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Abstract—Semantic segmentation of remotely sensed imagery plays a critical role in many 

real-world applications, such as environmental change monitoring, precision agriculture, 

environmental protection, and economic assessment. Following rapid developments in sensor 

technologies, vast numbers of fine-resolution satellite and airborne remote sensing images are 
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now available, for which semantic segmentation is potentially a valuable method. However, 

because of the rich complexity and heterogeneity of information provided with an ever-increasing 

spatial resolution, state-of-the-art deep learning algorithms commonly adopt complex network 

structures for segmentation, which often result in significant computational demand. Particularly, 

the frequently-used fully convolutional network (FCN) relies heavily on fine-grained spatial 

detail (fine spatial resolution) and contextual information (large receptive fields), both imposing 

high computational costs. This impedes the practical utility of FCN for real-world applications, 

especially those requiring real-time data processing. In this paper, we propose a novel Attentive 

Bilateral Contextual Network (ABCNet), a lightweight convolutional neural network (CNN) with 

a spatial path and a contextual path. Extensive experiments, including a comprehensive ablation 

study, demonstrate that ABCNet has strong discrimination capability with competitive accuracy 

compared with state-of-the-art benchmark methods while achieving significantly increased 

computational efficiency. Specifically, the proposed ABCNet achieves a 91.3% overall accuracy 

(OA) on the Potsdam test dataset and outperforms all lightweight benchmark methods 

significantly. The code is freely available at https://github.com/lironui/ABCNet. 

Index Terms—Semantic Segmentation, Attention Mechanism, Bilateral Architecture, 

Convolutional Neural Network, Deep Learning 

1. Introduction 

Driven by the rapid development of Earth observation technology, massive numbers of 

remotely sensed images at fine spatial resolution are commercially available for a variety of 

applications, such as image classification (Lyons et al., 2018; Maggiori et al., 2016), object 

https://github.com/lironui/ABCNet
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detection (Li et al., 2017; Xia et al., 2018) and semantic segmentation (Kemker et al., 2018; Zhang 

et al., 2019a). The re-visit capabilities of orbital sensors facilitate continuous monitoring of the 

land surface, ocean, and atmosphere (Duan and Li, 2020). Fine-resolution remotely sensed images 

are rich in information and contain substantial spatial detail for land cover and land use 

classification and segmentation. Different automatic and semi-automatic methods have been 

developed to identify land cover and land use categories by exploiting spectral and spectral-spatial 

features within remote sensing images (Gong et al., 1992; Ma et al., 2017; Tucker, 1979; Zhong 

et al., 2014; Zhu et al., 2017). However, these traditional approaches rely on handcrafting features 

and information transformation, which commonly fail to adequately capture the contextual 

information contained abundantly within images, and are often limited in their flexibility and 

general adaptability (Li et al., 2020; Tong et al., 2020). This is especially true given the detailed 

structural and contextual information provided at a very fine spatial resolution. Meanwhile, recent 

developments in deep learning, and deep convolutional neural network (CNN), in particular, have 

replaced feature engineering with high-level non-linear feature representations created end-to-

end, hierarchically, and in an automatic fashion. This has had a transformative impact on 

information understanding and semantic characterization from fine-resolution remotely sensed 

imagery (Li et al., 2021b; Zheng et al., 2020). 

Semantic segmentation, which assigns each pixel in an image to a particular category, has 

become one of the most important approaches for ground feature interpretation, playing a pivotal 

role in different application scenarios (Wang et al., 2021), such as precision agriculture (Griffiths 

et al., 2019; Picoli et al., 2018), environmental protection (Samie et al., 2020; Yin et al., 2018) 
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and economic assessment (Zhang et al., 2020; Zhang et al., 2019a). The fully convolutional 

network (FCN) was demonstrated to be the first effective end-to-end CNN structure for semantic 

segmentation (Long et al., 2015). Restricted by the oversimplified design of the decoder, the 

results of FCN, although encouraging in principle, are presented at a coarse resolution. 

Subsequently, more elaborate encoder-decoder structures, such as U-Net, have been proposed, 

with two symmetric paths: a contracting path for extracting features and an expanding path for 

achieving accurate results through precise positioning (Badrinarayanan et al., 2017; Li et al., 

2021a; Ronneberger et al., 2015). The per-pixel classification is often ambiguous in the presence 

of only local information for semantic segmentation, while the task becomes much simpler if 

global contextual information, from the whole image, is available (as shown in Fig. 1). Therefore, 

to guarantee the accuracy of segmentation, global contextual information and multiscale semantic 

features were utilized comprehensively to differentiate semantic categories at different spatial 

scales. Through the spatial pyramid pooling module, the pyramid scene parsing network (PSPNet) 

aggregated contextual information across different regions (Zhao et al., 2017). The dual attention 

network (DANet) applied the dot-product attention mechanism to extract abundant contextual 

relationships (Fu et al., 2019). Subject to an enormous memory and computational demand, 

DANet simply attached the dot-product attention mechanism at the lowest layer without capturing 

the long-range dependencies from the larger feature maps in the higher layers. DeeplabV3 adopted 

atrous convolution to mine the multiscale features (Chen et al., 2017a) and a simple, yet useful, 

decoder module was added in DeepLabV3+ to further refine the segmentation results (Chen et al., 

2018a).  
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Fig. 1. Illustration of global and local contextual information. 

The extraction of global contextual information and the exploitation of large-scale feature maps 

are computationally expensive (Chen et al., 2017b; Diakogiannis et al., 2020b; Li et al., 2021b). 

Therefore, a series of lightweight networks have been developed to accelerate the computation 

while maintaining the trade-off between accuracy and efficiency (Hu et al., 2020; Oršić and 

Šegvić, 2021; Romera et al., 2017; Yu et al., 2018; Zhuang et al., 2019). For example, the 

asymmetric convolution used in ERFNet factorized the standard 3 × 3 convolutions into a 1 × 3 

convolution and a 3 × 1 convolution, saving approximately 33% of the computational cost 

(Romera et al., 2017). By exploiting spatial correlations and cross-channel correlations, 

respectively, BiseNet achieved depth-wise separable convolution (Yu et al., 2018), which further 

reduced the consumption of standard convolution (Chollet, 2017). Multi-scale encoder-decoder 

branch pairs with skip connections were studied in ShelfNet (Zhuang et al., 2019), where a shared-
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weight strategy was harnessed in the residual block to reduce the number of parameters without 

sacrificing accuracy. For non-local context aggregation, FANet employed the fast attention 

module in efficient semantic segmentation (Hu et al., 2020). SwiftNet explored the effectiveness 

of pyramidal fusion in compact architectures (Oršić and Šegvić, 2021). However, the CNN is 

designed to extract local patterns and lacks the ability to model global context in its nature. More 

severely, as lightweight networks normally adopted relatively shallow backbones, the capacity of 

those networks to extract global contextual information is further limited. 

 

Fig. 2. Illustration of (a) the encoder-decoder structure and (b) the bilateral architecture. 

Due to the limited capacity of lightweight networks to extract global contextual information, 

there is a huge gap in accuracy between lightweight networks and state-of-the-art deep models, 

which limits their applicability to fine-resolution remotely sensed images. The dot-product 

attention mechanism, as a powerful approach that can capture long-range dependencies, is 

potentially an ideal solution to address this issue (Vaswani et al., 2017). However, the memory 

and computational costs of the dot-product attention mechanism increase quadratically with an 
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increase in the spatio-temporal size of the input, which runs counter to the aim of lightweight 

networks. Encouragingly, previous researches on linear attention (Katharopoulos et al., 2020; Li 

et al., 2021b) reduce the complexity of the dot-product attention mechanism from 𝑂𝑂(𝑁𝑁2)  to 

𝑂𝑂(𝑁𝑁), with a significant increase in computational speed, while maintaining high accuracy. 

In this paper, we aim to further increase segmentation accuracy while ensuring the efficiency 

of semantic segmentation simultaneously. We address this challenge by modeling the global 

contextual information using the linear attention mechanism. Specifically, we propose an 

Attentive Bilateral Contextual Network (ABCNet) to realize efficient semantic segmentation of 

fine-resolution remote sensing images. Following the design philosophy of BiSeNet (Yu et al., 

2018), we design the ABCNet based on a bilateral architecture: a spatial path to retain the 

abundant spatial detail and a contextual path to capture the global contextual information. As the 

features generated by the two paths are quite disparate semantically, we further design a feature 

aggregation module (FAM) to fuse those features. The comparison between the conventional 

encoder-decoder structure and the bilateral architecture used in the proposed ABCNet can be seen 

in Fig. 2. The main contributions are two-fold. On the one hand, we propose a novel approach for 

efficient semantic segmentation of fine-resolution remotely sensed imagery, i.e., ABCNet with 

spatial and contextual paths. On the other hand, we design two specific modules: an attention 

enhancement module (AEM) for exploring long-range contextual information, and a feature 

aggregation module (FAM) for fusing the features obtained by the two paths. A thorough 

benchmark comparison was undertaken against the state-of-the-art to demonstrate the 

effectiveness of the proposed ABCNet. 
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2. Related Work 

 Context information extraction 

Context is critically important for semantic segmentation and, thus, tremendous effort has been 

made to extract such information in an intelligent manner. The dilated or atrous convolution (Chen 

et al., 2014; Yu and Koltun, 2015) has been demonstrated to be an effective approach for enlarging 

receptive fields without shrinking spatial resolution. Besides, the encoder-decoder architecture 

(Ronneberger et al., 2015), which merges high-level and low-level features via skip connections, 

is an alternative for extracting spatial context. Based on the encoder-decoder framework or 

dilation backbone, some research has focused on exploring the use of spatial pyramid pooling 

(SPP) (He et al., 2015). For example, the pyramid pooling module (PPM) in PSPNet is composed 

of convolutions with kernels of four different sizes (Zhao et al., 2017), while DeepLab v2 (Chen 

et al., 2018a), equipped with the atrous spatial pyramid pooling (ASPP) module, groups parallel 

atrous convolution layers with varying dilation rates. However, certain limitations persist in SPP. 

Particularly, the SPP with the standard convolution faces a dilemma when expanding the receptive 

field with a large kernel size. The above operations are normally accompanied by a very large 

number of parameters. The SPP with small kernels (e.g. ASPP), on the other hand, lacks sufficient 

connection between adjacent features, and the gridding problem (Wang et al., 2018a) occurs when 

the field is enlarged by a dilated convolutional layer. In contrast, the dot-product attention 

mechanism has the powerful ability to model long-range dependencies, which enables contextual 

information extraction at a global scale. 
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 Dot-Product attention mechanism 

 

Fig. 3. Illustration of the calculation of dot-product attention mechanism. 

Let H, W, and 𝐶𝐶 denote the height, weight, and channels of the input, respectively. The input 

feature is defined as 𝑿𝑿 = [𝒙𝒙1,⋯ ,𝒙𝒙𝑁𝑁] ∈ ℝ𝑁𝑁×𝐶𝐶 , where 𝑁𝑁 = 𝐻𝐻 × 𝑊𝑊 . Initially, the dot-product 

attention mechanism utilizes three projected matrices 𝑾𝑾𝑞𝑞 ∈ ℝ𝐷𝐷𝑥𝑥×𝐷𝐷𝑘𝑘, 𝑾𝑾𝑘𝑘 ∈ ℝ𝐷𝐷𝑥𝑥×𝐷𝐷𝑘𝑘, and 𝑾𝑾𝑣𝑣 ∈

ℝ𝐷𝐷𝑥𝑥×𝐷𝐷𝑣𝑣 to generate the corresponding query matrix Q, the key matrix K, and the value matrix V: 

�
𝑸𝑸 = 𝑿𝑿𝑿𝑿𝑞𝑞 ∈ ℝ𝑁𝑁×𝐷𝐷𝑘𝑘;
𝑲𝑲 = 𝑿𝑿𝑿𝑿𝑘𝑘 ∈ ℝ𝑁𝑁×𝐷𝐷𝑘𝑘;
𝑽𝑽 = 𝑿𝑿𝑿𝑿𝑣𝑣 ∈ ℝ𝑁𝑁×𝐷𝐷𝑣𝑣 .

 (1) 

The graphical representation of the dot-product attention mechanism can be seen in Fig. 3. The 

dimensions of Q and K are identical, and all vectors in this section are column vectors by default. 

Accordingly, a normalization function ρ is employed to measure the similarity between the i-th 

query feature 𝒒𝒒𝑖𝑖𝑇𝑇 ∈ ℝ𝐷𝐷𝑘𝑘 and the j-th key feature 𝒌𝒌𝑗𝑗 ∈ ℝ𝐷𝐷𝑘𝑘 as 𝜌𝜌(𝒒𝒒𝑖𝑖𝑇𝑇 ∙ 𝒌𝒌𝑗𝑗) ∈ ℝ1. As the query 

feature and key feature are generated via different layers, the similarities between 𝜌𝜌(𝒒𝒒𝑖𝑖𝑇𝑇 ∙ 𝒌𝒌𝑗𝑗) and 

𝜌𝜌(𝒒𝒒𝑗𝑗𝑇𝑇 ∙ 𝒌𝒌𝑖𝑖)  are not identical. Therefore, the N × N 𝑸𝑸𝑲𝑲𝑇𝑇  matrix model the long-range 
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dependency between each pixel pair in the input feature maps, where the pixel at j-th row and i-

th column measures the i-th position’s impact on j-th position. In other words, the long-range 

global contextual information between every pixel of the input can be fully modeled by the N×

N matrix 𝑸𝑸𝑲𝑲𝑇𝑇. By calculating similarities between all pairs of pixels in the input feature maps 

and taking the similarities as weights, the dot-product attention mechanism generates the value at 

position i by aggregating the value features from all positions using weighted summation: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽) = 𝜌𝜌(𝑸𝑸𝑲𝑲𝑇𝑇)𝑽𝑽. (2) 

Softmax is frequently used as the normalization function: 

𝜌𝜌(𝑸𝑸𝑲𝑲𝑇𝑇) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟(𝑸𝑸𝑲𝑲𝑇𝑇), (3) 

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 indicates that the softmax along each row of the matrix 𝑸𝑸𝑲𝑲𝑇𝑇.  

 

Fig. 4. Illustration of the dot-product attention mechanism utilized in computer vision. 

By modeling the similarities between each pair of positions of the input, the global 

dependencies in the features can be extracted thoroughly by 𝜌𝜌(𝑸𝑸𝑲𝑲𝑇𝑇). The dot-product attention 

mechanism was initially designed for machine translation (Vaswani et al., 2017), while the non-

local module (Wang et al., 2018b) was introduced and modified for computer vision (Fig. 4). 

Based on the dot-product attention mechanism, as well as its variants, different attention-based 

networks have been proposed to address the semantic segmentation task. Inspired by the non-
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local module (Wang et al., 2018b), the double attention networks (𝐴𝐴2-Net) (Chen et al., 2018b), 

dual attention network (DANet) (Fu et al., 2019), and object context network (OCNet) (Yuan and 

Wang, 2018) were proposed successively for scene segmentation by exploring the long-range 

dependencies. Furthermore, Bello et al. (2019) augmented convolutional operators with attention 

mechanisms, while Zhang et al. (2019c) incorporated the attention mechanism into the generative 

adversarial network. Lu et al. (2019) extended the attention mechanism to CO-attention Siamese 

Network (COSNet) for unsupervised video object segmentation. Recently, Diakogiannis et al. 

(2020a) improved the attention mechanism and proposed the fractal Tanimoto attention layer for 

semantic change detection. 

Although the introduction of attention boosts segmentation accuracy significantly, the huge 

resource-demand of the dot-product hinders its application to large inputs. Specifically, for 𝑸𝑸 ∈

ℝ𝑁𝑁×𝐷𝐷𝑘𝑘  and 𝑲𝑲𝑇𝑇 ∈ ℝ𝐷𝐷𝑘𝑘×𝑁𝑁 , the product between 𝑸𝑸  and 𝑲𝑲𝑇𝑇  belongs to ℝ𝑁𝑁×𝑁𝑁 , leading to 

𝑂𝑂(𝑁𝑁2)  memory and computational complexity. Consequently, it is necessary to reduce the 

demand for computational resources of the dot-product attention mechanism. Substantial 

endeavors have been poured in aiming to alleviate the bottleneck to efficiency and push the 

boundaries of attention, including accelerating the generation process of the attention matrix 

(Huang et al., 2019a; Huang et al., 2019b; Yuan et al., 2019; Zhang et al., 2019b), pruning the 

structure of the attention block (Cao et al., 2019), and optimizing attention based on low-rank 

reconstruction (Li et al., 2019c).  

 Generalization and simplification of the dot-product attention mechanism 

If the normalization function is set as softmax, the i-th row of the result matrix generated by 
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the dot-product attention mechanism can be written as: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
∑ 𝑒𝑒𝒒𝒒𝑖𝑖

𝑇𝑇∙𝒌𝒌𝑗𝑗𝒗𝒗𝑗𝑗𝑁𝑁
𝑗𝑗=1

∑ 𝑒𝑒𝒒𝒒𝑖𝑖𝑇𝑇∙𝒌𝒌𝑗𝑗𝑁𝑁
𝑗𝑗=1

, (4) 

where 𝒗𝒗𝑗𝑗 is j-th value feature. 

Equation (4) can be rewritten and generalized to any normalization function as: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
∑ sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗�𝒗𝒗𝑗𝑗𝑁𝑁
𝑗𝑗=1

∑ sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗�𝑁𝑁
𝑗𝑗=1

, 

sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� ≥ 0. 
(5) 

sim�𝒒𝒒𝑖𝑖,𝒌𝒌𝑗𝑗� can be expanded as 𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇𝜑𝜑(𝒌𝒌𝑗𝑗) which measures the similarity between 𝒒𝒒𝑖𝑖 and 

𝒌𝒌𝑗𝑗, and equation (4) can be rewritten as equation (6) and simplified as equation (7): 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
∑ 𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇𝜑𝜑(𝒌𝒌𝑗𝑗)𝒗𝒗𝑗𝑗𝑁𝑁
𝑗𝑗=1

∑ 𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇𝜑𝜑(𝒌𝒌𝑗𝑗)𝑁𝑁
𝑗𝑗=1

, (6) 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇 ∑ 𝜑𝜑(𝒌𝒌𝑗𝑗)𝒗𝒗𝑗𝑗𝑇𝑇𝑁𝑁

𝑗𝑗=1

𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇 ∑ 𝜑𝜑(𝒌𝒌𝑗𝑗)𝑁𝑁
𝑗𝑗=1

. (7) 

I f sim�𝒒𝒒𝑖𝑖,𝒌𝒌𝑗𝑗� = 𝑒𝑒𝒒𝒒𝑖𝑖𝑇𝑇∙𝒌𝒌𝑗𝑗 , equation (5) is equivalent to equation (4). The vectorized form of 

equation (7) is: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽) =
𝜙𝜙(𝑸𝑸)𝜑𝜑(𝑲𝑲)𝑇𝑇𝑽𝑽
𝜙𝜙(𝑸𝑸)∑ 𝜑𝜑(𝑲𝑲)𝑖𝑖,𝑗𝑗𝑇𝑇𝑗𝑗

. (8) 

As the softmax function is substituted for sim�𝒒𝒒𝑖𝑖,𝒌𝒌𝑗𝑗� = 𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇𝜑𝜑(𝒌𝒌𝑗𝑗) , the order of the 

commutative operation can be altered, thereby avoiding multiplication between the reshaped key 

matrix K and query matrix Q. In concrete terms, we can first compute the multiplication between 

𝜑𝜑(𝑲𝑲)𝑇𝑇 and V, and then multiply the result with Q, leading to only 𝑂𝑂(𝑑𝑑𝑑𝑑) time complexity and 

𝑂𝑂(𝑑𝑑𝑑𝑑)  space complexity. The suitable 𝜙𝜙(∙)  and 𝜑𝜑(∙)  enable the above scheme to achieve 

competitive performance with finite computational complexity (Katharopoulos et al., 2020; Li et 

al., 2021c). 
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 Linear attention mechanism 

In our previous research (Li et al., 2021b), we proposed a linear attention mechanism to replace 

the softmax function with the first-order approximation of the Taylor expansion, as in equation 

(9): 

𝑒𝑒𝒒𝒒𝑖𝑖
𝑇𝑇∙𝒌𝒌𝑗𝑗 ≈ 1 + 𝒒𝒒𝑖𝑖𝑇𝑇 ∙ 𝒌𝒌𝑗𝑗. (9) 

To guarantee the above approximation to be nonnegative, 𝒒𝒒𝑖𝑖 and 𝒌𝒌𝑗𝑗 are normalized by the 

𝑙𝑙2 norm, thereby ensuring 𝒒𝒒𝑖𝑖𝑇𝑇 ∙ 𝒌𝒌𝑗𝑗 ≥ −1: 

𝑠𝑠𝑠𝑠𝑠𝑠�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� = 1 + �
𝒒𝒒𝑖𝑖

‖𝒒𝒒𝑖𝑖‖2
�
𝑇𝑇
�

𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

�. (10) 

Thus, equation (5) can be rewritten as equation (11) and simplified as equation (12):  

𝑫𝑫(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝒊𝒊 =

∑ �𝟏𝟏 + � 𝒒𝒒𝒊𝒊
‖𝒒𝒒𝒊𝒊‖𝟐𝟐

�
𝑻𝑻
�

𝒌𝒌𝒋𝒋
�𝒌𝒌𝒋𝒋�𝟐𝟐

��𝒗𝒗𝒋𝒋𝑵𝑵
𝒋𝒋=𝟏𝟏

∑ �𝟏𝟏 + � 𝒒𝒒𝒊𝒊
‖𝒒𝒒𝒊𝒊‖𝟐𝟐

�
𝑻𝑻
�

𝒌𝒌𝒋𝒋
�𝒌𝒌𝒋𝒋�𝟐𝟐

��𝑵𝑵
𝒋𝒋=𝟏𝟏

, (11) 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =

∑ 𝒗𝒗𝑗𝑗𝑁𝑁
𝑗𝑗=1 + � 𝒒𝒒𝑖𝑖

‖𝒒𝒒𝑖𝑖‖2
�
𝑇𝑇
∑ �

𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

� 𝒗𝒗𝑗𝑗𝑇𝑇𝑁𝑁
𝑗𝑗=1

𝑁𝑁 + � 𝒒𝒒𝑖𝑖
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𝑇𝑇
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𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

�𝑁𝑁
𝑗𝑗=1

. (12) 

Equation (12) can be turned into a vectorized form: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽) =
∑ 𝑽𝑽𝑖𝑖,𝑗𝑗𝑗𝑗 + � 𝑸𝑸

‖𝑸𝑸‖2
� �� 𝑲𝑲

‖𝑲𝑲‖2
�
𝑇𝑇
𝑽𝑽�

𝑁𝑁 + � 𝑸𝑸
‖𝑸𝑸‖2

�∑ � 𝑲𝑲
‖𝑲𝑲‖2

�
𝑖𝑖,𝑗𝑗

𝑇𝑇

𝑗𝑗

. (13) 

Since ∑ � 𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

� 𝒗𝒗𝑗𝑗𝑇𝑇𝑁𝑁
𝑗𝑗=1   and ∑ � 𝒌𝒌𝑗𝑗

�𝒌𝒌𝑗𝑗�2
�𝑁𝑁

𝑗𝑗=1   can be calculated and reused for each query, the 

time and memory complexity of the attention based on equation (13) is 𝑂𝑂(𝑑𝑑𝑑𝑑). For more detailed 

information on the proposed attention mechanism, as well as its validity and efficiency, the reader 

is referred to (Li et al., 2021b). 
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 Scaling attention mechanism 

Besides dot-product attention, there exists another genre of techniques referred to as attention 

mechanisms in the literature. To distinguish it from the dot-product attention mechanism, we call 

them scaling attention. Unlike dot-product attention which models global dependencies from 

feature maps, scaling attention reinforces informative features and whittles information-lacking 

features. For example, Wang et al. (2017) proposed a residual attention network (RAN) which 

introduces the scaling attention mechanism inserted into deep residual networks. As a high-

capacity structure, the residual attention is mainly built on max-pooling layers, convolutional 

layers, and residual units. In contrast, Hu et al. (2018) presented the squeeze-and-excitation (SE) 

module, a lightweight gating mechanism constructed on the global average pooling layer and 

linear layers, to calculate a scaling factor for each channel, thereby weighting the channels 

accordingly. The convolutional block attention module (CBAM) (Woo et al., 2018), selective 

kernel unit (SK unit) (Li et al., 2019b) and efficient channel attention module (ECA) (Wang et al., 

2020) further boost the SE block’s performance. Despite both names containing attention, the 

principles and purposes of dot-product attention and scaling attention are entirely divergent. 

 Efficient semantic segmentation 

For many practical applications, efficiency is critical, and this is especially pertinent for real-

time (≥30FPS) scenarios such as autonomous driving. Therefore, huge efforts have been made 

to accelerate models for efficient semantic segmentation, by employing lightweight operations or 

down-sampling the input size. The utilization of lightweight convolutions (e.g., asymmetric 
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convolution and depth-wise separable convolution) is a common strategy for designing 

lightweight networks (Romera et al., 2017; Yu et al., 2018). The down-sampling of the input size 

is a trivial solution to speed up semantic segmentation by reducing the resolution of the input 

images, which inevitably results in the loss of information. To extract spatial details at the original 

resolution, some of the latest methods include a further shallow branch, forming a two-path 

architecture (Yu et al., 2020; Yu et al., 2018).  

3. Attentive Bilateral Contextual Network 

 

Fig. 5. An overview of the Attentive Bilateral Contextual Network. (a) network architecture. (b) 

the Feature Aggregation Module (FAM). (c) the Attention Enhancement Module (AEM). (d) the 

Linear Attention Mechanism. Note that CBR means Convolution+BatchNorm+ReLU, LAM 

denotes Linear Attention Mechanism, Conv signifies Convolution layer, Concat represents 

Concatenate operation, BN illustrates BatchNorm layer, and Mul is Multiplication operation. 

The proposed Attentive Bilateral Contextual Network (ABCNet), as well as the components, 

are demonstrated in Fig. 5. 



16 

 Spatial path 

It is very challenging to reconcile the requirement for spatial detail with a large receptive field 

simultaneously. However, both of them are crucial to achieving high segmentation accuracy. 

Especially, for efficient semantic segmentation, mainstream solutions focus on down-sampling of 

the input image or speeding up the network by channel pruning. The former loses the majority of 

the spatial detail, whereas the latter can change its character deleteriously. By contrast, in the 

proposed ABCNet, we adopt a bilateral architecture (Yu et al., 2018), which is equipped with a 

spatial path to capture spatial details and generate low-level feature maps. Therefore, a rich 

channel capacity is essential for this path to encode sufficient spatial detailed information. 

Meanwhile, since the spatial path focuses merely on low-level details, a shallow structure with a 

small stride is sufficient for this branch. Specifically, the spatial path is comprised of three layers 

as shown in Fig. 5(a). The kernel size, channel number, stride and padding for each layer is [7, 

64, 2, 3], [3, 64, 2, 1], and [3, 64, 2, 1], respectively. Each layer is followed by batch normalization 

(Ioffe and Szegedy, 2015) and ReLU (Glorot et al., 2011). Therefore, the output feature maps of 

this path are 1/8 of the original image, which encodes abundant spatial details resulting from the 

large spatial size. 

 Contextual path 

In parallel to the spatial path, the contextual path is designed to provide a sufficient receptive 

field, thereby extracting global high-level contextual information. For segmentation, as the 

receptive field determines the richness of context, several recent approaches attempt to address 
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the issue by taking advantage of the spatial pyramid pooling. However, huge computational 

demand and memory consumption will be brought when expanding the receptive field by a large 

kernel size. Instead, we develop the contextual path with the linear attention mechanism (Li et al., 

2021b), which considers the long-range contextual information and efficient computation 

simultaneously.  

In the contextual path as shown in Fig. 5(a), we harness the lightweight backbone (i.e., ResNet-

18) (He et al., 2016) to down-sample the feature map and encode the high-level semantic 

information. We deploy two attention enhancement modules (AEM) on the last two layers of the 

backbone to fully extract the global contextual information. Besides, a global average pooling 

operation is attached to the tail of the contextual path to extract the contextual information, while 

the obtained features are added with the enhanced features generated by AEM2. Thereafter, the 

acquired features are upsampled by scale=2 to restore the shape. Finally, the features obtained by 

the AEM1 and AEM2 are added and then fed into the feature aggregation module (FAM).  

 Feature aggregation module 

The feature representations of the spatial path and the contextual path are complementary, but 

provided in different domains (i.e., the spatial path generates the low-level and detailed features, 

while the contextual path provides the high-level and semantic features). Specifically, the output 

feature captured by the spatial path encodes mainly rich detail information, while the information 

generated by the contextual path mostly encodes contextual information. Thus, even though 

summation and concatenation can merge those features (Poudel et al., 2019), these simple fusion 

schemes are less effective to fuse information in diverse domains (Yang et al., 2021). Here, we 
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design a feature aggregation module (FAM) to merge both types of feature representation in 

consideration of the need for high accuracy and efficiency. 

As shown in Fig. 5(b), with two domains of features, we first concatenate the output of the 

spatial and contextual paths. Thereafter, a convolutional layer with batch normalization (Ioffe and 

Szegedy, 2015) and ReLU (Glorot et al., 2011) is attached to balance the scales of the features. 

Then, we capture the long-range dependencies of the generated features using the linear attention 

mechanism, thereby weighing the features selectively. Finally, the weighted features are 

multiplied and added with the balanced features. As both the scales and contributions of features 

are readjusted adaptively, the outputs of spatial and contextual paths can be fused effectively. 

 Loss function 

As shown in Fig. 5(a), besides the principal loss function used to supervise the output of the 

entire network, we utilize two auxiliary loss functions along the contextual path to accelerate the 

convergence velocity. We select the cross-entropy loss as the principal loss: 

L𝐶𝐶𝐶𝐶 = −
1
𝑁𝑁
� � 𝑦𝑦𝑘𝑘

(𝑛𝑛) log 𝑦𝑦�𝑘𝑘
(𝑛𝑛)

𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1
, (14) 

where N and K are the number of samples and number of classes, respectively. 𝑦𝑦(𝑛𝑛) and 𝑦𝑦�(𝑛𝑛) 

with n ∈ [1,⋯ ,𝑁𝑁] are one-hot vectors of the true labels and the corresponding softmax output 

from the network. Essentially, 𝑦𝑦�𝑘𝑘
(𝑛𝑛)  depicts the network’s confidence of sample n being 

classified as k. The auxiliary loss functions are chosen as the focal loss: 

L𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = −
1
𝑁𝑁� � �1 − 𝑦𝑦�𝑘𝑘

(𝑛𝑛)�
𝛾𝛾
𝑦𝑦𝑘𝑘

(𝑛𝑛) log𝑦𝑦�𝑘𝑘
(𝑛𝑛)𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1
, (15) 

where γ is the focusing parameter, which controls the down-weighting of the easily classified 

examples, parameterized as 2 in the experiments. Hence, the overall loss of the network is: 
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L = L𝐶𝐶𝐶𝐶 + L𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎1 + L𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎2 . (16) 

 Network variants 

There are four main parts in our proposed ABCNet, i.e., the contextual path, the spatial path, 

the attention enhancement module (AEM), and the feature aggregation module (FAM). Hence, 

there are mainly five variants of our ABCNet. 

Baseline: The baseline (denoted as Cp) can be constructed based on the contextual path without 

AEM and FAM, while the backbone is set as ResNet-18. The baseline can be utilized as the 

benchmark to evaluate the effectiveness of components in the network. 

Cp + AEM: In the contextual path, the attention enhancement module is designed to capture 

global contextual information. Hence, a simple variant is a contextual path with attention 

enhancement modules. The performance of Cp + AEM compared with the baseline will illustrate 

the effectiveness of the attention enhancement module. 

Cp + Sp + AEM (Sum) and Cp + Sp + AEM (Cat): As abundant spatial information is crucial 

for semantic segmentation, the spatial path is designed to provide a relatively large spatial size 

and extract spatial information. Two simple fusion schemes including summation (Sum) and 

concatenation (Cat) can be utilized to merge features. The effectiveness of the spatial path can be 

validated by merging the spatial information into the network. 

Cp + Sp + AEM + FAM: Given that the features obtained by the spatial and contextual paths 

are in different domains, neither summation nor concatenation provides the optimal fusion scheme. 

The full version of the proposed ABCNet is fusing the contextual information and spatial 

information by the feature aggregation module. By comparing the accuracy with Cp + Sp + AEM 
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(Sum) and Cp + Sp + AEM (Cat), the superiority of the feature aggregation module will be 

demonstrated. 

4. Eeperimental Results and Discussion 

 Experimental settings 

a) Datasets 

The effectiveness of the proposed ABCNet was tested using the ISPRS Vaihingen dataset and 

the ISPRS Potsdam dataset (http://www2.isprs.org/commissions/comm3/wg4/semantic-label-

ing.html). There are two types of ground truth provided in the ISPRS datasets: with and without 

eroded boundaries. We conducted all experiments on the ground truth with eroded boundaries. 

Vaihingen: The Vaihingen dataset contains 33 images with an average size of 2494 × 2064 

pixels and a ground sampling distance (GSD) of 9 cm. The near-infrared, red, and green channels 

together with corresponding digital surface models (DSMs) and normalized DSMs (NDSMs) are 

provided in the dataset. We utilized ID: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38 

for testing, ID: 30 for validation, and the remaining 15 images for training. The DSMs were not 

used in the experiments. The reference data are labeled according to six land-cover types: 

impervious surfaces, building, low vegetation, tree, car, and clutter/background. 

Potsdam: There exist 38 fine-resolution images of size 6000 × 6000 pixels with a GSD of 5 

cm in the Potsdam dataset. The dataset provides the near-infrared, red, green, and blue channels 

as well as DSMs and NDSMs. We utilized ID: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 

5_14, 5_15, 6_13, 6_14, 6_15, 7_13 for testing, ID: 2_10 for validation, and the remaining 22 

http://www2.isprs.org/commissions/comm3/wg4/semantic-label-ing.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-label-ing.html
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images, except for image named 7_10 with error annotations, for training. We employed only the 

red, green, and blue channels in the experiments. The reference data are divided into the same six 

categories as the Vaihingen data set. 

b) Training and testing setting 

All the training processes were implemented with PyTorch on a single Tesla V100 with 32 

batch size, and the optimizer was set as AdamW with a learning rate of 0.0003 and a weight decay 

value of 0.0025. For the learning rate scheduler, we adopted available ReduceLROnPlateau in 

PyTorch with the patience of 5 and the learning rate decrease factor as 0.5. If OA on the validation 

set does not increase for more than 10 epochs, the training procedure will be stopped, while the 

maximum iteration period is 1000 epochs. For training, we cropped the raw images as well as 

corresponding labels into 512 × 512 patches and augmented them via rotating on a random angle 

(90°, 180°, or 270°), resizing by a random scale (from 0.5 to 2.0), flipping by the horizontal axis, 

flipping by the vertical axis, and adding stochastic Gaussian noise. The probabilities to conduct 

those augmentation strategies for a patch were set as 0.15, 0.15, 0.25, 0.25, and 0.1, respectively. 

The comparative benchmark methods selected included the contextual information aggregation 

methods designed initially for natural images, such as pyramid scene parsing network (PSPNet) 

(Zhao et al., 2017) and dual attention network (DANet) (Fu et al., 2019), the multi-scale feature 

aggregation models proposed for remote sensing images, including multi-stage attention ResU-

Net (MAResU-Net) (Li et al., 2021b) and edge-aware neural network (EaNet) (Zheng et al., 2020), 

as well as lightweight networks developed for efficient semantic segmentation, including depth-

wise asymmetric bottleneck network (DABNet) (Li et al., 2019a), efficient residual factorized 
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convNet (ERFNet) (Romera et al., 2017), bilateral segmentation network V1 (BiSeNetV1) (Yu et 

al., 2018) and V2 (BiSeNetV2) (Yu et al., 2020), fast attention network (FANet) (Hu et al., 2020), 

ShelfNet (Zhuang et al., 2019) and SwiftNet (Oršić and Šegvić, 2021). In the inference stage, we 

also utilized the data augmentation operation including random rotation and horizontal as well as 

vertical flipping which is also known as test-time augmentation (TTA). 

c) Evaluation metrics 

The performance of ABCNet was evaluated using the overall accuracy (OA), mean Intersection 

over Union (mIoU), and F1 score (F1). Based on the accumulated confusion matrix, the OA, 

mIoU, and F1 are computed as: 

𝑂𝑂𝑂𝑂 =
∑ 𝑇𝑇𝑇𝑇𝑘𝑘𝐾𝐾
𝑘𝑘=1

∑ 𝑇𝑇𝑇𝑇𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑘𝑘 + 𝑇𝑇𝑇𝑇𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑘𝑘𝐾𝐾
𝑘𝑘=1

, (17) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝐾𝐾
�

𝑇𝑇𝑇𝑇𝑘𝑘
𝑇𝑇𝑇𝑇𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑘𝑘

𝐾𝐾

𝑘𝑘=1
, (18) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑘𝑘
, (19) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘 =
𝑇𝑇𝑇𝑇𝑘𝑘

𝑇𝑇𝑇𝑇𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑘𝑘
, (20) 

𝐹𝐹1𝑘𝑘 = 2 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘

, (21) 
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where 𝑇𝑇𝑇𝑇𝑘𝑘, 𝐹𝐹𝐹𝐹𝑘𝑘, 𝑇𝑇𝑇𝑇𝑘𝑘, and 𝐹𝐹𝐹𝐹𝑘𝑘 represent the true positive, false positive, true negative, and 

false negatives, respectively, for a particular object indexed as class k. The OA was computed for 

all categories including the background class. 

TABLE 1. Ablation study of each component in the proposed ABCNet. 

Dataset Method Mean F1 OA (%) mIoU (%) 

Vaihingen 

Cp 83.9  88.1 73.9 

Cp + AEM 85.8 88.8  75.6  

Cp + Sp + AEM(Sum) 86.6 89.8  77.4  

Cp + Sp + AEM(Cat) 87.1 89.7  77.8  

Cp + Sp + AEM + FAM 89.5  90.7  81.3  

Potsdam 

Cp 89.7  87.9  81.6  

Cp + AEM 90.6 89.3  83.0  

Cp + Sp + AEM(Sum) 91.0 89.4  83.4  

Cp + Sp + AEM(Cat) 91.2  89.8  84.1  

Cp + Sp + AEM + FAM 92.7  91.3  86.5 
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 Experimental results 

a) Ablation Study 

TABLE 2. The complexity and speed of the proposed ABCNet and lightweight methods. 'G' indicates Gillion (i.e., units for the 

number of floating point operations) and 'M' signifies Million (i.e., units for the number of parameters). For an extensive comparison, 

we chose 256×256, 512×512, 1024×1024, 2048×2048, and 4096×4096 pixels as the sizes of the input image and report the inference 

speed measured in frames per second (FPS) on a midrange notebook graphics card 1660Ti. mIoU is measured using patches of 

512×512 pixels, where the first number is the mIoU on the Vaihingen dataset and the second one is on the Potsdam dataset. 

Method Backbone Complexity(G) Parameters(M) 

256×

256 

512×

512 

1024×

1024 

2048×

2048 

4096×

4096 

mIoU 

DABNet (Li et al., 2019a) - 5.22  0.75  90.67  87.74  27.41  7.44  * 70.2/79.6 

ERFNet (Romera et al., 2017) - 14.75  2.06  90.51  59.04  17.59  4.87  1.25  69.1/76.2 

BiSeNetV1 (Yu et al., 2018) ResNet18 15.25  13.61  143.50  87.63  25.89  7.23  1.84  75.8/81.7 

PSPNet (Zhao et al., 2017) ResNet18 12.55  24.03  151.12  105.03  34.83  10.16  2.66  68.6/75.9 

BiSeNetV2 (Yu et al., 2020) - 13.91  12.30  124.49  82.84  25.64  7.07  * 75.5/82.3 

DANet (Fu et al., 2019) ResNet18 9.90  12.68  181.66  124.18  40.80  11.42  * 69.4/80.3 

FANet (Hu et al., 2020) ResNet18 21.66  13.81  112.59  67.97  20.41  5.57  * 75.6/84.2 

ShelfNet (Zhuang et al., 2019) ResNet18 12.36  14.58  123.59  90.41  30.93  9.06  2.40  78.7/84.4 

SwiftNet (Oršić and Šegvić, 2021) ResNet18 13.08  11.80  157.63  97.62  30.79  8.65  * 78.3/83.8 

MAResU-Net (Li et al., 2021b) ResNet18 25.43  16.17  70.12  37.55  13.35  3.51  * 78.6/83.9 

EaNet (Zheng et al., 2020) ResNet18 18.75  34.23  73.98  55.95  17.94  5.53  1.54  79.6/83.4 

ABCNet ResNet18 18.72  14.06  113.09  72.13  22.73  6.23  1.60  81.3/86.5 
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To evaluate the effectiveness of the components in the proposed ABCNet, we conducted 

extensive ablation experiments; the setting details and quantitative results are listed in Table 1.  

Baseline: The baseline was constructed based on the contextual path, while the generated 

feature maps were up-sampled directly to the same shape as the original input image. 

Ablation for attention enhancement module: To capture the global contextual information, 

we designed an attention enhancement module (AEM) in the contextual path. As presented in 

Table 1, for two datasets, the utilization of AEM (indicated as Cp + AEM) produced an increase 

of greater than 1.4% in the mIoU. 

Ablation for the spatial path: Table 1 demonstrates that even simple fusion schemes for 

merging spatial information such as summation (represented as Cp + Sp + AEM(Sum)) and 

concatenation (represented as Cp + Sp + AEM(Cat)) boosted the performance of the mIoU by 

about 1.8% on Vaihingen dataset, and 0.4% on Potsdam dataset. 

Ablation for feature aggregation module: As shown in Table 1, the significant gap in 

performance (more than 2.4% in the mIoU) demonstrates the validity of the feature aggregation 

module (signified as Cp + Sp + AEM + FAM). 

b) The complexity and speed of the network 

Complexity and speed are important criteria for measuring the merit of an algorithm, and this 

is especially true for practical applications. We first compared the computation and memory 

requirements between the linear attention mechanism and dot-product attention mechanism which 

can be found in Fig. 6. 
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Fig. 6. Comparison between the (a) computational and (b) memory requirements of the linear 

attention mechanism and dot-product attention mechanism under different input sizes. The 

calculation assumes 𝐶𝐶 = 𝐷𝐷𝑣𝑣 = 2𝐷𝐷𝑘𝑘 = 64. MM denotes 1 Mega multiply-accumulation (MACC), 

where 1 MACC means 1 multiplication and 1 addition operation. GM means 1 Giga MACC, 

while TM signifies 1 Tera MACC. Similarly, MB, GB, and TB represent 1 MegaByte, 1 GigaByte, 

and 1 TeraByte, respectively. Note the figure is shown on the log scale. 

For a comprehensive comparison, we further implemented the experiments under different 

settings. A comparison between the parameters and computational complexity of the different 

networks is reported in Table 2. The proposed ABCNet maintained both high speed and high 

accuracy simultaneously. As listed in the last column of Table 2, the mIoU on the Potsdam dataset 

achieved by the ABCNet is at least 2.0% higher than the benchmark methods. Meanwhile, the 

ABCNet was able to achieve a 72.13 FPS speed for a 512×512 input. The remarkable performance 

of the speed and occupation of memory not only derives from the linear attention mechanism but 

also results from that we only utilized the AEM in deeper layers with small spatial dimensionality. 

Besides, the elaborate design enabled the ABCNet to handle the massive input (4096×4096), 

while more than half of the benchmark methods ran out of memory for a such large input. 
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c) Results on the ISPRS Vaihingen and Potsdam datasets 

The ISPRS Vaihingen is a relatively small dataset. All images represent the same city, such 

that the statistical characters of the training and test datasets are similar (Ghassemi et al., 2019). 

Therefore, high accuracy can be achieved relatively easily by specifically designed networks, 

especially for those that fuse orthophoto (TOP) images with auxiliary DSMs or NDSMs. In this 

section, we demonstrate that the proposed ABCNet model using only TOP images with an 

TABLE 3. Quantitative comparison results on the Vaihingen test set with the lightweight networks. 

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) 

DABNet (Li et al., 2019a) - 87.8  88.8  74.3  84.9  60.2  79.2  84.3  70.2  

ERFNet (Romera et al., 2017) - 88.5  90.2  76.4  85.8  53.6  78.9  85.8  69.1  

BiSeNetV1 (Yu et al., 2018) ResNet18 89.1  91.3  80.9  86.9  73.1  84.3  87.1  75.8  

PSPNet (Zhao et al., 2017) ResNet18 89.0  93.2  81.5  87.7  43.9  79.0  87.7  68.6  

BiSeNetV2 (Yu et al., 2020) - 89.9  91.9  82.0  88.3  71.4  84.7  88.0  75.5  

DANet (Fu et al., 2019) ResNet18 90.0  93.9  82.2  87.3  44.5  79.6  88.2  69.4  

FANet (Hu et al., 2020) ResNet18 90.7  93.8  82.6  88.6  71.6  85.4  88.9  75.6  

EaNet (Zheng et al., 2020) ResNet18 91.7  94.5  83.1  89.2  80.0  87.7  89.7  78.7  

ShelfNet (Zhuang et al., 2019) ResNet18 91.8  94.6  83.8  89.3  77.9  87.5  89.8  78.3  

MAResU-Net (Li et al., 2021b) ResNet18 92.0  95.0  83.7  89.3  78.3  87.7  90.1  78.6  

SwiftNet (Oršić and Šegvić, 2021) ResNet18 92.2  94.8  84.1  89.3  81.2  88.3  90.2  79.6  

ABCNet ResNet18 92.7  95.2  84.5  89.7  85.3  89.5  90.7  81.3  
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Fig. 7. Mapping results for test images of Vaihingen tile-27. 

efficient architecture can not only transcend lightweight networks (Table 3) but also achieve 
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highly competitive accuracy compared to specially designed models (Table 4).  

As shown in Table 3, the numeric scores for the ISPRS Vaihingen test dataset demonstrated 

that ABCNet delivers high accuracy, exceeding other lightweight networks in the mean F1, OA, 

and mIoU by a significant margin. Particularly, the ‘‘car’’ class in the Vaihingen dataset is difficult 

to handle as it is a relatively small object. Nonetheless, ABCNet produced an 85.3% F1 score for 

this class, which is at least 4.1% higher than for the benchmark methods. In addition, we visualize 

area 27 in Fig. 7 to qualitatively demonstrate the effectiveness of ABCNet, while the enlarged 

TABLE 4. Quantitative comparison results on the Vaihingen test set with the state-of-the-art networks. 

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) Speed 

DeepLabV3+ (Chen et al., 2018a) ResNet101 92.4  95.2  84.3  89.5  86.5  89.6  90.6  81.5  13.27  

PSPNet (Zhao et al., 2017) ResNet101 92.8  95.5  84.5  89.9  88.6  90.3  90.9  82.6  22.03  

DANet (Fu et al., 2019) ResNet101 91.6  95.0  83.3  88.9  87.2  89.2  90.4  81.3  21.97  

EaNet (Zheng et al., 2020) ResNet101 93.4  96.2  85.6  90.5  88.3  90.8  91.2  - 9.97  

DDCM-Net (Liu et al., 2020) ResNet50 92.7  95.3  83.3  89.4  88.3  89.8  90.4  - 37.28  

HUSTW5 (Sun et al., 2019) ResegNets 93.3  96.1  86.4  90.8  74.6  88.2  91.6  - - 

CASIA2 (Liu et al., 2018) ResNet101 93.2  96.0  84.7  89.9  86.7  90.1  91.1  - - 

V-FuseNet# (Audebert et al., 2018) FuseNet 91.0  94.4  84.5  89.9  86.3  89.2  90.0  - - 

DLR_9# (Marmanis et al., 2018) - 92.4  95.2  83.9  89.9  81.2  88.5  90.3  - - 

ABCNet ResNet18 92.7  95.2  84.5  89.7  85.3  89.5  90.7  81.3  72.13 

- means the results are not reported in the original paper. 

# means the DSM or NDSM are used in the network. 
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results are shown in Fig. 9 (top).  

 

Fig. 8. Mapping results for the test images of Potsdam tile-3_13. 

For a comprehensive evaluation, ABCNet was also compared with other state-of-the-art 

methods. As can be seen in Table 4, as a lightweight network, the proposed ABCNet achieved a 

competitive performance even compared with those models designed with complex structures. It 

is worth noting that the speed of ABCNet is two-to-seven times faster than those methods.  

Furthermore, we undertook experiments on the ISPRS Potsdam dataset to further evaluate the 

performance of ABCNet. Compared with the encoder-decoder structure, the bilateral architecture 

can retain more spatial information without reducing the speed of the model (Yu et al., 2018). The 

spatial path stacks only three convolution layers to generate 1/8 feature maps, while the contextual 



31 

path includes two attention enhancement modules (AEM) to refine the features and capture 

contextual information. Numerical comparisons with other lightweight methods are shown in 

Table 5. Remarkably, ABCNet achieved 91.3% overall accuracy and 86.5% in mIoU. 

Visualization of area 3_13 is displayed in Fig. 8, and the enlarged results are exhibited in Fig. 9  

(bottom). As there are sufficient images in the Potsdam dataset to train the network, the 

performance of ABCNet can be equivalent to the state-of-the-art methods with a much faster 

TABLE 5 Quantitative comparison results on the Potsdam test set with the lightweight networks. 

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) 

ERFNet (Romera et al., 2017) - 88.7  93.0  81.1  75.8  90.5  85.8  84.5  76.2 

DABNet (Li et al., 2019a) - 89.9  93.2  83.6  82.3  92.6  88.3  86.7  79.6  

PSPNet (Zhao et al., 2017) ResNet18 89.1  94.5  84.0  85.8  76.6  86.0  87.2  75.9  

BiSeNetV1 (Yu et al., 2018) ResNet18 90.2  94.6  85.5  86.2  92.7  89.8  88.2  81.7  

BiSeNetV2 (Yu et al., 2020) - 91.3  94.3  85.0  85.2  94.1  90.0  88.2  82.3  

EaNet (Zheng et al., 2020) ResNet18 92.0  95.7  84.3  85.7  95.1  90.6  88.7  83.4  

MAResU-Net (Li et al., 2021b) ResNet18 91.4  95.6  85.8  86.6  93.3  90.5  89.0  83.9  

DANet (Fu et al., 2019) ResNet18 91.0  95.6  86.1  87.6  84.3  88.9  89.1  80.3  

SwiftNet (Oršić and Šegvić, 2021) ResNet18 91.8  95.9  85.7  86.8  94.5  91.0  89.3  83.8  

FANet (Hu et al., 2020) ResNet18 92.0  96.1  86.0  87.8  94.5  91.3  89.8  84.2  

ShelfNet (Zhuang et al., 2019) ResNet18 92.5  95.8  86.6  87.1  94.6  91.3  89.9  84.4  

ABCNet ResNet18 93.5  96.9  87.9  89.1  95.8  92.7  91.3  86.5  
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speed. The comparison results are listed in Table 6. 

TABLE 6. Quantitative comparison results on the Potsdam test set with state-of-the-art networks. 

Method Backbone Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) Speed 

DeepLabV3+ (Chen et al., 2018a) ResNet101 93.0  95.9  87.6  88.2  96.0  92.1  90.9  84.3  13.27  

PSPNet (Zhao et al., 2017) ResNet101 93.4  97.0  87.8  88.5  95.4  92.4  91.1  84.9  22.03  

DDCM-Net (Liu et al., 2020) ResNet50 92.9  96.9  87.7  89.4  94.9  92.3  90.8  - 37.28  

CCNet (Huang et al., 2020) ResNet101 93.6  96.8  86.9  88.6  96.2  92.4  91.5  85.7  5.56  

AMA_1 - 93.4  96.8  87.7  88.8  96.0  92.5  91.2  - - 

SWJ_2 ResNet101 94.4  97.4  87.8  87.6  94.7  92.4  91.7  - - 

HUSTW4 (Sun et al., 2019) ResegNets 93.6  97.6  88.5  88.8  94.6  92.6  91.6  - - 

V-FuseNet# (Audebert et al., 2018) FuseNet 92.7  96.3  87.3  88.5  95.4  92.0  90.6  - - 

DST_5# (Sherrah, 2016) FCN 92.5  96.4  86.7  88.0  94.7  91.7  90.3  - - 

ABCNet ResNet18 93.5  96.9  87.9  89.1  95.8  92.7  91.3  86.5  72.13 

- means the results are not reported in the original paper. 

# means the DSM or NDSM are used in the network. 
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Fig. 9. Enlarged visualization of results on (top) the Vaihingen and (bottom) Potsdam datasets. 
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 Discussion 

The comprehensive experiments undertaken demonstrate the superiority of ABCNet, not only 

for segmentation accuracy but also efficiency. There are three important factors that guarantee 

accuracy without drastically increasing computational consumption. First, the bilateral 

architecture resolves the contradiction between sufficient contextual information and fine-grained 

spatial detail. The channel pruning or input cropping operations are commonly used in the 

encoder-decoder structure to boost inference speed, leading to the loss of low-level and spatial 

details which cannot be recovered easily. In contrast, the proposed ABCNet adopts a bilateral 

architecture, where a spatial path extracts low-level features and a contextual path exploits high-

level features. To demonstrate the difference between the contextual path (Cp) and spatial path 

(Sp) visually, we visualize the feature maps generated by the Cp and Sp in Fig. 10. Please note 

that the features maps of are upsampled to restore the shape. As can be seen in the figure, the 

information provided by the contextual path and spatial has indeed differences. Specifically, in 

feature maps of the contextual path, objects have a more consistent character with those pixels in 

the same class. By contrast, more detailed information is preserved in the spatial path. Meanwhile, 

the relatively efficient design of the spatial path (three stacked identical layers) and contextual 

path (the ResNet-18 backbone) avoids large computational requirements. Second, the attention 

enhancement module balances the trade-off between global contextual information and huge 

calculation complexity. Conventionally, the dot-product attention mechanism employed to 

capture long-range dependencies is accompanied by quadratic increases in time and memory 

consumption with input size. Instead, we harness the linear attention mechanism, developed in 
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our previous research, to provide a calculation-friendly scheme for global contextual information 

extraction. Third, the feature aggregation module merges the spatial features and contextual 

features in an appropriate fashion. The spatial features generated by the spatial path are low-level 

and detailed, while the contextual features generated by the contextual path are high-level and 

semantically rich. In other words, the features have entirely different semantic meanings. Hence, 

although a degree of improvement in accuracy can be brought, the simple summation or 

concatenation operations are not the optimal feature fusion scheme. The elaborate feature 

aggregation module developed here ensures reasonable fusion and full utilization of both sets of 

features. 

5. Conclusion 

In this paper, we propose a novel lightweight framework for efficient semantic segmentation 

in the field of remote sensing, namely the Attentive Bilateral Contextual Network (ABCNet). As 

both sufficient contextual information and fine-grained spatial detail are crucial for the accuracy 

of segmentation, we design the ABCNet based on the bilateral architecture which captures 

simultaneously and adaptively the abundant spatial details in fine-resolution remotely sensed 

imagery via a spatial path and the global contextual information via a contextual path. Extensive 

experiments on the ISPRS Vaihingen and Potsdam datasets demonstrate the effectiveness and 

efficiency of the proposed ABCNet, with huge potential for practical real-time applications. 

Although achieving a relatively fine balance between effectiveness and efficiency, the speed of 

the proposed ABCNet has a certain room for improvement, especially when compared with those 

single-branch lightweight networks. As the contextual path occupies the majority of parameters 
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and complexities, our future work will focus on further optimizing the contextual path of the 

ABCNet, especially to design an efficient Transformer backbone using our linear attention 

mechanism, thereby replacing the original ResNet backbone with this novel structure. 

 

Fig. 10. Illustration of feature mapsgenerated by Cp and Sp, where the input size of the image in 

the top part is 512×512 and 2048×2048 in the bottom. 
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