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Abstract
We consider the heat equation for monolayer two-dimensional materials in the presence of heat
flow into a substrate and Joule heating due to electrical current. We compare devices including a
nanowire of constant width and a bow tie (or wedge) constriction of varying width, and we
derive approximate one-dimensional heat equations for them; a bow tie constriction is described
by the modified Bessel equation of zero order. We compare steady state analytic solutions of the
approximate equations with numerical results obtained by a finite element method solution of
the two-dimensional equation. Using these solutions, we describe the role of thermal
conductivity, thermal boundary resistance with the substrate and device geometry. The
temperature in a device at fixed potential difference will remain finite as the width shrinks, but
will diverge for fixed current, logarithmically with width for the bow tie as compared to an
inverse square dependence in a nanowire.

Keywords: 2D materials, nanostructures, thermoelectric devices, Joule heating

(Some figures may appear in colour only in the online journal)

1. Introduction

There is huge interest in the thermal properties of two-
dimensional (2D) materials, motivated by applications to
thermal management [1–4], interconnects in integrated cir-
cuits [5–7], thermoelectric devices [8–11] and nanoscale
fabrication [12–15]. While nanoscale constrictions are of
great importance for their electrical transport character-
istics, particularly in the quantum regime [16, 17], they
also promote enhanced Joule self-heating and thermoelectric
coefficients [18–21]. For such structures, scanning thermal
microscopy [4] is an ideal tool to map surface temperatures
with spatial resolution of a few nanometres, as applied to
carbon nanotubes [22], nanowires [23–26] and 2D materials
[20, 21, 27–37].
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In this paper, we model heat transport and the resulting spa-
tial temperature profile in the presence of Joule self-heating
due to electrical current in nanoconstrictions in monolayer
2D materials. We consider electrical and thermal transport in
the classical, diffusive regime, applicable to experiments at
room temperature or above, and with spatial dimensions typ-
ically of the order of 100 nm or above [18–21, 38]. In this
regime, modelling typically involves analytic solution of the
one-dimensional heat equation [22, 38–45] or numerical solu-
tions using the finite element method [20, 46–48].

We consider three geometries as typical examples, figure 1,
which are a rectangle, a nanowire [18, 19, 23–26, 49–51]
of constant width w, and a bow tie (or wedge) constric-
tion [20, 21, 51–53] of varying width down to a minimum
w. We compare the temperature profiles for devices with the
same macroscopic dimensions and characteristic parameters,
for either a fixed applied potential difference or a fixed cur-
rent. The nanowire and bow tie are excellent representative
examples because they exhibit markedly different behaviour:
the electrical resistances of the nanowire and bow tie have dif-
ferent dependences on the width w, and this means that Joule
heating is independent of w for the nanowire (for small w and
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Figure 1. Schematic plan view of three different two-lead devices with (a) a uniform rectangle of length L and width W, (b) a nanowire
constriction of length ℓ and constant width w, (c) a bow tie constriction of minimum width w. The central white region indicates the device
as described by the heat equation (4). Light grey indicates two leads at temperature T0 with boundary condition (5), dark grey indicates
insulating regions with boundary condition (6). Cartesian coordinate axes (x, y) are shown in (a) with the origin O at the centre of the sample.

fixed potential difference), but diverges as w→ 0 for the bow
tie. We derive effective one-dimensional heat equations for the
three systems with analytic solutions, and we compare them
with numerical solutions using the finite element method [54].
This approach highlights the central role played by the thermal
healing length LH which encapsulates sample specific details
about the thermal conductivity and the rate of heat loss to the
environment including a substrate [42, 55].

We consider the steady state heat equation in two dimen-
sions [56, 57]:

∇· (κ∇T(r))+ p(r) = 0, (1)

where p(r) is the areal rate of internal energy generation
(power per unit area) [58] and κ is the homogeneous thermal
conductivity. We include two opposing sources of energy
generation p(r) = pJ(r)+ pB(r) where pJ(r) = j ·E describes
Joule heating with electrical current density j and electric
field E, and pB(r) describes heat loss from the 2D monolayer
sample in the vertical direction through sample-substrate or
sample-air interfaces (depending on the particular setup). This
may be parameterised with a thermal boundary resistance RB

such that pB(r) =−[T(r)−T0]/RB for ambient temperature
of the environment T0 [39–41, 55, 59, 60]. We assume that the
sample and the substrate are homogeneous, so that the thermal
boundary resistance RB is independent of position over the
whole area of the sample (the central white regions in figure 1).

Thus, the heat equation (1) may be written as:

∇· (κ∇T(r))+ j ·E− [T(r)−T0]
RB

= 0, (2)

Comparison of the first term with the other two shows that:

T(r)≈

{
T0 +TJ(r), for κ→ 0,

T0, for κ→∞,
(3)

where κ should be compared with L2/RB for sample dimen-
sion L. Here TJ(r) = pJ(r)RB = j ·ERB is the ‘Joule heating
temperature’ which is a product of the Joule heating power
per unit area j ·E and the thermal boundary resistance RB.
Joule heating is the local source of temperature increase that is

generally dependent on position r as determined by conserva-
tion of current and the sample shape (we study the examples
in figure 1 in detail later). The heat equation (2) describes
how the sample temperature T(r) is related to the inhomo-
geneous source term TJ(r). For a poor thermal conductor,
equation (3) shows that the temperature increase at position r is
actually equal to the Joule heating temperature TJ(r), whereas
an excellent thermal conductor remains close to the ambient
temperature T0.

We write the heat equation (2) solely in terms of functions
and parameters with dimensions of temperature or length,

∇2T(r)+
T0 +TJ(r)−T(r)

L2
H

= 0, (4)

where LH =
√
κRB is the thermal healing length [40, 42, 55].

Equation (4) illustrates that solutions T(r) will be a func-
tion of r/LH, i.e. the thermal healing length LH is the length
scale of typical variations of the temperature (the limits in
equation (3) could be written with LH =

√
κRB instead of κ if

RB is kept finite). Intermediate LH means that different regions
of a device cannot be considered as separate components with
individual, isolated thermal resistances, and this will often be
the case, e.g. LH is estimated to be of the order of 100 nm
in graphene [31, 61], WTe2 [62] and MoS2 [32] (its value
depends on the materials and sample quality).

We consider a two-lead set up with connections to electrical
leads in the longitudinal x direction at x=±L/2 for a sample
of length L, figure 1.We neglect thermal boundary resistance at
the contacts [1, 4, 63, 64] and consider the leads to be excellent
heat sinks fixed at the ambient temperature T0 as described by
Dirichlet boundary conditions,

T|longitudinal
boundary

= T0. (5)

In the transverse y direction, we consider connection of the
sample to a thermal insulator with a Neumann boundary con-
dition:

∇T · n̂|transverse
boundary

= 0, (6)

where n̂ is the normal to the boundary. In the following, we
solve the heat diffusion equation (4) for systems with different

2



J. Phys. D: Appl. Phys. 54 (2021) 475303 O M G Ward and E McCann

geometries, figure 1, forms of Joule heating TJ(r), and values
of LH.

2. Rectangular sample

We consider an homogeneous rectangular sample of length L
and width W with Cartesian coordinates (x, y), −L/2 ⩽ x⩽
L/2,−W/2 ⩽ y⩽W/2, figure 1(a). Electrical current I flows
along the x direction in response to a potential difference V.
The power per unit area due to Joule heating can be written as
pJ = j ·E= P/(LW)where the power is P= IV, and temperat-
ure TJ = PRB/(LW) is independent of position. Owing to Joule
heating and the boundary conditions (5), there is a spatially-
dependent temperature profile T(r), where T(r)> T0 with the
external environment at ambient temperature T0. In the lin-
ear response regime, V = IR for electrical resistance R. For the
rectangular device, we denote this as Rrect = L/(σW) for dc
conductivity σ. The Joule heating temperature is:

TJ,rect =
I2 RB

σW2
=
V2 σRB

L2
. (7)

For fixed electrical current I, TJ,rect increases as W decreases
(because the current density increases), but, for a fixed poten-
tial difference V, TJ,rect is proportional to the power per unit
area, and it is independent ofW, i.e. I∝W, but current density
I/W is independent of W.

We apply separation of variables [65] to the two-
dimensional heat equation (4). With boundary conditions (6)
in the transverse direction at y=±W/2, the y dependence of
the temperature is constant, reducing the heat equation (4) to
an effective one-dimensional equation [38, 41, 55]:

d2 T(x)
dx2

+
T0 +TJ −T(x)

L2
H

= 0. (8)

We assume that κ, σ and RB are independent of temperature
within the range of temperatures T(x). Then, the general solu-
tion of equation (8) is given by exponentials,

T(x) = T0 +TJ +Aex/LH +Be−x/LH , (9)

where A and B are arbitrary constants. With the boundary
conditions (5), T(x=−L/2) = T(x= L/2) = T0, the temper-
ature [1, 40, 42, 44, 55, 66] is:

T(x) = T0 +TJ

[
1− cosh(x/LH)

cosh(L/(2LH))

]
. (10)

This temperature profile is plotted in figures 2(a) and (b)
for different values of LH (solid lines). The maximum tem-
perature is at the centre of the sample, T(0) = T0 +TJ −
TJ/cosh(L/(2LH)), and:

T(0)≈

{
T0, for κ≫ L2/RB,

T0 +TJ, for κ≪ L2/RB,
(11)

where TJ ≡ TJ,rect = V2 σRB/L2 for the rectangle. These lim-
its agree with the initial expectations (3): the constant profile

Figure 2. The temperature profile T(x)− T0 in the longitudinal
direction normalized by the Joule temperature for a rectangle
TJ,rect = V2 σRB/L2. The first column (a, c, e) is for LH = 0.5L, the
second column (b, d, f) is for LH = 0.05L [67]. The first row (a, b) is
for a rectangular device, the second row (c), (d) for a nanowire, and
the third row (e, f) for a bow tie. For all devices,W= 0.5L. The
nanowire length is ℓ= 0.5L, and the nanowire and bow tie
constriction have minimum width w= 0.125L. Solid lines show the
temperature found from one-dimensional equations (10), (16) and
(19) for the rectangle, nanowire and bow tie, respectively. Dashed
lines in (c),(d) show the additional solution (15) for the nanowire.
Diamond symbols show numerical data from the finite element
method solution [54] of the two-dimensional equation (4), and
dotted lines in the second column (b, d, f) show the Joule heating
profile (3) that is valid in the limit LH → 0. Note the different
vertical scales in the two columns.

of Joule heating T= T0 +TJ,rect is shown as a dotted line in
figure 2(b).When taking the limits in equation (11) we keepRB

fixed. Otherwise, the dependence of the Joule heating temper-
ature TJ = V2 σRB/L2 on RB should also be taken into account
(see table 1).

We compare our analytical results with numerical solution
of the two-dimensional heat equation (4) using the finite ele-
ment method [54]. Numerical data [68] is shown as symbols
in figure 2. For the rectangular geometry, the analytic solu-
tion (10) is exact, as shown by the agreement of analytical and
numerical data in figures 2(a) and (b).
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Table 1. Parameter dependence of the maximum excess temperature T(0)− T0 where T(0) is the maximum temperature (at x= 0) and T0 is
the ambient temperature. Limits are determined using equation (15) for the nanowire and equation (32) for the bow tie. The top rows are for

fixed voltage V, the bottom rows are for fixed current I, and we use f(ℓ) =
[
1− 1

cosh(ℓ/(2
√
κRB))

]
. Results for the rectangle can be obtained

from those for the nanowire with the substitutions w→W and ℓ→ L.

Fixed V κ→ 0 RB → 0 w→ 0 κ→∞ RB →∞ w=W, ℓ= L

Nanowire V 2 σW 2 RB
[Lw+ℓ(W−w)] 2

0 V 2 σRBf(ℓ)
ℓ 2

0 V 2 σW 2 ℓ 2

8κ[Lw+ℓ(W−w)] 2
V 2 σRBf(L)

L 2

Bow tie V 2 σ(W−w) 2 RB

w 2L 2 ln 2(W/w)
0 V 2 σ

8κ
0 V 2 σ

8κ
V 2 σRBf(L)

L 2

Fixed I κ→ 0 RB → 0 w→ 0 κ→∞ RB →∞ w=W, ℓ= L

Nanowire I 2 RB
σw 2

0 I 2 RBf(ℓ)
σw 2

0 I 2 ℓ 2

8σκw 2
I 2 RBf(L)

σW 2

Bow tie I 2 RB
σw 2

0 I 2L 2 ln 2(W/w)
8 σκW 2

0 I 2L 2 ln 2(W/w)
8 σκ(W−w) 2

I 2 RBf(L)
σW 2

3. Nanowire

For a uniform rectangle with a fixed value of potential dif-
ference V, the characteristic Joule heating temperature TJ ≡
TJ,rect = V2 σRB/L2 does not depend on the sample width W.
To better understand the dependence on sample width, we con-
sider a nanowire of length ℓ and constant width w at the centre
of the device of total length L and width W, figure 1(b). We
assume that the material parameters κ, σ and RB are homo-
geneous throughout the sample. To begin, we will determine
the Joule heating temperature in each region.

Adding classical resistors in series gives the total electrical
resistance as:

Rwire =
Lw+ ℓ(W−w)

σwW
, (12)

and Rwire > Rrect for devices with the same bulk dimensions L,
W and material parameters. For an applied potential difference
V, and recalling that the current I= V/Rwire is constant along
the device, we find that the Joule heating temperatures, TJ,w
and TJ,W, in the regions of width w and W, respectively, are
given by:

TJ,w =
I2 RB

σw2
=

V2 σW2 RB

[Lw+ ℓ(W−w)]2
, (13)

TJ,W =
I2 RB

σW2
=

V2 σw2 RB

[Lw+ ℓ(W−w)]2
. (14)

Thus the power dissipated per unit area in the nanowire
increases as TJ,w/TJ,W = (W/w)2 when the width drops from

W to w. However, for ℓ ̸= 0, the total resistance Rwire →
ℓ/(σw) diverges as w→ 0, and TJ,w → V2 σRB/ℓ

2 is the same
as that of a rectangle of length ℓ, widthw, and it is independent
of w in this limit (for fixed V). The profile of the Joule heating
temperature in the longitudinal direction, T0 +TJ(x), is shown
as the dotted line in figure 2(d) forW/w= 4, and this is equal
to the temperature T(x) in the limit LH → 0 (except for a small
region close to the boundary).

Separation of variables [65] is not easily applicable to the
nanowire geometry, figure 1(b), because the heat equation and
boundary conditions are inhomogeneous [45]. We find two
approximate analytic solutions, one underestimates the tem-
perature, the other overestimates. The first solution is found
by assuming that the parts of the device of width W have
negligible electrical resistance for w≪W (or L− ℓ≪ L) and
simply form part of the external leads at temperature T0. Then,
the central nanowire of width w, |x|⩽ ℓ/2, can be considered
as a rectangle of length ℓ and width w as in equation (10),

T(x)≈ T0 +TJ,w

[
1− cosh(x/LH)

cosh(ℓ/(2LH))

]
. (15)

This is shown as the dashed line in figures 2(c) and (d) and it
generally underestimates the correct T(x) (symbols) because it
neglects self-heating in the parts of width W.

The second approximate solution is found by assuming that
the temperature in each rectangular region (of width w or W)
is described by the general solution (9) of a rectangle (i.e. it
is independent of y). We then match T(x) and dT/dx at the
boundaries x=±ℓ/2 between the separate rectangular regions
to give:

T(x)≈

T0 +TJ,w− T̃J cosh
(

x
LH

)
, for − ℓ

2 ⩽ x⩽ ℓ
2 ,

T0 +TJ,W
[
1− cosh

(
L−2|x|
2LH

)]
+ C−1

[
TJ,WS + T̃J sinh

(
ℓ

2LH

)]
sinh

(
L−2|x|
2LH

)
, for ℓ

2 ⩽ |x|⩽ L
2 ,

(16)
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Figure 3. The maximum temperature T(0)− T0 as a function of the
healing length LH [67] for minimum width w= 0.125L where
diamond symbols show numerical data from the finite element
method solution [54] of the two-dimensional equation (4). The plots
are normalized by the Joule temperature for a rectangle
TJ,rect = V2 σRB/L2. (a) is for a nanowire of length ℓ= 0.5L, and
the dashed and solid lines show the temperature found from the
one-dimensional equations (15) and (16), respectively. (b) is for a
bow tie, and the solid line shows the temperature found from
one-dimensional equation (19). For both plots, W= 0.5L. Note the
different vertical scales in (a) and (b).

where

T̃J =
TJ,wC+TJ,W(1−C)

C cosh(ℓ/(2LH))+S sinh(ℓ/(2LH))
,

C = cosh

(
L− ℓ

2LH

)
; S = sinh

(
L− ℓ

2LH

)
.

Equation (16) has the same spatial dependence as
equation (15) in the central region, |x|⩽ ℓ/2, but the form of
the parameter T̃J is different. The temperature profile (16) is
plotted in figures 2(c) and (d) for different values of LH (solid
lines), and compared with numerical data (symbols) from the
finite element method solution [54] of the two-dimensional
equation (4). The solution (16) is quite inaccurate when LH is
of the order of the system dimensions, figure 2(c), although it
is very accurate for small LH, figure 2(d). Solution (16) gener-
ally overestimates T(x) because, by assuming the temperature
has no y dependence, it neglects heat spreading into a lar-
ger area in the parts of width W. As shown in figure 2(c), the
numerical data points (symbols) lie between the two analytical
estimates.

The maximum temperature is at the centre of the sample,
T(0), and is determined by the spatial dimensions of the
device. As shown in figures 2(a) and (c), the nanowire geo-
metry does not result in a much greater temperature than the
rectangle for large LH: enhancement occurs for smaller LH
as illustrated in figures 2(b) and (d), in line with the original
prediction (3). Both of the analytic models, equations (15) and
(16), give:

T(0)≈

{
T0, for κ≫ L2/RB,

T0 +TJ,w, for κ≪ L2/RB,
(17)

where TJ,w is the Joule heating temperature of the nanowire
section with narrow width w, equation (13). Dependence of
T(0) as a function of LH [67] is shown in figure 3(a) where

Figure 4. The maximum temperature T(0)− T0 as function of the
minimum width w for LH = 0.2L where diamond symbols show
numerical data from the finite element method solution [54] of the
two-dimensional equation (4). The plots are normalized by the Joule
temperature for a rectangle TJ,rect, equation (7). The first row (a),
(b) is for a nanowire of length ℓ= 0.5L, and the dashed and solid
lines show the temperature found from the one-dimensional
equations (15) and (16), respectively. The second row (c), (d) is for
a bow tie constriction, and the solid lines show the temperature
found from the one-dimensional equation (19). The first column (a),
(c) is for constant electrical current I, and the second column (b),
(d) is for constant potential difference V. For all plots, W= 0.5L.

the symbols show numerical data [54], the dashed line is
equation (15) and the solid line is equation (16).

The dependence of T(0) as a function of widthw is shown in
figure 4(a) for constant current and in figure 4(b) for constant
potential difference V. Symbols show numerical data [54], the
dashed line is equation (15) and the solid line is equation (16).
In both plots, equation (16) is a good approximation for
w≲W, and, for w=W, the device is simply a rectangle,
equation (10), with T(0) = T0 +TJ −TJ/cosh(L/(2LH)) and
TJ = V2 σRB/L2. For constant current, figure 4(a), the temper-
ature diverges as w→ 0 because the current density diverges.
For constant potential difference, figure 4(b), the temperature
is finite forw→ 0. The electrical resistance of the part of width
W is negligible (for w→ 0), and equation (15) gives T(0)≈
T0 +TJ,w−TJ,w/cosh(ℓ/(2LH)) with TJ,w ≈ V2 σRB/ℓ

2.
Results for themaximum temperature T(0) in various limits

are summarised in table 1. Dependence onκ follows the expec-
ted behaviour (3) and (17) (a poor thermal conductor leads
to an increased temperature). Although the thermal bound-
ary resistance RB also appears in the thermal healing length
LH =

√
κRB, it appears in the Joule heating temperature TJ,

too. Hence, the dependence on RB is distinct from that of κ:
when RB → 0, heat can immediately dissipate into the envir-
onment and T(0)→ T0, whereas RB →∞ increases the tem-
perature T(0) at the centre of the device.

5



J. Phys. D: Appl. Phys. 54 (2021) 475303 O M G Ward and E McCann

Figure 5. Schematic plan view of a bow tie constriction of
minimum width w, maximum width W and total length L. The
central white region indicates the device as described by the heat
equation (4). Light grey indicates two leads at temperature T0 with
boundary condition (5), dark grey indicates insulating regions with
boundary condition (6). Cartesian coordinate axes (x, y) are shown
with the origin O at the centre of the sample. The sloping sides of
the bowtie meet at the virtual vertex O′ which serves as the origin
for polar coordinates (r,ϕ), and is offset by distance δ from O.

4. Bow tie constriction

We consider a bow tie constriction, figures 1(c) and 5, with
length L and width W(x) = w+ 2|x|(W−w)/L that varies
fromW(x= 0) = w at the centre toW(x=±L/2) =W at the
edge, W >w. For a strip at x with width W(x) and infinites-
imally short length ∆x, the resistance is ∆R=∆x/(σW(x)).
Summing classical resistances (i.e. integrating with respect to
x) gives the total electrical resistance of the bow tie system as:

Rbowtie =
L

σ(W−w)
ln

(
W
w

)
, (18)

and Rbowtie > Rrect for devices with the same bulk dimen-
sions L,W and material parameters. The current I= V/Rbowtie

is constant along the device, although the current density
increases as the constriction narrows. Thus we find that the
Joule heating temperature is inhomogeneous as:

TJ,bowtie(x) =
I2 RBL2

4 σ(W−w)2
1

(|x|+ δ)2

=
V2 σRB

4 ln2(W/w)

1
(|x|+ δ)2

, (19)

where δ is given by:

δ =
wL

2(W−w)
. (20)

This is the distance between the centre of the bow tie and the
point where the two converging sides of the bow tie would
meet if w= 0, i.e. the separation of O and O′ in figure 5. The
resistance (18) only diverges logarithmically as w→ 0, and

this is amajor difference as compared to the nanowire (12). For
example, it means that TJ,bowtie for fixed V diverges as w→ 0,
unlike equation (13).

As with the nanowire, separation of variables [65] is not
easily applicable to the bow tie geometry, figure 1(c), because
the heat equation is inhomogeneous (19). To proceed, we
derive an effective one-dimensional heat equation assuming
homogeneous Joule heating and using separation of variables.
We then re-insert the inhomogeneous Joule heating term (19)
into the one-dimensional equation, andwe compare these solu-
tions with numerical solutions [54] of the two-dimensional
equation (4).

To derive an effective one-dimensional equation, we write
the diffusion equation (4) using polar coordinates r and ϕ:

∂ 2 T̃(r,ϕ)
∂r2

+
1
r
∂T̃(r,ϕ)

∂r
+

1
r2

∂ 2 T̃(r,ϕ)
∂ϕ2

+
T0 +TJ − T̃(r,ϕ)

L2
H

= 0, (21)

where we assume that the Joule heating term, TJ, is con-
stant in space. Notation T̃ is used to specify the solution
of this equation in polar coordinates. The polar coordinates
(r,ϕ) are measured from the point where the two converging
sides of the bow tie would meet if w= 0, e.g. point O′ in
figure 5 is used for the right side of the sample. We apply
separation of variables [65]. With boundary conditions (6)
at the edges, ∂T/∂ϕ= 0, the heat equation (21) is satisfied
by a ϕ-independent solution which obeys an effective one-
dimensional equation,

d2 T̃(r)
dr2

+
1
r
dT̃(r)
dr

+
T0 +TJ − T̃(r)

L2
H

= 0. (22)

This is the modified Bessel equation of zero order. Note that
it has been previously used to model heat transport in annular
fins attached to tubes or rods [69], and for heating at a localized
point source in graphene due either to an applied laser beam or
the presence of defects [31, 70]. In the latter case, TJ(r) had the
form of an isotropic Gaussian distribution sharply decaying
from the origin in two dimensions, as opposed to the inverse
square dependence (19) of Joule heating along a bow tie con-
striction.

Along the x-axis (i.e. y= 0), where x is the longitudinal
coordinate of the bow tie system, the radial coordinate r=
|x|+ δ and r⩾ δ, figure 5. Overall, we write:

T(x) = T̃(−x+ δ)Θ(−x)+ T̃(x+ δ)Θ(x), (23)

where T̃(r) is the solution of equation (22) with r > 0.
For homogeneous TJ, the effective heat diffusion equation

for the bow tie (22) is the equation for modified Bessel
equations of zero order I0 and K0 with general solution [71],

T̃(r) = T0 +TJ +AI0

(
r
LH

)
+BK0

(
r
LH

)
, (24)

for arbitrary A, B. In general, on applying boundary conditions
at x= 0 or x=±L/2, coefficients A and Bwill be expressed in
terms of the values of the Bessel functions and their derivatives
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at these points. We use the following notation for the resulting
constants:

i0 = I0

(
δ

LH

)
; i∞ = I0

(
L+ 2δ
2LH

)
; i1 = I1

(
δ

LH

)
,

k0 = K0

(
δ

LH

)
; k∞ = K0

(
L+ 2δ
2LH

)
; k1 = K1

(
δ

LH

)
.

We apply Dirichlet boundary conditions (5) at the ends
of the device, x=±L/2, and we use continuity of T(x) and
dT(x)/dx at x= 0. Application of these conditions introduces
a small error because they are applied along a straight vertical
line at constant x rather than a curved line at constant r. This
error is negligible for w/δ ≪ 1 (i.e. L≫W−w). The calcu-
lation can be simplified by using inversion symmetry in the x
direction. This means that the solution must be an even func-
tion of x, and the boundary conditions can be written as:

T̃(r= L
2 + δ) = T0;

dT̃
dr

∣∣∣∣
r=δ

= 0. (25)

Applying these to the general solution (24) and writing in
terms of x using equation (23) gives:

T(x) = T0 +TJ +AI0

(
|x|+ δ

LH

)
+BK0

(
|x|+ δ

LH

)
, (26)

A=− k1 TJ
i1 k∞ + i∞k1

; B=− i1 TJ
i1 k∞ + i∞k1

. (27)

Now we consider the solution of the effective one-
dimensional heat equation for the bow tie constriction (22)
with inhomogeneous Joule heating (19) and boundary
conditions (25). This is done using a Green’s functions
approach [72]. For arbitrary Joule heating TJ(r) and arbit-
rary boundary conditions, we find the general solution to be:

T̃(r) = T0 + ÃI0(ρ)+ B̃K0(ρ)+ g2(ρ)
ˆ ρ

a

g1(ζ)TJ(ζ)
ϖ(ζ)

dζ

+ g1(ρ)
ˆ b

ρ

g2(ζ)TJ(ζ)
ϖ(ζ)

dζ,

for arbitrary Ã, B̃. The dimensionless longitudinal variable is
ρ= r/LH, and it takes values a= δ/LH at the centre and b=
(L/2+ δ)/LH at the end of the device. The basis functions and
Wronskian are given by:

g1(ρ) = k0I0(ρ)− i0 K0(ρ), (28)

g2(ρ) = k∞I0(ρ)− i∞K0(ρ), (29)

ϖ(ρ) = g ′
1(ρ)g2(ρ)− g1(ρ)g

′
2(ρ). (30)

With boundary conditions (25), the solution is:

T̃(r) = T0 − [k∞I0(ρ)− i∞K0(ρ)]
(k0i1 + i0 k1)
(k∞i1 + i∞k1)

×
ˆ b

a

g2(ζ)TJ(ζ)
ϖ(ζ)

dζ + g2(ρ)
ˆ ρ

a

g1(ζ)TJ(ζ)
ϖ(ζ)

dζ

+ g1(ρ)
ˆ b

ρ

g2(ζ)TJ(ζ)
ϖ(ζ)

dζ, (31)

and the maximum temperature is given by:

T̃(δ) = T0 −
(k∞i0 − i∞k0)(k0i1 + i0 k1)

k∞i1 + i∞k1

ˆ b

a

g2(ζ)TJ(ζ)
ϖ(ζ)

dζ.

(32)

The temperature profile (31) is plotted in figures 2(e) and (f)
with TJ given by equation (19) for different values of LH (solid
lines), and compared with numerical data (symbols) from the
finite element method solution [54] of the two-dimensional
equation (4). The solution (31) is generally in very good agree-
ment with the numerics. Dependence of the maximum temper-
ature, T(0), as a function of LH [67] is shown in figure 3(b)
where the symbols show numerical data [54] and the solid
line is equation (32). For κ→ 0, T(0) = T0 +TJ,bowtie(x= 0)
is determined by the Joule heating temperature (19) which, for
constant V, is given by:

T(0)→ T0 +
V2 σRB(W−w)2

w2L2 ln2(W/w)
as κ→ 0. (33)

In the opposite limit, κ→∞, then T(0) = T0.
Dependence of T(0) as a function of width w is shown

in figure 4(c) for constant current I and in figure 4(d)
for constant potential difference V. Symbols show numer-
ical data [54] and the solid lines are equation (32). As for
the nanowire, for w=W, the device is simply a rectangle,
equation (10), with T(0) = T0 +TJ −TJ/cosh(L/(2LH)) and
TJ = V2 σRB/L2 (for constant V).

For constant potential difference, figure 4(d), andw≈ 0, the
integral in the maximum temperature (32) is dominated by the
lower limit a= δ/LH ≈ 0 and we approximate:

T(0)≈ T0 +TJ,0

ˆ ∞

δ/LH

K0(ζ)

ζ
dζ,

≈ T0 +TJ,0

[
1
2
ln2

(
2LH
δ

)
− γ ln

(
LH
δ

)]
,

where TJ,0 = V2 σRB/[4 L2
H ln2(W/w)], and γ ≈

0.5772157 . . . is the Euler–Mascheroni constant. This
describes the logarithmic behaviour for w≈ 0, figure 4(d).
The temperature actually goes to a finite value as w→ 0 (for
non-zero LH) because logarithmically divergent factors in TJ,0
and in the integral cancel:

T(0)→ T0 +
V2 σRB

8 L2
H

as w→ 0. (34)

For constant current, figure 4(c), the temperature diverges
as w→ 0 because the current density diverges. However, the
divergence is only logarithmic in comparison to w−2 for the
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nanowire, and this may be shown analytically with a calcula-
tion similar to equation (34). Results for themaximum temper-
ature T(0) in various limits are summarised in table 1. As with
the nanowire, the dependence on RB is distinct from that of κ:
whenRB → 0, heat can immediately dissipate into the environ-
ment and T(0)→ T0, whereas RB →∞ increases the temper-
ature T(0) at the centre of the device. For the bow tie, table 1
shows that the maximum temperature has the same parameter
dependence for RB →∞ as for ω → 0. This is because both
behaviours are driven by the logarithmically divergent tem-
perature profile at the narrowest part of the bow tie.

5. Temperature dependent thermal conductivity

We have assumed electrical and thermal conductivities to
be independent of temperature, which is an approximation.
For example, graphene has a weak, but non-zero temperature
dependence of its thermal conductivity at room temperature
[4, 38, 61]. To account for this, one could incorporate the tem-
perature dependences of scattering rates into the conductivit-
ies [38, 73, 74]. As an example, we use the phenomenological
form of the temperature dependence of the thermal conductiv-
ity proposed in [38],

κ(T) = κ0

(
T0
T

)γ

, (35)

where κ0 is the thermal conductivity at room temperature T0,
and γ is a fitting parameter. Dorgan et al [38] finds γ≈ 1.9
and γ≈ 1.7 by fitting to experimental data for graphene
devices produced by exfoliation and chemical vapour depos-
ition, respectively.

Equation (35) describes a decrease of thermal conductivity
with increasing temperature. This should lead to a reduction
in the effective healing length in the hottest part of the sample
(i.e. the centre), producing a further increase in temperat-
ure there because T(r)→ T0 +TJ(r) as κ→ 0 (equation (3)).
To verify this expectation, we consider the steady state heat
equation (1) including κ(T), and write this as:

∇·
[

∇t(r)
(1+χt(r))γ

]
− t(r)

L2
H

+
TJ(r)
TJ,rectL2

H

= 0, (36)

where

t(r) =
T(r)−T0
TJ,rect

; χ=
TJ,rect
T0

, (37)

and LH =
√
κ0 RB. As previously, we consider the reduced

temperature t(r) normalised by TJ,rect, equation (7). As this
is a nonlinear equation, the potential difference (or current)
appears via the additional parameter χ which describes the
level of Joule heating as compared to room temperature.

We numerically solve the two-dimensional nonlinear heat
equation (36) with boundary conditions (5) and (6) using
the finite element method [54]. As an example, the tem-
perature profile for a bow tie device is shown in figure 6
for the same parameters as in figure 2(f), namely, max-
imum width W= 0.5L, minimum width w= 0.125L, and

Figure 6. The temperature profile T(x)− T0 in the longitudinal
direction for a bow tie device taking into account temperature
dependent thermal conductivity (35). The maximum width is
W= 0.5L, the minimum width is w= 0.125L, and the thermal
healing length is LH = 0.05L. The plots are normalised by the Joule
temperature for a rectangle TJ,rect = V2 σRB/L2. Solid lines show
numerical data from the finite element method solution [54] of the
two-dimensional nonlinear equation (36). (a) is for fixed parameter
χ= 0.5 with γ = 0.1,1,2,4 (from bottom to top), (b) is for fixed
parameter γ= 2 with χ= 0.01,0.2,0.5,10 (from bottom to top).
Dotted lines show the Joule heating profile (3) that is valid in the
limit LH → 0 [67].

LH = 0.05L. Figure 6(a) shows the effect of changing para-
meter γ for fixed χ, figure 6(b) is changing χ for fixed γ. In
both cases, increasing nonlinearity (i.e. larger γ or larger χ)
leads to an interpolation of the temperature near the centre
between the linear case (solid line in figure 2(f)) and the limit
of T(r) = T0 +TJ(r) (dotted line in figure 2(f)), in agreement
with our initial expectation. Although our analytic formulae in
previous sections assume temperature independent conduct-
ivities, this example demonstrates that they may be used as
the basis for qualitative understanding of more complicated
situations including temperature dependent parameters κ, σ
and RB.

6. Conclusions

Wemodelled heat transport and the resulting spatial temperat-
ure profile in the presence of Joule self-heating due to elec-
trical current in nanoconstrictions in monolayer 2D materi-
als. In particular, we considered two contrasting geometries,
figure 1: the nanowire has a constant width w whereas the
bow tie has a variable width (with a minimum of w). Different
shapes produce different parameter dependences of the Joule
self-heating and the resultant temperature, and analytic res-
ults for the maximum device temperature in various limits are
summarised in table 1.When the system is a poor thermal con-
ductor (κ→ 0), the maximum temperature is determined by
the Joule self-heating at the narrowest point of width w. For
fixed potential difference V, this is independent of w for the
nanowire (for small w), but diverges as w−2 for the bow tie.
For fixed current I, however, the temperature diverges as w−2

in both devices. More generally, for a good thermal conductor,
the maximum temperature is finite for fixed V as w→ 0, but
diverges for fixed I: as w−2 for the nanowire, but only logar-
ithmically for the bow tie.
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Electrical and thermal transport were considered in the clas-
sical, diffusive regime, applicable to experiments at room tem-
perature or above, and with spatial dimensions typically of the
order of 100 nm or above [18–21, 38]. At lower temperat-
ures, with smaller devices, and depending on sample quality,
it is necessary to consider ballistic transport [4, 75–78] and,
possibly, quantum interference effects. Joule heating was con-
sidered in the linear electrical transport regime, but the para-
meter dependences of the Joule heating temperature TJ could
be modified to take into account non-linear I(V) characterist-
ics. It is also possible to adapt the effective one-dimensional
equations to describe local heating, e.g. due to a scanning
thermal microscope [20], by introducing either discontinu-
ous matching conditions for dT/dx or a local Joule heating
term [31, 70].

Data availability statement

The data that support the findings of this study are available
in Lancaster University Research Directory at https://doi.org/
10.17635/lancaster/researchdata/470.
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