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Abstract 

 
In education contexts, agent-based simulations have been used at all levels, from the 

individual to the classroom to the state, to explore individual-level interactions and often to 

provide conclusions and explanations that could support decision-making.  The aim of this 

research was to develop an empirically-grounded classroom lessons behaviour model and explore 

the theoretical consequences of the model design and the modelling assumptions, to understand 

the mechanisms of lesson interactions and to assess whether the results and explanations were 

plausible and realistic.  The model was to be as realistic (not simplistic) as possible, addressing the 

limitations found in current lesson-related simulations and extending the use of agent-based 

simulations in classroom research to full-lessons with full-classes. 

A typical empirically-driven agent-based modelling and simulation methodology was 

followed, incorporating an investigative case study at a UK secondary school.  A comprehensive 

agent-based model of classroom lessons was formulated and a lesson event recording tool was 

developed and used to record a wide range of student and teacher activities.  These data were 

used to calibrate and validate the simulation model.  Three agent types were incorporated:  

students, teacher and teaching assistant.  Agent decision-making was modelled using 

conventional production rules (one set for each agent type) that integrated the influences from, 

in order of significance, the lesson plan (which specifies the desired behaviour and is enacted by 

the teacher), the current circumstances (who is doing what and where) and, for students only, 

their historical empirical activity state frequencies. 

The simulation model was validated with the help of experienced teachers, who considered 

that it embodied plausible theories of classroom behaviours.  It was seen to generate plausible 

causal agent-level explanations for some important lesson dynamics and therefore judged to be 

a useful lesson analytics and decision-support tool, enabling educators to explore the 

consequences of a range of lesson interventions. 
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1. Introduction and research methodology 

The primary goal of this research was to determine how and to what extent an agent-based 

model could adequately represent the behaviours of students, teachers and teaching assistants 

in classroom lessons at a UK secondary school. This was motivated by the need for a lesson 

analytics tool that would enable teachers and educators to explore the mechanics and 

consequences of lesson interventions.  The core task was to develop a model that could simulate 

the dynamic, asynchronous, spatial interactions between the autonomous and heterogeneous 

lesson participants over a lesson period.  The simulation outcomes included measures of 

productivity and disruption, on the level of individual students and the whole class and lesson.  

Model adequacy was evaluated by comparing simulation outcomes against empirical lesson data 

and based on the opinions of experienced teachers.   

This first chapter introduces the research project, explaining the motivation for the research 

(section 1.1) and specifying the research objectives and thesis structure (section 1.2).  Chapter 1 

also explains why an agent-based modelling (ABM) approach was adopted (section 1.3), considers 

existing classroom-related simulations (section 1.4) and describes the standard agent-based 

modelling and simulation (ABMS) development methodology for empirically-based models and 

how this was applied to developing a classroom lessons simulation model (CLSM) (section 1.5). 

Concerning the terminology used:  

• The initialism ABM can mean either agent-based model or agent-based modelling depending 

on context.  Likewise, ABMS can mean either agent-based model and simulation or agent-

based modelling and simulation depending on context.  ABS means agent-based simulation. 

• A lesson is regarded as a period of instruction/learning and a group of students who stay 

together for a series of lessons is called a class.  Hence a class attends lessons.  Lessons can 

take place anywhere (for example on a class excursion, during a one-to-one tutorial, during 

coaching on a sports field), but this project focused solely on lessons in classrooms, with desks, 

chairs, a board etc.  Where lesson is used alone it means a classroom lesson. 

• In UK classrooms there is often another adult besides the teacher, sometimes more than one, 

who assists in teaching and student support.  Sometimes they are called learning assistants.  

In this project they have been designated teaching assistant or TA for short.  A TA could be 

allocated to a specific student or selected students only, or as modelled in this research, be 

free to support any student. 
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1.1 The potential impact of a classroom lessons simulation 

Teaching involves frequent decision-making, whether as part of the lesson planning process 

or on-the-spot decisions, e.g., when to use group work and for how long, when to ask questions, 

when and how much to help individuals, when to discipline and to what extent, and how to 

arrange seating (Ahoa et al., 2010; Dillenbourg, 2013).  Headteachers and school leaders make 

decisions about the duration of lessons, the range of academic abilities to place in classes, where 

to allocate TAs and so on.  Teachers prepare lesson plans and try to follow a plan during a lesson, 

deviating from it to adjust to the needs of the individuals and the class as a whole.  The decisions 

about what to plan and how to depart from the plan are typically left to the teacher’s discretion 

(Ahoa et al., 2010; Dillenbourg, 2013).  Teachers are both inclined and expected to innovate, to 

try new methods or resources, but sometimes the innovation is not as successful as hoped.  The 

evaluation of the consequences of decisions, in particular whether the change significantly 

improved the situation, is frequently left to the teacher’s judgement.  If the situation did not 

appear to improve, the teacher tries something else.  

A model and simulation that enables some quantitative assessment of the consequences of 

a proposed change and perhaps provides a plausible chain of cause and effect, could be of 

significant practical benefit to a school or a teacher.  For example, both are interested in the effect 

of an intervention on overall class productivity (perhaps time on-task) or the frequency of 

disruptions (especially low-level disruption - persistent, sub-critical distracting behaviour) or the 

amount of student participation (engagement).  A simulation might help answer questions such 

as: ‘How do you know the proposed change will likely increase student productivity?’, or 

‘Why/How would doing X lead to situation Y?’.  Experiments using such a simulation could enable 

teachers and others to explore alternative teaching strategies, or perhaps test a proposed or 

existing theory of classroom dynamics.  Also, it is often quite difficult, and possibly unethical, to 

experiment (Gilbert, 2007; Read and Timmis, 2012) with alternative options in classes - even a 

small seating rearrangement can cause disputes and complaints from parents.  With a simulation 

tool one could try out scenarios without disadvantaging anyone and without wasting resources.  

In their endeavours to improve their practice, teachers also seek quantitative data and 

readily understandable visual information concerning what happens in their lessons (Fidalgo-

Blanco et al., 2015; Durall Gazulla and Leinonen, 2016; Holstein, McLaren and Aleven, 2017a; 

Klerkx, Verbert and Duval, 2017).  Teachers are particularly interested in tools that facilitate 

analysis of and reflection on their lesson plans and actual teaching, especially concerning student 

engagement (Sergis and Sampson, 2016; Xhakaj, Aleven and McLaren, 2016).  When a teacher or 
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school wants to try out a new idea, it would be very useful to be able to measure the current 

situation, then simulate the new idea and measure the results.  A realistic lesson simulation would 

require data about individual students, the teacher, the planned lesson and the teacher’s and 

students’ past behaviour in previous lessons.  With these data and a validated model, the 

simulation could provide an idea about the consequences of an initial scenario or intervention, 

perhaps highlighting why anticipated outcomes may not occur and suggesting causal mechanisms 

for different outcomes.  The research presented in this thesis was motivated by the benefits that 

a classroom lessons ABS could provide for decision-making in schools and colleges. 

1.2 The research objectives and thesis structure 

The primary objective was to answer this question: 

 
How and to what extent can an agent-based model adequately represent the behaviours of, 

and interactions between, students, teacher and teaching assistant in classroom lessons at a 

UK secondary school? 

 
To answer this, four experiments were designed.  The answer would depend on how well 

the simulation model enabled the following four questions to be investigated (the first three of 

which are of on-going interest to educators). 

 
1. Does the simulation model provide realistic explanations of the effects on lesson behaviours 

and lesson outcomes of alterations to the teacher’s inclination to offer one-to-one support 

and to take disciplinary action? 

2. Does the simulation model provide realistic explanations of the effects on overall student 

productivity of providing or withdrawing a TA who gives individual support to any student? 

3. Does the simulation model provide realistic explanations of the effects on lesson behaviours 

and lesson outcomes of different student seating arrangements? 

4. Does the simulation model provide realistic results in experiments with a class of artificial 

students? 

 
These objectives were achieved by adopting an agent-based modelling and simulation 

methodology (described in section 1.5.1).  The bulk of this thesis explains how this methodology 

was applied, how classroom lessons were conceptualized and represented, how empirical data 

were used, how lessons were compared and how the plausibility of simulations was established.  

The aim was to develop an empirically-grounded theoretical classroom lessons behaviour model 
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that could be used to explore experiments on empirical lessons and provide plausible 

explanations.  The conceptual and simulation models were intended to be as realistic (not 

simplistic) as possible, to address the limitations found in current simulations (described in section 

1.4) and extend the use of ABS in classroom research to full-lessons with full-classes. 

As the questions indicate, the goal was to explore the theoretical consequences of the 

model design and the modelling assumptions, to understand the mechanisms of interactions, and 

to assess whether the results and explanations were plausible and realistic.  If the results and 

explanations were considered satisfactory, then this would show the extent to which the model 

could be useful.  It would also indicate that the model embodies plausible theories of classroom 

behaviours, which could then be investigated further.  

To facilitate explanation of this research, this document is structured around the stages in 

the ABMS methodology, summarized below and explained in section 1.5.1.  Note that relevant 

background research is embedded in the appropriate sections (e.g., the next two sub-sections 

review previous applications of ABMS in educational contexts, section 2.3 discusses classroom 

activities investigated by other researchers, and section 2.4 discusses agent decision-making 

literature). 

Chapter Content 

1 Introduction and research methodology. 

2 
Stage 1:  Clarification of the problem domain, the classroom lesson system. 

Stage 2:  Development of a conceptual model of classroom lessons. 

3 Stage 3:  Implementation of the conceptual model as a simulation model. 

4 An explanation of how simulated and empirical lessons were compared. 

5 Stage 4:  Simulation model calibration using empirical data and suitable criteria. 

6 Stage 5:  Validation of the conceptual model and simulation model. 

7 Stage 6:  Sensitivity analyses. 

8 Stage 7:  The research experiments and results. 

9 Stage 8:  Evaluation and conclusions. 

1.3 The reasons an agent-based approach was adopted 

While there are many techniques for modelling systems, when it comes to modelling and 

simulating social systems, popular choices are discrete event simulation, system dynamics and 

agent-based modelling and simulation (ABMS) (Borshchev and Filippov, 2004; Katsaliaki and 



5 

Mustafee, 2011).  The distinction between these approaches is not clear-cut however and several 

authors have shown or attempted to show that the three are equivalent to some extent 

(Bonabeau, 2002; Onggo, 2010).  Others view ABMS as an add-on to discrete event simulation 

and system dynamics (Borshchev and Filippov, 2004).  In addition, numerous hybrid combinations 

of these approaches exist (Martin and Schlüter, 2015).  

The foundation of all simulations is a conceptual model of the system of interest.  In agent-

based models, the participants in the system – the agents or actors – are explicitly modelled as 

separate, autonomous, interacting entities, with their own characteristics or attributes, engaged 

in various activity states (Bonabeau, 2002).  Agents have attributes (i.e., properties or 

characteristics) and methods (i.e., actions they can do or have done to them) – see Figure 1-1 

from Macal and North (2010).  Agents can have a mixture of heterogeneity (individuality) and 

homogeneity (uniformity) in their attributes and behaviours.  An agent could be a single, 

indivisible entity (an actor or participant) or it could be an entire system itself (e.g., a company, 

an industry, a state), conceived as having characteristics and objectives and interacting with other 

individual agents or systems.  Agents interact with other agents, and all reside within an 

environment which has some structure and properties (constants and variables) and with which 

the agents interact. 

 

Figure 1-1  ‘A typical agent’ ( Macal and North, 2010, p. 154) 

The decision-making and principal interactions between agents and their environment are 

often abstracted and simplified as formulae and/or decision rules.  This is particularly useful when 

modelling social situations because it enables explicit modelling of the behaviour of the individual 
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actors involved.  An agent’s decision-making can be based on their attribute values (past and 

present), what other agents have done or are doing, the current environment and the agent’s 

goal(s).  The formulae or rules often incorporate some stochasticity (using a pseudo-random 

number generator (PRNG)) to emulate real life systems where events are subject to random 

fluctuations (e.g., in choice thresholds).  The appeal of rules is that they can offer suggestions for 

causality, explaining chains of interactions between agents and their environment - a micro-level 

explanation of macro-level results (Axtell, 2000; Macal, 2016; Edmonds et al., 2019).  This is 

something that purely stochastic or equation-based models generally do not provide, but an 

ABMS can.    

If agents affect other agents and are affected by the other agents, then an agent effectively 

affects itself (van Geert, 1994).  ABMs have often been used to investigate the emergent 

behaviour of an overall system as it evolves through the interactions of the agents (Macal, 2016).  

Such emergent behaviour may not be easily predicted from the formulae/rules used to describe 

the behaviour of individual agents.  In complex systems there is often no way to determine the 

state of a system at a future time other than calculating the system state at every intermediate 

time step (Axtell, 2000).  This is known as a generative approach to explanation (Epstein, 2008; 

Manzo and Matthews, 2014). 

To put all this in the research context: It is natural to view a teacher, TA and students as 

heterogenous agents because they are each unique actors who relate to each other both spatially 

(in a classroom) and dynamically (over the lesson duration).  Their characteristics and activities 

would be the attributes and states of agents, respectively.  It is also natural to envisage a 2D or 

3D representation of the classroom as the participants exist, act and interact from specific 

locations and have a physical range of influence.  In addition, the goal was to provide causal 

explanations of the simulation outputs.  These considerations made an ABMS approach the most 

appropriate for modelling classroom lessons.  (For more information about ABMS one could 

consult Manzo and Matthews (2014) and Macal (2016)). 

 There are also many examples of where ABSs have been used to model and investigate 

agent-level behaviours in social systems, often to provide evidence that could support decision-

making.  For example: the analysis of smart energy grids (Ringler, Keles and Fichtner, 2016); forest 

management practices (Sotirov, Sallnäs and Eriksson, 2017); predicting refugee destinations 

(Suleimenova, Bell and Groen, 2017); simulating COVID-19 pandemic dynamics (Silva et al., 2020).  

(See Macal and North (2010, 2014) and Gómez-Cruz, Loaiza Saa and Ortega Hurtado (2017) for 

many more.)  In education contexts, ABMs have been used at all levels, from the individual to the 

classroom to the state.  For example, they have been used to investigate: 
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• the advantages and disadvantages of team-work in problem-solving activities (Abrahamson, 

Blikstein and Wilensky, 2007); 

• the spread of an infectious disease in a university classroom, with a teacher and a group of 

students interacting in a 2D representation of the classroom, complete with seats, desks and 

aisles (Ge et al., 2011); 

• the college sorting process1 in the US (Maroulis et al., 2014; Reardon et al., 2016) and school 

choice in the UK (Harland and Heppenstall, 2012); 

• how a network of social influences can give rise to the unequal distribution of educational 

choices across social groups in France (Manzo, 2013); 

• differential school effectiveness2 in London schools (Salgado, Marchione and Gilbert, 2014); 

• whether a class should be judged on test results or cooperation and participation (Raca and 

Dillenbourg, 2014); 

• the factors that affect the success or failure of proposed school projects (Mital, Moore and 

Llewellyn, 2014); 

• the link between what students feel about their tuition, their teacher, their lessons and their 

actual attainment (Gamboa-Brooks-Gray, 2015); 

• justifying training for classroom evacuation procedures (Liu, Jiang and Shi, 2016); 

• energy expenditure and beverage consumption of school children after physical exercise 

(Chen et al., 2017); 

• the effect of seating arrangements on prejudice and variation in academic performance across 

ethnic groups (Radó and Takács, 2019); 

• the impact on educational achievement of the same-race effect (a slight academic boost when 

students and teachers are of the same race) (Montes, 2012); 

• a model of cheating behaviour when completing homework assignments (Paul et al., 2020).   

 

Although these are quite diverse applications, the above authors generally proposed that 

agent-based modelling could be used to run experiments in silico (i.e., on a computer) instead of 

in real life, to investigate causal chains of behaviour, simulate alternatives, test a theory and 

therefore aid decision-making.  Over half of the above examples were empirically-based 

 

1 The process in which students choose which colleges to apply to and colleges choose which students to target during 
promotional activities and which students to ultimately accept. 
2  The comparison of schools on their students’ performance (normally academic grades) for the purpose of 
identifying how differences might be explained. 
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simulations, built using observational data.  The research presented in this thesis extends 

educational policy and strategy simulation from school-region level to classroom level. 

As mentioned above, a common reason for building a model is to be able to explain (to 

some extent) what happens in the actual system (Epstein, 2008).  As  Macal wrote: ‘What ABMS 

brings to social simulation is a framework for explicitly specifying causal mechanisms’  (Macal, 

2016, p. 146).  And: ‘We desire to produce a model whose results are more or less in one-to-one 

correspondence with the real world so that the jump in explanation from model to real world 

referent is minimal and convincing’ (Macal, 2016, p. 145).  Edmonds et al. (2019, p. 6) considered 

explanation to mean: ‘establishing a possible causal chain from a set-up to its consequences in 

terms of the mechanisms in a simulation’.  For example, in the case of lessons, if a lesson without 

a TA had one added, then experts (teachers) might anticipate certain results, depending on what 

other factors are also involved.  One could investigate whether the anticipated results were 

indeed evident in simulation outputs and hence judge whether the sequences of interactions that 

led to those results (as a consequence of the model rules) were a plausible explanation.  This form 

of investigation motivated the choice of ABMS to address the research questions. 

Even though a model is intrinsically wrong 3  (in that it is an approximation to, or a 

simplification of, a system), it might be useful.  Just the act of developing a model can lead to a 

better understanding of a system.  Also, even when a model is unable to explain a phenomenon, 

at least it might suggest hypotheses that could be investigated.  As Robinson (2014) put it: 

the purpose of a simulation can be described as obtaining a better understanding of 
and/or identifying improvements to a system. Improved understanding of a system, as 
well as the identification of improvements, is important since it informs future decision-
making in the real system. (Robinson, 2014, p. 3) 

1.4 Existing classroom-related simulation models 

Simulations have previously been used to explore the consequences of what happens in 

lessons.  For example, in 1982, Clauset and Gaynor published the results of their School 

Effectiveness Model.  They used a system dynamics approach to formulate mathematical 

relationships between student achievement (particularly reading in junior school) and teachers’ 

expectations and instruction.  Their goal was ‘to assess the likely consequences of various school 

improvement policies’ (Clauset and Gaynor, 1982). 

 

3 ‘All models are wrong but some are useful’ (Box, 1979) is often quoted by modellers when explaining their work. 
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Koster et al. (2016) reported on a proof-of-concept Classroom Simulator that modelled a 

classroom in which students were following the teacher during a lecture and their interactions 

depended on their engagement level, the different educational contents and teacher 

characteristics.  However, this simulation did not have the teacher being influenced by the 

students, nor were agents spatially arranged in a classroom – both of which were addressed in 

this thesis research. 

One key application of lesson simulations that has been explored to date is in teacher 

training to help teachers make better decisions (Strang and Loper, 1984).  At the start of this 

research project, several teacher training simulation packages were commercially available, all 

based on custom-built conceptual models of teaching (Gibson, 2009; Gibson and Baek, 2009; Kim 

and Cheong, 2009).  The purpose of these packages was to provide scenarios in which the trainee 

teacher chooses a course of action, and then to demonstrate to the trainee the consequences of 

their actions and provide feedback on their reactions to different types of student responses.  The 

packages had sophisticated models for student behaviour, for example ClassSim (Ferry, Kervin 

and Carrington, 2010) and simSchool (Deale and Pastore, 2014).  In simSchool, the simulated 

student behaviour was driven by empirical student profiles derived from the characteristics of 

thousands of real US students.  The attributes comprising the student profiles were based on 

‘established theories of cognition, emotion, social behavior’ and incorporated students’ 

‘emotional intelligence’ (simEd LLC, 2020).  Unfortunately, although the simSchool software 

appeared to be highly relevant, it was not available for customization.  The aha! ProcessClassroom 

SIMs (Piccolo and Oskorus, 2009) also appeared relevant despite being limited to trainees 

practising classroom management strategies from Payne (2007).  This entailed responding to 

events (disruptive and non-disruptive) by selecting from a list of alternative actions.  Lugrin et al. 

(2016) described a sophisticated immersive virtual reality system (named 3B) for classroom 

management training that generated appropriately stressful situations for teachers in front of 

classes.  Another simulation that modelled student learning used a machine-learning agent 

(SimStudent) and allowed the trainee teacher to practise one-to-one teaching (Matsuda et al., 

2010; Matsuda, Cohen and Koedinger, 2015).  There were also intelligent tutoring systems which 

incorporated one or more (typically anthropomorphized) teaching agents (Kim and Baylor, 2016), 

but no students – because the human student is using the system.   

However, in general, in the above simulations: 

• there was no autonomous teacher agent (because that role was being played by the trainee 

teacher); 
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• the focus was whole-class teaching and did not appear to include other types of lesson 

activities such as students working independently or in groups with the teacher providing 

individual assistance; 

• the simulated students (often only a few) were stationary and appeared to interact only with 

the teacher, not each other; 

• there was no autonomous teaching assistant; 

• the packages provided only segments of a lesson, not a full simulation of an entire lesson. 

 
As mentioned in section 1.2, the aim of this research was to develop a realistic conceptual 

model and simulation that would emulate the dynamic and spatial behaviour of autonomous 

students interacting with each other and with an autonomous teacher and TA for whole lessons.  

This was achieved by addressing the limitations listed above. 

Intriguingly, although discovered only towards the end of this project, it seems another 

researcher had developed a NetLogo-based simulation model ‘Classroom Model with Learning 

Assistants’ and published it on the NetLogo Modeling Commons website (McDevitt, 2017).  

Although the simulation does not run under the latest version of NetLogo and there is no 

documentation, looking at the code, it appears that the author had various room configurations 

(see Figure 2-4), numbers of students interacting with each other (forming networks) and 

interacting with their teacher and learning assistants (by raising their hands).  Stochasticity was 

incorporated (using a pseudo-random number generator) in several places, e.g., to form random 

student networks and in various probabilistic rules that decided whether students had learnt or 

not.    

1.5 The research methodology 

As explained at the start of Chapter 1, the central goal of the research was to construct and 

experiment with an agent-based simulation model of classroom lessons.  Hence the standard 

ABMS development methodology for empirically-based models was applied.  This is described in 

section 1.5.1.  Further, the intention was to base the development more on primary than 

secondary research.  The investigative case study (described in section 1.5.2) was thus central to 

the project. 

As a brief overview, the first stage in building a model of classroom lessons was to clarify 

and understand the classroom lesson system (as viewed from the perspective of the research 

objectives).  The resulting conceptualization was then simplified and restricted (scoped) in order 

to formulate a conceptual model of classroom lessons.  Despite the simplifications and limitations, 
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the conceptual model was designed to be as realistic, comprehensive and generic as possible, 

capable of representing a wide range of lesson behaviours.  Finally, an agent-based simulation 

model (implemented in NetLogo) was built, incorporating as much of the conceptual model as 

was practicable. 

Although the overall project approach was quantitative, the way in which a 

conceptualization of lessons was constructed could be termed a critical realist informed grounded 

theory approach (Thornberg, 2012; Hoddy, 2019).  It was assumed that there is no universal 

concept of a classroom lesson to be revealed, but that through interactions with the participants 

in the social activities of school lessons an understanding of the phenomenon would be 

constructed.  And, instead of attempting to start with a completely blank piece of paper, the 

researcher’s own background was acknowledged to have an influence on the conceptualization 

and the viewpoints of other researchers and teachers were considered during conceptualization.  

The author is a qualified schoolteacher with over 14 years’ teaching experience and can be 

considered a domain expert, a classroom lessons expert.  The author is also an ex IT project 

manager with 25 years’ experience in software development so had the appropriate experience 

for developing the simulation software.   

1.5.1 ABMS development methodology 

Modelling actors as autonomous agents is not a new approach, having its origins in the 

1980s, when it was known as individual-level or micro-level representation (Reynolds, 1987; 

Troitzsch, 2018).  The ABMS development methodology is quite well established (Balci, 1995; 

Sargent, 2007, 2011; Robinson, 2008b, 2014; Macal and North, 2010, 2014; Salgado and Gilbert, 

2013; Siebers and Klügl, 2018) and is generally acknowledged to be an iterative process.  Figure 

1-2 (from Robinson (2008a)) shows that the core process is the development of a conceptual 

model of the system of interest and that this is transformed into a computer model but that the 

processes flow both ways (double-headed arrows).  Sargent (2007) went into greater detail in 

Figure 1-3, also indicating the iterative nature of ABMS development and highlighting that the 

development of the conceptual model is based on hypotheses and abstractions of the system of 

interest, and that the conceptual model is transformed into a simulation model specification 

which is then transformed into a simulation model. 

The iterative nature of ABMS development is particularly apparent when a novel application 

is being investigated, as discoveries at any point may lead to earlier stages being revisited and 

handled differently (Siebers and Klügl, 2018).  In other words, a model can grow organically and 
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take several cycles.  As Norling, Edmonds and Meyer (2018) wrote: ‘Often, when modelling some 

complex phenomena (and especially social phenomena), one simply does not know beforehand 

which parts of the system will turn out to be important to the outcomes and which can be safely 

omitted’  (Norling, Edmonds and Meyer, 2018, p. 62). 

 

 

Figure 1-2  ‘The conceptual model in the simulation project life-cycle’ (Robinson, 2008a, p. 282) 

 

Figure 1-3  ‘Real World and Simulation World Relationships with Verification and Validation’ 
(Sargent, 2007, p. 127) 
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It is also important to appreciate that, despite the diagrams seeming to indicate that one 

stage follows another, typically multiple activities are being undertaken in parallel (e.g., data 

collection can be underway while a conceptual model is being developed).  It is not uncommon 

for an iterative prototyping approach to be adopted in software development.  A partial model 

can be partially implemented long before the model has been fully specified and system testing 

occurs.  One of the purposes of a partial prototype is to confirm that the development tools and 

target platform (software and hardware) have the required features and capacities.  

Figure 1-3 also refers to validation, that is confirmation that the correct model (the one the 

experts have specified) is built and that it delivers accurate and reliable results (Schlesinger et al., 

1979; Sargent, 2007, 2011; Tsioptsias, Tako and Robinson, 2016).  Balci (1995) referred to 

validation as confirming that the ‘right model’ is being built, that the right simulation has been 

built.  There are several aspects to validating simulation models, the most pertinent being 

conceptual model validation, white-box validation (looking at the detailed micro-level workings 

of a system to establish internal validity) and black-box validation (looking at the macro- and 

meso-level 4 outputs of a system to establish external validity) (Robinson, 2014).  These topics are 

covered in Chapter 6 in relation to the ABM developed as part of this thesis. 

The exact steps followed during development depend on the purpose for which the 

simulation is being developed (Edmonds et al., 2019).  For example, when developing a simulation 

for predictive purposes and where empirical data is available, ABMS developers often split the 

data into two subsets.  One subset (often called the ‘training’ or ‘in-sample’ dataset) is used to 

‘calibrate’ the simulation model (explained in Chapter 5) while the other test (‘out-of-sample’) 

subset is used to attempt to validate 5 the model.  If the simulation produces acceptable results 

for the test scenarios, then the model will be considered validated.  As declared in section 1.2, 

the goal in this research was to develop an empirically-grounded theoretical classroom lessons 

behaviour model that could be used to explore experiments on empirical lessons and provided 

explanations – not predictions.  For this type of project, it was more appropriate to use all the 

empirical data during model development so that the model is based on as much information as 

possible.  However, this does not mean that no ‘predicting’ is attempted: experiments are 

conducted to test the simulation model, to see if the model can provide plausible causal 

 

4 In this research the labels micro, meso and macro refer to the level of agent-to-agent interactions, the level of agent 
statistics summaries, the level of overall lesson statistics (metrics), respectively. 
5 Perhaps a more rigorous, ‘Popperian’, modeller would be attempting to invalidate the simulation outputs in order 
to reject the hypothesis that it is a sufficiently realistic representation of the real-world system.  See Epstein (2008). 
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relationships in new scenarios.  But this is not quite the same as using the simulation to obtain 

only the predicted results of a previously unseen scenario.   

Figure 1-3 also refers to verification, a quality control and assurance process to confirm that 

the development is being done right (Balci, 1995).  Those familiar with software development will 

be well aware that it is generally impossible to prove that an entire computer system has no errors 

or bugs: ABMS development is no different (Galán et al., 2009; Norling, Edmonds and Meyer, 

2018).  Standard software development practices were employed to reduce the chances of errors 

and confirm that the simulation was operating correctly.  These practices included: 

• following a defensive programming approach, so, for example, a significant amount of the 

code is dedicated to error-trapping; 

• using preventative techniques, e.g., giving procedures, functions, variables and constants 

highly descriptive (and therefore long) names;   

• unit testing (procedure/functions) via code walkthroughs and confirmation of output against 

known results (test data) and extreme and invalid value testing (destructive testing); 

• black-box testing of output metric values, including confirming that lesson replay statistics 

matched lesson totals obtained from raw event data files, in order to establish external 

validity; 

• visual checking of the lesson animations looking for inconsistencies or unrealistic situations; 

• white-box testing of the simulation logic: detailed study of sequences of agent interactions. 

 
Adopting procedures from the various authors mentioned above, the development of the 

classroom lessons ABMS broadly followed the stages listed below.  As explained in 1.2, the 

structure of the thesis reflects these stages. 

 
Stage 1:  Understand the domain, clarifying what the classroom lesson system is.  Identify the 

components of and participants in the system, the interactions between participants and the 

system inputs and outputs.  These are necessary in order to have a clear understanding of the 

goals of the proposed system and would form part of a system specification (Robinson, 2013). 

 
Stage 2:  Develop a conceptual model of the classroom lesson system, specifying the system 

components included in the model, the selected participant characteristics and activities (states)6 

and interactions, and the model inputs and outputs.  Formulate the rules and formulae that 

 

6 In this thesis the terms activity, state and activity state are used interchangeably: the state of an agent means the 
activity the agent is engaged in. 
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describe how the participants interact with each other and their environment.  List all 

assumptions and modelling simplifications.   

Although not emphasised in the diagrams above, because this was to be an empirically-

based ABS, empirical data on lesson behaviours were needed to calibrate and validate the model.  

In addition, the goal was to develop a novel conceptualisation of the classroom lesson system 

(the domain) and hence a comprehensive conceptual model.  For these reasons, stages 1 and 2 

were developed during an investigative case study conducted at a UK secondary school.   

 
Stage 3: Implement the ABM in NetLogo (a suitable agent-based simulation software package), 

with rigorous testing to minimize ‘bugs’.  

 
Stage 4:  Calibrate the simulation model using the empirical data and suitable criteria.  The goal 

of this stage is to produce a model that generates realistic results.  This is accomplished by using 

the empirical data and finding model parameters that generate simulation outcomes within the 

general ranges of the empirical data.  Chapter 5 explains this process. 

 
Stage 5:  Validate the conceptual model and simulation model.7  The goal of this stage is to check 

whether a lesson simulation model generates outcomes that, although already considered 

realistic after Stage 4, are considered an adequate match to the specific empirical lesson being 

modelled.  Chapter 6 explains with this process. 

 
Stage 6:  Conduct sensitivity analyses. 

Although this was not included in the diagrams above, it is normal practice to conduct some 

sensitivity analyses to establish how the model outputs respond to changes in model parameter 

values and initial conditions (Balci, 1994; Thiele, Kurth and Grimm, 2014). 

 
Stage 7:  Conduct experiments and analyse the results.  The purpose of the research experiments 

was introduced in section 1.2. 

 
Stage 8:  Evaluate the results and the model. 

 
The simulation model was implemented in NetLogo (Wilensky, 1999), a popular, free, open-

source agent-based simulation development package as it provided the technologies required 

 

7  Normally one would validate the conceptual model before developing the simulation model, but, for the 
convenience of the teachers involved in the evaluation, this was conducted immediately prior to face validity testing. 
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(such as autonomous agents interacting, agent attributes, provision for if-then-else rules to 

emulate agent-level decision-making and built-in animation facilities (so representing a classroom 

of interacting people needed minimal coding)).  NetLogo is a popular choice amongst modellers 

for these and many other reasons and there are thousands of published NetLogo models (many 

on the NetLogo Modeling Commons website8).  Building the simulation in NetLogo meant that 

interested parties could obtain the NetLogo package and download and run the lessons model.  

The NetLogo code plus data files and instructions are available at Ingram (2020a). 

As explained at the start of this chapter, an investigative case study was central to the ABMS 

development.  This is described next. 

1.5.2 The investigative case study 

The investigative case study took place at a very small UK secondary school at which the 

author was teaching and included informal discussions with individual teachers and focus group 

discussions with classes, plus lesson observations and data collection.  It was undertaken to 

provide primary insights for the development of the simulation model.  The goals were to: 

• contribute to the conceptualization of classroom lessons; 

• contribute to the design of a comprehensive conceptual model; 

• identify and collect empirical data on lesson behaviours, and use these data to further 

contribute to the conceptualization and to conceptual model design; 

• use that data for calibration and validation of the simulation model. 

 

The simulation model needed specific data concerning what students and teachers do, and 

for how long: for example, how frequently and for how long students work alone or together, 

chat or make remarks, or receive individual help from a teacher or TA.  There were some 

published data, including videos, that had some overlap with the data required for the proposed 

ABS, but not sufficient to be useful.  For example, the videos did not provide the coverage of the 

whole class as they often followed the teacher around the class and thus lost sight of what most 

of the students were doing (TIMSSVIDEO, 1999).  There were also data on discourses between a 

student and a teacher, but these data were not accompanied by sufficient other data for the 

timings to be used in the proposed ABMS (e.g., Kovalainen and Kumpulainen (2009)).   In the 

absence of suitable secondary data, it was necessary that primary data be collected. 

 

8 Available at http://modelingcommons.org/account/login (last accessed on 26th October 2020). 

http://modelingcommons.org/account/login
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Much classroom data collection is still conducted using forms (whether paper or digital), 

often recording the situation at regular intervals (often referred to as interval sampling or 

momentary time sampling), e.g., 20 seconds, and thus missing intervening events (Christle and 

Schuster, 2003; Brühwiler and Blatchford, 2011; Zohrabi, 2013; Goldring et al., 2015).  Forms 

(paper or digital) are still employed even when researchers capture video or audio recordings of 

lesson interactions because the recordings are first transcribed before coding (Hmelo-Silver, Liu 

and Jordan, 2009; Kovalainen and Kumpulainen, 2009).  There were also several commercial 

lesson capture tools that enabled easy video and audio recording of lessons for later viewing (e.g.,  

IRIS Connect (IRIS Connect UK, 2020), Lessonbox (Lessonbox Ltd, 2020) and Lessonvu (ONVU 

Technologies Group, 2020)), but, at the time of the start of this research project in 2016, these 

seldom provided the ability to classify events.   

The use of software and hardware tools to mark-up, i.e., capture, categorize and code, 

event data directly (without the need for transcription), either live or from recorded material, has 

become increasingly popular, e.g., the Human Affect Recording Tool (HART) (Ocumpaugh, Baker 

and Rodrigo, 2014).  Collecting data on classroom events is similar to collecting sports analytics 

data during sporting events.  Commercial software, such as Vosaic Connect (Vosaic, 2020), enable 

observers to mark-up events (such as player interactions) by clicking user-defined buttons and 

entering data into standard or user-defined fields (on standard screens or on user-created forms).  

Most significantly though, the Vosaic Connect system has been adapted to recording and coding 

how teachers and students interact, improving on standard lesson observations by providing 

detailed performance feedback to the teachers (Ramos, Esslinger and Pyle, 2015).   

Several other research teams have investigated the use of automated tools for collecting 

learning and teaching analytics data.  These technologies include facial recognition, facial 

expression recognition and gaze tracking to determine student engagement and comprehension 

(Bidwell and Fuchs, 2011; Wei and Yang, 2012; Raca and Dillenbourg, 2013, 2014; Prieto et al., 

2016; Bosch et al., 2018; Shvarts and Abrahamson, 2019).   

Collecting the data necessary for a classroom lesson ABS required a lesson event recording 

tool that would quickly and efficiently capture the timings of more than a dozen student, teacher 

and TA activities, with a facility to undo or tag mistakes, and without the need to video record 

lessons.  Due to project constraints it also needed to be free or inexpensive (ruling out Vosaic 

Connect) and customizable.  It was also considered important that the tool be available to and 
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customizable by others (schools, teachers, researchers etc.).9  None of the available software 

were found to meet these requirements.  For example, the Android app HART used by Holstein, 

McLaren and Aleven (2017b) was not considered fast enough to record multiple events near 

simultaneously.  Hence a purpose-built Lesson Event Recording Tool (LERT) was developed and 

used.  It is a Microsoft® Excel (2016) spreadsheet with added VBA code which can log the activities 

of any practical number of students.  Paired and group/team working can be recorded, as can 

seating rearrangements.  This is all accomplished by specific mouse button clicking (left, right and 

double) with or without Shift, Ctrl and Alt keys.   The LERT spreadsheet is very efficient and quick:  

in one mouse operation the observer can assign an activity to a number of students.  Additional 

information about the LERT and the program itself, along with documentation, is available online 

at Ingram (2018).  The top part of the LERT user interface is shown in Figure 1-4.   

 

 

Figure 1-4 The LERT user interface showing student groups, activity states and participation 

The wide top row contains the teacher activities; the lower wide row contains the student 

activities.  Seventeen distinct student activities or states were recorded and fifteen teacher 

activities or states.  (These are explained in section 3.1.)  The state numbers can be assigned any 

meaning and are just labels internally.  During operation, the LERT creates a log of time-stamped 

student and teacher activity changes (see example in Figure 1-5).  Each lesson produces a CSV 

format file which can be ‘replayed’ and analysed using the ABS, which is described in Chapter 3. 

Collecting classroom data involves well-known challenges, including common method bias 

(e.g., students further away from the observer might be monitored in less detail and less 

accurately, or some students may constantly initiate interactions unnoticed, but the observer 

always captures the respondent), observer reliability, observer effect distortion (the change in 

 

9 Besides providing data for the simulation model, the idea was that this tool would also be useful in its own right as 
a stand-alone tool to support data-driven lesson analytics and decision-making by teachers and management.  
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behaviour of the observed) and observer bias (e.g., if the observer knows the student and expects 

misbehaviour) (Christle and Schuster, 2003; Allday et al., 2011; Imler and Eichelberger, 2011).  

Video-recording does not eliminate these problems (Savola, 2008; Dalland, Klette and Svenkerud, 

2020).  In addition, the practicalities of school routine (e.g., one class always unavailable) and 

classrooms (e.g., the availability of a suitable seat for an observer), could lead to sampling bias: 

only some lessons may be able to be observed and only some students. 

 

 

Figure 1-5  An example of the lesson event data generated. 

Also, one can observe an interaction but be unsure who started it.  This situation is well-

known to teachers when they challenge a student only to be told: ‘But I didn’t start it!’.  (Not that 

this is necessarily true.)  Similarly, during the case study, when a teacher was moving around a 

class providing one-to-one support, it was often not clear whether the student asked for help as 

the teacher approached or whether the teacher offered assistance first.  Hence, for the purposes 

of this project,  interactions were considered directionless. 

To minimize the consequences of these issues, systematic procedures for classroom 

observations and for collecting data on students’ interactions and behaviour in classes were 

adapted from various researchers (Kaplan, Gheen and Midgley, 2002; Blatchford, Bassett and 

Brown, 2005; Bidwell and Fuchs, 2011; Ocumpaugh, Baker and Rodrigo, 2014).  These procedures 

included giving observers standardised and comprehensive training in activity classification and 

the operation of the LERT data capture program.  But even with perfect training the type of errors 
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listed above could occur (Burns and Knox, 2011).  There seems to be little that can be done about 

these issues without more intrusive observation – which would probably distort behaviour.  There 

were three observers, the author plus two others trained by the author: a teacher at the school 

(who knew all the students) and a trainee teacher (and ex-pupil).  They were given: 

• a 4-page instruction manual that explained the principles of the data collection and how to 

record all the different events, including many examples of the types of events that could be 

encountered; 

• an initial training session to go through the instructions for documenting a lesson observation, 

practise using the data collection tool and ask questions; 

• a practice run, recording the teacher and just a few students, with a debriefing afterwards to 

ask questions – the data collected were not included in the analyses. 

 

For practical reasons, lessons were not video recorded.  This meant that often not all the 

students could be monitored – there was too much going on for the observer to record 

everything.  As a consequence, many times the teacher, the TA or a student interacted with 

someone who was not being monitored.  Although this resulted in an incomplete picture of 

lessons, simulation data for the students who were monitored could be compared to their 

empirical data and used to calibrate and validate the model. 

Another caveat is that lesson observations are limited samples of the whole range of a 

student’s behaviour.  For example, one student may have been observed being highly disruptive.  

But if this was an extremely rare occurrence and this student was observed in only one or two 

lessons, then the relative frequency recorded for this behaviour would be disproportionately high 

– and the simulated behaviour for that student would be correspondingly distorted.  Some 

students have data that shows they spent almost no time in certain activities (such as being 

helped by the teacher or TA), even though they often did those activities in other lessons – it was 

just that, in the lessons they were observed, they did not, either by choice or because they did 

not have the opportunity (e.g., no TA that lesson, or the teacher helped them instead).  The 

empirical data revealed that one student can behave in a very different manner in different 

lessons: effectively they can become a different student.  This is something that teachers had 

described and students had acknowledged in class discussions. 

To summarize, the case study involved informal discussions with individual teachers and 

focus group discussions with classes and the observation of 42 1-hour lessons (comprising over 

20,000 lesson events).  The lesson observations involved 7 subjects, 7 teachers and 67 students 
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(33 females; ages 11 to 15).  During the first 21 lessons, conceptualization and model design were 

in their infancy and the lesson event recording tool (LERT) was being developed.  As has been 

emphasised, conceptualizing the classroom lesson system and forming a comprehensive 

conceptual model of classroom lessons was an iterative process (as described in section 1.5.1): 

every lesson observation or discussion with a teacher or focus group discussion with a class led 

to new insights and previous insights being re-evaluated.  In parallel, the tool for recording lesson 

events (the LERT) was being developed and modified as different types of events were observed.  

Hence only the second half of the data (lesson 22 to 42) were considered complete and reflective 

of the final conceptualization and conceptual model.  These 21 lessons involved 6 subjects, 6 

teachers, 52 students (27 females; ages 11 to 15) and comprised approximately 9,000 lesson 

events (roughly 420 events per 1-hour lesson).   

1.6 Chapter summary 

This chapter explained the motivation for the research and the research objectives.  It 

explained the reasons an ABMS approach was adopted, giving examples of other ABMS 

applications.  This was followed by a review of existing classroom-related models and their 

limitations, as these are to be addressed in this research.  The stages in the ABMS development 

methodology were then outlined.  Finally, the role of the investigative case study was explained,  

particularly the collection of lesson event data concerning the behaviour of lesson participants. 

The following chapter explains the results of stages 1 and 2 of the ABMS development - the 

conceptualization of the classroom lesson system and the design of a conceptual model. 
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2. Conceptualizing and modelling classroom lessons 

As explained in section 1.5.1, the first stage in an ABMS project is to clarify one’s 

understanding of the domain of interest, classroom lessons in this case.  The second stage is to 

take that conceptualization and develop a simplified and formalized conceptual model of the 

system (Robinson, Arbez and Birta, 2015).  For example, in real lessons there are chairs and books, 

but these may not necessarily be represented in a conceptual model.   

The purpose of this chapter is to clarify what classroom lessons were considered to be, what 

is considered to happen in them, how participants interact, and hence justify what aspects were 

included in the conceptual model.  As has been emphasised, the conceptualization and modelling 

were guided initially by the published literature and then by insights from the case study and the 

empirical data collected during the study, and by the authors 14 years of teaching experience.   

This chapter covers: 

• how the classroom lesson system was conceptualized; 

• the structure of classroom lessons; 

• what people do in lessons; 

• teacher and student decision-making, particularly concerning misbehaving and disciplining; 

• how the physical classroom was modelled; 

• modelling assumptions and simplifications. 

2.1 The classroom lesson system 

The notion of a classroom lesson will mean different things to different people and will 

depend on the purpose for the concept.  As Robinson noted, one needs to clarify which real world 

is being conceptualized (Robinson, 1997, 2014).  Different researchers with different objectives 

would construct different description of classroom lessons, perhaps in terms of types of discourse 

or use of resources.  The focus in this project was the dynamic behaviour of people during lessons.  

Hence it was important to consider what might influence their behaviour.  The diagram in Figure 

2-1 summarizes some of these influences, focusing on one student.  Each element in the diagram 

(apart from the classroom resources) could be considered as a system in itself, although the 

people in the lessons are being considered as individual participants, not systems.  Each person 

and system has an effect on and is affected by other people and other systems (e.g., the school 

and the community).   
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Figure 2-1  The influences on one student in the classroom lesson sub-system 

The following list contains some of the influences on lesson participants: 

• The school, with all the staff and all the other students is one eco-system in the local 

community of eco-systems. There are other schools, clubs, organisations etc. that all influence 

the school, the school staff, the students and their families. 

• The school is an eco-system in which classroom lessons are situated.  There are other classes, 

students, teachers, several subjects, clubs and sports, after-school activities, meals, other 

buildings, uniforms, etc. 

• Classes are subsystems, collections of individuals, each with his/her own characteristics.  The 

students, most of whom know each other and have formed into friendship groups, have often 

been together for several terms.   

• Classes are entities.  Teachers speak of classes having an individual ethos or quality (‘an 

environment with its own ecology’ (Parsonson, 2012, p. 16)).  For example, one class may be 

extremely difficult to get a response from, while another may be so bubbly that it requires 

constant management.  
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• The participants may come from a wide variety of social backgrounds, or they may all be very 

similar.  Some of the students may have special educational needs that should be catered for 

in every lesson. 

• The participants need to adapt to internal influences (e.g., tiredness, emotions) and external 

influences, those that they are experiencing in the present (e.g., the teacher asking a question 

or a student chatting to them) and those from the past (e.g., what happened during the 

previous break or lesson, or what happened at home yesterday).   

• Students decide how to behave, whether to follow the teacher’s instructions or chat with their 

neighbours or play on their phones, for example.  They may be driven by their own values, or 

by pressure from peers, parents, or other adults. 

• The nature and extent of student misbehaviour often seems unrelated to the activities of a 

lesson and is often triggered by external factors.  For example, a student might behave poorly 

after spending a weekend with the other parent in a separated family, or after spending social 

time with other, rowdier, students, or having been reprimanded and warned by the teacher 

in the lesson before. 

• The students are in a classroom, possibly fixed for all lessons for one year, or possibly just for 

one subject.  The classroom is probably one of many in the school, each with its own 

arrangement of fixtures and fittings, desks and chairs, posters etc.  Perhaps one subject is 

always taught in one particular room, or one teacher always holds lessons in one room.   

• The classroom will have physical properties, e.g., tidy/messy, warm/cold, quiet/noisy, 

spacious/cramped, bare/covered in displays, etc.  In other words, the room itself has a 

character that influences its occupants. 

• The seating arrangements have an enormous influence on behaviour in lessons, because they 

increase or decrease certain student interactions (e.g., working productively together or 

chatting) and possibly student-teacher interactions (such as making one-to-one support 

difficult because there is not enough room for the teacher and the student might feel 

awkward about coming to a separate desk with the teacher). 

• Students reported that they felt different and interacted differently according to their seat 

position in a lesson.  Sociable students, when seated by a wall, often faced into the class and 

socialized.  More introvert students sometimes felt less exposed when next to a wall, as it cuts 

out half the goings-on of others - so many may feel more secure and able to focus 

productively. 
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• The external environment can also affect lessons, e.g., noisy building work outside or another 

class making lots of noise. 

• The lesson is one of many the students attend, day after day, term after term, year after year.  

There are routines on the level of a lesson, a day, week, term and year.  Students and teachers 

will have formed habits of behaviour. 

• There are also infrequent or unexpected events that might alter lessons, e.g., fire drill, visitors, 

celebrations, leaving day for the final year students, a special assembly or presentation, a 

birthday.   

• Teachers differ and students have different relationships with each one, ranging from 

receptive and cooperative to antagonistic and defiant.  Students see different teachers as 

having different attitudes towards and tolerances for chatting, writing tests, asking questions, 

amount of help, etc. 

• Lessons in different subjects differ, e.g., science lab work vs art classes vs historical role play 

vs mathematics investigations.  Teachers typically plan a variety of activities, some of which a 

student might enjoy more than others, or be more competent and successful in, for example 

whole class teaching, working alone, working in pairs, group work, competitive or cooperative 

activities, exercises or investigations, more quiet work or much discussion. 

 
The points above are just some of the influences on lesson participants.  Many of the 

characteristics associated with complex systems (Abrahamson, Blikstein and Wilensky, 2007; 

Blikstein, Abrahamson and Wilensky, 2008; Burns and Knox, 2011) are evident in classroom 

lessons (Larsen-Freeman, 2016), such as the sudden transitions or tipping points that can occur 

(e.g., in the students’ attitudes to the teacher after some disciplining),  or feedback loops such as 

a student-teacher-student interaction or when one student affects other students and is in turn 

influenced by them.  But classroom lessons are also examples of ‘organized complexity’ (Weaver, 

1948).  Since it is likely that the participants in lessons adjust their behaviour (adapt) in response 

to the actions of the other participants and past interactions, we might also consider classroom 

lessons as examples of Complex Adaptive Systems, systems in which multiple components 

interact (hence complex) in such a way that the behaviour of the components changes in response 

to events (hence adaptive). 
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2.2 The structure of classroom lessons 

Most people are familiar with the traditional school education system: sitting in lessons with 

a group of peers in a classroom with a teacher purposefully guiding the lesson.  Often a TA is 

present, to provide extra assistance to one or more students.  A common lesson in a UK secondary 

school might have 20 to 30 students, a teacher and TA, desks, chairs, a whiteboard where the 

teacher is projecting material that is being discussed, the walls have various posters and displays 

of students’ work, etc.  Lessons are dynamic processes and what happens in them varies 

enormously.  The details depend on what is being taught, the skill levels of the students, the 

activities planned, the teacher’s teaching style, the resources available, etc.  A typical lesson may 

have the following structure and activities. 

 
After taking the register sometimes there will be announcements.  Homework may be 

collected and possibly resources distributed.  Once everyone is settled – and this will often require 

some behaviour management by the teacher – the teacher begins.  Most schools have procedures 

for managing and monitoring student behaviour.  The teacher will be expected to follow the 

procedures (it causes problems when teachers are inconsistent) although what is acceptable does 

vary from subject to subject and teacher to teacher and activity to activity.   

It is commonplace for teachers to have a lesson plan.  A central part of lesson planning is 

providing multiple activities and learning objectives to satisfy all the ability levels and academic 

levels that are present in the class.  The teacher will also construct or obtain resources to aid 

learning and for assessment.  Each lesson, the teacher tries to follow the lesson plan while 

responding to the students and circumstances.  The timing of events is not rigid and teachers 

make frequent, mental, on-the-spot adjustments to the lesson plan. 

During lessons, the teacher expects students to be productive, either listening or following 

instructions.  Students either comply with the teacher’s instructions or behave in ways that the 

teacher considers disruptive or disengaged.  The teacher intervenes as necessary and according 

to their nature and the circumstances.  Intervention can also mean spending more time revising 

presumed knowledge or more time helping individuals or handling an outside interruption or 

technical problems with equipment. 

Depending on the lesson plan (which often reflects the teacher’s teaching style) the teacher 

may spell out exactly what will happen and the specific learning objectives, or may encourage the 

students to investigate and discover principles.  The lesson could begin with a recap or some 

assessment. 
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Teachers instruct students to do something specific, such as to work on an activity alone 

(without interacting with others, e.g., writing an essay), or to work in pairs (which might be their 

neighbour, but could mean swapping seats to move further away and will normally involve 

talking), or work in larger groups (again, this may involve seating changes or even furniture 

reconfiguring, also talking, moving around, etc.).  The learning activities could be cooperative, 

competitive, or neither.   

During student activities, the teacher and TA (if present) discreetly observe the students to 

ensure everyone is engaged/participating.  This may involve moving between the desks/tables.  If 

there appears to be a need, the teacher or TA will offer assistance, either to an individual or to a 

pair or a group.  This could be declined or last just a few seconds or many minutes. 

At the end of an activity (section of the lesson plan), the teacher may get the attention of 

the whole class and instigate discussion to bring out students’ experiences.  There could also be 

a minor assessment (verbal, as a group, or a brief, individual, written question) to monitor 

progress.  

At the end of a lesson the teacher will often conduct a plenary discussion to summarize 

what has been learnt and to provide students with an opportunity to explain/teach some point 

and reflect on their experiences, etc.  There could also be an end-of-lesson assessment.  The 

teacher may well describe what they will be doing next lesson, perhaps to stimulate interest. 

Finally, the teacher could set homework, which might involve personal interactions with 

specific students.  The teacher will then dismiss the class. 

 
The above description gives an overview of a common lesson scenario and indicates some 

of the facets that a model would need to capture. 

2.3 Relevant lesson activities 

Part of the design of an ABMS is the specification of the simulation outputs and the agent 

states or activities.  Some of these outputs and states had been partially pre-selected by the 

objectives of the research and the research questions.  For example, some of the objectives 

required simulating the students’ and the teacher’s productive and other behaviour and 

measuring lesson productivity and misbehaviour.   

These choices reflected the constant and pressing interest in classroom behaviours evident 

in educational research and expressed by teachers (Marzano, Marzano and Pickering, 2003; Petty, 

2006).  Disruptive disengaged behaviour, particularly low-level disruption, is a concern across UK 

schools as teachers feel that these behaviours are very detrimental to student learning and to the 
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well-being of teachers (Brouwers and Tomic, 1999; Lugrin et al., 2016).  Brouwers and 

Tomic (1999) defined behaviour as disruptive when ‘the student in question is not engaged in a 

task structured for him or her by the teacher and when this behaviour is noticed by and/or 

interferes with the efforts of fellow students’ (Brouwers and Tomic, 1999, p. 9).  The teachers in 

the case study believed that the effect on a lesson of a single student misbehaving was far greater 

than that of exemplary student behaviour.  Hence it was decided that a variety of engaged and 

disengaged behaviours would be modelled and that data would be needed to quantify the 

frequencies and durations of these behaviours.  

From the literature various pertinent lesson activities were identified in advance of the case 

study.  For example, regarding the teacher it was thought important to capture how often, how 

quickly and for how long they disciplined students (Poplin et al., 2011; Baumann and Krskova, 

2016).  For students, potentially relevant activities included: 

• being on-task: listening to instructions, doing what the teacher instructed, seeking help in the 

proper manner (e.g., raising hand), being in the proper location (e.g., being in own seat when 

‘seatwork’ is required); being off-task: not doing what the teacher instructed, not in the 

proper location (Allday et al., 2011); 

• behaviours that could be classified as: engaged, passively attending, transition (e.g., 

preparation), non-productive (e.g., fidgeting), inappropriate, attention seeking, resistive (non-

compliant), aggressive (Bidwell and Fuchs, 2011); 

• various types of on-task behaviour depending on whether the students were in their seats, 

talking, raising their hands or using their response cards (Christle and Schuster, 2003); 

• the time consumed by copying from the board, writing tests, random unpredictable 

distractions, reorganizing the classroom, managing books and handouts (Dillenbourg, 2013); 

• ‘engaged time’, also known as ‘time-on-task’ (Carroll, 1963; Cotton, 1989).  

 

The California Beginning Teacher Evaluation Study (BTES) (Fisher, 1978) and other studies 

reported that the amount of time students spent on-task depended on many factors, including 

the relative position of the teacher to the students, how easy it was for the teacher to monitor 

students, the norms for lesson behaviour, the teacher’s behaviour management, the teacher’s 

organization, how much student-teacher interaction occurs during whole-class teaching and the 

amount of time students spent working alone in their seats (‘seatwork’) or with others (Stallings, 

1980; Karweit, 1984; Godwin et al., 2015).  Whilst acknowledging that the time a student spends 

on-task as determined by an external observer may be a fairly crude measure of academic 
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learning – the presumed focus for the teacher – it seemed that teachers nevertheless strived to 

maximize this time (and minimize time off-task) (Gettinger and Seibert, 2002).   

 

 

Figure 2-2  Some activities of, and interactions between, lesson participants 10 

All of the above activities were considered important and were also observed during the 

case study.  Some states could be entered by choice (e.g., a student could choose to chat).  Some 

states were forced on a participant and could not be entered by choice (e.g., a student could not 

be being reprimanded by choice – the teacher forces that state on a student).  Some states could 

be either chosen or forced.  For example, a teacher offering help might force a student into the 

 

10 Note that this is not a ‘use case’ diagram and it is not meant to convey any sequence of interactions or events. 
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corresponding state, but a student asking for help might force the teacher into the corresponding 

state.   

The lesson observations led to an understanding of the variety of interactions that occur in 

lessons.  Figure 2-2 shows a few of the observed interactions between the teacher, TA and 

students, with student-student interactions omitted for clarity.  The arrows indicate situations 

where two people are interacting and where one person could not be doing this activity unless 

the other person was involved.  The diagram does not show transitions from one activity to 

another.  The complete list of selected activity states is given in Chapter 3.   

2.4 Teacher and student decision-making 

The core of an ABS is the logic that describes how an agent chooses what to do at each time 

instant.  The goal of the classroom lessons ABMS was to model the dynamic, spatial, 

asynchronous, autonomous, interactive decision-making that happens in lessons.  But, because 

teachers, TAs and students play such different roles, with different choices and consequences, it 

was expected that each would need a different sub-model. 

There were many existing models of decision-making available (Balke and Gilbert, 2014).  

For example, the Belief-Desire-Intention (BDI) model has been very successful (Norling, 

Sonenberg and Rönnquist, 2000; Gibson, 2009; Norling, 2009; Belhaj, Kebair and Ben Said, 2014; 

Padgham, Singh and Zambetta, 2015).  In this model, agents are considered to be intelligent 

decision-makers who plan for the accomplishment of a complex task based on their beliefs, 

desires and goals (intentions), and then carry out the planned actions.  The teachers did have a 

goal, yet this seemed to be very simple:  follow the lesson plan, handling any interruptions.  (One 

could also claim that a teacher’s goal is to maximize student learning or increase academic grades, 

but that would be the objective that the lesson plan was designed to achieve.)  There seemed to 

be no need for a sophisticated goal-driven model for decision-making in lessons.  However, the 

manner in which a teacher responds to an interruption (such as class or individual misbehaviour 

or disengagement, or technical problems, or deciding to modify the lesson plan to give more time 

for revision) did seem more complex, and, most importantly, needed to be rapid and on-the-spot.  

To cope with these common-place scenarios, a ‘recognition-primed decision’ (RPD) model (Klein, 

2008) was appropriate as it was developed to model how expert leaders make a ‘situation 

assessment’ (Norling, Sonenberg and Rönnquist, 2000), taking quick decisions in complex 

situations under time pressure (such as when firefighting or during military engagements).  The 

main principle is that an expert would rapidly consider alternative courses of action, choosing the 
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first alternative that matched the current situation.  This is effectively how teacher decision-

making was modelled, but using the most basic RPD approach:   

• look through a fixed list of rules that are ordered in decreasing order of gravity (i.e., their 

disruptive impact on the lesson); 

• apply the first rule whose conditions are satisfied. 

 
This is a common ABMS approach to modelling agent decision-making.  A primary 

assumption in any ABMS is that the behaviour of the actors can be emulated formally using 

mathematical symbolism and/or a computer programming language, with the inclusion of some 

pseudo-random (stochastic) fluctuations to make behaviour more life-like (slightly random and 

unpredictable).  Agents look through a set of production rules (also known as a ruleset) in order 

to choose an appropriate course of action (Urban and Schmidt, 2001; Balke and Gilbert, 2014).  

During the case study, observations about what happened in lessons were noted and plausible 

rules or principles that might be at work were formulated (c.f. ‘causal rules’ from ‘causal stories’ 

(Bex, 2015)).  These could be called stylized rules (c.f. stylized facts) that could be configured as a 

multitude of single if A then Z rules, or a set of more complex if A and B but not C then Z1 and Z2 

type rules.  The choice was a major design decision between a collection of simple cause → effect 

rules, several of which could be triggered individually at each simulation step, versus highly 

complex rules that more fully describe mini scenarios and only one of which is activated.  The 

latter more RPD-like option was selected.  This production rules approach was adopted for all 

three lesson participant types, teachers, TAs and students and the observations from the case 

study were translated into plausible rules and logic for behaviours.  However, the way student 

agents process the student ruleset is different from the simple method just described for teachers 

(and TAs) and is explained in section 3.3.2.  

During discussions in the case study, students did explain a variety of goals for a lesson, for 

example: have fun with friends; do well, be productive and learn; please the teacher; survive the 

lesson without getting into trouble (particularly when a student had been disciplined and given 

an ultimatum).  However, these all seemed to play a secondary role compared to reacting 

appropriately to the current situation in the lesson, especially to what the teacher and the other 

students were doing.  The students seemed to respond to the current situation and behave 

according to their habits.  To model such decision-making, ideas from the well-established Theory 

of Interpersonal Behaviour (TIB), formulated by Triandis in 1971 (Jackson, 2005; Li and Lee, 2013; 

Moody and Siponen, 2013), were incorporated.  Behaviour is considered to be driven by the 

intention and the habits of the person but moderated by the prevailing conditions.  It explicitly 
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acknowledges the influence of past behaviour, or habits, on the decision process.  This feature 

was thought to be highly appropriate in lessons, where habit and routine play a major role in 

behaviour choices.  To implement this feature for students, habits were represented by the 

historical relative frequencies of activity states.  This essentially meant that students were given 

attributes (characteristics or properties) to represent the activity states they could engage in.  For 

example, there is an attribute representing the tendency for a student to listen to the teacher 

during whole-class teaching.  The value of an attribute at any particular instant represents the 

relative likelihood that the student would choose that activity compared to other activities.  It 

was felt that this use of activity attributes, rather than generic attributes such as personality traits, 

made the model more specifically a lesson behaviour model and more likely to be implemented 

successfully. 

Below are some examples of case study observations that were incorporated in student 

rules: 

• it appeared that students tended to copy the behaviour of their peers; 

• somehow students needed to cope with contradictory pressures, such as wanting to follow 

the teacher’s instructions but also wanting to do what their friend is doing (e.g., chatting or 

doing nothing); 

• when a student was reprimanded this appeared to have the effect of reducing misbehaviour, 

although the effect seemed to wear off and students may again disengage; 

• students appeared less inclined to misbehave when the teacher was close by - hence the 

students’ behaviour was considered to be affected by the proximity of the teacher; 

• it also seemed that students were less inclined to misbehave in smaller classes, when the 

teacher-student ratio was greater. 

 
To summarize, all agents interact autonomously, adapting (changing) their behaviour 

according to their current situation.  In terms of the definitions offered in Macal (2016, p. 150), 

the ABS is an ‘interactive’ ABS, with the most basic ‘adaptive’ abilities due to ‘memory’ of when 

events last occurred.  Teacher behaviour is characterized by the logic: follow the lesson plan, 

handling any interruptions.  Student behaviour is considered to be driven by the current situation 

and their past habits, with the current situation comprising mainly: 

• what the student is supposed to be doing, i.e., what the teacher has instructed - based on the 

lesson plan; 

• what the student is currently doing (e.g., attempting to chat to another student) and for how 

long they have been doing this; 
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• what the teacher and TA are currently doing (possibly with that student); 

• what other students may be doing to the student (e.g., attempting to chat); 

• recent interactions with the teacher (e.g., being disciplined, this lesson or previously). 

 
Some examples of the rules are given in section 3.2, with complete rulesets included in 

Appendix A.  Specific details of where stochasticity was added are also given in the appendices. 

As highlighted in section 1.1, the issue of classroom behaviour management is particularly 

relevant.  For this reason, this aspect of the model is explained in more detail in the following 

subsection. 

2.4.1 The interaction between student misbehaviour and the teacher’s disciplining 

It was apparent during the case study and is generally well acknowledged that students 

respond to the disciplinary actions of the teacher.  Two types of disciplining were observed: 

individual and whole class.  The teacher intervened in both cases, but the mechanisms appeared 

different.  For example, it might have been that at some point in the lesson some students were 

not engaged in the learning activity (e.g., listening to the teacher).  Typically, when a sufficient 

number of students were involved, the teacher would switch into a whole class disciplining mode, 

apparently addressing the whole class but actually just the subset who needed the message. 

Besides catering for individual and class disciplining, it was considered important that the 

model incorporate low-level disruption (persistent, sub-critical, distracting behaviour).  This 

required noting misbehaviour over a period so that it gradually built up and could be responded 

to.  This required some sort of misbehaviour count and time period. 

It also seemed that different students responded differently: some seemed more compliant 

and followed the teacher’s instructions while others can become more argumentative or 

disengaged further and participated even less.  It was not clear, therefore, whether disciplining 

always increases productivity and/or decreases disengagement and in what situations and to 

what extent.   

Nevertheless, based on the lesson observations and discussions with the teachers, it 

appeared that the following behaviour was common: 

1. Some teachers were stricter than others, addressing misbehaviour earlier than their 

colleagues would; other teachers used more light-hearted responses to get students to 

participate.  Also, this depended on the subject, so, for example, more chatting was 

acceptable in art lessons than in mathematics lessons. 
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2. Teachers seemed to discipline proportionately, the more disruptive a student’s behaviour 

(e.g., shouting across the whole classroom), the sterner the discipline.  But the teacher would 

also discipline students who disengaged passively (e.g., not being productive by fiddling 

excessively with things, or breaking rules such as eating or using their mobile phone). 

3. When the teacher was observing the class or whole class teaching, students misbehaved less 

frequently than when the teacher was helping someone or talking to the TA.  

4. The students were even less likely to misbehave when the teacher was currently telling 

someone or the whole class off. 

5. Students appeared to misbehave less when the teacher was nearer them than when the 

teacher was further away. 

6. After disciplining, behaviour was more settled and possibly more productive.  However, this 

seemed to wear off and some misbehaviour can reappear, earlier in some students than in 

others: this response is assumed to depend on some characteristics of the student. 

 
Details of how these observations were incorporated into the simulation model are 

provided in section 3.4, with further details in Appendix A.3.4. 

2.5 Representing the classroom and lesson interactions 

The events that occur in lessons are affected by many factors associated with the physical 

classroom, for example, the shape of the room, the position of cupboards, windows and doors, 

desk size and arrangement.  In particular, student seating arrangement is known to have a 

significant impact on the amount of time students are ‘on task’ and ‘off task’ or disruptive 

(Wheldall and Lam, 1987; Schwieso, 1995; Bicard et al., 2012; Kaplan, Gheen and Midgley, 2002).  

This was also observed during the case study.  It was therefore considered essential that the 

model incorporate spatial aspects of classrooms to some extent.  This meant that every classroom 

lesson model needed a floorplan, with desks correctly arranged and the students correctly 

located, to ensure realistic visualization and to enable the simulations to take spatial distances 

into account in agent interactions.   Several other classroom research projects have used 2D 

representations of classrooms, complete with seats, desks and aisles and the locations of students 

and the teacher.  Figure 2-3 shows one example; other examples can be seen in Holstein, McLaren 

and Aleven (2017b, p. 3) and Raca and Dillenbourg (2013, p. 266).  Figure 2-4 shows the classroom 

layouts available in the model from McDevitt (2017).   
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Figure 2-3  A 2D model of a classroom lesson layout (Ge et al., 2011, p. 96)  
 

 

Figure 2-4  The classroom layouts available in the model from McDevitt (2017) 

 

It was also considered essential to have visual representations that showed what was 

happening in dynamic detail during lesson simulations whilst also providing a general overview 

(Hmelo-Silver, Liu and Jordan, 2009; Dorin and Geard, 2014; García-Magariño and Plaza, 2015; 

García-Magariño et al., 2017).   Visualizations are especially useful when experts evaluate model 

outputs, providing face validity assessment (explained in section 6.3) (Wilensky and Rand, 2007; 

Klügl, 2008).  The chosen representation is described in section 3.5, but an example lesson layout 

is shown in Figure 2-5.  The blacked-out areas indicate either walls or cupboards, anywhere not 

accessible; a door is indicated by a white bar; desks are brown blocks; the whiteboard is a magenta 

line.  A classroom floor plan is converted into a full lesson layout by adding the lesson participants 

in their correct places.  The teacher (dog-like icon), the TA (cat-like icon), the observer (ant-like 

icon) are shown in their primary positions.  Some of the students (the bear cub icons) are slightly 

transparent indicating that their activities were not fully monitored.  The labels on students show 

the unique student reference/current state number. 

The lesson animations also proved an important tool for ‘visual debugging’ (Grimm, 2002) 

of the simulation code.  
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Figure 2-5  An example classroom lesson layout 
showing students at their desks, with the teacher at the front and the TA to the side 

2.6 Assumptions and simplifications 

From the comprehensive conceptualization of classroom lessons, a full conceptual model 

was formulated, which was itself transformed into the final simulation model.  As is usual when 

formulating an abstraction of a system, some details of the real-world system were omitted and 

simplifying assumptions were made (Hillston, 2003, 2017; Jackson, 2005).  However, in order to 

make the simulation as realistic as possible, the model included as much of the real-world 

complexity as was possible.  This approach is in keeping with the ‘keep it descriptive stupid’ (KIDS) 

approach described by Edmonds and Moss (2005).  They pointed out that it might be more 

effective to start with a relatively complex model that more accurately describes the real system, 

rather than the keep it simple stupid (KISS) approach which advocates starting as simply as 

possible. 

The simplified component diagram in Figure 2-6 shows the components of the classroom 

lesson system model.  As was indicated in Figure 2-1, many factors that probably affect 

participants’ behaviour have been excluded, such as the influence of parents and what happened 

in earlier lessons. 
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Figure 2-6  The components and interactions included in the classroom lesson system 

 
The following decisions and assumptions were made: 

1. The system being modelled is one classroom lesson, not a series of lessons. 

2. The goal of a classroom lesson is assumed to be to increase the academic achievement of each 

student and the class overall.  This is achieved by maximizing the amount of time spent 

productively and minimizing the amount of time spent disruptively. 

3. The lesson plan is assumed to be the teacher’s solution to maximizing productive time, hence 

the teacher’s objective is to adhere to the lesson plan as closely as appropriate. 

4. The teacher does not alter the lesson plan during the lesson. 

5. A classroom lesson is considered to be the collection of activities performed in various 

locations in a classroom by a teacher, a TA (if present) and the students of a particular class 

while the teacher follows a lesson plan, handling any interruptions. 

6. The components of a classroom lesson are the classroom (its contents and layout), the student 

seating arrangements, the human participants/actors and the lesson plan.  All other objects 

(e.g., teaching and learning materials, equipment) are considered part of the environment of 

lessons. 

7. A class is a collection of individual students identified by the school as a separate group. 
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8. A class is not modelled as an entity in its own right. 

9. A class attends a lesson, which is run by one teacher teaching one subject in that lesson. 

10. Each person has characteristics, some internal (private), some external (that other people can 

observe). 

11. All these people interact autonomously and are always aware of each other’s external 

characteristics, including location. 

12. All lesson participants know the current activity state of all others at all times. 

13. All students are always sensitive to the teacher’s proximity and strictness and remember 

when they were last disciplined or praised.  

14. The participants occupy a typical classroom, with walls, door(s), whiteboard(s), desks, chairs, 

a bin, etc. in any arrangement.  Desk and aisle width are also important as people’s behaviour 

can be affected by the location of and distances from other people. 

15. Students have a seating position at a desk (of a specified seating size) but can be reseated 

during a lesson. 

16. The students are free to interact with each other, with the teacher, with the TA, and with the 

classroom (e.g., the bin, leaving the room) at any time. 

17. The classroom is small enough that any student can choose to interact with any other student, 

not just their immediate neighbours. 

18. Students can leave the classroom, but there are restrictions, such as one student at a time 

and maximum number of departures. 

19. Students are in the 11 to 16 age range (UK secondary school), meaning that a narrow range 

of teacher and student behaviour is being considered.  

20. The location of lesson participants is explicitly represented, but their motion is not: for 

simplicity participants can change positions, but they move from one location to another 

instantly in one simulation time step.  For example, the teacher can be helping a student on 

one side of the classroom in one time interval and in the next time interval be immediately at 

the front of the classroom. 

21. There is only one TA in a lesson. 

22. Although the TAs were seen to discipline students, this was not modelled. 

23. Where a TA is present, the TA is considered to either respond to requests for assistance from 

any student or to offer assistance to any student, i.e., the TA is not allocated to just one 

designated student. 

24. The TA first responds to the teacher, then the students and only then initiates independent 

action. 
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25. The TA always accepts an interaction proposed by a teacher or student. 

26. The TA does not choose to interact with the teacher. 

27. The only factors involved in the TA’s decision to offer help are the state of the student and 

the time since they last had help from the TA -  the TA does not consider factors such as which 

student has had the least help or a student’s academic ability. 

28. After giving the students instructions (e.g., to work on an exercise), the teacher and TA wait a 

few minutes before offering help, to give the students time to get organized and start on the 

activity.  (This assumption is not always realistic as in many instances a teacher or TA will go 

to specific students immediately to confirm that they understand what to do.) 

29. If the teacher is interrupted while helping a student, instead of handling the interruption then 

resuming helping, the help is terminated by the interruption and the teacher enters the 

default state specified in the lesson plan. 

30. The teacher never suspends a lesson completely. 

31. While the student can seek 1-to-1 assistance from the teacher or the teacher can offer it, only 

the teacher can conclude that assistance. 

32. Agents have simple ‘memory’ of recent events and when they occurred. 

33. Agent reasoning is basic condition-response logic: there is no reasoning about what is known, 

or what other agents might be considering (e.g., is the teacher looking at me?), or meta-logic 

that changes rule logic. 

34. Agents consider only the current state of the other agents, not their past states.  For example, 

before proposing to chat, a student agent does not consider whether another student has just 

been disciplined. 

35. The model does not include well-known factors that affect student behaviour, such as 

students disengaging due to fatigue or lack of success, or being invigorated by some activities.  

36. Because the empirical data collection did not enable the instigator of an interaction to be 

recorded, interactions were considered to be directionless, as explained in section 1.5.2. 
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2.7 Chapter summary 

This chapter described the results of the first two stages of the ABMS development process.  

By combining understandings obtained from published research with the first-hand observations 

during the case study (and the author’s personal experiences of 14 years of teaching), a 

comprehensive conceptualization of the classroom lesson system was set out, including 

descriptions of the typical structure of lessons and the activities in them.  After consideration of 

the types of decisions teacher and students make, it was decided that decision-making would be 

modelled using ‘production rules’.  From this analysis a comprehensive conceptual model of 

behaviour in classroom lessons was formulated.  The emphasis was on producing a realistic rather 

than simplistic model of lesson behaviours, despite this being complex and complicated.  The 

focus of the model is lesson behaviours, highlighting particularly the interaction between student 

misbehaviour and the teacher’s disciplining.  The chapter included an explanation of how 

classrooms and lessons would be represented on a computer, and listed some of the assumptions 

and simplifications made. 

The following chapter explains the results of stage 3 of the ABMS development - the 

simulation model. 
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3. The Classroom Lessons Simulation Model (CLSM) 

The next stage in the ABMS development was to take the conceptual model of classroom 

lessons and transform it into a simulation model.  This chapter is a summary description of the 

simulation model - additional details are provided in the appendices. 

In the model there are three types of agents: student, teacher and TA, each having its own 

algorithm formalizing its decision-making.  One can view the classroom lessons behaviour model 

as comprising three interacting sub-models.  Figure 3-1 shows some of the ways the agent sub-

models interact.  The rectangles represent factors that either influence the agents or are affected 

by agents.  The hollow arrows indicate bidirectional influences. 

 
Figure 3-1  The principle interactions between the three agent types 

 

In order to run simulations of lessons, the following inputs are needed: 

• a classroom layout and student seating layout; 

• a class of students each with their historical behaviour data; 

• a lesson plan (which divides the lesson into sections of specific student and teacher activities, 

as explained in section 3.2); 
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There are two types of simulation outputs:  

• animated visualizations of the dynamics of a lesson, including animated charts showing 

individual agent information and overall lesson information; 

• for each agent a time series of activity states, plus summary statistics for each agent and for 

the lesson overall (such as the percentage of productive time and disruptive time). 

 

This chapter explains: 

• the lesson activities that were selected for the agent states; 

• how lesson plans control what people do at different times in lessons; 

• how agent behaviour and decision-making is represented using ‘production rules’, and 

introduces the model parameters; 

• how the intricacies of agent interactions are managed, with particular emphasis on how the 

students and the teacher interact when it comes to misbehaviour and discipline; 

• the implementation of the model in NetLogo. 

3.1 Agents activity states 

Each agent type has a set of mutually exclusive activity states, shown in the tables below.  

The colour-coding shows which states were considered Productive, Disruptive/Disciplinary or 

Other (other non-productive/non-teaching activities).  For students, ‘disruptive’ behaviour is 

behaviour that distracts another student from the expected behaviour (e.g., chatting), whereas 

‘other’ behaviour is non-disruptive disengagement, where the student does not (directly) interact 

with another student (e.g., fiddling with something).  As explained in section 2.3, some states are 

not entered at the agent’s volition but are ‘forced’ by other agents or circumstances.  These are 

indicated via a solid underline.  Some states can be entered either voluntarily or by ‘force’.  These 

are indicated via a dashed underline. 

As explained in section 2.4, the student state attribute values at the start of a lesson are the 

historical relative frequency of the activity states over all lessons.  These attribute values are 

adjusted during the lesson so that each state has a new relative likelihood.  This is explained 

further in section 3.3.2. 

The following tables summarize the agent states modelled. 
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Table 3-1  The teacher activity states modelled 

Abbr. State Teacher activities 

SDIS 1 

Disciplining specific student(s).  This is not restricted to telling off as it may 

involve reasoning, exhorting, encouraging, referring to student’s strengths, 

responsibilities etc. 

 2 Unused 

 3 Unused 

IRRE 4 
Deliberate activities clearly unrelated to this lesson, e.g., creating display for 

another class while students are working 

CDIS 5 
Managing the whole class, e.g., ‘Take your books out’, shushing, homework 

telling off, disciplining (but not individual disciplining) 

PREV 6 
Prevented from teaching, e.g., by announcements, school matters, external 

interruptions, technical problems 

COBS 7 
Observing students (while teacher is moving around class or stationary); default 

mode for teacher if not in any other mode 

SOLO 8 Working alone, busy with other lesson-related activities 

PWCT 9 ‘Passive’ whole class teaching, e.g., showing a video clip 

Q&A 10 Asking questions and waits for answers; listening to a student’s answer 

SPRA 11 Appreciating or praising a student in front of the class 

AWCT 12 
Active teaching of whole class, e.g., class discussion, active demonstrations (e.g., 

software or interactive video), handing out and collecting in materials 

SSUP 13 Offering or providing individual support, encouragement, or instruction 

GT 14 Offering or providing support to a group 

TTA 15 Talking to the teaching assistant 
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Abbr. State Teacher activities 

OUT 16 Left classroom 

NONE 17 None of these, e.g., attending to personal matter 

 

Table 3-2  The student activity states modelled 

Abbrev. State Student activities 

DISC 1 Being disciplined by teacher or teaching assistant 

MESS 2 
Unproductive, away from own desk and distracting others, e.g., chatting, 

fiddling with things 

CHAT 3 In own seat chatting, distracting, socialising, turning around etc. 

NOT 4 

Intentionally unproductive, not participating, but not distracting others, at or 

away from own desk (e.g., messing about at a bin or fiddling in bag or 

doodling, breaking rules such as eating or using mobile) 

CLOFF 5 
Listening to teacher in response to class being told off; this response by the 

student is considered good, but non-productive behaviour 

PREV 6 

Unintentionally unproductive: not learning, but not disturbing others; e.g., 

getting out books before start of lesson or packing away at the end, doing a 

job for teacher, technical problems 

REST 7 
Not sure if productive: just sitting, not disturbing others - maybe thinking or 

waiting for instructions or help? 

ALONE 8 
Working alone, incl. ignoring teacher or video, reading ahead, using laptop, 

away from desk getting resources 

OTHER 9 Working with others, incl. at whiteboard or others' desks or elsewhere 

EXPR 10 Q&A participation including expressing knowledge to the class 

APPR 11 Being appreciated or praised by the teacher 
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Abbrev. State Student activities 

ATTEN 12 
Listening to, watching, interacting with teaching, incl. watching video, asking 

or answering questions, coming to the whiteboard 

TSUPP 13 Receiving individual instruction or support from the teacher 

GSUPP 14 In a group receiving instruction from the teacher 

TASUPP 15 Receiving support from the TA in the classroom 

OUTTA 16 Out of classroom with the TA support group 

NONE 17 None of these, e.g., left room alone or attending to personal matter 

 

Note that student state 3 covers a student chatting to another student or just speaking out 

aloud to no-one in particular (because no-one happened to respond).  The distance between two 

students chatting is considered an important factor: the greater the distance the more disruptive 

to the lesson (and the stronger the teacher’s discipline response). 

 

Table 3-3  The TA activity states modelled 

Abbr. State TA activities 

COBS 7 
Observing students (while moving around or stationary); 

default state for the TA if not in any other state 

TTA 15A Talking to the teacher 

GTA 15B Assisting a group of students 

SSUP 15C Assisting one student 

OUT 16 Out of the classroom with one or more students 
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3.2 How lesson plans control lessons 

As indicated in section 2.4, one of the main observations from the case study was that the 

factor that most influenced behaviour in lessons was the teacher’s lesson plan.  All three agents 

take their cue from the lesson plan.  It specifies what the teacher should tell the students to do 

and when, and thus directly influences student behaviour.  Both empirical and simulated lesson 

events are driven by the lesson plan.  One basic assumption, built into the simulation model, is 

that whenever the lesson plan specifies a new activity (i.e., the lesson section changes – see 

below), all agents are forced to reconsider their state. 

Below is an example of just the bare essentials of a lesson plan: 

Section Actions Minutes 

1 Lesson Overview/Introduction + Q&A 5-10 

2 Activity 1 – in pairs 10-15 

3 Whole class discussion 5 

4 Activity 2 – in groups 10-15 

5 Whole class discussion 5 

6 Activity 3 – in groups 10-15 

7 Whole class discussion + Plenary 5-10 

8 Homework, next lesson etc. 5 

 Total time 60 

 

For the purposes of modelling and simulation, a lesson plan was considered to be a 

sequence of lesson sections, represented as follows:  Lesson ID, [ section1 section2 ... ] 

Each section has the structure (where section# is just a sequential integer): 

[ section# duration [ acceptable student states ] [ planned teacher states ] ] 

 
The [ acceptable student states ] list is a list of the student states that the teacher expects 

to be predominant during that section.  It begins with the most desirable state first, then others 

in decreasing order of probability/desirability.  The most desirable student state is called the 

expected state of the students.  The [ planned teacher states ] list is similar.  The most desirable 

teacher state is called the primary state of the teacher.  Apart from misbehaviour states, excluding 

a state from a list effectively prevents that state being entered during that lesson section.  One 

can see from this that the lesson plan effectively specifies the ideal behaviour desired.   

Lesson sections are of different types.  This was based on the observation that students 

spent most of their time in one of the following types of activities (similar to the ‘social planes’ 

(individual, team and class) identified by Dillenbourg, Prieto and Olsen (2018)): 

• working alone, 

• working in pairs, 
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• working in small groups/teams, or 

• working as a whole class when the teacher is whole-class teaching. 

 
As an example, the lesson plan: 

MAT08190423, [ 1 20 [12;10;11] [12;9;10;11] ] [ 2 15 [8;9;13;14;15;12] [7;13;14;12;15] ] … 

describes a lesson starting with 20 minutes of the teacher whole-class teaching (state 12 or 9) or 

some possible Q&A (state 10) or some praise (state 11) and the students listening (state 12) plus 

some possible 10 (Q&A) and 11 (praise).  This is followed by 15 minutes during which the students 

are expected to either work alone (8) or with others (9) or get one-to-one help from the teacher 

(state 13) or TA (state 15) or maybe listen to the teacher giving some more instructions (state 12) 

and the teacher either observes (7), helps individuals (13) or groups of students (14) or give some 

whole class instruction (state 12) or interacts with the TA (state 15). 

When empirical lesson event data were replayed it became apparent that, in all lessons, the 

lessons did not unfold minute-by-minute as specified in the teacher’s lesson plan.  (In fact, 

teacher’s lesson plans typically had entries such as 10-15 mins or 20-25 mins reflecting the fact 

that teachers adjust the lesson dynamically.)  For example, one lesson start was delayed for 5 

minutes by several students who wanted to explain why they had not brought their homework.  

If the actual lesson were compared to the lesson plan, every transition to the next lesson plan 

section would be out by 5 minutes.  A simulation using the lesson plan gave a poor match with 

the actual lesson.  To manage this phenomenon, the lesson plan was inferred from the lesson 

events themselves.  A small program was developed that took the raw lesson event data for the 

teacher and extracted a rough lesson plan based on the timings of the teacher’s activities.  By 

ignoring minor interactions and using the actual lesson plan to see what was intended, these 

rough plans were manually adjusted to create realistic realigned lesson plans.  For example, for 

the lesson with a 5-minute delay at the start, the adjusted lesson plan had a separate 5-minute 

section of non-teaching, administrative time added, as though it were planned.   

The choice of the primary state for the teacher is critical for the simulation to operate 

properly.  When the teacher is ‘passive’ whole-class teaching (e.g., playing a video clip) the 

primary teacher state is 9;  when the teacher is active whole-class teaching the primary state 

should be state 12; and when the teacher expects the students to work either with others or 

alone, the primary teacher state should be state 7 (observing).   
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3.3 Agent behaviour and decision-making 

As explained above, on the basis of the case study observations, the lesson plan was 

considered to be the most important factor influencing lesson behaviours.  The second most 

important determinant of behaviour appeared to be the current circumstances, who is doing 

what and where, and what has happened recently.  The third level of influence was considered to 

be the person’s habits.  These latter were summarized as state duration distributions and, for 

students only, their historical empirical activity state frequencies.  The three levels are 

summarised in Figure 3-2. 

 

 

Figure 3-2  Student agent considerations for the choice of the next activity 
 

As explained in section 2.4, agent behaviour is described using rulesets, with the choice of 

the next activity state being modelled by a set of rules.  Most of the rules concern how an agent 

is to respond to what others are doing.  The order in which agent types are processed is teacher, 

students, TA.  This order was chosen  because, during the case study, it appeared that 

predominantly the students respond to the teacher, and TA’s appeared to be more reactive, 

responding to student requests before offering help on their own initiative.  The student agents 

are processed in a random order.  The following sub-sections provide a brief overview of how 

agent behaviour was modelled.  Further details are provided in Appendix A. 

3.3.1 Teacher behaviour 

The teacher sub-model applies to all teachers in all lessons.  There was too little empirical 

data to profile each teacher sufficiently, yet it was clear from the case study that teachers did not 

behave alike.  Not only that, one teacher could behave quite differently: 

• with different classes (e.g., the extent to which they tended to discipline); 

• in different subjects (e.g., when using IT equipment vs during maths exercises); 

• in different rooms (e.g., where it may be difficult to be sure what the back row are up to); 

• with different lesson plans (e.g., no group work vs extensive group work). 

 

The activity 
specified in 
the lesson 

plan 

The current 
situation 

Past habits 
Chosen 
activity 
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In order to differentiate the behaviour of teachers, two teacher-lesson parameters were 

incorporated.  These adjust, for each specific lesson, the teacher’s tolerance of misbehaviour and 

inclination to offer one-to-one support.   

 

 

Figure 3-3  The flow of the teacher’s activity choices 
including providing ad hoc praise or discipline in response to student behaviour 

 
The teacher follows their lesson plan but responds to what the students are doing.  The 

teacher behaviour algorithm is summarized in Figure 3-3.  Behaviour management and praise are 

considered to be ‘interrupt-driven’ subsystems in that the teacher temporarily deviates from the 
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lesson plan in order to respond.  After dealing with such situations the teacher will return to 

whatever activity the lesson plan specifies. 

The following examples demonstrate the structure and nature of the teacher behaviour 

rules.  The overall teacher rule is:  Do what the lesson plan says (stay in or enter the planned 

primary state) but handle exceptions, including dealing with misbehaviour and praising.  The first 

example models whole class disciplining in response to some persistent, low-level disruption: 

 

IF       there is generally too much chatting or disengagement (student state 3 or 4), 

according to how long the messing about has persisted and according to my 

misbehaviour tolerance  

THEN for a suitable amount of time remind the class to focus on the activity (state 5)  

(treat state 3 as more serious than state 4 so intervene earlier) 

 

IF        I have been disciplining the class for a suitable amount of time 

THEN stop and do what the lesson plan specifies 

ELSE   continue 

 

 

The next example models the teacher offering one-to-one support to a student: 

 

IF       I am not helping anyone 

AND  I am available to help someone (which means states 4, 7, 8, 15) 

AND  it has been a while since I helped anyone (varies according to inclination to help 

and according to how long since helped anyone)  

THEN 

choose a student who is not being helped by the TA and appears to be doing 

nothing (student state 4 or 7) or is chatting (student state 2 or 3), but not 

someone who has recently received help 

IF such a student was found  

THEN offer support to him/her 

ELSE (so as to allow students time to think and work) 

IF        the TA is not busy and it is not too recent that I spoke to the TA  

THEN confer with the TA (state 15) 

ELSE   start/resume the main activity specified in the lesson plan 
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3.3.2 Student behaviour 

Figure 3-4 shows the logic that a student agent follows in order to decide what state to 

occupy during the next simulation time interval.  This logic reflects the type of situations students 

find themselves in: 

• sometimes students have no choice about what to do next – it is forced upon them (e.g., the 

teacher disciplines them or offers help); 

• sometimes they cannot continue doing what they were doing (e.g., the person they were 

chatting to is now being helped by the teacher) and they are forced to reconsider what to do; 

• when reconsidering a state, a choice may be made that turns out to be impossible (e.g., the 

student wanted to chat or work with someone but there is no-one available). 

 
As mentioned in section 2.4, each student has an attribute for each activity state and the 

value of each attribute at any particular instant represents the relative likelihood that the student 

would choose that activity compared to other activities.  For example, the attribute ‘state 3’ 

means the students tendency to be ‘in own seat chatting, distracting, socialising, turning around 

etc.’  The value of this attribute at the start of a lesson is the student’s historical relative frequency 

of this state over all lessons.  These attribute values are used to restrict and rank the choices of 

activity states.  The state attributes are considered together as a probability mass function (PMF).  

To be precise, each student has three PMFs, one for each lesson section type (whole-class 

teaching, working alone and working with others – a combination of the working in pairs and 

working in small groups sections described in section 3.2).  At the start of each lesson section 

(including the start of the lesson), the appropriate set of empirically-derived relative state 

frequencies are loaded into the PMFs.  These state frequencies – representing the students’ 

historical behaviour habits – are averages, formed by the students’ behaviours over several 

different lessons.  The PMF values are adjusted according to the current circumstances a student 

is facing, with some situations increasing the score for a state, others decreasing it.  (The term 

‘score’ is preferred for the adjusted values as they are not strictly probabilities.)  The student rules 

make these dynamic adjustments.  Where a state is ‘forbidden’ or impossible, its score is set to 

zero.  From this explanation one can see that the lesson plan is highly influential, specifying the 

desired ideal activity states and assigning the appropriate student ‘habit’ data. 

Figure 3-4 shows the overall student behaviour logic.  Several aspects of the logic involve 

the management of agent interactions, such as a student waiting for another student to respond.  

These interactions are elaborated further in section 3.4. 
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Figure 3-4  Flowchart for student agent behaviour 

Am I being forced into a state? 

Go into 
that state 

Do I have to 
reconsider my state? 

1. Take student’s empirical state probabilities for the lesson plan section type. 
2. Adjust probabilities to take into account the current situation. 
(This includes considering the effect of the teacher’s discipline, the application of 
this lesson’s parameter weights, responses to other students’ requests to work or 
chat, and states of other students.) 

Continue in current state 
with same anticipated state 

duration. 

continue 

Yes  

Yes  

No  

No  

LOOP: Until a state is found or there is no state choice left: 
1.    create a states cumulative mass function and choose a state 

2a.  if the choice is unrealizable, remove that state from the list and re-choose 

2b.  if the state is realizable, set an anticipated state duration 

END LOOP 

If no state was found, choose a sensible state and set an anticipated state 
duration 

Check for scenarios forcing leaving state: 

• Returning to classroom ➔ take actions & move into sensible state 

• Just finished interacting with teacher or TA ➔ take actions & move into sensible state 

• Still awaiting response & current state still possible ➔ stay in current state 

• Chat proposal accepted ➔ take actions & move into chatting state 

• Work together proposal accepted ➔ take actions & move into working together state 

• Not waiting for response & not time up & current state still possible & no-one 
interacting with me ➔ stay in current state 

ELSE RECONSIDER STATE 

If waiting for a chat or work together response, check the response. 
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As an example of the type of rules preventing a state, the following conditions cause the 

score for state 13 (being helped by the teacher) to be set to zero (the ‘I’ and ‘me’ is the student 

agent doing the deliberation): 

 
the teacher is in any of these states: 1 5 9 10 11 12 14 16 17 

OR the teacher is already helping someone else 

OR I am not expected to be working alone or with others 

OR I am out of the room 

OR the teacher helped me too recently 

OR the teacher has said they are not giving help 

 

As explained above, each student has a set of PMF attributes that, initially, contain their 

average historical activity state frequencies, formed by the students’ behaviours over several 

different lessons.  But students do not generally behave in any lesson in the same way as their 

average behaviour.   Students behave differently: 

• with different teachers (e.g., according to their relationship with the teacher); 

• in different subjects (e.g., according to their interest in the subject); 

• in different rooms with different seating arrangements (e.g., whether they are beside a 

friend); 

• in different activities (e.g., preference for solo or group work). 

Students and classes can behave quite differently from one lesson to the next.  Activity state 

averages were used because there were insufficient empirical data to characterise each student 

in one type of lesson (e.g., mathematics) with one specific teacher and one specific TA in one 

specific classroom.  Practically this meant that lesson simulations needed individual adjustment.  

For example, disruptive behaviour or other behaviour or the incidence of one-to-one support 

needed turning up or down relative to their average values.  

To accomplish these adjustments, several student-lesson parameters were introduced.  

These adjust the averaged historical state frequencies so that behaviour more closely matches 

that of the specific empirical lesson.  They affect every student in the class and are more 

accurately termed class-lesson parameters.  They are: 

• Student-Support-Request-Weight (SSRW) – to alter the students’ inclination to ask for 

assistance; 

• Student-Interaction-Weight (SIW) – to alter the students’ inclination to initiate an interaction; 
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• Interaction-Response-Weight (IRW) – to alter the students’ inclination to respond to an 

interaction; 

• Peer-Weight (PW) – to alter the extent to which students copy their peers’ behaviour; 

• Relative-Lesson-ES-Weight (RLESW) – to boost or reduce the expected and acceptable states; 

• Relative-Lesson-Disruption-Weight (RLDW) – to boost or reduce disruptive states; 

• Relative-Lesson-Other-Weight (RLOW) – to boost or reduce other disengaged states. 

 
Appendix A.3.5 contains details about how the student activity state scores are adjusted by 

these parameters.   

3.3.3 TA behaviour 

The TA sub-model applies to all TAs in all lessons.  As in the case of teachers, there was too 

little empirical data to profile each TA adequately, yet it was clear from the case study that TAs 

did not all behave alike.  Not only that, one TA could behave quite differently with different 

classes, even with the same class in another lesson.  In order to differentiate the behaviour of 

TAs, a TA-lesson parameter was incorporated.  This adjusts, for each specific lesson, the TA’s 

inclination to offer one-to-one support.  The TA’s decision-making is summarised in Figure 3-5. 

 

 

Figure 3-5  TA agent decision-making and behaviour 

Is the teacher  
whole-class teaching 

Am I in the classroom? 

move to the front/side 
and listen (sets example 
for students) 

return to the classroom 
 if appropriate: either 

Is the teacher 
talking to me? 

if with a group: 
at end of lesson 

if on an errand: 
when completed 

N Y 

N Y 

Am I helping 
someone? 

see if time to help 
someone:  if so, go 
and offer assistance 

continue until student  
brings it to an end 

N Y 

continue 
conversation 

N 
Y 
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The following example demonstrates the structure and characteristics of the TA behaviour 

rules. 

 

IF I am free (not helping anyone, state 7) 

 AND the teacher is not talking to me 

 AND the lesson plan allows TA support for students (student state 15) 

 AND I feel like offering support  

 THEN  look for a student to help (someone in state 2, 3, 4, 6, 7, 8 or 9 

     who has not been helped for a while) 

  IF       a student was found 

  THEN offer help to him/her 

     go into state 15  

(the student will enter state 15 when they next consider what to do) 

 

3.4 Agent interactions 

One of the reasons an agent-based modelling approach was adopted was so that causal 

chains of interactions between the autonomous agents could be investigated.  The following 

example provides an insight into the mechanisms used in the model to manage the complexities 

of agent interactions.   

There are two main student-student interactions, working together (state 9) and chatting 

(state 3).  When one student proposes interacting with another student and waits for a response, 

several possible scenarios could unfold, depending on the order of student processing and the 

actual response, accept or reject.  When an agent proposes an interaction, the agent remains in 

their current state until that proposal is accepted or rejected.  The presence of an interaction 

proposal increases the probability of the proposed state for the respondent.   

Consider the scenario where student P proposes working with student Q and notifies Q (and 

effectively the rest of the class).  Notification is implemented by recording the proposal in a 

globally-visible list.11  When student Q has a turn, during the same time-interval,  student Q rejects 

the proposal (by deleting the entry in the list).  A rejection could be for any reason, including 

choosing to interact with someone else or being forced into a state by the teacher, or just 

 

11 In computer programming, variables or constants that are accessible to all procedures or objects are sometimes 
called global variables or constants, globals for short. 
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choosing to work alone.  It is entirely possible that several students proposed partnering with 

student Q: the algorithm takes the first proposal. 

In the next time interval, P notices the rejection (the proposal is no longer in the list), but, 

when choosing a next state, again chooses state 9.  What to do?  Asking Q again would be odd – 

and possibly cause unrealistic looping.  To stop this, a rejected-by list was implemented as a 

student attribute, along with a note of the time of the rejection.  Student P looks for any potential 

partner excluding anyone on his/her rejected-by list. 

This is fine for a while until you have situations where two students are working at a table 

and everyone around is either too far away or busy or has rejected P.  If that rejection is 

permanently remembered, then student P will never ask Q again.  And if P had rejected Q, then 

Q would never ask again.  Hence, even if the lesson plan (and thus the teacher) had instructed 

students to work together, they never would.  To avoid this, rejections have to be forgotten after 

a while.  This required yet another model variable whose value could not easily be established 

empirically and, even if such data were available, it would likely be extremely variable.  The logic 

is enhanced:  if student P does not find a partner this time step, then if it has been some time 

since the last rejection (with some plausible amount of randomness), his/her rejected-by list is 

cleared so that future state 9 decisions have a fresh start.  

Numerous rules and mechanisms were created to cope with such interaction intricacies.  

Agents, each with a unique reference (ref), remember certain past events and communicate 

asynchronously using either inter-agent messaging or conventional blackboard variables (aka 

global variables or flags).  These are used for recording (amongst other things): 

• who the teacher is currently helping or about to help (Teacher-Allocated-To list); 

• which student is engaging in Q&A or being praised; 

• current and proposed chatting (state 3) partnerships (Proposed-3-Partnerships list); 

• current and proposed working together (state 9) partnerships (Proposed-9-Partnerships list). 

 
For example, when the teacher is available, a student requests help from the teacher by 

adding his/her ref to the Teacher-Allocated-To list; the teacher consults this list on the next 

simulation step.  Each student also has an attribute paired-with, which is a list of the refs of other 

students that the student is currently partnered with (working or chatting).   

In section 2.4, two particularly important interactions were mentioned: 

• the students’ responses to the behaviours of their peers; 

• the students’ responses to the teacher’s discipline regime. 
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Peer response was implemented by simply counting the number of students in each activity 

state and increasing or decreasing a student’s own state scores proportionately – so students 

tend to copy others.  For states where only one student can be in that state (or two or three for 

state 15 (being helped by the TA)), the fraction of the class in any productive state was used.  The 

impact of this peer influence factor in relation to other factors was unknown, hence the lesson 

parameter Peer-Weight was introduced into the procedures that adjust student state scores.  An 

underlying assumption was that all students responded to the activities of other students to the 

same degree. 

The implementation in the simulation model of the teacher’s disciplining and the students’ 

responses to this is more complicated than the above interactions and is explained in the 

following subsections, with further details provided in Appendix A.3.4.  Figure 3-6 shows the main 

factors involved in teacher-student discipline interactions. 

 
 

Figure 3-6  The main factors involved in teacher-student discipline interactions 
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3.4.1 Modelling the teacher’s disciplining 

This subsection describes how the interactions concerning misbehaviour described in 

subsection 2.4.1 were modelled.  To recap, during the case study it had been observed that 

teachers disciplined individuals or a whole class, but that in some lessons teachers seemed stricter 

than in others.  Also, students misbehaved more when the teacher was helping someone and 

when the teacher was further away, but after being disciplined, behaviour was more settled, 

although the effect seemed to wear off over time.  The model needed to accommodate those 

aspects plus the following points: 

1. UK Secondary school classes might have roughly 5 to 35 students: hence the approach needed 

to suit this range. 

2. In a larger class, the teacher might tolerate more students disengaging before reprimanding 

the class: hence calculations needed to raise the threshold with class size. 

3. The teacher’s response seemed to depend on what the teacher was doing, whole-class 

teaching, helping an individual, etc.: hence calculations needed to change with the state of 

the teacher. 

4. The teacher’s response seemed to depend on the type of student disengagement, whether it 

distracted or disrupted others or was just passive disengagement, and the magnitude of the 

disruption (for example whether a student shouted out across the classroom versus just made 

comments quietly to their neighbour): hence calculations should depend on the students’ 

states and locations. 

5. As with individual misbehaviour, there needed to be some mechanism for capturing ongoing 

but intermittent distractions (e.g., ongoing chatting-listening-chatting-listening): hence 

calculations should incorporate students’ recent misbehaviour. 

6. Teachers were not consistent in their responses but varied from lesson to lesson and within a 

lesson: hence, calculations needed to add some random effects. 

7. In the literature, there appeared to be no standardised scale to rate misbehaviour tolerance 

and to compare the differences between teachers and lessons, however, the empirical data 

could be used to determine distributions for the time teachers did wait. 

8. The empirical data could also be used to set durations for the teacher to be disciplining, both 

individual and whole-class disciplining. 

 
All teachers were assumed to respond to student misbehaviour in the same way, but 

randomness was added to the timing of their responses.  This seemed plausible because there 
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were times when teachers appeared to delay disciplining a persistent misbehaver, for example to 

first finish off an explanation to another student. 

This led to the following mechanism for the teacher’s response to student misbehaviour: 

• The teachers ‘remember’ each students’ misbehaviour for a period (currently set at 10-

minutes). 

• This record is kept on a rolling cycle, the most recent time interval pushing out the oldest 

record (from 10 minutes ago). 

• If the amount of individual misbehaviour in the past 10 minutes crosses a threshold (which 

includes some random fluctuations), the teacher will discipline the individual. 

• If the amount of class misbehaviour in the past 10 minutes crosses a threshold (which includes 

some random fluctuations), the teacher will discipline the class. 

• Different misbehaviours have different thresholds (each with some random fluctuation) (see 

Appendix B.5); the threshold may be 0 s for a serious misdemeanour. 

• The record of a student’s misbehaviour is cleared whenever the teacher tells off that 

individual or the whole class.   

3.4.2 Modelling the students’ response to disciplining 

Following the common viewpoint that disciplining reduces misbehaviour and improves 

productivity, it was assumed that being disciplined increased the likelihood of a productive state 

being chosen and decreased that of all disengaged states (active distracting and passive 

disengagement).  To cause the students to respond to discipline in this way, their state scores are 

adjusted to reflect the following factors: 

• the distance between the teacher and the student; 

• a distance falloff function that mimics how, as distance increases, the students feel freer to 

misbehave; 

• the elapsed time since the student or the class were last disciplined; 

• a time decay function used to mimic the effect of discipline fading over time; 

• the current state of the teacher (e.g., the effect is stronger if the teacher is observing the class, 

and even stronger if the teacher is currently telling someone, or the class, off). 

 
These factors are combined (see Figure 3-7) to produce an EffectOfDiscipline factor.  The 

students’ misbehaviour state scores are reduced by this factor.  Another assumption was that all 

students respond to the teacher’s discipline to the same degree.   
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Figure 3-7  How students are affected by the teacher’s discipline 

3.5 The implementation in NetLogo 

As mentioned in section 1.5.1, the simulation model was implemented in NetLogo 

(Wilensky, 1999).  This took the form of several code modules comprising in total around 9,700 

lines of (commented) code, plus several data files.  To run the simulation code, one needs the 

NetLogo software installed, with all the required extensions.  The simulation tool developer’s 

interface is shown in Figure 3-8.  It comprises four vertical panels.  The second panel contains 

many statistics summarizing the lesson dynamically and includes the 2D representation of the 

lesson (also shown in Figure 2-5).   

A larger image of a lesson is shown in Figure 3-9, an instant in an empirical lesson replay.  

The teacher (dog icon) is helping one student, two students are working together (bottom-left), 

the TA (cat icon) is helping two students, one student is out of the class (#1001 by the door) and 

two students are chatting – with one trying to interact with the student in the top-left corner.  

The others are working alone (brown, heads down).  The agent icons move and dynamic links 

form and disappear during interactions.  These links thicken over time. 

 

Student Teacher 

state 
student-teacher 

distance 

Effect of Discipline 

told-off effect 

time-last-told-off 

location location  
 

distance effect 
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Figure 3-8  A screen capture of the simulation tool developer’s interface 12 

 

12 It is appreciated that the current user-interface needs to be significantly simplified before it can be used by others.  Further research is needed to establish what teachers and school 
management would require (Ali et al., 2013). 
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Figure 3-9  An example of the representation of a classroom lesson and participants 

The colours of the icons represent different activities/states and are explained in Table 3-4.  

For example, a student icon turns bluer the more the student disengages and the background of 

each student becomes pinker then redder as their record of disruptiveness worsens.  

A classroom floorplan is a specification of a NetLogo world.  A significant portion of the code 

is explicitly for the purpose of designing classroom lesson layouts.  This is particularly relevant 

during simulations where, for example, a different desk arrangement is being investigated.  

NetLogo worlds are built from a grid of patches, the units of the world.  In the physical classroom 

model, a patch is approximately a square of 0.6 m side.  This is based on the dimensions of the 2-

seater 0.6 m x 1.2 m desks used in the school in the case study.   

During whole-class teaching, the teacher is simulated to move pseudo-randomly from side-

to-side at the front of the class, avoiding the corners of the room and spending less time directly 

in front of the middle of the whiteboard.  The reason for this mechanism, apart from it being quite 

realistic, is that the students respond to the proximity of the teacher, which would otherwise be 

constant.   

The left-hand panel in Figure 3-8 contains the charts that were considered most useful for 

visually determining what was happening in a lesson.  (The right-hand panels contain other charts 

that were used although many were disabled to increase simulation speed.) 
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 (a) (b) 

Figure 3-10  An example of the teacher and student state trajectories through a lesson 
(a) the empirical lesson replay and (b) one simulation run. 

 

Table 3-4  The colours used to represent different student and teacher activities/states 

State# Colour Student state type  State# Colour Teacher state type 

1  Being disciplined  1  Disciplining individual 

2  Serious misbehaving  2  Unused 

3  Chatting   3  Unused 

4  Passively disengaged   4  Other, non-lesson 

5  Class being disciplined   5  Managing/disciplining class  

6  Prevented from working  6  Prevented from teaching 

7  Resting?  7  Observing 

8  Working alone   8  Working alone 

9  Working with Others   9  Passive whole-class teaching 

10  Q&A participation  10  Q&A 

11  Being praised  11  Praising student 

12  Whole-class learning   12  Whole-class teaching 

13  1-1 teacher support   13  1-1 student support 

14  Teacher support in group  14  Group support 

15  1-1 TA support  15  Interacting with TA 

16  Out of class with TA  16  Out of class 

17  None of these e.g., out  17  None of these 
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A larger image of this type of lesson tracing is shown in  Figure 3-10.  This shows the teacher 

and student traces from an empirical lesson replay next to one simulation run.  The separate thin 

strips on the left are the teacher’s state traces.  Time flows upwards and the colours indicate the 

different activity states (as per Table 3-4).  These traces were used extensively during the analyses 

of experiments (in Chapter 8). 

The simulation time interval (essentially another model parameter) was set at 3s, but 

internally every agent and statistic is updated every one second.  The reason for this was that to 

replay empirical lesson data the software must be able to process an event at any time, not just 

at the start of a simulation interval. 

3.6 Chapter summary 

This chapter provided a summary of the classroom lessons simulation model (CLSM).  It 

explained the range of factors that need to be taken into account to construct a more generic 

behavioural model.  The activity states of the three agent types, teacher, TA and students were 

described.  The central role of lesson plans in determining behaviour was explained, followed by 

an overview of how each agent type behaves.  Several examples of the behavioural rules for each 

agent type were given.  The teacher follows a simple algorithm (basically follow the lesson plan 

handling any interruptions along the way), the TA follows a few simple rules, but students follow 

more complicated logic.  The intricacies of managing agent interactions were described, with 

emphasis on how the students and the teacher interact when it comes to misbehaviour and 

discipline.  The model parameters that adjust behaviour were introduced.  The chapter ended 

with a brief description of how the simulation model was implemented in NetLogo, in particular 

the developers interface. 

Together, Chapters 2 and 3 have covered stages 1 to 3 of the ABMS development.  The 

following chapter explains topics that are relevant to the following stages 4 and 5 in the ABMS 

development: model calibration and validation. 
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4. Comparing simulated and empirical lessons 

As outlined in section 1.5.1, a crucial activity in ABMS development and use is the evaluation 

of simulation output to decide whether it is acceptably realistic.  In empirically-based ABMS 

development methodology, after a conceptual model has been transformed into a simulation 

(computational) model, the next two stages are model calibration then validation.  Both stages 

require the comparison of outputs.  One of the goals in building an empirically-based classroom 

lessons simulation model (CLSM) was to obtain a model that, given the same conditions (input 

data) that were present in an empirical lesson, generated outputs that matched (to an extent) the 

empirical lesson (Balci, 1994, 1995; Lee et al., 2015).   

This chapter explains the decisions that applied to both the calibration and validation 

stages.  Section 4.1 explains why the model needed instantiation per empirical lesson and how 

this was accomplished.  Section 4.2 describes the lesson metrics that were chosen and explains 

how they were used.  This addresses one of the research objectives, to determine suitable metrics 

and methods for comparing lessons.  Section 4.3 presents the empirical data and acceptability 

ranges.  Section 4.4 justifies the number of replications used during simulation runs. 

4.1 Model parameters and instantiation per lesson 

The CLSM, like most models, includes variables and constants for which ranges or values 

were initially unknown.  Some values were derived directly from empirical data (see Appendix B).  

Others, such as realistic state durations (e.g., for a teacher providing one-to-one assistance to a 

student), were obtained by fitting functions to the empirical data and sampling randomly (see 

Appendix B.1).  Where values for model parameters could not be determined directly from the 

empirical data, their values were inferred after running multiple simulation replications.  Table 

4-1 summarizes the model parameters, which, apart from the first, Current-State-Extension (CSE), 

have all been introduced earlier.  In the simulation animations one could often see that a 

simulated lesson was too frenetic or too stable compared to the empirical lesson:  the state 

durations were too short or long.  The CSE parameter was introduced to increase or reduce state 

durations.  The ‘class’ parameters are also termed ‘student’ parameters although they are applied 

to the class as a whole, not specific students.  More detail about the effect of the parameters on 

agent behaviour and lesson outputs is presented in Chapter 6.5 in the context of sensitivity 

analysis.  (Section 9.3.1 considers reduction of the number of parameters.) 
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Table 4-1  The model parameters and their use 

Parameter name Category Explanation 

Teachers-Support-

Offer-Level (TSOL) 
Teacher 

A weighting in [0,10] used to adjust the likelihood that the 

teacher will offer 1-to-1 support; 0=never offers, 10=always 

offers if appropriate. 

Teachers-

Misbehaviour-

Tolerance (TMT) 

Teacher 

A weighting in [0,600] used to adjust the likelihood that the 

teacher will ignore student misbehaviour; 0=completely 

intolerant (with small random fluctuations). 

TA-Support-Offer-

Level (TASOL) 
TA 

A weighting in [0,10] used to adjust the likelihood that the 

TA will offer 1-to-1 support; 0=never offers, 10=always 

offers if appropriate. 

Relative-Lesson-ES-

Weight (RLESW) 
Class 

This parameter adjusts the extent to which students comply 

with the teacher’s instructions (engage in the expected 

state, ES) relative to the aggregate of all students in all 

lessons. 

Relative-Lesson-

Disruption-Weight 

(RLDW) 

Class 

This parameter adjusts the extent of student disruptive 

behaviour relative to the aggregate of all students in all 

lessons. 

Relative-Lesson-

Other-Weight 

(RLOW) 

Class 

This parameter adjusts the extent of student passive 

disengagement behaviour relative to the aggregate of all 

students in all lessons. 

Student-Support-

Request-Weight 

(SSRW) 

Class 
A weighting in [-1,1] used to adjust the likelihood that 

students will request 1-to-1 support. 

Peer-Weight (PW) Class 

This implements a modelling assumption that students are 

influenced by what their peers are doing; this parameter 

increases the likelihood of the state that other students are 

in. 
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Parameter name Category Explanation 

Student-

Interaction-Weight 

(SIW) 

Class 

A weighting in [-2,2] used to adjust the students’ inclinations 

to propose interactions (states 3 & 9); this was considered 

useful to adjust students to be more interactive than their 

average behaviour; this value represents the magnitude of 

that effect. 

Interaction-

Response-Weight 

(IRW) 

Class 

This implements a modelling assumption that a student who 

has been approached for interaction is more likely to choose 

interaction; this value represents the increase in probability. 

Current-State-

Extension (CSE) 
Lesson 

The models use the empirically-derived average state 

duration (ASD) distributions; this parameter is a state 

duration adjustment that affects all agents; ASD is reduced 

by incidents of student disengagement. 

 
As explained in section 3.3.2, the students are driven by their historical average activity 

state probabilities (aggregated over all lessons), and aggregated teacher and TA data was used to 

model teacher and TA behaviour.  But, as also explained, students do not generally behave in any 

lesson in the same way as their average behaviour, and teachers and TAs do not generally behave 

in the manner of some ‘average’ teacher or TA.  This was the reason for introducing lesson 

parameters, to: 

• adjust the teacher agent from its representation of a stylized teacher to the specific teacher-

lesson in question; 

• adjust the TA agent from its representation of a stylized TA to the specific TA-lesson in 

question; 

• adjust the class of ‘averaged’ students to their behaviour in the specific lesson in question. 

For example, in one specific lesson, disruptive behaviour or the incident of one-to-one 

support might need turning up or down relative to the average lesson behaviour.  While this could 

have been accomplished at the individual student level, this was considered to be over-fitting.  

Instead, a lesson as a whole was adjusted with each student being adjusted in the same degree.   

There was not one set of parameter values that suited all the lessons (see Appendix C for 

an investigation into this).  Hence, although a generic classroom lesson behaviour model had been 
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developed, model calibration (parameter estimation) and validation were performed per lesson.  

Note that there was no guarantee that the best parameterization found would enable the lesson 

model to pass the validation tests.   

Time constraints meant that only seven of the twenty-one lessons available were taken 

through calibration and validation procedures: 

Lesson#1 16062207GEO Year 7 Geography 

Lesson#2 16063010SCI Year 10 Science 

Lesson#3 16070508MAT Year 8 Maths 

Lesson#4 16070510MAT Year 10 Maths 

Lesson#5 16070607MAT Year 7 Maths 

Lesson#6 16070608MAT Year 8 Maths 

Lesson#7 16070809SCI Year 9 Science 

 

Table 4-2 is a break-down of these lessons by year group and subject showing which lessons 

had a TA. 

Table 4-2  Summary of selected lessons 

Subject Year 7 Year 8 Year 9 Year 10 

Geography No TA    

Maths TA TA & No TA  TA 

Science   No TA TA 

 

There is one aspect of the empirical data collection that had particular impact on lesson 

comparisons.  As mentioned in section 1.5.2, practical restrictions meant that in many of the 

observed lessons only a selection of the students were monitored, i.e., had their behaviour 

recorded.  As a consequence, sometimes the teacher, the TA and students interacted with 

unmonitored students.  For example, suppose the teacher or TA helped several unmonitored 

students.  The events of the teacher and TA were always recorded, but that data would not be 

well correlated with the data from the monitored students: it was unmonitored students that had 

been the triggers for the behaviour of the teacher and/or TA.  Simulation runs in which the teacher 

agent happened to choose students in the appropriate monitored or unmonitored category 

would then better match an empirical lesson. 
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4.2 Metrics selected for output comparison 

The empirical data collected during the case study provided a continuous event history of 

agent states for the teacher, the TA and each student.  In principle, lessons could be compared by 

comparing these event histories, using a variety of techniques such as ‘Hamming distance’, 

‘confusion’ or ‘error’ matrices, or event history modelling (Bennett, Klimas Blanc and Bloom, 

2018; Moore and Hayward, 2019).  However, a completely plausible simulated sequence of agent 

states might not resemble the empirical lesson at all.  For example, consider a simulation where, 

at the start of a lesson section, the teacher helps one student (who was not helped in the real 

lesson and misbehaved), and, because the teacher is now in a different position in the classroom, 

nearby students also do not misbehave (which they did in the real lesson).  One ends up with a 

realistic lesson that does not match the empirical lesson for entirely plausible reasons: a simulated 

event early on triggered quite different trajectories for the agents.  For this reason, agent state 

sequence comparisons, although taken into account, were not the primary way that lesson 

outputs were compared - although a simulation model that gave a better empirical-simulation 

state sequence match would be considered superior to one that did not.   

Instead, overall lesson metrics were used to compare lessons - see Table 4-3.  Each is a key 

indicator of lesson outcomes and shows how two lessons differ in some specific way.  Also, each 

has a visual aspect that can be seen clearly in the lesson output charts.  These visual aspects 

enabled subjective judgements as to whether a simulated lesson was realistic and a sufficiently 

close match to an empirical lesson over time.  To ensure these macro-level statistics were 

credible, the behaviour rules were carefully designed to maintain internal, micro-level validity, so 

that the simulation never generates impossible scenarios.   

In addition, %Productivity (or %Prod) was often used to compare lessons (e.g., in 

experiments in Chapter 8) but not as part of the calibration and validation procedures.  Productive 

time is just total student-lesson time minus the time spent by students on unproductive 

behaviour, i.e., distracting/disruptive or other, passively disengaged activities.  Section 3.1 

explained the categorization of student activity states into Productive, Disruptive and Other. 

To compare simulated and empirical lesson metrics only monitored students’ data were 

used, but when comparing simulations or just evaluating a single simulation, all students, 

monitored or not, were taken into account. 
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Table 4-3  Lesson comparison metrics (all mean values over the number of simulation runs) 

Name Description (all are means) Participants Visual Counterpart 

%Dist 

D 

total seconds of student disruptive/distracting 
behaviour; converted to % of lesson time 

students 
amount of red &  

orange in the charts 

%Other 

O 

total seconds of student other behaviour 

(passive disengagement);  

converted to % of lesson time 

students 
amount of blue  

in the charts 

ASD student average state duration (seconds)  students 
apparent volatility of 

states (length & 
frequency of change) 

TH 
time teacher spent helping  

any student one-to-one (seconds) 
teacher 

amount of yellow  

in the charts 

TD 
time teacher spent disciplining  

an individual or the class (seconds) 
teacher 

amount of red & 
magenta in the charts 

TAH 
total time students were  

helped by the TA (seconds) 
TA 

amount of pink  

in the charts 

ESM 
%match between student simulated and 

empirical states 
students N/A 

 

Two sets of values were obtained, one for the empirical lesson (subscript E) and one for the 

simulated lesson (subscript S).  To compare outputs, the absolute difference between the means 

of the simulation values and empirical values was used (the variables are defined in Table 4-3): 

 

∆D = |DS − DE| 

∆O = |OS − OE| 

∆ASD = |ASDS − ASDE| 

∆TH = |THS − THE|  

∆TD = |TDS − TDE| 

∆TA = |TAS − TAE|  

 

To compare student simulated and empirical state traces, the mismatch between student 

simulated and empirical states was calculated, as follows: 

1. For each student calculate the percentage match between the student’s simulated and 

empirical states (ESM). 
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2. Take the average of these percentages over all students, giving a measure of the match 

between the simulated and empirical lesson (average ESM) for the class. 

3. Subtract from 100% to get a percentage mismatch (100% - average ESM). 

 
In addition, a single, overall distance metric was constructed.  It is the Euclidean distance 

from the origin (the empirical data point) of the point representing the set of 7 difference metrics, 

where each of the metrics has an equal weighting: 

 

distance = √(∆D)2  +  (∆O)2  +  (∆ASD)2  +  (∆TH)2  +  (∆TD)2  +  (∆TA)2  +  (100 − ESM)2 

 

This metric is open to criticism: 

• it is unclear what distance physically represents; 

• each factor is given the same weight; 

• the units are mixed (seconds and a percentage).   

 
These points were not addressed directly, but to provide some degree of construct validity, 

the practical utility of this distance metric was evaluated by comparing the results from several 

alternative, simpler models.  The reasoning was that if the overall distance metric value improves 

when the model improves, then one can have greater faith in the usefulness of the metric.  Five 

student behaviour models were built, each intended to be increasingly realistic, with the following 

mechanisms for generating student activity states: 

 
1. random (for the teacher also) – so generates impossible state sequences; 

2. the expected state as per the lesson plan (for the teacher, the primary state) – the ‘perfect’ 

lesson; 

3. each student selects a state at random using the empirically-derived state transition matrix 

that summarised the relative frequencies of all the state-transitions observed – so also 

generates impossible situations; 

4. each student selects a state at random using their own empirically-derived individual state 

PMFs (explained earlier in section 3.3.2) – so also generates impossible situations; 

5. as in 4 plus the students respond to the teacher (forced states) and impossible states are 

filtered out (but there are no adjustments to the probabilities to take into account the current 

situation and interactions as described section 3.3.2). 
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In models 3, 4 & 5 the final teacher and TA behaviour sub-models were used: it was the 

student behaviour sub-model that was being changed.   

As an example, Figure 4-1 shows the results for one lesson (L#6 16070608MAT), but the 

pattern was the same for all lessons.  Taking a range of twenty-seven parameter set values (so 

that the results were not specific to one parameterization), 150 replications were run for each.  

The left-hand chart shows the distance metric scores for each replication while the right-hand 

chart shows the cumulative average score.  (Models 4 and 5 had two alternatives but those details 

are not relevant here.)  The distance metric scores clearly decrease from model 1 (black) to 2 (red) 

to 3 (green) to 4/5, showing that the models were becoming better matched to the empirical data 

as the models become more complex and realistic.  This showed that the metrics responded to 

the increased realism of the model.  It also indicated that the increased complexity was 

worthwhile incorporating. 

 

 

Figure 4-1  Comparison of distance metric results for different models showing that as the 
model becomes more realistic the simulations become more like the empirical lesson 

4.3 The empirical data and acceptability ranges 

Figure 4-2 shows the empirical distributions for the first six lesson comparison metrics (i.e., 

all except ESM) and %Productivity over all the lessons.  The data showed that students were 

productive 90% of the time (modal class 90-95%), which meant that they were in one of the 

activity states prescribed by the lesson plan (as instructed by the teacher).   The data also showed 
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that for 60% to 70% of the lesson time students were in the expected state for the lesson section 

(not just productive in one of the acceptable states).   

 

 
 (a) (b) (c) (d) (e) (f) (g) 

Figure 4-2  The empirical distributions for the first six metrics and %Productivity 

 
The simulation outputs were not required or even expected to generate the exact empirical 

metric values – that would be highly suspicious and raise concerns about over-fitting.  One would 

expect there to be some variability, some randomness, in both empirical and simulated lessons.  

A range of acceptability was defined for each metric by extending the empirical range by ±25%.  

The empirical values were thus viewed as intervals: (minimum value - 25%, maximum 
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value + 25%) with the lower bound cut off at 0 because all the metrics are non-negative.  These 

acceptability ranges are shown in Table 4-4. 

Table 4-4  The acceptability range for each metric 

Name Description Participants Min Max 

%D % of lesson student disruptive behaviour students 0 20 

%O % of lesson student other behaviour students 0 21 

ASD student average state duration (seconds) students 35 375 

TH 
time teacher spent helping any student one-to-

one (seconds) 
teacher 204 2283 

TD 
time teacher spent disciplining an individual or 

the class (seconds) 
teacher 0 443 

TA 
total time students were helped by the TA 

(minutes) 
TA 0 121 

ESM 
the %match between student simulated and 

empirical states 
students n/a n/a 

 
Note that since students were in the expected state 60% to 70% of the time and in a 

productive state 90% of the time, this meant that a very simple, purely stochastic, student model 

that merely implemented these probabilities produced satisfactory %Productivity values.  

However, the other metrics were not as well matched and in addition this approach did not 

provide causal chains of interactions.   

4.4 Number of replications 

Running simulations entails running multiple replications of the same scenario.  To emulate 

some of the aleatory variability apparent in the choices and durations in lessons, the simulation 

uses a pseudo-random number generator (PRNG) to generate streams of numbers.  Each 

replication starts from a different seed.  (A fixed sequence of seeds was used to enable 

simulations to be reproduced easily.)  The results from many replications are aggregated to 

generate distributions and means for each output metric.   
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Although the goal was to ascertain whether each simulation metric mean fell within an 

associated empirical interval, it was vital to confirm that the estimate of the simulation mean was 

precise enough, i.e., close enough to the true simulation mean that would be found after infinitely 

many replications.  The procedures recommended by Robinson (2014) were followed: 

... more replications (samples) are performed until the interval becomes sufficiently 
narrow to satisfy the model user …  (p184) 

The model user must determine what constitutes a sufficiently narrow interval.  The 
number of replications is selected at the point where the interval reaches and remains 
below the desired level of deviation.  (p185) 

... it is important to obtain output data from more replications than are required in order 
to be sure that the cumulative mean line has flattened and that the confidence interval 
remains narrow. (p186) 

If there is more than one key response … the number of replications should be selected on 
the basis of the response that requires the most replications.  (p186) 

One can see from these instructions that the procedures involve some subjectivity. 

The condition for a metric’s cumulative mean to be an acceptable estimate of the simulation 

model’s true mean was defined as follows: 

The final cumulative mean has a 95% confidence interval that lies within the interval: 

(max{0, final cumulative mean – 7.5%}, final cumulative mean + 7.5%). 

As Robinson advised, because there were several metrics and each one would stabilize at 

its own rate, the number of replications chosen had to accommodate the slowest converger.  

Furthermore, this number needed to suit all lessons as these were separate instantiations of the 

CLSM and needed individual calibration and validation.   

Another important consideration was the shape of the distributions obtained after various 

numbers of replications.  Taking 1000 replications as representative of the ‘actual’ distribution, 

the number of replications was reduced to find when the shape of the resulting distribution was 

too dissimilar to the actual distribution.  The plots in Figure 4-3 are an example.  These show the 

distributions obtained for the distance metric from four different replication numbers.  These 

were from just one lesson model and parameter set but the same result was seen across all 

lessons with many different parameter sets.  One can see that the shape degrades as the number 

of replications decreases.   
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Figure 4-3  Example distributions of distance metric for 1000, 500, 200 and 80 replications 

 
This process was quantified by running independent 2-sample Kolmogorov-Smirnov tests 13 

to see if the overall distance metric was similarly distributed in the various situations.  In all cases 

tested, the 500-replication distributions were found to be similar to the 1000-replication 

distributions, whereas some 200-replication distributions were found to be significantly different. 

Putting all the evidence together, the large, conservative value of 500 was chosen for the 

number of replications. 

4.5 Chapter summary 

This chapter explained some topics that are common to both the model calibration and 

model validation stages in the ABMS development and hence useful to outline before discussing 

these stages in full.  The main topic is that, although a generic behavioural CLSM had been 

developed, this model needed instantiating for each empirical lesson.  This was the primary use 

of the lesson parameters: to tune the model to a specific lesson.  The empirical lesson event data 

had been aggregated so that each student had their ‘average’ behaviour as their profile.  The 

 

13 The Kolmogorov-Smirnov test is non-parametric so does not require a specific (e.g., normal) distribution for the 
data sets being compared.  Also, it does not require datasets of equal size.  It reports the maximum difference 
between the two cumulative distributions and an estimate of its significance. 
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lesson parameters adjusted the class’s behaviour so that it more closely matched the specific 

lesson in question.  Similarly, parameters adjusted the ‘average’ teacher and TA behaviour to the 

specific lesson.  The outputs from a simulation are the state sequences over time of each agent, 

plus summaries of these sequences over the lesson.  Several overall lesson metrics were 

identified, such as the proportion of the lesson that was disrupted or the amount of time the 

teacher spent helping individuals.  The empirical data was discussed and the metric acceptability 

ranges defined.  These ranges are one of the criteria used to decide whether simulation outputs 

are realistic.  Finally, the process for determining the number of simulation replications was 

presented. 

The following chapter explains the next stage in the ABMS development:  how the lesson 

models were calibrated (‘tuned’) to the specific lessons using the metrics described above to 

compare simulation outputs and empirical lesson data.   
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5. Model calibration procedures 

The next stage in the ABMS development was to calibrate the simulation model.  The goal 

of model calibration (also known as parameter estimation) was to find, for each lesson, a set of 

model parameter values that generated output metric values that were realistic (i.e., satisfied the 

acceptability ranges explained in section 4.3), that matched (as closely as possible) the empirical 

lesson’s values and did so stably (i.e., the model generated a smooth distribution of metric 

results).  The acceptability criteria provided one check of the realism of the simulation.  There 

may be outliers, but these should be plausible rare cases.  This required exploring the parameter 

space, hunting for the best parameter settings.  Techniques for parameter space exploration 

range from manual exploration through heuristic-guided to exhaustive search (Lee et al., 2015).  

However, because the number of parameters was large and the appropriate range and resolution 

of the parameter values was unknown, the parameter space (the number of possible model 

configurations) was enormous.  From the many search techniques that were available (Galán et 

al., 2009; Salgado and Gilbert, 2013; Buwaya and Cleophas, 2015; Lee et al., 2015) a pragmatic 

approach was adopted, using ‘categorical calibration’ (Thiele, Kurth and Grimm, 2014) to filter 

out parameter sets that failed the acceptable criteria (specified in section 4.3).  Time constraints 

and resource limitations meant that the best parameter set may not have been found, but at least 

an acceptable one was.  

 The first stage in the search of the parameter space was to conduct a quick coarse grid-

search and supplement this with finer grid-searches at manually-selected promising points.  The 

procedure was: 

 

A. Conduct a coarse grid-search of the parameter space, using 80 replications14 per parameter 

set, but immediately eliminating a parameter set that caused any metric to exceed the 

acceptability ranges; from those that passed this test, rank the results and select a top set; for 

this top set run 500 replications. 

 

B. Manually find a point (parameter set) in the parameter space that appears promising; conduct 

a fine grid-search around this point, using 80 replications per parameter set, but immediately 

eliminating a parameter set that caused any outputs to exceed the acceptability ranges; from 

 

14 After 80 replications most parameter sets in most lessons had metrics that seemed to stabilize, possibly converge, 
but at least remain tightly bounded.   
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those that passed this test, rank the results and select a ‘top set’ (see explanation below); for 

this top set run 500 replications. 

 

C. Combine the 500-replication top set results from the coarse grid-search and manual search; 

rank the parameter sets and choose a final winning parameter set. 

 
The procedure for choosing a top set of parameters involved the parameter sets being 

compared using the 7 metrics and the overall distance metric.  As explained in section 4.2, 

simulation results were evaluated by calculating the absolute difference between the empirical 

metric values and the means of the simulation metric values (6 metrics), comparing student 

simulated and empirical state traces (1 metric) and comparing the overall distance metric.  The 

procedure is described in the box below and then via an example.   

 

Procedure for choosing a top set of parameters: 

 
for each parameter set 

 run simulations (for required number of replications) aggregating the difference metric values 

 calculate the 7 difference metric means over all replications 

 assign a rank on each of the 7 difference metric means (so each parameter set has 7 rankings) 

 identify the worst ranking 

 

sort the parameter sets on the worst ranking 

select a top set of parameters based on their least worst ranking AND their overall distance metric 

 - this choice is slightly subjective as it involved weighing up the two scores (see example) 

 

The final step in the whole calibration procedure is to choose a single, winning parameter 

set.  This is accomplished using the same, slightly subjective, logic of weighing up the least worst 

ranking and the overall distance metric.   

The example in Table 5-1 is provided to help clarify the process.  Suppose four parameter 

sets were to be compared on three difference metrics and that a top set of two was required.  

Each parameter set receives a ranking for each metric.  The worst ranking for each parameter set 

is then identified.  In this example, Param Set 4 has the least worst rank so it is selected for the 

top set.  However, the next best parameter set, Param Set 2, has a better distance score (22 vs 
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33) and is only ranked 3 (the next in line), so it too is included in the top set.  Note that Param Set 

3 was discounted even though it had the same distance score as Param Set 4.  The reason is it 

that its performance was unbalanced, 1 to 4.  If this were the final stage of selecting a winning 

parameter set, Param Set 4 would be chosen. 

 

Table 5-1  Example of procedure for choosing a top set of parameters 

Param 

Set 

Difference 

Metric A 

Difference 

Metric B 

Difference 

Metric C 

Rank 

Metric A 

Rank 

Metric B 

Rank 

Metric C 

Worst 

Rank 

Distance 

Metric 

Top 

Set 

1 100 200 300 1 2 4 4 55 No 

2 200 100 250 3 1 3 3 22 Yes 

3 250 240 220 4 4 1 4 33 No 

4 150 200 180 2 2 2 2 33 Yes 

 

The reason this method was adopted was that a parameter set may have had a rank of 1, 

i.e., be the best, on one metric but perform poorly on all the other metrics (as in the case of Param 

Set 3 in the above example).  Candidates for the top parameter sets were those with a low worst 

ranking, i.e., they gave a more balanced match with the empirical lesson on all metrics.  The top 

set typically comprised 10 to 100 parameter sets, depending on how rapidly they differed on their 

worst ranking and their distance metric. 

The final selection always ended with several equally viable parameter sets, i.e., parameter 

sets that resulted in overall lesson metrics being almost identical, so that there was no one distinct 

best parameter set.  Even if one could find the absolute optimum parameter set (possibly set of 

sets) the output metrics it generates may differ so little from other parameter sets that the exact 

choice seems irrelevant.15  The fact that a model can generate almost the same summary output 

metric results using different parameter values is often a concern (although it is also confirmation 

that over-fitting16 has not taken place).  However, this equifinality of simulation results was not 

found at the level of agent state sequences.  Never was one simulation found to be identical to 

another given the same inputs (excluding pseudo-random number generator seed).  

 

15 Attempts to use cluster analyses to partition the parameter space based on metric outputs did not yield any 
significant grouping. 
16 The selection of highly specific parameter values in order to generate acceptable simulation results. 
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For some simulation models the inability to identify unique parameter values (parameter 

identifiability) is a serious issue (Evans, Heppenstall and Birkin, 2018), while for others there is a 

concern that the simulation produces acceptable results only for highly specific parameter values 

(Edmonds et al., 2019).  But Evans, Heppenstall and Birkin (2018) pointed out that if one is merely 

interested in consistent, accurate predictions one may not be worried about this, but if the model 

is being used to explain why specific results were obtained then the correctness of the causal 

explanations is important.  The concern is that if more than one set of conditions can give rise to 

an effect, then inference from an effect back to an initial cause is dubious.  However, in the 

context of lesson modelling where, for example, two parameters can increase the same output 

metric, this lack of identifiability was to be expected.  For example, raising the teacher’s 

inclination to offer one-to-one assistance and raising the students’ tendency to ask for one-to-

one assistance both have the desired effect of increasing the time spent on one-to-one assistance.  

Another example is that increasing the students’ tendency to behave as expected is similar to, 

but not the same as, reducing the students’ inclination to chat or disengage passively.  These 

mechanisms were designed based on what was observed in lessons and were intended to make 

simulations more realistic.  It is a strength of the model that it is able to substantiate alternative 

explanations for the same macro-level simulation outcomes. 

Another relevant point is that in certain situations one parameter may be less effectual than 

another.  For example, in a lesson where the students are constantly seeking help, the teacher’s 

own tendency to offer help may be almost irrelevant: any value given to the TSOL parameter 

would yield almost the same results because the students’ attributes make the teacher’s 

inclination to offer support almost superfluous. 

The simulation outputs were judged graphically and numerically as per Robinson (2014).  All 

seven lessons were subjected to the same calibration procedures and all generated very similar 

results.  As an example, using the winning parameter set found for Lesson #6, Figure 5-1 shows 

plots of the cumulative metrics, which highlight visually that the cumulative mean metric values 

tended to stabilize well over the replications.  The scale of the graph makes the teacher’s 

disciplining time appear to vary significantly, but closer inspection shows that it is fluctuating 

between 16 and 19 seconds, not of practical significance.  Plotting the overall distance metric 

described in section 4.2 (the Euclidean distance of the point representing the vector of 7 

difference metrics from the origin, the empirical data point), the overall stability of the cumulative 

metric mean over the replications can be seen graphically in Figure 5-2.  The cumulative mean 
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after 500 replications was 670 and the associated 95% CI was (645,696) which lies within the 

acceptable ±7.5% tolerance interval of [619,720].  These results show that the selected parameter 

 set satisfied the calibration criteria. 
 

 

Figure 5-1  Cumulative metrics for Lesson #6 for one parameter set over 500 replications 
showing stability of convergence or at least boundedness 

 
Figure 5-2  Cumulative overall distance metric for Lesson #6 with 95% CI (red lines) falling within 

the defined tolerance interval (green lines) 
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Figure 5-3 shows that the model generated a smooth, unimodal distribution of the overall 

distance metric over 500 replications (with bins of 50 units).   

 

Figure 5-3  Distribution of the overall distance metric 

Each of the seven selected lessons was successfully parameterized.  A summary of the 

winning parameter sets for each is shown in Appendix C.  Having calibrated the lesson models, 

the next stage was to validate the lesson models using the calibration parameter sets. 

5.1 Chapter summary 

This chapter explained the process of finding a parameter set for each lesson model.  This 

process involved two steps.  The first step was to run 80 replications and discard parameter sets 

that lead to a replication that produced unrealistic results (using the ‘categorical calibration’ 

approach), i.e., results that fall outside the acceptability ranges (explained in section 4.3).  The 

second step was to explore the remaining parameters in finer detail over more replications (500).  

A parameter set still had to generate output metric values that were realistic in all replications, 

but it must also match (as closely as possible) the empirical lesson’s values and do so stably, i.e., 

the model generated a smooth distribution of metric results.  Of the many candidate parameter 

sets, the one that was least worst on all the metrics was chosen.  Each of the selected seven lesson 

models was successfully calibrated. 

The following chapter explains the next stage in the ABMS development process: how the 

calibrated lesson models were validated. 
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6. Model validation 

Before the outputs from a simulation model can be trusted and before the simulation is 

used to run experiments, one needs to have established that the simulation outputs are good 

enough for the purposes required.  This is the next stage in the ABMS development: to validate 

the simulation model.  The lesson simulation results had been judged realistic overall, but the 

goal of model validation is to increase confidence in the simulation model and its results by 

demonstrating that it is sufficiently realistic and reliable (Balci, 1995; Robinson, 1997, 2008a; 

Siebers and Onggo, 2014).  Typically for empirically-based ABMSs this means that the simulation 

outputs are compared to empirical data to confirm there is an adequate match, and, in addition, 

the plausibility of the micro-level agent interactions is confirmed, including testing face validity.  

If the lesson model passed all these tests it would be considered a plausible simulation of that 

specific empirical lesson.  As mentioned before, a lesson model could be successfully calibrated 

but fail validation. 

But to match or be realistic are often quite subjective concepts, even though they might be 

unambiguously mathematically defined for the process – as was done in section 4.  This will 

depend on many factors, including the accuracy and precision of the empirical data.  ‘Despite its 

apparently scientific nature, modelling is a matter of judgement’ (Salgado and Gilbert, 2013, p. 

254).  While verification and validation increase confidence in a model, they do not prove absolute 

accuracy (Robinson, 1997).  Despite a lesson model passing all the tests it was given, each model 

was not tested in all possible scenarios, hence it was not absolutely validated (Balci, 1995).  

As mentioned in section 1.5.1, validating a simulation model involves validating the 

conceptual model, white-box validation (looking at the micro-level of agent interactions to 

establish internal validity) and black-box validation (looking at the outputs of the system at the 

macro- and meso-levels to establish external validity).  In all simulation modelling one needs to 

confirm the structural and behavioural validity of the model (Qudrat-Ullah, 2005, 2008; Edmonds 

et al., 2019).  There is a risk that the explanation provided by the simulation model is given in 

terms of model constructs/rules that are not actually real, perhaps based on actual mechanisms 

but too simplified, so that the outcomes, while realistic, are realistic for the wrong reasons (c.f. a 

true conclusion from false premises).  It might also be the case that the model is just one of many 

models that could generate the same outcomes.  These are concerns about the ‘structural validity’ 

of the model:  a model may generate excellent results, but it is vital that the model exhibits the 

‘right behavior for the right reasons’ (Qudrat-Ullah, 2005, 2008).   
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As Norling et al. (2018) wrote: 

With an explanatory model, if one has demonstrated that a certain set of assumptions can 
result in a set of outcomes (e.g. by exhibiting an acceptable fit to some outcome data), 
this shows that the modelled process is a possible explanation for those outcomes. Thus, 
the model generates an explanation, but only in terms of the assumptions in the setup of 
the simulation. If these assumptions are severe ones, i.e. the model is very far from the 
target phenomena, the explanation it suggests in terms of the modelled process will not 
correspond to a real explanation in terms of observed processes. The chosen assumptions 
in an explanatory model are crucial to its purpose in contrast to the case of a predictive 
model—this is an example of how the purpose of a model might greatly influence its 
construction. (Norling, Edmonds and Meyer, 2018, p. 65) 

Structural validation of the conceptual model (described in section 6.1) is the first step in 

mitigating for these concerns.  Behavioural validity of an ABMS developed to explore a theory 

and/or generate explanations can be tested using experiments.  Similar to the type of tests that 

a predictive simulation would undergo, the simulation can be given scenarios like the ones it was 

developed from and the behaviour at all levels (overall system output (macro-level), overall 

individual agent behaviour (meso-level), individual agent behaviour and agent-interactions 

(micro-level)) should be scrutinised.  For example, if a lesson without a TA had one added, the 

conceptual model anticipates certain consequences.  One could investigate whether the 

anticipated results were evident in all levels of the simulation results and whether the simulated 

interactions seemed plausible.  Part of this process involves face validity testing by experts – 

discussed in section 6.3.  Successful results in these activities would increase confidence in the 

realism of the behaviours generated by the simulation model.   

Three schoolteachers participated in conceptual model validation and simulation model 

face validity tests.  Teacher1 and Teacher2 knew the school, the classrooms, the teachers and the 

students, and had participated in the case study, collecting lesson event data (section 1.5.2).  

Teacher1 had more experience at the school than Teacher2, who was a trainee teacher and ex-

pupil.  Teacher3, a highly-experienced teacher, had no knowledge of the school or people. 

6.1 Conceptual model validation 

A simulation model is not validated merely by checking that the outputs seem realistic 

(black-box validation): the core conceptual model must be validated too.  It is important to 

confirm that the model rules adequately represent real-world behaviour.  One way to accomplish 

this is to have experts confirm the assumptions upon which the model was built and endorse the 
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proposed rules specifying agent behaviour.  This attends to the requirement for structural validity 

mentioned above.  The goal is to reduce the chances that realistic simulation outputs are 

generated by constructs/rules that are not real, perhaps being too simplistic (Edmonds et al., 

2019), or that crucial facets have not been omitted from the model (Norling, Edmonds and Meyer, 

2018).  For example, it was possible to calibrate a lesson model that omitted the rules that manage 

students asking for help (so only the teacher offering help was modelled), but such a model was 

then missing a key aspect of real classroom behaviour. 

The core conceptual model - including the overall simulation algorithm - was informally 

validated individually by the three teachers who took part in the face validity tests (described 

below).  Each teacher was shown the lists of activity states that had been identified for students, 

teachers and TAs.  The teachers all independently agreed that this list was comprehensive and 

matched their experiences of teaching (and being taught).  Each teacher was shown the 

behavioural rules in narrative form and was asked whether the rules seemed plausible and 

whether there should be other rules.  The teachers all considered that the rules did reflect the 

reasons and mechanisms for specific behaviour in lessons, for students, teachers and TAs.  They 

sometimes suggested additional rules but then acknowledged that the simplified rules they had 

been shown covered the most common situations in lessons. 

6.2 Simulation model validation procedures 

For a lesson model to be considered valid, 500 replications of the lesson were aggregated 

and the macro- and micro-level validity criteria below were applied to the outputs.  Note that the 

model calibration procedures had already ensured that: 

• all simulation output metrics fell within their acceptability ranges (specified in section 4.3); 

• the means of all the metrics (including distance) converged or stabilized within the specified 

95% confidence interval. 

 
Macro-level validity 

• Simulation metric distributions encompass the empirical metric values; 

• Simulation metrics means are within ±25% of the empirical value (although an exception was 

made for TD, the time in seconds that the teacher spent disciplining, as it was felt that, for 

example, comparing means of 17 s for simulations and 9 s for the empirical to within 25% was 

artificially precise). 
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Micro-level and macro-level validity 

• In face validity tests (discussed below), a lesson model was considered validated only if all the 

teachers considered both the simulations and the empirical lesson replay to be realistic; the 

two simulations were the replication with the worst overall distance score and one from the 

modal class of distance scores. 

6.3 Face validity testing 

The face validity tests effectively enabled some degree of both macro-level and micro-level 

checking as one could observe individual interaction sequences as well as see the overall picture.  

The basic objective of the face validity testing was to find evidence to refute the claim that the 

lesson animations were plausible.  This could be done by observing an event or interaction that 

was inconsistent or impossible or implausible.17  It was essential that the animations had no 

glitches, ensuring that there was nothing that would give away to the viewer that a lesson was 

simulated vs an empirical lesson replay. 

To establish face validity, for each selected lesson, three animations were presented (in a 

random order) on a webpage 18 (see Figure 6-1):  

• the empirical lesson replay; 

• a typical replication, one from the modal class of the overall distance metric; 

• the worst replication, the one furthest from the empirical lesson (largest overall distance 

metric). 

Three teachers participated in the face validity tests, two of whom had also assisted in data 

collection during the case study (described in section 1.5.2).  They were asked to decide whether 

an animation represented a realistic and plausible lesson, or not, and whether an animation was 

an actual lesson replay, or not.  They were told that all three animations could be simulations.  

The tests were thus a form of Turing test to see if the teachers could discriminate real lessons 

from simulations (Xiang, Kennedy and Madey, 2005).  They were also asked to explain what 

strategies they had used to make their decisions.  There were no clues as to what the ‘correct’ 

answers were, or what outcomes the author might be hoping for.  So, even if they had a motive 

(e.g., to please the author) the three had no way of compromising the tests (other than to spoil 

 

17 The animations also made it possible to detect and debug irregularities in agent behaviours visually. 
18 The website files and all the animation video clips are available at Ingram (2020b). 
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them by taking decisions randomly – and they would still have to explain their decisions).  They 

were given an initial training session to explain what was required and in which they were shown 

how to control the animation replays and how to interpret the colours and interaction links, etc. 
 

 
Figure 6-1  Example of face validity test showing the three animations to be judged 

Note that the animations are to be viewed full screen 
 

 
Figure 6-2  Screen capture of an instant in one animation face validity test 
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 Figure 6-2 shows one of the animations mid viewing.  Each of the lessons was accessed 

from a central webpage which contained some explanatory context.  They were able to slow down 

and replay the animations in order to examine interactions more closely.  The results of the face 

validity tests are listed in Table 6-1. 

Table 6-1  Responses of the teachers (in rows) to the 3 animation types (typical, worst, actual) 
for the seven selected lessons 

Le
ss

o
n

 

Te
ac

h
er

 

Typical simulation 
plausible/realistic? 

Worst simulation 
plausible/realistic? 

Actual lesson 
realistic? 

Actual lesson 
identified? 

Face 
validity 
verdict? 

#1 

1 

2 

3 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No (chose worst) 

No 

Yes 

#2 

1 

2 

3 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

#3 

1 

2 

3 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No (chose worst) 

No 

Yes 

Yes 

#4 

1 

2 

3 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

#5 

1 

2 

3 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

#6 

1 

2 

3 

No 

No 

Yes 

? 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

#7 

1 

2 

3 

Yes 

No 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No (chose worst) 

No 

 
Teacher1 identified 5 of the 7 actual lesson replays and considered all the animations (apart 

from Lesson #6) to be realistic.  Teacher1 and Teacher2 both explained that their decision-making 

was influenced by their knowledge of the students and the teacher.  They recognised the 

classroom layout and speculated where particular students sat.  In effect they were comparing 

the animations against their own mental model of that class’s real lessons with that teacher.  They 
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sometimes explained that they thought that the animations showed plausible behaviour in 

general, but that the behaviour was not plausible for that class in that lesson.  Their decision-

making about being realistic or the empirical lesson included observations such as: 

• that is just like Teacher X, disciplining the class at the start of the lesson; 

• that is just like Teacher X, talking for so long (or maybe they are showing a video?); 

• that is far too long for the students in that class to sit without disengaging or chatting. 

Teacher3, who was unfamiliar with the school and students, came to some different 

conclusions based on her experiences.  Some actual student behaviour was considered unrealistic 

(e.g., students would not sit so long without chatting), some was considered realistic even though 

it was the worst match with the empirical lesson.  

It seemed that a teacher may judge the animations to be plausible - because they show 

what could happen in general - but nevertheless reject the simulation on the grounds that it does 

not fit with their experiences of that specific class, teacher, TA and classroom. 

6.4 Validation results 

On completion of the validation procedures, four of the seven lesson models were 

considered validated: 

Lesson#1 16062207GEO Year 7 Geography 

Lesson#3 16070508MAT Year 8 Maths 

Lesson#4 16070510MAT Year 10 Maths 

Lesson#5 16070607MAT Year 7 Maths 

  
Lessons 2, 6 and 7 failed validation.  Table 6-2 shows a summary of the results of validation.  
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Table 6-2  Simulation model validity test results (with validated lesson models highlighted) 

Lesson#➔ 1 2 3 4 5 6 7 

Lesson ID 16062207GEO 16063010SCI 16070508MAT 16070510MAT 16070607MAT 16070608MAT 16070809SCI 

Proportion of students monitored 10/10 10/10 16/16 8/12 8/10 8/14 7/7 

TA present? No Yes No Yes Yes Yes No 

Distributions visually encompass 

the empirical metric values? 
Yes No Yes Yes Yes Yes No 

Mean metric values visually sufficiently close 
to empirical values, i.e., within ±25%? 

All except 

TD (7s vs 24s) 
No Yes Yes Yes (Yes) No 

Conclusion: the lesson simulation model has 
macro-level validity (i.e., closely matches 

empirical lesson outcomes)? 
Yes No Yes Yes Yes Yes No 

Face validity testing results: 

 plausible and realistic? 
Yes Yes Yes Yes Yes No No 

Is the explanation of the 

worst replication plausible? 
Yes - Yes Yes Yes - - 

Conclusion: simulation model valid? 

The lesson simulation model is producing 
plausible and realistic lessons AND these are 

sufficiently similar to the empirical lesson. 

Yes No Yes Yes Yes No No 
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Two examples of validation procedure results summaries are shown below, one for a lesson 

model that failed (Lesson #2) and one for a lesson model that passed (Lesson #5).  Although 

Lesson #2 passed the face validity tests, it failed validation because, apart from %Dist (%D) and 

TD, the metric distributions did not adequately encompass the empirical metric values (marked 

with a red x in the boxplots in Figure 6-4) and the simulation mean metric values (black x) were 

not sufficiently close to the empirical metric values. 

There are many reasons that might explain why a lesson model would fail validation.  For 

example: 

• the model may be generally adequate but it had not been sufficiently well calibrated – a better 

parameter set is needed; 

• the metric acceptability criteria were too broad, enabling a model with inappropriate 

parameter values to pass calibration tests; 

• the model rules as simplifications and abstractions of reality might just be too inaccurate; 

• the empirical student behaviour in that lesson might have been too unusual; 

• there were too few empirical data to assign reliable student state probabilities to those 

students. 

 
Lessons #2, #6 and #7 could have failed validation for any of these reasons. 
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Table 6-3  Lesson #2 validation results 

Lesson Validation: Lesson #2 LID 16063010SCI 

 
Figure 6-3  Lesson #2 Distribution of the overall distance metric 

 
Figure 6-4  Lesson #2 Distributions for the 7 metrics for lesson over 500 replications 

(with the empirical lesson value shown as x) 

Do distributions encompass the empirical metric values? Not adequately 

Are mean metric values sufficiently close to empirical metric values, 
i.e., within ±25%? 

No  
(only %Dist and TD) 

Face validity test of worst overall distance replication? Pass 

Face validity test of example replication from modal class (650,700) 
of overall distance distribution?  

Pass 

Consider lesson model validated? No 
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Table 6-4  Lesson #5 validation result 

Lesson Validation: Lesson #5 LID 16070607MAT 

 
Figure 6-5  Lesson #5 Distribution of the overall distance metric 

 
Figure 6-6  Lesson #5 Distributions for the 7 metrics for lesson over 500 replications 

(with the empirical lesson value shown as x) 

Do distributions encompass the empirical metric values? Yes (although TD skew) 

Are mean metric values sufficiently close to empirical metric values, 
i.e., within ±25%? 

Yes 

Face validity test of worst overall distance replication? Pass 

Face validity test of example replication from modal class (450,500) 
of overall distance distribution? 

Pass 

Consider lesson model validated? Yes 
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6.5 Chapter summary 

This chapter explained the model validation procedures undertaken to extend confidence 

in the lesson models.  This is necessary in order to have enough evidence that a simulation can be 

trusted for use in experiments.  This included consulting three other teachers to confirm the 

plausibility of the core conceptual model, the modelling assumptions and the behavioural rules.  

Following calibration, the lesson simulation results had been judged realistic at the overall lesson 

level (macro-level), now they were checked to see if they were close enough to the specific 

empirical lesson results to be considered a plausible simulation model of that specific empirical 

lesson.  Plausibility was investigated at the micro-level of agent interactions and the meso-level 

of overall behaviour for individual students.  The three teachers also took part in ‘face validity’ 

testing, visually inspecting the simulation and empirical lesson animations and results, looking for 

anything that was inconsistent or impossible or implausible.  Note that a lesson model could be 

successfully calibrated but fail validation: in fact, only four of the seven calibrated lessons were 

judged to be sufficiently like their empirical lessons that they could be used in the research 

experiments.  But just because a lesson model passed the validation tests does not mean that the 

model is correct. 

The following chapter explains the next stage in ABMS development for the four validated 

lesson models:  sensitivity analysis - the analysis of the models’ responses to changes in parameter 

values and student base state probabilities (e.g., inclination to chat) to check that the model does 

not exhibit any undesirable behaviour. 
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7. Sensitivity analyses 

As described in section 1.5.1, sensitivity analyses are conducted as part of the ABMS 

development methodology.  Some basic sensitivity analyses (Robinson, 2013) were conducted to 

assess the impact on simulation outputs of changing parameter values and student base state 

probabilities (e.g., inclination to chat).  The latter would also mimic the effect of errors in the 

empirical data.  In addition to describing the results of these sensitivity analyses, the relative 

importance of the parameters is discussed.  Figure 7-1 summarizes the 11 parameters that can be 

adjusted and the 6 output metrics they affect. 

 

Figure 7-1  The simulation model as a black box with output metric values resulting from lesson 
parameter values 

Table 7-1  The student state choices affected by each parameter 

Parameter Abbrev. Student State Choices 

Teachers-Support-Offer-Level TSOL 13 

Teachers-Misbehaviour-Tolerance TMT 2, 3, 4, 7 

Relative-Lesson-ES-Weight RLESW 
current expected state 

(either 8, 9, 12 or 14) 

Relative-Lesson-Disruption-Weight RLDW 2, 3 

Relative-Lesson-Other-Weight RLOW 4, 7 

Student-Support-Request-Weight SSRW 13 

Student-Interaction-Weight SIW 3, 9 

Interaction-Response-Weight IRW 3 

Peer-Weight PW all except 1, 5, 6, 11, 16, 17 

TA-Support-Offer-Level TASOL 15 



 

 
97 

 

 
Table 7-1 summarizes which parameters affect which student state choices.  Current-State-

Extension affects all state durations but not choices, whereas Peer-Weight affects all student state 

choices (except those that are ‘forced’).   

The following section summarizes the sensitivity analyses on these parameters. 

7.1 Parameter sensitivity 

Full factorial investigation was infeasible due to the number of parameters and output 

metrics, so ‘one-factor-at-a-time’ (OAT) analyses (Thiele, Kurth and Grimm, 2014) were 

conducted, followed by bivariate analyses during research Experiment 1 (section 8.1).  It was 

recognized that this would limit the ability to investigate interaction effects between parameters 

and that this would limit conclusions (Lorscheid, Heine and Meyer, 2012). 

Investigating the effect of each of the 11 parameters on each of the 6 output metrics for all 

four validated lessons resulted in 264 data series (with each datapoint being the mean of 80 

replications).  The charts in Figure 7-2 show example results from Lesson #1.  The results are 

summarized in Table 7-2.  Overall, the output metrics all changed smoothly as parameter values 

were incremented by small amounts – with the exception of TD which often showed non-linear 

fluctuations.  Some parameters had little or no impact at all, e.g., PW.  Others (intentionally) had 

a very specific effect, e.g., TASOL affected TAH only.  The impact of parameter values on ASD is 

relatively simple to understand: those parameters that increased the entropy in behaviour (e.g., 

chatting) reduced ASD, whereas those parameters that increased the choice of the expected state 

(e.g., RLESW) increased ASD.   

 

 
 (a) (b) (c) 

Figure 7-2  Example parameter-metric relationships from Lesson #1 
(a) the effect of IRW on four metrics; the effect of (b) RLDW on ASD; 

(c) the effect of RLESW on ASD and TD 
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Table 7-2  Consequences of stepwise increments in parameter values 

Parameter Consequences of stepwise increments in parameter values 

CSE 
little or no effect on most metrics except ASD; smooth increase in TH; TD 
showed fluctuations (especially Lesson #3) 

TSOL 
affected all metrics smoothly except in Lesson #1 ASD had one fluctuation and 
TD showed fluctuations 

TMT affected all metrics smoothly 

RLESW affected all metrics smoothly; little or no effect on TAH 

RLDW affected all metrics smoothly; little or no effect on TH 

RLOW affected all metrics smoothly except in Lesson #1 TD showed fluctuations 

SSRW 
little or no effect on most metrics except TH smooth increase; in Lesson #3 TD 
showed fluctuations 

SIW 
little or no effect on most metrics except smooth effect on ASD, TAH and 
%Other; TD showed some fluctuations 

IRW 
little or no effect on all metrics except smooth effect on ASD and TD showed 
some fluctuations (especially Lesson #3) 

PW 
little or no effect on all metrics except smooth effect on ASD; TD showed some 
fluctuations 

TASOL 
little or no effect on all metrics except smooth effect on TAH and ASD; TD 
showed some fluctuations 

 
The fluctuations in the TD metric were expected and desired consequences of the nature of 

the rules that control the amount of teacher disciplining.  Many have thresholds that must be 

crossed before the teacher disciplines.  But these thresholds are not fixed - they have a random 

component.  The purpose of these random fluctuations was to make the teacher agent more 

realistic, e.g., waiting different amounts of time before intervening or needing different numbers 

of students to be involved (as discussed in section 3.4.1).  But the use of one PRNG seed will cause 

a different sequence of pseudo-random numbers, and one sequence might trigger a chain of 

agent interactions whereas another sequence might not: it will depend on whether a variable 

threshold has been crossed.  The effect is that a very small change early in a lesson can 

significantly alter the remainder of the lesson.   

In conclusion, the lesson models seemed appropriately well-behaved in their response to 

parameter value changes. 
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7.2 Student state attribute value sensitivity 

To investigate the consequences of adjusting students’ base state attribute values (their 

empirical state probabilities), a (relatively) chatty student was chosen in each of the four validated 

lessons.  Their base state 3 (chatting) probability was scaled by multiplying by a factor ranging 

from 0 to 3 (so 1 corresponds to their empirical probability).  Note that even when that probability 

is adjusted to 0, some chatting happens in response to a chat request from other students.  In all 

the charts in this subsection, the four plots presented are for four different students: (a) Lesson 

#1 student 710 (the chattiest of the four), (b) Lesson #3 student 802, (c) Lesson #4 student 1008 

and (d) Lesson #5 student 702 (the least chatty of the four).  Each coloured boxplot shows the 

distribution obtained from 80 replications, for each scaling factor (0, 0.2, 0.4 ... 2.5, 3). 

The first step in this sensitivity analysis procedure was to confirm that turning up the state 

3 chat probabilities has the desired effect of increasing a student’s chatting time.  This is shown 

for all four students in Figure 7-3 by the boxplots shifting upwards.  The charts also show that the 

changes are smooth.  The slight fluctuations are due primarily to the teacher’s response, whether 

more disciplining results from the increased disruption or not. 

 
 (a) (b) (c) (d) 

Figure 7-3  The increase in the four students’ state 3 chatting time as their empirical state 3 
probability was increased 

 
The effects of changes to each student’s chattiness on the overall lesson are shown in Figure 

7-4 and Figure 7-5.  The vertical axis in Figure 7-4 is %Disruption (%D) and in Figure 7-5 it is 

%Productivity.  From the (a) plots one can see that this rather chatty student has affected the 

The time (s) the selected students spent in state 3 (chatting) for different scale factors 

Ti
m

e
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s)
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whole class in terms of %Disruption and %Productivity by 1 or 2 %.  The effect of less chatty 

students (b, c and d) is much less and appears mixed. 

 
 (a) (b) (c) (d) 

Figure 7-4  The changes in the overall %Disruption associated with increasing state 3 (chatting) 
scale factors 

 

 
 (a) (b) (c) (d) 

Figure 7-5  The changes in the overall %Productivity associated with increasing state 3 (chatting) 
scale factors 

 

The objective of the analysis was to check that the model behaved plausibly to the changes 

in state 3 base probabilities.  It is not sensible to compare the actual base state 3 probabilities of 

the four students at the start of the four different lessons as there were several other factors at 

work that would influence the simulation results, such as the position of the student in the 

Overall %Disruption associated with the different state 3: chatting scale factors 

Overall %Productivity associated with the different state 3: chatting scale factors 
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classroom and the proximity of other students and their chattiness and inclination to work 

productively.  From these results, the conclusion is that the lesson simulations seem to respond 

reasonably to changes in student state 3 base state probability attributes, as a relevant test-case. 

7.3 Relative parameter importance 

The lesson models contain 11 parameters.  This section describes the analyses conducted 

to investigate the relative importance of the parameters.  ‘Importance’ was evaluated from two 

perspectives: 

1. What parameters were the most important predictors of whether a parameter set would pass 

all the metric acceptability checks (i.e., not be rejected) – part of the model calibration 

process; 

2. What parameters were the most important predictors of whether a parameter set would 

cause a good match with the empirical lesson – part of the model validation process. 

 
As part of the model calibration procedures, for each lesson a coarse grid-search of the 

parameter space had been conducted.  Each search looked at 177,147 points (parameter sets) 

and ran 80 replications for each point.  This provided the data for the importance analyses, which 

was carried out using the well-known SPSS software package from IBM. 

For the first analysis of importance, for each parameter set, a count was made of the 

number of replications where all output metrics were within the acceptability ranges.  The count 

ranges from 0 (no replication stayed within all the acceptability ranges) to 80 (every replication 

stayed within the acceptability ranges).  If a parameter set had all 80 replications acceptable it 

was considered viable, otherwise it was rejected. 

For the second analysis of importance, linear modelling was used to calculate normalized 

predictor importance scores in each of the four validated lessons.  In SPSS, the leave-one-out 

method was used.  In this method one predictor at a time is removed from the final full model 

and the result is ranked on the residual sum of squares.  The value obtained is the normalized, 

relative importance of each parameter.  This method enabled interactions and correlations to be 

taken into consideration. 

Figure 7-6 shows an example of the results, for Lesson #1 (full details for all calibrated 

lessons are presented in Appendix D).  The upper plot shows the parameters most influential in 

the rejection stage: in this case TSOL was the most important predictor (3x more important than 
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RLESW, for example); the lower plot shows the most influential parameters in terms of finding 

values that match the empirical lesson values: in this case RLOW is the most important parameter 

(more than 2x the importance of RLESW, for example).   

 

Predictor Importance 

 

 

Figure 7-6  Lesson #1 Predictor Importance (upper) for parameter rejection (lower) for closest 
match to empirical lesson 

The overall results of the sensitivity analyses are summarized in Table 7-3, which lists, for 

each lesson, the topmost influential parameters (in order) for both measures of importance.  The 

most important predictor, relatively (across all lessons), for the first stage of calibration was TSOL, 

followed by RLESW and RLOW.  For predicting the match with the empirical lesson, the most 

important predictors were RLOW and RLESW, followed by TMT – with TSOL being found 

irrelevant.  Overall, informally combining the two measures of importance, RLESW and RLOW 

appeared to be the most influential parameters.   

Parameter set rejection 

Match with empirical lesson 
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Table 7-3  Relative parameter importance and the nature of the parameter space 

Lesson# Lesson ID 
TA 

present? 
Calibration: most 

influential parameters 
Validation: most 

influential parameters 

1 16062207GEO N TSOL, RLESW RLOW, RLESW, TMT 

2 16063010SCI Y SIW, TSOL, RLDW, RLESW RLOW, RLESW 

3 16070508MAT N RLDW, RLOW, SIR, TSOL TMT, RLESW, RLOW 

4 16070510MAT (N) TSOL (RLOW) RLOW, RLESW, TMT 

5 16070607MAT Y TSOL, SSRW (RLOW) RLOW 

6 16070608MAT Y TSOL, SSRW (RLOW) RLOW 

7 16070809SCI N RLESW, SIW, TSOL, RLOW RLESW, RLOW, SIW, TMT 

 
These results are consequences of the rules, formulae and constants built into the CLSM, 

and also the empirical lesson data collected during the case study.  The important question is 

whether these results have an interpretation for real lessons.  RLESW adjusts the importance of 

the state expected for the students and has a natural interpretation as a magnifier of student 

compliance to the teacher’s instructions.  RLOW adjusts student passive disengagement.  Passive 

disengagement could be a measure of the extent to which students find the lesson materials and 

activities engaging (whereas active disengagement – chatting – could be more a measure of 

socialness) and could be affected by how well the materials and activities suit the students’ 

academic levels, interests, etc.  Compliance and ease of disengagement could be pertinent latent 

constructs for student attributes and these parameters are effectively mediating for them.  

7.4 Chapter summary 

As part of the ABMS development methodology, some basic sensitivity analyses were 

conducted.  This chapter explained the procedures involved and the results.  ‘One-factor-at-a-

time’ (OAT) analyses were conducted to explore how changes in the 11 model parameters  

affected the 6 simulation output metrics.  The consequences of changes to the student base state 

probabilities for inclination to chat (as a relevant test-case) were also examined.  The conclusions 

were that the lesson simulation models seem to respond reasonably to both types of changes.   

Having established that the four validated lesson models (as well as the other three lesson 

models) were appropriately well-behaved, the following chapter explains how the research 

questions (described in section 1.2) were investigated and answered using these lesson models. 
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8. Investigation of the four research questions 

This part of the thesis describes the experiments conducted to answer the research 

questions listed in section 1.2.  Each experiment was also a contribution to answering the primary 

research question: 

 

How and to what extent can an agent-based model adequately represent the 

behaviours of, and interactions between, students, teacher and teaching assistant in 

classroom lessons at a UK secondary school? 

 

The following quote explains the justification for conducting experiments with a validated 

simulation model: 

If we design the micro level of an ABM making the best use of available data that we can 
(calibration) and that ABM proves capable of producing simulated aggregate data which 
resembles real aggregate data (validation), then we have reason to believe that our ABM 
is not arbitrary ... and doesn’t simply match the real aggregate data ... but that it might 
actually explain observed patterns because of the similarity between the real and 
simulated social processes in key respects. 

(Chattoe-Brown, 2014, p. 14) 

 
Each experiment takes each of the validated lesson models and investigates the 

consequences of a change to the initial conditions, for example a change in the teacher’s 

tendencies or a change in the student seating arrangements.  For each experiment, the aim was 

to explore the theoretical consequences of the model design and the modelling assumptions, to 

understand the mechanisms of interactions, and to assess whether the results and explanations 

were plausible and realistic.  As stated in section 1.2, if the results and explanations were 

considered satisfactory, then this would show the extent to which the model could be useful and 

would also indicate that the model embodies plausible theories of classroom behaviours, which 

could then be investigated further.  

The ABMS had been validated for several lessons and passed sensitivity checks.  However, 

validation (and calibration) had involved comparing statistics for monitored students only.  It was 

now assumed that if the monitored students were adequately modelled then the unmonitored 

students would also be adequately modelled.   

The framework used for the investigation of each research question was: 

1. Consider what the empirical data indicated and what factors might influence results. 

2. Explain how the scenario was modelled and controlled. 
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3. Confirm that the model responded sensibly to changes in the relevant lesson parameters or 

variables. 

4. Take each of the four validated lesson models and run multiple replications of the research 

scenario. 

5. Combine the data for all the validated lessons and interpret the results. 

 
In many cases results were summarised in boxplots and compared visually, comparing 

means and distribution overlap. 

8.1 Experiment 1: The influence of teacher support and discipline on student 
behaviour 

This experiment addressed research question 1: 

 

Does the simulation model provide realistic explanations of the effects on lesson behaviours and 

lesson outcomes of alterations to the teacher’s inclination to offer one-to-one support and to 

take disciplinary action? 

 
Teachers try to increase student learning/productivity/time-on-task by helping individuals 

and by managing behaviour.  Hence teachers will often move around a classroom offering support 

to individuals, pairs or small groups.  In terms of lesson metrics, helping and being helped are 

productive states.  Teachers try to keep students on-task by maintaining a structured and 

disciplined environment, but misbehaviour is often troublesome.  As teachers will relate, 

sometimes a mild form of discipline early on (e.g., a reminder of the importance of an activity) is 

all that is needed for everyone to be focused and productive.  Sometimes though, just a few 

seconds of disciplining can create a negative atmosphere in a lesson, causing students to ‘work to 

rule’, minimizing interactions, spoiling learning and making it hard work for the teacher.  It should 

be remembered that the opposite of students being productive is their being disengaged, either 

passively or actively distracting others.  Consider the overall lesson metric %Disruption.  Suppose 

in a small class of 12 students one of them does something highly disruptive and receives a serious 

(and extended) telling off for 10 s, which affects the rest of the 1-hour lesson.  These 10 s are 

considered disruption.  As a percentage of student-lesson time this %Disruption is 10/3600x12 ≈ 

0.023%.  So even a very small percentage of misbehaviour and disciplining can lead to an 

unpleasant and less productive lesson.   
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This research question was answered by investigating whether: 

• class productivity increases or decreases as the amount of help from the teacher increases; 

• there is a relationship between class productivity and teacher’s help, and, if so, what the 

mechanism is; 

• class productivity is affected by the teacher’s discipline regime; 

• individual student behaviour alters when the teacher behaves differently, even if overall 

lesson statistics do not alter significantly. 

8.1.1 Analyses of the empirical data 

From the empirical data there appeared to be a negative relationship between the amount 

of individual help and overall lesson productive behaviour (Figure 8-1a).  The more time the 

teacher spent helping individuals the less the class was productive.  But this was a comparison of 

entire lessons so included a lot of whole-class teaching time, when students would not be given 

individual assistance.  When only the lesson time where the students could be helped was 

considered, the relationship appeared weak (Figure 8-1b).  This time is labelled independent 

because the students are working alone or in pairs.  It means that the expected state for students 

is not state 12: listening to the teacher whole class teaching. 

 
 (a) (b) 

Figure 8-1  The relationship between the empirical amount of individual help and %Productive 
behaviour 

(a) whole lesson  (b) when students were working alone or with others 
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To assess the significance of the relationship, regression analyses were performed (in MS 

Excel).  For the data in Figure 8-1a, r2 = 0.30 and the significance was p < .05.  This meant that the 

amount of time the teacher spent helping appeared to explain 30% of the variance in the 

%Productivity, in lessons overall.  For the data in Figure 8-1b, r2 = 0.10 and the results were not 

significant (p = .17).  The implication was that the amount of time the teacher spends helping 

individuals did not appear to be related to a class’s amount of productive behaviour during the 

independent working periods.  This prompted the following questions:  If there was no effect, or 

even a negative effect, on productivity, why would teachers offer one-to-one assistance?  Were 

other variables involved? 

Further analyses of the empirical data yielded no significant relationships, in particular there 

seemed to be no significant relationship between %Productive behaviour and teacher discipline 

time – see Figure 8-2.  For plot (a) r2 = 0.01 and p = .77, and for (b) r2 = 0.02 and p = .53. 

 
 (a) (b) 

Figure 8-2  The relationship between the empirical amount of disciplining and %Productive 
behaviour  

(a) whole lesson  (b) when students were working alone or with others. 

8.1.2 Analyses of simulation results 

The simulation was used to investigate the impact on productive behaviour of increasing 

and decreasing the teacher’s inclination to offer individual help and tolerance of misbehaviour.  

Below is a summary of the model aspects most pertinent to this investigation: 

• The model assumes that the teacher moves to the student – it does not model the situation 

where a teacher calls students to the teacher’s desk for discussions.   
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• For both the teacher and the students the choice to enter state 13 (being helped by the 

teacher) is a stochastic one, involving historical probabilities and the current situation, as well 

as the use of pseudo-random numbers.   

• The teacher parameter Teachers-Support-Offer-Level (TSOL), with values from 0 to 10, can be 

adjusted to either increase or decrease the likelihood that the teacher will offer help.  TSOL/10 

is used as a threshold against which a pseudo-random number is tested.  TSOL=10 results in 

the teacher always offering help if that is possible and appropriate.  TSOL=0 results in the 

teacher never offering help. 

• A student parameter, Student-Support-Request-Weight (SSRW), can be adjusted to either 

increase or decrease the likelihood that students will ask for help.  SSRW/10 is added to the score 

for state 13.  

• During the case study it was observed that, when students see the teacher offering help to 

others, they appeared more inclined to ask for help themselves.  During focus group 

discussions this topic came up and students explained that they might hold back a little until 

it was clear that the teacher was available for giving assistance and that they would not look 

stupid asking the teacher.  To mimic this relationship, that students will more likely approach 

the teacher for help when the teacher is more likely to be giving help, TSOL/10 is added to a 

student’s score for state 13. 

• The teacher parameter Teachers-Misbehaviour-Tolerance (TMT) can be adjusted to either 

increase or decrease the teacher’s tolerance of misbehaviour – a mixture of the severity and 

amount of student misbehaviour tolerated and the tolerated duration of the misbehaviour 

before intervening.  This is important for modelling realistic variations in teachers’ approaches 

to disciplining.  TMT=0 means that the teacher is completely intolerant and will intervene 

immediately for the slightest misbehaviour – with some random fluctuations introduced by 

the model. 

 
Note also that the model does not allow the teacher to incessantly help students.  The 

current model constants have the teacher waiting at least 4 minutes (with a random addition of 

up to 2 minutes) before offering the same student further help.  There is also a random delay of 

a couple of minutes at the start of an independent working lesson section before the teacher  

offers help. 
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Each of the validated lessons underwent the following investigation.  Each validated lesson 

model had a set of selected parameter values resulting from validation.  For the three relevant 

parameters (TSOL, TMT and SSRW) a set of alternative values was selected, on either side of the 

validated values.  For example, for Lesson #1, the parameter values investigated were (with the 

validated value highlighted): 

TSOL [0 0.1 0.3 0.5 0.55 0.6 0.65 0.7 1 2 3 6 8] 

TMT [5 10 20 30 40 45 50 55 60 70 80 90] 

SSRW [-0.4 -0.3 -0.2 -0.1 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.1 0.2 0.3 0.4] 

The other parameters were fixed at their validated values.  350 replications were run and 

aggregated for each of the several thousand combinations of parameter values.  Means and 

standard deviations were calculated to compare results. 

8.1.2.1 Confirmation of effect of parameter value changes 

The first step was to confirm that each lesson simulation model responded appropriately to 

changes in the TSOL, TMT and SSRW parameters, namely: 

• when TSOL or SSRW increase, TH (the amount of time the teacher spent helping students 

(state 13)) increased; 

• when TMT increased, TD (the time the teacher spent disciplining) decreased. 

 
The results for each of the four lessons are shown in the rows of Figure 8-3.  In column (a) 

one can see that increasing TSOL increased mean TH.  The plots also show that TH saturated: the 

teacher could not help for longer than the time available.  When the teacher was helping 

maximally, turning up TSOL had little effect - the model introduces random fluctuations that might 

cause a few second’s rest.  The ±1 SD error bars show that variance decreases as TH saturates.  In 

column (b) one can see that as TMT increased mean TD decreased.  Similar to (a), the effect levels 

out at zero as eventually increasing the value causes no further reduction: the teacher does not 

discipline.  In column (c) one can see that increasing SSRW increased TH, but that this saturated.  

With a decreasing inclination of the students to ask for help, TH decreased, but also levelled out. 

These results established that the parameters TSOL and SSRW influence TH appropriately 

and that TMT affects TD appropriately. 
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 (a) (b) (c) 

Figure 8-3  The effect of adjusting the parameters in the validated lessons 
(a) TSOL (b) TMT (c) SSRW 

 

8.1.2.2 The relationship between %Productivity and the parameters TSOL, TMT and 
SSRW 

The next step was to observe the effect of the parameters on the student productivity, 

disruption and other disengagement metrics.  The set of graphs in Figure 8-4 show that in all four 

lessons, increasing TSOL reduced %Productivity (whether measured over a whole lesson or just 

during independent working), until it levelled out.  The set of graphs in Figure 8-5 show that in all 

four lessons, increasing TMT (meaning reducing response to misbehaviour) reduced 

%Productivity, until it levelled out.  Both of these results were expected for the following reasons.  

Firstly, the model rules were explicitly designed so that students are more likely to disengage 

(actively and passively) when the teacher is helping another student – and this help increases as 

TSOL increases.  The model rules were also explicitly designed so that the more tolerant the 
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teacher is of disengagement (active and passive), the more likely students are to disengage.  

Hence %Productivity declines in both cases. 

 

 

 

 

 
 (a) (b) 

Figure 8-4  The relationship between %Productivity and TSOL for all four lessons 
(a) over the whole lesson (b) during student independent working time. 
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 (a) (b) 

Figure 8-5  The relationship between %Productivity and TMT for all four lessons 
(a) over the whole lesson (b) during student independent working time. 

 
The set of charts in Figure 8-6  show that in all four lessons, increasing SSRW can cause some 

reduction in %Productivity, but that the effect was relatively minor.  Note though that this was a 

consequence of the range of parameter values investigated:  SSRW values of greater magnitude 

do have a strong impact. 
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In all cases, the whole lesson characteristics seem to follow the pattern of the independent 

work sections. 

 

 

 

 

 
 (a) (b) 

Figure 8-6  The relationship between %Productivity and SSRW for all four lessons 
(a) over the whole lesson (b) during student independent working time. 
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The set of graphs in Figure 8-7 show %Productivity as a function of TMT for the selected set 

of TSOL values.  In all four lessons, %Productivity (both whole lesson and independent working 

time) decreased or flattened out as both TSOL and TMT were increased, that is as the teacher 

helped more and was made more tolerant of misbehaviour.  In all the plots, moving to the right 

along the x-axis represents increasing TMT, i.e., being more tolerant of misbehaviour, and moving 

from one TSOL line down to another corresponds to increasing TSOL, i.e., increasing the amount 

of individual help.   The wider dispersion and lower productivity in Lesson #3 simulations suggests 

that, when the teacher gave more individual help, this class increased misbehaviour at a greater 

rate other classes.  (Although not shown here, similar plots were produced for %Productivity as a 

function of TSOL for different TMT values.  They also showed downward curves, one below the 

other.) 

One could interpret the graphs in Figure 8-4 to Figure 8-7 in two ways.  They suggest that if 

the teacher wants to increase the time spent providing individual attention (TSOL) but maintain 

the same level of %Productivity (specifically time on-task), the teacher needs to reduce their 

tolerance of misbehaviour (i.e., intervene more quickly to smaller incidents).  Alternatively, to 

maintain the same level of productivity without extra disciplining, the teacher needs to be seen 

to be observing the class more, so giving less individual support.  The fact is, in UK schools during 

periods of independent or paired or group work, teachers do often provide individual support – 

because they believe that this benefits the learning of the individual – and they knowingly take 

the risk that this may trigger some chatting or passive disengagement behind their backs. 
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Figure 8-7  The relationship between %Productivity and TMT for different TSOL levels 
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8.1.2.3 Meso-level analyses of the relationship between %Productivity and TSOL and 
TMT 

The analyses so far have shown that the parameters influence the output metrics in 

consistent ways and that the model appears to be generating plausible overall results.  The 

understanding of the model so far is that: 

• increasing the TSOL parameter value (the teacher’s inclination to offer individual assistance) 

increases the TH metric and reduces the %Productivity metric; 

• increasing the TMT parameter value (the teacher’s tolerance of misbehaviour) decreases the 

TD metric and decreases the %Productivity metric. 

However, it is not clear how the TSOL and TMT parameters affect %Productivity.  

%Productivity is determined by the amount of time students spend in productive activity states.  

%Disruption and %Other metrics are defined similarly.  The amount of time involved depends on 

many other factors and relationships besides the parameter values.   

The purpose of this subsection is to show how the agent-based simulation can provide 

plausible sequences of agent interactions that lead to the overall results or explain the variations 

in overall results.  Figure 3-6 shows the main factors involved in modelling these interactions, 

specifically the students’ and the teacher’s choice of their next states.  The expectation was that 

if one increased the likelihood that the teacher offered support (TSOL), then overall student 

productivity would increase – that is why teachers offer help.  It was also expected that if the 

teacher was more tolerant of misbehaviour (increased TMT) then productivity would decrease.  

The overall metric results supported the latter expectation but not the former.   

One factor behind this could be that the metrics are means of distributions.  In many of the 

replications for a fixed value of TSOL the %Productivity values were well above or below the mean.  

The same happened with TMT.  There were obviously other factors involved.  To investigate what 

lesson dynamics resulted in %Productivity being significantly higher or lower than the mean, the 

discussion focuses on the hypothesised mechanism shown in Figure 8-8.  This shows one possible 

explanation: student behaviour in response to the teacher helping others is moderated by the 

teacher’s TMT but the triggering of disciplining is partly stochastic.  If, due to the stochasticity, 

the teacher does not intervene then overall productivity drops; if the teacher intervenes, 

productivity increases. 
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Figure 8-8  Alternative consequences of increasing TSOL depending on TMT 

Using Lesson #3 as an example, consider the three replications that gave the lowest overall 

lesson %Productivity, the mean %Productivity (84.1%) and the highest %Productivity.  Figure 8-9 

shows the state trajectories for these replications (with the empirical lesson for comparison).  In 

each panel, time flows up and the teacher trace is the thin plot on the left-hand side.  One of the 

clearest differences is the time in the lesson when the teacher disciplined the whole class 

(indicated by the magenta line across the whole trace, highlighted by the black arrows).  In the 

empirical lesson this did not happen.  In the least productive replication this happened at the very 

end of the independent working period (the brown section of the traces).  Prior to that the teacher 

had been providing extensive individual support and the students had misbehaved extensively 

(indicated by the orange and red).  In the average replication, the whole-class disciplining 

happened less than halfway through the independent working section.  The result was that the 

remainder of that lesson section was more on-task.  In the most productive lesson, the teacher 

intervenes much earlier, after finishing helping one student and because several students had 

been misbehaving.  One student had even been out of their seat and distracting others – red 

block.  It is also true that the teacher did much less individual support overall. 
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 (a) (b) (c) (d) 

Figure 8-9  Examples of student lesson trajectories - with black arrows indicating when the 
teacher disciplined the class   

(a) Empirical (b) Lowest %Productivity (c) Average %Productivity (d) Highest %Productivity 
 
The simulation results are naturally a consequence of the model rules plus the built-in 

stochasticity.  There are rules which alter a factor that adjusts scores for students’ misbehaviour 

states according to the state of the teacher.  (This was explained in section 3.4.2 with further 

details provided in Appendix A.3.4.)  When the teacher is possibly observing the class (especially 

when actively teaching) the misbehaviour reduction factor is larger and the students are less likely 

to choose to misbehave.  When the teacher is helping a student, the teacher is considered to be 

less likely to detect or react to misbehaviour and the students respond by only slightly reducing 

their misbehaviour score.  And, after being disciplined, students are much less inclined to 

misbehave. 

Table 8-1 shows the metrics for the Independent Working section of the lessons shown in 

Figure 8-9.   The data includes the total time (in seconds) that all students spent in each of the 

student states.  The colour-coding shows which states are considered Productive, 

Disruptive/Disciplinary or Other (other non-productive activities).  Note that in the least 

productive lesson the teacher did the most disciplining (30 s compared to 9 s) and students spent 
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the most time in state 1 (being disciplined individually) and state 5 (being disciplined as a class): 

12 s and 288 s versus 3 s and 96 s, respectively.  This shows that disciplining by itself may not be 

very effective: the timing of the disciplining seems to be important too.  In the most productive 

replication, the teacher addressed misbehaviour earlier, disciplining the class before 

misbehaviour got out of hand – see arrow in Figure 8-9(d).  But this was triggered by the amount 

of serious disruption (36 s state 2, the red block) and chatting (state 3, the orange blocks).  Note 

also that the amount of time the teacher spent helping (Teacher Help and student state 13) in the 

most productive lesson was half that of the least productive lesson.  This is discussed in the next 

section.  

Table 8-1  Data for the Independent Working section of the empirical lesson and the three 
replications (with student state times in seconds) 

Metric Empirical 
Lowest  

%Productivity 
Average  

%Productivity 
Highest  

%Productivity 

%Productivity 84.0 76.0 84.1 91.5 

%Disruption 7.3 11.3 6.5 4.2 

%Other 8.7 12.7 9.4 4.4 

Teacher Help (mins.) 18 21 19 10 

Teacher Discipline (s) 36 30 9 9 

Student state 1:  
individual disciplining 

n/a 12 3 3 

Student state 2:  
very disruptive 

n/a 84 0 36 

Student state 3:  
chatting 

n/a 4266 2253 1419 

Student state 4:  
intentionally unproductive 

n/a 2514 2298 1095 

Student state 5:  
whole-class disciplining 

n/a 288 96 96 

Student state 7:  
not sure if productive 

n/a 1611 759 252 

Student state 8: 
working alone  

n/a 26028 29217 31908 

Student state 9:  
working with others 

n/a 267 72 660 

Student state 13:  
being helped by teacher 

n/a 1251 1182 600 

Student state 17:  
out of room 

n/a 513 417 411 
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8.1.3 Discussion of results and conclusions to research question 1 

To interpret these results, it is important to understand that there are several feedback 

loops in the lesson system.  For example, as explained earlier, the model uses the state of the 

teacher to adjust the probability of student disengagement and this is considered more likely 

when the teacher is busy with a student (state 13) than when the teacher is observing (state 7) 

the class.  The mechanism for the adjustments (explained in section 3.4.2, with further details 

provided in Appendix A.3.4) uses a misbehaviour reduction factor to reduce the influence of the 

teacher.  Teacher state 13 does not affect the factor, while state 7 reduces the factor by 0.9, 

leading to a greater reduction in misbehaviour.  Hence student disruption can increase when a 

teacher stops observing and starts helping an individual, and this disruptive behaviour can lead 

to the teacher spending more time disciplining – which then affects student behaviour.  This is 

one feedback mechanism but there are others. 

Simulations with one setting of TMT will lead to a distribution of student misbehaviour and 

some teacher disciplining.  One might expect that increasing TMT would always lead to less 

disciplining by the teacher (less TD).  However, it can happen that this greater tolerance leads to 

students misbehaving slightly more, pushing the teacher over some threshold and leading to the 

teacher doing more disciplining – which reduces further student misbehaviour. 

There is another agent-level factor to consider.  Since both working alone and being helped 

are productive states (so contribute to %Productivity), if in a simulation replication the teacher 

happens to always choose to help students who would have been productive anyway, then there 

will be no increase in overall productivity.  Increased teacher help would not increase overall 

productivity.  To increase productivity, non-productive (i.e., disengaged) time has to be replaced 

by productive time.  Suppose on the contrary, that there is always one student disengaged and 

that in the simulation replication the teacher always chooses to help a disengaged student, thus 

converting them to a productive state.  If the class had, say, 10 students and 40 minutes of a 

1-hour lesson were allocated to independent working, the equivalent would be one student 

disengaged for the whole 40 minutes.  Without any teacher help the overall %Productivity would 

be 
(10×20)+ (9×40)

10×60
≈ 93.3%, but this would rise to 100% if that equivalent student were helped 

for the full 40 minutes.  In summary, in the most extreme case, where there is always someone 

disengaged and the teacher always chooses that student, then, in a class of 10 students the 

maximum impact of the help over a 40-minute period would be to increase %Productivity by 6.7%.  
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This analysis indicates that the range in %Productivity between the lowest and highest 

replications (see Table 8-1) can be explained by which individual students were provided one-to-

one support. 

Taking this result further, if the teacher were to focus their assistance on those students 

who tended to misbehave or looked as though they were about to disengage, then this may well 

increase productivity – by converting non-productive time to productive time.  Even just going 

over to a student and offering assistance would reduce misbehaviour by and around that student.  

But that strategy would be unfair on well-behaved students who would benefit from support.  

There are other factors influencing the simulations, for example: 

• If there is always another student asking for help as soon as the teacher has finished helping 

one student, then the teacher will never need to offer help, irrespective of the TSOL setting. 

• If the teacher is helping as much as physically possible then no more help can be offered and 

turning up TSOL further would have no effect. 

• Even when the teacher is helping maximally, this does not mean that the teacher is providing 

help all the time:  the model rules require that students have a gap between episodes of one-

to-one support so that the teacher does not incessantly provide help.  If there are no more 

students eligible for help then no more help can be given. 

• Because the students are less likely to misbehave the closer the teacher is, if the teacher helps 

someone in the centre of the classroom, this reduces misbehaviour in more students than if 

helping someone in a corner. 

 
The goal of the above investigations was to answer research question 1:  Does the 

simulation model provide realistic explanations of the effects on lesson behaviours and lesson 

outcomes of alterations to the teacher’s inclination to offer one-to-one support and to take 

disciplinary action?  The investigations provided comprehensive explanations for the complex 

relationships between teacher help, teacher discipline and student productive behaviour.  The 

simulation model appeared to mimic observed behaviour and give sensible results for sensible 

reasons.  In fact, the simulation results highlighted that if the teacher wants to increase the time 

spent providing individual attention, then, to maintain the same level of time on-task, the teacher 

needs to become less tolerant of misbehaviour, intervening more quickly to smaller incidents in 

order to prevent misbehaviour spreading.  Alternatively, a teacher could manage student 

behaviour without additional disciplining by providing less individual support and being seen to 
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observe more.  Another possibility would be for the teacher to ask for a TA to provide individual 

support – as investigated in Experiment 2. 

The analysis also highlighted that if the teacher were to focus their assistance on those 

students who tend to misbehave or looked as though they were about to disengage then this may 

well increase productivity – by converting non-productive time to productive time.  Even just 

going over to a student and offering assistance would reduce misbehaviour by and around that 

student.  But, as noted above, that strategy would be unfair on well-behaved students who would 

benefit from support.  

In conclusion, the simulation model provided realistic explanations of the effects on lesson 

behaviours and lesson outcomes of alterations to the teacher’s inclination to offer one-to-one 

support and to take disciplinary action. 

8.2 Experiment 2: The impact of a TA on productivity 

This experiment addressed research question 2: 

 

Does the simulation model provide realistic explanations of the effects on overall student 

productivity of providing or withdrawing a teaching assistant who gives individual support to any 

student? 

 
In general, the expectation is that having a TA in a class can be a great boost for the students 

and a significant help to the teacher, perhaps by enabling the teacher to provide assistance to 

more students.  But many factors affect the potential benefits, such as: 

• the extent of the assistance the TA offers; 

• the extent to which students ask the TA for assistance; 

• whether students are influenced by the behaviour of their peers in asking for TA help; 

• whether the TA disciplines students or not; 

• the proportion of a lesson available for one-to-one support - there is little point having a TA if 

the teacher is mainly whole-class teaching; 

• whether the teacher spends time interacting with the TA (either for instructions, feedback on 

students, chatting). 

  

The following assumptions and decisions had been built into the model: 
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• the teacher must instruct the TA as to when they should or should not offer help – this is 

implemented via the lesson plan; 

• the TA is expected to assist any student - the lesson plan implementation does not allow 

specific students to be specified (which is sometimes the case when a TA is more of a one-to-

one support for a designated student); 

• the TA does not discipline students. 

 
The lesson outputs investigated were Independent %Productivity (student productivity 

during lesson sections where the students can be helped by the TA), TAH (the amount of student 

time spent receiving TA help) and TH (the amount of time the teacher provided help).  The two 

specific student states being discussed are state 13 (being helped by the teacher) and state 15 

(being helped by the TA).  Note that where the TA helps more than one student at a time this 

counts as additional student-TA help time (TAH).  For this investigation, apart from adjusting TSOL 

and TASOL, all parameters were held at the lessons’ validated values. 

Of the four lessons that passed the validation tests, only one (Lesson #5) had an active TA 

(Lesson #4 had a TA, but she was inactive (at the teacher’s instructions)).  This meant that there 

could be only one experiment to remove a TA, from Lesson #5.   

8.2.1 The effect of removing the TA from Lesson #5 

Suppose a class is used to having help from a TA:  what will the students do if there is 

suddenly no TA in their lesson?  Would the students just not ask for help because it was the TA 

they felt comfortable with, or would they be inclined to ask the teacher instead?  How might 

lesson productivity be affected?  The following scenarios were compared: 

(a) the original validated lesson with all the validated parameter values (TSOL=0.5); 

(b) the teacher and the students do not change their behaviour; the teacher’s TSOL stays at the 

validated value 0.5 and the students’ base state probabilities stay the same; but because 

there is no TA, student state 15 (being helped by the TA) never occurs; 

(c) the students adapt by instead asking the teacher (who behaves just as before, TSOL=0.5); the 

students’ state 15 base scores are moved to the state 13 scores (being helped by the teacher); 

(d) the students adapt by instead asking the teacher (who behaves just as before) and the 

teacher adapts by offering more assistance (TSOL=5); 
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(e) the original validated lesson with all the validated parameter values except TSOL=5, to see 

the effect of this on the original lesson (that had a TA). 

 
All the other lesson parameters were held at their calibrated values. 

Taking the validated parameter set for Lesson #5, 500 replications were run for all scenarios.  

The aggregated results of the TA-less replications were, of course, quite different from the 

empirical lesson: TAH was now 0.  However, the goal of this experiment was not to compare the 

simulations to the empirical lesson, but to compare the different simulated scenarios.  The plots 

in Figure 8-10 show the effects on Independent %Productivity (x marks the empirical lesson value) 

of the various scenarios: 

(a) the original distribution; 

(b) with the TA removed but nothing else changed there was a very slight drop (0.5%) in 

Independent %Productivity; 

(c) with the TA removed and the students base state 15 scores moved to their state 13 scores 

(meaning that they would ask the teacher instead), there was negligible impact; 

(d) with the TA removed and the students base state 15 scores were moved to their state 13 

scores (meaning that they would ask the teacher instead) and the teacher took over and 

offered more help (TSOL=5 instead of 0.5), there was now a noticeable drop in Independent 

%Productivity, likely due to the increased TH – as discussed in section 8.1; 

(e) the effect of TSOL=5 on the original lesson (that had a TA) was similar to scenario (d) in that it 

showed a drop in Independent %Productivity, again probably due to the increased TH. 

 
In all cases there was a decline in Independent %Productivity, particularly in (d) and (e).  

However, the amount of TH in scenarios (d) and (e) is much greater.   
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 (a) (b) (c) (d) (e) 

 Figure 8-10  Lesson #5 Independent %Productivity in various scenarios with the TA removed 
(a) original validated lesson results with TA present and low TSOL=0.5 (b) TA removed but 

no other change (c) TA removed and students are instead inclined to ask the teacher (still low 
TSOL=0.5) (d) TA removed and students are instead inclined to ask the teacher but TSOL=5  

(e) original validated lesson but TSOL=5   (Empirical lesson value x) 
 

The plots in Figure 8-11 show the amount of TH associated with each of the scenarios.  With 

TSOL=0.5, TH is approximately 25 minutes in (a), (b) and (c), but in (d) and (e), with TSOL=5, TH 

increased noticeably.  This suggests that the changes in Independent %Productivity are due 

mainly to the increased TSOL=5.  It seems that an increase in TH is associated with lower 

Independent %Productivity. 

These results for Lesson #5 indicate that the removal of a TA did reduce Independent 

%Productivity slightly.  However, the response of the teacher, particularly whether to compensate 

for the absence of a TA by increasing one-to-one support, may be a more significant factor, as 

discussed in Experiment 1. 
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 (a) (b) (c) (d) (e) 

 Figure 8-11  Teacher Help time in various scenarios with the TA removed 
(a) original validated lesson results with TA present and low TSOL=0.5 (b) TA removed but 

no other change (c) TA removed and students are instead inclined to ask the teacher (still low 
TSOL=0.5) (d) TA removed and students are instead inclined to ask the teacher but TSOL=5  

(e) original validated lesson but TSOL=5   (Empirical lesson value x) 

8.2.2 The effect of adding a TA to Lesson #1, #3 and #4 

In Lessons #1 and #3 a TA was added and in Lesson #4 the inactive TA (who had been out of 

the room for most of the lesson) was activated by increasing the value of the TASOL parameter.  

The results for the three lessons are shown in Figure 8-12, Figure 8-13 19 and Figure 8-14.  For 

each lesson, three plots are shown, summarizing the key aspects involved.  In all cases: 

(a) as TASOL was increased (the TA offers more help) TAH time increased – confirming that the 

parameter does control TAH appropriately; 

(b) Independent %Productivity and TH time were fairly constant with small fluctuations. 

 

 

19 The additional TASOL=0.01 value was included because that was the value used during validation. 
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 (a) (b) (c) 

Figure 8-12  Lesson #1 metric distributions for several TASOL levels 
(a) total student-TAH (b) Independent %Productivity (c) TH 

 

 
 (a) (b) (c) 

Figure 8-13  Lesson #3 metric distributions for several TASOL levels 
(a) total student-TA Help (b) Independent %Productivity (c) Teacher Help  
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 (a) (b) (c) 

Figure 8-14  Lesson #4 metric distributions for several TASOL levels 
(a) total student-TA Help (b) Independent %Productivity (c) Teacher Help 

 

These results indicated that neither Independent %Productivity nor the amount of TH were 

directly related to the inclination of the TA to offer assistance.  But this does not mean that the 

TA has no effect on the dynamics of a lesson.  The state trajectories during different replications 

vary enormously.  This is due to the presence of the TA plus the changes that this triggers in the 

random number sequences that all agents are using.  Different random numbers lead to different 

state choices.  As an example, Figure 8-15 shows three versions of Lesson #1.  In each panel, time 

flows up and the teacher trace is the thin plot on the left-hand side.  The first panel (a) contains 

the empirical lesson traces, the second panel (b) shows one simulation replication (particular 

pseudo-random number generator (PRNG) seed) of the lesson, and the third panel (c) shows the 

same replication (same PRNG seed) but with a TA added to the lesson.  In this replication it 

happened that the TA helped the student in seat 6 (arrowed) extensively. 
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 (a) (b) (c) 

Figure 8-15  Example Lesson #1 replication 
(a) empirical lesson replay (b) simulation with specific PRNG seed and no TA 

(c) simulation with same PRNG seed but with a TA 
 
It cannot be said that the presence of a TA alone caused the multitude of differences 

between (b) and (c).  The addition of a TA (with TASOL = 0, so the TA only responds to students 

and never proactively offers help) altered the random number sequence so that everyone was 

choosing states differently.  But notice that during the first whole-class teaching (green section) 

there is no visible difference in the simulation traces: only when independent working starts does 

the presence of the TA matter.  In this case, the teacher talks to the TA (pink section in teacher’s 

trace on the left of panel (c)) at the start of this lesson section.  In this replication the output 

metrics (see Table 8-2) were improved with the TA (productivity increased, disengagement 

decreased), even though TH increased, and TD decreased (to zero). 

Table 8-3 compares the change in productivity from no TA to having a TA with two different 

levels of TASOL over 500 replications.  This shows that individual replications can experience 
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increases or decreases in Independent %Productivity, sometimes with more than 1% change.  In 

other words, it is possible that changes in productivity are a consequence of the randomness built 

into the model, rather than the presence or absence of a TA. 

 

Table 8-2  Lesson #1 comparison of metrics without and with a TA (TASOL = 0) 

Metric Without TA With TA 

Independent %Productivity 90.4 92.2 

Independent %Disruption 2.4 2.0 

Independent %Other 7.2 5.8 

Overall %Productivity 92.9 94.0 

Overall %Disruption 2.0 1.8 

Overall %Other  5.1 4.2 

Teacher Help (mins.) 15 20 

Teacher Disciplining (s) 27 0 

TA Help 0 17 

 

Table 8-3  Lesson #1 changes in productivity after TA added, at two different TASOL levels 

Measure TSOL=2 changes TSOL=8 changes 

No. of increases 338 247 

No. of decreases 162 252 

Average %increase 2.32 1.88 

Average %decrease -1.56 -1.84 

Average %change 1.07 0.00 

Maximum %increase 7.11 6.19 

Maximum %decrease -6.89 -7.10 

Median %change 1.22 -0.02 
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8.2.3 Conclusions to research question 2 

The research question being investigated was:  Does the simulation model provide realistic 

explanations of the effects on overall student productivity of providing or withdrawing a TA who 

gives individual support to any student?  It seems that the mere presence or absence of the TA 

and the amount of time the TA spends helping are not directly related to the amount of overall 

Independent %Productivity.  What matters is the change in behaviour of the teacher and students 

as a consequence – as discussed in Experiment 1.  However, as stated in the previous subsection, 

there is a possibility that the results were a consequence of the randomness built into the model, 

rather than the presence or absence of a TA.  As discussed in section 8.1.3 in the case of the 

teacher helping students, to increase productivity, non-productive (i.e., disengaged) time has to 

be replaced by productive time.  If the TA helps mainly students who would have been productive 

anyway, then there will be little effect on Independent %Productivity.  The greatest impact would 

be when the TA always helped a student who would otherwise have disengaged.  %Productivity 

values depends on which individual students were provided TA support, and that is random. 

The results are naturally due to the rules in the model.  Whereas the model includes 

mechanisms for the teacher to influence student misbehaviour choices, there are no rules that 

lead students to adjust their inclinations to misbehave because of the TA:  it was a modelling 

assumption that the TA did not discipline the students.  Students are more inclined to misbehave 

when the teacher is helping another student, but there is no such mechanism linked to the TA.  

Hence the simulation results are consistent with the model design.  A more precise conclusion to 

this experiment is: the presence or absence of a TA who is not involved in student disciplining 

does not appear to directly influence the amount of overall Independent %Productivity.   

In conclusion, the CLSM did provide plausible explanations for the influence or lack of 

influence a non-disciplining TA might have on student productivity.  It also raised questions about 

the consequences of which students are helped (by either the TA or the teacher).  As in the 

discussion about teacher help in section 8.1.3, if the TA targets those students who tend to 

misbehave then this may well increase productivity, but that would be unfair to well-behaved 

students.   

It is important to reiterate that the CLSM is a model of behaviour, not learning.  The 

activities of the TA may significantly boost individual learning without significantly altering the 

amount of overall productive time.  In actual lessons, a teacher might change his/her lesson 

structure, planned activities and behaviour to maximize the benefits of having a TA (Hattie, 2012).   
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8.3 Experiment 3: Seating arrangements and student behaviour 

This experiment addressed research question 3: 

 

Does the simulation model provide realistic explanations of the effects on lesson behaviours and 

lesson outcomes of different student seating arrangements? 

 
This experiment investigated the consequences of different student seating arrangements  

for student %Productivity, %Disruption, %Other and the time the teacher spent disciplining (TD).  

In addition, the results were compared to what an experienced teacher (the author) expected to 

happen.  The general thinking amongst teachers is that, by separating students who frequently 

chat, the amount of overall disruptive behaviour would decrease.  Another strategy is to try to 

put students together who would likely work productively together.  During the case study both 

strategies had been described by the teachers and observed in practice.  The teachers all 

acknowledged that they change the seating in an attempt to reduce distractions and increase 

focus, but also realized that some students just seemed to distract whoever they were next to.  

However, reducing disruptive behaviour does not automatically increase productive behaviour: 

students may instead increase their passive disengagement because now there is no-one to chat 

to.  Another strategy teachers sometimes use is to deliberately seat chatty students next to each 

other.  This sometimes happens when teachers have observed that these students distract 

whoever they sit next to so they might as well distract each other – and it is often easier to manage 

them this way.  The teachers in the case study were also acutely aware of how sensitive the issue 

is with students and their parents, with some strong feelings about who should or should not be 

placed besides or near whom.  This was one of the motivations for looking at lesson simulation. 

For each of the four validated lessons, two seating rearrangements were selected, one that 

was expected to reduce student disruptive behaviour compared to the original seating (Reseat 1) 

and one that was expected to increase disruptive behaviour compared to the original seating 

(Reseat 2).  For these two scenarios and the original lesson, 500 replications were run.  For the 

two lessons that had empirical data for all the students (Lessons #1 and #3), the expectations for 

each seating rearrangement were compared to the empirical data; for the other two lessons 

(Lessons #4 and #5) it would have been inappropriate to compare the empirical data – which 

includes only monitored students – to whole-class results, hence the two reseatings were 

compared to each other.  Afterwards, the simulation outcomes were compared to the teacher’s 

expectations. 
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8.3.1 The chosen reseatings for each lesson 

This subsection explains the reseatings chosen for each lesson.  They were chosen by the 

author, being highly familiar with reseatings in his 14 years as a teacher.  In the screen captures 

of the empirical lesson replays below, the students are labelled by seat number and this is their 

order in the state trajectories on the left-hand side of the figures (the thin plot on the far left 

being the teacher’s state trace).  Reseat 1 (expected to reduce student disruptive behaviour) is 

indicated by the blue arrow ; Reseat 2 (expected to increase student disruptive behaviour) is 

indicated by the red arrow . 

 

 

Figure 8-16  Lesson #1 replay and seating arrangement showing Reseat 1 (blue arrow) and 
Reseat 2 (red arrow) 

Reseat 1 

Reseat 2 
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From the empirical Lesson #1 replay in Figure 8-16, it can be seen that student 9 chatted 

quite a bit with their neighbour (pinkish background at end of the lesson and orange in their state 

trace).  Assuming this was a common occurrence so the teacher decides to separate students 9 

and 10 by bringing 9 to the front (closer to the teacher), leaving it more difficult for student 10 to 

chat.  This is Reseat 1.  As a contrast, Reseat 2 was expected to increase the amount of chatting 

by moving student 1 closer to other students and further to the back of the class, away from the 

teacher. 

 

 

Figure 8-17  Lesson #3 replay and seating arrangement showing Reseat 1 (blue arrow) and 
Reseat 2 (red arrow) 

From the empirical Lesson #3 replay in Figure 8-17, it can be seen that student 3 chatted 

quite a bit with their neighbour – some orange and red in their state trace and their seat 

background is very pink at the end of the lesson.  Assuming this was a common occurrence so the 

teacher decides to isolate student 3 by swapping them with student 14.  This is Reseat 1.  As a 

Reseat 1 

Reseat 2 
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contrast, Reseat 2 was expected to increase the amount of chatting by moving the chatty 

student 10 next to the slightly chatty student 1 (although student 10 would now be closer to the 

teacher and the front of the class). 

 

 

Figure 8-18  Lesson #4 replay and seating arrangement showing Reseat 1 (blue arrow) and 
Reseat 2 (red arrow) 

From the empirical Lesson #4 replay (Figure 8-18), it can be seen that there was not much 

disruptive behaviour but student 2 chatted a little with their neighbours.  Assume this was a 

common occurrence and so the teacher decides to move student 2.  This is Reseat 1.  As a 

contrast, Reseat 2 was expected to increase the amount of chatting by moving student 12 closer 

to others who chat,  although this was also closer to the teacher and right at the front of the 

classroom.  Note that student 12 was not monitored in this particular lesson (so there is no state 

trajectory in the left-hand plot and the student is ‘ghosted’ in the animation). 

Reseat 1 

Reseat 2 
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Figure 8-19  Lesson #5 replay and seating arrangement showing Reseat 1 (blue arrow) and 
Reseat 2 (red arrow) 

Lesson #5 (Figure 8-19) presents a rather unrealistic scenario for reseating considerations 

in that there was almost no chatting in the empirical lesson.  Nevertheless, suppose that the two 

students 9 and 10 did often chat in lessons and the teacher wanted to try two alternative new 

arrangements.  As mentioned earlier, there are many other reasons for rearranging seating.  For 

example, it may help the teacher provide more individualised support if a student is brought to 

the front, or the teacher might want to see how the students in seats 6 and 9 work together. 

 

 

Reseat 1 

Reseat 2 
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8.3.2 The effects of the seating rearrangements 

First the results of Lessons #1 and #3 are discussed.  In these experiments, the expectations 

associated with the seating rearrangements are compared to the empirical lesson data.  Lesson #1 

results are shown in Figure 8-20 .  %Other and TD seem barely affected while %Productivity and 

%Disruption - called %Distracting in these plots and referred to as %Dist -  show small variations.  

But, as was pointed out at the start of section 8.1, even 0.02% disruption alters the atmosphere 

in a lesson.  Lesson #3 results are shown in Figure 8-21.  These appear to show negligible changes 

due to the reseatings. 

 

 

Figure 8-20  Lesson #1 reseating results for %Productivity, %Distracting, %Other and TD 

 

Figure 8-21  Lesson #3 reseating results for %Productivity, %Distracting, %Other and TD 
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However, the goal of this investigation was to evaluate whether the reseatings had the 

expected effects on productivity, disruption and other behaviour.  Table 8-4 summarizes the 

results for Lesson #1.  Considering just the direction of the expected change, of the 6 expectations 

(predictions) made, 3 were met and 3 were not.  Table 8-5 summarizes the results for Lesson #3.  

Of the 6 expectations (predictions) made again 3 were met and 3 were not.   

Table 8-4  Lesson #1 expectations for the reseatings 

Reseat 1 Expectation Empirical Simulation Difference Expectation met? 

%Prod up 92.201 92.545 -0.343 yes 

%Dist down 2.803 2.437 0.366 yes 

%Other - 4.996 5.018 -0.023 - 

TD time (s) down 7.378 6.676 0.702 yes 

Reseat 2 Expectation Empirical Simulation Difference Expectation met? 

%Prod down 92.201 92.392 -0.190 no 

%Dist up 2.803 2.610 0.193 no 

%Other - 4.996 4.998 -0.002 - 

TD time (s) up 7.378 6.040 1.338 no 

 

Table 8-5  Lesson #3 expectations for the reseatings 

Reseat 1 Expectation Empirical Simulation Difference Expectation met? 

%Prod up 89.463 89.497 -0.034 yes 

%Dist down 4.719 4.792 -0.073 no 

%Other - 5.818 5.711 0.107 - 

TD time (s) down 28.908 29.988 -1.080 no 

Reseat 2 Expectation Empirical Simulation Difference Expectation met? 

%Prod down 89.463 89.477 -0.014 no 

%Dist up 4.719 4.761 -0.042 yes 

%Other - 5.818 5.762 0.056 - 

TD time (s) up 28.908 30.668 -1.760 yes 

 

To summarize, for the two lessons in which the simulation outputs could be compared to 

the empirical lessons, 6 out of the 12 expectations were met and 6 were not. 
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For the other two lessons, where comparison with the empirical lessons was inappropriate 

due to the presence of unmonitored students, the comparisons were to establish whether Reseat 

1 caused less disruption and more productivity than Reseat 2.  The results are shown in Figure 

8-22 and Figure 8-23. 

 
Figure 8-22  Lesson #4 reseating results for %Productivity, %Distracting, %Other and TD 

 

 
Figure 8-23  Lesson #5 reseating results for %Productivity, %Distracting, %Other and TD 
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In Lesson #4, %Other and TD seem barely affected while %Productivity and %Distracting 

show small but tangible variations (as mentioned above).  The results for Lesson #5 show 

negligible changes due to the reseatings.  Checking again whether expectations were met, Table 

8-6 and Table 8-7 show that only 2 out of the 6 expectations were met. 

Table 8-6  Lesson #4 expectations for the reseatings 

Lesson #4  Expectation Reseat 1 Reseat 2 Expectation met? 

%Prod Reseat 1 greater than Reseat 2 87.655 88.313 yes 

%Dist Reseat 1 lower than Reseat 2 2.332 1.764 no 

%Other - 10.014 9.923 - 

TD time (s) Reseat 1 lower than Reseat 2 3.426 1.416 no 

 

Table 8-7  Lesson #5 expectations for the reseatings 

Lesson #5  Expectation Reseat 1 Reseat 2 Expectation met? 

%Prod Reseat 1 greater than Reseat 2 93.586 93.592 no 

%Dist Reseat 1 lower than Reseat 2 0.491 0.532 yes 

%Other - 5.923 5.875 - 

TD time (s) Reseat 1 lower than Reseat 2 1.106 1.008 no 

 

To sum up, considering just the directions of the expected results, expectations were met 

on only 8 out of 18 occasions, i.e., 44% of the time.  Note that TD time is in seconds and the 

differences between the means were 1 or 2 seconds, not a significant amount in a 1-hour lesson.  

%Other values had been included in case a decline in disruption was accompanied by an increase 

in passive disengagement, resulting in no increase in productivity.  However, there was no 

consistent evidence for such a relationship. 

8.3.3 Conclusions to research question 3 

The four lesson models had been validated and were therefore assumed to be operating 

within their ‘domain of applicability’ (Schlesinger et al., 1979, p. 104).  However, the results were 

that 56% of the time the seating changes did not have the anticipated outcomes – which is worse 

than chance.  The research question being investigated was:  Does the simulation model provide 

realistic explanations of the effects on lesson behaviours and lesson outcomes of different 
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student seating arrangements?  But the results raised the question as to whether the simulations 

were producing unrealistic outcomes and the teacher’s predictions were better, or whether the 

simulations were realistic and it was the teacher who was not a reliable predictor of the 

consequences in real lessons?  To answer this question definitively would require empirical 

testing of the rearrangements and the teacher’s predictions.  If the simulation model happens to 

be realistic, still the effects appeared small.  But, as has been emphasised, even a very small 

percentage change in disruption can have a huge effect on lesson quality.  This is why teachers go 

to the bother of making seating changes – the benefits of a small reduction in disruption can be 

worth it.  The results of this experiment would imply that a teacher’s predictions about the 

consequences of reseatings may be unreliable, and therefore that it is entirely possible that in 

many cases a reseating merely shifts the location of the disruptive behaviour.  Teachers in the 

case study reported that often their seating reorganizations failed for that reason.  Perhaps the 

consequences of a seating rearrangement are just too difficult to pin down, for teachers and 

simulation models.  This leads one to conclude that the simulation model did provide realistic 

explanations, probably as reliable as that of a teacher, but, as stated, this would need further 

research to be confirmed. 

This experiment demonstrated a potential benefit of lesson simulations as outlined in 

section 1.1.  With a simulation tool one can try out scenarios without disadvantaging anyone and 

without wasting resources.  In fact, one can test an intervention hundreds of times, whereas a 

teacher may be able to test an intervention only a few times.  In principle, simulations could be 

run on all seating permutations and the best ones selected.  If a seating rearrangement produced 

promising outcomes the teacher could actually try it for several lessons to build up a picture of 

the results (i.e., not just one lesson, just as one would not run only one simulation replication).   

There are probably several factors that could affect the consequences of a reseating.  For 

example, the consequences may well depend on the particular student’s strength of influence in 

the class and how influenceable the students around are.  However, these social factors are not 

included in the CLSM.  The specific location of a disruptor may also be a factor and this can be 

investigated using the CLSM.  Experiment 4 follows up on this experiment to explore if the location 

of disruptors has much impact on overall disruption. 
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8.4 Experiment 4: Experiments with artificial classes 

This experiment addressed research question 4: 

 

Does the simulation model provide realistic results in experiments with a class of completely 

artificial students? 

 
To create artificial students, one would ideally like to derive profiles from empirical data 

that quantified several characteristics (as in simSchool (Deale and Pastore, 2014)).  However, for 

even a very simple binary categorization on just three characteristics, high or low disruptivity, 

high or low passive disengagement and high or low one-to-one support (from the teacher or the 

TA), there was insufficient empirical data to populate each of the resulting eight categories.  

Instead, only two profiles were constructed: an ideal student profile and a disruptive student 

profile.  A profile is a set of the three PMFs (explained section 3.3.2).  The disruptive student 

profile was the profile of a real student who was disruptive in classes, student 802.  The ideal 

profile was a set of idealized PMFs (based on the empirical data), assuming a student sometimes 

chatted, sometimes disengaged, sought help a typical amount of time and generally behaved as 

required.  Thus both profiles were realistic.  Figure 8-24 summarizes for each student over all their 

lesson time the percentage of productive versus disruptive behaviour.  Student 802 (circled in 

red) was disruptive approximately 12% of lesson time and productive 81% of the time, with the 

8% balance being passive disengagement time (which was not extreme, unlike the four students 

to the bottom left).  The ideal student profile (positioned at the green star) had 5% disruptive and 

90% productive behaviour with 5% for passive disengagement. 

Two experiments were conducted.  The first experiment (Experiment 4a) followed up on 

what was observed in Experiment 3 and explored why the locations of disruptors might or might 

not have much consequence.  It investigated the consequences of replacing one or more ideal 

students with a disruptive student.  The results of this experiment raised a question which 

motivated a follow-up experiment (Experiment 4b) to investigate the proportion of disruptive vs 

other (passive disengagement) behaviour. 
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Figure 8-24  Percentage of lesson time students spent productively vs disruptively 
with student 802 (circled in red) and the ‘ideal’ student (green star) 

8.4.1 Experiment 4a:  Investigating the effect of disruptive students 

To investigate the consequences of replacing one or more ideal students with a disruptive 

student, an artificial lesson was constructed by taking Lesson #5, its lesson plan, seating 

arrangement, teacher, TA and validated parameter values, but replacing various original students 

with artificial students.  Using the parameter set for Lesson #5 on the artificial lesson produced 

results that satisfied all the acceptability criteria.  The lesson plan had only three sections: 11 

minutes whole-class teaching at the start, 45 minutes independent working and 3 minutes whole-

class teaching at the end.  The three students to be replaced initially are shown in Figure 8-25.  In 

one of the scenarios, student 1 is moved to the back of the class, indicated by the red arrow. 
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Figure 8-25  The students who became disruptive (labelled by seat number) 

This experiment compared the following seven scenarios: 

 Label Scenario Use or expectation 

1.  ideal the ideal class – no disruptive students baseline for comparison 

2.  original the actual Lesson #5 with the real students for comparison 

3.  seat 1 
replace the student in seat 1 with a disruptive 
student 

increased disruption 

4.  seat 4 
replace the student in seat 4 with a disruptive 
student 

increased disruption 

5.  seat 9 
replace the student in seat 9 with a disruptive 
student 

increased disruption 

6.  all 3 replace all three students in their seats greatly increased disruption 

7.  
3 

together 

replace all three students and put them in close 
proximity (move student in seat 1 to back –  red 
arrow in Figure 8-25) 

even more disruption 

 
The results of 500 replications of each scenario are summarised in Figure 8-26.   
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Figure 8-26  The effect of the disruptive students on metrics %Dist, %Other, TH, TD and TAH 

 
Firstly, note that the amount of teacher and TA help were barely affected by the changes, 

not surprising since the teacher parameters did not change, therefore confirming that the model 

performed as required.  Secondly, scenarios 6 and 7 (yellow and pink) resulted in increased 

discipling by the teacher – as one would expect if students misbehave more.  The main focus 

though was %Disruption (labelled %Dist for %Distraction in the plots).  Relative to the ideal class, 

adding disruptive students always increased %Dist, particularly when there were three disruptive 

students.  %Other (passive disengagement) also increased relative to the ideal class - possibly 

because the disruptive student profile also had higher scores for passive disengagement than the 

ideal student profile (8% vs. 5%). 

What was not anticipated was that disruption (%Dist) would decrease from scenario 6 (the 

three disruptors separated) to scenario 7 (the three disruptors seated together).  It had been 

expected that putting all the disruptors together would increase overall disruption, not lead to a 

decrease.  To investigate this result, the details of each student were inspected.  Table 8-8 

summarizes the relative changes in the metrics per student (labelled by seat number, with 

disruptive students highlighted).  An empty cell means there was no significant change, a single 
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arrow means there was a slight change and two arrows means there was a small but distinct 

change.  Note that %Dist includes student states 1 (being disciplined by the teacher), 2 

(unproductive, away from own desk and distracting others), 3 (in own seat chatting, distracting, 

socialising, turning around etc.) and 5 (listening to teacher in response to the class being 

disciplined).  And %Other includes states 4 (intentionally unproductive, not participating, but not 

distracting others, at or away from own desk), 7 (not sure if productive: just sitting, not disturbing 

others - maybe thinking or waiting for instructions or help) and 17 (left the classroom).  (The 

student states are explained in section 3.1.) 

Table 8-8  The relative changes between scenarios 6 and 7 for each student 

Student 
Seat 

%Dist %Other 
Teacher 

Help 
Teacher 

Disc. 
TA Help 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

 

Compared to scenario 6, in scenario 7: 

• the student in seat 4 behaved overall as before, with a little less TA help (and very slightly less 

chatting and passive disengagement). 

• the student in seat 9 and the student who moved from seat 1 changed their behaviour; both 

chatted less and disengaged passively more, especially the student from seat 1. 

• the student in seat 9 was disciplined more. 

• the other students all had negligible changes in overall %Dist and %Other, and all students had 

negligible changes in Teacher Help time. 

 
From these data, it appears that seating disruptive students 1 and 9 closer together led to 

their disruptive behaviour being converted to other disengaged behaviour.   There are several 

mechanisms that could explain this.  Figure 8-27 shows the factors incorporated into modelling 

student misbehaviour. 

 



 

 
147 

 

 

Figure 8-27  Factors affecting student misbehaviour and lesson misbehaviour metrics 

The model has rules that explicitly make students less inclined to misbehave, especially 

disruptively, after they have been disciplined.  The rules also make the teacher stricter with 

disruptive behaviour than with passive disengagement.  In scenario 7 (with all three disruptive 

students in close proximity), the student in seat 9 was disciplined more so this probably accounted 

for their decrease in chatting and increase in passive disengagement.  Another factor was the 

proximity of the teacher.  The model has rules that decrease the likelihood of misbehaviour the 

closer the teacher is.  When the teacher was helping any student near the middle rear of the class, 

that affected all the students nearby, including the disruptive ones, reducing the likelihood of 

their chatting (or passively disengaging).  Having the teacher helping the student next to you is 

not only a disincentive for you to misbehave, it removes one student from the list of those you 

could chat with.  The model rules explicitly prevent a student interacting with a student receiving 

help (from the teacher or TA).  Class layout also plays a role in the amount of disruption.  If 

everyone is quite spread-out then the spread of chatting is impeded.  But students can always 

make a comment briefly out loud to no-one in particular or disengage passively. 

This analysis concerns the model rules and is not irrefutably inevitable real-life behaviour.  

But all the explanations given are plausible, and the results do match the observations and the 

teacher and student accounts in the case study:  a student who needs a break (perhaps because 

they are struggling or have worked for a long time) might try to interact with someone, and, if 

that fails they may take a break by resting. 

However, the plots in Figure 8-26 show that in all scenarios, %Other was more prevalent 

than %Dist.  This was unexpected because in the student profiles the probabilities of other 

student misbehaviour 
and misbehaviour  

metrics 

class layout 
(proximity of other students) 

proximity of teacher 
(TA not involved) 

student profile (state PMFs) 

disciplining regime 
(when last disciplined) 

teacher helping someone nearby 
(reduces potential interactions) 
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(passive disengagement) versus disruptive behaviour are 8% versus 12% for the disruptive 

students and 5% versus 5% for ideal students.  These results may have been due to the factors 

discussed above but warranted further investigation in a second experiment. 

8.4.2 Experiment 4b:  Active and passive disengagement in a full classroom 

The purpose of this experiment was to determine whether the amount of disruptive 

behaviour compared to passive disengagement depended on the ‘density’ of the student seating.  

The previous experiment had 10 students who were quite spread out in the classroom.  

Experiment 4b used the same room layout as 4a but with the maximum number of students (19) 

(see Figure 8-28), so most students had a neighbour to chat with most of the time.  In this 

experiment the lesson plan was copied from a Year 7 Maths lesson with three sections: 15 

minutes whole-class teaching, 38 minutes independent working and 6 minutes whole-class 

teaching.  No TA was used.  A parameter set was contrived by setting all the parameter weightings 

to have no effect on the students’ base state probabilities (which were again of only two types, 

ideal or disruptive).  The teacher was given a low inclination to offer help (TSOL=0.5) and a 

moderate tolerance of misbehaviour (TMT=50).   

 

 

Figure 8-28  Full class experiment with students selected for disruptive behaviour highlighted 

The experiment compared the five scenarios below.  The expectation was that disruption 

(%Dist) would increase from scenario to scenario until scenario 5, when the teacher would 
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discipline more and the students would be inclined to disengage passively – so %Other was 

expected to increase while %Dist would decrease. 

 Label Scenario Use or expectation 

1.  ideal 
the ideal class – no disruptive 
students 

baseline for comparison;  
extremely high ASD 

2.  apart 
two students apart (seats 8 and 11) 
disruptive 

slight increase in disruption (small 
compared to whole class productivity) 

3.  together 
two students together (seats 11 and 
12) disruptive 

larger increase in disruption (still small 
compared to whole class productivity) 

4.  misbehave all students disruptive 
maximum disruption; %Dist increases 
more than %Other; reduced ASD 

5.  stricter 
all students disruptive but teacher 
stricter (TMT=20) 

more disciplining, perhaps whole class; 
reduced disruption but increased 
passive disengagement; less reduced 
ASD 

 

The results of 500 replications of each scenario are shown in Figure 8-29.   

 

 

Figure 8-29  The metrics %Dist, %Other, ASD, TH and TD in the five scenarios 
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Below are key observations on the results and the expectations: 

• Two students being disruptive had little overall effect on %Dist, with two students together 

(scenario 3) having more impact than two apart (scenario 2). 

• In all scenarios, the amount of passive disengagement (%Other) was still more than the amount 

of disruptive behaviour (%Dist). 

• There was an enormous difference in all metrics between two students disrupting and a whole 

class of disruptive students (scenario 4). 

• When the teacher was stricter, having a lower tolerance of misbehaviour TMT=20 (scenario 5), 

TD increased markedly and all misbehaviour decreased. 

• ASD was extraordinarily high with ideal students, dropping to empirically realistic levels with 

an entire class of disruptors (scenarios 4 and 5).  This was considered realistic because ASD is 

higher when students behave as required and lower when students misbehave (where there 

is a lot of state changing).  

• When all the students were disruptive students (scenarios 4 and 5), the teacher spent slightly 

more time helping individuals. 

 
This all seemed reasonable except %Other was always greater than %Dist even though in 

the student profiles the ratios of the probabilities of other (passive disengagement) behaviour to 

disruptive behaviour are 2:3 for the disruptive students and 1:1 for ideal students. Experiment 4b 

had produced similar results to Experiment 4a.  This indicates that student seating density was 

not a significant factor in these outcomes. 

8.4.3 Conclusions to research question 4 

The first of these two experiments, Experiment 4a, followed up on what was observed in 

Experiment 3 and explored why the locations of disruptors might or might not have much impact 

on the output metrics.  It investigated the consequences of replacing one or more ideal students 

with a disruptive student.  Seven scenarios were compared.  Relative to the ideal class, adding 

disruptive students always increased %Dist, particularly when there were three disruptive 

students.  %Other (passive disengagement) also increased relative to the ideal class.  However, 

an unexpected result was encountered: disruption decreased from scenario 6 (three separated 

disruptors) to scenario 7 (three disruptors seated together).  It had been expected that putting all 

the disruptors together would increase overall disruption because a positive response to a 
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chatting request would be more likely.  After inspecting the details of each student, it appeared 

that seating the disruptive students closer together led to their disruptive behaviour being 

converted to other disengaged behaviour.   Several mechanisms were proposed to explain this.  

For example, the model has rules that make students less inclined to misbehave, especially 

disruptively, after they have been disciplined.  The rules also make the teacher stricter with 

disruptive behaviour than with passive disengagement.  In scenario 7 (with all three disruptive 

students in close proximity), the student in seat 9 was disciplined more so this probably accounted 

for their decrease in chatting and increase in passive disengagement.  Also, the proximity of the 

teacher is very significant: the model has rules that decrease the likelihood of misbehaviour the 

closer the teacher is.  When the teacher was helping any student near the middle rear of the class, 

that affected all the students nearby, including the disruptive ones, reducing the likelihood of 

their chatting (or, to a lesser degree, passively disengaging).  Having the teacher helping the 

student next to you is not only a disincentive for you to misbehave, it also removes one student 

from the list of those you could chat with.  The model rules explicitly prevent a student interacting 

with a student receiving help (from the teacher or TA).  Class layout plays a role in the amount of 

disruption:  if everyone is quite spread-out then the spread of social chatting is impeded, although 

students can always make a comment briefly out loud to no-one in particular.  These all seemed 

plausible and realistic explanations. 

However, in all the simulation scenarios in Experiment 4a, %Other was more prevalent than 

%Dist.  This was unexpected because in the student profiles the probabilities of other (passive 

disengagement) and disruptive behaviour were respectively 8% and 12% for the disruptive 

students and 5% and 5% for ideal students.  This result may have been due to the factors discussed 

above but warranted further investigation in a second experiment. 

In Experiment 4b, the objective was to determine whether the amount of disruptive 

behaviour compared to other, passive disengagement depended on the ‘density’ of the student 

seating.  Experiment 4a had only 10 students and they were quite spread out in the classroom.  

Now the classroom was filled with 19 students.  Five scenarios were explored: 

• the ideal class – no disruptive students 

• two disruptive students separated  

• two disruptive students together 

• all students disruptive 

• all students disruptive but the teacher stricter 
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In all scenarios, the amount of passive disengagement (%Other) was still more than the 

amount of disruptive behaviour (%Dist).  When all the students were disruptive students, the 

teacher spent slightly more time helping individuals.  When the teacher was stricter, TD increased 

markedly and all misbehaviour decreased.   

The fact that, in both Experiment 4a (students spread out) and Experiment 4b (students 

densely packed), %Other was greater than %Dist indicates that student seating density was not a 

significant factor in these outcomes.  The experiments suggested several mechanisms that could 

contribute to %Other being greater than %Dist, but did not yield a comprehensive explanation 

linking the student base state probabilities with the outcomes - further experimentation is 

needed.   

Nevertheless, the conclusion to research question 4 is that the simulation model can 

provide plausible results in experiments with a class of completely artificial students. 

8.5 Chapter summary 

The results of the four experiments are summarised below. 

 
Experiment 1 (Section 8.1)  The CLSM provided comprehensive, plausible explanations of the 

effects on lesson behaviours and lesson outcomes of alterations to the teacher’s inclination to 

offer one-to-one support and to take disciplinary action.  The results highlighted that if teacher 

wants to increase the time spent providing individual help, then, to maintain the same level of 

whole-class time on-task, the teacher needs to become less tolerant of misbehaviour.  

Alternatively, a teacher could manage student behaviour without additional disciplining by 

providing less individual support and being seen to observe more.  The analysis also highlighted 

that if the teacher were to focus their assistance on those students who tend to misbehave or 

looked as though they were about to disengage then this may well increase productivity – by 

converting non-productive time to productive time.  Even just going over to a student and offering 

assistance would reduce misbehaviour by and around that student.  But, as noted, that strategy 

would be unfair on well-behaved students who would also benefit from teacher help.   

 
Experiment 2 (Section 8.2)  This experiment indicated that the presence or absence of a TA who 

is not involved in student disciplining does not directly influence productivity when students are 

working independently, and provided plausible explanations for this conclusion.  What mattered 
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most was the change in behaviour of the teacher and students – whether the teacher does more 

or less helping and whether students ask the teacher for help more (as was discussed in 

Experiment 1).  Similar to the results of Experiment 1 concerning teacher help (section 8.1.3), the 

CLSM highlighted that if the TA helps mainly students who would have been productive anyway, 

then there will be little effect on Independent %Productivity.  But if the TA targets those students 

who tended to misbehave or looked as though they were about to disengage then this may well 

increase productivity, but that would be unfair to well-behaved students who would also benefit 

from TA support. 

 
Experiment 3 (Section 8.3)  In this experiment different student seating arrangements – intended 

to have an effect on lesson disruption – were simulated and the results were compared to what 

an experienced teacher (the author) expected to happen.  In more than half the cases the 

teacher’s expectations and simulation outcomes did not match, raising questions about the 

reliability of both.  Teachers in the case study reported that often their seating reorganizations 

failed as they merely shifted the location of the disruptive behaviour.  Perhaps the consequences 

of a seating rearrangement are just too difficult to pin down, for teachers and simulation models.  

The CLSM did however provide realistic explanations of the dynamics, probably as plausible as 

those of a teacher.  This experiment demonstrated a potential benefit of lesson simulations as 

outlined in section 1.1:  with a simulation tool one can try out scenarios without disadvantaging 

anyone and without wasting resources.  If a seating rearrangement simulation looked like it would 

work the teacher could actually try it, for several lessons to build up a picture of the results (i.e., 

not just one lesson, just as one would not run only one simulation replication).  One cannot judge 

the reliability of either the CLSM or a teacher without empirical testing. 

 
Experiment 4 (Section 8.4)  Two experiments on artificial classes were conducted.  Experiment 4a 

investigated whether the locations of disruptors might or might not have much impact on overall 

lesson metrics.  Several scenarios were compared and the results were considered realistic and 

explanations plausible.  However, in one scenario disruption decreased instead of increasing as 

anticipated.  It was postulated that seating the disruptive students closer together had led to their 

disruptive behaviour being converted to other disengaged behaviour.  Several factors and 

mechanisms were proposed to explain this outcome.  The purpose of Experiment 4b was to 

investigate one of these proposals, that the amount of disruptive behaviour compared to other 

(passive disengagement) might depend on the ‘density’ of student seating.  However, in all the 
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experimental scenarios, the amount of passive disengagement (%Other) was still more than the 

amount of disruptive behaviour (%Dist).  The fact that, in both Experiment 4a (students spread 

out) and Experiment 4b (students densely packed), %Other was greater than %Dist indicates that 

student seating density was not a significant factor in these outcomes.  Both experiments 

suggested several mechanisms that could contribute to %Other being greater than %Dist, but did 

not yield a comprehensive explanation linking the student base state probabilities with the 

outcomes - further experimentation is needed.  Nevertheless, the conclusion to research question 

4 is that the simulation model can provide plausible results in experiments with a class of 

completely artificial students. 

These four research experiments demonstrated that the CLSM modelled some important 

aspects of real lessons, providing plausible causal explanations for student, teacher and TA 

interactions, and how these resulted in the flow and outcomes of a lesson (including in completely 

artificial lessons). 
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9. Discussion, further research and conclusions 

This final chapter starts with a summary of the thesis.  This is followed by a discussion of 

some limitations in the model and its development, with, in most cases, suggestions for 

addressing the issues in further research.  The discussion is extended to consider issues with using 

the CLSM, and ABMS in general, to explain real-world behaviours and support decision-making.  

Despite these concerns, some topics for further classroom lesson research using the CLSM are 

proposed.  The thesis ends with the overall conclusions of the research. 

9.1 Thesis summary 

The primary research objective was to answer the question: 
 

How and to what extent can an agent-based model adequately represent the behaviours of, 

and interactions between, students, teacher and teaching assistant in classroom lessons at a 

UK secondary school? 

 

To answer this, four experiments were designed.  The answer would depend on how well 

the simulation model enabled the following four questions to be investigated (the first three of 

which are of on-going interest to educators). 

 
1. Does the simulation model provide realistic explanations of the effects on lesson behaviours 

and lesson outcomes of alterations to the teacher’s inclination to offer one-to-one support 

and to take disciplinary action? 

2. Does the simulation model provide realistic explanations of the effects on overall student 

productivity of providing or withdrawing a TA who gives individual support to any student? 

3. Does the simulation model provide realistic explanations of the effects on lesson behaviours 

and lesson outcomes of different student seating arrangements? 

4. Does the simulation model provide realistic results in experiments with a class of artificial 

students? 

 
The motivation behind the research (explained in section 1.1) was the belief that a 

classroom lessons simulation tool could have multiple potential benefits for teachers, head-

teachers and other educators, such as: 

• providing teachers with a suitable tool to explore alternative teaching strategies; 

• testing a proposed or existing theory of classroom dynamics; 
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• providing insights into the dynamics of entire lessons; 

• identifying the relative contribution of factors that are known to affect student behaviour. 

 
Besides presenting the above points, Chapter 1 explained how the research project 

followed a typical empirically-based ABMS development methodology and included an 

investigative case study.  Examples of other ABMS applications were given and existing classroom-

related models and their limitations were reviewed.  The first two stages of the CLSM 

development were described in Chapter 2.  Following a comprehensive conceptualization of the 

classroom lesson system (Stage 1), a detailed, general conceptual model of behaviour in 

classroom lessons was formulated (Stage 2).  Agent decision-making was modelled using 

‘production rules’, with an emphasis on realism.  The implementation of the conceptual model as 

a simulation model (Stage 3) was explained in Chapter 3.  The agents, their activities and their 

decision-making were described and the central role of lesson plans in determining behaviour 

was explained.  While the teacher follows a simple algorithm (follow the lesson plan handling any 

interruptions along the way), and the TA follows a few simple rules, the students follow more 

complicated logic.  Some of the intricacies of agent decision-making and interactions were 

described and the model parameters that adjust behaviour were introduced.  In Chapter 4 several 

key topics common to both the model calibration and model validation stages in ABMS 

development were covered.  The lesson metrics used to compare simulated and empirical lessons 

were defined.  The empirical data were analysed and the metric acceptability ranges defined.  

These ranges are one of the criteria used to decide whether simulation outputs are realistic.  The 

main topic in this chapter was that, although a generic CLSM had been developed, the model 

needed instantiating for each empirical lesson.  This was the primary use of the lesson 

parameters: to ‘calibrate’ the model to a specific lesson.  The main reason for this is that each 

student’s profile was based on their aggregated behaviour over all the empirical lessons, and 

similarly the teacher and TA had the ‘average’ teacher and TA tendencies over all lessons.  The 

lesson parameters adjusted the class’s, teacher’s and TA’s behaviours so that they became more 

closely matched to the specific lesson in question.  Chapter 5 explained how the seven selected 

lesson models were calibrated (Stage 4).  This process, also known as parameter estimation, 

comprised two steps.  In the first step,  ‘categorical calibration’ was applied, discarding any 

parameter set that produced any unrealistic result, that is a result that fell outside the 

acceptability range.  In the second step, the remaining parameters were explored in finer detail 
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over more replications.  Not only did the results need to be realistic, they needed to match (as 

closely as possible) the empirical lesson’s values.  Of the many candidate parameter sets, the one 

that was least worst on all the metrics was chosen.  The purpose of Stage 5 (model validation, 

Chapter 6) in the ABMS development was to extend confidence in the lesson models by having 

experts confirm the plausibility of the conceptual model and participate in ‘face validity’ tests.  

The lesson simulation results, already judged realistic at the overall lesson level (macro-level), 

were checked to see if they were close enough to the specific empirical lesson results to be 

considered a plausible simulation model of that specific empirical lesson.  Plausibility was 

investigated at the micro-level of agent interactions and the meso-level of overall behaviour for 

individual students.  Only four of the seven calibrated lessons were judged to be sufficiently like 

their empirical lessons that they could be used in the research experiments.  In Stage 6 some basic 

sensitivity analyses were conducted (Chapter 7).  These investigated how changes in the model 

parameters and in students’ base state probabilities for their inclination to chat (as a relevant 

test-case) affected the simulation output metrics.  The lesson simulation models were found to 

respond appropriately to both types of changes.  Finally, in Chapter 8, the four research 

experiments were described and the results analysed (Stage 7).  The results demonstrated that 

the CLSM modelled some important aspects of real lessons, providing plausible causal 

explanations for student, teacher and TA interactions, and how these resulted in the flow and 

outcomes of a lesson (including in completely artificial lessons). 

 
It is also pertinent to summarize here one way in which the CLSM could be used as a lesson 

analytics tool.  The CLSM is generic - it does not need alteration, just different parameter values 

for the specific lesson to be investigated.  For example, suppose a teacher or headteacher wanted 

to investigate whether a particular class would benefit from having a TA (perhaps because there 

are one or two students who need a substantial amount of one-to-one support).  They could ask 

for simulations to be run but, if there were no empirical lesson data for this class with that teacher 

for that subject in the specific classroom, empirical data would be needed.  The CLSM needs data 

to initialize it: a classroom layout and student seating layout, a class of students each with their 

historical behaviour data, a lesson plan and a validated set of lesson parameters.  So, data would 

be collected over three or four lessons and profiles for the students and teacher in that subject 

and classroom with a range of lesson plans (e.g., different balances of whole-class teaching, solo, 

paired and group work) would be constructed.  These data would be used to calibrate and validate 
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that lesson model.  The data would be used to initialize the two simulation scenarios – one with 

a TA and one without – which would then be replicated a few hundred times to obtain an overall 

picture of the likely outcomes.  Analyses would look for explanations of the results and consider 

how these might contribute to decision-making. 

9.2 Further development to reduce model limitations 

This section proposes further research that could remove or reduce some of the limitations 

of the CLSM.  Before criticising the CLSM on educational grounds, it should be remembered that 

it is a model of behaviour, not learning (despite time on-task being promoted as a proxy for 

learning – see section 2.3), and does not incorporate factors such as the influence of student 

learning success, enjoyment or motivation, etc., focussing instead on student misbehaviour and 

teacher discipline.  

9.2.1 Quantifying disruption 

It was assumed that disruption to a lesson could be measured by the amount of time 

students spent in disruptive states (states 1, 2 and 3 – see section 3.1).  The problem is it is not 

just the total duration of disruptive states that matter – it is their frequency, intensity and nature 

too.  For example, the disturbance could be an interaction between two students or between a 

student and the teacher; it could be light-hearted or aggressive; it could affect one student or the 

whole class.  As has been explained, teachers and students report that even a brief, few seconds, 

unpleasant teacher-student interaction can spoil the rest of a lesson.  There is also a question 

about how much disruption is significant?  Similar questions can be raised about passive 

disengagement.  Although there is extensive research on the effects of different behaviours 

(Marzano, Marzano and Pickering, 2003; Petty, 2006; Hattie, 2012) more research would be 

needed to develop a comprehensive disruptivity index – which could then be a new output metric 

for the model. 

9.2.2 The initiator of an interaction 

A fundamental simplification that has affected the entire model was that agent interactions 

were considered directionless.  This was also discussed in section 1.5.2 and is not a simple issue 

to rectify.  During the case study, it was thought that it would be useful to have a state for students 

raising their hand and that this would indicate who initiated an interaction with the teacher.  What 



 

 
159 

 

was observed though, was that there were too many alternatives to assume initiation of the next 

event.  For example, after a student raised their hand: 

• the teacher could indicate to them to put it down (so they don’t have their hand up for 5 or 

10 minutes waiting) – and then the teacher could forget and go and help someone else; 

• the student could just carry on working (perhaps skipping over that particular problem, or 

realizing what to do); 

• the student could just sit, waiting or doing nothing or just fiddling with something; 

• the student could attempt to chat to another student or respond to a chat request; 

• the student could ask another student for help or respond to an offer to help. 

 

Also, this state would not have solved the problem of identifying the initiator of a student-

student interaction, as in the last two items in the list above.  Without additional technology, 

determining who initiated an interaction would require a more intrusive observation regime (e.g., 

asking a person what happened), even with video recording and/or multiple observers.  It might, 

however, be possible to use automated classroom data collection techniques (Raca and 

Dillenbourg, 2013, 2014; Raca, Tormey and Dillenbourg, 2013) such as teacher location and 

movement tracking plus teacher and student gaze tracking.  If one could capture this information 

and collect enough data per student, then it might be possible to split existing states in two as 

follows: 

• teacher offered assistance and teacher responded to request for assistance; 

• TA offered assistance and TA responded to request for assistance; 

• student asked for assistance and students responded to offer of assistance, 

and create new states for the following: 

• student initiated a request to chat and student responded to a request to chat; 

• student initiated a request to work together and student responded to a request to work 

together. 

 

This data would allow the generation of historical frequencies for these student states 

(exactly as for the current states).  Also, if it were possible to determine in which direction a 

teacher is looking (Bidwell and Fuchs, 2011; Raca and Dillenbourg, 2013, 2014), one could use this 

in the student decision-making logic: Is the teacher looking at me?  

Of course, this would all require a complete revision of the conceptual model, with new and 

updated rules and model constants.   
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9.2.3 The influence of student friendships 

The influence of peers, friends and friendship networks on academic achievement is 

particularly important (Halliday and Kwak, 2012; Blansky et al., 2013).  Hanushek et al. (2003) and 

Yeung and Nguyen-Hoang (2016) found that a student’s performance is significantly influenced 

by the achievement of their peers.  Hirschy and Wilson (2002) highlighted the significant influence 

that peer relationships have on classroom norms and how students interact to either encourage 

or hinder their fellow students.  It is because of such research (and observations during the case 

study) that peer influence was included in the CLSM (as described in section 3.4).  But friendship 

relations may be even more important.  Blansky et al. (2013) investigated the relationships 

between students’ academic results and their reported network of friendships.  It was found that 

students tended to move up the class academic achievement ranking if their friends were scoring 

higher grades than themselves.  Additionally, students would tend to move down the ranking if 

their friends scored lower grades than them.  The authors suggested that this social network 

phenomenon might even provide a quick predictor of students’ future academic performance.  

Other researchers developed an ABS that used sociograms (maps of the social relationships 

between students) as a means of predicting students’ academic performance (García-Magariño 

and Plaza, 2015; García-Magariño et al., 2016, 2017).   

During the case study, a simple, three-category ‘Friendships’ questionnaire was piloted.  The 

intention was to establish each student’s friends, non-friends and indifferent relationships and 

use this information in the behavioural rules.  However, it soon became apparent that more would 

be required.   It was observed and reported, by teachers and students, that relationships were 

volatile.  It was not uncommon for friendships to reverse over a holiday, a school trip or a 

weekend, or even a lunch break.  Sometimes best friends, who always sit together, end up fighting 

and the result is feuding parents who instruct the school that on no account should the two sit 

near each other.  Then, a week later, the students are best friends again and want to sit together.  

In other words, although Blansky et al. (2013) were able to find a relationship between academic 

progress over a year and the students’ friendship networks established through one survey, it is 

doubtful that collecting data on friendships once at the start of a study is ever going to be 

adequate for lesson simulations:  it may be necessary to collect this data every observed lesson – 

which is not practical (the teachers in the case study said they would not countenance such an 

exercise).   
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To sum up:  it seems desirable to incorporate student relationships into the model, but it is 

unclear how frequently that data should be refreshed or how that could be accomplished 

efficiently to the teachers’ and students’ satisfaction.  This is a topic for future research.   

9.2.4 Enhanced decision-making logic 

Improvements could be made to the behavioural rules by enhancing the agents’ decision-

making logic.  For example, as explained in point 34 of section 2.6, currently when an agent makes 

a decision about what to do next, only the current state of the other agents is considered, not the 

values of any of their attributes.  But when considering who to propose chatting to, a student 

could consider the chattiness of their neighbours and choose a nearby student who currently has 

a high state 3 (chat) attribute score.  This would be an example of an agent considering the current 

inclinations of other agents.  Decision-making logic could also be extended by taking into account 

when another student was last told off: e.g., if X was told off less than 2 minutes ago then I won’t 

try chatting to him.  This would be an example of an agent considering the history of other agents.   

9.2.5 Understanding model stochasticity 

The model generates a wide range of results for each scenario, primarily because of the 

stochasticity introduced to make the simulated lessons realistic.  The distributions of the output 

metrics (shown in all the boxplots) are the result of the different pseudo-random number 

sequences used in the replications.  Some randomness is needed to avoid robotic behaviour and 

cycles, but the question is how much.  As mentioned in section 7.1, investigations showed that 

one small variation in the pseudo-random number sequence can lead to completely different 

lesson trajectories, all of which seemed to be plausible.  Sensitivity analyses (Chapter 7) could be 

extended to try to establish the minimal amount of stochasticity necessary to produce lesson 

simulations that passed validation tests.  This would require taking each point in the model where 

stochasticity is inserted and systematically reducing the extent of the variability introduced.  

Points in the simulation model where randomness is injected have been listed in the relevant 

sections in Appendix A.  Sensitivity analyses should also be extended to the threshold constants 

built into the CLSM (also listed in the relevant subsections of Appendix A).   It is expected that 

additional empirical data that provided distributions for these constants would help more 

precisely constrain them.  
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9.2.6 Improving model validation 

Conceptual model validation (evaluation of the model rules and assumptions) and the face 

validity tests for simulation model validation involved only three other teachers besides the 

author.  This could be improved, both for this research and future research simply by involving 

more teachers.  The procedures for both should be made more formal and thorough.  For 

example, the procedures should be redesigned to rule out the possibilities that evaluators did not 

understand what they were being shown (e.g., the visual representation of lessons and the 

presentation of summary statics was inadequate and/or confusing) or were simply being 

agreeable or were not participating properly (e.g., choosing at random).  Also, the tests depend 

crucially on how observant the teacher was, their attention to detail.  It was also perhaps 

unreasonable to ask teachers to judge a lesson animation without knowing the lesson plan. 

There is also a more fundamental issue concerning face validity in general:  having a fallible 

human assess just a few simulation results is not adequate when hundreds or thousands of 

replications are needed to obtain a decent overview of the range of outcomes (Edmonds et al., 

2019).  One of the reasons that an ABMS approach was followed was that it can potentially 

provide agent-level suggestions for causality in agent interactions and their consequences 

(mentioned in section 1.3).  This is obviously attractive but it is not easy for a human to follow the 

multiple sequences of interactions that happen in a lesson.  More face validity testing could be 

undertaken, or alternatively testing of replications could be automated – although this just 

displaces human activity onto checking the consistency and completeness of the logic in the 

automation.   

 A more radical action would be to redevelop the model participatively (Tako and Kotiadis, 

2015), using focus groups of teachers and students to postulate the behavioural rules they seem 

to follow and explain why they did what they were observed to do (e.g., discipline or not 

discipline, chat or just sit).  This would be expected to improve the generality and realism of the 

conceptual model. 

Despite these concerns, sometimes people (teachers and non-teachers) have commented 

that the model is not telling us anything new, that ‘we know that – it’s obvious’.  They point out 

that, for example, teachers know that when one is helping a student other students may 

misbehave behind one’s back, or that one can never be sure that a seating rearrangement will 

improve the next lesson.  Non-teachers speak from their experiences as students; teachers speak 

from their experiences as teachers and as students.  This is a well-known phenomenon in ABS 
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research: others assert that the results are trivial or obvious (Eberlen, Scholz and Gagliolo, 2017).  

To quote from these authors: 

This is similar to hindsight bias in classic experiments. There are two scenarios: First, by 
creating an ABM, we have realized that the results are actually trivial – in this case, the 
ABM has fulfilled its use as a thinking tool. Second, the possibly unexpected result seems 
suddenly more plausible than the initially predicted outcome. Differing from a real-world 
experiment, here, we have the support of the implemented ABM that the surprising result 
is actually the outcome of the dynamics programmed into the model. 

(Eberlen, Scholz and Gagliolo, 2017, p. 157) 

 

However, although intended to challenge the value of the research, these comments are 

actually further confirmation that the model does reflect people’s experience in lessons and does 

reflect the mental model that people have about what happens in classroom lessons.  The 

comments increase confidence that the model (so far evaluated only by the author and the three 

teachers involved in model validation) is a generally satisfactory representation of lesson 

behaviours.  It is also possibly an exaggeration to say that everyone knows: a newly qualified 

teacher has a lot to learn and could gain insights through lesson simulation experiments. 

9.3 Issues with the CLSM and with ABMS in general 

Many authors have expressed concerns about the use of ABMS, but papers published ten 

or more years ago are often out-of-date (and often the criticisms applied to all modelling and 

simulation approaches not just ABMS) – see Manzo and Matthews (2014) for this discussion.  On 

the other hand, many researchers have recognized the potential benefits of ABMS.  For example, 

in sociology there were concerns about the analysis of mechanisms that generated higher level 

outcomes from the actions of low-level entities (known as the transformation problem, or micro–

macro transition) (Manzo and Matthews, 2014).  ABMS have since demonstrated that one can 

reliably apply a generative approach to determine the potential macroscopic implications of 

multiple local micro-level interactions (Epstein, 2008; Manzo and Matthews, 2014). 

Nevertheless, there are still many valid concerns that apply to this research project.  The 

following list is based on points raised by, amongst others, Manzo and Matthews (2014), Gómez-

Cruz, Loaiza Saa and Ortega Hurtado (2017), Eberlen, Scholz and Gagliolo (2017) and Nuno, Nuno 

and Agostinho (2017). 
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9.3.1 Agent attributes, empirical data and model parameters 

In ABM there is often a concern that a model of a very complex system may have a large 

number of free 20 parameters.   In section 2.1, classroom lessons were categorised as complex 

systems, and in the case study they were seen to be extremely diverse and that each one was 

unique.  It was noted that: 

• students reported they felt different and interacted differently according to their seat position 

and whether they sat with friends; 

• behaviour in different subjects differed, e.g., science lab work vs art classes vs historical role 

play vs mathematics investigations; 

• students had different relationships with different teachers; 

• different teachers had different attitudes towards and tolerances for chatting, asking 

questions, behaviour in tests, the amount of help given, etc.; 

• teachers typically planned a variety of activities, some of which a student might enjoy more 

than others or be more competent and successful in - for example whole class teaching, 

working alone, working in pairs, group work, competitive or cooperative activities, exercises 

or investigations, more quiet work or more discussion. 

 
As declared at the outset, the intention was to construct a model that was as realistic as 

possible, capable of representing a wide range of behaviours, particularly those observed during 

the case study.  For a classroom lessons behavioural simulation model to be widely applicable it 

would need to accommodate the changes in behaviour caused by: 

• different classes and age groups with a wide range of student characteristics (such as 

academic level, academic potential, special educational needs, health issues); 

• different teachers with different approaches to behaviour management and one-to-one 

support; 

• different subjects - since subject lessons can be taught very differently and students find 

different subjects more or less attractive and have different proficiencies in them; 

• different rooms with different layouts and different student seating arrangements; 

 

20 Defined by Edmonds et al. (2019) as ‘not determinable using measurement from the target of modelling, even in 
principle’. 
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• different lesson plans (e.g., different balances of  whole class teaching, working alone, working 

in pairs, group work, competitive or cooperative activities, exercises or investigations, more 

quiet work or more discussion). 

 
In other words, the simulation algorithm would need the above inputs in order to generate 

reliable results.  If any of these factors were omitted the simulation outputs would likely be less 

reliable.  When a stochastic simulation model is given identical inputs, different replications will 

generate different outputs because of the different pseudo-random number sequences.  The 

distribution of results is more likely to be reliable if all the factors above are considered.  But in 

order to take a factor into account, empirical data is needed for that factor.  Because teachers, 

TAs and students behave so differently in the different lessons, if one wants to model a particular 

class in lessons with a particular teacher teaching a particular subject in a particular classroom 

room with a particular seating arrangement using a specific lesson plan, then ideally one needs 

empirical data on such a scenario.   

It was explained in section 1.3 that, in an ABMS, agent attribute values are typically used in 

the decision-making process.  This means data are needed to supply those values.  To satisfy the 

needs listed above requires a significant amount of detailed data.  For example, suppose a latent 

construct21 strictness was proposed for teachers.  The teacher agent could be assigned a strictness 

attribute that would be used in deciding when and how much to discipline a student.  This cannot 

be a fixed value for that teacher in all lessons.  As explained, each teacher was observed to have 

varying tolerances for misbehaviour with different classes, in different subjects, in different 

rooms, with different seating arrangements and during different types of lesson activities.  There 

would need to be a strictness function that took into account the class, the subject, the classroom, 

the seating arrangement, the type of lesson activity, as well as the factors currently incorporated 

in the teacher decision-making logic. 

A similar situation applies to students.  Suppose a latent construct compliance was proposed 

for students.  Student agents could be given a compliance attribute to reflect their inclination to 

adopt the expected state and not disengage.  Students were observed to have varying degrees of 

compliance with different teachers, subjects, rooms, seating arrangements and lesson sections.  

 

21 A latent construct or variable is used when one cannot observe a property directly.  Instead it is inferred from an 
index combining measurable variables.  For example, there is no ‘thermometer’ for measuring teacher strictness so 
it would need to be inferred from other variables. 



 

 
166 

 

There would not be a fixed value for a student’s compliance attribute that suited all lessons.  As 

explained, each student was observed to behave differently with different teachers, in different 

subjects, in different rooms, with different seating arrangements and during different types of 

lesson activities.  There would need to be a compliance function that took into account the 

teacher, the subject, the classroom, the seating arrangement, the type of lesson activity, as well 

as the factors currently incorporated in the student decision-making logic. 

Despite having empirical data from 21 1-hour lessons involving 6 subjects, 6 teachers and 

52 students, these were insufficient to support the use of a strictness or compliance function, or 

other comprehensive functions that would need such detailed data to determine values for 

proposed attributes.  Creating latent constructs as agent attributes on a sound theoretical and 

empirical basis and assigning empirically-derived values to them is an ideal approach.  But it still 

requires sufficient data and the only data available were the 21 lesson observations recording the 

sequences of states for each agent.  Whatever method (e.g., Principal Component Analysis) 

employed to derive latent constructs, it would be using that state data.  As explained in section 

2.4, it was decided that the student states would form attributes directly.  But the same issue 

applies to student state attributes.  Consider for example the state 3 (chatting) attribute.  

Students were observed to chat in different lessons to varying degrees, apparently varying with 

different teachers, different subjects, different rooms, different seating arrangements and during 

different types of lesson activities.  There was still not enough data to cover each of the factors 

listed above.  Hence a different approach was adopted:  the empirical data for all lessons, teachers 

and classes were combined to derive distributions and average values for each type of lesson 

activity (lesson plan section – see section 3.2).  But, as discussed above, using an average value 

would not assist reliable simulation – for greater confidence it would need adjustment to suit the 

specific scenario being simulated.  Hence model parameters were introduced to adjust these 

distributions and averages to the particular class with a particular teacher teaching a particular 

subject in a particular classroom room with a particular seating arrangement. 

In building a complex model following the ‘keep it descriptive stupid’ (KIDS) approach 

(Edmonds and Moss, 2005), one expects to have many parameters as there will be many aspects 

about the system that are unknown, possibly unmeasurable.  With empirical data it is often 

possible to fix a parameter at a specific value or constrain it to an interval, a range of values.  In 

this research, model parameters that have been fixed (based on empirical data or observations) 

have been termed model constants as they are constant across all the lesson models.  (They are 
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declared in the simulation code in a separate ‘GlobalConstants’ module.)  Being derived from the 

empirical data they are thus specific to the case study people, i.e., certain people in one specific 

school over one particular period, and therefore may not be appropriate for another school. 

There are 11 free parameters in the CLSM.  (Technically, the random number generator 

seed is another parameter, as is the number of simulation replications.  One can get quite 

different results from running more replications – as was seen during model calibration when 

after 500 replications a parameter set could be discarded despite being the best after 80.)  With 

sufficiently detailed empirical data, the two teacher-lesson parameters, TSOL and TMT, and the 

TA-lesson parameter TASOL, could be replaced by agent attributes: the teacher’s inclination to 

offer one-to-one support and tolerance of misbehaviour, and the TA’s inclination to offer one-to-

one support.  CSE, currently considered a lesson attribute, could become redundant too.  The 

seven class-lesson (or student-lesson) parameters currently adjust the behaviour of the entire 

class of students in that lesson.  With more detailed data they too could probably be replaced 

with student-specific attributes (assuming the initiator of interactions could be recorded, where 

appropriate): 

• SSRW by inclination to ask for assistance; 

• SIW by inclination to initiate an interaction; 

• IRW by inclination to respond to an interaction; 

• Peer-Weight by the extent to which a student copies their peers’ behaviour; 

 
With sufficiently detailed data – which includes the relative state frequencies for each 

student in all the scenarios listed at the start of this subsection - the remaining three parameters 

(RLESW, RLDW and RLOW), which also adjust the entire class of students, could also be 

eliminated.  If they were, then there would be no free parameters, only model constants derived 

from the empirical data.  No calibration would be needed, or possible.   

Of course, this would all require a complete revision of the conceptual model, with new and 

updated rules.  However, parameters also act as scaling factors for another type of unknown: the 

relative importance of parameters and attributes in decision rules.  In the CLSM, besides adjusting 

average behaviour to the specific lesson (teacher, class, subject, classroom, lesson activity) 

(explained in section 4.1), the parameters enable the relative importance of other parameters 

and agent attributes to be taken into account in the behavioural rules.  Even with extremely 

comprehensive empirical data, there would still be a need for a mechanism to adjust the relative 
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importance of factors.  For example, when a student is considering whether to chat (state 3) or 

not, the following influences/factors need to be weighed up and combined: the student’s 

historical state 3 relative frequency, the states of other students, the student’s IRW and the 

current disciplinary environment (summarized by the misbehaviour reduction factor: a factor that 

takes into account the time since the student was last disciplined and the teacher’s proximity 

(explained in section A.3.4).  Hence the unknown relative weightings of factors necessitates the 

introduction of some free parameters. 

9.3.2 The empirical data, model calibration and generality 

The empirical data used to calibrate the model were specific to certain people in one specific 

school over one particular period.  These data are not representative of all UK students, teachers 

and schools.  Further, the model parameters were tuned to specific lessons.  Currently the CLSM’s 

generality is uncertain, whether it could be applied at other schools and how useful it would be.  

The model may turn out to be suitable in other settings, but only additional case studies could 

determine whether the rules and assumptions were generally applicable.  Some degree of 

generality (Edmonds and Gershenson, 2015) is essential otherwise a simulation model is of 

limited practical value.   Fortunately, all the experiments – particularly experiment 4 – indicated 

that the CLSM has plausible generality beyond the empirical lessons of the case study.   

There is also a concern about the arbitrary ±25% tolerance that was added to the empirical 

metric ranges used to decide whether simulation outputs were realistic.  If the metric 

acceptability criteria were too tolerant this would lead to a high proportion of parameter sets 

passing the calibration tests (as was experienced) even though their outputs were actually 

unrealistic.  This would help explain why some lesson models would subsequently fail validation 

tests. 

Furthermore, when comparing simulation outputs to empirical data, arbitrary (but 

conventional) criteria were applied (such as using a 95% confidence interval and requiring that it 

lie within a user-specified ±7.5% tolerance interval – see section 4.4).  How similar do simulation 

and empirical results need to be for the model to be considered valid?  Chattoe-Brown (2014) 

expressed the opinion that this could not be decided a priori and suggested that this would be 

‘best addressed by a sequence of ABM, each justified by improving on the last’  (Chattoe-Brown, 

2014, p. 15).  As mentioned in section 4.2, this is how the CLSM was developed, by successive 

enhancements intended to increase simulation realism.  But if there were a large difference in 
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empirical and simulated lesson outcomes, would that mean the model was inaccurate or could it 

be that the observed empirical lesson was atypical?  Only further case studies could answer these 

questions satisfactorily.   

Also, the parameter sets found during calibration are almost certainly only local optima.  

Resource constraints (especially time) meant that a comprehensive search of the parameter 

space was infeasible (as explained in Chapter 5).  This means that some lesson models could 

probably be improved and those that did not pass the validation procedures might actually pass 

with a better parameter set.  It would also be worthwhile improving parameter estimation to 

search for one parameter set that would make all lesson models calibratable and pass the 

validation checks.  In an initial investigation into this possibility, each of the validated parameter 

sets for the four validated lessons was applied to the other three validated  lessons.  Each of these 

12 combinations was subjected to the validation procedures (apart from face validity tests) 

described in section 6.2.  The results were that none of the parameter sets suited other lessons: 

all versions of the lesson models were rejected as insufficiently close to the empirical lessons.  

This is some additional justification for instantiating the CLSM per lesson, but it does not mean 

there definitely is no one parameter set capable of being validated for all the lessons. 

9.3.3 Variability of simulation results 

As has been explained (e.g., in section 9.2.5), stochasticity was built into the model to 

emulate some of the apparently random variability in activities/choices in lessons (known as 

aleatoric variability 22 ).  This means that each simulation run, using a different PRNG seed, 

generates different outcomes.  Modellers merely combine the results to form a distribution for 

each output metric.  Manzo and Matthews (2014) reported that some researchers expressed 

concerns with the uncertainty in the simulation outcomes, with some advising that the focus 

should be on comparing distributions not comparing a single measure of central tendency (as 

many were accustomed).  This is exactly the approach taken in this research.  By taking all the 

empirical lesson and student data, for all teachers, subjects and classrooms, an estimate of the 

aleatoric variability in lesson outputs was obtained.  One of the checks during calibration and then 

validation was that the simulation distributions were realistic, i.e., fell withing the empirically-

 

22 Aleatory uncertainty or variability is the intrinsic uncertainty due to the random variability that one assumes applies 
to human behaviour (assuming that people’s behaviour is not ultimately deterministic, that people do express free 
will which is not predictable). 
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observed ranges (±25%) (see section 4.3) and adequately matched the empirical lesson they were 

representing, i.e., the metric distributions were not only realistic, but they also comfortably 

encompassed each empirical metric value. 

The variability in simulation outcomes is not a problem - it is exactly what is required.  As 

Thiele (2014, p. 4.5) expressed it:  ‘variation in model output represents variation in reality’.  

Teachers do not expect the ‘same’ lesson to turn out the same each time.  Teachers during the 

case study explained that, in their experience, one could never be certain how a lesson would 

turn out.  The same activities worked fine with one class, but not with another.  Randomness was 

essential for realism.  A range of possible outcomes was expected and desired.  What was required 

was that the distribution of outcomes met teachers expectations.  The reasons at the micro-level 

were also required to be plausible, e.g., teacher helped Y instead of X, or student X chatted to Z 

instead of Y – the sort of alternatives discussed in Experiment 1, in connection with Figure 8-9 in 

section 8.1.2.3.   

9.3.4 Using sensitivity analysis during model calibration 

Many researchers conduct sensitivity analyses to investigate the behaviour of a validated 

simulation model (Robinson, 2013), as was done in this research (see Chapter 7).  Sensitivity 

analysis is seen as a check on the stability of a validated model in response to changes in 

parameter values and input data, and also as an exercise in identifying which parameters have 

the greatest impact on the output metrics (Robinson, 2013).  Often, this type of analysis is 

considered part of the simulation validation process, as behavioural validation: checking that the 

simulation is behaving in a reasonable manner.  However, there is an argument that sensitivity 

analysis should play a role during parameter estimation (calibration), before simulation model 

validation.  For example, consider one model parameter and suppose a search of the parameter 

space yielded two ranges that resulted in optimal simulation output: (1.9,2.1) and (7.2,9.3) – see 

Figure 9-1.   What parameter value is best:  the more sensitive 2 or the less sensitive 8? 
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Figure 9-1  Which parameter value is better: 2 or 8? 

Where different optimal values provide approximately the same simulation macro-level 

outputs, it may be sensible to choose a parameter value, or a smaller range of values, precisely 

because it is more or less sensitive.  In the case of a social simulation model with many 

parameters, all with their own ranges, with multiple optimal solution spaces, which solution sub-

space should be preferred?  One could argue that the choice depends on how the real world 

system is expected or known to behave.  For example, in a lesson where the students are 

constantly seeking help, the teacher’s own tendency to offer help may be almost irrelevant: any 

value for the TSOL parameter gives the same range of output metrics.  In other situations, a value 

may be a tipping point, a critical value (perhaps the teacher’s TMT value).  As has been mentioned 

before, in classroom lessons a small action by the teacher, disciplining too strongly or too 

leniently, can lead to dramatically different lesson trajectories and outcomes.  The model should 

be appropriately less or more sensitive depending on the scenario.  Ultimately, the choice of 

parameter values involves understanding the required sensitivity of the simulation model to the 

range of acceptable values, therefore it may be reasonable that sensitivity analysis be a part of 

parameter estimation. 

9.3.5 The validity of the conceptual and simulation models 

As stated in section 6.4, just because a lesson model passed the validation tests does not 

mean that the model is correct.  Manzo and Matthews (2014, p. 446) pointed out that: ‘the 

congruence between simulated and real macroscopic structures is not proof in itself of the realism 

of the microscopic and relational details designed to generate the macroscopic structures’.  They 

also noted that a modeller should have ‘accurate data on the macroscopic structure of interest’ 

and ‘sound theoretical and empirical reasons to believe in the microscopic specification of the 

model’ (ibid., 448).  But, as Gómez-Cruz, Loaiza Saa and Ortega Hurtado (2017, p. 323) noted for 

‘complex organisational systems’ (of which classroom lessons are surely one): ‘it is not possible 
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to abstract these assumptions completely or univocally’.  They also stated that: ‘There are no 

standardized models that guarantee verification and validation in ABS’.  There is currently no 

standardised procedure for validating (and verifying) an ABMS, in general or in specific contexts 

(e.g., social simulation or school lessons) (Nuno, Nuno and Agostinho, 2017). 

To reduce the chances that the CLSM included incorrect assumptions or incorrect rules, or 

excluded essential rules, it was developed following an empirically-based, critical realist informed 

grounded theory approach (mentioned in section 1.5), using observations from a case study.  It is 

also recognised that there could be other models, based on different assumptions, different agent 

attributes and different behavioural rules, that could generate equally realistic interactions and 

outcomes at all levels, micro, meso and macro.  It is a matter for debate whether we need to be 

concerned or not that multiple ABMs with different behavioural rules could generate the same 

macro-level outcomes (Chattoe-Brown, 2014). 

As mentioned in section 1.5.1 , it is generally impossible to prove that an ABMS has no errors 

or bugs (Galán et al., 2009; Norling, Edmonds and Meyer, 2018), so standard software 

development practices need to be employed to reduce the chances of errors and confirm that a 

simulation is operating correctly.  Although extensive testing took place over two years, there 

could still be errors in the code that have led to incorrect simulation outputs.  Additional testing 

of the almost 10,000 lines of NetLogo code would be worthwhile. 

There are many questions that this project has not addressed, but these are still to be 

properly addressed for ABMS in general.  Even if a simulation model has passed rigorous tests, 

one cannot say that the model rules are real in the sense that the people actually make decisions 

using that logic, and there is still uncertainty about transferring simulation results and 

explanations to the real-world.  As Eberlen, Scholz and Gagliolo (2017) wrote: 

Another pitfall of ABMs is to take the implemented procedure based on the theoretical 
assumptions and results model as the mirror image of the same processes and 
observations in the real world. While the model can serve as a “proof of concept”, it 
cannot be conclusive evidence by itself. 

(Eberlen, Scholz and Gagliolo, 2017, p. 157) 

9.3.6 Prediction of ‘possible futures’ 

It might be tempting to use the CLSM for predictive purposes, even though the CLSM was 

developed as a theoretical explanatory model not a predictive model, for which a different 

methodology would have been followed (as discussed in section 1.2).  Nevertheless, the 
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experiments were subjunctive in nature, exploring ‘possible futures’ in specific ‘what-if’ scenarios 

(Nuno, Nuno and Agostinho, 2017).  Further research could establish whether the CLM is 

sufficiently accurate and robust to be used for prediction, in certain restricted circumstances.  The 

CLSM could be tested empirically, by making predictions about an intervention (e.g., a seating 

rearrangement) and comparing the simulation results to what happens when the intervention is 

actually implemented.  Although one could conduct experiments with artificial classes, it would 

be worthwhile to conduct further case studies and collect before and after data.  This type of 

empirical experiment has many practical challenges though, such as inconsistent student 

responses due to the novelty of the situation, key students being absent from some lessons, 

different behaviour choices (e.g., teacher helps student X instead of Y, or a student chats to the 

person on the left instead of the right), and deviations from the lesson plan.  The proposed 

intervention would need repeated testing. 

Whatever its purpose though, a simulation can always stimulate thought and discussion.  As 

Epstein (2008, p. 2) wrote: ‘It is important to note that in the policy sphere … models do not 

obviate the need for judgment. However, by revealing tradeoffs, uncertainties and sensitivities, 

models can discipline the dialogue about options and make unavoidable judgments more 

considered.’  

9.4 Further classroom research using the CLSM 

There are many topics in classroom research that could benefit from simulation.  For 

example, the CLSM could be used to investigate some of John Hattie’s arguments and research.  

He has argued (and demonstrated statistically) (Hattie, 2005, 2015) that class size is relatively 

unimportant regarding student learning.  Using the CLSM, it would be possible to create classes 

of various sizes (with the same proportions of student profiles and the same lesson plans) and 

investigate the consequences of class size on overall productivity and behaviour.  According to 

Hattie, if the teacher does not change his/her teaching approach then learning is affected.  This 

means that one would expect simulated overall productivity to decline as class size increases.  But 

Hattie’s main point is that a teacher should not try to teach a large class in the same way that they 

teach a small class: the teacher needs to adapt how they teach, what activities the students 

should engage in, etc.  This advice could be investigated by running simulations using different 

lesson plans and altering the teacher-lesson parameters for one-to-one support (TSOL) and 



 

 
174 

 

misbehaviour tolerance (TMT).  Each lesson plan could break the lesson up into more or fewer 

sections, of different activity types. 

Similarly, Hattie (2012) highlighted the relative unimportance of grouping students on 

ability.  By creating appropriate profiles, one could easily create two groups of students that 

would be conventionally classified as higher and lower engagement.  Simulations could be run on 

these separately.  Then the classes could be mixed so that two mixed-ability classes were created.  

The same simulations could be run for these (same teacher parameter values, same lesson plans).   

The CLSM could be used to perform a variety of other experiments, whether aimed at a 

specific class or subject or teacher, or completely hypothetical.  Below are a few examples. 

• How are lessons affected by the absence or presence of influential students?  Which student 

is the most influential in the class?  One could leave out each student in turn and inspect the 

difference in lesson outcomes. 

• By adding disruptive/chatty students, one at a time, see if there is a point when a class is badly 

disrupted – in other words, find how many disruptors the teacher can cope with (for example, 

maybe 3 is manageable but 5 is disastrous).  Does this vary with the teacher, the class or the 

subject?  Or does it seem to be general? 

• The model could be used as an optimization tool.  For example, it could be used to find the 

seating arrangements that generate the greatest overall productive time.  Or it could be used 

to find the lesson plan structure that maximizes overall class productive time and student 

participation, subject to constraints such as, say, having between 3 and 6 sections in the 

lesson. 

9.5 Conclusions 

The primary objective of the research project has been met.  The CLSM has shown how an 

ABMS can adequately represent the behaviours of, and interactions between, students, teacher 

and teaching assistant in classroom lessons at a UK secondary school.  It has also shown that it 

does this to the extent that it could be a useful tool in improving understanding of the dynamics 

of classroom lessons and investigating theories about lesson behaviours.  One justification for this 

conclusion is, as Chattoe-Brown (2014, p. 15) expressed it: ‘we think we know how this particular 

aggregate pattern arose because we have been able to generate it in the ABM using only micro 

social processes for which we have at least some independent empirical support’.  For example, 

the CLSM illuminated the influence on lesson disruption of factors such as the teacher’s 
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inclination to provide individual assistance and the students’ inclinations to chat.  It was also able 

to realistically simulate completely artificial classes.  It seems that the CLSM is a generic model 

that has faithfully represented the mental model that the author and the three validation 

teachers use to explain what happens in lessons.  Furthermore, when the CLSM generates 

outcomes that appear unsurprising or obvious, this indicates that the CLSM does reflect the 

mental model that people in general have about what happens in classroom lessons.  

This research is considered to have an impact in several ways: 

(i) The models of teacher, TA and student behaviour are novel, first of their kind contributions 

to classroom behavioural theory;  importantly, they were developed on the basis of empirical 

observations, not merely theory. 

(ii) By constructing a complex and highly realistic model of classroom lessons, this research has 

extended the application of ABMSs in the area of complex social systems; others can use and 

modify the model. 

(iii) The NetLogo-based implementation of the model (available at Ingram (2020a)) is free for 

anyone to use and modify and can be used to setup and simulate an enormous range of 

classroom lessons. 

(iv) The Lesson Event Recording Tool (LERT) (available at Ingram (2018)) is a practical 

contribution to classroom data collection and quantitative research (having already been 

customized for another university research project), with several advantages over other data 

collection methods.  Empirical lesson data collected using the LERT can be used for lesson 

analytics in support of educational decision-making.  For example, collected data could be 

used to quantitatively determine to what extent what is supposed to happen in lessons is 

actually happening.  It is possible that observing what actually happens in lessons could 

provide evidence to compare against what the headteacher or senior management team or 

governing body think happens in lessons.  For example, if one student has been identified as 

requiring attention of some sort, data could be collected to determine if this is actually 

happening (regardless of what is written in the documentation, e.g., the student’s individual 

education plan).  Teachers might also be interested in an analysis of how they teach in terms 

of the amount of time invested, e.g., teacher-centred, learner-centred, content-centred, 

interactivity.   
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(v) The metrics and methods that were designed to quantify and compare lessons and then used 

to calibrate and validate the simulation model, extend the application of ABMS in the area 

of classroom research;  

(vi) The behavioural rules took into account the relative spatial locations of others; the 2D 

visualizations used to represent the classroom and the interactions in lessons were novel and 

can be used by others. 

 
A final note:  If it were easy to predict the consequences of specific scenarios and 

interventions, there would be no need for lesson simulation.  It is because lessons are so 

unpredictable that we attempt to use simulations to investigate consequences.   
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Appendices 

 

Appendix A Further details of the CLSM 

This chapter provides additional details to those in Chapter 3. 

A.1 Teacher behaviour 

The teacher agent follows the algorithm shown in Figure 3-3, which loops repeatedly 

through a set of production rules that determine the activity for the next time interval.  An 

informal description of these teacher behaviour rules is shown in the box below.  Written from 

the perspective of the teacher, they were thought to embody the selected teacher behaviour and 

activities.  On each cycle, the algorithm moves through the list of rules until an applicable rule is 

found - the remaining rules are ignored.  If no other rule applies, the final rule has the teacher 

perform the default activity specified in the lesson plan (explained in section 3.2).  Briefly, the 

rules consider the following sequence of decisions the teacher agent needs to make: 

Should I be disciplining the class? 

Should I be disciplining an individual? 

Should I be answering a question? 

Should I be praising someone? 

Should I be whole class teaching? 

Should I be helping an individual? 

Should I be offering help? 

Should I talk to the TA? 

Otherwise I should be doing what the lesson plan stipulates. 

 

The Teacher Behaviour Rules 

 

Do what the lesson plan says (stay in or enter the primary planned state) but handle the 

following exceptions, including dealing with misbehaviour and providing one-to-one support. 

 

1. If at any time a student is seriously disruptive (student state 2 or 3 with Range 3), according 

to my misbehaviour tolerance, discipline them (state 1) for a suitable amount of time.  

Treat state 2 as more serious than state 3 so intervene earlier. 
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If I have been disciplining a student for a suitable amount of time, then stop and do what 

the lesson plan specifies; otherwise continue. 

 

2. If there is generally too much messing about (student state 3 or 4), according to how long 

the messing about has persisted and according to my misbehaviour tolerance, then for a 

suitable amount of time remind the class to focus on the activity (state 5).  Treat state 3 as 

more serious than state 4 so intervene earlier. 

If I have been disciplining the class for a suitable amount of time, then stop and do what 

the lesson plan specifies; otherwise continue. 

 

3. If at any time a student proactively participates in the teaching activities (e.g., student state 

10 or student interacts in student state 12, 13), give that student some appropriate praise 

(state 11) for a suitable amount of time. 

If I have been praising a student for a suitable amount of time, then stop and do what the 

lesson plan specifies; otherwise continue. 

 

4. If the lesson plan says it is time to move on to a new section, then conclude what I am 

doing and change to the prescribed new activity state. 

 

5. If a student asks a question during whole-class teaching, then provide an answer (state 

10).  If I am answering a question (state 10) check if I have answered long enough.   

If I have, stop and do what the lesson plan specifies; otherwise continue. 

 

6. If a student asks a question while I am not whole-class teaching, then provide an answer 

in the context of one-to-one support (state 13).  If I am providing one-to-one support 

(state 13) check if I have answered long enough.  If I have, stop and do what the lesson 

plan specifies; otherwise continue. 

 

7. If I am helping someone but I am supposed to be whole-class teaching (state 12) - so just 

a little help is called for - check if I have been helping long enough.   

If I have, stop and do what the lesson plan specifies; otherwise continue. 
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8. If the students are expected to be doing individual work (state 8) or group work (state 9) 

and I am helping a student (state 13) then check if I have been doing this for long enough.  

If I have, stop and do what the lesson plan specifies; otherwise continue.  

 

9. If I am not helping anyone but I could, and someone has asked for help, then help that 

person. 

 

10. if I am not helping anyone and I am available to help someone (which means states 4, 7, 8, 

15) and it has been a while since I helped anyone (this length of time varies according to 

my nature to intervene and according to how long I have not been helping anyone) then: 

a. choose someone who is not being helped by the TA and appears to be doing nothing 

(student state 4 or 7) or is chatting (student state 2 or 3), but not someone who has 

recently received help, and go and offer support to him/her.  

b. otherwise (so as to allow students time to think and work) 

(i) if the TA is not busy and it is not too recent that I spoke to the TA, then confer 

with the TA (state 15); 

(ii) otherwise start/resume the main activity as specified in the lesson plan for that 

time. 

 

11. If none of the above situations apply, the teacher starts/resumes the main activity as 

specified in the lesson plan for that time. 

 

The rules require the existence of several variables and constants.  Some of these apply at 

the agent level, some to the whole lesson.  Some constants apply to all lessons - they are model 

constants.  Figure A-1 summarizes the required data and Table A-1 defines the teacher-related 

model constants.  Besides these variables and constants, the teacher agent was given additional 

attributes to enable useful animation and reporting.   

During the case study, teachers were observed making decisions about when to react, how 

to react and for how long to react to students.  The reactions may have been triggered by specific 

events, or by the frequency or duration of earlier events.  But these triggers, thresholds and 

durations seemed to vary across lessons and across teachers.  Even for one teacher, they would 

vary within a lesson.  To make teacher behaviour more realistic, stochasticity was added in various 

places, allowing the thresholds to vary within a lesson.   
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Figure A-1  The data required for teacher agent behaviour modelling 

The specific places were: 

• anticipated state duration – explained in Appendix 1.1.1.1.1B.1; 

• when to offer help; 

• which student to help; 

• response time to discipline (thresholds to wait until): this is set differently for 4 types of 

teacher state and 3 types of student state, each combination having a different amount of 

randomness added, e.g., if the teacher is whole class teaching then each student will be 

allowed to chat (state 3) for (4 + random 3) seconds, set on an individual basis; 

• additional random threshold for when to tell the class off (state 5) depending on number of 

students in the class; 

• movement in front of class (which alters distance from individual students); 
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• the choice of a free location near the student being helped. 

 

Table A-1  Teacher-related model constants 

Constant name (Abbrev.) Value Description 

TEACHER-MIN-HELP-WAIT 240 s 

minimum time (seconds) between teacher 

helping a student again; also used to generate a 

random in [0,240] to add to this minimum 

TEACHERS-MISBEHAVIOUR-

TIME-THRESHOLD 

(TMTT) 

600 s 

the period over which student misbehaviour is 

remembered by the teacher – this is used to 

cater for persistent but intermittent 

misbehaviour (low-level disruption) 

TIME-LAST-WITH-TA-

THRESHOLD 
300 s 

the minimum amount of time between teacher-

TA interactions 

LESSON-SECTION-HELP-

DELAY-PARAMETERS 

λ=160, 

k=0.86, 

max=650 s 

when students have been set to work, the 

teacher observes for a random amount of time 

before offering 1-to-1 help; a cumulative Weibull 

curve fitted to empirical data:  

1 - exp(-(t/λ)k) 

 

Teachers were observed to move around the classroom.  In general, teachers appeared to 

either: 

• occupy their designated seats; 

• stand in the front or to the side of the class and move randomly from there; 

• pace across the front of the class; 

• move to individual students and back to their preferred neutral position. 

 

 As explained in section 3.5, the simulation code therefore needed to generate realistic 

random movement of the teacher.  The position of the teacher matters especially because 

student behaviour was made to vary according to the proximity of the teacher. 
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A.2 TA behaviour 

An informal description of the TA behaviour rules is shown in the box below.  Written from 

the perspective of the TA, they were thought to embody the selected TA behaviour and activities.  

If no other rule applies, the final rule has the TA assume the observing state.   

 

The TA Behaviour Rules 

 

1. if the teacher is whole class teaching or disciplining (teacher in state 5, 9, 10 or 12) 

 then cancel any current student interaction and move into observing state 7 

 
2. if the teacher is wanting to talk to me or is talking to me (teacher is in state 15) 

 then I go into/stay in state 15 (and cancel any current student interaction if necessary) 

 
3. if a student is wanting/having 1-to-1 support (student is in state 15) 

 then go into/stay in state 15 - the student will decide when to stop 

 
4. if I am out of class (state 16) 

 then  if it is time to return 

   then move into observing state 7 

   else stay out 

 
5. if I am free (not helping anyone, state 7) 

 AND the teacher is not talking to me 

 AND the lesson plan allows TA support for students (student state 15) 

 AND  I feel like offering support  

 then  look for a student to help (someone in state 2, 3, 4, 6, 7, 8 or 9 

      who has not been helped for a while 

  if a student was found 

  then offer help to him/her by adding them to the TA-Allocated-To list 

    go into state 15  

     (the student will enter state 15 when they next consider what to do)  

 
6. if none of the above rules apply 

 then move into observing state 7 (and cancel any current student interaction if necessary) 
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However, the TA behaviour algorithm operates quite differently from the teacher and 

student algorithm.  Although TA behaviour can be viewed in a similar way to that of a teacher, as 

a job description, observations during the case study led to the viewpoint that the TA was more 

like a resource utilized by the students as required.  TAs first respond to the teacher, then the 

students and only then act proactively.  So, even though the TA is an autonomous agent, the 

teacher and students control the TA to a great extent.  To reflect this, rules 1 and 2 were placed 

in the teacher ruleset and rule 3 in the student ruleset.  The teacher or student sets an anticipated 

state duration for their contact with the TA and manages situations where that contact would be 

ended prematurely.  The teacher and students also run code to organize moving the TA agent. 

The TA is also affected by the lesson plan and is available for student support only when the 

lesson plan indicates this, normally when the students are expected to work alone (state 8) or 

with others (state 9 or 14).  The rules required several variables and constants.  Some of these 

apply at the agent level, some to the whole lesson.  Some constants apply to all lessons - they are 

model constants.  Figure A-2 summarizes the required data and Table A-2 defines the TA-related 

model constants.   Besides these variables and constants, the TA was given additional attributes 

to enable useful animation and reporting. 

 
Figure A-2  The data required for TA agent behaviour modelling 
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 Table A-2  TA-related model constants 

Constant name Value Description 

MAX-TA-CAN-

HELP 
3 

maximum number of students the TA can help simultaneously; 

based on observations this has been set to 3; a student will not 

solicit assistance if the TA is already helping this many students 

MAX-TA-HELP-

DISTANCE 

2 model 

units 

a student can join another student being helped by the TA only 

if close enough; based on observation, this is currently set at 2 

model units, approx. 2.4 m. 

TIME-LAST-WITH-

TA-THRESHOLD 
300 s the minimum amount of time between teacher-TA interactions 

TA-MIN-HELP-

WAIT 
180 s 

minimum time (seconds) between TA helping a student again; 

also used to generate a random in [0,180] to add to this 

minimum 

 

To make TA behaviour more realistic, stochasticity was added in various places, allowing 

the thresholds to vary within a lesson.  For example, in rule 5: 

• I feel like offering support depends on the values of TA-Support-Offer-Level, the model 

constant TA-MIN-HELP-WAIT and a uniform random. 

• the calculation of a while uses the current time, the time TA-last-helped-at, the values of the 

constant TA-MIN-HELP-WAIT and a uniform random. 

• the choice of a free location near the student being helped 
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A.3 Student behaviour 

The algorithm for student agents is more complex than those for the teacher and TA.  To 

summarize the flowchart shown in Figure 3-4, the main stages in student decision-making are: 

1. Am I forced into a state? 

2. Am I waiting for someone to respond to me? 

3. Am I forced to leave my current state? 

4. What states are currently prohibited? 

5. Recalculate all state scores and choose a state. 

This section provides some details about these stages, but first summarizes the inputs 

required for the rules. 

A.3.1 The student variables, constants, attributes and parameters 

The rules require the existence of several variables and constants.  Some of these apply at 

the agent level, some to the whole lesson.  Some constants apply to all lessons - they are model 

constants.  Figure A-3 summarizes the required data.  Besides these variables and constants, the 

student agent was given additional attributes to enable useful animation and reporting.  

The student-related model constants are explained in Table A-3.  Values were chosen based 

on lesson observations and repeated simulation trials.  To give an idea of the level of detail that 

is required by the model, Table A-4 explains the purpose of some of the student variables. 
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Figure A-3  The data required for student behaviour modelling 
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Table A-3  Student-related model constants 

Constant name Value Description 

STATE2-RLDW 0.05 

disruptive states are adjusted using a single Relative-

Lesson-Disruptive-Weight; however, not all the 

disruptive states should be equally impacted by the 

RLDW value;  state 3 is considered to have a weighting of 

1.  Relative to this, state 2 (a more seriously disruptive 

state) is assumed to have a different response. 

STATE15-TA-FACTOR 3 

the increase in the likelihood of a student joining in with 

another student being helped by the TA (state 15) 

compared to just asking the TA for help 

RELATIVE-MRF10-11-12 0.1 

relative to the default effect of the teacher’s discipline, 

misbehaviour is less likely when the teacher is in state 

10, 11 or 12 – hence the misbehaviour reduction factor is 

further reduced (x 0.1) 

RELATIVE-MRF1-5 0.01 

relative to the default effect of the teacher’s discipline, 

misbehaviour is highly unlikely when the teacher is in 

state 1 or 5 – hence the misbehaviour reduction factor is 

further reduced (x 0.01) 

RELATIVE-MRF7-9-15 0.9 

relative to the default effect of the teacher’s discipline, 

misbehaviour is a little less likely when the teacher is in 

state 7, 9 or 15 (all implying some observation) – hence 

the misbehaviour reduction factor is slightly further 

reduced (x 0.9) 

QA-INTERACTION-TIME 240 s 
to prevent students constantly asking and answering 

questions a threshold is used 
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Table A-4  Student agent variables 

Name Description 

max3distance 
distance of furthest student chatting with (state 3); a 

distance of ≥ 2 m is considered as very disruptive 

recent-misbehaviour-record 
misbehaviour in past N minutes, where N is TEACHERS-

MISBEHAVIOUR-TIME-THRESHOLD (TMTT) 

rejected-by list of students who refused to chat or work with me 

ShouldHaveAPartnerButDont? 
flag indicating that student was paired with someone but 

that has been unexpectedly terminated 

TA-last-helped-at 
the time (in seconds) when student was last helped by the 

TA 

teacher-last-helped-at time last helped individually by the teacher 

time3rejected 
time when noticed state 3 (chat) proposal was rejected by 

the proposed student 

time9rejected 
time when noticed state 9 (work) proposal was rejected by 

the proposed student 

 

To make student behaviour more realistic, stochasticity was added in various places, such 

as: 

• anticipated state duration (obtained by randomly sampling from the empirically-derived 

distributions); 

• the order in which students processed; 

• the choice of the next activity state (explained further in Appendix A.3); 

• the choice of someone to interact with, chatting or working; 

• when a student can ask the TA for help. 
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A.3.2 Rules for forced student behaviour 

The first step in the student agent decision-making algorithm was to consider if a state was 

being forced upon the student by the teacher or the TA.  These forced changes could be 

determined by, for example, whether the teacher or TA has targeted the student.  This 

mechanism was implemented using two global lists, Teacher-Allocated-To and TA-Allocated-To.  

Other circumstances could also force a student to leave their current state, the simplest being 

that time is up, the anticipated state duration has passed.  If a student was not already in the 

forced state then these circumstances will force the student out of their current state, so any 

pairings associated with the current state need to be cleared (procedure ClearAllPartnerships).  In 

many cases, the anticipated duration of the new forced state will be determined by the teacher. 

 

Rules for forced student behaviour 

 
At each time instance, select and execute the first rule that applies sequentially from the 

following rules: 

 
1) if I am out of the room (state = 17) 

 then if it is time to return (state-duration > anticipated-state-duration) 

   then set anticipated-state-duration 0 

     go into state 8 

 
2) if the teacher is telling someone off (State-Of-The-Teacher = 1)  

 AND it is me (my ref is in the Teacher-Allocated-To list) 

 then if I am not already in state 1 then ClearAllPartnerships 

   clear my recent-misbehaviour-record 

   set anticipated-state-duration = 0 (this will actually be determined by the teacher) 

   go into state 1 

 
3) if the teacher is disciplining the class (State-Of-The-Teacher = 5) 

 then if I am not already in state 5 then ClearAllPartnerships 

   clear my recent-misbehaviour-record 

   remove my ref from the Teacher-Allocated-To list 

   set anticipated-state-duration = 0 (this will actually be determined by the teacher) 
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   go into state 5 

   
4) if the teacher is answering a question ( State-Of-The-Teacher = 10 ) 

 AND it is my question (Student10OR11 = my ref) 

 then if I am not already in state 10  

   then ClearAllPartnerships (even though this clears my link with the teacher) 

     reinstate my link with teacher (set Student10OR11 = my ref) 

     remove my ref from the Teacher-Allocated-To list 

             set anticipated-state-duration 0 

   go into state 10 

 
5) if the teacher is praising someone (State-Of-The-Teacher = 11) 

 AND it is me (Student10OR11 = my ref) 

 then if I am not already in state 11 

   then ClearAllPartnerships (even though this clears my link with the teacher) 

     reinstate my link with teacher (set Student10OR11 = my ref) 

     remove my ref from the Teacher-Allocated-To list 

             set anticipated-state-duration 0 

   go into state 11 

 
6) if the teacher is giving 1-to-1 support (State-Of-The-Teacher = 13) 

 AND it is to me (my ref is in the Teacher-Allocated-To list) 

 then if I am not already in state 13 

   then ClearAllPartnerships 

             set anticipated-state-duration 0 

   go into state 13 

 
7) if I am being helped by the TA (state = 15) 

 AND the lesson section has changed 

   OR the anticipated state duration has elapsed 

      (state-duration > anticipated-state-duration) 

   OR for some reason the state 15 is no longer possible 

 then stop getting more help: remove my ref from TA-Allocated-To list 
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   prevent student getting more help immediately: set TA-last-helped-at now 

   report no state forced 

 else go into state 15 

 
8) if the TA has asked me if I want help (my ref is in TA-Allocated-To list) 

 AND the teacher hasn’t started an interaction with the TA in the meantime 

      (State-Of-The-Teacher ≠ 15) 

     [I am not in state 15 - that has been checked already] 

 then ClearAllPartnerships 

   get an anticipated-state-duration 

   go into state 15 

 
If none of the above rules apply then no state is forced 

 

These rules implement many simplifying assumptions.  For example, while either the 

student can seek 1-to-1 assistance (state 13) from the teacher or the teacher can offer it, only the 

teacher can conclude that assistance. 

A.3.3 Rules for filtering out impossible student states 

It was relatively easy to prevent student agents from choosing states that would not be 

realizable in a real lesson.  There is a set of conditions that determine if the state is impossible.  If 

this is the case, the score for that state is set to 0.  Table A-5 summarises the assumptions that 

preclude states from selection (written from the perspective of a student).   

Table A-5  Conditions under which the student agent will not choose a state 

State Abbrev. Conditions under which I WILL NOT/CANNOT choose a state 

1 DISC never: the teacher forces this state on a student 
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State Abbrev. Conditions under which I WILL NOT/CANNOT choose a state 

2 MESS 

the teacher is whole class teaching (so the student is expected to be 

listening (Expected-Student-State = 12) and the teacher is assumed to be 

watching) 

OR the teacher is disciplining the class (State-Of-The-Teacher = 5) or an 

individual (State-Of-The-Teacher = 1) 

OR I am in any of these states: 1 5 10 11 13 14 15 16 17 

3 CHAT 

I am in any of these states: 1 5 10 11 13 16 17 

OR the teacher is disciplining the class (State-Of-The-Teacher = 5) or an 

individual (State-Of-The-Teacher = 1) 

4 NOT 

the teacher is disciplining the class (State-Of-The-Teacher = 5) or an 

individual (State-Of-The-Teacher = 1) 

OR I am in any of these states: 1 5 10 11 13 16 17 

5 CLOFF never: the teacher forces this state on students 

6 PREV state not modelled 

7 REST I am in any of these states: 10 11 17 

8 ALONE I am out of the room (state 16 or 17) 

9 OTHER 

I am out of the room (state 16 or 17) 

OR the teacher is in any of these whole-class states: 5 9 10 11 12 

OR I am expected to be listening to the teacher  

 (Expected-Student-State = 12) 

OR working with someone is not allowed (not listed in lesson plan, so 

teacher hasn’t allowed) 
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State Abbrev. Conditions under which I WILL NOT/CANNOT choose a state 

10 EXPR 

the teacher is NOT in one of these states: 7 8 10 12 

OR I am out of the room (state 16 or 17) 

OR another student is asking/answering a question (Student10OR11 ≠ "") 

OR I last asked/answered a question too recently 

 (time since last-asked-or-answered-question < QA-INTERACTION-TIME) 

11 APPR Never: as a model simplification this state was not modelled 

12 ATTEN 

students are not expected to be listening to the teacher 

(Expected-Student-State ≠ 12)  

AND the teacher is not teaching (state 9, 10 or 12)) 

13 TSUPP 

the teacher is in any of these states: 1 5 9 10 11 12 14 16 17 

OR the teacher is already helping someone else (Teacher-Allocated-To not 

empty and it doesn’t contain my ref) 

OR I am not expected to be working alone or with others 

  (Expected-Student-State not 8 or 9) 

OR I am out of the room (state 16 or 17) 

OR the teacher helped me too recently 

 (time since teacher-last-helped-at) < 300) 

OR the teacher has said not giving help (not listed in lesson plan) 
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State Abbrev. Conditions under which I WILL NOT/CANNOT choose a state 

14 GSUPP 

Never: state not included in final model.  However, the following rule was 

provided for other potential models:  The teacher will not help a group 

 

I am NOT currently working with someone (state 9) or a group (state 14) 

OR I am not expected to be working with others  

  (Expected-Student-State not 9 or 14) 

OR the teacher is already helping someone or teaching or unavailable 

  (teacher is in any of these states: 1 5 9 10 11 12 13 16 17)  

OR I am out of the room (state 16 or 17) 

OR the teacher is insisting that students make an initial attempt 

  (Elapsed-Time-In-Seconds < Time-To-Start-Helping) 

OR the teacher helped my group too recently 

  (time since teacher-last-helped-our-group-at < 180) 

OR the lesson plan says no group help from teacher 
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State Abbrev. Conditions under which I WILL NOT/CANNOT choose a state 

15 TASUPP 

there is no TA 

OR the teacher is teaching or disciplining the class or talking to the TA  

 (any of these states: 5 9 10 11 12 15) 

OR I am out of the room (state 16 or 17) 

OR I had help from the TA too recently 

 (time since TA-last-helped-at < TA-MIN-HELP-WAIT 

OR the TA is helping the maximum number (MAX-TA-CAN-HELP) who can 

be helped concurrently 

OR the TA is already helping someone and I am too far away (MAX-TA-

HELP-DISTANCE) to join in 

OR the lesson plan says no help from the TA 

16 OUTTA Never: as a model simplification this state was not modelled 

17 NONE 

I have already been out of the classroom 5 times 

OR I am in one of these states: 10 11 16 

OR if another student is currently out (so assuming only 1 out at a time) 

 

A.3.4 The students’ response to the teacher’s disciplining 

The EffectOfDiscipline factor mentioned in section 3.4.2 depends on two functions that 

allow the effects of disciplining to fade over time and for the influence of the teacher to reduce 

as the distance from the teacher increases.  The function ToldOffEffect calculates the effect of 

time: 

The ToldOffEffect is = {1 − (
𝑡

2400
)

1.5

𝑡 ∈ [0,2400] 

0 otherwise
  

where t is the number of seconds since the student was last disciplined (either individually 

or as part of the class being disciplined).  This produces a result in [0,1], where 0 indicates a very 
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easy-going situation (t>2400) and 1 indicates very strict discipline (t=0).  The effect of being 

disciplined was made to reduce to 0 after 40 minutes.  In reality, students can take their feelings 

about the events of one lesson into the next or later lessons, but this was not being taken into 

account. 

The function TeacherDistanceEffect calculates the effect of the distance from the teacher: 

The TeacherDistanceEffect = {
1 −

𝑑

6
     𝑑 ∈ [0,6] 

     1          otherwise
  

where d is the floor distance in model units between the teacher and the student.  The scale 

of the model classroom can vary.  For the case study school, where desks were mostly 0.6 m x 

1.2 m doubles, a model unit was approximately 0.6 m.  This function produces a result in [0,1) 

where 1 (d = 0) would mean that the teacher and student were collocated and the student is 

definitely not going to misbehave, up towards 1 (d = 6 units) as distance increases, meaning 

misbehaviour is not dampened at all.  Fixing the maximum distance at 6 model units (which in the 

classrooms observed equates to approximately 3.6 m) seemed to produce reasonably realistic 

results. 

These two factors were combined into one factor that reduces the probability of 

misbehaviour as follows:  

MisbehaviourReductionFactor = √(1 − ToldOffEffect) × (1 −  TeacherDistanceEffect) 

 

This results in a factor with range [0,1] where 1 causes no alteration in misbehaviour and 0 

would eliminate misbehaviour. 

Further adjustments are made because what the teacher is currently doing also has a 

significant influence on whether a student chooses to misbehave or not.  For example, if students 

chat while the teacher is whole-class teaching that is likely to be treated more severely by the 

teacher than if the students were supposed to be working in pairs.  To establish weightings for 

these modifications, the empirical lesson data were analysed.   

Figure A-4 shows that empirical student disruption and disengagement varied with the state 

of the teacher.  In fact, misbehaviour was proportionately greatest when the teacher was busy 

helping a student (state 13) and least when whole-class teaching (state 12).  An explanation might 

be that when a student feels that they might be being observed then they are less likely to 

misbehave/disengage.  When the teacher was talking to the TA (state 15) something else may 

have been happening: neither are helping students, but they are not necessarily observing either. 
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Figure A-4  The empirical % off-task student time for selected teacher states 

 
Figure A-5 shows the empirical proportions of the various student misbehaviour states 

during the teacher states.  These proportions were used to calculate the weightings that adjust 

the MisbehaviourReductionFactor. 

 

 

Figure A-5  The empirical % frequency of disengaged student states for selected teacher states 
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To summarize: 

• teacher states 13 and 14 were considered to be the states in which the teacher was least likely 

to discipline students and were assigned a weighting of 1; 

• the other teacher states were assigned multiplicative weightings (derived from the empirical 

data) that reduced the students’ misbehaviour and passive disengagement state scores 

(states 2, 3, 4 and 7); 

• the teacher states were grouped and each group assigned a weighting – the more likely the 

teacher was to respond, the less likely the students were to disengage: 

Teacher state Weighting 

13 & 14 1.00 

12, 8, 9, 10 & 11 0.39 

7 0.25 

15 0.10 

1, 5, 16 & 17 0.04 
 

• other teacher states had no additional effect included.   

 

These adjustments result in the EffectOfDiscipline factor which reduces students’ 

misbehaviour state scores.  The lesson parameters also modify student state scores.  The 

following subsection specifies the actual calculations. 
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A.3.5 How lesson parameters adjust student state scores 

Figure A-6 indicates which student state attribute values are affected by which lesson 

parameters.  The states that cannot be selected by students have been crossed out. 

 

 
Figure A-6  Which parameters affect which student state attribute scores 

 
The adjustment procedure (AdjustedStudentStateProbs) starts with a student’s empirical 

PMF state probabilities for the current lesson section type - with the probability of impossible 

states set to 0 - and makes the adjustments described in Table A-6.  Several abbreviations are 

used in this table: 

tsf teacher state factor a factor that takes into account the teacher’s current 
state (5 categories, explained in section A.3.4) 

mrf misbehaviour 
reduction factor 

a factor depending on the time since the student was 
last disciplined and the teacher’s proximity (explained in 
section A.3.4) 

es expected state student’s current score for the expected or acceptable 
state 

ES Expected State student’s empirical probability for the expected or 
acceptable state 

sn  student’s current score for state n 

Sn  student’s empirical state probability for state n 
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Table A-6  The dynamic adjustments to student state scores 

State Formula for new value 

17 (out) S17 x state17-adjustment 

Current ES (one of 

12, 8, 9 or 14) 
ES + RLESW 

2 (disturb) S2 x tsf  x (10RLDW) x STATE2-RLDW x mrf 

3 (chat) 

s3 = (S3 x tsf x (10RLDW)) + SIW 

if s3Proposer (i.e., someone wants to chat with me) then s3 = s3 + IRW 

s3 = s3 x mrf 

4 (disengage) S4 x tsf x (10RLOW) x mrf 

7 (unsure) S7x tsf x (10RLOW) x mrf 

9 (others) 
s9 = S9 + SIW 

if s9Proposer (i.e., someone wants to work with me) then s9 = s9 + IRW 

13 (help) S13 + SSRW + (TSOL / 10) 

15 (TA) 

if a TA is available then  

if we are expected to be working with others and someone near me is 

receiving TA help  

 then s15 = (S15 x STATE15-TA-FACTOR) + SSRW 

 else  s15 = S15 + SSRW 

all 

 

all non-zero state scores have peer-count fractions added 

(only states 2,3,4,7,8,9,10,12,13,14,15 could be involved (17 is also 

excluded)). 

all 
remove states that are currently impossible or have a negative score by 

setting their score to 0 

all normalize scores to [0,1] 
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First individual state-specific adjustments are made then general adjustments to all scores.  

There is also an adjustment to take into account a change in lesson plan section, because then 

everyone will behave differently.  At the end, peer influences (explained in section 3.4) are 

included: every state with a non-zero score has a state count fraction times Peer-Weight added.  

There is also an adjustment for the probability of leaving the classroom (state 17) which is 

discussed in section A.3.6.  Finally, the student state scores are normalised to [0,1]. 

A.3.6 Modelling students leaving the classroom 

State 17, being out of the classroom, is different from the other states.  The probability 

given for state 17 in the students’ state PMFs is more precisely the probability that a student will 

be found in state 17 at any time in the lesson.  It is calculated from 

 

number of seconds spent out of the room 
number of seconds observed 

 

It includes the probability of leaving the room once, twice, three times, etc. However, the 

probability of leaving the room on another occasion is much less than the probability of leaving 

the room just once.  This adjustment factor is stored per student in their state17-adjustment 

attribute. 

It would be preferable to have the separate probabilities of a student going out for the first 

time, a second time, etc., but the empirical state probabilities do not give this directly.  Table A-7 

shows the number of occasions on which students were observed to leave the room, from 0 up 

to 7 times.  With the extreme example due to one student with a temporary medical condition 

omitted, an exponential curve was fitted (using a least squares error method) to the four points 

highlighted in Table A-7  The number of occasions students were observed to leave the room. 

 



 

 
213 

 

Table A-7  The number of occasions students were observed to leave the room 

Times left room in lesson Frequency observed 

0 185 

1 65 

2 14 

3 6 

4 1 

5 1 

6 0 

7 1 

Total 273 

 

Table A-8  Adjusted frequency for leaving room 

Times left room in lesson Frequency observed Predicted frequency 

0 185 - 

1 65 - 

2 14 15 

3 6 4 

4 1 1 

5 0 0 

Total 271 - 

 

 

 

Figure A-7  Fitted curve for predicting the likelihood of a student leaving the room 
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A decay constant of -1.4502 was obtained, giving an exp(-1.4502) = 0.2345 rate of decline 

for the number of additional leaving the room events, or equivalently, the decline in the 

probability of additional leaving the room events. 

This exponential relationship made it possible to calculate the probability of a student 

leaving the room again on the basis of their probability of leaving the room once (the equivalent 

of an initial condition) and the number of previous times the student has left the room.  This was 

implemented as a multiplicative factor (exp(-1.4502))n, where n is the number of times the 

student has left the room already.  For example, prob(2nd time) = (exp(-1.4502))1 x prob(1st time). 

Still the probability of leaving the room just once, prob(1 time), needed to be determined.  

The probability (p) given in the student state 17 PMFs was the sum of the probabilities of leaving 

once or twice or thrice, etc., i.e. 

𝑝 = ∑ 𝑝(𝑖)

5

𝑖=1

 

 
 where p(i) means the probability that the student leaves an i-th time and assuming no-one 

ever goes out more than 5 times. 

Since prob(2nd time) is being modelled as exp(-1.4502) x prob(1st time), and prob(3rd time) 

is being modelled as (exp(-1.4502))2 x prob(1st time), etc., the probability given by the PMF is 

 

𝑝 =  𝑝(1) + ∑(exp(−1.4502))𝑖  ×  𝑝(1)

4

𝑖=1

 

 

⇒ 𝑝(1) = 𝑝 ÷  (1 + ∑(exp(−1.4502))𝑖

4

𝑖=1

) =  𝑝 ×  0.7660 

 

Hence prob(1st time) = 0.7660p and, since p is known for each student, the other p(i) can be 

derived for each student from this. 
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Appendix B The derivation of model constants and functions 

Model parameters that have been fixed (based on empirical data or observations) have 

been termed model constants – these are declared in the simulation code in a separate 

‘GlobalConstants’ module.  The CLSM includes a variety of constants and functions that apply to 

all lesson models.  The following subsections give an idea of how values for some of these were 

inferred from the empirical data, possibly with some guesswork based on experience.  The first 

topic is the generation of realistic state durations. 

B.1 State duration modelling 

When an agent chooses a new state, an anticipated state duration (ASD) is required.  At 

each simulation step, an agent checks if the elapsed time has reached the anticipated state 

duration.  If so, the agent reconsiders what state to be in.  The empirical data were used to fit 

functions to state duration distributions so that sensible random state durations could be 

generated (Janssen and Ostrom, 2006; Salgado and Gilbert, 2013).  The data for teachers were 

aggregated to represent state durations for a stylized teacher.  Similarly, student data were 

aggregated, thus representing average student state durations.  This was done for every agent 

state.  When the lesson plan determines the primary teacher state to be 12 or 9, then the 

anticipated state duration is the length of that lesson plan section – it does not need to be drawn 

from a distribution.  Forced student states (1, 5, 11, 13 and 15) have their duration determined 

by the teacher or TA.  For other states, state durations depended strongly on the state of the 

teacher and what the students were expected to be doing (as specified in the lesson plan section 

- described in section 3.2).  It was therefore decided that anticipated state duration calculations 

would take into account the expected state of the students: 

• state 12 listening to the teacher whole-class teaching 

• state 8 working individually 

• state 9 or 14 working in pairs or groups 

In most cases the form of the fitted curve was a 2-parameter cumulative Weibull 

distribution function of time t:  R(t) = 1 - exp(-(t/λ)k).  This cumulative function can be interpreted 

as giving the probability that the person would leave a state after a given time, t.  The longer the 
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time, the more likely the person is to have left that state.23  The inverses of these fitted functions 

were used to create realistic state durations. 

For example, the left-hand chart in Figure B-1 shows the distribution histogram (in 5 s 

intervals or bins) for students chatting while the teacher is whole-class teaching.  The plot on the 

right shows the cumulative probability mass function points in black, with the fitted function in 

red: 

1 − exp (− (
𝑡

8
)

0.54

) 

 

 

Figure B-1  An example of the type of curve fitted to the distributions in order to produce 
realistic random state durations 

A realistic anticipated state duration, t, was calculated using the inverse function and a 

uniform pseudo-random p ∈ [0,1): 

𝑡 =  𝜆 (ln (
1

1 − 𝑝
))

1
𝑘

 

 

As another example, Figure B-2 shows the data used in the development of the function to 

determine realistic durations for the time a teacher spends giving one-to-one support to students. 

 
Figure B-2  Fitting a function for the time a teacher gives one-to-one support to a student 

 

23 This type of function is often called a reliability function, where leaving a state is considered to be some sort of 
failure event.  Survival analysis is another name for time-to-event analysis. 
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B.2 The Time-To-Start-Helping lesson variable 

When students have been set to work at the start of independent working lesson sections, 

the teacher (and the TA) often observed the students for a random amount of time before 

offering 1-to-1 help.  The reason is to give the students time to try to figure out for themselves 

how they will proceed.  The Time-To-Start-Helping is the clock time calculated for when the 

teacher and TA will start offering help.  It is calculated at the start of each non-whole-class lesson 

section.  A function for generating realistic random times was derived by fitting a cumulative 

Weibull curve to the cumulative empirical data (for all teachers in all lessons aggregated) – see 

Figure B-3.  This yielded the function:  1 − exp (− (
𝑡

160
)

0.86
).  The inverse of this function is used 

to calculate a suitable length of time to wait, with a maximum of 650 s. 

 
Figure B-3  Finding a suitable function for generating realistic delays in helping students 

(upper) distribution of empirical times (lower) cumulative distribution of times plus fitted curve 
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Figure B-4 shows a comparison of the empirical distribution of times and 1000 samples using 

the function.  The results were considered sufficiently realistic. 

  
 (a) (b) 

Figure B-4  A comparison of the empirical delays before helping and the results of the delay 
function 

(a) empirical data  (b) 1000 samples from the function 

 

B.3 TA-MIN-HELP-WAIT and TEACHER-MIN-HELP-WAIT 

When the teacher or TA gave one-to-one support to a student there was typically a gap 

before that student received further help.  The need was to set a realistic delay so that a student 

would not receive repeated, consecutive episodes of assistance.  Also, to make the simulation 

more realistic, this minimum would need to vary randomly – otherwise fixed cycles of behaviour 

could easily arise.  If one student had a history of extensive TA or teacher help, then it was possible 

that the simulation would use the higher state 13 and 15 scores to generate unrealistic levels of 

repeated student-TA or student-teacher assistance.  Hence a delay was proposed to mimic the 

observed practice of the TA and the teacher not immediately offering further help. 

The empirical data on the teacher and TA delays are shown in Figure B-5.  The data for all 

the lessons were aggregated in order to have sufficient data.  Each lesson contained several 
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different lesson sections, and behaviour varied widely across lesson sections and across lessons.  

The data represented a stylized TA and teacher response. 

 
Figure B-5  The empirical delay between episodes of students being helped 

(upper) the teacher’s delay (lower) the TA’s delay 

 

They distributions show a wide range of times, exposing several issues with the data and 

data collection: 

• the observer may have thought that an interaction had completed but it continued so it was 

recorded again – leading to one long episode being split into two; 

• the observer may record the same event more than once, being unsure whether it had already 

been recorded – again leading to shorter intervals; 

• the interaction can be interrupted – again leading to shorter intervals; 

• sometimes going back to a student is a behaviour-management tactic, used to prevent 

disengagement (perhaps just by showing that the student is being observed). 

 
Because the data seemed quite unreliable, a pragmatic simplification was adopted:  take a 

fixed minimum duration and add a random amount: 

TEACHER-MIN-HELP-WAIT = 4 minutes (240 s) with an additional up to 50% at random. 

TA-MIN-HELP-WAIT = 3 minutes (180 s) with an additional up to 50% at random. 
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B.4 TIME-LAST-WITH-TA-THRESHOLD 

There were often interactions between the teacher and the TA, particularly when the 

teacher was not whole-class teaching.  To prevent the simulation generating unrealistically 

frequent interactions a minimum amount of time between interactions was introduced.  There 

were very little data on this (see boxplot in Figure B-6) but a pragmatic decision was made and 

TIME-LAST-WITH-TA-THRESHOLD was set at 300 seconds, with no randomness added as the state 

choice is already random. 

 

Figure B-6  Empirical data on length of time between teacher and TA interactions 

 

B.5 The teacher’s misbehaviour response delay 

As outlined in subsection 3.4.1, to make the teacher’s response to student disengagement 

vary realistically, the teacher’s response is delayed by an amount that varies according to the 

state of the teacher and the type of student disengagement.  When the teacher is very vigilant, 

the response time is shorter; when students are being more disruptive the response time is also 

shorter.  Only student state 2 (serious disruption), state 3 (chatting) and state 4 (intentional 

passive disengagement) required disciplining.  Table B-1 shows how the combinations of teacher 

and student states were allocated delays and that these were adjusted by the Teachers-

Misbehaviour-Tolerance (TMT) parameter.  The meaning of (m + random n) is create the sum of 

m and a pseudo-random number in [0,n).  As outlined in section 3.4.2, the distance between 
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interacting students is a major factor in how disruptive that interaction is for the rest of the class.  

A student attribute max3distance was used to note the maximum distance between a student 

and the others they are interacting with.  A cut-off of two model units (approximately 2.4 m), was 

used to distinguish between major and minor disruptions.  The names of the variables, s23233-

response-time  and 3031-response-time, are a little obscure – they refer to the data collected in 

the orange-coloured columns in the Lesson Event Recording Tool (see Figure 1-4 in section 1.5.2) 

and refer to the range code (3, 2, 1 or 0) for state 3: chatting.  

Table B-1  Calculating random response times according to the teacher and student states and 
separations 

 student state and response delay variable 

 

teacher state 

 

state 2 or state 3 with 

max3distance > 2 units 

s23233-response-time 

state 3 with  

max3distance ≤ 2 units 

s3031-response-time 

state 4 

 

s4-response-time 

1, 5 TMT × (1 + random 2)  TMT × (2 + random 2)  TMT × (4 + random 2)  

10, 11, 12 TMT × (2 + random 2)  TMT × (4 + random 3) TMT × (6 + random 4) 

0, 7, 9, 15 TMT × (3 + random 2) TMT × (6 + random 4) TMT × (18 + random 8) 

6, 8, 13, 14, 16 TMT × (4 + random 4) TMT × (10 + random 10) TMT × (20 + random 20)  
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Appendix C Model calibration results 

It was explained in section 4.1 that each lesson needed to be considered a separate 

instantiation of the CLSM, which meant that each lesson needed its own set of parameter values.  

Table C-1 contains a summary of parameterisation results for the seven selected lessons.  It is 

interesting to note that six of the seven parameterisations were found following an initial manual 

search rather than a coarse grid search.  For one of these (Lesson #2), an exception was made to 

the criteria for selecting the winning parameter set.  Although all the metrics for all 500 

replications for the best coarse search parameter set stayed within the empirically-established 

metric acceptability ranges, the distance metrics were large, showing that the simulated lessons 

were not that close to the empirical lesson.  On the other hand, the best manual search parameter 

set had 5 (1%) of the 500 replications drop below the minimum TH (teacher help time) threshold, 

but the distance metric scores were a third of the size of the grid search results – indicating that, 

apart from a few plausible outliers, the manually established parameter set caused the simulation 

to be much more like the empirical lesson.  The decision was to choose the better match with the 

empirical lesson, with the occasional lesson (1%) having less teacher help than actually happened 

in the case study lessons.   
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Table C-1  Parameter estimation results 

Lesson# ➔ 1 2 3 4 5 6 7 

Lesson ID 16062207GEO 16063010SCI 16070508MAT 16070510MAT 16070607MAT 16070608MAT 16070809SCI 

TA present? N Y N (N)* Y Y N 

Local search:  

no. of parameter sets tested 
59,049 

2 regions 26,244 

+ 177,147 = 
203,391 

78,732 116,640 177,147 39,366 59,049 

Coarse grid search:  

no. of parameter sets tested 
177,147 177,147 177,147 177,147 177,147 177,147 177,147 

Selected parameter set (method) 57942-local 
 

11626-1st local 48541-local 91657-local 98505-local 26354-local 
85126-
coarse 

Mean distance over 500 replications 

(between simulation & empirical) 
397 740 889 735 558 670 417 

Replications out of range? 0 5 TH (1.0%) 0 0 0 0 0 

Visual stabilization of individual 
cumulative mean metric values? 

Y Y Y Y Y Y Y 

Stabilization of overall distance metric  

visually & numerically within 95% CI? 
Y Y Y Y Y Y Y 
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Lesson# ➔ 1 2 3 4 5 6 7 

Parameter estimation success? Y Y Y Y Y Y Y 

Parameters:        

Current-State-Extension 0.8 0.6 1.5 0.9 0.9 1.1 0.7 

Teachers-Support-Offer-Level 0.6 0.44 0.1 0.4 0.5 0.35 2 

Teachers-Misbehaviour-Tolerance 50 17 60 50 40 75 15 

Relative-Lesson-ES-Weight 0 0 0.2 -0.2 -0.1 0.1 1.3 

Relative-Lesson-Disruption-Weight 1.5 0.97 1.6 1 0.33 1.49 1.5 

Relative-Lesson-Other-Weight 0.8 0.89 1.1 0.82 0.8 1.31 1.5 

Student-Support-Request-Weight 0 0.05 -0.02 0 0.01 0.01 0 

Student-Interaction-Weight 0.2 0.1 0.05 0.07 0.1 0.1 0.5 

Interaction-Response-Weight 0.2 0.2 0.35 0.15 0.1 0.2 0.5 

Peer-Weight 0.2 0.0 0.1 0.2 0.25 0.2 0.2 

TA-Support-Offer-Level 0 2 1 0.01 4 5 0 

 

* Note that in Lesson #4, although there was a TA, the TA was not operating as usual.  At the teacher’s instruction, the TA provided no help except to one 

student (and that was during whole-class teaching), apart from a few minutes to one other student.  Effectively there was no TA.
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Appendix D Analyses of relative importance of the lesson parameters 

Further to the discussion in section 7.3, the following charts show the results of using the 

SPSS package’s linear modelling procedures to calculate normalized predictor importance scores 

for each of the selected lessons.  The SPSS software used the leave-one-out method in which one 

predictor at a time is removed from the final full model and the result is ranked on the residual 

sum of squares.  The value obtained is the normalized, relative importance of each parameter.  

This method enabled interactions and correlations to be taken into consideration.  The upper plot 

for each lesson shows the lesson parameters most influential in the 80-replication rejection stage; 

the lower plot shows the most influential parameters in terms of finding values that match the 

empirical lesson values.  Where no parameter was found to be a significant predictor there is no 

dark-blue bar. 

 

Lesson Predictor Importance (from SPSS Linear Modelling) 

Lesson #1 

16062207GEO 

 

 



 

 
226 

 

Lesson #2 

16063010SCI 

 

 

Lesson #3 

16070508MAT 
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Lesson #4 

16070510MAT 

 

Lesson #5 

16070607MAT 
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Lesson #6 

16070608MAT 

 

 

Lesson #7 

16070809SCI 

 

 

Figure D-1  SPSS analyses of the relative influence of the lesson parameters 
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The SPSS syntax code that generated the plots is shown in the box. 

 

SPSS syntax for the automatic linear modelling: 

 

LINEAR  

  /FIELDS TARGET=count6_sum INPUTS=CurrentStateExtension 

TeachersSupportOfferLevel  

    TeachersMisbehaviourTolerance RelativeLessonESWeight 

RelativeLessonDisruptionWeight  

    RelativeLessonOtherWeight StudentSupportRequestWeight 

StudentInteractionWeight  

    InteractionResponseWeight PeerWeight TASupportOfferLevel  

  /BUILD_OPTIONS OBJECTIVE=STANDARD USE_AUTO_DATA_PREPARATION=TRUE 

CONFIDENCE_LEVEL=95  

    MODEL_SELECTION=FORWARDSTEPWISE CRITERIA_FORWARD_STEPWISE=AICC 

REPLICATE_RESULTS=TRUE SEED=54752075 

  /ENSEMBLES COMBINING_RULE_CONTINUOUS=MEAN COMPONENT_MODELS_N=10. 

 

LINEAR  

  /FIELDS TARGET=distance INPUTS=CurrentStateExtension 

TeachersSupportOfferLevel  

    TeachersMisbehaviourTolerance RelativeLessonESWeight 

RelativeLessonDisruptionWeight  

    RelativeLessonOtherWeight StudentSupportRequestWeight 

StudentInteractionWeight  

    InteractionResponseWeight PeerWeight TASupportOfferLevel  

  /BUILD_OPTIONS OBJECTIVE=STANDARD USE_AUTO_DATA_PREPARATION=TRUE 

CONFIDENCE_LEVEL=95  

    MODEL_SELECTION=FORWARDSTEPWISE CRITERIA_FORWARD_STEPWISE=AICC 

REPLICATE_RESULTS=TRUE SEED=54752075 

  /ENSEMBLES COMBINING_RULE_CONTINUOUS=MEAN COMPONENT_MODELS_N=10. 

 

 


