, alarm, fault conditions can be clearly distinguished, thus enhancing detection robustness. The results
also show that the LSTM-KLD requires a shortest computation time in comparison to other deep learning approaches.
Furthermore, by adopting the proposed method, the false alarm rate from the SCADA system is reduced, thus improv-
ing the diagnosis confidence. Future work will focus on the datasets with higher sampling rate to reveal fault dynamics
and hence the fault mechanism. This method can also be extended to detect early faults of other WT subsystems and
components.
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