1 2 3	The Lunar Mare Ring-Moat Dome Structure (RMDS) Age Conundrum: Contemporaneous with Imbrian-Aged Host Lava Flows or Emplaced in the Copernican?
4	
5 6 7	Feng Zhang ^{1,2} , James W. Head ³ , Christian Wöhler ⁴ , Alexander T. Basilevsky ³ , Lionel Wilson ⁶ , Minggang Xie ⁷ , Roberto Bugiolacchi ² , Thorsten Wilhelm ⁴ , Stephanie
/ 0	Altholl', and Yong L. Zou
0 0	State Key I aboratory of Space Weather, National Space Science Center, Chinese Academy of
10	Sciences, Beijing, China: ² State Key Laboratory of Lunar and Planetary Sciences, Macau
11	University of Science and Technology. Macau, China: ³ Department of Earth, Environmental and
12	Planetary Sciences, Brown University, Providence, RI, USA; ⁴ Image Analysis Group, TU
13	Dortmund University, Dortmund, Germany; ⁵ Vernadsky Institute of Geochemistry and Analytical
14	Chemistry, Russian Academy of Sciences, Moscow, Russia; ⁶ Lancaster Environment Centre,
15	Lancaster University, Lancaster, UK; 7College of Science, Guilin University of Technology, Guilin,
16	China
17	
18	Corresponding Author: F. Zhang (zhangfeng@nssc.ac.cn)
19	
20	Key Points:
21	(1) Clusters of unusual features, Ring Moat Dome Structures (RMDSs), occur
22	extensively in the lunar maria
23	(2) Multiple lines of evidence suggest two alternative origins, contemporaneous with
24	Imbrian flows, or later, in the Copernican
25	(3) We list outstanding questions and suggest future research and exploration
26	scenarios to resolve the age conundrum
27	
28	Abstract
29	Ring-Moat Dome Structures (RMDSs) are small circular mounds of diameter
30	typically about 200 m and \sim 3-4 m in height, surrounded by narrow, shallow moats.
31	They occur in clusters, are widespread in ancient Imbrian-aged mare basalt host units
32	and show mineralogies comparable to those of their host units. Based on these close
33	associations and similarities, a model has been proposed for the formation of RMDS
34	as the result of late-stage flow inflation, with second boiling releasing quantities of 1

35	magmatic volatiles that migrate to the top of the flow as magmatic foams and extrude
36	through cracks in the cooled upper part of the flow to produce the small RMDS
37	domes and surrounding moats. In contrast to this model advocating a
38	contemporaneous emplacement of RMDSs and their host lava flows, a range of
39	observations suggests that the RMDS formed significantly after the emplacement and
40	cooling of their host lava flows, perhaps as recently as in the Copernican Period (~1.1
41	Ga to the present). These observations include: 1) stratigraphic embayment of domes
42	into post-lava flow emplacement impact craters; 2) young crater degradation age
43	estimates for the underlying embayed craters; 3) regolith development models that
44	predict thicknesses in excess of the observed topography of domes and moats; 4)
45	landform diffusional degradation models that predict very young ages for mounds and
46	moats; 5) suggestions of fewer superposed craters on the mounds than on the adjacent
47	host lava flows, and 6) observations of superposed craters that suggest that the mound
48	substrate does not have the properties predicted by the magmatic foam model.
49	Together, these observations are consistent with the RMDS formation occurring
50	during the period after the extrusion and solidification of the host lava flows, up to
51	and including the geologically recent Late Copernican, i.e., the last few hundreds of
52	millions of years of lunar history. We present and discuss each of these contradictory
53	data and interpretations and summarize the requirements for magma ascent and
54	eruption models that might account for young RMDS ages. We conclude with a
55	discussion of the tests and future research and exploration that might help resolve the

56 RMDS age and mode of emplacement conundrum.

57 Plain Language Summary

58 The research reported in this paper provides multiple lines of evidence for the 59 discovery of very young mare volcanism on the Moon, thus extending the lunar 60 volcanic history into the Copernican period (~1.1 Ga to present). Current lunar 61 thermal evolution models have placed an upper limit for the cessation of large-scale 62 mare volcanism at ~ 2.0 Ga ago. In this study, we used both morphometric analysis 63 and topographic diffusion models to date some small craters (100-300 m in scale) 64 which are partially overlapped by ring-moat dome structures (RMDSs, basaltic lava 65 flow surface features characterized by a domical profile encircled by a ring moat). 66 Our results lead to a conclusion that lunar mare volcanism accounting for the 67 emplacement of these RMDS-bearing basalts may have occurred several hundreds of 68 millions of years ago (i.e., 130-1500 Ma), thus challenging the present consensus on 69 the thermal history of the Moon. To address this issue, we also list a series of 70 outstanding questions and robotic/human exploration strategies that could provide 71 conclusive evidence for or against our hypotheses, thus increasing our understanding 72 of the duration and flux of lunar volcanism and the thermal evolution of the Moon. 73 74 **1. Introduction** A major outstanding question in the evolution of the Moon is the onset, duration 75 76 and flux of lunar mare volcanism, and its contribution to the building of the lunar 77 secondary crust. The study of lunar meteorites shows that volcanism started early in 78 the history of the Moon (> 4 Ga) (Borg et al., 2015; Taylor et al., 1983; Terada et al.,

79	2007); however, much less consensus has been reached on the time of cessation of
80	extrusive activities. This is not a secondary issue: a reliable timeline would constrain
81	our current models of the thermal and compositional evolution of the Moon (e.g.,
82	Head, 1976; Hess & Parmentier, 1995; Solomon, 1978, 1986; Wieczorek et al., 2006).
83	Returned lunar samples indicate that the bulk of mare volcanism was confined to the
84	interval of 3.8 to 3.1 Ga years ago, with major volcanic eruptions peaking in the
85	Imbrian period (3.8-3.2 Ga ago; Head & Wilson, 2017; Hiesinger et al., 2011). The
86	youngest ages of lunar mare volcanism have been reported in the range of $\sim 2.9/2.5$ Ga
87	from the study of lunar meteorites (Borg et al., 2004; Fernandes et al., 2007), and, by
88	inference, as young as 1.2 Ga from crater chronology approaches based on the
89	comparison with lunar chronology functions (Hiesinger et al., 2011; Schultz & Spudis,
90	1983). Even younger ages of ~10 Ma relating to the Ina structure (Schultz et al., 2006)
91	and <100 Ma for Ina-like irregular mare patches (IMPs) (Braden et al., 2014) have
92	been put forward based on this indirect approach. However, Ina and its surrounding
93	mare are compositionally identical (Bennett et al., 2015), making the likelihood of
94	being geologically contemporaneous most likely (Garry et al., 2012; Qiao et al., 2017;
95	Wilson & Head, 2017b). Furthermore, the use of small craters (e.g., <200 m) to date
96	geographically small mare surfaces remains controversial (McEwen & Bierhaus, 2006;
97	Williams et al., 2018). Consequently, the evidence in support of Copernican-aged
98	mare volcanism younger than ~1.0 Ga is weak.

Recent comprehensive surveys have revealed the widespread distribution of Ring

100	Moat Dome Structures (RMDSs), which are lunar morphological features
101	characterized by a relatively low, circular topography surrounded by a shallow moat.
102	Their composition does not differ from the local mare in which they occur (their host
103	unit) and they tend to occur in clusters in a wide range of mare settings (Zhang et al.,
104	2017, 2018, 2020). A theoretical model of their formation (Wilson et al., 2019), based
105	on their comprehensive characterization (Zhang et al., 2017, 2020), suggests that
106	RMDSs represent extrusive features linked to the emplacement of the host basaltic
107	lava flows. Accordingly, they would have formed during late-stage inflation-related
108	emplacement processes of the flow, including second boiling, segregation of
109	vesicle-rich magma within the flow, and its extrusion to the surface to produce the
110	RMDS features. This model supports the contemporary formation of RMDSs and
111	associated flows (most >3.0 Ga; Hiesinger et al., 2011). However, the superposition
112	relationships of some RMDSs on small, degraded craters <300 m in diameter suggests
113	a very young age, in the order of hundreds of Ma (Basilevsky et al., 2019; Zhang et al.,
114	2020). This would place the formation of some RMDSs within the Copernican era,
115	billions of years after the emplacement of most mare basalts. Such young ages
116	conflict with the previous RMDS models (Wilson et al., 2019; Zhang et al., 2017).
117	In this contribution, we first briefly outline the nature of RMDSs and the
118	hypothesis that suggests that they formed more than several billion years ago,
119	contemporaneously with their host mare units, and then we present multiple lines of
120	evidence that appear to contradict this model, and that together suggest that the

121	RMDS formed much later than their host lava flows, in the recent Copernican period
122	of lunar history. We then synthesize the evidence for Copernican-aged RMDS
123	formation and translate this into the requirements for any successful model for the
124	generation, ascent, and eruption of magma to explain the Copernican-aged formation
125	of RMDS. Finally, we list a series of outstanding questions and robotic/human
126	exploration strategies that can provide definitive evidence to resolve the RMDS age
127	conundrum and thus increase our understanding of the duration and flux of lunar
128	volcanism and the thermal evolution of the Moon.
129 130	2. RMDS Characteristics and Distribution
131	Mound-like features with surrounding moats were first identified in Lunar
132	Orbiter image data and described by Schultz and Greeley (1976) and Schultz et al.
133	(1976) and later found in much more abundance in Lunar Reconnaissance Orbiter
134	(LRO) image data and named ring-moat dome structures (RMDSs) (Zhang et al.,
135	2017). Following this, Zhang et al. (2020) reported on a much more comprehensive
136	analysis of the nature and distribution of RMDSs, summarized here. They found that
137	the positive morphologic RMDS features occurred in clusters in many lunar mare
138	regions, most of which had not been previously reported, and they expanded the
139	known RMDS locations from ~2,600 to over 8,000 (yellow crosses, Figure 1). Zhang
140	et al. (2020) presented a detailed analysis of over 500 RMDSs located in several
141	different mare basins, combining elemental mapping, morphology and morphometry,
142	distribution relationships, and relationships with other geologic structures. They also

assessed numerous terrestrial analogs to the RMDS features. They concluded that the

145	1) They are low circular mounds a few hundred meters in diameter (average
146	~200 m) with a mean height of 3.5 m.
147	2) Mounds are surrounded by moats ranging from tens to over 200 m wide and
148	up to several meters deep.
149	3) They are more commonly found in moderate-to-high >3 wt% TiO ₂ mare units,
150	though a wide titanium abundance variation is observed.
151	4) They are found in spatial association with lava flow units and sometimes with
152	associated volcanic-related features (e.g., Head & Wilson, 2017), such as small
153	shields and cones (Zhang et al., 2020, their Figure 16).
154	5) Some but not all display some spatial associations with Irregular Mare Patches
155	(see Braden et al., 2014), leading Zhang et al. (2020) to suggest that both may form

- 156 from related lava flows.

143

144

- 157 6) Zhang et al. (2020) found a favorable comparison between lava inflationary
- 158 structures on Earth and RMDSs, lending support to a hypothesis of an origin
- 159 involving inflation-related extrusive volcanism and a genetic relationship of RMDSs
- 160 with host lava flow emplacement processes.

RMDS can be characterized as follow:

- 161 7) Zhang et al. (2020) noted embayment relationships between some RMDS
- 162 mounds and craters of apparent impact origin (and of different degradation states)
- 163 superposed on the host mare. They concluded that these examples conflicted with

RMDS formation models in which RMDSs formed contemporaneously with their host

165	lava flows.
166	Zhang et al. (2020) thus outlined two conflicting models for RMDS formation: a)
167	Synchronous with the emplacement and cooling of their ancient host lava flows (~3-4
168	Ga old), and b) substantially postdating the emplacement and cooling of the host mare
169	lava unit, likely some time during the Copernican and/or Eratosthenian periods (~0-3
170	Ga old).
171	

164

172 **3.** The Model for Contemporaneous Host Lava Flow-RMDS Formation

173 This hypothesis was initially proposed by Zhang et al. (2017) and then described

in detail by Wilson et al. (2019) based on a theoretical model of lava flow

175 emplacement and cooling behavior. Wilson et al. (2019) used descriptions and

176 preliminary interpretations of RMDSs and models of the dynamics of lunar lava flows

177 (Head & Wilson, 2017; Wilson & Head, 2017a) to try to account for the major

178 characteristics of RMDSs (Zhang et al., 2017, 2018, 2020). A summary of the model

179 is as follows: in the early stages of an eruption of mare basalt, the magma contains

180 very low quantities of dissolved volatiles and a few exsolved gas bubbles because

181 these have been largely and efficiently lost during the pyroclastic hawaiian fire

182 fountain activity at the vent. The lava flow surface and base cool progressively as the

183 lava travels away from the vent, resulting in upper and lower solidified boundary

184 layers and a molten core. Toward the end of the eruption at the vent, magma rise

185 speed in the dike decreases as dike closure begins. This lowering of magma ascent

186 rate enhances the ability of gas bubbles to form and coalesce, favoring strombolian activity at the vent, which removes some gas but leaves residual volatiles in solution. 187 188 Magma from this phase of the eruption is then injected into the previously emplaced 189 molten flow core causing flow inflation and resulting in substantial uplift of the flow 190 surface. Eventually, the flow comes to a halt with the now volatile-rich inflated 191 magma core. As the lava cools in place, it begins to crystallize, leading to 192 supersaturation of the residual dissolved volatiles that remain in the injected flow core. 193 This second boiling generates exsolved gas that produces massive quantities of 194 vesicles, both at the top and bottom of the cooling central flow core. This results in the production of very vesicular to foamy layers, accompanied by further flow 195 196 inflation of many meters, and causing flexing of the cooled upper crustal layer. 197 Consequently, in turn, crustal fractures are created permitting the extrusion of 198 magmatic foams onto the surface, driven by the buoyancy of the vesicle-rich magma. 199 The result is the extrusion of the magmatic foam through the cracks to form the 200 circular dome-like mounds on the surface. The extrusion is accompanied by 201 subsidence of the surrounding surface and the solid crust below the extruded mound, in response to displacement of the foam. This subsidence is interpreted to form the 202 ring moats surrounding the mounds. 203 204 Second boiling and inflation are commonly seen in many large basaltic flows on 205 Earth, but RMDS formation should be facilitated on the Moon in all lava flows

206 greater than \sim 50 km length and thicknesses more than \sim 10 m by several factors: 1)

9

207	lunar basalts have low viscosity compared with terrestrial ones; 2) the predicted high
208	effusion rates in typical lunar eruptions; and crucially, 3) the lack of a lunar
209	atmosphere. Furthermore, the formation of extremely vesicular foams (the
210	consequence of low lunar gravity and absence of an atmosphere), is unique to the
211	lunar environment and permits both upward flexing and fracture of the upper thermal
212	boundary layer surface of the lava flow, and the extrusion of the foam to form the
213	distinctive RMDS mounds.
214	The RMDS emplacement model of Wilson et al. (2009) outlined above (see
215	synthesis in their Figure 5) is characterized by numerous implications that could be
216	formulated as hypotheses to be tested in future studies and exploration to assess,
217	discard, or modify:
218	1) <u>Shape of Domes</u> : Foam extrusion from cracks in the uplifted summit of the
219	underlying lava flow crust should generally lead to near circular-shaped domes. This
220	is because the final radius of the dome is likely to be significantly greater than the
221	linear extent of the fracture in the lava crust through which the foam is extruded; the
222	non-Newtonian rheology of the foam, specifically its yield strength, means that its
223	lateral spread is driven by the vertical accumulation of the bulk foam mass rather than
224	the detailed shape of the fracture.
225	2) Size Variability of Individual Domes and Their Moats: The formation process
226	of domes involves the redistribution of a volume of vesicular lava from the lava flow
227	interior onto its surface. The material will undergo a change in its bulk density upon

228	emplacement, but the overall volume change and its variability should be small, and
229	the volumes of each dome and its surrounding moat should be similar.
230	3) Variations in RMDS Shape: It has been shown that lava flow surface
231	topography can vary in height by several meters over tens of meters horizontal scales
232	(Kreslavsky et al., 2017) caused by the flow encountering earlier flows or pre-flow
233	impact craters during its emplacement. Asymmetry in RMDS shape and alignment
234	could be due to the intruding lava responsible for some RMDS extrusions diverting
235	around high points or flowing preferentially into elongate topographic lows. Careful
236	analysis of any such irregularities in RMDS clusters could lead to a better
237	understanding of the host flow emplacement and evolution process.
238	4) <u>RMDS Alignment</u> : Patterns of linearity and alignment of individual RMDSs
239	might be anticipated due either to fractures in distal flows caused by a) unusually
240	extensive pre-eruption topographic variations or b) major internal magma pathways
241	formed during late-stage inflation and second boiling. Such linear patterns should be
242	investigated in further analysis of individual RMDS clusters.
243	5) Immediate Post-Emplacement Deformation of Domes: The second boiling
244	process that leads to RMDS formation occurs in a lava flow that has come to a halt
245	and is cooling and solidifying, and thus RMDSs are predicted not to show any
246	deformation by shearing due to any lateral flow movement.
247	6) Composition/Mineralogy of Domes and Host Lava Flows: The basic
248	composition and mineralogy of the domes and the host lava flows should be very

249	similar, but the domes themselves should contain a higher proportion of glass shards
250	due to the fragmentation of the magma emerging from the surface crack at the start of
251	dome growth.
252	7) Nature of Dome Material: RMDS dome material is predicted to be a basaltic
253	lava foam characterized by a vesicularity of \sim 50–60%. This range is dictated by the
254	requirement that to explain the dome morphology the foam must have a vesicularity

255 that is large enough (>30-40%) to ensure a significant yield strength and viscosity, but

- 256 is small enough ($<\sim75\%$) to ensure that the foam does not disintegrate under shearing
- 257 forces.

8) Initial Upper Layer of Dome Material: Dome material should be overlain by 258 259 an "autoregolith", a layer of shattered foam caused by eruption into a vacuum,

260 composed of a mixture of loosely packed glass shards and chilled magma droplets up

to a few meters-thick and with $\sim 30\%$ void space, the amount expected for any 261

262 unwelded accumulation of irregular brittle fragments.

9) Dome Stratigraphy and Regolith Development: What is the "regolith protolith" 263

(Head & Wilson, 2020) of the domes, the stratigraphy of the substrate immediately 264

following their emplacement? The Wilson et al. (2019) model predicts that the 265

regolith protolith stratigraphy will consist of an upper layer of "autoregolith" up to 266

- 267 several meters thick, overlying a layer of very vesicular (~50-60%) foamy basalt,
- 268 with this in turn overlying the upper chilled thermal boundary layer of the initially
- emplaced RMDS-host lava flow. There are uncertainties in both the thickness of the 269

extruded vesicular/foamy lava and the topography of the underlying solid basalt flow
top. Wilson et al. (2019) considered two models for the topography of the underlying
host basalt layer, one in which it was uplifted (favoring shedding of the extruded
vesicular/foam layer and solid lava flow exposure nearer the dome summit) and one
in which it subsided (favoring thickening of the vesicular/foam layer near the mound
summit).

276 10) Predicted Nature of Post-Mound Impact Craters: Subsequent superposed 277 impact craters should initially encounter an autoregolith layer up to several meters 278 thick; small craters should look very similar to those in mature regolith with few to no 279 associated boulders. Larger craters should penetrate to the vesicular/foam layer and their shape could be influenced by the amount of vesicularity; foamy lavas are 280 281 predicted to behave more like an aerogel, with energy partitioning favoring crushing 282 over ejection, with associated effects on crater depth and shape, perhaps producing 283 narrower, dimple like structures in this part of the target substrate. Even larger craters 284 will penetrate the uplifted (or sagged) top of the host lava flow and thus should look 285 like normal craters superposed on the adjacent host lava flows. Careful analysis of this 286 range of crater sizes could lead to both a testing of the hypothesis and an improved 287 understanding of the actual emplacement processes and resulting stratigraphy. 288 11) Predicted Nature of Post-Moat Impact Craters: The RMDS moat marks the 289 boundary between the extruded dome and the approximate edge of the uplifted or sagged host lava flow upper layer. Therefore, at and inside the moat, the stratigraphy 290

13

291	should be that of the dome, as described above. This should lie in contrast to the
292	substrate characteristics at and outside the moat, which would be dominated by the
293	regolith protolith of the upper solid host mare basalt layer. Impact craters that are
294	superposed on the RMDS boundary are predicted to reflect these differences in
295	RMDS and host-basalt substrates. The portion of the superposed crater in the
296	host-basalt substrate should appear similar to a normal mare basalt regolith crater, but
297	the portion of the superposed crater in the dome material should be much less distinct,
298	with a poorly formed rim crest and ejecta deposit due to the unusual nature of the
299	initial autoregolith and extruded vesicular/foam layer. These contrasting
300	characteristics should be further enhanced by the potential downslope movement of
301	fragmental dome material due to the somewhat steeper slopes of the dome flanks.
302	12) Predicted Differences Between Post-RMDS and Post-Host Mare Basalt Flow
303	Impact Craters: Potentially, the morphology and morphometry of impact craters
304	superposed on the host mare basalt substrate and the domes could be used as a
305	first-order test of the Wilson et al. (2019) extruded vesicular/foam layer hypothesis for
306	the origin of RMDSs. This test is made more difficult, however, by the complex mode
307	of emplacement and autoregolith formation, as well as the uncertainty in the uplift and
308	sagging of the host basalt surface underlying the domes. Very careful analysis of these
309	superposed craters based on the criteria outlined above can serve to test the hypothesis
310	further and even potentially derive an improved understanding of the model
311	uncertainties.

312	13) Further Tests of the Flow Inflation/Second Boiling RMDS Model: A
313	characteristic of the Wilson et al. (2019) extruded vesicular/foam layer hypothesis for
314	the origin of RMDSs is that the host flow substrate consists of a highly vesicular lava
315	flow core underlying the upper cooled layer of the mare basalt flow, and that the
316	deformation of this layer led to the extrusion of parts of this core to produce the
317	RMDSs. Implicit in this interpretation is the fact that the interior of the flow could
318	have a very high micro- and macro-porosity remaining upon cooling and
319	solidification, thus consisting of potential void spaces, particularly where the solid
320	basalt layer has been fractured and tilted and the magma below the upper layer has
321	been extruded. In a somewhat analogous case of a small shield volcano late-stage
322	summit crater evolution at Ina, Qiao et al. (2019) and Wilson et al. (2019) have called
323	upon such macroporosity to enhance regolith drainage into the underlining voids to
324	explain similar mound-moat relationships.
325	However, detailed mapping of the relationship of RMDSs to the host mare basalt
326	substrate has revealed examples where individual RMDSs appear to embay circular
327	depressions in the host substrate (Basilevsky et al., 2019). The superposition of
328	RMDSs over craters (RMDS-crater-overlap) suggests that the specific
329	crater-embaying RMDSs may be younger than both the mare substrate and the crater,
330	pointing to an extended time (of unknown duration) that might have occurred between
331	the host mare basalt substrate emplacement and the formation of the domes. This
332	study thus aims to use both morphometric analysis and a topographic diffusion model

333	to date some small craters (100-300 m in scale) which are partially overlapped by
334	RMDSs (Figures 2 and 3). Our results show that the emplacement of this
335	RMDS-related volcanism may have occurred up to several hundreds of millions of
336	years ago (i.e., 130-1500 Ma), thus challenging the present consensus on the thermal
337	evolution model of the Moon, which places an upper limit for the cessation of mare
338	volcanism at ~2.0 Ga ago (e.g., Spohn et al., 2001; Ziethe et al., 2009).
339 340	4. Data and Methods
341	The high-resolution Lunar Reconnaissance Orbiter Camera (LROC) NAC
342	images (Robinson et al., 2010) at 0.42-1.5 m/px (to date the highest spatial resolution
343	available from lunar orbit), and 2 m/px NAC-based DTMs constructed using shading
344	method (see the detail by Zhang et al. (2020) and references therein) were used in this
345	study. All the raw and calibrated NAC image data are accessible via the NASA
346	Planetary Data System (PDS), and calibrated and projected using the USGS ISIS
347	software. These images were then investigated using the software ArcGIS 10.6. We
348	relied on the comprehensive analysis of the distribution and characterization of
349	RMDSs as outlined in Zhang et al. (2020).
350 351	4.1 Age Estimation from Crater Morphometry
352	The ages of the craters superposed by RMDSs, which are relatively younger, can
353	be estimated based on crater morphology, morphometry, and size relations
354	(Basilevsky, 1976). The RMDS heights (h), height/diameter ratios (h/D) and
355	maximum steepness of their slopes (β), as well as the crater depths (d), depth/diameter

356	ratios (d/D) and maximum steepness of inner slopes (α) were measured from
357	NAC-based DTMs. For impact craters, these parameters allow us to approximately
358	estimate their absolute ages (Basilevsky et al., 2019) and thus evaluate if the RMDSs
359	formed during the time of the basaltic plains infill or later.
360 361	4.2 Age Estimation from a Topographic Diffusion Model
362	Another method that can be used to constrain the age of a lunar crater is to
363	determine its degradation state by using a topographic diffusion model. Fassett and
364	Thomson (2014) determined the degradation state of about 13,000 lunar craters on the
365	lunar maria, implicitly assuming that the diffusivity was independent of crater size.
366	Linking their measurements of the degradation states to surface ages, they derived a
367	relationship between degradation state and crater age. More recent work, however,
368	showed that diffusivity varies with crater diameter (Fassett et al., 2018; Xie et al.,
369	2017). Considering this updated crater size-dependent topographic degradation of
370	lunar craters, Fassett et al. (2018) revised the relation of Fassett and Thomson (2014)
371	as:
372 373 374	$K_{1000m}(t) = 363.58t^5 - 2954t^4 + 8953t^3 - 13814t^2 + 16695t \tag{1}$
375	where K_{1000m} is the diffusion age of a crater with a diameter of 1000 m which is
376	defined as the product of diffusivity and time (Fassett & Thomson, 2014), and t is
377	time in Ga. The model of Xie et al. (2017) gives the relation between K_{1000m} and the
378	diffusion age of a crater with an original diameter of D_0 :
379	

$$K_{1000m} = \left(\frac{1000}{D_0}\right)^{0.93} K(D_0) \tag{2}$$

382 To determine the diffusion age of each RMDS-superposed crater, we used the approach of Fassett and Thomson (2014) as follows: first, the profile of a 383 384 RMDS-embayed crater was derived from a detrended DTM (which is the difference 385 from the DTM to the pre-impact surface). The pre-impact surface is constructed by 386 fitting a plane to the elevation data beyond 1.5 radii from the crater center. The 387 regions used for the extraction of topography are shown as blue polygons in Supplementary Figure S1. Second, a database of crater profiles in various degradation 388 389 states was derived from the topographic diffusion model for D = 50 m to 400 m 390 craters using the initial crater profile model of Xie et al. (2017). Finally, we found the 391 profile from the database that best matches the profile of each RMDS-embayed crater 392 derived in the first step. The best-fitting profile provides estimates of the original 393 diameter (D_0) and the diffusion age $(K(D_0))$ of an observed crater. By using Equation 394 (2), we derived K_{1000m} from the $K(D_0)$, and then by solving Equation (1) we obtained 395 the estimated age of the crater. 396 397 4.3 Age Estimation from Using a Locally Calibrated Monte Carlo Model 398 The diffusion rates taken from the literature and used in the previous sections 399 (see Section 4.2) to estimate the ages of the small impact craters overlapped by 400 RMDSs were all derived from global considerations. Furthermore, a general 401 expression for the dependence of the diffusion rate κ on the crater diameter D has not 402 been established yet. Hence, we assumed a dependence in the form of a power law

403	$\kappa = b D^a$ (Fassett et al., 2018) and determined the parameters <i>a</i> and <i>b</i> based on the
404	cumulative size-frequency distribution (CSFD) of an area located close to the
405	RMDS-overlapped crater. The Monte-Carlo cratering model introduced by
406	Bugiolacchi and Wöhler (2020) was then adapted to the observed CSFD, thus
407	yielding the parameters a and b for the region under study. In turn, these locally
408	calibrated parameters allow for an estimation of the ages of craters overlapped by
409	RMDSs.
410	For counting the craters, we build upon the deep-learning-based automatic
411	detection algorithm introduced by Wilhelm and Wöhler (2021). The original method
412	relies on a convolutional neural network (CNN) that is applied to windows of variable
413	size extracted from an LROC NAC image. In this study, however, to achieve
414	robustness concerning variable illumination conditions, we trained the CNN to
415	high-resolution LROC NAC DEM data obtained by shape from shading (Grumpe &
416	Wöhler, 2014; Grumpe et al., 2016; Zhang et al., 2020). The training data for the
417	CNN were extracted from the DEM using the manual crater annotations by Fisher
418	(2014), consisting of a set of 852 crater locations with diameters between 5 and 41 m,
419	determined based on a LROC NAC image. The LROC NAC DEMs presented by
420	Zhang et al. (2020) have a pixel size of 2 m. As the technique of Wilhelm and Wöhler
421	(2021) is specifically favorable for detecting small craters of about 5-10 pixels size,
422	the LROC NAC DEM under study was presented to the CNN in 23 down-sampled
423	resolution levels covering a factor of 12, so that all craters between 10 and 100 m

424 diameter were detected with virtually the same probability. Since most craters are 425 detected several times on different resolution levels with slightly different estimated 426 center positions and/or diameters, a clustering stage is used to aggregate multiple detections of the same crater. For further details about the algorithm see Wilhelm and 427 428 Wöhler (2021). The automatic crater counts were then used to construct the CSFD of 429 the examined region in the crater diameter interval of 10-100 m. 430 To obtain parameters a and b, we used the Monte-Carlo cratering model of 431 Bugiolacchi and Wöhler (2020). This model simulates the population of small craters 432 with diameters between 10 and 100 m over time by adopting the cratering rate and 433 production function of Neukum et al. (2001), where the number of craters per 434 diameter interval is modeled by a Poisson distribution whose mean is defined by the production function. Given the values of a and b, a diffusion rate and thus a lifetime 435 436 can be assigned to each crater according to its diameter. Based on Fassett et al. (2014) it is straightforward to show that the crater lifetime T_{life} is given by 437

438
$$T_{\text{life}} = \frac{T_{\text{life}}^{(0)} \kappa_0}{D_0^2 b} D^{2-a}$$
(3)

439 with $T_{\text{life}}^{(0)}$ as the lifetime of a crater with diameter D_0 for a diffusion rate κ_0 , where 440 D_0 and D are given in km. Assuming that the lifetime of a crater is reached once its 441 depth has fallen below 1% of its initial diameter, we found by numerical integration of 442 the standard diffusion equation (e.g., Fassett & Thomson, 2014) that for a crater with 443 $D_0 = 0.3$ km and $\kappa_0 = 7 \text{ m}^2/\text{Ma}$ it is $T_{\text{life}}^{(0)} = 3.07$ Ga, assuming the initial 444 cross-sectional crater profile proposed by Fassett et al. (2014). The factor $\frac{T_{\text{life}}^{(0)}\kappa_0}{D^2}$ in

445	equation (3) is a dimensionless normalization constant whose value is 0.239,
446	independent of the chosen values of κ_0 and D_0 . The diffusion equation determines
447	that the value of $T_{\text{life}}^{(0)}$ is proportional to D_0^2 and to $1/\kappa_0$, so that the value of the
448	normalization constant does not change upon variations of κ_0 and D_0 .
449	At each time step of the simulation, it is checked for each crater if its age
450	exceeds its lifetime; if this is the case, the crater is marked as invisible. Other
451	mechanisms to make a crater disappear are destruction by a new larger crater and
452	covering of the crater by the ejecta of a new larger crater. In our simulations, we
453	found that these mechanisms are 2-3 orders of magnitude less efficient than diffusion
454	for the diffusion rates inferred for our three regions under study (see Table 1). Our
455	model also takes into account the gradual increase of the crater diameter over time
456	(Bugiolacchi & Wöhler, 2020; Xie et al., 2017). At any desired time step, a CSFD can
457	be extracted from the simulated crater population. For the crater diameter interval of
458	10-100 m, we found for any reasonable choice of a and b that yields values for the
459	diffusion rate comparable to the literature (e.g., Fassett et al., 2014) that the CSFD
460	converges into an equilibrium state after at most 100 Ma.
461	Because of the Monte Carlo nature of our model, the simulated CSFD at a
462	specific moment in time is different for each simulation run. It is thus not possible to
463	fit the cratering model to the observed CSFD with standard, e.g., gradient-based,
464	optimization techniques due to the statistical fluctuations of the error function. Hence,
465	we perform the fitting of the model parameters using a Bayesian optimization

466	technique (e.g., Gelman et al., 2013; Snoek et al., 2012), which is able to cope with a
467	non-deterministic error function. We chose the sum-of-squares deviation between the
468	measured and modeled logarithmic CSFD values as the error function and optimized
469	the logarithms of two diffusion rates κ_{10} and κ_{100} for craters of 0.01 km and 0.1 km
470	diameter, respectively, which are related to the parameters a and b by $a =$
471	$\log_{10}(\kappa_{100}/\kappa_{10})$ and $b = 10^{a + \log_{10}\kappa_{100}}$. The obtained values of κ_{10} and κ_{100} are
472	listed in Table 1. For all three examined regions located close to the
473	RMDS-overlapped craters shown in Figures 2a-2c, respectively, the smallest 2-3
474	diameter intervals are excluded from the fit because they are already influenced by the
475	rollover effect, i.e., an artificial flattening of the CSFD due to incomplete detection of
476	the smallest craters.
477	Apart from computing the lifetime of the RMDS-overlapped craters, the values
478	of a and b found by the Bayesian optimization routine also allow for estimating the
479	actual age of these craters, given their diameters and depths. These dimensions
480	correspond to 0.3 km / 15 m for the RMDS-overlapped crater-containing areas
481	(Figures 2a and 2c) and 0.13 km / 4 m for the area close to the case shown in Figure
482	2b. Using the initial cross-sectional crater profile of Fassett and Thomson (2014) and
483	a diffusion rate of $\kappa_0 = 7 \text{ m}^2/\text{Ma}$, we found that a crater of diameter $D_0 = 0.3 \text{ km}$
484	needs a time of $T^{(0)} = 630$ Ma and 1040 Ma, respectively, until it reaches these
485	depth/diameter ratios. Since the time needed by a crater to reach a certain degradation
486	state is proportional to the squared diameter D^2 and inversely proportional to the

487 diffusion rate κ , the crater age T is then given by:

488
$$T = \frac{T^{(0)}\kappa_0}{D_0^2 b} D^{2-a}$$
(4)

5. Results

5.1 RMDS-Impact Crater Embayment Relations

492	The RMDS-crater-overlap examples (red stars, Figure 1; see also other candidate
493	cases in Supplementary Figure S2) were identified from spectrally defined mare units
494	older than 2.0 billion years based on crater size-frequency distribution (CSFD)
495	measurements (Hiesinger et al., 2006; 2011). The features in Figures 2a-2d are in
496	Maria Tranquillitatis, Humorum, Fecunditatis, and Tranquillitatis, respectively,
497	corresponding to the mare units T26 (3.46 Ga), H6 (3.46/3.75 Ga), F7 (3.34/3.62 Ga),
498	and T18 (3.62 Ga) defined by Hiesinger et al. (2006, 2011). The two cases in Figures
499	2e and 2f are in Imbrium mare unit I30 (2.01 Ga). Clearly, if RMDSs had formed
500	concurrently with the emplacement of these mare lava flows, they would have ages
501	comparable to those of their hosting mare units, i.e., > 2.0 Ga (Supplementary Figure
502	S3). Therefore, these embayment relationships alone would contradict the hypothesis
503	of synchronous formation of the mare basalt host unit and the associated RMDSs
504	(Wilson et al., 2019; Zhang et al, 2017, 2020; see Section 3 for more details).
505	
506	5.2 Degradation Ages of Impact Craters Embayed by RMDSs
507	Morphologic and morphometric characteristics suggest Copernican-aged (<1000
508	Ma) basaltic mare volcanism associated with RMDSs. Figure 2 presents six cases
509	when RMDSs appear to be superposed on adjacent craters. A three-dimensional
510	rendering based on NAC-derived DTMs is shown in Figure 3. NAC DTM-based

511	topographic profiles extracted along the lines cutting across these craters and the
512	RMDSs can be found in our supplementary Figures S4-S9. The statistical results
513	obtained according to the topographic information are listed in Table 2. The D and d
514	of both craters superposed by RMDSs in Figures 2a and 2c are \sim 300 m and \sim 15 m
515	respectively, resulting in a d/D \sim 0.05 with a maximum steepness of the inner slope, α ,
516	of ~9°. This type of crater belongs to the morphologic class C defined by Basilevsky
517	(1976), corresponding to an age between 750 and 1500 Ma (Figure 4 and Table 2).
518	The crater in Figure 2b is \sim 130 m in diameter with a shallow depth of 4 m, d/D
519	of 0.031 and α about 6-8°. Its estimated age appears to be in the range of ~160-320
520	Ma. Figure 2d shows a RMDS of a size of 140 x 160 m and a height of 1-1.5 m,
521	overlapping a 140 m crater. This RMDS-superposed crater has d \sim 7-9 m, d/D =
522	0.04-0.06, and a maximum inner slope angle of 8-9°. It is classified as a type C crater
523	in its intermediate phase of destruction (Basilevsky, 1976), thus giving an age of
524	around 200-300 Ma and, consequently, requiring an even younger age for the
525	superposed RMDS. Therefore, the RMDSs that superposed these craters should be
526	younger than these age values, thence, the crater ages provide a maximum age for the
527	RMDS emplacement events.
528	The RMDS in Figure 2e is 2-3 m tall, ~170 m across and superposed on a crater
529	with D ~100 m. Its slopes are 2-3° to 8-10° (at the contact with the crater). The
530	embayed crater has a depth (d) of 5-6 m with a range of d/D values of 0.05-0.06, and
531	its inner slopes are up to 8-10° steep. Morphologically, it belongs to the crater of class

C (Basilevsky, 1976; Figure 4) in the first half of its life, corresponding to an age of

532

533

200-300 Ma.

534	The RMDS in Figure 2f is characterized by an elliptical shape in plain view, with
535	a dimension of 230 x 280 m, and the diameter D of the crater superposed by the
536	RMDS is ~135 m. The RMDS is only ~2 m high and its slopes just up to $3-4^{\circ}$ steep.
537	The depth of the crater is ~5-7 m, and so the ratio $d/D > 0.04$. The maximum inner
538	slope angle of the crater is \sim 7-8°. It belongs to craters of class C and its age is
539	${\sim}200{\text{-}}300$ Ma (Figure 4 and Table 2), and thus, the age of the embaying RMDS should
540	be < 200-300 Ma.
541	
542	5.3 Diffusion Model Ages for Impact Craters Embayed by RMDSs
543	Based on a topographic diffusion model (Fassett & Thomson, 2014; Xie et al.,
544	2017), degradation states for the six craters of different sizes which are embayed by
545	RMDSs to varying degrees, were derived using ~ 2 m/pixel NAC DTMs. Their crater
546	topography (Supplementary Figure S10) and model fits results are shown in Figure 5
547	and Table 2. The ages of RMDS-embayed craters range from 130 to 1000 Ma. There
548	is a positive correlation between the ages and diameters of these craters superposed by
549	RMDSs, possibly because smaller craters preferentially sample younger ages, as the
550	lifetime of craters increases with size (Xie et al., 2017). These findings provide
551	additional support for a younger age of RMDS emplacement (Figure 4), uncoupled
552	from the surrounding mare infill events.
553	5.4 Simulation Results from Using a Locally Calibrated Monte Carlo Model

554 Simulation results for the RMDS-impact crater embayment areas (Figures 2a-2c)

555	obtained with the median values of κ_{10} and κ_{100} are shown in comparison with the
556	observed CSFDs in Figure 6. The distributions of the resulting lifetimes and ages of
557	the RMDS-overlapped craters in the three areas (i.e., areas located close to the
558	RMDS-overlapped craters in Figures 2a-2c, respectively) are shown as boxplots in
559	Figure 7. The inferred median ages of the RMDS-overlapped craters are all younger
560	than 200 Ma, and the upper marginal values of the distributions are below 500 Ma.
561	These crater age values are upper limits to the ages of the overlapping RMDSs, again
562	providing additional evidence for favoring the young age (i.e., Copernican in age,
563	<1.1 Ga) of RMDS-formation-related mare volcanism.
564	
565	6. Discussion
566	The detailed hypothesis for RMDS formation concurrent with the host lava flow
567	(e.g., Wilson et al., 2019) has been described in Section 3. We now outline in more
568	detail: 1) the list of observations that conflict with the prediction of the concurrent
569	RMDS-host lava flow formation; and 2) a set of observations that any hypothesis for
570	the young origin of RMDSs relative to their host basalt unit must address. We
571	conclude with a set of research and human/robotic mission goals and objectives that
572	could help to resolve the age conundrum for the formation of RMDSs.
573 574 575	6.1 Contradictions to Predictions of the Contemporaneous Host-Lava Flow-RMDS Formation Model
576	Several observations contradict the predictions of the Wilson et al. (2019) model
577	of the contemporaneous formation of the host lava flows and RMDSs. Examination of

578	the relation between RMDSs (diameters in the range of hundreds of meters) and
579	impact craters of about the same size and smaller shows that numerous case studies
580	selected from a large population pool of more than 8,000 RMDSs (Figure 1; Zhang et
581	al. 2020) support the occurrence of eruptive volcanism on the Moon much younger
582	than proposed by the model. Additionally, as estimated by Fassett and Thomson (2014)
583	and others, the smaller-than-300 m crater retention ages for the Moon are consistent
584	with ages substantially younger than 3.0 Ga. Furthermore, according to the current
585	understanding of small lunar crater degradation rates based on diffusivity models (e.g.,
586	Fassett & Thomson, 2014; Xie et al., 2017), some craters embayed by RMDSs are so
587	small (even less than ~150 m diameter, Figure 2 and Supplementary Figure S2 for
588	other candidate examples) that they could not have survived for 3 Ga. Based on the
589	NAC-derived digital terrain models (DTMs, Grumpe & Wöhler, 2014; Grumpe et al.,
590	2016), the model ages of RMDS-superposed small craters can be inferred from
591	topographic measurements (Basilevsky, 1976) and a topographical diffusion model
592	(Xie et al., 2017). However, given the widespread distribution of the RMDSs across
593	lunar mare surfaces, these potential younger ages have implications that would
594	revolutionize our models of the thermal history of the Moon (Shearer et al., 2006). We
595	also explored morphologically similar endogenetic crater features occurring in
596	terrestrial basaltic lava flow fields and cannot rule these out, but even if the features
597	embayed were not typical impact craters, the required billions of years lifetime of
598	such small depressions appear unlikely. We now turn to several lines of evidence and

Could the examples of identified RMDS-embayed craters (e.g., Basilevsky et al.,

additional related factors, and address them individually.

600

602

601 6.1.1 RMDS-Impact Crater Embayment Relations

603 2019; Figures 2 and 3) have formed during host lava flow emplacement (for example,

after the emplacement of the flow but before its final inflation, cooling, second

- boiling, volatile release and RMDS eruption)? Wilson et al. (2019) estimate that the
- duration of flow emplacement and solidification is of the order of less than several
- 607 years, and thus it is: 1) highly improbable that an individual superposed impact crater
- 608 would form during this extremely short period (even in a period of relatively higher

flux; Stöffler et al., 2006); and 2) also highly improbable that such an impact crater

610 would survive over three billion years of subsequent regolith development.

- 611 Could the RMDS-embayed craters be contemporaneous with flow emplacement
- and be of endogenetic origin? Inflation features in terrestrial basaltic lava flow fields

613 provide clues as to the mode of formation of crater-like depressions. Some

- 614 endogenetic surface depressions represent circular lava-rise (or inflation) pits (Figure
- 615 8) formed by the vertical inflation of the host lava flow around local topographic
- 616 highs on the pre-flow surface, leaving a depression (e.g., Hamilton et al., 2020;
- 617 Walker, 1991). In other cases on Earth, lava mounds, all high areas within a lava field,
- are sometimes locations for the formation of small drained sub-lava-crustal lava caves

619 (Grimes, 2002), whatever the process of mound formation.

620 In addition, in the RMDS contemporaneous formation model, the RMDSs could

621	collapse due to the removal of the pressure or withdrawal of melt that caused their
622	eruption. An array of circular to irregular-shaped collapses or depressions associated
623	with RMDSs has been observed during our investigations (Zhang et al., 2017, 2020).
624	This could also be comparable to a range of variation among tumuli displaying
625	summit cracks and various types of collapse (e.g., Ollier, 1964; Walker, 1991).
626	Terrestrial basaltic lava flow fields emplaced by inflation commonly display
627	depressions of variable shapes. For example, the Aden flows, located in south-central
628	New Mexico, covering an area of \sim 75 km ² consist of thin vesicular flows (De Hon &
629	Earl, 2018; Hoffer, 1976). The Aden inflated flows are pock-marked with inflation
630	pits 20 to 150 m across and 4 to 5 m deep (Figure 8). They are characterized by gentle
631	interior slopes caused by the continuous extensional collapse of the marginal crust. In
632	some areas, molten rock withdrew from subterranean spaces (such as drained lava
633	tubes), leaving voids into which the surface collapsed, forming a series of collapse
634	pits/depressions.
635	On Earth, dimple-shaped drainage craters (Greeley, 1970) and raised-rim
636	collapse craters (Greeley & Gault, 1979) were found in basaltic lava flows and
637	interpreted as endogenic morphologies formed in association with lava tubes.
638	However, previous studies (e.g., Greeley & Gault, 1979) often misinterpreted
639	lava-rise or inflation pits (Walker, 1991) as collapse depressions. Impact crater-like

640 profiles are expressed through several inflation pits (e.g., Figure 8). Nevertheless,

641 whether their formation was related to lava tubes or not, collapsed craters should also

642	exist on the Moon and other planetary surfaces where basaltic volcanism has once
643	occurred and have an appearance practically indistinguishable from small impact
644	craters (e.g., 100 m or smaller). Collapse crater size is mostly governed by the lava
645	flow thickness (e.g., Greeley & Gault, 1979) and subsurface tube dimensions. Lunar
646	basaltic lavas are more fluid than the terrestrial equivalent (Williams et al., 2000), and
647	more collapse craters tend to form in these, relative to more viscous flows (Greeley &
648	Gault, 1971).
649	Terrestrial inflation and collapse pits appear to be most frequent on inflation
650	plateaus, whereas circular mound-like positive features are also found to coexist with
651	these negative features. An inflation plateau (Figure 8) represents a topographically
652	flat-topped uplift resulting from a kind of uniform "inflation" by injection of lava
653	beneath a rigid upper crust (Hon et al., 1994; Walker, 1991; Wentworth & Macdonald,
654	1953). During the repeated inflation process (Self et al., 1998; Wilson et al., 2019),
655	interior hot lava can reach the surface via cracks in the flexing lava crust which
656	formed when the interior pressure exceeds the tensile strength of the overlying cooled
657	flow layer. Crater-like forms and circular tumulus-like structures (yellow and white
658	arrows in Figure 9) on inflation plateaus in the Amboy lava flow field, Mojave Desert,
659	California, reveal various inflation-caused positive and negative features formed
660	during flow emplacement. Some tumulus-like structures show degraded appearances
661	to varying degrees (red arrows, Figure 9). Among these, one shows a central collapse
662	pit filled with sand/dust deposits (the upper red arrow, Figure 9), while the lower one

663	has evolved into a circular collapse depression with a broken, blocky rim (the lower
664	red arrow, Figure 9). These circular negative and positive features on the inflationary
665	lava flow surface provide potentially good analogs for RMDS and crater formation
666	that are very likely to have occurred in basaltic lava flows on the Moon. A better
667	description of the nature of such negative and positive features, both of which are
668	endogenic in origin, is of geologic importance for the full understanding of
669	inflationary features that might have occurred on the Moon, and that might have
670	produced essentially simultaneous circular endogenetic surface depressions into
671	which near-contemporaneous RMDSs might have flowed. Thus, simultaneous
672	endogenetic depressions cannot be ruled out as a candidate to explain the
673	RMDSs-superposed crater-depression embayment relationships (e.g., Figures 2-3 and
674	Supplementary Figure S2).
675	In addition, the RMDS-superposed depressions have impact crater-like raised
676	rims, similar to those of terrestrial collapsed tumuli with broken and blocky raised
677	rims (De Hon & Earl, 2018; Ollier, 1964). This also allows the possibility that
678	RMDS-superposed craters might be of non-impact origin. Lunar craters that are
679	partially superposed by RMDSs have more gentle interior slopes (commonly < 10°,
680	Section 5.2). The Aden basalt is very young (middle to late Quaternary) with a
681	surface-exposure age of only about 0.2 Ma (Anthony & Poths, 1992); thus, the
682	comparison with the RMDSs-laden flows of hundreds of millions or even billion
683	years ago on the Moon cannot be straightforward. There should be a strong negative

684	correlation between the crater interior slopes and their longevity due to the formation
685	and dynamics of lunar regolith and the fact that lunar topography evolves with time
686	(e.g., Basilevsky, 1976; Fassett et al., 2014). However, if this assumption (i.e., these
687	RMDS-embaying craters were of collapse in origin) is proven to be correct, then the
688	question remains as to how such small craters could have survived billions of years of
689	regolith development on the Moon if the RMDSs had formed concurrently with their
690	host maria (Zhang et al., 2017, 2020; Wilson et al., 2019). We address this question in
691	the following section.
692	Could the RMDS-embayed craters be some sort of post-RMDS impact event,
693	with land sliding and mass wasting then occurring to produce an apparent embayment
694	relationship? For example, could the RMDS-overlapped craters (Figure 2) have
695	formed after the RMDSs? In this scenario, the crater formation event might have
696	triggered landslides of RMDS materials into the craters, creating an apparent
697	embayment relationship, thus weakening the hypothesis of a late-stage formation of
698	the RMDS. However, the very gentle slopes (a few degrees only) typical of the
699	RMDSs are probably not steep enough to trigger landsliding. Nonetheless, an
700	improved understanding of how post-impact-crater formation mass wasting could
701	modify and shape the RMDS-associated morphologies is necessary to fully address
702	this relationship. Mass wasting and the possible role it played in shaping
703	RMDS-hosting lava flow morphology in inflated mare regions is an important topic
704	that needs more research.

705	In summary, stratigraphic relationships show multiple examples of RMDSs that
706	clearly appear to be stratigraphically superposed on circular depressions (Figures 2-3
707	and Supplementary Figure S2), and, consequently, to have formed later. Based on
708	flow cooling and solidification time, such depressions are unlikely to be of impact
709	origin that occurred simultaneously with flow emplacement. Endogenetic craters that
710	form simultaneously with the host lava flow are well-known in terrestrial lava flow
711	fields and cannot be ruled out as a contributing factor to these RMDS-crater
712	embayment examples. Taken together, however, these crater embayment relationships
713	strongly suggest that RMDS formation did not occur simultaneously with host lava
714	flow emplacement, thus apparently invalidating the hypothesis (Wilson et al., 2019)
715	of flow inflation and second boiling for contemporaneous emplacement of the host
716	lava flow and extruded RMDSs. Having assessed the relative ages of these
717	RMDS-embayed crater examples, we now turn to an analysis of the morphology and
718	morphometry of the embayed craters to assess their absolute ages and to estimate the
719	amount of time between host lava flow emplacement and emplacement of the
720	superposed RMDSs.
721 722 723	6.1.2 Degradation Age of Impact Craters Embayed by RMDSs from Morphometric Analysis
724	A summary of the crater-degradation age dating results (see Section 5.2) and
725	their implications for the maximum ages of the superposed RMDSs that embay them
726	is shown in Figure 4 and Table 2. The craters, which are interpreted to be of impact
727	origin and to have undergone typical degradation rates since their formation 33

728	(Basilevsky, 1976), have maximum ages of hundreds of millions of years. Thus they
729	are likely to have formed in the Copernican Period, significantly post-dating the
730	formation of the mare basalt host units, and raising questions on the hypothesis for the
731	simultaneous formation of RMDSs and their host mare basalt unit (e.g., Wilson et al.,
732	2019).
733	
734 735	6.1.3 Lateral Diffusion and Erasure of Small-Scale Topography: Age Estimation from Topographic Diffusion Models
736	Based on a topographic diffusion model (Fassett & Thomson, 2014; Xie et al.,
737	2017), the degradation states for the six craters of different sizes (Figures 2a-2f)
738	which are embayed by RMDSs to varying degrees, were derived using ~ 2 m/pixel
739	NAC DTMs. Their crater topography (Supplementary Figures S4-S9) and model fit
740	results are shown in Figure 5 and Table 2. The ages of RMDS-embayed craters range
741	from 130 to 1000 Ma. Analysis of crater equilibrium suggests that a period of 1.65 Ga
742	(the absolute model age of northern Sinus Medii; Xie et al., 2017) would be sufficient
743	to ensure that craters smaller than 200 m would be degraded beyond recognition
744	(Xiao & Werner, 2015). Some craters overlapped by RMDSs are so small (even less
745	than ~150 m diameter, Figures 2e and 2f) that they cannot have retained their
746	morphologies for up to 3 Ga, the young age of the majority (peak temporal occurrence)
747	of the maria (Hiesinger et al., 2011) in which the RMDSs are found. The crater
748	degradation models predicted that the maximum lifetime of a $D = 150$ m lunar crater
749	was ~800 Ma (Fassett &Thomson, 2014). These results provide additional support for
750	a younger age of less than 1.0 Ga for these RMDSs.

751 752	6.1.4 Age of Impact Craters Embayed by RMDSs from a Locally Calibrated Monte Carlo Model
753	The diffusion rates used in Section 6.1.3 to estimate the ages of the small impact
754	craters overlapped by RMDSs were derived from global considerations. The
755	Monte-Carlo cratering model introduced by Bugiolacchi and Wöhler (2020) treats the
756	age estimation of craters overlapped by RMDSs locally. The modeling results for the
757	RMDS-impact crater embayment areas (Figures 2a-2c) show that the inferred median
758	ages of the RMDS-overlapped craters are all younger than 200 Ma and the upper
759	marginal values of the distributions are below 500 Ma (Figure 7). These crater age
760	values are upper limits to those of the overlapping RMDSs, given further support to
761	the young age of the RMDS emplacement hypothesis.
762	
763	6.1.5 Age of RMDSs Inferred from Regolith Thickness Development Models
764	In addressing the problem of the formation age of RMDSs, it is worth
765	considering the effect of regolith-forming impact gardening, which influences the
766	entire exposed lunar surface (McKay et al., 1991). Despite their modest height (~3.5
767	m on average for the measured 532 RMDSs; Zhang et al., 2020) and gentleness of
768	their slopes (summit slope <5° and marginal slope up to 10°, Zhang et al., 2020),
769	RMDSs in images with relatively low sun-illumination angle look distinct, with
770	well-defined outlines.
771	A key observation is that RMDSs do not show a sequence of morphologic
772	degradation, as do craters formed on mare surfaces over a long time. Instead,
773	individual RMDSs, RMDS chains, and RMDS clusters formed on host basaltic units

774	of a variety of ages (Hiesinger et al., 2011) are characterized by comparable
775	morphologic sharpness and crispness. For example, nearly all the RMDSs highlighted
776	in this study are located within mare lava plains with absolute model ages of 3.2-3.6
777	Ga, estimated by the spatial densities and size-frequency distributions of superposed
778	craters (e.g., Hiesinger et al., 2011; Morota et al., 2011). How can RMDSs formed
779	simultaneously with their ancient host units retain this comparable crispness if the
780	original units are of different ages and if superposed craters, comparable in scale to
781	RMDSs, are undergoing constant micrometeorite bombardment, degradation, and
782	destruction?
783	Regolith is created by impact gardening of the lunar surface (Shoemaker et al.,
784	1969) and its mean thickness in maria is estimated to be about 4-5 m (e.g., Bart et al.,
785	2011; Basilevsky, 1974; McKay et al., 1991; Shkuratov & Bondarenko, 2001). The
786	process of regolith formation encompasses two interrelated issues: 1) craters are
787	excavated at the impact point by penetration through the regolith into underlying
788	basaltic regolith protolith (e.g., Head & Wilson, 2020), resulting in an increase in the
789	thickness of the regolith in any given region; 2) ejecta from these craters form
790	regolith-like material, which is thicker closer to the crater and progressively thinner
791	with distance. Although a minimal part of the ejecta is ballistically transported to great
792	distances (kilometers and tens of kilometers), a significant part of the ejecta is
793	deposited near the point of impact from a few tens to a few hundred meters depending
794	on the size and velocity of the impactor. This scenario was supported by observations
795 of the thinning of the regolith layer in the rim crest region of relatively large linear depressions (Rima Hadley - Apollo 15; Fossa Recta - Lunokhod 2) where ejecta from 796 797 small craters are scattered in all directions but the adjacent depression is effectively a 798 zone of negative balance of ejected material (Basilevsky et al., 1977; Swann et al., 799 1972). 800 The lunar maria with an average age of ~3.5 Ga (Hiesinger et al., 2011) have 801 since been reworked to a depth of 4-5 m, thus destroying pre-existing features of this 802 height (as most of RMSDs are). Larger features had their topographic relief reduced 803 and were smoothed with a loss of morphological sharpness. RMDSs could have 804 developed their present characteristics in the last 1 Ga only if the cumulative cratering 805 flux had been an order of magnitude smaller in the last 3.5 Ga (e.g., Hartmann et al., 806 2007, their Figure 4). The ejecta excavated from small craters close to the areas 807 surrounding any RMDS would have had a strong influence on the original 808 morphology of RMDSs. Thus, these relationships and factors seem to require that 809 RMDSs should have been very significantly modified or even destroyed if they had 810 formed coincident with peak mare volcanic activity ~3.0-3.7 Ga ago. Regolith 811 development principles would predict that RMDS marginal steep slopes and 812 surrounding ring moats would be locations most sensitive to this type of destruction. 813 Given that many RMDSs, including the cases reported in this study, share a 814 well-preserved morphology (Zhang et al., 2020), we are led to conclude based on regolith development models that any RMDS formed on host-mare basalt units in 815

816	these ancient times would have been degraded and obliterated in the ensuing period of
817	regolith development: consequently, the RMDSs seen in association with these
818	ancient host units were not formed synchronously with these units but must, instead,
819	be relatively young, of Copernican age (from ~1100 Ma to present).
820 821	6.1.6 Density Distribution of Superposed Impact Craters
822	The size-frequency distributions of superposed impact craters on the
823	RMDS-hosting mare units have been used to estimate the Absolute Model Ages
824	(AMAs) of these units (e.g., Hiesinger et al., 2011) and these hosting units are
825	predominantly more than \sim 3 Ga in age, as described above. However, if the evidence
826	points to a much younger age for the specific examples that embay degraded craters,
827	and regolith and diffusional degradation modelling favor a Copernican age for all
828	RMDSs, what then are the AMAs of the RMDSs themselves?
829	Unfortunately, individual RMDSs are too small (average diameter ~200 m) to be
830	dated reliably (e.g., van der Bogert et al., 2015). One approach would be to count
831	superposed craters on RMDSs occurring in large clusters to build up sufficiently
832	robust statistics to make the counts reliable, but such analyses have not yet been
833	undertaken.
834	If RMDSs represented a specific facies of lunar mare basaltic volcanism it would
835	be logical to expect that they formed between 3.9 to 3.3 Ga (e.g., Head & Wilson,
836	2017); this agrees with estimates (Zhang et al., 2017) from counts of craters \geq 300 m
837	on a 60 km ² area containing both RMDSs and adjacent mare surfaces. The absolute

838	model age (AMA) of this "mixture" was estimated to be $3.2 + 0.2/-0.7$ Ga, although
839	this figure was based on counts of only 12 craters. Therefore, counts of smaller craters
840	were also involved (Zhang et al., 2017): producing AMAs of 25 ± 2 Ma for the
841	RMDSs and 36 ± 0.5 Ma for the adjacent mare. However, using small, sub-km
842	diameter impact craters to date very young planetary surfaces is not a scientifically
843	robust methodology, given that their lifespan and distribution are more susceptible to
844	varying degrees of degradation over geological times (Williams et al., 2018).
845	Consequently, the distribution of craters smaller than 300-500 m can be assumed to be
846	in equilibrium, i.e., the crater size-frequency distribution (CSFD) is less steep (slope
847	approximately -2) and lies well below the CSFD predicted by the "de-facto standard"
848	Neukum et al. (2001) model (see, e.g., the CSFD of the planned Chandrayaan-2
849	landing site shown by Sinha et al., 2020; see also Xiao and Werner, 2015).
850	Nonetheless, the difference was explained by Zhang et al. (2017) as being due to
851	"several physical factors related to the target's properties, such as porosity, the
852	thickness of the regolith, the angle of slope, etc., affecting the rate of degradation".
853	The major question, however, remains the alleged very young age. One possibility
854	considered was that they represent "geologically very recent small eruptions occurring
855	several billion years after the emplacement of the mare lava flows" (Zhang et al.,
856	2020). A second scenario considered was that RMDSs are formed from magmatic
857	foams below a cooling lava flow surface and extruded to produce the domes above the
858	solid basaltic flow top as the flow evolved (Wilson & Head, 2017b). Impacts into

that may explain the unusually low AMA. However, as shown by Basilevsky and Michael (2021), impact craters superposed on the analogous mounds in the Ina

small-shield pit crater (Qiao et al., 2019) appear similar in morphology to those in the
surrounding maria.

foamy materials should produce smaller and deeper craters (Wilson & Head, 2017b)

881	typical impacts into magmatic foam suggested by Wilson and Head (2017b). The
882	presence of meter-sized boulders on the rim and inside the crater, and the prominently
883	rounded rim crest both suggest its formation in a stratified target, with fragmental
884	material overlying a more coherent rock target.
885	Figure 11 shows a second case, in which three craters are superposed on a 450-m
886	diameter RMDS. Crater 1 is 170 m in diameter and craters 2 and 3 are each 80 m in
887	diameter; Basilevsky et al. (2019) focused their analysis on craters 2 and 3.
888	The morphologic class (Figure 11a) of crater 1 is C (age ~300-600 Ma;
889	Basilevsky et al., 2019). The 80-m craters 2 and 3 have prominent rims, $d/D = 0.08$
890	and 0.05 and α ~12 and 7 deg.; these are interpreted as craters of morphologic class
891	BC transitional to C (crater 2) and class C (crater 3). The ages of these craters should
892	be ~100-200 Ma (Basilevsky, 1976) or less than 500 Ma (Fassett & Thomson, 2014).
893	The RMDS in Figure 11a should therefore be older than a few hundred Ma.
894	Meter-sized boulders are clearly seen on the rim of crater 2 (Figure 11b), suggesting
895	an age of the order of several tens of Ma (Basilevsky et al. 2015). Topographic
896	profiles of the craters (Figure 11c) appear normal, in contrast to those predicted for
897	impacts into magmatic foam (Head & Ivanov, 2019; Wilson & Head, 2017b).
898	Baslievsky et al. (2019) interpreted the presence of these meter-sized boulders both on
899	the rim and inside this crater to indicate that the superposed crater formation had
900	occurred in a massive rock target, not in thick magmatic foam.
901	In summary, these examples of superposed craters suggest that the RMDS

902 mound substrate is not composed of sufficiently large quantities of extremely 903 vesicular magmatic foams to alter the impact energy partitioning and crater shape of 904 superposing impact craters, casting doubt on simple models of a magmatic foam 905 substrate. 906 907 6.2 The Lack of Inflationary Fracture Features Associated with RMDSs 908 One significant outstanding question regarding the hypothesis of an inflation 909 origin of RMDSs (Wilson et al., 2019; Zhang et al., 2017, 2020) remains the absence 910 of associated fracture features for RMDSs and their host mare unit, an important 911 indicator for inflation mechanism in terrestrial basaltic flow fields. Lunar mare surfaces are mantled by a regolith layer of varying thickness up to ~10 meters (Bart et 912 913 al., 2011, and references therein). The infilling and erasing of fracture/crack features 914 by regolith development over billions of years are likely (Zhang et al., 2020). 915 The magmatic foam model (Wilson & Head, 2017b, 2018; Wilson et al., 2019) 916 provides an alternative explanation for the absence of fractures associated with 917 RMDSs and their host mare unit, and for the difficulty in discerning impact crater-like 918 inflation pits (always with highly fractured margins in cases on Earth (Figures 8 and 9; 919 e.g., Garry et al., 2012 and Hamilton et al., 2020). When a flow is emplaced, a more coherent and cooler boundary layer develops at the interface with both space and the 920 921 cold substrate. As the flow continues to be fed at the source, the surface layer 922 undergoes a process of expansion. The cooling magma will start releasing dissolved 923 volatiles due to the crystallization process. Volatiles will concentrate in the residual

924 magmatic liquid until it reaches saturation, and second boiling begins generating large quantities of small gas bubbles. The consequent volume expansion will cause an uplift 925 926 of the brittle crust, thereby producing varying-size fractures on the flow surface. If 927 these fractures extend into the lava containing the new gas bubbles, those bubbles are 928 exposed to the vacuum and expand rapidly. The expansion process propagates back 929 down onto the core of the flow expanding the original bubbles and creating new ones 930 as the lava becomes exposed to lower pressure. This forces the foam that is being produced up into the cracks towards the surface of the crust, filling up the cracks as 931 932 the foam infiltrates the older surface. Finally, the uppermost part of the foam layer reaches the hard vacuum causing the bubbles to burst, releasing gas, and generating a 933 934 layer of glass fragments. This disintegration process extends down into the spreading 935 foam and this produces a fine-grained fragmental layer with essentially no cohesive 936 strength - a kind of instant regolith (autoregolith; see Head & Wilson, 2020) - at the 937 top of the foam layer (Wilson & Head, 2017b; Wilson et al., 2019). It seems unlikely 938 that this fragmental layer will have a surface appearance that reflects the cracks in the 939 underlying original crust of the flow or even cracks in the foam itself as it cools. 940 RMDSs formed in the Copernican period should have thinning regoliths and relatively undegraded morphologies. Thus, some of these types of formational 941 942 structures could potentially be preserved, depending on the details of models proposed 943 to account for their very young emplacement. Further examination of high-resolution images of RMDSs and their surroundings are required to assess these points as new 944

945 hypotheses are developed for young RMDS formation.

947	6.3 Summary of Evidence for the "Young RMDS Emplacement Model"		
948	Based on the characteristics outlined previously for the population of the RMDS		
949	(Zhang et al., 2017, 2020) and the stratigraphic and morphologic relationships		
950	documented in the specific preceding sections, we now summarize the implications		
951	for the general characteristics of the nature and mode of emplacement of RMDSs and		
952	use these to outline requirements for a new model for their emplacement: this differs		
953	significantly from the proposed mode of emplacement of RMDSs in connection with		
954	the host mare basalts, involving late-stage processes of flow inflation, cooling, second		
955	boiling, and extrusion of magmatic foams to the surface to produce the RMDSs (e.g.,		
956	Wilson et al., 2019).		
957	Stratigraphic superposition and embayment relationships displayed by several		
958	RMDSs and circular features on the host mare surface strongly suggest that the		
959	embaying RMDSs postdate the circular features. Although the formation of these		
960	craters by endogenic processes during lava flow emplacement cannot be confidently		
961	ruled out, the most likely origin for the embayed craters is superposed impact events,		
962	and this indicates that some unknown period of time elapsed between cooling of the		
963	host lava flow, formation of the embayed crater, and then embayment by the RMDS.		
964	How much time elapsed between the superposed crater formation and the RMDS		
965	embayment? Analysis of the state of degradation of the craters and quantitative		
966	models of crater degradation indicate that the embayed craters are on the order of		

967	several hundred million years old (Figure 5 and Table 2). Although these are	
968	maximum ages (the RMDS could have formed and embayed the crater at any time	
969	after the formation age of the crater), they nonetheless indicate that the embaying	
970	RMDSs formed during the Copernican Period, several billion years later than the host	
971	lava flow. What are the absolute ages of these examples in the Copernican period?	
972	Unfortunately, these embaying RMDSs are too small to be dated reliably with	
973	superposed CSFD methods.	
974	However, two other approaches support a young Copernican age not only for the	
975	RMDS-embayed crater examples, but for the whole RMDS population. Current	
976	models of diffusion-dominated landform degradation independently indicate that the	
977	dome-like structures and the morphologically and topographically distinct moats	
978	surrounding RMDSs could not have survived since the time of emplacement of the	
979	host lava flows. Secondly, regolith formation models indicate that continuous impact	
980	development of regolith in the time since emplacement of the host lava flows would	
981	have produced thicknesses up to, and in many cases exceeding, twice the amplitude of	
982	the topographic characteristics of RMDSs, and thus would have obliterated them if	
983	they had formed concurrently with the host lava flow regolith protolith.	
984	Is there any further evidence to support the ancient origin of the RMDSs and	
985	their formation concurrently with the emplacement of their host lava flow? The	
986	Wilson et al. (2019) model predicts that the late-stage behavior of cooling lava flows	
987	favors extrusion of vesicle-rich foamy lavas onto the surface to produce the RMDS	

988	mounds, and concurrent subsidence of the lava flow surface to produce the		
989	surrounding moats. For some similar types mound of features associated with the		
990	Irregular Mare Patch Ina, Qiao et al. (2019) and Wilson and Head (2017b) have		
991	suggested that the mounds may be characterized by foamy lavas that have a highly		
992	vesicular and possibly aerogel-like structure: consequently, superposed impact craters		
993	might be characterized by a different morphology and morphometry. Basilevsky and		
994	Michael (2021), however, have presented evidence that impact craters superposed on		
995	the Ina floor mounds have morphologies that are comparable to those in the		
996	surrounding maria. Remaining uncertain from the model predictions, however, are the		
997	ranges of thicknesses of these foam layers, and the effects of the formation of an		
998	"autoregolith" by explosive modification of the upper layer of the extruded foams.		
999	Both factors need to be modeled to obtain a more specific picture of the original		
1000	erupted and solidified substrate protolith (Head & Wilson, 2020) to test with		
1001	observations of the morphology and morphometry of superposed impact craters		
1002	formed subsequently.		
1003	In summary, these relationships strongly support a young Copernican-era age for		
1004	the RMDS population, an age that postdates by more than two billion years that of its		
1005	host lava flows, and thus appear to invalidate the ancient RMDS model of concurrent		
1006	host-lava flow and RMDS formation (Wilson et al, 2019). However, quantitative		
1007	measurements of 532 RMDSs in 12 different mare settings reveal some unique		

1008 distribution patterns for their h/D ratios but within a constrained range 1/200 to 6/200

1009 with the most common h/D ratio being around 4/200, which represents more than 30% 1010 of all RMDSs measured in each basin (Zhang et al., 2020; their Figure 5). The relative 1011 distribution of h/D illustrates that Procellarum and Fecunditatis show comparable 1012 overall distribution shapes peaking again at 0.02 (4/200) but with ratios skewed 1013 toward higher h/D values for Tranquillitatis. This means that there are subtle differences in RMDS morphology, and this would imply a wider time range for the 1014 1015 formation of lunar RMDSs given that there is broad age diversity for the emplacement 1016 of RMDS-bearing mare flow units. 1017 6.4 Outstanding Questions to Address in Formulating a Young RMDS 1018 1019 **Emplacement Model** 1020 Many uncertainties and outstanding questions remain concerning a Copernican 1021 age for RMDSs, including: 1) If the entire population of RMDSs is so young, why are RMDS-crater embayment relationships not much more common? It is more likely that 1022 1023 there would be a wide time range for the formation of RMDSs considering that the 1024 RMDS-bearing mare units across the whole lunar surface have a broad age diversity 1025 (e.g., Hiesinger et al., 2011; Morota et al., 2011). 2) Why do the RMDSs have the 1026 same mineralogical affinities as their host lava flows, despite being erupted billions of 1027 years later? 3) The number of extrusive lunar basalt lava flow units peaks in the 1028 Imbrian and has significantly declined by the Eratosthenian, with no significant 1029 extrusive lava flows in the Copernican (e.g., Hiesinger et al., 2011). Despite this trend, 1030 RMDSs of apparent Copernican age are extremely widespread in the major lunar 1031 maria (Figure 1) (e.g., Zhang et al., 2020); 4) The occurrence of the youngest lunar

1032	lava flow units (Eratosthenian) is concentrated in the northern Oceanus Procellarum	
1033	region (Hiesinger et al., 2011) and hypothesized to be related to the	
1034	radioactive-element rich Procellarum KREEP Terrain crustal province (Jolliff et al.,	
1035	2000). However, based on the RMDS distribution data (Figure 1) reported by Zhang	
1036	et al. (2020), RMDSs occur in almost all other maria except the northern Oceanus	
1037	Procellarum region; 5) If the RMDSs formed by Copernican-aged extrusive	
1038	volcanism, what type of detailed model for the generation, ascent and eruption of	
1039	magma is consistent with the emplacement of such small features and their associated	
1040	moats, both individually, and in clusters, across virtually all the major maria of the	
1041	Moon? 6) What global thermal evolution model(s) can account for such widespread	
1042	Copernican-age volcanism? 7) Copernican-aged volcanism associated with the	
1043	Irregular Mare Patches (IMPs) has been reported (Braden et al, 2014), but the ages	
1044	and modes of emplacement have been debated (e.g., Qiao et al., 2017, 2019; Wilson	
1045	& Head, 2017b). What are the similarities and differences between IMPs and RMDSs	
1046	and how can this comparison better inform us about the nature of any	
1047	Copernican-aged volcanism? These observations and characteristics then lead to a set	
1048	of implications, constraints, requirements, and future research in association with	
1049	models of Copernican-aged RMDS formation.	
1050 1051	6.5 Some Requirements for a Young RMDS Emplacement Model	
1052	Based on our current understanding of the geological history of the Moon	
1053	(summarized most recently in Jolliff et al., 2006), thermal structure in the Copernican	

1054 is likely to be characterized by a very thick global lithosphere and a significantly 1055 compressional global state of stress in the lithosphere. Temperatures sufficiently high 1056 to induce partial melting and magma generation would occur only at great depths in 1057 the interior. Thus, during the Copernican, it would require significant volumes (a few 1058 hundred km³) and very high overpressures (tens of MPa) to propagate magma-filled 1059 cracks (dikes) to the lunar surface (Wilson & Head, 2017a). The inevitable 1060 consequence of this is that when they reached the surface, such dikes would erupt large volumes of magma at initially high eruption rates (at least 10⁵ m³ s⁻¹) to form 1061 1062 deposits matching the morphologies of large mare lava flows and sinuous rilles (Head 1063 & Wilson, 2017). These conditions are in stark contrast to the requirements for forming RMDSs: small $(10^4 - 10^5 \text{ m}^3)$ volumes of magma erupted at low effusion rates 1064 1065 (Zhang et al., 2020). Furthermore, since RMDSs generally have similar compositions 1066 to those of the mare lavas on which they are emplaced, their magma source regions 1067 would be required to have mineralogies that are the same as those characterizing the 1068 surface lavas that erupted several billion years before RMDS emplacement. Upon 1069 erupting at the surface, the lavas must be able to form one or more very small-volume, 1070 convex-upward mounds (more viscous magma?), surrounded by a moat, and not to 1071 form any associated volcanic landforms (lava flows, cones, small shields, pyroclastics, 1072 linear vents, associated graben, etc.). 1073 Garrick-Bethell and Seritan (2021) have suggested that geologically recent

1074 laccolithic intrusions beneath appropriately sized impact craters in ancient lava flows

49

1075	could induce RMDS-like topography on the surface, but this model does not explain
1076	all RMDS features, especially the relatively wide moats. This explanation also suffers
1077	from the same problem as any small-volume, recent activity: the need to fine-tune the
1078	volume of magma getting close to the surface (Zhang et al., 2020). In summary, no
1079	model able to explain how recent volcanism could emplace features with the size
1080	range characterizing RMDSs exists. While further work on magma transport to the
1081	surface might help to shed light on this problem, a fundamental examination of the
1082	assumptions and interpretations that are the basis for our current understanding of the
1083	geological and thermal evolution of the Moon's deep interior (e.g., Jolliff et al., 2006)
1084	may also be warranted.
1085 1086 1087	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum
1085 1086 1087 1088	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum The genesis and evolution of the RMDSs could represent the target of future
1085 1086 1087 1088 1088	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum The genesis and evolution of the RMDSs could represent the target of future lunar exploration missions guided by the testable hypotheses formulated in this work.
1085 1086 1087 1088 1089 1090	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum The genesis and evolution of the RMDSs could represent the target of future lunar exploration missions guided by the testable hypotheses formulated in this work. Both robotic and human exploration missions could help unravel their age and mode
1085 1086 1087 1088 1089 1090 1091	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum The genesis and evolution of the RMDSs could represent the target of future Iunar exploration missions guided by the testable hypotheses formulated in this work. Both robotic and human exploration missions could help unravel their age and mode of formation. Robotic exploration with stationary landers on individual RMDSs could
1085 1086 1087 1088 1089 1090 1091 1092	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum The genesis and evolution of the RMDSs could represent the target of future lunar exploration missions guided by the testable hypotheses formulated in this work. Both robotic and human exploration missions could help unravel their age and mode of formation. Robotic exploration with stationary landers on individual RMDSs could determine the nature of the regolith and assess the presence of highly vesicular basalts
1085 1086 1087 1088 1089 1090 1091 1092 1093	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum The genesis and evolution of the RMDSs could represent the target of future lunar exploration missions guided by the testable hypotheses formulated in this work. Both robotic and human exploration missions could help unravel their age and mode of formation. Robotic exploration with stationary landers on individual RMDSs could determine the nature of the regolith and assess the presence of highly vesicular basalts and magmatic foams predicted by the "contemporaneous" model. Absolute ages could
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum The genesis and evolution of the RMDSs could represent the target of future lunar exploration missions guided by the testable hypotheses formulated in this work. Both robotic and human exploration missions could help unravel their age and mode of formation. Robotic exploration with stationary landers on individual RMDSs could determine the nature of the regolith and assess the presence of highly vesicular basalts and magmatic foams predicted by the "contemporaneous" model. Absolute ages could also be estimated, even allowing for low precision and a relatively large uncertainty
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095	6.6 Future Research and Exploration Designed to Address and Resolve the RMDS Age of Emplacement Conundrum The genesis and evolution of the RMDSs could represent the target of future lunar exploration missions guided by the testable hypotheses formulated in this work. Both robotic and human exploration missions could help unravel their age and mode of formation. Robotic exploration with stationary landers on individual RMDSs could determine the nature of the regolith and assess the presence of highly vesicular basalts and magmatic foams predicted by the "contemporaneous" model. Absolute ages could also be estimated, even allowing for low precision and a relatively large uncertainty window of hundreds of millions of years: this would suffice to resolve the Imbrian

1097 Robotic rovers could traverse the domes, the moats, and the surrounding mare

1098	terrains, searching for definitive evidence of age differences and feature (mound, moat)		
1099	origins. Ground-penetrating radar, as recently employed on Chang'e 3 and 4 missions		
1100	(e.g., Lai et al., 2019), would significantly help to resolve these issues (for example,		
1101	detection of a post-host-unit, pre-RMDS regolith substrate layer representing		
1102	accumulation during the several billion years interval predicted to occur in the		
1103	Copernican-RMDS model). Robotic samples return (such as recently accomplished by		
1104	Chang'e 5) from a RMDS mound summit would address most outstanding questions.		
1105	Of course, the ideal exploration scenario would include human exploration, as		
1106	accomplished during the Apollo Lunar Exploration Program, which would add an		
1107	informed and flexible survey of stratigraphic relationships and take advantage of		
1108	serendipitous opportunities. Thus, the quest for the origin and age of the RMDSs		
1109	represents an important potential target for all levels of future lunar exploration.		
1110 1111	7. Conclusions		
1112	Ring-Moat Dome Structures (RMDSs) have recently been documented in most		
1113	of the major lunar maria: they are small circular mounds (average diameter ~200 m)		
1114	~3-4 m in height, surrounded by narrow, shallow moats, occurring in clusters, and are		
1115	widespread in ancient Imbrian-aged mare basalt host units, showing mineralogies		
1116	similar to their host units. A formation model to explain the co-occurrence and related		
1117	genesis of RMDSs and their host flow unit has been proposed (Wilson et al., 2019). In		
1118	this emplacement model, lava flow inflation and second boiling result in significant		
1119	degassing of volatiles to produce magmatic foams, and cause crustal cracking and		

1120 extrusion of foams to produce domes and their related ring moats. This model 1121 concludes that RMDS occurrences represent late-stage inflation and degassing 1122 activity in the waning stages of flow emplacement, cooling, and solidification. Thus, 1123 RMDSs are coincident in time with the emplacement of the flow, consistent with the 1124 similar mineralogy of the flow and the RMDSs. 1125 Several lines of evidence suggest, however, that the RMDS did not form 1126 contemporaneously with the host flow emplacement, but rather formed in the 1127 Copernican Period (~1.1 Ga to present), 1-3 billion years after the emplacement and 1128 solidification of the host lava flows. Several cases of embayment of RMDS domes 1129 into circular depressions (and thus their superposition and younger age) are reported. 1130 Based on the high likelihood that these circular depressions are of impact origin, the 1131 degradation states of the underlying embayed craters can be used to estimate the 1132 maximum age of embayment, resulting in estimate Copernican ages (~1.1 Ga -1133 present) of mound emplacement and embayment. Additional supporting evidence for 1134 a much younger age independent of the host mare basalt unit comes from crater 1135 degradation age and regolith thickness models. The ages of the RMDS host lava flows are typically in the range of 2-3.7 Ga. Regolith development models on lunar basaltic 1136 1137 lava flows predict that the thickness of regolith on top of lava flows of these ages 1138 should be in the 5-10 m range, comparable to the vertical relief of domes and 1139 significantly exceeding the vertical relief of the moats. The observations favor a much younger RMDS emplacement age. The synchronous emplacement model also predicts 1140

1141	unusual surface properties for the RMDS substrate. However, initial examination of
1142	craters superposed on RMDSs suggests that their morphologies are comparable to
1143	those occurring in normal maria.
1144	To address this fundamental age contradiction for RMDS emplacement, we
1145	outlined the detailed nature of these contradictions, described candidate requirements
1146	for a young RMDS emplacement model, and concluded with a discussion of key
1147	exploration goals and objectives that could help clarify and resolve this very
1148	significant conundrum for the geological and thermal evolution of the Moon.
1149	
1150	Data Availability Statement
1151	The imagery of LROC NACs used in this work is archived in the Geophysics
1152	Nodes of the Planetary Data System (PDS). All the over 8000 RMDSs presented in
1153	Figure 1 can be found at the Zenodo.org. (Zhang, F. et al., 2020a, Zenodo,
1154	http://doi.org/10.5281/zenodo.3711659). The NAC-based DEMs used for estimating
1155	the ages of RMDS-overlapped craters (Figs. 2a-2c, corresponding to areas A2, A4,
1156	and A7) with a locally calibrated Monte Carlo model are also available online (Zhang,
1157	F. et al., 2020b, Zenodo, http://doi.org/10.5281/zenodo.3748825).
1158 1159	Acknowledgements
1160	This research was supported by the Science and Technology Development Fund
1100	This research was supported by the Science and reenhology Development Fund,
1161	Macau SAR (File No. 0049/2020/A1), the National Natural Science Foundation of
1162	China (Grants No. 11903090 and 11941001), and the National Key R&D Program of
1163	China (Grant No. 2020YFE0202100). The authors would like to thank K. Fisher for

providing the crater annotation data used for CNN training. TW and CW were funded

by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation),

1164

1165

1166	Project number 269661170. The authors would like to thank the Editor Bradley		
1167	Thomson and two anonymous reviewers for their constructive comments and		
1168	suggestions.		
1169	References		
1170	Anthony, E. Y., & Poths, J. (1992). 3He surface exposure dating and its		
1171	implications for magma evolution in the Potrillo volcanic field, Rio Grande Rift, New		
1172	Mexico, USA. Geochimica et Cosmochimica Acta, 56(11), 4105-4108.		
1173	https://doi.org/10.1016/0016-7037(92)90022-B		
1174	Bart, G. D., Nickerson, R. D., Lawder, M. T., & Melosh, H. J. (2011). Global		
1175	survey of lunar regolith depths from LROC images. Icarus, 215(2), 485-490.		
1176	https://doi.org/10.1016/j.icarus.2011.07.017		
1177	Basilevsky, A. T. (1974). Estimation of thickness and degree of reworking of		
1178	lunar regolith from the crater spatial densities. Kosmicheskie Issledovaniya. V. XII.		
1179	Issue 4. 606-609. (In Russian).		
1180	Basilevsky, A. T. (1976). On the evolution rate of small lunar craters. In 7th Lunar		
1181	and Planetary Science Conference, The Woodlands, TX, 1,005-1,020.		
1182	Basilevsky, A. T., 2015. Estimation of absolute age of impact craters of the Moon,		
1183	Mercury and Mars based on the degree of their morphologic prominence. In Study of		
1184	the Solar system: The space milestones. Proceedings of the Scientific Session devoted		
1185	to 80 th jubilee of Academician M. Ya. Marov. Space Research Institute. Moscow.		
1186	213-228.		
1187	Basilevsky, A. T., Florensky, C. P., & Ronca, L. B. (1977). A possible lunar		
1188	outcrop: A study of Lunokhod-2 data. The moon, 17(1), 19-28.		
1189	https://doi.org/10.1007/BF00566850		
1190	Basilevsky, A. T., & Michael, G. G. (2021). Lunar Crater Ina: Analysis of the		
1191	Morphology of Intercrater Landforms. Solar System Research, 55(1), 20-		
1192	30. https://doi.org/10.1134/S0038094621010020		
1193	Basilevsky, A. T., Zhang, F., Wöhler, C., Bugiolacchi, R., Head, J. W., & Wilson,		
1194	L. (2019). Lunar Ring-Moat Dome Structures and Their Relationships with Small		
1195	Impact Craters. In 50th Lunar and Planetary Science Conference, The Woodlands, TX		
1196	(abstract #1507).		
1197	Bennett, K. A., Horgan, B. H. N., Bell, J. F., Meyer, H. M., & Robinson, M. S.		
1198	(2015). Moon Mineralogy Mapper investigation of the Ina irregular mare patch. In		

46th Lunar and Planetary Science Conference, The Woodlands, TX (abstract #2646).
Borg, L. E., Shearer, C. K., Asmerom, Y., & Papike, J. J. (2004). Prolonged

1201 KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature, 432(7014), 209-211. https://doi.org/10.1038/nature03070 1202 1203 Borg, L. E., Gaffney, A. M., & Shearer, C. K. (2015). A review of lunar 1204 chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteoritics & Planetary 1205 Science, 50(4), 715-732. https://doi.org/10.1111/maps.12373 1206 Braden, S. E., Stopar, J. D., Robinson, M. S., Lawrence, S. J., Van Der Bogert, C. 1207 H., & Hiesinger, H. (2014). Evidence for basaltic volcanism on the Moon within the 1208 past 100 million years. Nature Geoscience, 7(11), 787-791. 1209 https://doi.org/10.1038/ngeo2252 Bugiolacchi, R., & Wöhler, C. (2020), Small craters population as a useful 1210 1211 geological investigative tool: Apollo 17 region as a case study, Icarus, 350, 113927. 1212 https://doi.org/10.1016/j.icarus.2020.113927 1213 De Hon, R. A., & Earl, R. A. (2018). Reassessment of features in the Aden Crater 1214 lava flows, Dona Ana County, New Mexico. New Mexico Geology, 40(1), 17-26. 1215 Fassett, C. I., Minton, D. A., Thomson, B. J., Hirabayashi, M., & Watters, W. A. 1216 (2018). Re-analysis of observations of crater degradation on the lunar maria 1217 accounting for anomalous diffusion. In 49th Lunar and Planetary Science Conference, The Woodlands, TX (abstract #1502). 1218 Fassett, C. I., & Thomson, B. J. (2014). Crater degradation on the lunar maria: 1219 1220 Topographic diffusion and the rate of erosion on the Moon. Journal of Geophysical 1221 Research: Planets, 119(10), 2255-2271. https://doi.org/10.1002/2014JE004698 1222 Fernandes, V. A., Burgess, R., Bischoff, A., Sokol, A. K., & Haloda, J. (2007). 1223 Kalahari 009 and North East Africa 003: Young (< 2.5 Ga) lunar mare basalts. In 38th 1224 Lunar and Planetary Science Conference, The Woodlands, TX (abstract #1611). 1225 Fisher, K. (2014). An age for Hell Q from small diameter craters. In 45th Lunar 1226 and Planetary Science Conference, The Woodlands, TX (abstract #1421). 1227 Garrick-Bethell, I., & Seritan, M. R. (2021). Laccolith model for lunar Ring-moat 1228 Dome Structures. In 52th Lunar and Planetary Science Conference, The Woodlands, 1229 TX (abstract 2369). 1230 Garry, W. B., Robinson, M. S., Zimbelman, J. R., Bleacher, J. E., Hawke, B. R., 1231 Crumpler, L. S., et al. (2012). The origin of Ina: Evidence for inflated lava flows on 1232 the Moon. Journal of Geophysical Research: Planets, 117(E12), E00H31. 1233 https://doi.org/10.1029/2011JE003981 1234 Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. 1235 (2013). Bayesian data analysis. CRC press. 1236 Greeley, R. (1970). Terrestrial analogs to lunar dimple (drainage) craters. The moon, 1(2), 237-252. https://doi.org/10.1007/BF00562828 1237 1238 Greeley, R., & Gault, D. E. (1971). Endogenetic craters interpreted from crater 1239 counts on the inner wall of Copernicus. Science, 171(3970), 477-479. DOI: 1240 10.1126/science.171.3970.477 1241 Greeley, R., & Gault, D. E. (1979). Endogenic craters on basaltic lava flows-Size 1242 frequency distributions. In 10th Lunar and Planetary Science Conference Proceedings, 1243 The Woodlands, TX, 2,919-2,933. 1244 Grimes, K. G. (2008). Small Subcrustal Lava Caves: Examples from Victoria, 1245 Australia. In Proceedings of the X, XI, and XII International symposia on 1246 Vulcanospeleology, Association for Mexican Cave Studies Bulletin (Vol. 19, pp. 1247 35-44). 1248 Grumpe, A., & Wöhler, C. (2014). Recovery of elevation from estimated gradient fields constrained by digital elevation maps of lower lateral resolution. ISPRS Journal 1249 1250 of Photogrammetry and Remote Sensing, 94, 37-54. https://doi.org/10.1016/j.isprsjprs.2014.04.011 1251 1252 Grumpe, A., Schröer, C., Kauffmann, S., Fricke, T., Wöhler, C., & Mall, U. 1253 (2016). Refinement of stereo image analysis using photometric shape recovery as an 1254 alternative to bundle adjustment. International Archives of the Photogrammetry, 1255 Remote Sensing & Spatial Information Sciences, vol. XLI-B4, p. 565-572. 1256 Hamilton, C. W., Scheidt, S. P., Sori, M. M., de Wet, A. P., Bleacher, J. E., 1257 Mouginis-Mark, P. J., et al. (2020). Lava-Rise Plateaus and Inflation Pits in the 1258 McCartys Lava Flow Field, New Mexico: An Analog for Pahoehoe-Like Lava Flows 1259 on Planetary Surfaces. Journal of Geophysical Research: Planets, 125(7), 1260 e2019JE005975. https://doi.org/10.1029/2019JE005975 1261 Hartmann, W. K., Quantin, C., & Mangold, N. (2007). Possible long-term decline 1262 in impact rates: 2. Lunar impact-melt data regarding impact history. *Icarus*, 186(1), 1263 11-23. https://doi.org/10.1016/j.icarus.2006.09.009 1264 Head, J. W. (1976). Lunar volcanism in space and time. Reviews of Geophysics, 1265 14(2), 265-300. https://doi.org/10.1029/RG014i002p00265 1266 Head, J. W., & Ivanov, B. A. (2019). Ina irregular mare patch (IMP): New insights from observations of superposed impact craters. The 10th Moscow Solar System 1267 Symposium, Space Research Institute, Moscow, Russia, abstract #MS3-PS-32. 1268 1269 Head, J. W., & Wilson, L. (2017). Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and 1270 1271 effusive/explosive eruptions (Part 2: Predicted emplacement processes and 1272 observations). Icarus, 283, 176-223. https://doi.org/10.1016/j.icarus.2016.05.031 1273 Head, J. W., & Wilson, L. (2020). Rethinking lunar mare basalt regolith formation: 1274 new concepts of lava flow protolith and evolution of regolith thickness and internal 1275 structure. Geophysical Research Letters, 47(20), e2020GL088334. 1276 https://doi.org/10.1029/2020GL088334 1277 Hess, P. C., & Parmentier, E. M. (1995). A model for the thermal and chemical 1278 evolution of the Moon's interior: Implications for the onset of mare volcanism. Earth 1279 and Planetary Science Letters, 134(3-4), 501-514. 1280 https://doi.org/10.1016/0012-821X(95)00138-3 1281 Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R., & Neukum, G. (2006). New ages for basalts in Mare Fecunditatis based on crater size-frequency measurements. In 1282 1283 37th Lunar and Planetary Science Conference, The Woodlands, TX (abstract #1151). 1284 Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R., & Neukum, G. (2011). Ages

and stratigraphy of lunar mare basalts: A synthesis. Recent Advances and Current 1285 1286 Research Issues in Lunar Stratigraphy: Geological Society of America Special Paper, 1287 477, 1-51. DOI: 10.1130/2011.2477(01) 1288 Hoffer, J. M. (1976). Geology of the Potrillo basalt field, south-central New 1289 Mexico. New Mexico Bureau of Mines and Mineral Resources, Circular 149, 1-30. 1290 Hon, K. E. N., Kauahikaua, J. I. M., Denlinger, R., & Mackay, K. (1994). 1291 Emplacement and inflation of pahoehoe sheet flows: Observations and measurements 1292 of active lava flows on Kilauea Volcano, Hawaii. Geological Society of America 1293 Bulletin, 106(3), 351-370. 1294 https://doi.org/10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO;2 1295 Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L., & Wieczorek, M. A. 1296 (2000). Major lunar crustal terranes: Surface expressions and crust-mantle origins. 1297 Journal of Geophysical Research: Planets, 105(E2), 4197-4216. https://doi.org/10.1029/1999JE001103 1298 1299 Joliff, B., Wieczorek, M., Shearer, C., Neal, C. (Eds.). (2006). New views of the Moon. Vol. 60 of Reviews in mineralogy & geochemistry. Mineralogical Society of 1300 1301 America and the Geochemical Society. 1302 Kreslavsky, M. A., Head, J. W., Neumann, G. A., Zuber, M. T., & Smith, D. E. 1303 (2017). Low-amplitude topographic features and textures on the Moon: Initial results 1304 from detrended Lunar Orbiter Laser Altimeter (LOLA) topography. Icarus, 283, 1305 138-145. https://doi.org/10.1016/j.icarus.2016.07.017 Lai, J., Xu, Y., Zhang, X., Xiao, L., Yan, O., Meng, X., et al. (2019). Comparison 1306 1307 of Dielectric Properties and Structure of Lunar Regolith at Chang'e-3 and Chang'e-4 1308 Landing Sites Revealed by Ground-Penetrating Radar. Geophysical Research Letters, 1309 46(22), 12,783-12,793. https://doi.org/10.1029/2019GL084458 1310 McEwen, A. S., & Bierhaus, E. B. (2006). The importance of secondary cratering to age constraints on planetary surfaces. Annual Review of Earth and Planetary 1311 1312 Science, 34, 535-567. https://doi.org/10.1146/annurev.earth.34.031405.125018 1313 McKay, D. S., Heiken G., Basu A, Blanford G., Simon S., Reedy R., French B. M., & Papike J. (1991). The lunar regolith. In: Lunar Source Book: A User Guide to 1314 1315 the Moon. G.H. Heiken, D.T. Vaniman, B.M. French eds., Cambridge University 1316 Press, 285-356. 1317 Morota, T., Haruyama, J., Ohtake, M., Matsunaga, T., Honda, C., Yokota, Y., et al. 1318 (2011). Timing and characteristics of the latest mare eruption on the Moon. Earth and 1319 Planetary Science Letters, 302(3-4), 255-266. 1320 https://doi.org/10.1016/j.epsl.2010.12.028 Neukum, G., Ivanov, B., & Hartmann, W. (2001). Cratering records in the inner 1321 solar system in relation to the lunar reference system. Space Science Reviews, 96, 55-1322 1323 86. https:// doi.org/10.1023/A:1011989004263. Ollier, C. D. (1964). Tumuli and lava blisters of Victoria, Australia. Nature, 1324 1325 202(4939), 1284-1286. https://doi.org/10.1038/2021284a0 1326 Qiao, L., Head, J., Wilson, L., Xiao, L., Kreslavsky, M., & Dufek, J. (2017). Ina

pit crater on the Moon: Extrusion of waning-stage lava lake magmatic foam results in 1327 1328 extremely young crater retention ages. Geology, 45(5), 455-458. 1329 https://doi.org/10.1130/G38594.1 Qiao, L., Head, J. W., Ling, Z., Wilson, L., Xiao, L., Dufek, J. D., & Yan, J. 1330 (2019). Geological characterization of the Ina shield volcano summit pit crater on the 1331 1332 Moon: Evidence for extrusion of waning-stage lava lake magmatic foams and 1333 anomalously young crater retention ages. Journal of Geophysical Research: Planets, 1334 124(4), 1100-1140. https://doi.org/10.1029/2018JE005841 Robinson, M. S., Brylow, S. M., Tschimmel, M., Humm, D., Lawrence, S. J., 1335 Thomas, P. C., et al. (2010). Lunar reconnaissance orbiter camera (LROC) instrument 1336 1337 overview. Space Science Reviews, 150(1-4), 81-124. 1338 https://doi.org/10.1007/s11214-010-9634-2 1339 Schultz, P. H., & Greeley, R. (1976). Ring-moat structures: Preserved flow morphology on lunar maria. In 7th Lunar and Planetary Science Conference, The 1340 1341 Woodlands, TX, 788–789. 1342 Schultz, P. H., Greeley, R., & Gault, D. (1976). Degradation of small mare surface 1343 features. In 7th Lunar and Planetary Science Conference, The Woodlands, TX, 985-1344 1003. 1345 Schultz, P. H., & Spudis, P. D. (1983). Beginning and end of lunar mare 1346 volcanism. Nature, 302(5905), 233-236. https://doi.org/10.1038/302233a0 Schultz, P. H., Staid, M. I., & Pieters, C. M. (2006). Lunar activity from recent 1347 gas release. Nature, 444(7116), 184-186. https://doi.org/10.1038/nature05303 1348 1349 Self, S., Keszthelyi, L., & Thordarson, T. (1998). The importance of pāhoehoe. 1350 Annual Review of Earth and Planetary Sciences, 26(1), 81-110. 1351 https://doi.org/10.1146/annurev.earth.26.1.81 Shearer, C. K., Hess, P. C., Wieczorek, M. A., Pritchard, M. E., Parmentier, E. M., 1352 1353 Borg, L. E., et al. (2006). Thermal and magmatic evolution of the Moon. Reviews in 1354 Mineralogy and Geochemistry, 60(1), 365-518. https://doi.org/10.2138/rmg.2006.60.4 Shkuratov, Y. G., & Bondarenko, N. V. (2001). Regolith layer thickness mapping 1355 of the Moon by radar and optical data. Icarus, 149(2), 329-338. 1356 https://doi.org/10.1006/icar.2000.6545 1357 1358 Shoemaker, E. M., Batson, R. M., Holt, H. E., Morris, E. C., Rennilson, J. J., & 1359 Whitaker, E. A. (1969). Observations of the lunar regolith and the Earth from the 1360 television camera on Surveyor 7. Journal of Geophysical Research, 74(25), 1361 6081-6119. https://doi.org/10.1029/JB074i025p06081 Sinha, R. K., Sivaprahasam, V., Bhatt, M., Kumari, N., Srivastava, N., 1362 1363 Varatharajan, I., et al. (2020). Geological characterization of Chandrayaan-2 landing site in the southern high latitudes of the Moon. Icarus, 337, 113449. 1364 https://doi.org/10.1016/j.icarus.2019.113449 1365 1366 Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. Preprint, arXiv:1206.2944. 1367 https://arxiv.org/abs/1206.2944v2 1368

Solomon, S. C. (1978). On volcanism and thermal tectonics on one-plate 1369 1370 planets. Geophysical Research Letters, 5(6), 461-464. 1371 https://doi.org/10.1029/GL005i006p00461 1372 Solomon, S. C. (1986). On the early thermal state of the Moon. In Hartmann, W. K., et al., eds., Origin of the Moon, Houston, Texas, Lunar and Planetary Institute, 1373 1374 435-452. Spohn, T., Konrad, W., Breuer, D., & Ziethe, R. (2001). The longevity of lunar 1375 1376 volcanism: Implications of thermal evolution calculations with 2D and 3D mantle convection models. Icarus, 149, 54-65. https://doi.org/10.1006/icar.2000.6514 1377 Stöffler, D., Ryder, G., Ivanov, B. A., Artemieva, N. A., Cintala, M. J., & Grieve, 1378 1379 R. A. (2006). Cratering history and lunar chronology. Reviews in Mineralogy and 1380 Geochemistry, 60(1), 519-596. https://doi.org/10.2138/rmg.2006.60.05 1381 Swann G. A., Bailey N. G., Batson R. M., Freeman, V. L., Hait, M. H., Head, J. W., et al. (1972). Preliminary Geologic Investigation of the Apollo 15 Landing Site. In: 1382 1383 APOLLO 15 PRELIMINARY SCIENCE REPORT. NASA. Washington, D.C. 5-1 -1384 5-112. 1385 Taylor, L. A., Shervais, J. W., Hunter, R. H., Shih, C. Y., Bansal, B. M., Wooden, J., et al. (1983). Pre-4.2 AE mare-basalt volcanism in the lunar highlands. Earth and 1386 1387 Planetary Science Letters, 66, 33-47. https://doi.org/10.1016/0012-821X(83)90124-3 1388 Terada, K., Anand, M., Sokol, A. K., Bischoff, A., & Sano, Y. (2007). Cryptomare 1389 magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature, 1390 450(7171), 849-852. https://doi.org/10.1038/nature06356 Van der Bogert, C. H., Michael, G., Kneissl, T., Hiesinger, H., & Pasckert, J. H. 1391 1392 (2015). Development of guidelines for recommended lunar CSFD count area sizes via 1393 analysis of random CSFDs. Workshop on Issues in Crater Studies and the Dating of 1394 Planetary Surfaces, abstract #9023. 1395 Wagner, R. V., Speyerer, E. J., Robinson, M. S., & Team, L.R.O.C., 2015. New 1396 mosaicked data products from the LROC team. In 46th Lunar and Planetary Science 1397 Conference. The Woodlands, TX (abstract 1473). Walker, G. P. 1991. Structure, and origin by injection of lava under surface crust, 1398 1399 of tumuli, "lava rises", "lava-rise pits", and "lava-inflation clefts" in Hawaii. Bulletin of 1400 Volcanology, 53(7), 546-558. https://doi.org/10.1007/BF00298155 1401 Wieczorek, M. A., Jolliff, B. L., Khan, A., Pritchard, M. E., Weiss, B. P., Williams, 1402 J. G., et al. (2006). The constitution and structure of the lunar interior. Reviews in 1403 Mineralogy and Geochemistry, 60(1), 221-364. https://doi.org/10.2138/rmg.2006.60.3 1404 Wilhelm, T., & Wöhler, C. (2021). Uncertainty Guided Recognition of Tiny 1405 Craters on the Moon. Proc. Int. Conf. on Pattern Recognition, pp. 5198-5205, Milano, 1406 Italy (online). 1407 Williams, D. A., Fagents, S. A., & Greeley, R. (2000). A reassessment of the emplacement and erosional potential of turbulent, low-viscosity lavas on the Moon. 1408 1409 Journal of Geophysical Research: Planets, 105(E8), 20189-20205. 1410 https://doi.org/10.1029/1999JE001220

Williams, J. P., van der Bogert, C. H., Pathare, A. V., Michael, G. G., Kirchoff, M. 1411 1412 R., & Hiesinger, H. (2018). Dating very young planetary surfaces from crater statistics: 1413 A review of issues and challenges. Meteoritics & Planetary Science, 53(4), 554-582. 1414 https://doi.org/10.1111/maps.12924 1415 Wilson, L., & Head, J. W. (2017a). Generation, ascent and eruption of magma on 1416 the Moon: New insights into source depths, magma supply, intrusions and 1417 effusive/explosive eruptions (Part 1: Theory). Icarus, 283, 146-175. 1418 https://doi.org/10.1016/j.icarus.2015.12.039 1419 Wilson, L., & Head, J. W. (2017b). Eruption of magmatic foams on the Moon: Formation in the waning stages of dike emplacement events as an explanation of 1420 1421 "irregular mare patches". Journal of Volcanology and Geothermal Research, 335, 1422 113-127. https://doi.org/10.1016/j.jvolgeores.2017.02.009 1423 Wilson, L., & Head, J. W. (2018). Controls on lunar basaltic volcanic eruption 1424 structure and morphology: Gas release patterns in sequential eruption phases. 1425 Geophysical Research Letters, 45(12), 5852-5859. 1426 https://doi.org/10.1029/2018GL078327 1427 Wilson, L., Head, J. W., & Zhang, F. (2019). A theoretical model for the formation of Ring Moat Dome Structures: Products of second boiling in lunar basaltic lava 1428 1429 flows. Journal of Volcanology and Geothermal Research, 374, 160-180. 1430 https://doi.org/10.1016/j.jvolgeores.2019.02.018 Xiao, Z., & Werner, S. C. (2015). Size-frequency distribution of crater 1431 1432 populations in equilibrium on the Moon. Journal of Geophysical Research: Planets, 1433 120(12), 2277-2292. https://doi.org/10.1002/2015JE004860 1434 Xie, M., Zhu, M. H., Xiao, Z., Wu, Y., & Xu, A. (2017). Effect of topography 1435 degradation on crater size-frequency distributions: Implications for populations of 1436 small craters and age dating. Geophysical Research Letters, 44(20), 10,171-10,179. https://doi.org/10.1002/2017GL075298 1437 Zhang, F., Head, J. W., Basilevsky, A. T., Bugiolacchi, R., Komatsu, G., Wilson, 1438 1439 L., et al. (2017). Newly discovered ring-moat dome structures in the lunar maria: 1440 Possible origins and implications. Geophysical Research Letters, 44(18), 9216-9224. https://doi.org/10.1002/2017GL074416 1441 1442 Zhang, F., Wöhler, C., Head, J. W., Bugiolacchi, R., Wilson, L., & Grumpe, A. 1443 (2018). Ring-Moat Dome Structures (RMDSs) in the Lunar Maria: Further Statistical 1444 and Morphological Characterization. In 49th Lunar and Planetary Science 1445 Conference, The Woodlands, TX (abstract #1374). Zhang, F., Head, J. W., Wöhler, C., Bugiolacchi, R., Wilson, L., Basilevsky, A. T., 1446 1447 et al. (2020). Ring-Moat Dome Structures (RMDSs) in the lunar maria: Statistical, compositional, and morphological characterization and assessment of theories of 1448 1449 origin. Journal of Geophysical Research: Planets, 125(7), e2019JE005967. https://doi.org/10.1029/2019JE005967 1450 1451 Zhang, F., Head, J. W., Wöhler, C., Bugiolacchi, R., Wilson, L., Basilevsky, A. T., 1452 et al. (2020a). Locations and derived diameters of RMDSs as per Fig. 6 and all the

- 1454 Zenodo. http://doi.org/10.5281/zenodo.3711659
- 1455 Zhang, F., Head, J. W., Wöhler, C., Bugiolacchi, R., Wilson, L., Basilevsky, A. T.,
- 1456 et al. (2020b). LROC NAC-based high-resolution (2 m per pixel) digital elevation
- 1457 models (DEMs) of twelve regions on the Moon containing ring-moat dome structures
- 1458 (RMDSs) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3748825
- 1459 Ziethe, R., Seiferlin, K., & Hiesinger, H. (2009). Duration and extent of lunar
- 1460 volcanism: Comparison of 3D convection models to mare basalt ages. *Planetary and*
- 1461 Space Science, 57(7), 784-796. https://doi.org/10.1016/j.pss.2009.02.002

Figure 1. The global distribution of more than 8,000 RMDSs (yellow crosses) on theMoon (Zhang et al., 2020). The red stars indicate the locations of the

1466 RMDS-superposed craters analyzed in this study, as shown in Figure 2. The base map

- 1467 is the LROC WAC Global Morphology Mosaic 100 m (at 643 nm; Wagner et al.,
- 1468 2015).

Figure 2. LROC NAC images for confirmed RMDS-superposed craters analyzed in
this study. Their location coordinates, hosting mare, and NAC frame used are: (a)

- 1472 (5.935°N, 27.456°E), Tranquillitatis, M1172873803LE; (b) (22.967°S, 37.294°W),
- 1473 Humorum, M1142680981LE; (c) (1.461°S, 52.39°E), Fecunditatis, M1126787189LE;

1477 **Figure 3.** Three-dimensional views of RMDSs embayment into adjacent craters,

- 1478 corresponding to the individual cases illustrated in Figure 2. The 3D views are created
- 1479 based on NACs draping over NAC-based DEMs (2 m/pixel, 6× vertical
- 1480 exaggeration).

1481

Figure 4. Ages of craters superposed by RMDS (red) on the diagram of the 1482 1483 dependence of absolute age of craters on their diameters and the degree of their 1484 morphologic maturity - classes A, AB, B, BC and C. The typical values of maximum 1485 steepness of inner slopes of craters of different classes are shown along with the 1486 boundary lines. Asterisks show absolute ages of craters in the Apollo landing sites 1487 Cross-shaded symbols indicate the crater lifetimes deduced from crystallization ages 1488 of mare lavas (Trask, 1971). Thick gray lines show trajectories of changing of crater 1489 diameters in the process of their maturation. (Modified from Basilevsky, 1976, 2015).

Figure 5. The crater profiles (the black curves) best-fit to the observed crater profiles (the red circles) extracted from NAC-based DTMs, corresponding to the individual cases illustrated in Figure 2. The ages of RMDS-superposed craters range from 130 to 1000 Ma. D_0 is the original diameter, and K_{1000m} is the diffusion age of a crater with a

diameter of 1000 m derived by using Equation (2) in this study.

- - lines correspond to the degradation-free CSFDs following from Neukum et al. (2001).

1503 Figure 7. Boxplot representations of the crater lifetimes and ages for the

1504 RMDS-overlapped craters, as shown in Figures 2a-2c, respectively. Red lines denote

1505 median values, blue boxes the 25% and 75% quantiles, and whiskers the most

1506 extreme values of the distribution which are not outliers. Red crosses mark outliers,

1507 where the Bayesian optimization was unable to find a solution.

- 1508
- 1509 Figure 8. Terrestrial analogs of crater-like formations: Above aerial view of a group

- 1510 of circular depressions interpreted as lava-rise (or inflation) pits (De Hon & Earl,
- 1511 2018), Aden Basalt. Satellite image credit: Google Earth.

1513 **Figure 9.** Oblique view of a series of positive and negative features on inflation

- 1514 (pressure, or lava-rise) plateau surface in the inflated Amboy lava flow field (Location:
- 1515 34.5330°N, 115.8220°W), Mojave Desert, California. Yellow arrows indicate
- 1516 crater-like forms, while white arrows point to nearly circular tumulus-like structures.
- 1517 Red arrows illustrate three tumulus-like structures that have been degraded to varying
- 1518 degrees. The red arrow in the bottom presents a raised rim crater interpreted in this
- 1519 study as a collapsed tumulus. Image credit: Google Earth. North is up.

- **Figure 10.** The 120-m crater is superposed on the northern part of a 270 m RMDS in
- 1522 Mare Fecunditatis (NAC frame: M131284180LE). (a) The RMDS-Crater relationship
- 1523 seen from LROC NAC with sun illumination direction from right to left. (b) The
- 1524 presence of meter-sized rock boulders (white arrows) on the crater rim and floor. (c)
- 1525 NAC-DEM-based topographic files extracted along the white lines AB, CD, and EF
- 1526 indicated in Figure (a). North is up in Figures (a) and (b).

Figure 11. Three craters, 170, 80 and 80 m in diameter are superposed on a ~450-m
RMDS in Mare Fecunditatis (NAC frame: M131284180RE). (a) The RMDS-Crater
relationship seen from LROC NAC with sun illumination direction from right to left.
(b) Meter-sized rock boulders (white arrows) are seen on the rim and floor of crater 2.
(c) NAC-DEM-based topographic files extracted along the white lines AB, CD, EF,
and GH indicated in Figure (a). North is up in Figures (a) and (b).

- 1544 respectively, for the three areas located close to the RMDS-overlapped craters in
- 1545 Figures 2a-2c, as derived with the locally calibrated diffusion-based method described
- 1546 in section 4.3. The values correspond to the median over 30 simulation runs and 25%
- and 75% quantiles, respectively.

area	$\kappa_{10} [\mathrm{m^2/Ma}]$	$\kappa_{100} [\mathrm{m^2/Ma}]$
Fig. 2a	$2.21_{-0.29}^{+0.35}$	$11.6^{+2.03}_{-2.99}$
Fig. 2b	$1.91^{+0.62}_{-0.39}$	$8.24^{+4.51}_{-2.31}$
Fig. 2c	$1.44^{+0.39}_{-0.41}$	$14.2^{+7.45}_{-2.21}$

1549 **Table 2.** Statistical results for the diameter (D), depth (d), and inner slope (α)

1550 information of the small craters partially superposed by RMDSs, and their model ages

- 1551 measured from their morphologic analysis (Basilevsky, 1976; Figure 4) and the
- 1552 topographical diffusion model (Figure 5) used in this study.

ID	Figure	Crater	Crater	Crater	Maximum	Degradation	Topographical
		Center	Diameter	depth	Inner	age (Ma) by	diffusion
		Location	(D, m)	(d, m)	slope	Basilevsky	model age
		(Lon,			(α, °)	(1976)	(Ma) in this
		Lat)					study
1	Fig.	27.451,	~300	~15	~9	750-1500	770
	2a	5.936					
2	Fig.	-37.294,	~130	~4	~6-8	160-320	690
	2b	-22.970					
3	Fig.	52.393,	~300	~15	~9	750-1500	1000
	2c	-1.456					
4	Fig.	34.187,	~140	~7-9	~8-9	200-300	240
	2d	6.029					
5	Fig.	-27.224,	~100	~5-6	~8-10	200-300	130
	2e	30.703					
6	Fig.	-27.083,	~135	~5-7	~7-8	200-300	280
	2f	29.884					

AGU PUBLICATIONS

1	
2	Journal of Geophysical Research: Planets
3	Supporting Information for
4	The Lunar Mare Ring-Moat Dome Structure (RMDS) Age Conundrum:
5	Contemporaneous with Imbrian-Aged Host Lava Flows or
6	Emplaced in the Copernican?
7 8	Feng Zhang ^{1,2} , James W. Head ³ , Christian Wöhler ⁴ , Alexander T. Basilevsky ⁵ , Lionel Wilson ⁶ , Minggang Xie ⁷ , Roberto Bugiolacchi ² , Thorsten Wilhelm ⁴ , Stephanie Althoff ⁴ , and Yong L. Zou ¹
9 10 11 12 13 14	¹ State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China; ² State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China; ³ Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA; ⁴ Image Analysis Group, TU Dortmund University, Dortmund, Germany; ⁵ Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia; ⁶ Lancaster Environment Centre, Lancaster University, Lancaster, UK; ⁷ College of Science, Guilin University of Technology, Guilin, China
15	
16 17 18 19	Contents of this file Figures S1 to S10
20	Introduction
21 22	The images were processed and investigated using the software ArcGIS 10.6.
23	Topography data and elevation measurements were derived from DTMs on LROC NAC
24	images/sets.
25 26	

Figure S1: NAC images showing RMDS-superposed craters (Red circles). The pre-

29 impact surface is constructed by fitting a plane to the elevation data beyond 1.5 radii from

- 30 crater center. The regions used for the extraction of crater topography are shown in blue
- 31 polygons.

- 32 33 34 35 36 37

- (C) Location: 0.937°S, 52.398°E; Fecunditatis, NAC frame M1245671393LE.
- (D) Location: 0.234°S, 55.944°E; Fecunditatis, NAC frame M183160424LE.
- 38 (E) Location: 29.288°N, 28.047°W; Imbrium, NAC frame M1139086679LE.
- 39 40 (F) Location: 6.38°S, 40.459°W; Procellarum, NAC frame M131914933RE.
 - (G) Location: 22.634°S, 38.306°W; Humorum, NAC frame M1142688086RE.
- 41 (H) Location: 22.832°S, 38.091°W; Humorum, NAC frame M133079100RE.
- 42 Yellow arrows point to sun illumination directions, while white arrows point to RMDSs. North is up
- 43 in all figures.

Figure S3: Distribution of RMDS-superposed craters on the nearside maria. Red stars represent the cases in Figure 1, while green triangles illustrate the cases in Figure S1. The black lines indicate spectrally defined units by Hiesinger et al. (2006, 2011). For some mare units hosting RMDS-superposed craters, their names and model ages (Hiesinger et al., 2006, 2011) by crater size-frequency measurement are labeled. Generally, these mare units containing the RMDSs shown in Figures 2 and S2 are of > 3.0 Ga in age, with an exception of the mare unit in Mare Imbrium which was dated to be ~2.0 Ga ago.

Figure S4: NAC-DEM based topographic profiles (a respective more and less vertically exaggerated profiles) of the RMDS-superposed crater shown in Figure 2a.

65 66

Figure S5: NAC-DEM based topographic profiles (a respective more and less vertically

67 exaggerated profiles) of the RMDS-superposed crater shown in Figure 2b.

69

Figure S6: NAC-DEM based topographic profiles (a respective more and less vertically exaggerated profiles) of the RMDS-superposed crater shown in Figure 2c.

- 72
 - **Figure S7:** NAC-DEM based topographic profiles (a respective more and less vertically exaggerated profiles) of the RMDS-superposed crater shown in Figure 2d.

75 **Figure S8:** NAC-DEM based topographic profiles (a respective more and less vertically exaggerated profiles) of the RMDS-superposed crater shown in Figure 2e.

Figure S9: NAC-DEM based topographic profiles (a respective more and less vertically exaggerated profiles) of the RMDS-superposed crater shown in Figure 2f.

- 80 81 **Figure S10:** LROC NAC-derived 2 m/pixel DTM for each of RMDS-superposed crater
- used in this study. An approximate outline of each RMDS is illustrated by dashed white
 line in each subfigure. NAC image pairs used to construct DTMs are included: (A)
- M1172873803LE and RE; (B) M1142680981LE and RE; (C) M1126787189LE and RE;
- (D) M180944663LE and RE; (E) and (F) M181352550LE and RE.
- 86