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 16 

Abstract: Modern wind turbines operate in continuously transient conditions, with varying speed, 17 

torque and power based on the stochastic nature of the wind resource. This variability affects not 18 

only the operational performance of the wind power system, but can also affect its integrity under 19 

service conditions. Condition monitoring continues to play an important role in achieving reliable 20 

and economic operation of wind turbines. This paper reviews the current advances in wind turbine 21 

condition monitoring, ranging from conventional condition monitoring and signal-processing tools, 22 

to machine learning based condition monitoring and usage of big data mining for predictive mainte- 23 

nance. A systematic review is presented of signal-based and data-driven modelling methodologies 24 

using intelligent and machine learning approaches, with the view to providing a critical evaluation 25 

of the recent developments in this area, and their applications in diagnosis, prognosis, health as- 26 

sessment, and predictive maintenance of wind turbines and farms. 27 

Keywords: Wind turbines; condition monitoring; diagnosis; prognosis; machine learning; data min- 28 

ing; health management; operations and maintenance. 29 

 30 

1. Introduction 31 

The combination of the ever increasing global electricity demand and growing car- 32 

bon emissions has in recent decades firmly positioned renewable energy generation as a 33 

key for securing the future energy provision for our needs. As an effectively free and clean 34 

energy source renewables have rapidly captured the attention of power generation com- 35 

panies, resulting in strong global growth [1]. Among renewable energy resources, wind 36 

power occupies a prominent place and is generally accepted as a leading contributor with 37 

strong future growth projections [2]. To ensure the much needed continuity and expan- 38 

sion of wind power generation it is imperative that its productivity, reliability and cost 39 

are further improved. 40 

Onshore and offshore wind turbines (WTs) often operate in harsh environments [3]. 41 

This invariably imposes a requirement for sophisticated and powerful real-time condition 42 

monitoring (CM) systems that are capable of adapting to any environmental or opera- 43 

tional conditions during the conversion of kinetic energy into electricity. Thus, an accurate 44 

modeling process will always be the primary link between an accurate health assessment 45 

and a well-planned maintenance policy. Various modeling methods, including model- 46 
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based techniques, data-driven, and hybrid modeling procedures have been applied in this 47 

task [4]. Accordingly, the emergence of sensing technologies makes it easier to collect the 48 

relevant operating history, directing health CM research to go further towards under- 49 

standing better and more reliably characterizing the diagnostic features captured in CM 50 

signals, in an effort to enable more reliable diagnosis and prognosis of subassembly fail- 51 

ures and lifetime consumption. A particularly attractive methodology that holds great po- 52 

tential to enable advances in this area is machine learning (ML), especially when physical 53 

modeling becomes challenging to manipulate due to physical complexity of the system. 54 

Modern WTs are able to continuously extract vast amounts of kinetic energy from 55 

the wind flow and convert it into useful electricity, due to effective aerodynamic design 56 

of blades and advanced turbine system operation, as well as the usage of sophisticated 57 

performance enhancement equipment [5]. Understanding the concept of WT CM requires 58 

a clear understanding of their operating principles. To this end, Figure 1 gives an over- 59 

view of the most critical WT components that any CM software/system should consider 60 

under operating conditions. The illustration focuses on horizontal axis WT design that has 61 

today become a standard configuration for modern multi-megawatt (MW) scale variable 62 

speed WT connected to the power grid.  63 

 64 
Figure 1. Important components of a horizontal wind turbine 65 

 66 

WT CM along with ML tools has itself undergone many developments and improve- 67 

ments over the decades [4]. This evolution is driven by the nature of WT operation and 68 

the multitude of environmental and physical variables characterizing it. The continual 69 

change in the physical state of WT components results in a higher level of access to dy- 70 

namic samples. This time-varying dynamicity can be affected by several constraints in- 71 

cluding the fatigue loading on faulty components, damage propagation, aging, and envi- 72 

ronmental conditions [4]. Therefore, considerable research exists that is aimed at moving 73 

towards advanced ML-based dynamic programming that is more suited to the nature of 74 

this process, rather than the ordinary offline learning [6]. Likewise, for some modes of 75 

operation, it is difficult to collect patterns sufficient for the prediction process, thus lead- 76 

ing to engagement of knowledge from different sources, ranging from pre-hypotheses ob- 77 

tained from pre-trained learners or experts to generative models such as generative ad- 78 

versarial networks (GANs) and transfer learning (TL) [7]. 79 

On the one hand, the multitude of WT failure modes in several components (e.g., 80 

gearbox, yaw, blades and alternator) and their nature of occurrence (gradually as in deg- 81 

radation, fleetingly and frequently) under different conditions make the data collected 82 

from non-similar events similarly resemble higher cardinality. This, therefore, requires 83 

special care in processing and extracting characteristics. This need to have significant data 84 

brings out the complexity of the learning models by pushing them towards a more robust 85 
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extraction such as denoising or convolutional mapping. In contrast, the nature of the oc- 86 

currence of the failure modes distinguishes the type of application from one to the other. 87 

For example, the progressive propagation of damage requires prognostic algorithms, 88 

which depend mainly on both clustering and regression, such as in bearings. Conversely, 89 

other failure types are fully diagnostic specialties, which directly lead to classification. 90 

In the recent literature reviews and in ML modeling context, many details about the 91 

growth and depth of WT CM problems are missing. For instance, the review provided by 92 

Stetco et al. [1] studied ML models as single entities that aim at classification or regression. 93 

The diversities in terms of complexity such as simple and deep architectures have not 94 

been discussed in detail. In addition, generative models that provide prior assumptions 95 

such as TL and generative adversarial models have been discussed as in the same data- 96 

driven frameworks and not knowledge-driven. The review of Liu et al. [8] has moved 97 

slightly for the study of ML tools without providing enough detail, because it focused on 98 

things related to types of failures and classification. Another review of Rezamand et al. [4] 99 

studied only the important critical component in WTs and provided general views on 100 

both physical-based modeling methods and data-based methods. The authors only con- 101 

centrated on prognostics where remaining useful life (RUL) was the main adopted health 102 

evaluation metric. The authors also considered ML methods with different architecture as 103 

single class of data-driven methods or as black boxes without going deeply into architec- 104 

tures and learning procedures. 105 

In general, CM systems comprise sensors, data acquisition, information processing, 106 

feature extraction, pattern recognition, and decision-making units. The majority of avail- 107 

able CM systems measure vibration, requiring a range of sensors for different frequencies. 108 

Other systems measure parameters such as blade stress and temperatures of the nacelle, 109 

coolant, oil, gearbox and generator. Monitoring data may be stored locally or transferred 110 

to a central computer for further diagnosis. Commercial wind farms usually employ a 111 

SCADA (supervisory control and data acquisition) system, which contains valuable 112 

online information regarding the performance and operational history of the turbines. 113 

Therefore, SCADA data have also been employed widely by researchers as the CM basis. 114 

Typically, around 200 signals are required to monitor a MW turbine continuously through 115 

SCADA and CM systems, each with different sampling rates [9]. The large amount of data 116 

generated requires smart mining techniques in order to reveal the salient patterns that can 117 

infer the nature, form and extent of any faults existing in the system. 118 

To address the limitations of existing reviews this paper presents a systematic review 119 

of recent developments in this area and their applications in diagnosis, prognosis, health 120 

assessment, and predictive maintenance of WTs and farms. It is noted that this paper re- 121 

views the signal-based and data-driven modelling methodologies using intelligent and 122 

ML approaches, focusing on their relative advantages, capabilities and limitations. Re- 123 

views of model-based fault detection for WTs, which require a more accurate mathemat- 124 

ical WT model, can be referred in the literature [10]. 125 

The paper is organized as follows. Section 2 presents a succinct review of conven- 126 

tional signature analysis based CM systems and advanced sensing CM applications for 127 

health monitoring and fault diagnosis of WTs. Section 3 introduces the main and recent 128 

ML contributions, providing a classification of different ML tools in terms of evolution as 129 

well as prediction complexity, and reviewing their application per most prominent WT 130 

failure modes. Section 4 reviews data mining techniques to address challenges resulting 131 

from big data collection and analytics, and predictive maintenance based on health con- 132 

dition and RUL estimation. The discussion, future work in this area and conclusions are 133 

given in Sections 5 and 6, respectively.   134 

  135 

2. Wind turbine condition monitoring 136 

The key CM objective is to reduce operation and maintenance (O&M) expenditure, 137 

currently estimated to account for up to 20% and 30% of total onshore and offshore farm 138 
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lifetime cost, respectively, where the turbine drivetrain is a major contributor [9]. This sec- 139 

tion therefore reviews WT drivetrain components health monitoring and fault diagnosis.  140 

The conventional approach to CM of the WT drivetrains principally relies on exter- 141 

nally monitoring vibration of the individual drivetrain components [11,12]. The contem- 142 

porary drivetrain dedicated CM systems invariably employ an array of accelerometers 143 

distributed along the drivetrain structure (i.e. generator, gearbox). The vibration sensors 144 

are operated via an appropriate signal conditioning and acquisition charge amplifier de- 145 

vice to enable continuous high rate (kHz rate) monitoring of the vibration signals in rele- 146 

vant positions in the drivetrain [13,14]. The inclusion of vibration monitoring platforms 147 

in WT systems is formally stipulated by the relevant turbine CM certification criteria with 148 

clear specifications on the minimum measuring point requirements [15]. Other drivetrain 149 

signals that can be captured by WT CM platforms can include the generator electrical sig- 150 

nals and the gearbox and the generator thermal signals, as well as acoustic signals, those 151 

related to gearbox oil condition and others [16]. The underlying aim of monitoring a se- 152 

lection of appropriate drivetrain signals and their distinct diagnostic features is to enable 153 

reliable fault presence identification and fault propagation trending online, i.e. during WT 154 

operation [17].  155 

 156 

2. 1. Conventional condition monitoring systems 157 

2. 1. 1. Vibration monitoring  158 

Vibration monitoring (VM) is presently the most commonly used commercial CM 159 

technique implemented on WTs for drivetrain online monitoring [18,19]. This largely 160 

stems from the fact that VM for diagnostics of rotating machinery is a well-researched and 161 

a well understood concept, with extensive transferrable expertise available from other in- 162 

dustries [20].  163 

VM is chiefly based on the identification of drivetrain mechanical fault related 164 

changes in the vibration signal, which provides information about the mode and location 165 

of a potential fault. VM is an online technique and is regulated by the relevant standards 166 

[21] to define the position and implementation of the vibration sensors on a given device. 167 

There are three main types of vibration sensors: distance sensors including displacement 168 

and proximity, which operate between 1–100 Hz; velocity sensors (10 to 1 kHz) and accel- 169 

erometers (1 to 30 kHz) [22]. Some examples of the implementation of vibration sensors 170 

in the drivetrain are low-frequency accelerometers for the main bearing, high-frequency 171 

accelerometers for the gearbox and generator bearings, and proximity sensors such as in- 172 

ductive distance sensors on other parts of the drivetrain [22]. The most commonly used 173 

accelerometer type is the piezoelectric accelerometer, due to its wider bandwidth, robust- 174 

ness, lower cost and general availability in a broad range of sizes and configurations [23]. 175 

An example of the implementation of vibration sensors on a geared drivetrain configura- 176 

tion is presented in Figure 2 [24].  177 

 178 
Figure 2. Example of vibration sensor positions on a drivetrain [24]. 179 

The measured time-domain vibration signals are converted to the frequency-domain 180 

since fault related frequency components can be identified and isolated in the frequency- 181 

domain. The frequency-domain analysis is generally achieved by processing the moni- 182 
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tored signals using the Fast Fourier transformation (FFT) [25]. However, a number of ad- 183 

vanced signal processing methods such as wavelet transforms have also been researched 184 

to increase the diagnostic capability of the vibration signal spectral analysis during varia- 185 

ble load and speed operating conditions, where the conventional FFT analysis is chal- 186 

lenged [26]. While these generally enable a more effective extraction of diagnostic infor- 187 

mation in transient conditions, they are complex and computationally intensive to imple- 188 

ment, especially for operational WTs [27].   189 

The current commercial VM systems are found to be the most effective CM technique 190 

for the early detection of faults in mechanical components [28]. In addition, the severity 191 

of a fault can be recognized through the magnitude of the observed vibration signal com- 192 

ponent [11]. Gearbox faults (e.g. tooth damage, breakage or fracturing of gear teeth), rotor 193 

faults, shaft faults (e.g. misalignment, cracked shaft or coupling failure), faults in the me- 194 

chanical brake (e.g. cracked disk), main bearing faults (e.g. bearing pitting or cracking) 195 

and generator faults (i.e. short-circuit, rotor electrical imbalance) are some of the 196 

drivetrain faults that have been shown possible to identify through VM [8,13,22,25,26,29- 197 

30]. 198 

VM systems are unable to provide fault detection on specific electrical units such as 199 

the converter since there are no moving parts [31]. In addition, VM requires the installa- 200 

tion of not only the vibration sensors and the associated signal conditioning and data ac- 201 

quisition equipment, but also the availability of advanced signal processing techniques to 202 

extract useful information from the vibration data. Therefore, VM based CM is generally 203 

deemed to be a relatively costly monitoring method [32]. Furthermore, the installation of 204 

vibration sensors on the surface or into the body of drivetrain components is a specialist 205 

process [22]. VM is not highly efficient at detecting incipient stage faults, as the vibration 206 

signals typically have a low signal-to-noise (SNR) ratio [22]. The application of VM sys- 207 

tems in WTs is generally complicated by vibration data collection requirements and the 208 

variable speed WT operating conditions, characterized by continuous variation of load 209 

and thus drivetrain speed. It can also be challenged by effective transfer of VM based 210 

diagnostics and systems used in other rotating machinery industries to the wind industry, 211 

as the rotor speed is relatively lower. A reliable and consistent interpretation of the vast 212 

amount of vibration data obtained from individual turbine and farm vibration-based CM 213 

systems is required to obtain dependable diagnosis [11]. 214 

 215 

2. 1. 2. Oil debris analysis  216 

The oil debris analysis technique has been effectively used for fault detection in gear- 217 

boxes, generators and bearings, as there are a number of locations in WTs where lubrica- 218 

tion is used [33,34]. Oil debris analysis is principally used to monitor the status of the 219 

lubrication of rolling components to detect oil degradation and contamination [35]. Dirt, 220 

wear debris, water, incorrect oil, depletion of additives, oxidation and base stock break- 221 

down are some of the reasons that can lead to the degradation and contamination of lu- 222 

brication [36]. In addition, the oil debris analysis is important to achieve maximum service 223 

life, especially for the gearbox [37]. 224 

The condition of the lubricant is found to carry useful information about the health 225 

of the rolling components. For example, the amount of particles, size, shape and compo- 226 

sition can be monitored to determine faults without having to disassemble the entire sys- 227 

tem. Oil debris analysis is also used to monitor the level of lubrication quality, as it is 228 

important for the operation of rolling components. The lubricant can be affected by tem- 229 

perature, oxidation, contaminants, moisture and time in service and more effective 230 

maintenance action can be achieved by monitoring its quality [38]. The parameters that 231 

are generally monitored to characterize the lubricant quality are [39]: acid content, viscos- 232 

ity, water content, oxidation level and temperature. 233 

Currently the dominant oil debris analysis approach is that of offline oil debris anal- 234 

ysis [23]. Monitoring the relevant diagnostic parameters of oil in commercial WTs is gen- 235 

erally conducted via laboratory techniques by means of special reagents, instruments and 236 
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equipment, such as a viscometer and an optical emission spectrometer [22]. The typical 237 

recommended interval for oil debris analysis if there is no abnormal operating conditions 238 

is once every six months [36]. The analysis results provide information about the status of 239 

tested samples, as well as recommendations to the owner/operator of the WTs.  240 

Research is ongoing focused on developing effective, online, real-time oil debris anal- 241 

ysis to eliminate the current restrictions of oil debris analysis based CM techniques and 242 

potentially further increase the reliability of WTs [40]. Several sensors such as particle 243 

counting sensors and oil condition sensors are generally installed in the gearbox lubrica- 244 

tion loop [36]. However, the use of additional sensors needed to enable online monitoring 245 

increases the cost of oil debris analysis. Furthermore, the proposed online methods can be 246 

limited in detection of certain gearbox failures [28]. The interpretation of the online oil 247 

debris data can also be challenging due to its dependency on the operation conditions, 248 

such as temperature. In combination with the lack of universal oil debris analysis for all 249 

WTs (the oil debris analysis requirements are specific to a particular WT manufacturers 250 

or lubrication oil supplier, and generally differ between these), this has limited the appli- 251 

cation of this technique for commercial purposes [36]. 252 

The main drivers for offline oil debris analysis use are to monitor the parameters that 253 

are not monitored by other online CM techniques and also to conduct analysis to identify 254 

the failed parts of components and the root cause of a failure or to detect incipient faults. 255 

The oil debris analysis is generally implemented in combination with vibration analysis 256 

for the potential detection of a more extensive variety of faults and to increase the relia- 257 

bility of diagnosis derived from usage of the oil debris analysis alone. While it has been 258 

shown to be effective in CM of lubricated mechanical components, the oil debris analysis 259 

accuracy is highly dependent on the type, number, and location of the sensors used, and 260 

it is generally challenging to establish a cost-effective and universal oil debris analysis 261 

technique for gearboxes, due to their configuration complexity [36].  262 

 263 

2. 1. 3. Acoustic emission (AE)  264 

Acoustic emission (AE) monitoring is available for commercial CM systems of WT 265 

drivetrains as an online monitoring technique. AE monitoring employs AE sensors to ob- 266 

tain and analyze sound information. This is based on utilizing the release of strain energy 267 

in the form of transient elastic waves within or on the surface of a material, caused by a 268 

deformation or damage; in practice, this means that observing and trending particular 269 

frequencies of drivetrain emitted sound can enable effective mechanical fault diagnosis 270 

[28]. AE analysis is thus used to detect gearbox, bearings, generator, shaft and rotor faults, 271 

such as for example shaft misalignment or gear damage [22,27,41,42]. 272 

AE monitoring can be implemented in combination with vibration analysis to in- 273 

crease the accuracy of fault detection and also reduce the number of false alarms [43]. The 274 

application of AE monitoring on WT drivetrains generally uses two types of AE sensors: 275 

piezoelectric transducers and optic fiber displacement sensors. AE monitoring can exhibit 276 

a high signal-to-noise ratio (SNR) and contain high-frequency vibrations ranging from 50 277 

kHz to 1 MHz, which is not the case with conventional VM [44]. As a result, AE monitor- 278 

ing can be more efficient in detection of early stage fault compared with other established 279 

CM techniques [23].  280 

The wider use and application of AE monitoring of WT drivetrains is however im- 281 

peded by some of its inherent drawbacks such as [11,28,33]: 282 

 AE sensors are required to be placed at certain proximity locations to be able to ac- 283 

curately detect a fault. 284 

 Accurate AE measurements require the installation of a large number of AE sensors, 285 

which all require individual dedicated data acquisition equipment for the sensing, 286 

analysis and data transfer process. 287 

 AE measurements and analysis are expensive due to the data acquisition system 288 

cost and the requirement for a high sampling rates for signal processing. 289 
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 WT nacelles are not particularly suitable for AE sensor application due to the high 290 

level of operational and ambient noise, which can complicate the identification of 291 

target sound components.  292 

 The attenuation of the AE signals during propagation can also pose limitations in 293 

implementation of this technique. 294 

 295 

2. 1. 4. Temperature monitoring 296 

Temperature monitoring (TM) is based on detecting unexpected temperature 297 

changes in WT drivetrain components, which can be an indicator of increased heat origi- 298 

nating from component degradation caused by a developing fault. This is a commonly 299 

used CM method due to its maturity, cost efficiency and reliability [33], whose application 300 

features for various power equipment are regulated by the relevant standards (e.g. IEEE 301 

1310-2012 [45], IEEE 1718-2012 [46], ISO 17359-2006 [47] and others) [23]. The temperature 302 

of the main bearing, the gearbox, the generator bearings and windings, the lubrication 303 

and hydraulic oil temperatures are monitored for thermal changes arising from presence 304 

of underlying fault, such as bearings and gears mechanical damage, insufficient lubricant 305 

properties, loose or bad electrical connections, faults in the mechanical brake (i.e. cracked 306 

disk), generator winding faults, and rotor over speed [22,23]. Optical pyrometers, resistant 307 

thermometers, and thermocouples are some of the common temperature sensors used in 308 

this approach [28].  309 

Temperature sensors can however be highly invasive and fail in harsh environments. 310 

They can also be challenged in identifying fine thermal changes in devices, that may be 311 

typical of incipient fault stages [22,23]. Furthermore, thermal based diagnosis in WT 312 

drivetrains can be complicated by the difficulty of reliable identification of the reasons for 313 

an observed component temperature rise, as the temperature of different WT components 314 

can be affected by their surroundings [28]. As a result, temperature monitoring is gener- 315 

ally used in combination with other CM techniques in order to achieve more accurate 316 

diagnosis of fault.  317 

 318 

2. 1. 5. Electrical signal analysis  319 

Electrical signal analysis (ESA) has been gaining prominence as a CM technique to 320 

monitor WT drivetrains and identify faults, due to its relatively simple implementation, 321 

efficiency, lower hardware complexity and cost effectiveness [22,48]. ESA is based on sig- 322 

nature analysis techniques in which the spectra of the generator electrical signals is ana- 323 

lyzed with a view to identification of fault specific signatures that can be employed for 324 

reliable diagnosis purposes. The magnitudes of these fault signatures provide information 325 

about the severity of a fault, and can be used to detect faults at an early stage [22]. The 326 

biggest advantage of ESA is that it is non-invasive and is relatively straightforward to 327 

implement and install on WTs, as the electrical signals are already monitored during WT 328 

operation via the control and protection systems (such as SCADA). Furthermore, the elec- 329 

trical signals are easily accessible without needing direct access to a WT nacelle to install 330 

measurement sensors. Therefore, no additional sensors or data acquisition devices are 331 

generally required for establishment of ESA based CM schemes [23]. In addition, ESA is 332 

more cost effective than other CM techniques that require mechanical signal measure- 333 

ments, as electrical measurements are generally cheaper to obtain than mechanical meas- 334 

urements [32]. 335 

Voltage, current, power, flux and control signals are some of the electrical signals 336 

investigated for monitoring WT drivetrain components faults. These signals are used to 337 

monitor components such as the gearbox, bearings and generator, and used to identify 338 

electrical and mechanical faults such as bearing faults, air gap eccentricity, misalignment, 339 

electrical imbalances, winding faults and rotor mass imbalance [22,23,28,49-53]. As an ex- 340 

ample, utilizing current signal analysis for the identification of faults and the calculation 341 

of fault specific changes implemented on a real operational WT is presented in [54]. While 342 

generally promising, the method is highly device design specific and the identification of 343 
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signatures specific to particular fault types can be a significant challenge. Its application 344 

is further complicated in WT drivetrains due to their inherent variable speed operation 345 

which can impose considerable complication in extraction and trending of the nonstation- 346 

ary target fault signatures for diagnosis purpose [55].  347 

ESA is not yet widely implemented in commercial CM systems due to the lack of 348 

experience in the wind power industry [33]. In addition, one of the disadvantages of ESA 349 

is the relatively low SNR of the electrical signals, which can reduce the observability of 350 

the relevant diagnostic content [32]. Furthermore, it is important to reliably identify the 351 

relevant fault signature and choose an appropriate signal processing technique to obtain 352 

suitable results, otherwise there is considerable likelihood of false alarms and unreliable 353 

fault detection processes [32].  354 

 355 

2. 1. 6. Torque measurement 356 

Torque measurements (TM) have also been used for monitoring and fault detection 357 

of WT drivetrains [56]. The basis of TM is dependent on identifying a torsional oscillation 358 

or disruption in a torque-speed ratio caused by presence of electrical and/or mechanical 359 

fault [56]. There are generally three different approaches used for practical TM: using a 360 

rotary torque sensor, which measures the torque signal; using a reaction torque sensor, 361 

which measures the bending moment signal; and, using the estimated torque signal cal- 362 

culated from the electrical signals of a WT generator [22]. Signature analysis techniques 363 

have to be applied to the measured or calculated torque signal for fault signature extrac- 364 

tion, which is then used to identify a fault in a WT drivetrain. The general premise of 365 

diagnostic application is identical to that used for ESA; however, the torque signal is used 366 

for inferring diagnostic information here. 367 

Torque sensors are generally placed in-line with the drivetrain rotating shafts to 368 

sense the torque signal; this is generally only practical for smaller devices. TM has been 369 

researched for detection of faults in the main shaft, bearings, the gearbox, mass imbalance, 370 

and generator faults such as winding faults and unbalances [12,22,56,57]. 371 

TM as a WT drivetrain CM system is very challenging to implement due to practical 372 

installation issues and the resulting cost implications [33]. In addition, the dominant com- 373 

ponents in the spectrum of the torque signal are load dependent, which results in the need 374 

of utilizing more complicated signal processing techniques to investigate the torque signal 375 

compared to those used in vibration signal analysis [23]. Therefore, TM has found very 376 

limited use in commercial applications for WT drive train monitoring [56].  377 

 378 

2. 1. 7. SCADA signals 379 

Commercial WTs are equipped as standard with a SCADA system for performance 380 

monitoring, remote supervision and control, and the usage of SCADA signals for diag- 381 

nostic purpose had attracted considerable research interest. A SCADA system generally 382 

uses 10 minute intervals to monitor more than 200 signals from a WT, and creates histor- 383 

ical datasets, which can then be used in a CM application through appropriate data anal- 384 

ysis solutions [33,58]. The SCADA signals measured via various sensors in a WT during 385 

each interval are generally mean, maximum and minimum values, and standard devia- 386 

tion of temperature, current, voltage, power, rotor speed, wind speed and various other 387 

WT signals [23]. These signals will invariably contain information related to WT health 388 

and can therefore be exploited for CM. SCADA data collected from healthy WTs is usually 389 

used as a reference to model behavior of a WT during operating conditions when there is 390 

no fault in the system, and then any fault can be detected by comparing the monitored 391 

operational data with the reference data. Faults in the generator, main shaft and gearbox 392 

of a WT drivetrain are among the components whose diagnosis has been researched using 393 

SCADA signal analysis [23,59,60].  394 

SCADA offers an advantage in that no additional sensors and data acquisition equip- 395 

ment cost is required for CM [61]. In addition, a SCADA system is also capable of moni- 396 

toring the status of the alarms identified in a WT. A number of researchers have been 397 
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investigating using these alarms for CM of WT drivetrains [61]. However, the low sam- 398 

pling rate of the SCADA signals is not sufficient for timely and highly accurate fault de- 399 

tection, as the most useful diagnostic information of interest for most drivetrain failure 400 

modes can be compromised [23]. Furthermore, a SCADA system can create false alarms 401 

due to the varying operational nature of a WT. Therefore, it cannot presently be relied on 402 

as the sole CM system in commercial WTs [33]. Moreover, since a SCADA system was not 403 

designed initially for CM, it does not collect all of the required information to be able to 404 

conduct a full CM of a WT [28].  405 

A summary of the conventional CM methods for WT drivetrains is presented in Table 406 

1.  407 

Table 1: Conventional CM systems used in the WT drivetrain [23,33,62]. 408 

      409 

CM Techniques 
Monitored Drivetrain 

Components  
Intrusion Online/Offline Cost 

Vibration 

Monitoring 

Main shaft 

Bearings 

Generator 

Gearbox 

Invasive Online High 

Oil Debris Analysis 

Bearings 

Gearbox 

Generator 

Invasive Online/Offline 
Medium to 

High 

Acoustic Emission 

Main shaft 

Bearings 

Gearbox 

Generator 

Non-invasive Online High 

Temperature Monitoring 

Bearings 

Gearbox 

Generator  

Invasive Online Medium 

Torque Measurement  

Main shaft 

Bearings 

Gearbox 

Generator 

Invasive Online High 

Electric Signals 

Main shaft 

Bearings 

Gearbox 

Generator 

Non-invasive Online Low 

SCADA Signals 

Main shaft 

Gearbox 

Generator 

Non-invasive Online Low 

 410 

 411 

2. 2. Advanced sensing condition monitoring techniques 412 

2. 2. 1. Thermography analysis (Infrared thermography) 413 

Thermography analysis (TA) is based on capturing heat patterns and thermal images 414 

of components, which emit infrared radiation according to their temperature and emis- 415 

sivity when a component starts to fail, via temperature transmitters and high-resolution 416 
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thermographic (infrared) cameras [63]. TA does not need any physical contact for meas- 417 

urements and is considered a highly noninvasive measurement technique. It therefore 418 

minimizes the problems associated with the location and proximity of sensors.  419 

Presently TA is only commercially used as an offline CM technique in operating WTs 420 

(generally via the periodical manual inspection) although infrared cameras and diagnostic 421 

software are available for online CM [64]. This is largely caused by the high cost of ther- 422 

mographic monitoring systems, and also by challenges in using TA in practical applica- 423 

tions, such as the dependency of the results on the resolution of the cameras, as well as 424 

the utilized image processing techniques. Furthermore, as it is predominantly based on 425 

external thermal imaging of devices, TA is not capable of incipient fault detection since 426 

the device surface temperature change caused by internal fault development is a slow 427 

process [28]. Finally, the results obtained from thermographic cameras are interpreted vis- 428 

ually and need to be interpreted correctly for reliable diagnosis. 429 

While it has yet to find a more widespread use, TA has previously been used to iden- 430 

tify cracks and damage on the main shaft, bearings and also gearboxes. The technique is 431 

considered promising for monitoring of generators and power electronics too [28,65]. 432 

 433 

2. 2. 2. Shock pulse method  434 

The shock pulse method (SPM) has been used for monitoring rolling element bear- 435 

ings in WTs as a quantitative online CM method. SPM is based on detecting short duration 436 

shock waves generated from the impacts in the bearings via a shock pulse transducer and 437 

a probe piezoelectric accelerometer [66]. Piezoelectric accelerometers convert mechanical 438 

strain created as a result of shock waves to electric signals using the piezoelectric effect. 439 

For CM, piezoelectric accelerometers operate at their resonant frequency (~32 kHz) to 440 

generate large output signals from weak shock pulses since damped oscillations are cre- 441 

ated at the resonance frequency [67,68].  442 

The magnitudes of peaks, as well as the signal levels between the peaks of the shock 443 

waves can be measured using SPM. Furthermore, analysis of a normalized shock value 444 

provides information about the conditions of bearings [69]. The correct interpretation of 445 

the results obtained from SPM requires the knowledge of the bearing geometry, its oper- 446 

ating conditions and the shock values under different operating conditions. Low fre- 447 

quency vibrations collected in the nacelle and created by other sources than the bearings 448 

are electronically filtered out when SPM is used [70]. Although SPM is generally used to 449 

monitor bearing conditions, it is also useful to obtain information about the thickness of 450 

lubricants, which can be used to inform the preventive maintenance schedule and imple- 451 

ment corrective action during the most suitable time frame.  452 

 453 

2. 2. 3. X-ray micro-tomography 454 

X-ray micro-tomography is a high-resolution 3D monitoring technique, which ena- 455 

bles investigation of internal structures without physically needing to open or cut through 456 

the investigated sample. This CM technique has been reported to be used to identify in- 457 

cipient stage gearbox bearing failures such as white structure flaking (WSF) or white etch- 458 

ing cracks [71]. X-ray micro-tomography is based on the identification of initiators caused 459 

by surface flaws/cracks, micro structural discontinuities and non-metallic inclusion. Alt- 460 

hough the early research results are promising, this CM technique is costly and new for 461 

monitoring WT drivetrains, and therefore it is not commercially used yet [72].  462 

 463 

2. 2. 4. Fiber Bragg grating sensors measurement 464 

Fiber Bragg grating (FBG) sensors measurement for WTs has increasingly been re- 465 

searched as a promising alternative CM technique due to its advantages such as lower 466 

signal-to-noise ratio, immunity to electromagnetic interference, small sensor size, flexibil- 467 

ity, multiplexing and multi-physical sensing capability [28,73-75]. An FBG sensor contains 468 

a specially fabricated optic fiber, which is thin, flexible and transparent and can reflect 469 

particular wavelengths of light from distinct fiber locations exposed to physical excitation 470 
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(e.g. temperature, strain and others). FBG sensing is a power passive technology that with 471 

appropriate design can be used for acquisition of a range of multi-physical measurands, 472 

and is most often employed as a thermal and/or strain sensing solution [73]. The meas- 473 

urement process involves the transformation of the measured physical quantity to a dis- 474 

tinct wavelength of light, which is then analyzed by a specialized interrogator device to 475 

extract a physical measurand [76]. 476 

FBG measurement is commercially used in WT as a leading solution for monitoring 477 

of WT blade stress [73]. Due to its inherent advantages the technology has also received 478 

recent research attention for application in drivetrain CM and power devices in general, 479 

and shown to have promising potential to enable advanced in-situ CM solutions for gen- 480 

erator and also the power electronics components [74,77-84]. FBG monitoring is currently 481 

not commercially used for WT drivetrain CM. While promising, this technology does re- 482 

quire specialized installation procedures and sensor design, and its wider adoption will 483 

largely depend on whether it transitions from a niche high value application sensing tech- 484 

nology to a more generally adopted lower cost solution [85]. 485 

3. Machine learning for wind turbine condition monitoring 486 

ML is one of the techniques that are at the forefront of diagnostic research in many 487 

disparate areas of health assessment. This section aims to provide a dedicated review of 488 

ML application in WT: the current research trends are reviewed as are the proposed ML 489 

diagnostic solutions for key WT subassemblies. Sub-section 3.1 presents fundamentals of 490 

ML based CM, the used ML tools, and their classification and usage in WT CM. Sub-sec- 491 

tion 3.2 reviews the application of ML techniques for CM of failure modes in key individ- 492 

ual WT components. Sub-section 3.4 summarizes the selection of the appropriate ML 493 

models for WT CM. 494 

 495 

3. 1. Machine learning based condition monitoring 496 

Generally, WT CM based on ML tools is done by following the three main steps: data 497 

acquisition, data analysis and finally health status assessment [22], as addressed by the 498 

flow diagram of Figure 3. 499 

 500 

 501 
Figure 3. General solution of machine learning problems for wind turbine condition monitoring. 502 

3.1.1. Data acquisition 503 

In data acquisition, samples intended to convey health patterns are in form of signals 504 

that have been collected using various types of sensors. Here, particular sensor type(s) 505 

may be used in specific diagnostic applications, such as, e.g. the accelerometers are gen- 506 

erally used to collect vibration signals from the WT drivetrain including bearings, gearbox 507 

and shafts [86,105,108]. Similarly, microphones can be used to record acoustic emissions 508 

in harsh environments where it is difficult to implement accelerometers [95] and thermo- 509 

couples can also be used for the same purpose of accelerometers [6,93,107,109]. Finally, 510 
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cameras can be used for metal deformation images recording [99,102]. For more centrali- 511 

zation and ease of CM system implementation in a single processing system rather than 512 

individually installed ones, wireless sensors can be used to send data measurements to a 513 

centered data analysis base for less complex processing [110–112]. Also, one can find more 514 

detection methods such as ultrasonic, thermo graphical and radio graphical testing (e.g. 515 

see García Márquez et al. [113]). Tables 2-5 summarize some of the important ones used 516 

in the recent years. 517 

3.1.2. Data analysis 518 

Data analysis is one of the major milestones of WT CM with ML tools; the reliability 519 

of CM system is directly related to the accuracy of the prediction model it employs. In ML 520 

based CM, incoming signals are generally unlabeled, and the ground truth real labels are 521 

impossible to be assumed from experts. Therefore, one can find that most of applications 522 

in WT CM fundamentally depend on the clustering process [93,103,105,114,115] or the 523 

signal processing techniques [92,93,116]. Whether the user intended to perform an effec- 524 

tive detection, diagnosis or prognosis operation, the first step consists in differentiating 525 

between operating behaviors in case of diagnosis, or health stages in case of prognosis. In 526 

case of performance evaluation and if the real RUL is missing, a labeling process by ex- 527 

perts can be evolved to associate certain probabilistic function (linear or exponential deg- 528 

radation model) to different samples of the life cycles presented by those measurements 529 

to be able at least to obtain some knowledge on current physical conditions [89]. Figure 4 530 

dictates the most important applications of ML in WT CM. 531 

In recent literature and after a careful pattern selection for training process, an ap- 532 

proximation function should be selected for the assessment process. Therefore, the ap- 533 

proaches developed upon these criteria have different architectures, ranging from tradi- 534 

tional ML (TML) through hybrid to deep and complex networks with advanced training 535 

procedures. The new generation of the WT ML analysis mostly depends on deep learning 536 

techniques including CNN (convolutional neural network) and LSTM (long short-term 537 

memory). Recent training procedures involve new techniques of generative models able 538 

to guess to give prior assumptions for learning models by providing new enhanced rep- 539 

resentation. The training models known as GANs and TL are very popular in recent stud- 540 

ies, which give ML prediction of a new impression to extend the data-driven into the 541 

knowledge-driven, by providing different prior assumptions. 542 

 543 

 544 

Figure 4. Machine learning application for condition monitoring. 545 

 546 
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Table 2. Gearbox condition monitoring state of the art review. 547 

Method Tools Extraction techniques Data type Learning algorithm  Application 

    DL TL GAN TML  

Y. Kong et al [87] Bi-LSTM Time domain features Vibration      Faults classification 

F. Cheng et al [88] 
Stacked autoencoder 

Support vector machine 

Rotation fundamental frequency 

Hilbert transform  

Angular resampling 

Rotation frequency     Faults classification 

B. Corley et al [90] 
Thermal Modeling  

Machine Learning  

SCADA black box models prepro-

cessing. 

 

Temperature     Faults classification 

J. Fu et al [91]  
CNN 

LSTM 

Adaptive elastic network 

 
Temperature     Faults classification 

W.Hu et al [92]  

Kernel extreme learning 

machine 

PSO 

Wavelet packet transform 

Time-domain sequence approxi-

mate entropy 

Vibration     
Health level classifi-

cation 

V. Inturi et al [93]  
Decision tree 

ANFIS 
Wavelet coefficients  Multiple sensors     

Clustering and Clas-

sification 

G. Jiang et al [94]  Multiscale CNN 

NAN (no data pre-processing: raw 

data are directly fed into the learn-

ing model).  

Vibration     Faults classification 

Y. Kong [86]  
Sparse representation 

classification 

Discriminative dictionary learning 

K-singular value decomposition 
Multiple sensors     Faults classification 

L. Lu et al [110]  

Deep belief neural net-

work 

Chaotic quantum PSO 

Least-squares (SVM) 

Compressed sensing 

Vibration signals 

through self-pow-

ered wireless sensor 

    Faults classification 

L. Lu et al [111]  

Least squares SVM 

Quantum PSO 

Stacked denoising auto-

encoder 

Stacked denoising autoencoder 

Vibration signals 

through self-pow-

ered wireless sensor 

    Faults classification 

L. Lu et al [112] 

deep belief network 

Quantum PSO 

Least squares SVM 

NAN 

Vibration signals 

through self-pow-

ered wireless sensor 

    Faults classification 

Y.Pan et al [117]  

Extreme learning ma-

chine 

Fruit fly of algorithm 

Empirical mode decomposition 

with adaptive noise 

Kernel principal component analy-

sis (KPCA) 

Vibration     
Regression  

(remaining use life) 

H. Ren et al [118]  

Weighted distribution 

adaptation 

Nearest neighbor 

Composite variational mode en-

tropy 
Vibration     Faults classification 

S. Saufi et al [114] Deep neural network   

Stacked sparse autoencoder 

Spectral kurtosis  

Fourier transform 

Wavelet transform 

Images extracted 

from multiple sen-

sors   

    Faults classification 

L. Xiang et al [6] 

CNN 

LSTM with attention 

mechanism. 

SCADA black box models prepro-

cessing. 

 

Multiple sensors     Faults classification 

L. Yang et al [115] 
Deep joint variational au-

toencoder  

SCADA black box models prepro-

cessing 

 

SCADA data     Faults classification 

J. Zhang et al [119] Multi-branch CNN Fast spectral kurtosis images Vibration      Faults classification 

X. Zhang et al [108] 

CNN 

PSO 

SVM 

CNN Vibration      Faults classification 

J.H. Zhong et al [116] Sparse Bayesian ELM Hilbert-Huang transform Vibration     Faults classification 

Table 3. Yaw system condition monitoring state of the art review. 548 

Method Tools Extraction techniques Data type Learning algorithm  Application 

    DL TL GAN TML Faults classification 

M. Reder et al. [97] k-means NAN Meteorological data     
Clustering and clas-

sification of faults 
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H. Chen et al. [98] 

Adaptive threshold. 

LSTM 

SVM 

Time window Multiple sensors     Faults classification 

B. Chen et al. [95] Bayesian network 
Self-organizing map  

Information gain rate  
Acoustic signals     Faults classification 

Table 4. Blades condition monitoring state of the art review. 549 

Method Tools Extraction techniques Data type Learning algorithm  Application 

    DL TL GAN TML  

L. Chen et al. [120] 
Triplet loss 

CNN 

SCADA black box models prepro-

cessing 
Multiple sensors     Faults classification 

X. Yang et al. [102] 
CNN (Alesxnet) 

Ensemble random forest 
Otsu threshold segmentation. 

Unmanned aerial ve-

hicle (UAV) images. 
    Faults classification 

W. Chen et al. [121] 
Inception V3 

TrAdaBoost 

SCADA black box models prepro-

cessing 
Multiple sensors     Faults classification 

M. Kreutz et al. [122]  
Traditional artificial neu-

ral networks 
Time window Temperature     Faults classification 

A. Joshuva et al. [123]  

J48 decision tree  

Locally weighted learn-

ing 

Histogram features Vibration signals     Faults classification 

K. Chandrasekhar et 

al. [124]  
Gaussian Processes Frequency analysis Rotation signals     Faults classification 

A.A. Jiménez et al. 

[125]  

20 Machine Learning 

classifiers. 

AutoRegressive and principal 

component analysis 

Nonlinear-AR eXogenous and hi-

erarchical non-linear principal 

component analysis 

Ultrasonic signal     Faults classification 

 550 

 551 

 552 

Table 5. Generator condition monitoring state of the art review. 553 

Method Tools Extraction techniques Data type Learning algorithm  application 

    DL TL GAN TML  

P.Chen [105]  

Generative adversial net-

works 

CNN 

Time window 

Fast Fourier transforms. 
Vibration     Faults classification 

Y.Chang [107]  
Parallel CNN  

Multi-scale kernels 
NAN Vibration     Faults classification 

T. Zhang [106]  

Generative adversarial 

networks 

Convolutional autoen-

coder 

Self-taught learning net-

works 

Dropout regularization 

NAN  Vibration     Faults classification 

 554 

3. 2. Common failure modes of turbine components 555 

In a WT, as shown in Figure 1, the blowing wind creates a lift force that makes the 556 

blade turn when moving through the airfoil cross-sections of the root-to-tip twisted 557 

blades. The blades connected to a single hub in the center are controlled by a pitch con- 558 

troller to collect the maximum amount of energy from the winds to increase the rotation 559 

speed [3]. A low speed shaft connects the hub and the gearbox to transport the mechanical 560 

rotational energy. The resulting low torque due to mechanical construction of the equip- 561 

ment is therefore boosted by the planetary gear set arrangement of the gearbox to produce 562 
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sufficient rotation trying to achieve maximum efficiency when driving the generator 563 

[8,86]. All the components are brought together in a single housing chamber called the 564 

nacelle. The nacelle itself is lifted on a top of a tower and its direction is controlled by a 565 

yaw motor with the help of a velocity sensor that measures the wind speed and direction 566 

to ensure that the turbine rotor is always directly facing the wind flow. Brakes are also 567 

installed in the nacelle to stop the rotation of the blades during a higher rotation speed or 568 

to stop the yaw motor in windy conditions which could damage the system [4]. 569 

Since the WT operates in extremely harsh environments, the working conditions can 570 

inherently compromise its integrity. An extreme wind speed can be considered too severe 571 

for rotating equipment and even the entire core where the function of the brakes may not 572 

be effective. In addition, extreme cold can cause malfunction of important equipment in- 573 

cluding the blades, and cause damage. Therefore, the function of CM is to offer a moni- 574 

toring system capable of detecting, diagnosing, and prognosing such failures in order to 575 

ensure the continuity of energy production by planning the necessary maintenance oper- 576 

ations at appropriate times.  577 

Since CM with ML is the main topic of this review, we have collected the important 578 

contributions from recent literature, mostly studied during the last two years. The devel- 579 

oped methods of detection, diagnosis and prognosis have been classified according to the 580 

main types of significant failures generally encountered by WTs. A complete list of work 581 

that adopts the common failure modes, which includes gearbox, yaw, blades and genera- 582 

tor, is therefore provided, along with ML techniques being applied, respectively. 583 

3.2.1. Gearbox  584 

A WT gearbox is a very essential part of transporting kinetic energy. It is used to 585 

increase the low speed rotation of the blades rotor to a higher speed to be able to produce 586 

enough power to cause the initiation of the generator to produce electricity. Generally 587 

speaking, a WT gearbox has four main parts arranged in planetary form: the sun gear, 588 

planetary gears, bearings, and planet gear carrier (Figure 5-a). It is thus formed in a plan- 589 

etary gear in order to be able to satisfy the aforementioned speed of rotation.  590 

Under the operating conditions of harsh environments, each of these components 591 

could be affected by the high rotational speed of the high-speed shaft of the gearbox. Con- 592 

sequently, many types of failures could appear. According to [87,88] one may observe 593 

several health levels of gears by taking into account different defects on gears teeth such 594 

as cracked, chipped, missing root, surface defect and healthy gears as addressed by Figure 595 

5-b. Additionally, bearing faults such as in internal race faults could affect the mechanical 596 

transmission process of the drivetrain (Figure 5-c) [89]. 597 
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 598 

Figure 5. Gearbox components and fault types. a) Components and rotation mechanism of gears of 599 

the planetary gearbox. b) Gearbox gears failure types [86,87]. c) Internal race faults in high speed 600 

shaft [89]. 601 

One can provide from the literature a set of examples that have dealt with these types 602 

of failures. As for instance, in the work of Cao et al. [87], they studied how to detect dif- 603 

ferent states of health of the sun gear of the WT gearbox (cracked, chipped, missing root, 604 

surface defect and healthy gears). They mainly used multiple time domain features ex- 605 

truded from three different accelerometers installed in different positions of the bearings 606 

(vertical, horizontal and radial). After that, in a simple way, they introduced these features 607 

into a bidirectional long-short term memory (Bi-LSTM) specially designed for sequence- 608 

to-sequence classification problems. In the deep learning approach proposed by Cheng et 609 

al. [88], a new learning path for fault classification (diagnosis) for gearboxes of dual-power 610 

induction generator WTs is designed depending on the current signal processing. As a 611 

new contribution in the gearbox fault diagnosis, Corley et al [90], used a thermal modeling 612 

method coupled with the ML technique to be able to strengthen the CM system of the WT. 613 

In the work of Fu et al. [91], an efficient approach to select gearbox temperature measure- 614 

ments was adopted using an elastic neural network. After that, the obtained learning fea- 615 

tures were fed into a hybrid convolutional LSTM for precise universal approximation and 616 

further generalization to be able to detect over-temperature fault warning. In the work of 617 

Hu et al. [92], they mainly involved signal processing techniques to detect failure thresh- 618 

olds of WT gearbox under operating conditions. After determining the learning classes 619 

from signal processing frames, training samples were fed into a randomly assigned ex- 620 

treme learning machine (ELM) network enhanced with the particle swarm optimization 621 

(PSO) technique for a full-supervised fault detection. In the work of Inturi, et al. [93], a 622 

problem of fault classification for health state evaluation of the WT gearbox at different 623 

speed stages was aborted. A hybrid algorithm of fuzzy logic and ML, namely the adaptive 624 

neuro-fuzzy inference system (ANFIS), was therefore developed. In the work of Jiang et 625 

al. [94] an end-to-end CNN was involved to directly use the raw vibration signals recorded 626 
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from sensors installed in the rotating planetary elements of the gearbox without using any 627 

signal processing techniques. Thus, the designed approach has proven its ability to detect 628 

different health stages patterns of the gearbox. In addition, other examples in the topic of 629 

fault types on the gearbox have been dropped in the Table 2. 630 

It can be seen that most of the recently cited work, which have been carried out in an 631 

attempt to study transmission anomalies of gearboxes, are generally classification prob- 632 

lems, used either to detect different stages of health, or to classify different modes of fail- 633 

ures. These techniques are based on powerful deep learning techniques for sequential or 634 

ordinary multiclass classifications. Therefore, this explains the lack of work that has been 635 

done in the regression problems, which generally is prognostic-based RUL predictions 636 

that depend on the measure of the remaining useful life, and is thus very crucial in CM 637 

especially for the recent decades of the remarkable industrial evolution. 638 

3.2.2. Yaw system 639 

The yaw system is designed to direct the nacelle around the tower axis, to ensure 640 

maximum power tracking and increase the energy capture through pointing the rotor to- 641 

wards in the direction of the incoming wind stream. As shown in Figure 6-a, the yaw 642 

direction system consist of mechanical equipment that is in functionality loosely similar 643 

to that of the gearbox system. Therefore, it could encounter the same failures modes of 644 

bearings and gears, in addition to the yaw motors failure modes, as illustrated in Figure 645 

6-b. However, the working conditions are not the same, because the yaw system affected 646 

by the pressure encounters the entire WT in addition to the rotation speed of the blades 647 

[95].  648 

 649 

 650 

Figure 6. Yaw system structure and failure illustration [95,96]. 651 

CM techniques aimed to detect multiple yaw system faults have been reported in 652 

literature. In the work of Reder et al. [97] they integrate semi-supervised data mining ap- 653 

proaches to process meteorological and fault data. The study mainly focused on the k- 654 

means clustering to extract different groups of patterns related to cases of both healthy 655 

and unhealthy operation of several WT components, including the yaw system. The work 656 

of Chen et al. [95] represents an automatic damage detection algorithm applied to the yaw 657 

system of WTs. This is a classification procedure totally based on the analysis of acoustic 658 

signals. In fact, and unlike the installation of vibration and temperature sensors, the cur- 659 

rent diagnostic system facilitates the installation of acoustic signals using only a regular 660 

microphone installed next to the yaw system. The obtained signals are thoroughly pre- 661 

processed before feeding a Bayesians network fault classifier. Another work introduced 662 
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by Chen et al. [98] involved the use of unsupervised sequential autoencoders trained for 663 

feature extraction combined with an approximation neural network to obtain an accurate 664 

performance evaluation model. The reconstruction and approximation networks were dy- 665 

namically trained with LSTM for the detection of multiple WT faults including the yaw 666 

system, using real SCADA data. Results were passed to a support vector machine (SVM) 667 

based on an adaptive threshold algorithm to annotate healthy and healthy related pat- 668 

terns. 669 

The mentioned contributions indicate that most of the algorithms designed were 670 

based on both deep learning and features extraction. Multiple feature recording tech- 671 

niques (e.g. acoustic and vibration signals) have been involved where the accuracy of de- 672 

tection process primarily depends on a clustering process that aims to identify the degree 673 

of damage spread (for more details, see Table 3). 674 

3.2.3. Blades  675 

Blades are a key WT component, which is exposed to considerable stress in operation. 676 

They are aerodynamically designed in a form of twisted blades with gradually decreasing 677 

airfoil cross-sections from root-to-tip. Blades could be affected either by the high wind 678 

speed or turbulence, or for example cold weather conditions where presence of blade ice 679 

can be particularly challenging and lead to breakdown of the system [99,100]. The ice for- 680 

mation on the surface of blades (Figure 7-a) is the result of existence of water particles in 681 

the wind stream. Sand/particle contaminated wind streams can also erode and cause con- 682 

siderable damage to the blade material, as shown in Figure 7-b. 683 

 684 

 685 

Figure 7. Icing phenomenon and blades failures types. a) Icing phenomenon [101]. b) Different 686 

possible failures types [102]. 687 

Fault detection in blades can generally be performed via several methods including 688 

ultrasonic waves, measurement of frequency in resonance, vibration measurement or via 689 

optical measurement [101]. In a test aimed at detecting blade icing in WTs with machine 690 

learning-based CM, Yi et al. [103] focused on a field SCADA data problem related to the 691 

detection of WT ice under unbalanced classification. They proposed a synthetic technique 692 

of grouping minority and oversampling to separate the recorded data into specific clusters 693 

related to the icing stages. The resulting clusters were preprocessed using a linear inter- 694 

polation algorithm before feeding the regular ML classifier. In the work of Yang et al. [102] 695 

a pattern recognition algorithm was designed to classify the images of WT blades obtained 696 

via an unmanaged aerial vehicle. The main objective was to detect damage in the blades 697 
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by involving three main learning mechanisms: i) a CNN for the extraction of the best fea- 698 

tures, ii) TL algorithms to improve generalization, and iii) a random forest set to improve 699 

the blade defect detection process. In an attempt to predict the gradual formation of ice 700 

on the rotor blades of WTs, research by Kreutz et al. [104] developed a data-based ice 701 

prediction approach using two different ML methods, namely the SVM and the DNN 702 

(deep neural network). The analyzed data were collected from the SCADA monitoring 703 

system with the help of specific sensors installed in WTs from a wind farm located in 704 

Germany with around 10 WTs. In their work [99], the authors studied the same subject 705 

based on a CNN that learns patterns from RGB (Red Green Blue) images obtained with a 706 

camera installed in the nacelle. 707 

The subject of blade icing is an entirely environmental variable; it is different from 708 

the problems of bearing and gear faults, which can be a hybridization of physical and 709 

environmental. Therefore, detection techniques can be challenged by the unpredictable 710 

dynamics of the underlying events. Recent work employs recorded measurements from 711 

different sensors containing images and their analysis by different learning tools that at- 712 

tempt to address the key health patterns of interest (see Table 4). 713 

3.2.4. Generator  714 

Common serious problems to WT generator remain in rolling elements such as bear- 715 

ings similar to the examples of inner race defects shown in Figure 8.  716 

 717 

Figure 8. Common defects of wind turbine inner race generator rolling bearing [105]. 718 

Structures and architecture ML algorithms similar to the work mentioned above have 719 

been carried out in this field. Typically, they involve a preprocessing unit and deep, ordi- 720 

nary, ensemble, or hybrid learning algorithms to solve classification problems. For in- 721 

stance, in the work of Chen et al. [105], due to the problem of unlabeled health CM data, 722 

a self-setting health threshold has been assigned to solve health stage splitting problem 723 

by training a GAN network which is a type of autoencoders via an adversial learning. 724 

Zhang et al. [106] have also developed an semi-automatic learning approach based on 725 

generative adversial learning that helps in bearing fault classification using incomplete 726 

datasets (i.e. unlabeled small amount of vibration signals). On the other hand, Chang et 727 

al. [107] developed a parallel CNN with multi-scale kernels for the classification of health 728 

stages. One of the main advantages of their contributions has been focused on the absorp- 729 

tion of raw signals without any preprocessing, which reduces human intervention. One 730 

can notice that the work done on the generator CM is similar to those done on the gearbox 731 

CM in both detection and processing (see Table 5). 732 

 733 

3. 3. Selection of machine learning models 734 
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The selection of the appropriate ML model depends on many important factors: the 735 

nature of the application (feature extraction, classification, regression and clustering) and 736 

the nature of the data provided (complete balanced labeled data, unbalanced data, incom- 737 

plete data with missing labels), and the nature of the driven samples (time series, images). 738 

For example, LSTM is a better tool for sequence-to-sequence learning, which can be ap- 739 

plied for both classification and regression. CNN is very helpful when it comes to pattern 740 

detection such as image segmentation. The above Tables 2-5 are introduced to scan most 741 

important work that has been performed so far in CM of WTs. They devote the training 742 

algorithms, extraction techniques, learning architecture, learning behavior and applica- 743 

tions. 744 

On the one hand, according to the pie charts presented in Figure 9, it can be observed 745 

that deep learning algorithms are incredibly growing in WT CM by occupying about 39% 746 

of the used techniques, which is only 10% less than TML tools. Most of the deep architec- 747 

tures are based on powerful hierarchical architectures developed based on CNN. Further- 748 

more, one can find that most of work (45%) has been focused on signal processing extrac- 749 

tion techniques rather than ML tools (only 29%). As a matter of fact, all the applications 750 

of WT CM are mainly based on fault classification. Besides the extension to GAN networks 751 

and TL is largely in infancy stage.  752 

 753 

 754 

Figure 9. Pie chart analysis of the used machine learning methods in wind turbine condition moni- 755 

toring. 756 

4. Big data mining and predictive maintenance 757 

4. 1. Big data problems and challenges 758 

The tremendous amount of data, referred to as big data, has been generated by the 759 

improvement of science and technology, particularly ICT (information and communica- 760 

tion technology), for CM in recent years. The concept of big data is defined by Garter [126] 761 

as a data type that has the characteristics of high volume, velocity and variety. By using 762 

new processing paradigms, the decision-making and data processing procedures can thus 763 

be optimized. However, because of the high volume, velocity and variety of the data, the 764 

conventional CM technologies might not be able to explore the full potential of big data. 765 

Hence, developing big data applications for information extraction from vast data 766 

amounts has become a challenge.  767 

The four Vs used to describe big data characteristics are volume, variety, velocity and 768 

veracity [127]. The first and the most well-known characteristic of big data is volume that 769 
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describes the amount, size and the scale of the data. For CM systems, the data acquired 770 

from the sensors has major impact to the system. The installation of an effective WT CM 771 

system requires a high number of sensors with high sampling frequency in general espe- 772 

cially for the electrical components within the turbine, thus generating a large amount of 773 

data. However, the use of a large number of sensors may compromize and reduce the 774 

overall reliability of the sensor system [128]. Besides, processing and interpreting large 775 

amounts of data acquired from a sensor system can be a complex task even for the expe- 776 

rienced data analyst [129].  777 

The second relates to variety that defines the structural variation of the dataset and 778 

the data types of the big data [130]. There are two major challenges associated with the 779 

variety of big data in CM: data heterogeneity, and incomplete and noisy data. Data heter- 780 

ogeneity refers to the syntactic and semantic characteristics of the data, which indicate the 781 

diversity of the data type and different interpretation of the data. For a WT SCADA sys- 782 

tem, various types of data are included, such as mechanical, temperature and electrical 783 

data. The data integration would be a problem since the data may come from different 784 

sources with different physical meanings. Hence, solving the data heterogeneity problem 785 

has attracted renewed attention in recent years [131]. The data acquired from the sensors 786 

may contain various types of measurement errors, missing values, outliers and noisy data 787 

[132], while the noise can be accumulated especially with high dimensional datasets typ- 788 

ical of big data. Therefore, it is important to extract valid data from the noisy data subse- 789 

quently following data collection and integration [133]. 790 

The third dimension is velocity that describes not only how the data are generated 791 

but also how the data are sampled in terms of frequency rate. For real-time data streaming, 792 

the new data are continuously generated, which causes nonstationary behavior of big 793 

data; thus, it is impossible to acquire the entire dataset before processing [134]. This would 794 

bring challenges to acquisition of the necessary datasets for real-time processing.   795 

The last important characteristic of big data is associated with veracity. Because of 796 

the inherent unreliability of the data sources, the provenance and quality of big data 797 

would define the veracity together [135]. Similar with variety, the challenges of veracity 798 

are often brought by the data sources. The original dataset can be too large in the context 799 

of big data, and thus extra computational cost becomes overwhelming [136]. Moreover, 800 

the veracity of a dataset can be affected by the uncertainty of the data source. The noise 801 

contained in the data is not unique, which makes the noise in a large dataset more difficult 802 

to handle.  803 

4. 2. Data mining condition monitoring   804 

A WT CM system consists of the combination of sensors and signal processing units 805 

[137]. The CM techniques comprise statistical analysis, signal processing and increasingly 806 

more the data driven and data mining techniques, which are used to diagnose and prog- 807 

nose the health status of major WT subassemblies (e.g., blades, nacelle, gearbox, generator 808 

and power electronic converter). The monitoring process can be online or offline; the 809 

online monitoring provides real-time data that reflect the instantaneous feedback of oper- 810 

ation condition while the off-line monitoring collects data at regular time intervals for 811 

analysis based on different data acquisition systems [138]. With appropriate CM tech- 812 

niques, maintenance actions can be planned appropriately to prevent further damage to 813 

the turbine while the turbine is still kept operational, and thus the downtime and O&M 814 

costs are reduced [139].  815 

Data mining techniques have been designed to solve the big data problems such as 816 

variable selection, dimension reduction, feature extraction and online processing. The 817 

data mining techniques especially ML based CM methods have drawn more attention in 818 

recent years. The ML approaches are commonly referred to as the data driven CM, which 819 

does not require prior knowledge of the turbine. 820 

Due to the large amount of data and untraceable data sources, the raw data might be 821 

messy and contain lots of noise. Incomplete and incorrect data will lead to misjudgment 822 
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in CM, and data cleaning is therefore necessary before processing the data. The kernel 823 

based local outlier factor (KLOF) was proposed for data cleaning [141]. With this method, 824 

the data are first divided into several segments and then the features extracted from those 825 

segments, such as mean, maximum and peak-to-peak value, and used to evaluate the de- 826 

gree of each segment being incorrect data by adapting KLOF. A proper threshold was set 827 

to distinguish the incorrect data from correct data. The results demonstrated that the pro- 828 

posed method could effectively identify incorrect data and abnormal segments. A method 829 

based on minimization of dissimilarity-and-uncertainty-based energy (MDUE) was also 830 

proposed for data cleaning [142]. This method transformed scattered data into a digital 831 

image in grey scale and then determined an optimum threshold based on intensity-based 832 

class uncertainty and shape dissimilarity. The abnormal data were finally marked by im- 833 

age thresholding.   834 

The dimension reduction techniques have been widely applied to reduce the com- 835 

plexity of the original dataset and thus the computation load while processing the large 836 

amount of data. Principal component analysis (PCA) is a well-established data mining 837 

technique that extracts principal components from various types of variables, which has 838 

often been used in dimension reduction and feature extraction. By adapting PCA, the 839 

computation load can be significantly reduced. Wang et al. proposed a PCA based method 840 

to select certain variables among all variables relating to a target fault. The proposed 841 

method has reduced the dimensions of two different dataset to 51.7% (15 out 29 variables) 842 

for simulation data and 45.4% (35 out of 77 variables) for SCADA data, respectively. The 843 

average correlation and information entropy after dimension reduction are kept 99.81%, 844 

0.0082 and 81.32% for simulation data, and 99%, 0.162 and 88.88% for SCADA data, re- 845 

spectively. Clearly, this method can detect faults efficiently and effectively while reducing 846 

the number of variables for CM [9]. Other data mining techniques such as parallel factor 847 

analysis, k-means clustering, auto-encoders and deep belief network have also shown 848 

their capability in dimension reduction and feature extraction [143-145].  849 

There are still challenges in dealing with big data for CM, particularly for online pro- 850 

cessing. In the context of streaming/online data, ML algorithms may not fulfil such tasks 851 

due to being trained by historical and previous training data [146]. In this scenario, incre- 852 

mental learning was therefore taken into consideration to prevent retraining of the previ- 853 

ous model based on support vector regression and Karush–Kuhn–Tucker [147]. The di- 854 

mension of the training dataset would change if the new sample comes in; however, the 855 

weights could be updated automatically without retraining the data. Thus, online moni- 856 

toring can be achieved without building new models for training. It is noted that the 857 

online monitoring also needs to consider data uploading problems. To solve this, a hier- 858 

archical extreme learning machine embedded with cloud computing was proposed to re- 859 

duce the data upload quantity [140]. The result showed that the uploaded data volume 860 

could be reduced to 12.5% of the original data size before compression, while, in the mean- 861 

while, the data transmission security was improved since the parameters of model and 862 

original input data are compressed in the first hidden layer.  863 

4. 3. Condition based predictive maintenance 864 

The conventional WT maintenance is often divided into corrective or scheduled 865 

maintenance. The corrective maintenance is performed after system failure, which can be 866 

caused by, e.g., a component fatigue, unreliable design and environmental operational 867 

factors. Engineers often implement corrective maintenance during WT inspection or when 868 

the WT shuts down due to a fault. Thus, the O&M cost of corrective maintenance is the 869 

highest among all maintenance strategies. In contrast, the scheduled maintenance, also 870 

known as the periodic-based maintenance or preventive maintenance, is carried out by 871 

repairing at fixed time intervals usually recommended by the supplier. The fatigue com- 872 

ponents can be replaced before the failure [148,149]. Scheduled maintenance can indeed 873 

reduce the unscheduled downtime; however, setting maintenance tasks more frequently 874 

than usual would increase the O&M cost since the replaced components may have not yet 875 
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reached their full useful life. A more advanced policy, called opportunistic maintenance, 876 

has also been developed as the combination of corrective maintenance with preventive 877 

maintenance. When a WT component reaches its critical degradation state, there is an op- 878 

portunity to implement preventive maintenance for the others, thus reducing the losses 879 

of accidental failures [150]. An optimal opportunistic maintenance policy was proposed 880 

for a deteriorating multi-bladed offshore WT subjected to stress corrosion cracking and 881 

environmental shocks by employing field failure data from the SCADA system [151]. 882 

Thus, the condition based predictive maintenance takes into consideration the health 883 

condition of the turbine to mitigate against major component failures, where the intelli- 884 

gent-based approaches have become a promising solution [152]. This strategy includes a 885 

whole set of data acquisition, data processing and analysis, and fault diagnosis and prog- 886 

nosis in order to provide optimal maintenance actions [153, 154]. By adapting this strat- 887 

egy, unscheduled and unnecessary maintenance tasks are prevented, hence significantly 888 

reducing the O&M cost.  889 

 890 

4.3.1 Decision making framework 891 

Data-driven CM approaches have recently attracted more attentions in predictive 892 

maintenance. Based on the Energy Roadmap 2050, the Europe electricity will be supplied 893 

by wind energy from 31.6% to 48.7% [155]. Offshore wind farms have now been deployed 894 

in deep seas for richer wind resources, which have caused more difficulties in terms of 895 

maintenance activities [156]. Hence, it is vital for wind farm operators to perform predic- 896 

tive maintenance in order to increase the useful lifetime of WTs [157]. By using historical 897 

and real-time data from various parts, the WT CM can be performed to achieve a more 898 

reliable predictive maintenance for the turbines. The data acquired from the WTs are 899 

multi-dimension time-series, which need a precise modelling method to predict the fault 900 

[158]. The condition based predictive maintenance is able to gather necessary information 901 

from CM system and SCADA system to analyze the operational status of the WT compo- 902 

nents in order to prevent major failures from happening [62,159].  903 

Decision making for condition based predictive maintenance can be implemented by 904 

two methods: current condition evaluation-based (CCEB) and future condition predic- 905 

tion-based (FCPB) [160]. The major difference between the two decision making methods 906 

is that the CCEB focuses more on the current state (i.e., diagnosis) while the FCPB focuses 907 

on the future state (i.e., prognosis). Figure 10 shows the framework of these two decision- 908 

making methods, both of which highly rely on the CM techniques. Maintenance activities 909 

can be scheduled as long as the estimated health condition exceeds a certain threshold 910 

[97,151,161,166]. 911 
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Figure 10. Typical decision framework of CCEB and FCPB 913 

 914 

The implementation of CCEB and FCPB strategies can be challenged during real in- 915 

dustrial practice. In fact, when implementing CCEB, it may not have enough time for 916 

maintenance planning if the health condition shows that the components have already 917 

reached the fault limit. Although the FCPB can indeed solve this problem since it is able 918 

to predict future health condition of the components, the reliability of short-term predic- 919 

tions is higher than that of long-term ones. When dealing with long-term prediction, the 920 

FCPB might not be precise enough. To provide a reliable maintenance decision, the CCEB 921 

and FCPB need to be chosen carefully for an optimal decision.  922 

 923 

4.3.2 Remaining useful life estimation   924 

Condition based maintenance activities have also focused on fault prognosis and re- 925 

maining useful life (RUL) estimation. Cheng et al. proposed a fault prognosis and RUL 926 

prediction method for WT gearbox [162], where an ANFIS was used to learn the state 927 

transition function of the fault features. Then a particle filtering algorithm was employed 928 

to predict the RUL of the gearbox via the learned state transition function. The effective- 929 

ness of this method has been demonstrated by their run-to-failure tests. Another case 930 

study presented in [163] has shown that a power purchase agreement managed wind 931 

farm by incorporating estimation of the WT RUL can enable predictive maintenance for 932 

the wind farm, thus avoiding corrective maintenance and reducing the cost and down- 933 

time. Zhang et al. proposed a fatigue prediction model of the blade to reproduce the fa- 934 

tigue damage evolution in the composite blades subjected to aerodynamic loadings by 935 

cyclical winds. The lifetime probability of fatigue failure of the blades was then investi- 936 

gated by stochastic deterioration modelling, and a cost benefit model was finally built to 937 

optimize the maintenance cost [164]. Zhu et al. investigated new importance measures of 938 

evaluating the maintenance values of WT components in terms of increasing the mean of 939 

RUL and mean residual system profit over the RUL. Their study showed that the pro- 940 

posed importance measures were suitable and effective for selecting components for in- 941 

spection and maintenance actions to take [165].  942 

To estimate the RUL of a WT, the prognostics and health management (PHM) tech- 943 

niques can be adapted. A turbine with PHM was studied with stochastic jump-diffusion 944 

model to model the random evolution of deterioration process and production out- 945 

put. Monte-Carlo simulation was performed to find the optimal maintenance data, as well 946 

as the lowest maintenance cost [166]. Not only is the mechanical components of WT used 947 

https://www.sciencedirect.com/science/article/pii/S1876610219309282%22%20/l%20%22!
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to estimate their RUL, the RUL estimation of electrical components is also necessary. A 948 

Gaussian process regression technique was proposed to estimate the RUL for degraded 949 

high-power IGBTs (insulated-gate bipolar transistor) [167]. This method was proven com- 950 

patible with accelerated ageing database of real devices as defined under thermal over- 951 

stress utilizing a direct current at the gate.   952 

As shown in the literature, both diagnostic and prognostic/RUL estimation strategies 953 

can provide valuable information for condition based preventive maintenance. On the 954 

other hand, a number of researches have also been conducted to investigate the schedul- 955 

ing optimization. Garcia et al. proposed a maintenance system, called intelligent system 956 

for predictive maintenance (SIMAP), for the WT gearbox and showed that the SIMAP can 957 

adapt the maintenance calendar of a WT to its real needs and operating times [168]. Zhong 958 

et al. proposed a maintenance scheduling optimization model as a 2-phase solution frame- 959 

work by integrating the fuzzy arithmetic operation and the non-dominated sorting genetic 960 

algorithm. The schedules were derived from the trade-offs between the maximum relia- 961 

bility and minimum cost [169]. Except the CM methods for WT components, the labor cost 962 

and production loss as objective functions have also been taken into consideration for 963 

maintenance scheduling decision. By analyzing historical weather data and a statistical 964 

model for weather description, the maintenance problem was formulated compactly as a 965 

mixed integer linear programming model. Compared with the periodic preventive 966 

maintenance, the expected labor cost and production loss were reduced approximately by 967 

30% and 20%, respectively [170]. Other parameters such as maintenance vessel allocation, 968 

electrical price and dynamic safe access pre-requisites for WTs and crane are also playing 969 

an important role for maintenance scheduling optimization [171,172].   970 

It is noted that condition based predictive maintenance suffers from lacking of details 971 

in the existing data collection system. The RAMS (reliability, availability, maintainability, 972 

and safety) databases have therefore been constructed to provide more detailed infor- 973 

mation on maintenance planning, scheduling optimization and life cycle cost minimiza- 974 

tion [173]. Another concern is associated with the data reliability since the data can be lost, 975 

noised and hacked during the transmission process. In order to improve the CM accuracy 976 

and reliability, data encryption has also often been taken into account.  977 

5. Discussion and future work 978 

Conventional WT CM is implemented by signal processing based approaches. This 979 

is achieved through detection and analysis of pre learned signal features that are specific 980 

to particular fault modes. These features are commonly time and/or spectral domain arte- 981 

facts in the monitored signals and are generally referred to as the fault signature. There is 982 

a general requirement to keep the CM process as low cost as is possible, and ideally as 983 

minimally invasive to the device hardware as is practical, assuming retention of diagnos- 984 

tic capability. This in principle imposes a trade-off between the device operative features 985 

that can feasibly and practically be sensed and those that could contain an inherently 986 

higher density of diagnostic information, such as device embedded stress in the vicinity 987 

of known failure points. The sensing technology underpinning a given CM method thus 988 

also plays an important role in the diagnostic process, and its advancement remains the 989 

objective of continuous research. 990 

In addition to improved diagnostic reliability, the realization of more accurate 991 

maintenance planning is needed to enable more profound impact on the O&M cost that 992 

the sector requires. Although reviewed in this paper, the lack of more significant work in 993 

prognosis and especially in RUL prediction indicates a strong need for intensification of 994 

research efforts in this area. Additionally, since WT CM is generally performed based on 995 

data acquisition, and in particular vibration analysis which is a completely unlabeled data 996 

problem, this can create challenges associated with bad generalization related to incon- 997 

sistency between new forced labels and learning inputs. Furthermore, the lack of similar- 998 

ity in distribution between training and testing samples due to the dynamicity of working 999 

condition could drive to miss-predictions (false alarms) of CM system. Besides, for e.g. 1000 
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some bearing problems, data have been generated from accelerated life tests that provide 1001 

incomplete and unlabeled list of patterns. Therefore, future work in this space would need 1002 

to attempt to fill these gaps by incorporating more knowledge from pertained models 1003 

through involving GANs and TL.  1004 

Sensing for WT CM is an area that provides the principal source of diagnostic infor- 1005 

mation and as such has a profound impact. As stated earlier, the general desire is to rely 1006 

on a minimum number of additional sensing points to those inherent to core system op- 1007 

erative functionality and rely on system contained signals for diagnosis where possible. 1008 

However this level of non-invasiveness is generally a challenge to attain and can restrict 1009 

the diagnostic and prognostic capability. Increasing sensor numbers or adopting alterna- 1010 

tive and more advanced sensing methodologies can improve the diagnostic relevance and 1011 

coverage of measurements; the cost and complexity of the CM system need to be carefully 1012 

taken into consideration in this process. Sensor failures or misreporting are highly unde- 1013 

sirable as they increase the risk of CM system unreliability, resulting in the scheduling of 1014 

unnecessary maintenance or downtime. Deployment of advanced sensing techniques 1015 

could, however, lead to much improved characterization of subassembly failure and deg- 1016 

radation process, and caries the potential to be strategically used either for development 1017 

of higher-fidelity, validated diagnostic models, or for dedicated, high value component 1018 

specific monitoring solutions. A strong interest remains in employing the readily available 1019 

low-resolution SCADA data standalone, or in combination with high-resolution CM data, 1020 

to improve the CM system accuracy. Achieving high reliability diagnosis and prognosis 1021 

however remains a challenge. Therefore, future work is required to develop new CM 1022 

methods by means of artificial intelligence and ML to improve the CM robustness and 1023 

accuracy, considering also the inputs of advanced, strategic sensor inputs where perti- 1024 

nent. Moreover, the deployment of a CM system to WTs at the farm level would lead to 1025 

new insights into predictive maintenance strategies; therefore the performance and relia- 1026 

bility of a CM system itself are crucial [174]. Future work is also required to develop more 1027 

accurate and reliable CM systems for corresponding condition-based maintenance oppor- 1028 

tunities with a multi-system approach by considering dependencies among WTs and op- 1029 

timizing operational decisions.  1030 

6. Conclusions 1031 

The paper reviews the general state of the art and the upcoming advances in the area of 1032 

WT CM systems by intelligent and ML approaches. The review covers recent develop- 1033 

ments in conventional signal-based CM and tools, through data-driven ML-based CM, to 1034 

big data mining and predictive maintenance. It has been found that the general focus in 1035 

WT CM research largely remains associated with classification driven by application of 1036 

ML and big data techniques, and aimed at underpinning more effective diagnosis. CM 1037 

systems should detect, diagnose, and eliminate hidden faults rapidly and predict failures 1038 

of the system with as little human intervention as possible, particularly given the rapidly 1039 

growing size of wind farms and moving further offshore. System level automation of this 1040 

process is highly desirable yet remains a challenge for the existing state of the art. The 1041 

intelligent and ML approaches reviewed in this paper hold potential to provide a viable 1042 

and efficient solution to improve CM capabilities and hence reliability and availability of 1043 

WTs and the ultimately to reduce the O&M costs. However considerable further research 1044 

is needed to achieve this goal.  1045 
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