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Abstract: Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity 

DT model of the physical assets can produce system performance data that is close to reality, which 

provides remarkable opportunities for machine fault diagnosis when the measured fault condition data are 

insufficient. This paper presents an intelligent fault diagnosis framework for machinery based on DT and 

deep transfer learning. First, the DT model of the machine is built by establishing the simulation model 

and with further updating through continuously measured data from the physical asset. Second, all 

important machine conditions can be simulated from the built DT. Third, a new-type deep structure based 

on novel sparse de-noising auto-encoder (NSDAE) is developed and pre-trained with condition data from 

the source domain, as generated from the DT. Then, to achieve accurate machine fault diagnosis with 

possible variations in working conditions and system characteristics, the pre-trained NSDAE is fine-tuned 

using parameter transfer with only one sample from the target domain. The presented method is validated 

through a case study of triplex pump fault diagnosis. The experimental results demonstrate that the 

proposed method achieves intelligent fault diagnosis with a limited amount of measured data and 

outperforms other state-of-the-art data-driven methods. 
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1: Introduction 

With the emerging information and communication technologies, the manufacturing sector is 

transforming rapidly into next-generation smart manufacturing with enhanced modularity, flexibility, and 

reliability [1][2]. The availability of a manufacturing system is crucial in achieving high productivity in 

the competitive market. To reduce system downtime and unexpected failure of increasingly complex 

industrial machines and instruments, machine fault detection and diagnosis play a significant role [3]. 

Compared with the traditional fault diagnosis where the relationship between the monitored data and the 

health states of machines comes from the abundant human expertise of engineers, intelligent fault 

diagnosis (IFD) applies machine learning theories to machine fault diagnosis, which automates the 

process of fault detection and classification [4]. The traditional IFD methods contain three steps: sensor 

data acquisition, feature extraction, and fault classification [5]. Feature extraction involves extracting the 

features from the collected data through different domain analysis activities such as those in time domain, 

frequency domain, and time-frequency domain [6]. In the final fault classification step, the extracted 

features are used to train machine learning models such as artificial neural networks, support vector 

machine, and random forest, to carry out fault prediction [7]. However, the manual extraction of features 

has significant drawbacks as it is task intensive, with different fault classification tasks and varying 

machine working conditions. 

Deep learning (DL) has been a significant breakthrough in the field of artificial intelligence in recent 

decades, which greatly overcomes the shortcomings in the traditional IFD methods. Due to the capability 

of automated extraction of representative features from raw data and accurately establishing nonlinear 

mapping of different health conditions, popular DL techniques including deep belief network (DBN) [8], 
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stacked auto-encoder (SAE) [9], and convolutional neural network (CNN) [10] have attracted increasing 

attention and become the very popular tools for IFD. Shao et al. [11] developed a novel method for IFD 

of roller bearings using deep wavelet auto-encoder and extreme learning machine, which achieved more 

efficient diagnosis performance than traditional machine learning approaches and standard deep learning 

methods. Abid et al. [12] proposed a new DL architecture called deep-SincNet for a multi-fault diagnosis 

task. High accuracy for several separated and combined faults, more physical interpretability, high 

robustness against noisy environments, and a significant gain in implementation cost were achieved by 

their approach. However, training a DL model from scratch for IFD will need a large amount of training 

data that contain all possible machine fault conditions. This is a major challenge in practical applications 

since the measured data only for some fault conditions can be far insufficient. 

To solve the issue of limited training data, transfer learning (TL) has been introduced, which has 

shown remarkable capability in obtaining a satisfactory deep architecture by fine-tuning a DL model that 

has been pre-trained in other tasks [13-15]. Recently, TL has been also utilized in IFD. Wen et al. [16] 

presented a transfer CNN for fault diagnosis based on ResNet-50, which achieved accurate diagnosis 

results on bearing faults and self-priming centrifugal pump faults. Zhu et al. [17] improved the 

CNN-based TL method by calculating the domain loss by a linear combination of multiple Gaussian 

kernels, which enhanced the ability of adaptation compared to using a single kernel. Shao et al. [18] 

developed a fault diagnosis approach with modified TL by introducing stochastic pooling and Leaky 

rectified linear unit, which was successfully applied to analyze thermal images of a rotor-bearing system 

under different working conditions. However, the pre-trained models from completely different 

applications, on which TL is based, may not have learned the most representative features. Thus, the 

robustness of the diagnosis performance can be significantly impacted in practical scenarios where the 
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working conditions and system characteristics are not fixed. The parameter transfer learning strategy 

achieves more robust fault diagnosis results where the pre-trained model that is trained on data collected 

from the original system is fine-tuned using a small amount of samples in the target domain. However, the 

lack of measured data for all fault conditions in the source domain remains a major bottleneck in using 

parameter transfer learning [19]. 

With the advances in multi-physics modeling and simulation, advanced sensing and signal 

processing, cloud and edge computing, and 5G, the concept of digital twin (DT) has gained increasing 

attention in recent years in various areas of smart manufacturing such as product design [20], job shop 

scheduling [21], and process optimization [22]. A high fidelity digital model of the physical asset can 

produce simulation data of the system performance that is close to the real asset. DT provides new 

opportunities for IFD by generating simulation data for the unavailable fault conditions. Some researchers 

have recently investigated DT in fault diagnosis and predictive maintenance. Wang et.al [23] proposed a 

preliminary DT reference model for rotating machinery. A parameter sensitivity analysis-based model 

updating scheme was investigated to enhance the model adaptability. The developed DT model was used 

in diagnosing rotor unbalance fault and predicting its progression. Jain et al. [24] developed a DT that 

estimated the measurable characteristic outputs of a photo-voltaic energy conversion unit (PVECU) in 

real-time. The model generated an error residual for various typical faults that were used for fault 

diagnosis purposes. However, no systematic approach has been developed yet for improving the machine 

fault diagnosis performance using DT, to overcome the practical issue of limited measured data. 

The present paper develops a new DT-assisted deep transfer learning framework for machine IFD. 

The DT model of the machine provides the simulation data of the possible fault conditions, and hence 

overcomes the problem of data unavailability for some fault conditions. The challenge of varying system 
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characteristics is addressed by adaptively updating the DT model. The improved deep transfer learning 

method based on sparse de-noising auto-encoder can fully utilize the trained model with source domain 

data and a very limited amount of data in the target domain. The performance of the proposed IFD is 

evaluated through a case study of triplex pump fault diagnosis. The main contributions of the paper are as 

follows: 

1) A new framework for machine fault diagnosis using DT and deep transfer learning is proposed, 

which solves the problem of limited or unavailable measured fault condition data of machines with 

varying working conditions or shifted system characteristics. The DT of the machine is built and 

continuously updated to generate possible fault conditions close to those of the actual asset. The 

produced fault condition data from the DT model constructs the training data in the source domain 

for transfer learning. 

2) A NSDAE is developed to construct the deep structure. The Swish activation function is used, which 

achieves superior results compared with the commonly used rectified linear unit (ReLU) or other 

activation functions. 

3) For the training of NSDA, the maximum correntropy (Max-corr) is introduced in the cost function. 

Compared with mean square error (MSE), Max-corr is more effective for measuring the local 

similarity of two complex signals. 

4) With just one sample in the target-domain, the proposed method achieves one-shot learning with the 

successful transfer of the model parameters of the pre-trained source-domain NSDAE to the 

target-domain NSDAE, which solves the difficulties of effective training using limited data in the 

target-domain. 

The organization of the rest of the paper is as follows. In Section 2, the sparse de-noising 
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auto-encoder is introduced. Section 3presents the details of the proposed method and its implementation. 

The experimental study, evaluation of the collected results, and discussion are presented in Section 4. 

Section 5 concludes this paper and highlights the planned future work. 

 

2. The principle of de-noising auto-encoder 

Despite DBN has the capability of providing joint probability distribution for the input data, which is 

hard to analyze the real-valued vibration data in the IFD tasks. Due to robust supervised feature learning 

ability, CNN is treated as the most widely applied deep learning model in IFD field, however, CNN has 

complex structure and high computational cost. As a completely unsupervised learning model, SAE is 

trained more easily and effectively than DBN and CNN, which has derived many improved forms, such 

as sparse auto-encoder and de-noising auto-encoder. Sparse de-noising auto-encoder (SDAE) fully 

combines the advantages of sparse auto-encoder and de-noising auto-encoder, which can effectively learn 

the sparse feature representation from noisy input samples. Fig. 1 shows the model architecture of an 

SDAE. The related main formulas are listed below.  
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Fig. 1. The model architecture of an SDAE. 
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in which 1 2[ , , , ]mx x x= Lx  represents the m-dimensional true sample with label; 

1 2[ , , , ]mx x x=% % % %Lx  represents the noisy sample; 
2(0, ) ΙN  represents the Gaussian noise with a 

noise level of  , Hf  and Of  are the activation functions of the hidden layer and output layer, 

respectively; 
(1) (1)( , )w b  and 

(2) (2)( , )w b  are (weight, bias) connecting the input and the hidden layers, 

the hidden and output layers, respectively; 
1 2[ , , , ]nh h h= % % %% Lh and 1 2[ , , , ]mz z z=% % % %Lz  are 

n-dimensional feature vector and m-dimensional reconstruction vector of x%; SC  represents the cost 

function of SDAE consisting of MSE 1l , sparse penalty term 2l  and weight decay term 3l ;  , r  

and   are sparse penalty factor, sparse constant and weight decay coefficient, respectively; and 

(1) (1)

jiw w  and 
(2) (2)

jiw w  are connection weights between the ith input unit and jth hidden unit, and 

the jth hidden unit and ith output unit, respectively. 

 

3. The proposed method 

Based on the DT technique and deep transfer learning model, this paper proposes a new intelligent 

fault diagnosis framework for machinery. The proposed deep transfer learning model mainly contains 

three parts: NSDAE construction, parameter transfer of the stacked NSDAE, and DT-assisted deep 

transfer learning for IFD. 

 

3.1 NSDAE construction 

In this section, NSDAE is constructed with Swish and maximum correntropy (Max-corr). ReLU is 

the most widely applied activation function in designing deep neural networks. However, ReLU outputs 

zero on negative input, which limits its learning capability. The new type of activation function developed 

by Google Brain in 2017, the Swish function, simultaneously possesses the characteristics of bounded 
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below, unbounded above, smooth and non-monotonic. The comparative results based on several 

benchmark datasets have demonstrated the superiority of Swish over ReLU and other popular activation 

functions [25]. 

Fig. 2 shows the waveform of the Swish activation function. The mathematical expression for a 

noisy sample %x  is defined as follows. 

 

Fig. 2. The waveform of the Swish activation function. 
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Based on the Swish activation function, the hidden output jh% and the reconstruction output iz% of input 

units ix% can be computed as 
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where 
(1) (1)

jb b  and 
(2) (2)

ib b  represent biases of jh% and iz%, respectively, and ( )   represents 

the sigmoid function. In the present paper, considering that all of the inputs are normalized to the range [0, 

1], thus, sigmoid activation function is selected in the output layer to well make the reconstructed output 

get close to the original input. 

To effectively measure the local similarity between the true input sample and the reconstruction 

sample, Max-corr is used here, which has shown better performance than MSE. Then, the NSDAE can be 

constructed, whose parameter sets 
(1) (2){ , }ji jiw w=w  and 

(1) (2){ , }j ib b=b  are adjusted based on the 
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gradient descent algorithm with the learning rate decay and the momentum term as 

1 N 1( ) ( )q q q q q qC + −= −  + −w w w w w
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where q represents the current iteration number; NC  is the cost function of NSDAE; 4l  is the 

Max-corr, which is more effective in measuring the local similarity of two complex signals than MSE;   

is the kernel width adjustable parameter; q  is the current learning rate;   is a decay factor; and   

is momentum factor. Based on multiple NSDAEs with a softmax classifier, a stacked NSDAE can be built 

to learn high-level features. 

 

3.2 Parameter transfer of the stacked NSDAE 

Parameter transfer learning is an effective strategy to greatly improve the training efficiency of a 

stacked NSDAE that has already been pre-trained. With parameter transfer learning, the stacked NSDAE 

trained with data samples from one domain (source domain) can well analyze the data samples from 

another domain (target domain) with different distributions. In the present paper, the transferable 

parameters consist of all the hyperparameters, weights, and biases in different layers. Among them, all of 

the weights and biases are pre-trained and then further fine-tuned. The initial values of the four 

transferable parameters for the target-domain stacked NSDAE are provided by the source-domain stacked 

NSDAE that has been pre-trained. Fig. 3 shows the schematic diagram of how to introduce the parameter 

transfer learning into the training and testing of the stacked NSDAE with three NSDAEs. 
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Fig. 3. Schematic diagram of parameter transfer for the stacked NSDAE. 

 

3.3 DT-assisted deep transfer learning for IFD 

The overall framework of the proposed DT-assisted deep transfer learning for machine fault 

diagnosis is shown in Fig. 4. A simulation model is built and updated with the measured system response 

to form the DT of the physical asset. The adaptively updated DT model is used to generate simulation 

data of all interested fault conditions of the machine that is used as the training data in the source domain. 

Then, the stacked NSDAE model with improved activation and cost function is constructed and 

pre-trained with data from the source domain. With only one sample from the conditions of the running 

machine under variable operating conditions and possible shifted system characteristics (the target 

domain), parameter transfer learning is carried out. The model after transfer learning can be used for 

effective machine fault diagnosis. The main steps of the proposed method are: 

➢ Step 1: Create a simulation model of the actual machine (e.g., in MATLAB Simulink and 

Simscape). 

➢ Step 2: Collect measured data of the system response and update the simulation model by 
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minimizing the difference of system responses between the simulation model and the measured data. 

➢ Step 3: With the DT model established, simulate all interested faults of the machine. The simulation 

data generated from different machine conditions are treated as the source domain data. 

➢ Step 4: Construct the stacked NSDAE with the Swish activation function and maximum correntropy. 

➢ Step 5: The training and testing samples from the source domain are used to acquire a pre-trained 

stacked NSDAE with high and robust diagnosis accuracies. 

➢ Step 6: To achieve machine fault diagnosis in the target domain (under varying working conditions 

or shifted system characteristics), the pre-trained stacked NSDAE is fine-tuned by only one training 

sample from the target domain to further adjust the model weights. 

➢ Step 7: The testing samples from the target domain are used to check the effectiveness of the 

proposed method. The final stacked NSDAE can be deployed in the fault diagnosis of the running 

machine. 
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Fig. 4. The framework of the proposed DT-assisted deep transfer learning for IFD. 

 

 

4. Case validation 

In the present paper, the feasibility of the proposed DT-assisted machine IFD is evaluated through 

the fault diagnosis of a triplex pump, which is presented now. 

 

4.1 Digital twin of the triplex pump 

As shown in Fig. 5, a simulation model of an actual triplex pump is created using Simscape in 

Matlab from [26]. Here, we modify the system parameters including upper and lower pressures, at which 

levels the three check valves feeding the outlet will open and close, to simulate the shifted system 
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characteristics, e.g., changed temperature and property of the transported fluid. The system response of 

the model with modified parameters is then generated and used as measured data from the shifted real 

assets, to optimize the simulation model. In the present study, the DT model update is achieved through 

Simulink Design Optimization with automatic tuning of the model parameters. The gradient descent 

method with sequential quartic programming is applied to minimize the differences between the 

simulated and measured curves of outlet pressure. 

 

 

Fig. 5. Digital twin model of a triplex pump. 

 

The pump DT is configured to simulate three typical types of pump faults including cylinder leak, 

blocked inlet, and increased bearing friction. These faults are parameterized as workspace variables and 

configured through the pump block dialog. In the present study, a total of seven machine conditions of the 

triplex pump are generated, including one health state, three types of single-fault states, and three types of 

compound-fault states. 

In the present study, three scenarios of simulation are run, and the collected datasets are marked as 

Dataset A, Dataset B, and Dataset C. Dataset A refers to the simulation data from the simulation model 

with original parameters. Dataset B refers to the actual condition data from the physical asset (in the 

present case study, we use simulation data from the simulation model with modified system parameters to 
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simulate the scenario of changing working conditions or system characteristics). Dataset C refers to the 

simulation data generated from the updated DT that has been optimized. The simulation duration for each 

run is 2.0s. The output flow data from the flow rate sensor is collected. Here, only the signals from 0.8s to 

2s are selected to exclude the initial transient stage. For each of the seven machine conditions, 125 trails 

are run. The Datasets A, B, and C are listed in Table 1. Each sample includes 1200 data points (pump 

outlet flow data). The first samples of the three datasets are plotted in Fig. 6. 

 

Table 1 

The seven working conditions of triplex pumps 

Working states of the triplex pump Total number of the samples Labels  

Data A Data B Data C 

Health 125 125 125 1 

Leak  125 125 125 2 

Blocking  125 125 125 3 

Leak & Blocking  125 125 125 4 

Bearing 125 125 125 5 

Bearing & Leak 125 125 125 6 

Bearing & Blocking 125 125 125 7 
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Fig. 6. Time-domain waveforms of the raw output flow: (A)-(C) represent Data A – Data C; (1)-(7) 

represent State 1 –State 7. 

 

Four comparative tasks are designed to demonstrate the effectiveness of the proposed method in 

machine fault diagnosis, marked as Task 1, Task 2, Task 3, and Task 4. Table 2 presents the strategies and 

objectives of the four tasks, and Table 3 gives details on the sources and numbers of the training and 

testing samples in each task. 

 

Table 2  

Details about the strategies and objectives of the four tasks 

Tasks Strategies Objectives 

Task 1 Deep 

learning 

Evaluate the superiority of the proposed stacked NSDAE in fault diagnosis 

using the raw output flow values 

Task 2 Deep 

learning 

Evaluate the diagnosis performance of the stacked NSDAE when the system 

characteristics change 

Task 3 Deep 

learning 

Evaluate the diagnosis performance with training data from the updated DT 

model only 

Task 4 Deep transfer 

learning 

Evaluate the diagnosis effectiveness of the proposed method with DT and 

one-shot parameter transfer learning  

 

Table 3 

Sources and numbers of the training and testing samples in each task 

Tasks Sources of training / testing samples Numbers of training / testing samples 

Task 1 Data A / Data A 75 / 50 

Task 2 Data A / Data B 75 / 50 

Task 3 Data C / Data B 75 / 50 

Task 4 Data C / Data B 75 / 50 

 

4.2 Results analysis in Task 1 and Task 2 

Task 1 focuses on testing the diagnosis performance of the developed stacked NSDAE using the raw 

output flow data. The proposed method is compared with different deep learning methods including three 

types of stacked SDAEs, LeNet-5 CNN, Gaussian DBN, stacked LSTM, and stacked GRU. Also, three 

No. of the data points 

(A7) (B7) (C7) 
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types of shallow learning methods, SVM, RF, and ELM, are evaluated for comparison, where their inputs 

are three types of feature sets.  

The training data is constructed using randomly selected 75 samples out of the 125 samples from 

Dataset A, while the remaining 50 samples are used as the testing data. To minimize the randomness of 

the diagnosis results, the proposed stacked NSDAE and the comparative methods are all carried out for 

ten runs, i.e., each method runs for ten independent runs using the random samples. Fig. 7 shows the 

testing diagnosis results of the eight deep learning methods during the ten runs. Their average testing 

accuracies are given in Table 4, which are obtained by calculating the average value of the accuracies of 

ten runs. Specifically, the average accuracy of the proposed method as applied to 3500 (50*7*10) testing 

samples is 98.46% (3446/3500), compared with those for the contrastive methods are 96.11%, 95.20%, 

93.51%, 96.63%, 85.49%, 83.71%, and 86.40%, respectively. Thus, it is verified that the proposed 

stacked NSDAE constructed with Swish and Max-corr has achieved the highest diagnosis accuracy and is 

more effective in fault diagnosis of the triplex pump than other popular deep learning methods. 

 

 

Fig. 7.  The repeated diagnosis results based on the nine methods. 

 

Table 4 

Diagnosis results of the eight deep learning methods in Task 1 

Diagnosis methods Inputs Average testing accuracies 

Stacked NSDAE (Proposed) Raw data 98.46% (3446/3500) 

Stacked SDAE1 (Swish with CS) Raw data 96.11% (3364/3500) 

Stacked SDAE2 (ReLU with CN) Raw data 95.20% (3332/3500) 

Stacked SDAE3 (ReLU with CS) Raw data 93.51% (3273/3500) 
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LeNet-5 CNN  Raw data 96.63% (3382/3500) 

Gaussian DBN  Raw data 85.49% (2992/3500) 

Stacked LSTM Raw data 83.71% (2930/3500) 

Stacked GRU  Raw data 86.40% (3024/3500) 

Notes: CS refers to the cost function of SDAE in Eq. (4) and CN refers to the cost function of NSDAE in Eq. 

(13). 

 

To further validate the advantages of Max-corr, the cost functions during the training are compared 

among the proposed stacked NSDAE and the other three types of stacked SDAEs. Consider the first base 

AEs as an example. The average cost function curves (from 30th iteration and 60th iteration) of the ten 

runs are plotted in Fig. 8. The results show that the training process of the proposed NSDAE converges 

faster than the other methods. 

 

Fig. 8. The average cost function curves of the four types of stacked SDAEs. 

 

For the training of shallow learning models, 14 features in total are extracted including 9 

time-domain (TD) features (mean, variance, cumulative sum range, etc.) and 5 frequency-domain (FD) 

features (spectral kurtosis peak, peak magnitude in the power spectrum, etc.). The SVM, RF, and ELM 

models are trained using three types of feature sets. The average testing accuracies of the three shallow 

learning methods are listed in Table 5. It is found that the performances of these shallow learning 

methods are much below the performances of the deep learning methods. Also, the performances of 

shallow learning models highly depend on the selection of the input features, which presents difficulty in 
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generic applications. 

 

Table 5 

Diagnosis results of shallow learning methods in Task 1 

Diagnosis methods Inputs Average testing accuracies 

SVM  14 features (All) 78.34% (2742/3500) 

SVM 9 TD features 76.14% (2665/3500) 

SVM 5 FD features 81.17% (2841/3500) 

RF 14 features (All) 80.26% (2809/3500) 

RF 9 TD features 79.86% (2795/3500) 

RF 5 FD features 83.11% (2909/3500) 

ELM 14 features (All) 77.51% (2713/3500) 

ELM 9 TD features 75.94% (2658/3500) 

ELM 5 FD features 81.06% (2837/3500) 

 

Task 2 is employed to test if the diagnosis performance of the stacked NSDAE and other deep 

learning methods would degrade when applied to the actual system (with simulation). 75 samples are 

randomly selected from the 125 samples in Dataset A for training. 50 samples from Dataset B are used as 

the testing samples. The detailed diagnosis results are given in Table 6. It is found that all of the studied 

methods trained with Dataset A fail to directly analyze Dataset B effectively. The main reason is that 

Dataset A from the initial model and Dataset B from the changed model have significant differences in 

distribution because of the system parameter shift. Therefore, the model update in the DT framework is 

crucial.  

 

Table 6 

Diagnosis results of different methods in Task 2 

Diagnosis methods Inputs Average testing accuracies 

Stacked NSDAE (Proposed) Raw data 34.03% (1191/3500) 

Stacked SDAE1 (Swish with CS) Raw data 35.09% (1228/3500) 

Stacked SDAE2 (ReLU with CN) Raw data 28.51% (998/3500) 

Stacked SDAE3 (ReLU with CS) Raw data 33.17% (1161/3500) 

LeNet-5 CNN  Raw data 36.71% (1285/3500) 

Gaussian DBN  Raw data 26.89% (941/3500) 

Stacked LSTM Raw data 34.29% (1200/3500) 

Stacked GRU  Raw data 32.26% (1129/3500) 
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SVM 5 FD features 38.11% (1344/3500) 

RF 5 FD features 37.40% (1309/3500) 

ELM 5 FD features 35.17% (1231/3500) 

 

4.3 Results analysis in Task 3 and Task 4 

Task 3 aims to evaluate that Dataset C (source domain) of the DT model has similar distribution with 

Dataset B (target domain) of the changed model after the DT model optimization. Different methods are 

trained with Dataset C and then directly applied to diagnose the different conditions in Dataset B. 

Similarly, randomly selected 75 out of 125 samples from Dataset C are adopted for training. 50 samples 

from Dataset B are used as the testing samples. Details of the diagnosis results are presented in Table 7. 

Compared with the results in Task 2, it can be seen that the diagnosis methods trained with Dataset C 

show a significant increase in diagnosis accuracy on Dataset B, which means the DT model is close to the 

simulated actual system. For the first run, the specific accuracy of the proposed stacked NSDAE is 75.71% 

(265 /350). The proposed method obtained better diagnosis results than the other approaches. The 

corresponding confusion matrix is plotted in Fig. 9 and the F-measure values are shown in Fig. 10. The 

horizontal coordinate and vertical coordinate in Fig. 9 successively represent the predicted and actual 

labels of state. The numbers on the main diagonal represent the diagnostic accuracy of each state, and the 

numbers located in other places represent the misdiagnosis rates. 

 

Table 7 

Diagnosis results of different methods in Task 3 

Diagnosis methods Inputs Average testing accuracies 

Stacked NSDAE (Proposed) Raw data 76.06% (2662/3500) 

Stacked SDAE1 (Swish with CS) Raw data 71.17% (2491/3500) 

Stacked SDAE2 (ReLU with CN) Raw data 73.37% (2568/3500) 

Stacked SDAE3 (ReLU with CS) Raw data 69.20% (2422/3500) 

LeNet-5 CNN  Raw data 73.83% (2584/3500) 

Gaussian DBN  Raw data 66.80% (2338/3500) 

Stacked LSTM Raw data 63.17% (2211/3500) 

Stacked GRU  Raw data 65.29% (2285/3500) 

SVM 5 FD features 66.26% (2319/3500) 
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RF 5 FD features 68.54% (2399/3500) 

ELM 5 FD features 65.63% (2297/3500) 

  
 

Fig. 9. Confusion matrix of the proposed stacked NSDAE for the first run. 

 

  
 

Fig. 10. F-measures of the proposed stacked NSDAE for different states in Task 3. 

 

Task 4 verifies the performance of the proposed method with one-shot parameter transfer learning. 

Here, randomly selected 75 of 125 samples from Dataset C (source domain) are adopted as the training 

data in the source domain. After pre-training the stacked NSDAE, only one sample from Dataset B (target 

domain) is used to fine-tune the trained stacked NSDAE. Then, 50 samples from Dataset C are used for 

testing. Specifically, the total number of the source-domain training samples and target-domain training 

samples is 525 (75*7) and 7 (1*7), respectively. Each sample also contains 1200 sampling data points. 

After introducing parameter transfer learning, the diagnosis accuracies during the ten runs are shown in 

Fig. 11 with an average value of 93.20% (3262/3500). Similarly, consider the first run as an example. The 
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testing accuracy is 93.14% (326 /350) and the F-measure values are shown in Fig. 12. 

The comparison results between Tasks 3 and 4 show that DT and parameter transfer learning are 

promising tools to resolve the fault diagnosis problem when labeled fault condition samples are greatly 

insufficient. The DT of the triplex pump produced simulation data of all interested fault conditions, which 

are used as the training data in the source domain. With just one sample from the target domain, the 

constructed deep structure can achieve superior fault diagnosis results with parameter transfer learning. 

The hyper-parameters of the proposed stacked NSDAE are given in Table 8. Among them, the network 

structure is determined by experimentation and experience, i.e., the numbers of the neuron nodes in the 

input layer and final output layer are successively equal to the dimensions of the input data and output 

data; the number of the neuron nodes in the next hidden layer is about half that in the previous layer. The 

selection of other hyper-parameters is mainly based on grid search technique. Specifically, the grid search 

range of weight decay coefficient is between 0.001 and 0.009 by step of 0.001, the grid search range of 

sparse constant is between 0.1 and 0.9 by step of 0.1, and the grid search range of sparse penalty factor is 

between 1 and 9 by step of 1. The iteration number, initial learning rate, decay factor, and momentum are 

decided by experience as 60, 0.01, 1.1, and 0.8, respectively. After determining the hyper-parameters, the 

average computation time of the proposed deep transfer learning model per trial is about 238s under the 

following hardware configuration of Windows 10 64-bit operating system, Intel(R) Core(TM) i7-8550U 

CPU @ 1.80GHz, and 16 GB RAM. 
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Fig. 11.  The repeated diagnosis results based on the nine methods. 

 

Fig. 12. F-measures of the proposed stacked NSDAE for different states in Task 4. 

 

Table 8 

Hyper-parameters of the proposed stacked NSDAE in Task 4 

Descriptions of hyper-parameters Value 

Dimension of the first hidden layer 450 

Dimension of the second hidden layer 250 

Dimension of the third hidden layer 100 

Iteration number / Weight decay coefficient 60 / 0.004 

Noise level/ Kernel width 0.08 / 1.2 

Sparse constant / Sparse penalty factor 0.1 / 5 

Initial learning rate / decay factor / momentum 0.01 / 1.1 / 0.8 

 

5. Conclusions 

To achieve accurate machine fault diagnosis with insufficient measured fault condition data, a digital 

twin-assisted deep transfer learning approach was presented in this paper. An NSDAE-based model was 

developed with improved activation and cost function. The simulation model of the physical asset was 

built and continuously updated when the system characteristics changed to form the DT model. 

Simulation data of all interested faults were generated from the DT to construct the training data in the 

A
cc

u
ra

cy
 [

%
] 

Run number 

F
-m

ea
su

re
 [

%
] 

Label of working state 



23 
 

source domain. The NSDAE was first pre-trained using the data in the source domain, followed by 

one-shot learning with parameter transfer.  

The fault diagnosis effectiveness of the proposed method was validated using simulation data of a 

triplex pump with various fault conditions. The results confirmed that DT and parameter transfer learning 

represent promising tools to overcome the difficulties in machine fault diagnosis when labeled fault 

condition samples were insufficient or unavailable. The experimental results showed the advantage of the 

stacked NSDAE over other state-of-art deep learning methods. Potential future work will focus on the 

combination strategy of DT and deep transfer learning, which can take full advantages of model 

mechanism and data information, including how to enhance diagnosis performance by fusing sensory data 

from multiple sources, how to improve the DT optimization algorithm to obtain a more precise model and 

how to achieve physics-informed machine learning for intelligent fault diagnosis. 
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