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Abstract 
Current design and analysis methods of helical springs are significantly confined to a simple 
and linear domain. The traditional spring formula is only effective for analyzing helical springs 
with linear geometric properties like constant coil diameter, unchanged spring pitch and no coil 
contact. An advanced analytical spring model is proposed in this study to address the non-linear 
effects of variable coil diameter, spring pitch and coil contact that exist in helical springs of 
arbitrary shapes. It aims to expand the available spring design and analysis domain to a wider 
non-linear space. In addition, it is coupled with the modal spring model to explain and predict 
the dynamic vibrational response of non-linear beehive springs. It is found that the proposed 
model has an excellent accuracy in estimating mechanical properties of non-linear springs in 
both static and dynamic conditions by comparing with experimental and FE results. This model 
may lead to an innovative method for developing innovative tools of spring design and 
performance analysis that could be beneficial to a wide range of engineering applications.  
 
Keywords: Valve spring vibration, Non-linear helical geometry, Variable spring stiffness, Coil 
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1 Introduction 
Helical springs are conventionally playing essential roles in many engineering applications, for 
instance, in valve train mechanisms [1] and vehicle suspension systems [2]. More recently, 
helical springs are also found able to make significant changes in the fields of sports science 
by increasing the top speed of human running [3, 4] and of biological science by investigating 
the evolutionary history of mantis shrimp using spring mechanics [5]. All these applications 
require fundamental geometrical descriptions of the helical springs. An accurate geometric 
representation always leads to a better design of helical spring, which can improve the 
performance of both the spring and the overall system, while an inaccurate representation may 
cause premature failure of the spring and the system. Therefore, the importance of representing 
the geometry of a helical spring should be properly addressed in both research and engineering 
applications. In fact, the development of analytical models for depicting spring geometries can 
be dated back to very early times.  
Hooke’s law is the first theory to describe the property of a normal helical spring, which defines 
the spring stiffness as the ratio of force and displacement. A fundamental and comprehensive 
study on helical springs was conducted by Wahl [6]. General formulas for calculating stiffness 
and natural frequency of a commonly used helical spring were proposed in his study. 
Researchers found these traditional formulas effective in static stress analysis of automobile 
springs [7], process control of coiling helical springs [8] and optimal design of helical springs 
made of either a metal material [9] or a composite material [10, 11]. Besides, these formulas 



also contributed to the development of dynamical spring models, for instance, the multi-mass 
models and the distributed parameters models. In a typical multi-mass spring model, a helical 
spring is divided into several concentrated masses linked by linear connecting springs. For 
achieving accurate results, the stiffness of these connecting springs must be properly defined. 
Usually, the traditional spring formulas provide a fast and straightforward way to estimate the 
stiffness by averaging the overall stiffness of the helical spring [12-17]. A helical spring 
developed in the distributed parameters model is treated as parameters that are distributed 
across the entire spring body [18, 19]. The distributed parameter model assumes that the 
geometry of a helical spring consists of continuous and consistent elements. The geometric 
properties of the helical spring are then coupled with the dynamic equations to draw meaningful 
dynamic solutions. For example, in articles [20-22] where the method of superposition of 
vibration modes were applied, the traditional spring formulas were utilized efficiently to 
quickly obtain the value of the stiffness and natural frequencies of a helical spring. These results 
may draw a conclusion that the traditional spring formulas performed well in certain static and 
dynamic spring analysis. However, it was noted that the above helical springs were all linear, 
which means that these springs have linear geometric properties, such as a constant coil 
diameter, an infinite free length, and a constant pitch angle. However, these assumptions are 
extremely unrealistic in describing the geometries of helical springs that are used in most of 
the practical applications. In the vehicle suspension system, the suspension springs are usually 
grounded for the purpose of mounting [23, 24]. In addition, valve springs are intentionally 
designed to have varied spring pitch for the purpose of reduction of spring surge [25]. Moreover, 
unique spring designs, like beehive spring, conical spring and barrel spring, are all against the 
assumption of a constant coil diameter [26]. Applying the traditional spring formulas on these 
helical springs of non-linear geometric properties can bring unrealistic results.  
In order to improve the design of helical springs further, spring models including these 
nonlinearities should be developed.  One of the nonlinearities that exists in most of the common 
spring designs is the varying coil diameter. The helical springs with variable coil diameter are 
usually called non-cylindrical springs. Methods for representing these non-cylindrical springs 
were proposed in [26-29], where the methods were based on Love’s spatial helix curve theory 
[30]. The investigated geometric shapes in these studies were restricted to three types: barrel, 
conical and hyperboloid. In other words, although contain variable coil diameters these springs 
are still relatively simple and of linear geometry. Additionally, spring designers have looked 
for better mechanical performance by altering the cross section of spring wire to make it non-
circular. It was found that different shapes of cross section did not introduce extra 
computational efforts because that non-circular cross sections still have a constant moment of 
inertia as long as they are uniform across the whole spring wire [31, 32]. As a result, the 
constant moment of inertia did not increase the complexity of the governing equations for 
calculating spring properties. Another possible nonlinearity existing in helical springs is the 
effects of the grounded ends or the non-uniform ends. These non-uniform ends are usually 
designed for the purpose of mounting, where half or more than half of the end coils are cut off. 
It is unrealistic to treat them as normal active coils as they are always closed when they are in 
service conditions. These parts can considered as fixed rotational springs that are connected to 
the main spring body [33, 34]. Another convenient way is to discount the end coils when 
counting the number of active coils [25]. No significant differences between the two methods 
have been reported.   
Traditional spring formulas showed poor predictions to the non-linear features of helical 
springs.  Existing extension theories based on the traditional spring formulas are effective but 
can only work well with spring of simple shapes, such as conical (Figure 1a), barrel (Figure 



1b) and hyperboloid (Figure 1c) which have relatively simple variation of coil diameters 
(Figure 1d). 

 
Figure 1: Normal non-cylinderical shapes of helcial springs (a). Conical, (b). Barrel, (c).Hyperboloid 

and (d).The relationships between their coil diameters and coil number.  

More importantly, to the authors’ best knowledge, no existing study has investigated the effects 
of coil contacts on the calculations of spring stiffness and natural frequency. As a result, there 
is a lack of methods and knowledge on the analysis and design of non-linear springs. Besides, 
the lack also becomes a barrier for the analysis of the system response in high-speed dynamic 
systems that use non-linear helical springs. In this paper, the spring formulas for calculating 
spring stiffness and natural frequency are derived by considering the helical spring as an 
assembly of many curved beam elements. The theories of the formulas are extended to include 
the non-linear geometric properties of helical springs. The aim is to include the effects of 
variable coil diameter, variable pitch and end coils in the proposed model, while at the same 
time to ensure the efficiency and accuracy of the model. The results obtained from spring 
compression tests and FE (finite element) modelling are used to validate the static analytical 
results. Additionally, the present spring model is coupled with a distributed parameter model 
of spring to explain and analyze the dynamic response of the spring at high operation speeds, 
which is validated by the results of a high-speed engine test and of the dynamic FE spring 
model.  

2 Analytical Model 
2.1 Traditional spring formulas based on curved beam theory 
In an early study of Wahl [6], spring formulas were proposed based on assuming the spring as 
a uniform curved beam. Figure 2 shows a sketch of a normal cylindrical spring that is 
compressed by a force F and produces displacement x. It assumes that a small beam element 
has a length dl, and the compression causes a torsional moment T on the curve element. The 
torsion of the element results in a longitudinal displacement dx, and the overall spring 
displacement x is the sum of all the dx of every beam element. According to these assumptions, 
the mass of each beam element dm is written as:  
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where d is the wire diameter of the spring, ρ is the density of the spring material and g is the 
acceleration of gravity. The overall mass of the spring m is then calculated by: 
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where N is the number of spring coils and D is the constant coil diameter. According to Wahl’s 
theory and the torsional theory of beam, the stiffness of the spring k is given by: 
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where G is the shear modulus of the spring material. To calculate the fundamental natural 
frequency, a helical spring is always assumed to be fixed at both ends of the spring. The 
fundamental natural frequency f of the helical spring is expressed as the stiffness k and the 
spring mass m.  
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Eq.(3) and Eq.(4) are the fundamental and widely used equations for researchers and spring 
designers. They are convenient and efficient for calculating stiffness and natural frequency of 
a conventional helical spring with a uniform coil diameter D, a fixed number of active coils N 
and a constant spring pitch. Clearly, the application of the formulas are rather restrictive, as 
helical springs with linear geometries are only a subgroup of a wide range of spring types, most 
of which are with non-linear geometries. Moreover, even a spring with designed linear 
properties may exhibit non-linear behaviours as a result of errors introduced from the 
manufacturing process. Thus, the development of an analytical model capable of accurately 
estimating non-linear spring properties is essential and practically meaningful.  



 
Figure 2: Sketch of a conventional helical spring and the load conditions of spring coils.   

2.2 Spring formula considering variable coil diameter 
One of the non-linear properties that should be included is variable coil diameter. A constant 
coil diameter generates cylindrical helical springs, while a variable coil diameter may produce 
helical springs of conical, barrel or hyperboloid shape, and any other desirable shapes. Based 
on Wahl’s basic assumption, a helical spring is treated as a curved beam which is formed by 
infinitesimal beam elements. Each beam element has a uniform length dl and orientates along 
the helix angle dα as shown in Figure 2. When the helical spring is subjected to an axial 
compression F, each beam element is assumed to have an axial displacement dX, which can be 
calculated by: 
 

𝑑𝑑𝑑𝑑 =  
𝜌𝜌(𝛼𝛼)

2
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where α denotes the helix angle, θ is the torsional angle of the spring element caused by the 
compressive force F, and D(α) is a function of α which is no longer a constant and denotes the 
variable coil diameter. The length of the spring element can be defined by: 
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According to the formula of beam in torsion, for the beam of length dl:  
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where the torsional moment T is:  
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and the polar moment of a circular cross section is J:  
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where d denotes the diameter of the wire cross section. Substituting Eq.(6),  Eq.(7), Eq.(9) and 
Eq.(10) into Eq.(8) yields the expression for the displacement of each spring element as:  
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From this equation, it can be seen that the displacement of each spring element is not uniform 
but changes with the coil diameter. In order to calculate the overall displacement at the moving 
end of the spring X, integration of Eq.(10) is taken over [0, X], i.e., 
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Then, according to Hooke’s law, the stiffness of the spring can be written as: 
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In the above equations, α0 represent the total helix angle of a specific helical spring. It differs 
depending on the design of a spring, but it has a fixed relationship with the number of active 
coils Na, i.e., α0 = 2πNa. Hence, Eq.(12) can be also written as a function of the number of 
active coils Na by: 
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The new stiffness formula in this section includes the effect of variable coil diameter by 
introducing a coil diameter function D(α). Similar to Wahl’s theory, the formula assumes that 
the torsional effect plays the most essential role, and the bending and shear effects of the spring 
are neglected. In addition, the formula assumes a constant helix angle (a constant number of 
active coils Na). Hence, the new formula Eq.(13) is suitable for springs having symmetric 
spring pitch whose coils usually do not contact with each other.  A new stiffness formula for 
considering both variable coil diameter and variable spring pitch is presented in the next section.   

2.3 Spring formula considering both variable coil diameter and variable spring pitch 
Traditional helical springs are usually designed to have a constant spring pitch in many 
engineering applications. However, as the development of new spring design, asymmetric pitch 
is increasingly adopted in the design of helical springs. These springs are found having many 
advantages in various applications. For instance, in a suspension system, a narrow pitch makes 
the spring stiffer after a certain compression and in a valve train mechanism the closing coils 
can increase the natural frequency of the valve spring and therefore reduce the maximum 
dynamic forces. The stiffness formula in the previous section is then modified here to include 
the effect of narrow pitch. Firstly, Eq.(11) is rewritten in a generalized form to show the time-
dependent effect: 
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where the Sf is a constant and is as below: 



 𝑆𝑆𝑓𝑓 =   
4

𝐺𝐺𝜋𝜋𝑑𝑑4
 (15) 

As the effect of the narrow pitch changes with loading time, the force F also changes with time. 
It is because that spring stiffness changes at the loading steps when coils collide. Hence, the 
spring displacement X(t) is considered as a function of time step t. In Eq.(14), the lower limit 
of the integral is zero, representing the first spring element of the fixed spring end and the upper 
limit α0 denotes the last spring element of the moving end of the spring. However, when coil 
contacts are considered, the lower and the upper limits of the integral should be, respectively, 
the first untouched spring element of the fixed and the last untouched spring element of the 
moving end. Hence, Eq.(14) is rewritten as: 
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where αe(t) and αi(t) represent the helix angles of the first and the last untouched spring 
elements, respectively. To determine αe and αi, the function of spring pitch Pt(α) with respect 
to the helix angle α is introduced. This function represents the value of the spring pitch of the 
infinitesimal spring element at helix angle α. The theory is that the closed coils of both the 
lower and the upper end of the spring are treated as isolated helical springs. Then the 
displacements of these isolated helical spring are calculated by: 
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In Eq.(17) and Eq.(18), Xi(t) and Xe(t) denote the displacements of the isolated springs at the 
fixed end and the moving end, respectively.  
Figure 3 shows a helical spring that is subjected to a time dependent loading F(t). The loading 
F(t) results in a displacement at the upper end of the helical spring X(t). Under this loading, 
several coils begin to contact with other coils. Then, these contacted coils at the upper and the 
lower ends are considered as isolated springs 1 and 2, respectively, in Figure 3, where Pt_i and 
Pt_e represent the sum of the pitches of the contacted coils at the same vertical position of the 
last untouched spring elements. Therefore, they are calculated, respectively, by: 
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where Pt(α) is the function of the spring pitch with respect to helix angle α. [∙] is a rounding 
down function to the nearest integer. 



 
Figure 3: Sketch of the closed spring coils under compressions which are treated as isolated springs. 

The displacements Xi and Xe of the isolated springs 1 and 2 should be equal to the total pitch 
values Pt_i and Pt_e, respectively. In other word, coils are closed when they satisfy that: 
 𝑑𝑑𝑖𝑖(𝑡𝑡) =  𝑃𝑃𝑡𝑡_𝑖𝑖(𝛼𝛼𝑖𝑖(𝑡𝑡)) (21) 

and 

 𝑑𝑑𝑒𝑒(𝑡𝑡) =  𝑃𝑃𝑡𝑡_𝑒𝑒(𝛼𝛼𝑒𝑒(𝑡𝑡)) (22) 

Then, αi and αe can be obtained by solving the above two equations. By substituting αi(t) and 
αe(t) into Eq.(16) , the function of displacement X(t) considering closed coils can be obtained. 
Eventually, the stiffness function is obtained by applying Hooke’s Law as: 
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It can be seen that the stiffness k(t) is now a function of time t instead of a constant after 
considering the effects of closing coils. It is because that at each loading time step the number 
of closed coils or the number of active coils may be different so that the stiffness changes 
accordingly. 

3 High-Speed Dynamic Spring Model 
In the real world, helical springs serve for a category of working conditions. Most of them are 
subjected to a low-speed or high-speed dynamic motion. This covers a large range of spring 
types, one of which is the most typical valve spring. The valve spring normally works in a 
valve train mechanism, which is an essential part of a car engine. It works in both low- and 
high-speed conditions, where the engine speed can reach as high as 10000 RPM. It has been 
widely known that a static spring model is not sufficient to represent these dynamic effects, 
and therefore dynamic spring models are required by the industry. In an early study of Wahl 
[6], an analytical dynamic spring model was proposed based on the distributed parameter 
method. In the model, the dynamic response of a helical spring is assumed as a superposition 
of dynamic motions of the spring at every vibrational mode. The motions of the spring is 



described by a partial differential equation Eq.(24) which is in the same form to the one-
dimensional wave equation.  
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where 𝑐𝑐 =  𝜌𝜌�𝑘𝑘/𝑑𝑑 denotes the speed of wave propagation across the spring; l, k and m are the 
length, stiffness and active mass of a spring respectively; y(x, t) is the displacement of a spring 
element at position x and time t. Following his study, Phlips et al.[20] presented a detail strategy 
for solving this dynamic spring model. Firstly, the lower end of the spring is assumed fixed 
when the upper end is free. Then, the motion of a spring is assumed to have two components, 
i.e., a static response and a dynamic response. With these assumptions, Eq.(24) becomes:  
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where l0 is the free length of the spring and z(t) is the displacement of the moving end caused 
by the loading. sd(x, t) denotes the dynamic contribution which is a function of both x and t. On 
the other hand, the dynamic term sd(x, t)  can be treated as harmonic in time [35], and its free 
solution is a separable form: 
 𝑠𝑠𝑑𝑑(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡 (26) 

When f(0) = f(l0) = 0 is the boundary condition, the ordinary differential equation can be solved 
as: 
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The relationship ω/c = nπ/l0 can be found as f(l0) = sin(ω∙l0/c) = 0. An efficient way to solve 
the dynamic equation is to assume the solution as a superposition of the independent vibration 
modes [20-22]. Then, the dynamic term can be written as: 
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where Sn(t) is the dynamic amplitude of the spring at the n-th frequency. In addition, the 
coefficient of this term can be also written as a Fourier expansion in terms of the above modes: 
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 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 < 𝑥𝑥 < 𝜌𝜌0 (29) 

By using this method, the dynamic equation is transformed from a partial differential equation 
to a set of ordinary differential equations. However, these equations have not considered the 
internal damping of the spring which plays an essential role in accurately estimating the 
dynamic vibration of spring [25, 36]. Therefore, a viscous damping term is added into Eq.(25) 
and it becomes: 
 𝑑𝑑2𝑆𝑆𝑛𝑛(𝑡𝑡)

𝑑𝑑𝑡𝑡2
+  2𝜉𝜉𝜔𝜔𝑛𝑛

𝑑𝑑𝑆𝑆𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑡𝑡

+  𝜔𝜔𝑛𝑛2𝑆𝑆𝑛𝑛(𝑡𝑡) =  −
2
𝜋𝜋𝜋𝜋

 ∙  
𝑑𝑑2𝑧𝑧(𝑡𝑡)
𝑑𝑑𝑡𝑡2

 (30) 

where ξ is the viscous damping ratio of a spring. For solving Sn(t) from the equation, a Fourier 
solution method is used in this paper. The application of this method can be also found in the 
studies of [21, 22]. Firstly, time t is replaced by the cam speed ωcs and the cam angle φ, so that 
dt = dφ/ωcs. Hence, Eq.(30) can be rewritten as: 



 𝑑𝑑2𝑆𝑆𝑛𝑛(𝜑𝜑)
𝑑𝑑𝜑𝜑2 +  2𝜉𝜉

𝜔𝜔𝑛𝑛
𝜔𝜔𝑐𝑐𝑐𝑐

∙
𝑑𝑑𝑆𝑆𝑛𝑛(𝜑𝜑)
𝑑𝑑𝜑𝜑

+
𝜔𝜔𝑛𝑛2

𝜔𝜔𝑐𝑐𝑐𝑐2
𝑆𝑆𝑛𝑛(𝜑𝜑) =  −

2
𝜋𝜋𝜋𝜋

∙
𝑑𝑑2𝑧𝑧(𝜑𝜑)
𝑑𝑑𝜑𝜑2  (31) 

Then, Sn(φ) and the applied load d2z(φ)/dφ2 can be written in the form of Fourier series: 
 

𝑆𝑆𝑛𝑛(𝜑𝜑) =  �(𝑝𝑝𝑖𝑖 cos(𝑖𝑖𝜑𝜑) + 𝑞𝑞𝑖𝑖sin (𝑖𝑖𝜑𝜑))
∞

𝑖𝑖=0

 (32) 

 𝑑𝑑2𝑧𝑧(𝜑𝜑)
𝑑𝑑𝜑𝜑2 =  �(𝑎𝑎𝑖𝑖 cos(𝑖𝑖𝜑𝜑) + 𝑏𝑏𝑖𝑖sin (𝑖𝑖𝜑𝜑))

∞

𝑖𝑖=0

 (33) 

where ai, bi, pi and qi are the coefficients of Fourier series. By substituting Eq.(32) and Eq.(33) 
into Eq.(31), pi and qi can be computed from : 
 

𝑝𝑝𝑖𝑖 =  
−2𝑎𝑎𝑖𝑖/𝜋𝜋𝜋𝜋 −  2𝑞𝑞𝑖𝑖𝜉𝜉𝜔𝜔𝑛𝑛𝑖𝑖/𝜔𝜔𝑐𝑐𝑐𝑐

𝜔𝜔𝑛𝑛2/𝜔𝜔𝑐𝑐𝑐𝑐2 −  𝑖𝑖2 
 (34) 

 
𝑞𝑞𝑖𝑖 =  

−2𝑏𝑏𝑖𝑖/𝜋𝜋𝜋𝜋 −  2𝑝𝑝𝑖𝑖𝜉𝜉𝜔𝜔𝑛𝑛𝑖𝑖/𝜔𝜔𝑐𝑐𝑐𝑐
𝜔𝜔𝑛𝑛2/𝜔𝜔𝑐𝑐𝑐𝑐2 −  𝑖𝑖2 

 (35) 

The dynamic equation can be obtained now by solving the pi and qi. Eventually, the total 
dynamic spring force can be considered as a sum of the dynamic force Fd and the static force 
Fs. The dynamic force is caused by the internal vibrations of the spring, and it has the 
relationship with Sn(φ) as: 
 𝐹𝐹𝑑𝑑 =  𝜋𝜋𝑘𝑘�𝜋𝜋𝑆𝑆𝑛𝑛(𝜑𝜑)

𝑛𝑛

 (36) 

The static force Fs is generated by the static compression of spring, which consists of a pre-
load xp and an external load z(φ). So, the static force can be obtained by: 
 𝐹𝐹𝑐𝑐 =  𝑘𝑘 �𝑥𝑥𝑝𝑝 + 𝑧𝑧(𝜑𝜑)� (37) 

It is noteworthy that the k in Eq.(36) and Eq.(37) is the spring stiffness which is currently a 
constant. However, as what was explained in the previous section, the spring stiffness could be 
variable during the process of compression and vibration when the spring has non-linear 
geometric properties. Therefore, a more general solution for the spring force can be obtained 
by replacing the constant stiffness k by a variable stiffness k(φ). As a result, the total dynamic 
spring force F can be calculated by:  
 𝐹𝐹 = 𝐹𝐹𝑐𝑐 +  𝐹𝐹𝑑𝑑 =  𝑘𝑘(𝜑𝜑) �𝑥𝑥𝑝𝑝 + 𝑧𝑧(𝜑𝜑)�+  𝜋𝜋𝑘𝑘(𝜑𝜑)�𝜋𝜋𝑆𝑆𝑛𝑛(𝜑𝜑)

𝑛𝑛

 (38) 

4 Numerical Example 
4.1 Geometry and material 
To validate the efficiency of the developed non-linear spring formulas, a beehive spring is used 
as an example in this section. The beehive spring (Figure 4a) is manufactured by Force 
Technology Ltd. and serves in the high-speed engine of sports cars. Figure 4b, c, d and e depict 
the wire diameters, coil diameters, spring heights and spring pitches based on the design 
specifications and 3D scanning measurement, respectively. Apart from the wire diameter, small 
discrepancies in the spring height and the coil diameter are observed between the design 



specification and the actual geometry from 3D scanning. It is because that, usually, a helical 
spring is designed to have a linear geometry, as described by the traditional spring formulas. 
However, errors can be introduced in the process of manufacturing, which may result in 
geometrical nonlinearities. Hence, the geometry model used in this paper is developed 
according to the scanning data, which could assure a more realistic prediction of the springs.   

 
Figure 4: (a). Real beehive spring product and its geometry based on 3D scan technique and design 

specifications of (b). wire diameter, (c). coil diameter, (d). spring height and (e).spring pitch. Adapted 
from [37]. 

The material used to fabricate the beehive spring is super clean spring steel with the type code 
of Oteva 90. It is a widely used steel for manufacturing springs with high fatigue properties 
and excellent relaxation properties. Table 1 shows the mechanical properties of the material.  

Table 1: Mechanical properties of super clean spring steel Oteva 90.  

Physical properties 

Wire 
(mm) 

Tensile strength 
(N/mm2) 

Modulus of 
elasticity (GPa) 

Modulus of shear 
(GPa) 

Posion’s 
ratio 

3.85 2080-2180 206 79.5 0.29 
 

4.2 Static compression experiment and dynamic engine head test 
In practice, the beehive spring is produced for using in valve trains and acts as valve spring. It 
performs to ensure the opening and closing process of intake and exhaust valves accurately. In 
this case, the beehive spring is always pre-compressed by 7mm in the valve train. Figure 5(a) 
shows the 7mm compression test that is conducted by Force Technology Ltd. Then the reaction 
force of the spring is recorded. The contact status of the spring coils at 1mm, 3mm and 7mm 
compression are displayed in Figure 5(b), Figure 5(c) and Figure 5(d) respectively. It 
demonstrates that the spring pitch between the first and the second coils is progressively 
compressed and eventually the second coil contacts the first coil fully at 7mm compression.  



 
Figure 5: (a). The 7mm compression test conducted on the beehive valve spring sample, and the 

contact status of spring coils at (b).1mm, (c).3mm and (d).7mm compression obtained from the testing 
result. Adapted from [37]. 

Besides working in static conditions, the beehive spring mainly works in high-speed dynamic 
conditions. As a valve spring, it is always seated in the valve train of the engine head as shown 
in Figure 6. The engine head is the essential part of the V8 car engine of sports cars. In the 
engine, the beehive spring will bear high-speed dynamic loadings, which can be in the range 
of 2000-8000 rpm. As for testing the dynamic spring force at various engine speeds, an engine 
test of the McLaren V8 engine is conducted as shown in Figure 7. The whole engine is 
motivated, and the engine speed is controlled by the external electrical motor. For monitoring 
the reaction force of the beehive valve inside the engine, a sensor is placed at the bottom surface 
of the spring. Then, the motor rotates at various speeds that makes the engine working as it 
does in a real sports car. The output dynamic spring forces is compared with finite element 
results and analytical results in following sections.  
 



 
Figure 6: Engine head of the sports car. 

 
Figure 7: Speed controlled engine test rig for the V8 engine of the sports car. 

4.3 Finite Element Spring Model 
A numerical spring model based on FE method is used in this paper in comparison with the 
developed analytical model and experiment. Firstly, the geometry of the spring is generated 
based on the 3D scan data. The 3D model is then imported into and meshed by the commercial 
software Ansys. The detailed meshing strategy and experimental validations of the FE spring 
model can be found from the authors’ previous study [38]. The FE model is shown in Figure 
8(a) where the lower end face B of the spring is fixed and the upper end face A is subjected to 
a 7mm longitudinal compression as shown in Figure 8(b). In addition, self-contact is also 
defined across all the spring coils, which enables the consideration of coil clash. These 
conditions simulate the practical working conditions of the beehive spring in a valve train. The 



first and last end coils are meshed by tetrahedron elements in order to better fit the irregular 
shapes. On the contrary, the coils in the middle range are meshed using hexahedron elements 
for reducing the mesh density while ensuring the accuracy. In total there are 70475 elements 
with 160500 nodes in the meshed spring model. Static FE simulations are then conducted, and 
they are used to validate the proposed analytical model together with the experimental results 
in the following sections. The dynamic FE simulation applied the same geometric model of the 
spring. The loading of the dynamic simulation is corresponding to the displacement of the cam 
profile as shown in Figure 12a. The detail setting of the dynamic FE model can also be found 
in the previous study [38].  

 
Figure 8: (a). FE spring model meshed by commercial software Ansys and (b). 7mm compression 

loading. Adapted from [37]. 

4.4 Static response with consideration of non-linear spring geometries 
The proposed spring formula in this article is applied to analyze the mechanical properties of 
the beehive spring. As stated in the previous sections, the beehive spring has geometrical 
nonlinearities (varying coil diameter and changing spring pitch). In order to consider these 
factors, firstly, an expression that can fit the 3D scan data of the coil diameter and spring pitch 
should be found. In this study, the least squares polynomial fit method achieved by the Python 
package ‘NumPy’ is employed to regress the fitting functions. This method aims to find the 
minimum variance between the values from the regression function and the values of the scan 
data. A fit degree is usually introduced to regulate the length and the dimension of the 
regression polynomial expression. In other words, the value of the fit degree represents the 
maximum order and the number of terms of the regression polynomial expression. A low fit 
degree may fail to fit the data points while a high fit degree always results in higher 
computational efforts.  
Figure 9(a) and Figure 9(b) shows the regression functions of the varying coil diameter and the 
changing spring pitch by using the least square polynomial method. When the orders of fit 
degree are below 10, the fitting curves of both the coil diameter and the spring pitch show 
obvious mismatch with the 3D scan data. When the order of fit degree is raised to 15, it appears 
that the regression polynomials functions can fit the scanned coil diameter and spring pitch 
curves very well. Therefore, the order of fit degree for fitting both the coil diameter and the 
spring pitch curves are chosen to be 15 in this paper. Next, the regression function of spring 



pitch Pt is used to construct the function of pitch summation Pt_i and Pt_e in Eq.(19) and Eq.(20). 
The fitting quality of the constructed Pt_i and Pt_e is shown in Figure 9(c) by comparing with 
the summation of the 3D scan spring pitch data. It can be seen that an order of fit degree 15 is 
sufficiently high for fitting the scan data. In the beehive spring of this study, only the lower 
portion of the spring has damping coils (have narrow pitches). Therefore, it is assumed that 
during the 7mm compression only the coils at the lower portion will be closed progressively. 
Thus, the solutions of the Eq.(21) should be determined at different loadings steps. Figure 9(d) 
depicts the relationships between the curves of Xi and Pt_i(αi) under various loading steps. The 
Xi curve has no intersections with the Pt_i(αi) curve at a spring force of 100 N, which makes 
Eq.(21) have no solution. It means that the spring coils have not contacted with each other at 
this loading step. When the spring force increases to 220 N, the Xi curve has one intersection 
with the Pt_i(αi) curve at around 1rad helix angle. The contacting helix angle αi can be therefore 
solve from Eq.(21), which is used to determine the current number of active coils Na. When 
the spring force reaches 320 N, the Xi curve has more than one intersection with the Pt_i(αi) 
curve. The intersections at the largest helix angle (around 5.5 rad) is the last contact spring 
element, and all the spring elements at helix angles smaller than it are assumed to be in full 
contact. The proposed analytical spring model was implemented and solved in the open source 
integrated development environment (IDE) Spyder by coding in Python.  

 
Figure 9: Polynomials functions with 5, 10 and 15 fit degree for fitting the 3D scan data of (a). coil 
diameter, (b). spring pitch and (c). summation of pitch. And (d). position of contact coils at different 

loading step.  

Then, the function D(α) for fitting the coil diameter curve and the helix angle of the last 
untouched spring element αi can be substituted into the proposed spring formula, and the spring 
stiffness can be calculated by considering the effects of variable coil diameter and changing 
spring pitch. The compression force of the beehive spring estimated by the traditional analytical 
formula, by the proposed analytical formulas considering only variable spring pitch, only 
variable coil diameter and considering both variable pitch and variable coil diameter are 



presented in Figure 10. In addition, the experimental results and the FE results are also plotted 
to validate the analytical results. A significant discrepancy can be observed between the results 
based on the traditional spring formula and others. At 7 mm compression, the force can only 
reach approximately 210 N according to the traditional spring formula, while it is around 312 
N from the experimental and FE simulation results. It is mainly because that the reduced size 
of the spring coils at the upper portion and the narrowed pitch at the lower portion of the 
beehive make the spring stiffer, which cannot be considered by the traditional formula. As a 
result, the traditional formula that assumes a constant coil diameter and pitch underestimate the 
spring force significantly when comparing with the experimental results. For the analytical 
model that considers variable pitch only, the calculated spring force is around 270 N at 7 mm 
compression which is slightly lower than the experimental and the FE results. However, the 
result is closer to the experimental results than the ones obtained from traditional formula. It is 
because that the spring stiffness becomes higher during compression with the consideration of 
the closed spring coils. The relative higher stiffness results in a higher spring force. Similarly, 
the proposed spring formula considering only the variable coil diameter estimates the spring 
force around 280 N at 7 mm compression, which is slightly higher than the results obtained by 
the formula considering variable pitch only. It is noted that this curve has a good agreement 
with the experimental and the FE results before 5 mm compression. However, the deflection is 
much bigger, when the compression is between 5 mm and 7 mm. as shown in Figure 11 that is 
a zoomed view of the compression between 5 mm and 7 mm. This phenomenon is due to the 
contacts between the coils with narrow pitch, i.e., when the compression exceeds 5 mm, these 
coils become closed coils. Consequently, the actual number of active coils is reduced, which 
increases the overall stiffness of the spring.   

 
Figure 10: Spring force curves under a 7 mm compression based on experimental data, FE analysis, 
traditional spring formula and proposed analytical models considering varied pitch and/or varied 

coil diameter. 



 
Figure 11: Spring force curves under a 7 mm compression based on experimental data, FE analysis, 
traditional spring formula and proposed analytical models considering varied pitch and/or varied 

coil diameter. (Zoom in area between 5 mm and 7 mm compression) 

The proposed spring formula, which considers the effects of both variable coil diameter and 
coil contact, shows its strong ability to estimate the force of non-linear spring during 
compression. At 7 mm compression, the calculated spring force is approximate 314 N, which 
is very close to the results of the experiment (312 N) and the FE analysis (312 N). In addition, 
the curve of the force fits very well with the FE and the experimental curves during the overall 
compression process (0 mm to 7 mm). It demonstrates that the proposed spring formula has the 
ability to accurately estimate the mechanical properties of a helical spring. Especially, when 
the helical spring has high non-linear geometries, for instance, variable coil diameter and 
narrow pitches, the proposed formula still can give an accurate prediction when the traditional 
spring formula fails to do so.  

4.5 High-speed dynamic response with consideration of variable spring stiffness 
In addition to the non-linear performances of helical springs under static loading conditions, 
the dynamic properties of the beehive spring are also of great importance in practice. However, 
the existing analytical dynamic models are mainly based on the springs with linear geometries, 
which are not capable to predict the dynamic force of a non-linear spring. This section shows 
the dynamic results of the beehive spring by coupling the developed spring formulas with the 
distribute parameter spring model.   
As per the development of analytical model for predicting the dynamic performances of springs 
with non-linear geometries in Section 3, the dynamic effects of a helical spring are composed 
of a static term and a dynamic term as shown in Eq.44. The developed analytical model is 
coded using the scientific packages ‘Symfit’ and ‘Numpy’ in the open source software Python. 
In the analysis, the beehive spring is pre-compressed by 7 mm to simulate the assembly in a 



real valve train system, which should provide enough force to close the valve. So, a 7mm 
preloading is firstly added into the model. Then, the dynamic input is derived from the profile 
of the cam over the spring. The cam rotates when the engine works, and it executes 
displacement on the top of the spring. The dynamic loading applied in the analytical model is 
shown in Figure 12(a) which shows the displacement of one cycle of cam rotation. As a result 
of the displacement, the varying stiffness of the beehive spring k(φ) during the cam cycle is 
shown in Figure 12(b) which is calculated using Eq.(23).  These results are imported to the 
developed dynamic analytical model in Eq.(38) to calculate the dynamic spring force.  

 
Figure 12: (a). The cam profile of the valve train mechanism. (b). The varied spring stiffness of the 

beehive spring respect the angle of the cam.  

As demonstrated in Section 3, the first step for calculating the dynamic spring force is to find 
the dynamic amplitude, Sn(φ), of each vibration mode n. The first simulated engine speed is 
4000-rpm which equals to 2000-rpm cam speed. Firstly, the external loading z(φ) is input to 
Eq.(33) to calculate the Fourier coefficients ai and bi. The damping ratio ζ is 0.016 and the first 
order natural frequency ω1 is 631 Hz which are the same as the ones in the finite element model. 
The dynamic amplitude Sn(φ) can be obtained by substituting the inputs ai, bi, ζ and ω1 into 
Eq.(34) and Eq.(35) to solve qi and pi. Figure 13(a) - (e) display the modal vibrations of the 
first five vibration modes n ∙ Sn(φ) respectively.  
The cam profile displacement z(φ) in Figure 12(a) demonstrates that there is no external loading 
applied to the spring at 0-2 rad and 4.5-6.28 rad. However, the spring still has modal vibrations 
at each mode especially at the first mode n=1 as shown in Figure 13. It is because that the 
spring experience free vibration as for dissipating the residual dynamic energy at 4000-rpm 
engine speed. At approx. 2.5 rad and 4.2 rad, the cam starts to compress the spring, the vibration 
status of the spring experience a sudden change and short pulses are generated at each mode as 
shown in Figure 13. In addition, it is observed that the vibrations between 2.5 rad and 4.2 rad 
have larger amplitudes than free vibrations as the spring under an external loading from the 
cam. According to Eq.(38), the effects of the dynamic responses of all the vibration mode will 
be added onto the static response of the spring (Figure 13(f)). In addition, it is noted that the 



vibration contributes less to the overall dynamic response, when the mode of the vibration is 
higher. Therefore, only the vibrations of the first five mode are considered in the analytical 
model in this study.   

 
Figure 13: The modal vibrations of the beehive spring of modal modes (a). n = 1, (b). n = 2, (c). n = 
3, (d). n = 4 and (e). n = 5 at 4000-rpm engien speed respectively. And the static displacement of the 

upper end of the spring caused by cam rotation.  

The overall dynamic force of one cam cycle at 4000-rpm engine speed is shown in Figure 14, 
which can be calculated by using Eq.(38). The results of the engine head test and the dynamic 
FE simulation are also plotted to validate the developed analytical model. Throughout the entire 
cam cycle, both the analytical and the FE results have a good agreement with the test data. The 
spring force starts with approx. 312 N, which is the result of the 7 mm pre-load. The tested 
spring force has a slight fluctuation between 0 rad and 2 rad, which indicates that the energy 
from the last cam cycle has not been completely dissipated and the spring is under free vibration. 
In addition, the spring force shows similar vibrations between 4 rad and 6.28 rad. This is caused 
by the cease of the external loading at 4 rad and the spring experience free vibration again. The 
analytical model can simulate the free vibrations of the spring well at the two stages. From 2 
rad to 3.14 rad, the tested force increases gradually, and it drops after the peak force around 
851 N at 3.14 rad to about 310 N again at 4 rad. This process is caused by the cam profile which 
reaches its largest displacement (11 mm) at 3.14 rad. During this stage, the analytical model 
can also fit the test result well as shown in Figure 14. The comparisons between the forces from 
the analytical model, the engine head test and the FE model illustrate that the spring already 
has detectable vibrations, when working under cycling loadings at around 4000-rpm engine 
speed. More importantly, the analytical model proves its ability for accurately and quickly 



predicting the magnitude of dynamic force and the existence of spring vibrations, which 
performs as well as the dynamic FE model does.  

 
Figure 14: The comparison between the dyanmic forces of the beehvie spring within one cam cycle at 

4000-rpm engine speed based on the analytical model, engine head test and dynamic FE model.  

The analytical model is also used to simulate the dynamic spring force of the spring at higher 
engine speed 5600-rpm. It is easy to calculate that 5600-rpm is 1400-rpm higher than 4000-
rpm in terms of engine speed, and 700-rpm higher in terms of cam speed. Hence, the parameters 
of the analytical model are unchanged despite increasing the cam speed to 2700-rpm. The 
modal vibrations of the first five modes at 5600-rpm are shown in Figure 15(a) - Figure 15(e) 
respectively. At the first mode n=1, the largest amplitude of the vibration can reach around 
0.5mm, which is significantly larger than 0.08mm at 4000-rpm. It is reasonable as the higher 
engine speed actually results in higher vibrational energy. In addition, it is observed that the 
period of one vibration cycle at 5600-rpm is shorter than that at 4000-rpm. It is because the 
higher engine speed decreases the time for every cam cycle. It is also noteworthy that 5600-
rpm is, when compared with 4000-rpm, closer to the second order natural frequency which is 
around 1262 Hz. It explains the phenomenon that the second mode n=2 at 5600-rpm shows 
more obvious vibration (Figure 15b) than that at 4000-rpm does (Figure 13b). Besides, the fifth 
mode vibration contribute very little to the overall dynamic response at 5600-rpm, which is 
similar to the phenomenon at 4000-rpm engine speed. (Figure 15(e)). Eventually, the dynamic 
vibration of each mode can be accumulated and added on the static displacement (Figure 15f).  



 
Figure 15: The modal vibrations of the beehive spring of modal modes (a). n = 1, (b). n = 2, (c). n = 
3, (d). n = 4 and (e). n = 5 at 5600-rpm engien speed respectively. And the static displacement of the 

upper end of the spring caused by cam rotation. 

The overall dynamic force of the beehive spring at 5600-rpm is plotted in Figure 16 together 
with the results of the engine head test and the dynamic FE model. When the engine speed 
reaches 5600-rpm, the internal vibration of the spring becomes more significant no matter at 
either the stage of free vibration (0 rad – 2 rad and 4 rad – 6.28 rad), or the stage of forced 
vibration (between 2 rad and 4 rad). To be specific, the largest vibration amplitude at free 
vibration stage can reach approx. 100 N (from 250 N to 350 N) compared to approx. 10 N at 
4000-rpm engine speed. After 2 rad, when the spring is under external compression of the cam, 
the spring force starts to increase gradually. However, the force has a sudden drop at around 
2.9 rad and then increases again until reaching the peak force 849 N from the test, 841 N from 
the analytical results and 890 N for the FE results at 3.14 rad. A similar phenomenon can be 
also observed at approx. 3.4 rad, when the spring force reverses to increase during the process 
of decreasing. In addition, it is noted that there is a rapid change of the spring force at around 
4.2 rad. This phenomenon is caused by the impacts between the narrow coils at the fixed end. 
The reasons and details of the phenomenon have already been explained and discussed in 
another paper [38]. After the forced vibration, the spring comes into the second free vibration 
stage after 4.2 rad. It can be concluded that the analytical model has successfully predicted the 
dynamic force of the beehive spring, which is as accurate as the FE model, even when the 
engine speed is increased to a higher speed of 5600-rpm.  



 
Figure 16: The comparison between the dyanmic forces of the beehvie spring within one cam cycle at 

5600-rpm engine speed based on the analytical model, engine head test and dynamic FE model.  

With consideration of variable spring stiffness caused by coils contacts, the developed 
analytical model can accurately predict the dynamic spring force of the beehive spring at 
different engine speeds, which is validated by both the test data and the FE results. It is also 
found that the dynamic response of the spring at 5600-rpm is more significant than the dynamic 
response generated at 4000-rpm. The analytical results demonstrate that the amplitude of the 
dynamic vibrations of each mode are increased when the engine speed increase due to 
increment of the accumulated dynamic vibration of all the vibration modes.  

5 Conclusion 
This paper presents an analytical spring model for predicting both static and dynamic 
mechanical properties of helical springs of non-linear geometries. Unlike the conventional 
cylindrical helical springs, these springs contain highly non-linear geometries: variable coil 
diameter and pitches. The proposed model shows the robust ability to deal with these 
nonlinearities while the traditional spring formulas fail to. Hence, it provides a solid 
fundamental for further analyzing static, dynamic or impact responses of non-linear springs, 
especially when coil clashes exist. The main findings can be concluded as follow: 
1. It is found that a practical beehive spring usually has highly irregular geometries, such as 

variable coil diameters and pitches. 3D scanning data of the helical spring can better 
describe the non-linear geometry of a real beehive spring as it includes the tolerance from 
the manufacturing process. In this article, the non-linear geometry is represented by two 
polynomial functions of order 15. The good representation of helical geometries provides 
a solid foundation for accurately predicting mechanical properties of non-linear helical 
springs under both static and dynamic loadings 

2. The developed analytical model is successfully validated by both the experimental data and 
the FE models. The mechanical performances of the spring are analyzed by comparing the 



results of traditional spring model, the developed analytical model, the FE simulation and 
the experimental date. In static analysis, it is found that the traditional spring model is 
unable to analyze the helical springs with non-linear geometric properties (varied coil 
diameter, narrow pitch and coil contacts). It is due to its linear assumption that helical 
springs always have a constant coil diameter and number of active coils, so that the spring 
stiffness is linear during compression. On the contrary, the developed spring formulas can 
accurately estimate the mechanical properties of non-linear helical springs as accurate as 
the FE analysis does, which are all validated by the experimental result. Therefore, the 
developed model can replace FE dynamic models in practice to save computational 
resources and is potentially helpful for developing a real-time controlling system in 
manufacturing for the industry. More importantly, the developed analytical model 
significantly expands applicable parameters of spring geometries to a larger domain in 
spring design, in addition to its capability of analyzing the nonlinearity. It makes it possible 
to include variable pitch and diameters of individual coils in design as tuneable parameters, 
which cannot be considered in the current design practice.   

3. In dynamic analysis, the developed spring model is coupled with the analytical modal 
spring model to simulate the dynamic response of the non-linear beehive spring. The results 
show that the developed dynamic spring model can well predict the dynamic force of the 
spring by considering the non-linear properties of the spring. At both 4000-rpm and 5600-
rpm engine speeds, the calculated dynamic forces fit perfectly with both the experimental 
data and the FE results at both the stages of free and forced vibration. It is because that the 
developed spring model includes the effects of coil clash and variable spring diameter. 
They are essential for accurately predicting spring forces, especially at the stage of forced 
vibration, where the compression alters the stiffness of the spring and, thus, the peak spring 
forces. In addition, it is noted that the developed spring formulas are efficient to couple 
with the existing modal spring model.  
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