
States of self-stress in symmetric frameworks and1

applications2

Bernd Schulze∗3

Department of Mathematics and Statistics4

Lancaster University, Lancaster LA1 4YF, UK5

b.schulze@lancaster.ac.uk6

Cameron Millar7

Skidmore, Owings & Merrill8

The Broadgate Tower, 20 Primrose St, London, EC2A 2EW, UK9

Arek Mazurek10

Mazurek Consulting11

1012 Frances Pkwy, Park Ridge, IL 60068, USA12

William Baker13

Skidmore, Owings & Merrill14

224 S. Michigan Avenue, Suite 1000, Chicago, IL 60604, USA15

Abstract16

We use the symmetry-extended Maxwell rule established by Fowler and Guest

to detect states of self-stress in symmetric planar frameworks. The dimension

of the space of self-stresses that are detectable in this way may be expressed in

terms of the number of joints and bars that are unshifted by various symme-

try operations of the framework. Therefore, this method provides an efficient

tool to construct symmetric frameworks with many ‘fully-symmetric’ states

of self-stress, or with ‘anti-symmetric’ states of self-stress. Maximizing the

number of independent self-stresses of a planar framework, as well as under-

standing their symmetry properties, has important practical applications, for

example in the design and construction of gridshells. We show the usefulness
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of our method by applying it to some practical examples.

Keywords: symmetry, rigidity, bar-joint framework, equilibrium stress,17

gridshell structure18

1. Introduction19

This paper investigates states of self-stress and mechanisms in symmet-20

ric 2D bar-joint frameworks. Such frameworks consist of pin-jointed nodes21

and axially rigid members. In the field of mathematical rigidity theory, these22

frameworks are represented as straight line realisations of graphs in the plane.23

Attention is restricted to planar frameworks in which no two bars cross each24

other, since these are of particular interest in structural engineering appli-25

cations. However, the methods also extend to non-planar frameworks in a26

straightforward fashion.27

A key tool in this paper is the symmetry-adapted counting rule for bar-28

joint frameworks developed by Fowler and Guest (Fowler and Guest, 2000),29

which extends the conventional Maxwell count (Calladine, 1978). The deriva-30

tion of the Fowler-Guest counting rule relies upon group theory. Many prac-31

titioners are not familiar with the mathematical theory of groups, but since32

the resulting rule only involves counting bars and nodes with certain symme-33

try properties, the method is very quick and easy to use. An accompanying34

paper aims to give a simplified non-technical description of the Fowler-Guest35

counting rule and its applications discussed here (Millar et al., 2021a). The36

present paper focuses on unpinned frameworks, but the methods easily ex-37

tend to pinned frameworks, as discussed in Section 5.38

Motivation for this paper comes from the design of gridshell structures,39

2



such as the Great Court Roof of the British Museum, London. Such struc-40

tures project down onto the xy plane to produce a form diagram (Millar41

et al., 2021b). Millar et al. (Millar et al., 2021a) discuss the role of the states42

of self-stress in the form diagram within the design of gridshells. It is desir-43

able for gridshells to be quad-dominant, so the examples in this paper focus44

on quad-dominant frameworks. Quadrilateral glass panels tend to be cheaper45

than triangular panels as there is less material wastage in their manufacture.46

Furthermore, the nodes can be torsion free (the members at a node share a47

common axis). This is seldom the case for triangulated gridshells which have48

many high-valent nodes.49

Figure 1: A symmetric quad-dominant gridshell structure.

Many gridshell structures possess symmetry (see Figure 1 for an example)50

so it is natural to try and utilise the symmetry-adapted counting rule as an51

analysis and design tool. As the states of self-stress of 2D frameworks are52

a projectively invariant property (Izmestiev, 2009; Nixon et al., 2021), it53

is possible to design highly symmetric frameworks with many states of self-54

stress and then project them to obtain a geometry which fits the construction55

requirements. Such an example is discussed in Section 3.5. As noted in56

Section 3, using a larger symmetry group can increase the number of states57
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of self-stress detected.58

In (Millar et al., 2021b) it is described how each state of self-stress of the59

form diagram relates to a funicular gravity loading of the gridshell (the ap-60

plied loads are taken through axial forces only – there is no bending moment61

in the gridshell). Funicularity is a desirable engineering property as it can62

reduce the volume of material needed to construct the load-bearing gridshell63

structure. Therefore, one often wants to increase the number of states of self-64

stress within the form diagram so that the size of the funicular load space is65

increased accordingly. A fully-symmetric state of self-stress relates to a sym-66

metric vertical loading which is also preferable (self-weight is an important67

and sometimes dominant load case which is symmetric). Anti-symmetric68

states of self-stress relate to an anti-symmetric loading of the gridshell. Pat-69

tern loading of the gridshell (uneven gravity loads) can often be decomposed70

into a fully-symmetric and anti-symmetric load, as discussed in (McRobie71

et al., 2020). Therefore, anti-symmetric states of self-stress can be a useful72

property when designing gridshells.73

This paper provides methods for designing planar frameworks (or form74

diagrams) that have additional states of self-stress that cannot be detected75

with the standard Maxwell count. The nature of these states of self-stress76

is also investigated with an emphasis on designing fully-symmetric and anti-77

symmetric states of self-stress. It is shown that the Fowler-Guest counting78

rule may be used to increase the number of detected self-stresses and mecha-79

nisms of certain symmetry types in either statically determinate or indetermi-80

nate frameworks by simply placing a suitable amount of structural members81

so that they are unshifted by the symmetry operations of the framework (see82
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Figure 2). Due to their simplicity the derived formulas provide a powerful83

and efficient tool for the design of frameworks with some prespecified struc-84

tural rigidity properties. As described in Section 3, mirror symmetry plays85

a larger role than rotational symmetry.86

(a) (b) (c)

Figure 2: Symmetric planar frameworks in R2: (a) and (b) have reflection symmetry
and (c) has half-turn symmetry. Bars that are unshifted by the respective reflection or
half-turn are shown in red.

There are further methods – beyond symmetry – that can be used to87

create additional states of self-stress. These include subdivision methods88

and tools from projective geometry, such as ‘pure conditions’ (White and89

Whiteley, 1983; Nixon et al., 2021), to name but a few. Some of these90

methods are discussed in Section 4 by means of some basic examples. Note91

that the force-density method (Schek, 1974) always produces one state of92

self-stress but cannot be used to produce any more.93

The paper is organised as follows. Section 2 provides a summary of the94

mathematical background for the symmetry-extended Fowler-Guest counting95

rule. The formulas for the states of self-stress and mechanisms that can96

be obtained from this counting rule – along with a discussion of the key97

observations arising from these formulas – are established in Section 3. These98

analyses can easily be extended to pinned frameworks as shown in Section 5.99

Further methods for creating states of self-stress without using symmetry100
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are discussed in Section 4. Finally, we briefly describe some avenues for101

future research in Section 6. To demonstrate the applications of our results,102

examples are given throughout the paper and a detailed discussion of the103

hypothetical gridshell project shown in Figure 1 is given in Section 5.104

2. Preliminaries105

2.1. Bar-joint frameworks106

A pin-jointed bar assembly in the plane may be modelled mathematically107

as a bar-joint framework (or simply framework) (G, p), where G = (V,E) is108

a finite simple graph and p : V → R2 is a map such that p(i) 6= p(j) for all109

i, j ∈ V . We write each point p(i) as pi = (xi, yi). Each edge of G represents110

a rigid straight bar and each vertex of G represents a joint or pin that allows111

rotation in any direction of the plane. We denote v and e to be the number of112

vertices and edges of G, respectively, and throughout this paper we assume113

that (G, p) is planar in the sense that no bars cross each other, and no bar114

crosses over a joint. Moreover, we assume that the points of (G, p) affinely115

span all of the plane.116

The rigidity matrix R(G, p) of a framework (G, p) is the e× 2v matrix



i j

...

ij 0 . . . 0 (pi − pj) 0 . . . 0 (pj − pi) 0 . . . 0

...

,

where, for each edge ij ∈ E joining the vertices i and j, R(G, p) has the row117
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with (xi−xj) and (yi−yj) in the two columns associated with i, (xj−xi) and118

(yj− yi) in the columns associated with j, and 0 elsewhere (see, for example,119

(Schulze and Whiteley, 2017a; Whiteley, 1996)).120

It is well-known that the null-space of R(G, p) is the space of infinitesimal121

motions of (G, p). An infinitesimal motion arising from a rigid body motion in122

the plane is called a trivial infinitesimal motion. The dimension of the space123

of trivial infinitesimal motions of a framework in the plane is equal to 3. We124

will denote the dimension of the space of non-trivial infinitesimal motions,125

which are often also called flexes or mechanisms, by m. A framework is called126

infinitesimally rigid (or equivalently statically rigid) if m = 0 (Whiteley,127

1996). In structural engineering, an infinitesimally rigid framework is often128

also called kinematically determinate (see (Pellegrino, 1990) for example).129

A self-stress of a framework (G, p) is a function ω : E → R such that for

each vertex i of G the following vector equation holds:

∑
j:ij∈E

ω(ij)(pi − pj) = 0.

In structural engineering, ω(ij)(pi−pj) is called the axial force in the bar ij,130

and the stress-coefficient ω(ij) is called the force-density (scalar force divided131

by the bar length, often written as T/L) of the bar ij. The summation above132

for vertex i is called the equilibrium of forces at node i. A self-stress is often133

also called an equilibrium stress as it records tensions and compressions in134

the bars balancing at each vertex.135

Note that ω ∈ RE is a self-stress if and only if it is a row dependence of136

R(G, p). Equivalently, ω ∈ RE is a self-stress if and only if R(G, p)>ω = 0.137
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We will denote the dimension of the space of self-stresses of (G, p) by s. A138

framework with m = 0 and s = 0 is called isostatic. Isostatic frameworks are139

minimally infinitesimally rigid and maximally self-stress free.140

It follows immediately from the size of the rigidity matrix that a frame-

work with e edges (or bars) and v vertices (or joints) obeys the Maxwell rule

(Maxwell, 1864b) (see also (Calladine, 1978))

m− s = 2v − e− 3. (1)

Thus, a necessary condition for a framework to be isostatic is that e =141

2v − 3. This condition is not sufficient, however, since a framework may142

satisfy e = 2v − 3 and m = s 6= 0. (See Figure 3 for an example.)143

2.2. Block-diagonalisation of the rigidity matrix144

It was shown in (Kangwai and Guest, 2000; Kangwai et al., 1999) that145

the rigidity matrix of a framework (G, p) with point group symmetry G can146

be transformed into a block-diagonalised form using methods from group147

representation theory. In this section we provide the key mathematical back-148

ground. For the full details, we refer the reader to (Owen and Power, 2010;149

Schulze, 2010a; Schulze and Tanigawa, 2015; Schulze and Whiteley, 2017b).150

A group representation of G is a homomorphism from G to the general lin-151

ear group of some vector space. The dimension of the representation is the152

dimension of that vector space.153

The two key group representations that are needed to obtain the block-154

decomposition of the rigidity matrix are the ‘internal’ and ‘external’ represen-155

tation of (G, p) whose corresponding vector spaces are Re and R2v (hence the156
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names ‘internal’ and ‘external’) and which we define below (see also (Kang-157

wai and Guest, 2000; Kangwai et al., 1999; Schulze, 2010a)). Note that each158

symmetry operation g ∈ G of (G, p) induces a permutation of the vertices159

and bars of (G, p). By a slight abuse of notation, we denote the image of a160

vertex i or bar b under these permutations by g(i) and g(b), respectively.161

The internal representation PE : G → GL(Re) is the permutation rep-162

resentation of the bars of (G, p), that is PE(g) = [δb,g(b′)]b,b′ for each g ∈ G,163

where δ denotes the Kronecker delta. In other words, the matrix PE(g) is164

the (0, 1) matrix which describes how the bars of (G, p) are permuted by g.165

Similarly, the external representation is defined as (PV ⊗ T ) : G →166

GL(R2v), where PV (g) = [δi,g(i′)]i,i′ for each g ∈ G, T (g) is the matrix in the167

orthogonal group O(R2) representing the isometry g ∈ G, and (PV ⊗ T )(g)168

denotes the Kronecker product of PV (g) and T (g). In other words, the ex-169

ternal representation describes how the vertices are being permuted and how170

the coordinate system for each vertex is affected by each symmetry operation171

g ∈ G.172

For a framework (G, p) with point group symmetry G we have the fol-

lowing basic intertwining property (Schulze, 2010a; Schulze and Tanigawa,

2015):

P−1E (g)R(G, p)(PV ⊗ T )(g) for all g ∈ G.

By Schur’s lemma (James and Liebeck, 2001; Serre, 1977), this implies that

the rigidity matrix R(G, p) can be block-decomposed by choosing suitable

symmetry-adapted bases for Re and R2v. More precisely, if ρ1, . . . , ρr are the

irreducible representations of G, then the rigidity matrix of (G, p) can be put
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into the following block form

A>R(G, p)B := R̃(G, p) =


R̃1(G, p) 0

. . .

0 R̃r(G, p)

 ,

where the submatrix block R̃i(G, p) corresponds to the irreducible representa-173

tion ρi of G, and A and B are the respective matrices of basis transformation174

from the standard bases of Re and R2v to the symmetry-adapted bases.175

This block-decomposition of the rigidity matrix corresponds to a decom-176

position Re = X1⊕· · ·⊕Xr of the space Re into a direct sum of PE-invariant177

subspaces Xi, and a decomposition R2v = Y1 ⊕ · · · ⊕ Yr of the space R2v
178

into a direct sum of (PV ⊗ T )-invariant subspaces Yi, where for a group rep-179

resentation Φ : G → GL(Rn), a subspace U ⊆ Rn is called Φ-invariant if180

Φ(g)(U) ⊆ U for all g ∈ G. The spaces Xi and Yi are associated with ρi and181

the submatrix R̃i(G, p) is of size dim(Xi)× dim(Yi). We refer the reader to182

(Schulze, 2010a) for the full mathematical details.183

A vector in Re is called ρi-symmetric if it lies in the PE-invariant subspace184

Xi of Re. Similarly, a vector in R2v is called ρi-symmetric if it lies in the185

(PV ⊗ T )-invariant subspace Yi of R2v. See Figure 3 for an example.186

The space of trivial infinitesimal motions can be written as the direct sum

of the space of translations T and the space of rotations R, each of which is

also a (PV ⊗ T )-invariant subspace (Schulze, 2010a). Thus, we also have the

direct sum decompositions T = T1 ⊕ · · · ⊕ Tr and R = R1 ⊕ · · · ⊕ Rr into

(PV ⊗T )-invariant subspaces Ti and Ri, respectively. It follows that for each
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(a)

ω3 ω3

ω1 ω1
ω2 ω2

ω4

ω6

ω5

(b)

u1

u2

u3

(c)

Figure 3: A framework in R2 with reflection symmetry Cs = {E, σ}, where E is the
identity operation and σ is the reflection (a). The framework has a ρ1-symmetric (or
‘fully-symmetric’) self-stress (b) with stress-coefficients ωi (the ωi are preserved by σ) and
a ρ2-symmetric (or ‘anti-symmetric’) mechanism (c) with velocities ui (the ui are reversed
by σ), where ρ1(E) = ρ1(σ) = 1 and ρ2(E) = 1 and ρ2(σ) = −1. In the Mulliken notation
(Altmann and Herzig, 1994; Atkins et al., 1970) the characters of ρ1 and ρ2 are denoted
by A′ = (1, 1) and A′′ = (1,−1), respectively.

i = 1, . . . , r, we obtain the necessary condition

dim(Xi) = dim(Yi)− (dim(Ti) + dim(Ri))

for a framework with point group symmetry G to be isostatic. Using basic

results from character theory, these conditions can be written in a more

succinct form as follows (Schulze, 2010a; Owen and Power, 2010):

Γ(e) = (Γ(v)× ΓT)− (ΓT + ΓR). (2)

In the terminology of mathematical group theory, each Γ in this equa-187

tion is the character of a group representation of the point group G of the188

framework. The character of a group representation Φ : G → Rn associates189

to each group element of G the trace of the corresponding matrix (which is190

independent of the choice of basis for Rn). So for a fixed order of the group191

elements, the character may be considered as a |G|-dimensional vector. It192
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is well known that the trace is a class function, so the entry of the charac-193

ter is the same for each element in the same conjugacy class of the group194

(James and Liebeck, 2001; Serre, 1977). (Note that, confusingly, in applied195

group theory, a character is usually called a representation, and the trace196

is called the character, but we will use the mathematical terminology intro-197

duced above instead.) For the point groups in the plane and the characters198

of their irreducible representations, we will use the standard Schoenflies and199

Mulliken notations, respectively (Altmann and Herzig, 1994; Atkins et al.,200

1970).201

In equation (2), Γ(v) and Γ(e) are the characters of the permutation202

representations PV and PE of the vertices and edges of (G, p), respectively.203

That is, the entry of the character Γ(v) (or Γ(e)) corresponding to a group204

element g ∈ G is equal to the number of vertices (edges, respectively) of (G, p)205

that remain unshifted by the symmetry operation g (since only unshifted206

structural components contribute a 1 to the diagonal of the corresponding207

permutation matrix). See Figure 2 for examples of bars that are unshifted208

by a reflection or half-turn. In addition, ΓT and ΓR are the characters of the209

sub-representation of the external representation (PV ⊗ T ) of G restricted to210

the space of translations T and the space of rotations R, respectively. Note211

that Γ(v)× ΓT = Γ(PV ⊗ T ).212

All the characters in (4) can be computed by standard manipulations of213

the character table of the group G (Altmann and Herzig, 1994; Atkins et al.,214

1970). See also Table 1.215
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2.3. The symmetry-extended Maxwell rule216

The character Γ(Φ) of a group representation Φ of G can always be written

uniquely as a linear combination of the characters of the irreducible repre-

sentations Γ(ρ1), . . . ,Γ(ρr) of G (James and Liebeck, 2001; Serre, 1977). It

is a standard result in character theory that the coefficient αj of each Γ(ρj)

in this linear combination is a non-negative integer and can be found via the

following simple formula (James and Liebeck, 2001; Serre, 1977):

αj =
1

‖Γ(ρj)‖2
〈Γ(Φ),Γ(ρj)〉, (3)

where 〈·, ·〉 denotes the standard inner product.217

Suppose that (G, p) is a framework with point group G and that Γ(e) =

α1Γ(ρ1)+ · · ·+αrΓ(ρr) and (Γ(v)×ΓT )−(ΓT +ΓR) = β1Γ(ρ1)+ · · ·+βrΓ(ρr),

where αi, βi ∈ N∪{0} for all i = 1, . . . , r. If αi 6= βi for some i, then it follows

from Equation (2) that (G, p) is not isostatic. Moreover, by comparing the

coefficients αi and βi for each i, we obtain information about the size of each

of the block-matrices R̃i(G, p) of the block-decomposed rigidity matrix, which

in turn reveals information about the existence of ρi-symmetric self-stresses

or mechanisms. So by subtracting Γ(e) from (Γ(v) × ΓT) − (ΓT + ΓR) we

obtain the symmetry-extended Maxwell rule, as formulated by Fowler and

Guest in (Fowler and Guest, 2000):

Γ(m)− Γ(s) = (Γ(v)× ΓT)− Γ(e)− (ΓT + ΓR). (4)

Γ(m) and Γ(s) are often called the characters of the mechanisms and states
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of self-stress of (G, p), respectively. If we denote γi = βi − αi, then

Γ(m)− Γ(s) =
r∑
i=1

γiΓ(ρi),

where γi ∈ Z. If γi < 0 then we may deduce that (G, p) has a space of218

ρi-symmetric self-stresses of dimension at least −kiγi, where ki is the di-219

mension of the irreducible representation ρi (as defined in the beginning of220

Section 2.2). Similarly, if γi > 0 then we may deduce that (G, p) has a space221

of ρi-symmetric mechanisms of dimension at least kiγi.222

If there is a mechanism and a self-stress that are both ρi-symmetric223

(i.e. they lie in Yi and Xi, respectively), then they cancel in the symmetry-224

extended count, and can hence not be detected with this count. In particular,225

we may have γi = 0 but αi = βi 6= 0. To find these types of equi-symmetric226

mechanisms and self-stresses one would have to investigate the null-space227

and left null-space of the rigidity matrix.228

We refer to those mechanisms and states of self-stress that cannot be229

detected using the basic Maxwell rule (1) but are revealed by the symmetry-230

extended Maxwell rule (4) as symmetry-detectable. Note that for every231

symmetry-detectable self-stress there exists a symmetry-detectable mecha-232

nism and vice versa.233

2.4. Characters for the symmetry-extended Maxwell rule234

The relevant symmetry operations in the plane are: the identity (E),235

rotation by φ = 2π/n about a point (Cn), and reflection in a line (σ). The236

possible point groups are the infinite set Cn and Cnv for all natural numbers237

n. Cn is the cyclic group generated by Cn, and Cnv is the dihedral group238
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generated by a {Cn, σ} pair. The group C1v is usually called Cs.239

It was shown in (Connelly et al., 2009) that the entries of Γ(m)−Γ(s) in240

Equation (4) can be computed by keeping track of the fate of the structural241

components of the framework under the various symmetry operations, which242

in turn depends on how the joints and bars are placed with respect to the243

symmetry elements (i.e., the reflection lines, and the center of rotations,244

which we may assume to be the origin). The calculations are shown in245

Table 1, which uses the following notation:246

v is the total number of vertices;247

vc is the number of vertices lying on the centre of rotation (Cn>2 or C2)248

(note that we must have vc = 0 or 1, since we don’t allow vertices to249

coincide);250

vσ is the number of vertices lying on a given mirror line;251

e is the total number of edges;252

e2 is the number of edges left unshifted by a C2 operation (note that if e2 > 1253

then edges cross at the origin, so the framework is non-planar. Note254

also that Cn with n > 2 shifts all edges);255

eσ is the number of edges unshifted by a given reflection (an unshifted edge256

may lie within, or perpendicular to and centred at the mirror line).257

Each of the counts above refers to a particular symmetry element, and any258

structural component may contribute to one or more count. For example, a259

vertex counted in vc also contributes to vσ for each mirror line present.260
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E Cn>2 C2 σ
Γ(v) v vc vc vσ
× ΓT 2 2 cosφ −2 0

= Γ(v)× ΓT 2v 2vc cosφ −2vc 0
− Γ(e) −e 0 −e2 −eσ
− (ΓT + ΓR) −3 −2 cosφ− 1 1 1

= Γ(m)− Γ(s) 2v − e− 3 2(vc − 1) cosφ− 1 −2vc − e2 + 1 −eσ + 1

Table 1: Calculations of characters for the 2D symmetry-extended Maxwell equation (4).
Note that the entries in Γ(m)− Γ(s) may be non-integers.

3. Formulas for creating states of self-stress261

Throughout this paper it is assumed that (G, p) is a planar framework262

with point group symmetry G satisfying m− s = 2v− e− 3 = k. The integer263

k is called the freedom number of (G, p). Clearly, if k < 0 then (G, p) has264

at least k linearly independent self-stresses, and if k > 0, then (G, p) has at265

least k linearly independent mechanisms. For any such frameworks we will266

now derive formulas for the number of linearly independent self-stresses (and267

mechanisms) that can be found with the symmetry-extended Maxwell rule.268

3.1. Reflection symmetry Cs269

The reflection group has two irreducible representations, both of which270

are of dimension 1. In the Mulliken notation their characters (and the rep-271

resentations themselves) are denoted by A′ and A′′, where A′ = (1, 1) and272

A′′ = (1,−1).273

For a framework with Cs symmetry satisfying the count 2v − e − 3 = k,

we obtain from Table 1 and Equation (3) that

Γ(m)− Γ(s) = (k,−eσ + 1) =
k − eσ + 1

2
A′ +

k + eσ − 1

2
A′′. (5)
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Note that if k is even, then the number of edges, e, is odd (for otherwise274

2v−e is even and hence k = 2v−e−3 is odd.) Since e is odd, eσ is also odd,275

because each shifted bar has a mirror copy, so that the number of shifted276

bars is even. Similarly, if k is odd then eσ is even.277

Some observations arising from Equation (5) are:278

(i) Suppose k ≤ 0. Then the standard Maxwell rule (1) tells us that279

the framework has at least −k linearly independent self-stresses. Note280

that the coefficients of A′ and A′′ in Equation (5) are integers and add281

up to k, and the coefficient of A′ is non-positive for any value of eσ,282

since eσ ≥ 0. If eσ ≤ −k + 1, then the coefficient of A′′ is also non-283

positive, and hence we still detect only −k independent self-stresses.284

However, we may deduce from Equation (5) that in this case we have285

(−k + eσ − 1)/2 independent self-stresses that are A′-symmetric, and286

(−k − eσ + 1)/2 independent self-stresses that are A′′-symmetric. (See287

Figure 4(a) for an example.)288

By definition of the internal representation, the A′-symmetric self-289

stresses are ‘fully-symmetric’ in the sense that mirror images of bars290

have the same stress-coefficients (recall Figure 3). The A′′-symmetric291

self-stresses are ‘anti-symmetric’ in the sense that if an edge has stress-292

coefficient ω, then its symmetric copy under the reflection has stress-293

coefficient −ω. (So in particular, the stress-coefficient of any edge that294

is unshifted by the mirror is zero.)295

(ii) Suppose again that k ≤ 0. The larger we make eσ while keeping k fixed,296

the more anti-symmetric self-stresses are switched to fully-symmetric297

self-stresses. When eσ = −k + 1 then all −k detected self-stresses are298
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fully-symmetric. If we increase eσ further so that eσ ≥ −k + 3, then299

the coefficient of A′′ becomes positive and hence we obtain symmetry-300

detectable A′′-symmetric mechanisms and, simultaneously, symmetry-301

detectable A′-symmetric self-stresses. So in this case we detect (−k +302

eσ − 1)/2 > −k self-stresses. (See Figure 4(b) for an example.) The303

more bars are positioned so that they are unshifted by the mirror,304

while keeping k fixed, the more symmetry-detectable fully-symmetric305

self-stresses are obtained.306

(iii) In the special case of k = 0 there are no symmetry-detectable self-307

stresses or mechanisms if eσ = 1. In fact, in this case the framework is308

isostatic for any ‘generic’ positions of the vertices, as shown in (Schulze,309

2010b). If eσ ≥ 3, then we obtain (eσ−1)/2 symmetry-detectable fully-310

symmetric self-stresses.311

(iv) Suppose k > 0. Then the coefficient of A′′ is always non-negative.312

If eσ ≤ k + 1 then we only find the k mechanisms that were already313

predicted by the standard Maxwell rule (1). However, we obtain some314

valuable information about their symmetry properties. If eσ ≥ k + 3,315

then we obtain symmetry-detectable self-stresses, all of which are fully-316

symmetric. (See Figure 4(c) for an example.)317

In summary, we increase the number of fully-symmetric self-stresses for318

a fixed k by increasing eσ. We increase the number of anti-symmetric self-319

stresses by decreasing eσ. Note, however, that eσ can never be negative.320

Example 1. Figure 4 shows three examples of frameworks with Cs symme-321

try. The framework in (a) has e = 2v − 2 = 24, so k = −1, and eσ = 0.322

Thus, by Equation (5), we have Γ(m) − Γ(s) = −A′′. So we only find the323
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(a) (b) (c)

Figure 4: Reflection-symmetric frameworks with an anti-symmetric self-stress (a) and
fully-symmetric self-stresses (b), (c). Note that (b) and (c) have four bars that are un-
shifted by the reflection, whereas (a) has none. See Example 1 for a more detailed discus-
sion.

self-stress which is guaranteed to exist by the k = −1 count, but we see that324

it is anti-symmetric.325

The framework in (b) has the same underlying graph as the one in (a)326

and has k = −1 and eσ = 4. Thus, by Equation (5), we have Γ(m)− Γ(s) =327

−2A′ + A′′. Since each negative coefficient indicates self-stresses and each328

positive coefficient indicates mechanisms, we deduce that the framework has329

two independent fully-symmetric self-stresses – one of which is symmetry-330

detectable – and one symmetry-detectable anti-symmetric mechanism.331

Finally, the framework in (c) has e = 2v − 4 = 20, so k = 1, and eσ = 4.332

Thus, by Equation (5), we have Γ(m) − Γ(s) = −A′ + 2A′′. It follows that333

the framework has a symmetry-detectable fully-symmetric self-stress and two334

anti-symmetric mechanisms, one of which is also symmetry-detectable.335

Remark 1. As shown in Section 2.3, the character counts describe the336

dimensions of the block matrices in the block-decomposed rigidity matrix337

R̃(G, p). There are some standard methods and algorithms for finding the338

symmetry-adapted bases that give this block-demposition of R̃(G, p) (see,339

for example, (Fässler and Stiefel, 1992; McWeeny, 2002)). From the specific340

entries of the block matrices R̃i(G, p), we may then compute their kernels341

and co-kernels and hence obtain the complete information about the mecha-342

nisms and self-stresses of (G, p) and their symmetry types. Recent work has343

also established ‘orbit matrices’ that are equivalent to the block-matrices and344

whose entries can be written down directly from the coordinates of the points345

(Schulze and Whiteley, 2011; Schulze and Tanigawa, 2015). This reduces the346

computational effort in analysing these matrices. However, analyses of the347

kernels or co-kernels of the block-matrices often do not help the designer in348

obtaining realisations of graphs with additional states of self-stress.349
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(a) (b) (c) (d) (e)

Figure 5: Velocity vectors at the vertices of a bar that is unshifted by a mirror. The
velocities in (a), (b) and (c) are fully-symmetric. The ones in (a) and (b) do not form
an infinitesimal motion, since their orthogonal projections onto the bar create a non-
zero strain on the bar. The velocities in (d) and (e) are anti-symmetric. Note that any
anti-symmetric velocity assignment will yield an infinitesimal motion of an unshifted bar,
and hence such a bar does not impose any constraint when restricting to anti-symmetric
velocity assignments.

Remark 2. The above observations on numbers of self-stresses and their350

symmetry types are a consequence of the fact that a bar that is unshifted351

by a reflection does not constitute any constraint when we restrict to anti-352

symmetric assignments of velocity vectors. See Figure 5 for an illustration.353

So an unshifted bar always contributes a row to the fully-symmetric block354

matrix of R̃(G, p), and not to the anti-symmetric one.355

Thus, if we start with a fixed freedom number k and increase eσ then356

we may create additional row dependencies in the fully-symmetric block ma-357

trix and remove row dependencies in the anti-symmetric block matrix, but358

not vice versa. In other words, by increasing eσ, we can only switch anti-359

symmetric self-stresses to fully-symmetric ones.360

3.2. Half-turn symmetry C2361

The half-turn rotational group has two irreducible representations, which362

are the same as for the reflection group. These representations and their363

characters are denoted by A = (1, 1) and B = (1,−1).364

For a framework with C2 symmetry satisfying the count 2v − e − 3 = k,

we obtain from Table 1 and Equation (3) that

Γ(m)− Γ(s) = (k,−2vc − e2 + 1) =
k − 2vc − e2 + 1

2
A+

k + 2vc + e2 − 1

2
B.

(6)
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Note that if k is even, then e2 is odd. Similarly, if k is odd then e2 is even.365

It follows from the definition of a framework that vc (i.e, the number of

vertices of (G, p) positioned at the origin) equals 0 or 1. Moreover, by our

planarity assumption, if vc = 0 then e2 = 0 or 1, and if vc = 1 then e2 = 0.

Thus, Equation (6) simplifies to

Γ(m)− Γ(s) =



k+1
2
A+ k−1

2
B, if vc = e2 = 0

k
2
A+ k

2
B, if vc = 0, e2 = 1

k−1
2
A+ k+1

2
B, if vc = 1

(7)

Some observations arising from Equation (7) are:366

(i) If vc = 0, then we obtain the same count for Γ(m) − Γ(s) as we did367

for reflection symmetry, with eσ being replaced by e2. (This is not368

surprising, given the transfer results for infinitesimal rigidity between Cs369

and C2 established in (Clinch et al., 2020).) So the same observations we370

made for the reflection symmetry also apply to the half-turn symmetry371

in the case when vc = 0. However, note that e2 cannot be larger than 1372

by our planarity assumption, whereas eσ did not have this restriction.373

So unlike in the reflection symmetry case, we cannot keep increasing374

the number of fully-symmetric self-stresses by increasing e2.375

(ii) If vc = 1, then e2 = 0 and hence k is odd. In this case, there are no376

symmetry-detectable mechanisms or self-stresses, since the coefficients377

of A and B add up to k and are either both non-positive or both non-378

negative. If k = −1 then we obtain one fully-symmetric self-stress, but379

no anti-symmetric self-stress. By taking larger negative k we increase380
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both the number of fully-symmetric and anti-symmetric self-stresses.381

For any positive k we only find mechanisms.382

3.3. Rotational symmetry Cn, n ≥ 3383

The group Cn has n irreducible 1-dimensional representations whose char-384

acters are denoted by At for t = 0, . . . , n−1. The j-th entry of the character385

At is given by (At)j = εtj, where ε denotes the complex root of unity e
2πi
n .386

Suppose we are given a framework (G, p) with freedom number k and Cn387

symmetry, where n ≥ 3. Then en = 0 and, by definition of a framework, vc388

equals 0 or 1. Note that if n is even, the group Cn contains the half-turn C
n/2
n .389

However, if e2 > 0, then the Cn symmetry implies that e2 > 1, contradicting390

the planarity of (G, p). Thus, en = e2 = 0. From Table 1 we obtain the391

following.392

For vc = 0 we have:

Γ(m)−Γ(s) =
(
k,−2 cos

2π

n
−1, . . . ,−2 cosπ−1, . . . ,−2 cos

(n− 1)2π

n
−1
)
.

Note here that the entry −2 cosπ − 1 = 1 appears if and only if n is even.393

For vc = 1 we have:

Γ(m)− Γ(s) = (k,−1,−1, . . . ,−1).

In the case when vc = 0, we may write k as k+ 3− 2 cos 0− 1. Similarly,394

in the case when vc = 1 we may write k as k+ 1− 1. From Equation (3) and395

the standard fact that for t 6= 0 we have
∑n−1

j=0 ε
tj = 0, we then obtain the396

following expressions for Γ(m)− Γ(s).397
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• For vc = 0 we obtain:

Γ(m)− Γ(s) =
(k + 3

n
− 1
)
A0 +

n−1∑
t=1

(k + 3− 2
∑n−1

j=0 ε
tj cos

(
j2π
n

)
n

)
At

which simplifies (by Proposition 1 in the Appendix) to

Γ(m)−Γ(s) =
(k + 3

n
−1
)
A0+

(k + 3

n
−1
)
A1+

n−2∑
t=2

k + 3

n
At+

(k + 3

n
−1
)
An−1

(8)

• For vc = 1 we obtain:

Γ(m)− Γ(s) =
(k + 1

n
− 1
)
A0 +

n−1∑
t=1

(k + 1

n

)
At (9)

Some observations arising from Equations (8) and (9) are:398

(i) If vc = 0, then n must divide k + 3. By Equation (8), the symmetry-399

extended counting rule does not detect any self-stresses or mechanisms400

in addition to the ones that are detected by the standard Maxwell401

rule. To see this, note that the sum of the coefficients of the At equals402

k and the coefficients are either all non-positive or all non-negative.403

Equation (8) shows that in the presence of symmetry, the self-stresses404

distribute across the PE-invariant subspaces Xt corresponding to At as405

follows. Let ` ≥ 0 and k = −`n−3. Then we detect (`+1) self-stresses406

of symmetry A0, A1 and An−1, and ` At-symmetric self-stresses for each407

t 6= 0, 1, n− 1.408

(ii) If vc = 1, then n must divide k + 1. Again, there are no symmetry-409

detectable self-stresses or mechanisms. Equation (9) shows that in410
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the presence of symmetry, the self-stresses distribute across the PE-411

invariant subspaces Xt as follows. Let ` ≥ 0 and k = −`n − 1. Then412

we detect (`+ 1) fully-symmetric self-stresses, and ` At-symmetric self-413

stresses for each t 6= 0.414

In summary, it turns out that for a framework with rotational symmetry415

Cn, n ≥ 3, there are no symmetry-detectable self-stresses or mechanisms.416

Any self-stresses are distributed equally across the different symmetry types417

At, except for an extra self-stress of symmetry A0, A1 and An−1 in the case418

when vc = 0, and an extra self-stress of symmetry A0 in the case when vc = 1.419

Remark 3. It was shown in (Schulze and Tanigawa, 2015, Lemma 6.7) that420

the block-matrices of the block-decomposed rigidity matrix R̃(G, p) corre-421

sponding to A1 and An−1 have a kernel of dimension at least 1, since we may422

choose a basis for the space of infinitesimal translations that consists of an423

A1-symmetric and an An−1-symmetric translation. The trivial infinitesimal424

rotation is A0-symmetric. (See also (Ikeshita, 2015; Schulze, 2010c; Schulze425

and Tanigawa, 2015) for combinatorial characterisations of infinitesimally426

rigid frameworks with Cn symmetry in the case when vc = 0 and n is odd.)427

So we may interpret Equation (8) as follows: if vc = 0 and en = e2 = 0,428

then each block matrix of R̃(G, p) has the same size (or, in other words,429

each edge orbit under the Cn symmetry contributes one edge to each of the n430

blocks, and each vertex orbit contributes 2 columns – or one vertex – to each431

of the n blocks), and the extra self-stresses for the blocks corresponding to432

A0, A1 and An−1 appear due to the symmetric decomposition of the trivial433

motion space.434

In the case when vc = 1, we have a special vertex orbit of size 1 (the435

vertex at the center of rotation), which adds one column to each of the blocks436

corresponding to A1 and An−1 so that we only obtain an extra self-stress for437

the block corresponding to A0.438

3.4. Dihedral symmetry C2v439

Recall that the group C2v consists of the identity E, two reflections σh440

and σv in perpendicular mirror lines, and the half-turn C2. This point group441
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symmetry appears frequently in engineering designs. The characters of the442

four irreducible representations of C2v are shown in Table 2.

C2v E C2 σh σv

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

Table 2: The irreducible characters of C2v.

443

For a framework with C2v symmetry satisfying the count 2v − e− 3 = k,

we obtain from Table 1 that

Γ(m)− Γ(s) = (k,−2vc − e2 + 1,−eσh + 1,−eσv + 1).

Thus, by Equation (3) we obtain the following expressions for Γ(m)− Γ(s).444

• For vc = 0 and e2 = 0 we obtain:

Γ(m)−Γ(s)=
k−eσh−eσv+3

4
A1+

k+eσh+eσv−1
4

A2+
k−eσh+eσv−1

4
B1+

k+eσh−eσv−1
4

B2

(10)

• For vc = 0 and e2 = 1 we obtain:

Γ(m)−Γ(s)=
k−eσh−eσv+2

4
A1+

k+eσh+eσv−2
4

A2+
k−eσh+eσv

4
B1+

k+eσh−eσv
4

B2

(11)
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• For vc = 1 and e2 = 0 we obtain:

Γ(m)−Γ(s)=
k−eσh−eσv+1

4
A1+

k+eσh+eσv−3
4

A2+
k−eσh+eσv+1

4
B1+

k+eσh−eσv+1

4
B2

(12)

Note that if k is even, then e is odd and so e2 = 1 and both eσh and eσv445

are odd. Similarly, if k is odd, then e is even and so e2 = 0 and both eσh446

and eσv are even. For C2v, the notation σh and σv is used for reflections in a447

horizontal and vertical mirror line, respectively.448

In the following we will assume that eσh ≥ eσv . Some observations arising449

from Equations (10)–(12) are:450

(i) Suppose k ≤ 0 and k is even. Then we need to consider Equation (11).451

(The analysis for the case when k ≤ 0 is odd is analogous, but we need452

to consider Equation (10) or (12) depending on whether vc = 0 or 1.)453

We denote the coefficients of Ai by αi, and the coefficients of Bi by βi454

for i = 1, 2. Note that α1 + α2 + β1 + β2 = k, and that α1 ≤ 0 and455

β1 ≤ 0 for any values of eσh and eσv .456

If α2 ≤ 0 and β2 ≤ 0, then there are no symmetry-detectable self-457

stresses: we only find the −k self-stresses predicted by the standard458

Maxwell rule. Since α2 ≥ β2, this happens when α2 ≤ 0, or eσh + eσv −459

2 ≤ −k. However, in this case we still obtain valuable information460

about the symmetry types of these self-stresses.461

Suppose α2 > 0, or equivalently, eσh + eσv − 2 > −k. We have β2 ≥ 0462

if and only if eσh − eσv ≥ −k. In this case, we detect −α1 − β1 =463

(−k + eσh − 1)/2 self-stresses (and α2 + β2 mechanisms). Since β2 ≥ 0464
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also implies that eσh ≥ −k+1, an analysis of the framework using only465

the reflection symmetry Cs with mirror eσh detects the same number466

of self-stresses as the C2v analysis (recall Section 3.1). However, an467

analysis with the larger C2v group again provides added information468

regarding the symmetry types of the self-stresses. (See Figure 6(a) for469

an example.)470

Suppose α2 > 0 and β2 < 0, i.e., eσh − eσv < −k < eσh + eσv − 2. Then471

we detect −α1 − β1 − β2 = (−3k + eσh + eσv − 2)/4 > −k self-stresses472

(and α2 mechanisms). In this case the C2v analysis detects more self-473

stresses than a Cs analysis, since β2 < 0 implies that −α1 − β1 − β2 >474

(−k + eσh − 1)/2. Note that there will be at least one fully-symmetric475

self-stress, as well as at least one B1-symmetric and at least one B2-476

symmetric self-stress in this case, since β2 < 0 implies β1 < 0 and477

α1 < 0. So in particular, for each mirror there will be at least one478

anti-symmetric self-stress. (See Figure 6(b) for an example.)479

(a) (b)

Figure 6: Frameworks with C2v symmetry discussed in Example 2. The framework in (a)
has k = −2 and eσh

= 5, eσv
= 3. It follows that it has 2 fully-symmetric self-stresses

and an anti-symmetric self-stress with respect to σv. The framework in (b) has k = −4
and eσh

= eσv
= 5. So this framework has 3 fully-symmetric self-stresses and an anti-

symmetric self-stress for each mirror. Note that both frameworks have an A2-symmetric
symmetry-detectable mechanism since α2 > 0.

(ii) Suppose k > 0. We again focus on the case when k is even. (The480

27



other cases are analogous.) In this case we have α2 ≥ 0 and β2 ≥ 0481

for any values of eσh and eσv . We also have β1 ≥ α1, so if α1 ≥ 0,482

or equivalently, eσh + eσv − 2 ≤ k, then β1 ≥ 0 and we only detect483

the k mechanisms predicted by the standard Maxwell rule. So suppose484

α1 < 0. If β1 ≤ 0, or equivalently, eσh − eσv ≥ k, then we detect485

−α1 − β1 = (−k + eσh − 1)/2 self-stresses – the same amount as with486

a Cs analysis with the σh mirror. If α1 < 0 and β1 > 0, or equivalently,487

eσh + eσv − 2 > k > eσh − eσv , then β2 > 0 and α2 > 0, and we detect488

−α1 fully-symmetric self-stresses, which is more than we detect with a489

Cs analysis.490

(iii) For a fixed value of k we increase the number of fully-symmetric self-491

stresses (and A2-symmetric mechanisms) by increasing the total num-492

ber of bars that are unshifted by a mirror, i.e., by increasing eσh + eσv .493

To increase the number of B1-symmetric self-stresses (i.e., self-stresses494

that are anti-symmetric with respect to σv) we need to make eσv small495

in comparison to eσh . This is consistent with what we observed for496

frameworks with Cs symmetry. The framework in Figure 6(a) illus-497

trates this.498

As we observed in (i), by choosing eσh + eσv sufficiently large and by499

keeping the difference between eσh and eσv suitably small, we may ob-500

tain self-stresses of symmetry types A1, B1 and B2 (and mechanisms of501

type A2). See Figure 6(b) for an example. Note that such a distribution502

of self-stresses is particularly useful for the construction of gridshells.503

Example 2. Figure 6 shows two examples of frameworks with C2v symmetry.504

The framework in (a) has e = 2v − 1 = 31, so k = −2, and eσh = 5, eσv = 3.505

Thus, by Equation (11), we have Γ(m) − Γ(s) = −2A1 + A2 − B1. So this506
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framework has 2 fully-symmetric self-stresses and an anti-symmetric self-507

stress with respect to σv. A Cs analysis with the reflection σh also finds three508

self-stresses, all of which are fully-symmetric with respect to σh: Γ(m) −509

Γ(s) = −3A′ + A′′.510

The framework in (b) has e = 2v+ 1 = 37, so k = −4, and eσh = eσv = 5.511

Thus, by Equation (11), we have Γ(m) − Γ(s) = −3A1 + A2 − B1 − B2.512

So this framework has 3 fully-symmetric self-stresses and an anti-symmetric513

self-stress for each mirror. Note that a Cs analysis (with either mirror) only514

detects 4 self-stresses: Γ(m)− Γ(s) = −4A′.515

3.5. Dihedral symmetry Cnv, n ≥ 3516

In this section we consider dihedral symmetry groups of order at least 6.517

For simplicity, we will focus on the groups C3v and C4v, but the groups Cnv518

with n ≥ 5 can be analysed analogously. The characters of the irreducible519

representations of C3v and C4v are shown in Table 3. Note that C3v and C4v are520

of order 6 and 8, respectively. However, since for every element of the group521

that lies in the same conjugacy class we obtain the same trace, the tables522

only have one column for each conjugacy class of the group. The number of523

elements in each conjugacy class is indicated by the coefficient in front of the524

element that represents this conjugacy class in the character table.525

For example, 2C3 in the C3v table stands for the rotations C3 and C2
3 about526

the origin by 2π
3

and 4π
3

, respectively, which lie in the same conjugacy class527

of C3v. For C4v, 2σv stands for the reflections in the vertical and horizontal528

mirrors, and 2σd stands for the reflections in the two diagonal mirrors.529

Using the same approch as above, we will derive formulas for Γ(m)−Γ(s)530

for the groups C3v and C4v. We will also make some observations arising from531

these formulas in each case. However, since these analyses are similar to532

the one we have done for C2v, we will keep this discussion fairly succinct by533

focusing on the cases when k ≤ 0 and vc = 0.534
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C3v E 2C3 3σ

A1 1 1 1
A2 1 1 -1
E 2 -1 0

C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

Table 3: The irreducible characters of C3v and C4v.

3.5.1. The group C3v535

For a planar framework with C3v symmetry, we have vc = 0 or 1 and

e3 = 0. Suppose the framework has freedom number k. Then, by Table 1,

we have

Γ(m)− Γ(s) = (k,−vc,−eσ + 1).

Using Equation (3) we then obtain:

Γ(m)− Γ(s) =


k−3eσ+3

6
A1 + k+3eσ−3

6
A2 + k

3
E, if vc = 0

k−3eσ+1
6

A1 + k+3eσ−5
6

A2 + k+1
3
E, if vc = 1

(13)

Note that if k is even, then e is odd and hence eσ is odd. Similarly, if k is536

odd, then e is even and hence eσ is even. Also, k is divisible by 3 if and only537

if vc = 0, and k + 1 is divisible by 3 if and only if vc = 1.538

Some observations arising from Equation (13) are:539

(i) We focus on the case vc = 0, as the case vc = 1 is analogous. Suppose540

k ≤ 0 and k is even. Note that this implies that if k is non-zero, we have541

k ≤ −6. We will denote the coefficients of Ai by αi for i = 1, 2, and the542

coefficient of E by ε. We have α1+α2+2ε = k (since E is the character543
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of a 2-dimensional representation), and α1 ≤ 0 and ε ≤ 0 for any value544

of eσ. If α2 ≤ 0, or equivalently eσ ≤ (−k+ 3)/3, then we only find the545

−k self-stresses predicted by the standard Maxwell rule. If α2 > 0, that546

is, eσ > (−k+3)/3, then we detect −α1−2ε = (−5k+3eσ−3)/6 > −k547

self-stresses, which is more than we detect with a Cs analysis, provided548

that k 6= 0 (recall Section 3.1). We may draw similar conclusions if549

k ≤ 0 and k is odd.550

(ii) In the special case of k = 0, we must have vc = 0, and there are no551

symmetry-detectable self-stresses or mechanisms if eσ = 1. In this case552

the framework is conjectured to be isostatic for any ‘generic’ positions553

of the vertices (Connelly et al., 2009). If eσ ≥ 3, then we find (eσ−1)/2554

symmetry-detectable fully-symmetric self-stresses.555

(iii) Analogous to the Cs situation, increasing eσ while keeping k fixed in-556

creases the number of fully-symmetric self-stresses. The number of557

E-symmetric self-stresses only depends on k.558

3.5.2. The group C4v559

For a planar framework with C4v symmetry, we have vc = 0 or 1 and

e4 = e2 = 0. Suppose the framework has freedom number k. Then, by

Table 1, we have

Γ(m)− Γ(s) = (k,−1,−2vc + 1,−eσv + 1,−eσd + 1).

Using Equation (3) we then obtain the following expressions for Γ(m)−Γ(s):560
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• For vc = 0 we obtain:

Γ(m)−Γ(s)=
k−2eσv−2eσd+3

8
A1+

k+2eσv+2eσd−5
8

A2+
k−2eσv+2eσd+3

8
B1+

k+2eσv−2eσd+3

8
B2+

k−1
4
E

• For vc = 1 we obtain:

Γ(m)−Γ(s)=
k−2eσv−2eσd+1

8
A1+

k+2eσv+2eσd−7
8

A2+
k−2eσv+2eσd+1

8
B1+

k+2eσv−2eσd+1

8
B2+

k+1
4
E

Note that e4 = e2 = 0 implies that eσv and eσd are even. Hence e is even561

and k is odd. Also, k − 1 is divisible by 4 if and only if vc = 0, and k + 1 is562

divisible by 4 if and only if vc = 1.563

Some observations arising from these expressions for Γ(m)− Γ(s) are:564

(i) We focus on the case vc = 0, as the case vc = 1 is analogous. Suppose565

k < 0 and eσv ≥ eσd . We again denote the coefficients of Ai and Bi566

by αi and βi, respectively, for i = 1, 2, and the coefficient of E by ε.567

We have α1 + α2 + β1 + β2 + 2ε = k (since E is the character of a568

2-dimensional representation), and α1, β1, ε ≤ 0 for any values of eσv569

and eσd .570

Suppose that eσd ≥ 2. (The case when eσd = 0 is similar but less571

relevant for practical applications, since it forces the form diagram to572

be quite special.) We have α2 ≥ β2. So if α2 ≤ 0, then β2 ≤ 0, and we573

only find the −k self-stresses predicted by the standard Maxwell rule.574

So suppose α2 > 0 or equivalently eσv + eσd > (−k + 5)/2. Then, if575

β2 ≥ 0 or equivalently eσv − eσd ≥ (−k− 3)/2, we detect −α1− β1− 2ε576

self-stresses. This is the same amount of self-stresses as we detect with577

32



a C2v analysis (as is easily verified by considering Equation (10) in578

Section 3.4), but it is more than we detect with a Cs analysis (recall579

Section 3.1). See Figure 7(a) for an example.580

If α2 > 0 and we also have β2 < 0 or equivalently eσv−eσd < (−k−3)/2,581

then we detect −α1−β1−β2−2ε self-stresses. In this case we find more582

self-stresses than with a C2v analysis. See Figure 7(b) for an example.583

(ii) If we fix k, then, analogously to the C2v situation, we increase the num-584

ber of fully-symmetric self-stresses (and A2-symmetric mechanisms) by585

increasing the total number of bars that are unshifted by a mirror, i.e.,586

by increasing eσv + eσd . To increase the number of B1-symmetric self-587

stresses (i.e., self-stresses that are anti-symmetric with respect to σd)588

we need to make eσd small in comparison to eσv . As observed above,589

by choosing eσv + eσd sufficiently large and by keeping the difference590

between eσv and eσd suitably small, we may obtain self-stresses of sym-591

metry types A1, B1, B2 and E (and mechanisms of type A2). Finally,592

note that the number of E-symmetric self-stresses only depends on k.593

Example 3. Figure 7 shows two examples of frameworks with C4v symmetry.594

The framework in (a) has e = 2v = 56, so k = −3. We also have vc = 0 and595

eσv = 6, eσd = 2. Thus, we have Γ(m)−Γ(s) = −2A1 +A2−B1 +B2−E. So596

this framework has at least 5 self-stresses, including 2 fully-symmetric self-597

stresses and an anti-symmetric self-stress with respect to σd. A C2v analysis598

with the vertical and horizontal mirror also finds 5 self-stresses: Γ(m) −599

Γ(s) = −3A1 + 2A2−B1−B2. However, a Cs analysis (with σv) only finds 4.600

The framework in (b) has e = 2v + 8 = 104, so k = −11. We also have601

vc = 0 and eσv = eσd = 6. Thus, we have Γ(m) − Γ(s) = −4A1 + A2 −602

B1 − B2 − 3E. So this framework has at least 12 self-stresses, including 4603

fully-symmetric self-stresses and an anti-symmetric self-stress for each pair604

of perpendicular mirrors. It also has a symmetry-detectable A2-symmetric605

mechanism. Note that a C2v analysis of this framework (with either pair of606
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(a) (b)

Figure 7: Frameworks with C4v symmetry discussed in Example 3. The framework in (a)
has k = −3 and eσv

= 6, eσd
= 2. It follows that it has two fully-symmetric self-stresses,

a B1-symmetric self-stress and two E-symmetric self-stresses, as well as an A2-symmetric
mechanism. The framework in (b) has k = −11 and eσv

= eσd
= 6. A C4v analysis finds 12

self-stresses, whereas a C2v analysis only finds the 11 self-stresses predicted by the k = −11
count.

perpendicular mirrors) only detects 11 self-stresses: Γ(m)− Γ(s) = −5A1 −607

3B1−3B2. A similar example for the case when vc = 1 is shown in Example 4.608

(a) (b)

Figure 8: Frameworks with C4v symmetry. The framework in (a) has k = −9 and eσv
=

eσd
= 8. A C4v analysis finds 11 self-stresses, as detailed in Example 4, whereas a C2v

analysis only finds 10. The framework in (b) is obtained from the one in (a) by a horizontal
stretch so that it only has C2v symmetry.

Example 4. Figure 8(a) shows another example of a planar framework with609

C4v symmetry. This framework has vc = 1. For such frameworks, a similar610

analysis as in (i) shows that if k < 0, eσv + eσd > (−k+ 7)/2 and eσv − eσd <611

(−k − 1)/2, then we detect more self-stresses with a C4v analysis than with612

a C2v analysis. In particular, the framework is guaranteed to have fully-613

symmetric self-stresses, as well as a B1- and a B2-symmetric self-stress (that614
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is, an anti-symmetric self-stress for each pair of perpendicular mirrors) in615

this case, which is a useful property for the construction of gridshells.616

Here we chose k = −9 and eσv = eσd = 8 to meet these conditions. See the617

C4v count below for full details on the detected self-stresses and mechanisms.618

The counts below also show that using increasingly large symmetry groups619

strictly increases the number of symmetry-detectable self-stresses (and mech-620

anisms) for this example:621

• Cs: Γ(m)− Γ(s) = −8A′ − A′′, so we find 9 self-stresses;622

• C2v: Γ(m)−Γ(s) = −6A1 +A2− 2B1− 2B2, so we find 10 self-stresses;623

• C4v: Γ(m) − Γ(s) = −5A1 + 2A2 − 2B1 − 2B2 − 2E, so we find 11624

self-stresses.625

Note that since infinitesimal rigidity is projectively invariant, we may use626

projective transformations to reduce the C4v symmetry to a desired subgroup627

while preserving the dimension of the space of self-stresses. The framework628

in Figure 8(b), for example, is obtained from the one in (a) by an affine629

transformation, and so we know from the C4v analysis that it must also630

have at least 11 self-stresses. Such an analysis of a projectively equivalent631

framework with a larger symmetry group can be a useful tool for finding632

additional self-stresses.633

4. Methods beyond symmetry634

While the symmetry-based method presented in this paper provides a635

useful tool for increasing the number of independent states of self-stress in636

frameworks, it does not, in general, find the maximum possible number of637

independent self-stresses for a given graph and symmetry group. This is be-638

cause the existence of self-stresses is a projective geometric condition, and639

not a symmetric condition. Consider, for example, the framework in Fig-640

ure 2(a). This framework has k = 0 and a symmetry analysis with the point641

group Cs detects no self-stress or mechanism. In fact, since eσ = 1, we obtain642

an isostatic framework for all ‘generic’ positions of the vertices (i.e., almost643
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all positions of the vertices satisfying the reflection symmetry constraint), as644

shown in (Schulze, 2010b). However, if the vertices are placed in a special645

geometric position satisfying the so-called pure condition of the graph (see646

(White and Whiteley, 1983, Table 1) and Figure 9), then the framework has647

a non-trivial self-stress and mechanism. Note that both the self-stress and648

the mechanism are fully-symmetric so that Γ(m) − Γ(s) = (0, 0) = A′ − A′,649

and hence they are not detected with the symmetry-extended Maxwell rule.650

ba c

Figure 9: A framework with the same underlying graph as in Figure 2(a) satisfying the
pure condition for this graph: the points a, b and c are collinear.

The pure conditions for some small standard graphs are well known (see651

(White and Whiteley, 1983, Table 1), for example). In general, however,652

finding the special geometric conditions which give rise to additional self-653

stresses that are not detected with the symmetry-extended Maxwell count654

requires a non-trivial analysis.655

Given a framework with a reflection symmetry, it is natural to try to cre-656

ate further self-stresses – in addition to the ones detected by the symmetry-657

extended Maxwell rule – by placing the vertices on one side of the mirror658

in a special position so that this part of the structure becomes self-stressed.659

This self-stress is then duplicated on the other side of the mirror, creating a660

fully-symmetric and an anti-symmetric self-stress for the whole framework.661

None of these self-stresses can be detected with the method presented in this662

paper since they are created independently from the reflection symmetry.663
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See Figure 10 for an example.664

(a) (b)

Figure 10: Two frameworks with Cs symmetry. (a) is isostatic, but (b) has a fully-
symmetric and an anti-symmetric self-stress (and two corresponding mechanisms) since
the triangular prism subgraph on either side of the mirror is placed in a special position
satisfying the pure condition for this graph: each of the two frameworks forms a Desargues
configuration (White and Whiteley, 1983, Table 1).

The example in Figure 10 suggests that we may ‘glue together’ self-665

stressed frameworks to build up larger frameworks with many independent666

states of self-stress. Note, however, that this method of gluing together667

framework primitives is problematic from a practical point of view. One of668

Maxwell’s seminal papers (Maxwell, 1864a) states that if a planar frame-669

work possesses a state of self-stress then it must be the vertical projection670

of a plane-faced polyhedron (which is also known as the discrete Airy stress671

function polyhedron). Sometimes a vertical lifting of the form diagram is672

taken as a gridshell roof, since this guarantees planarity of faces which has673

beneficial properties in terms of cost and construction. By gluing together674

framework primitives, the edge of each primitive often remains on the z = 0675

plane for each lifting and this is not architecturally acceptable.676

Similarly, we may start with a planar framework and subdivide its faces –677

either by inserting additional bars or by inserting entire self-stressed frame-678

works – to create further states of self-stress. If we simply insert additional679

bars, then this of course also decreases the freedom number k of the frame-680
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work. It is possible to insert self-stressed frameworks into the faces of a given681

planar framework without changing its freedom number, but this method of682

subdividing faces has the same practical problems as gluing framework prim-683

itives together, since the newly created self-stresses are all local.684

(a) (b)

Figure 11: (a) A framework with freedom number k = 5 which has no self-stress. The
framework in (b) also has k = 5 and is obtained by inserting a self-stressed framework
into each face of (a). So it has 9 independent self-stresses, one for each original face.

Consider, for example, the planar framework shown in Figure 11(a). If685

we subdivide each of the quadrilateral faces by inserting a cube graph (see686

Figure 2(b)), then the framework is kept quad-dominant and the freedom687

number remains unchanged. Moreover, by placing the newly added vertices688

in suitable geometric positions, the aspect ratio of the quadrilaterals is kept689

within an acceptable range, and an independent self-stress is created within690

each original face (see Figure 11(b) and recall Figure 2(b)). However, since691

the self-stresses in this refined framework are all local, its vertical lifting may692

not yield a suitable structure for a gridshell roof.693

5. Pinned frameworks694

All of the above immediately transfers to pinned frameworks, where the

rigid body motions have been eliminated by the pinning of some vertices.
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For a pinned bar-joint framework in the plane, the Maxwell rule becomes

m− s = 2v − e, (14)

where v is the number of internal (or unpinned) vertices. Similarly, as shown

in (Fowler and Guest, 2000), the symmetry-extended counting rule for pinned

frameworks simplifies to

Γ(m)− Γ(s) = Γ(v)× ΓT − Γ(e). (15)

For pinned frameworks, the character calculations given in Table 1 sim-695

plify as shown in Table 4.

E Cn>2 C2 σ
Γ(v) v vc vc vσ
× ΓT 2 2 cosφ −2 0

= Γ(v)× ΓT 2v 2vc cosφ −2vc 0
− Γ(e) −e 0 −e2 −eσ

= Γ(m)− Γ(s) 2v − e 2vc cosφ −2vc − e2 −eσ

Table 4: Calculations of characters for the 2D symmetry-extended Maxwell equation for
pinned frameworks (15). Note the similarity to Table 1.

696

In the following we will consider planar pinned frameworks satisfying the697

count m− s = 2v − e = k. As before, we will call the integer k the freedom698

number of the framework. We may obtain formulas for creating states of699

self-stress (or mechanisms) in symmetric pinned frameworks in the analogous700

way as for unpinned frameworks. We summarise the formulas for some basic701

groups below.702
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• For a framework with reflection symmetry Cs, we obtain:

Γ(m)− Γ(s) = (k,−eσ) =
k − eσ

2
A′ +

k + eσ
2

A′′.

• For a framework with half-turn symmetry C2, we obtain:

Γ(m)− Γ(s) = (k,−2vc − e2) =



k
2
A+ k

2
B, if vc = e2 = 0

k−1
2
A+ k+1

2
B, if vc = 0, e2 = 1

k−2
2
A+ k+2

2
B, if vc = 1

• For a framework with dihedral symmetry C2v, we obtain:

Γ(m)− Γ(s) = (k,−2vc − e2,−eσh ,−eσv),

which leads to the following formulas for Γ(m)− Γ(s).703

For vc = 0 and e2 = 0 we obtain:

Γ(m)−Γ(s)=
k−eσh−eσv

4
A1+

k+eσh+eσv
4

A2+
k−eσh+eσv

4
B1+

k+eσh−eσv
4

B2

704

For vc = 0 and e2 = 1 we obtain:

Γ(m)−Γ(s)=
k−eσh−eσv−1

4
A1+

k+eσh+eσv−1

4
A2+

k−eσh+eσv+1

4
B1+

k+eσh−eσv+1

4
B2

705
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For vc = 1 we obtain:

Γ(m)−Γ(s)=
k−eσh−eσv−2

4
A1+

k+eσh+eσv−2

4
A2+

k−eσh+eσv+2

4
B1+

k+eσh−eσv+2

4
B2

706

In each case, we can draw analogous conclusions regarding the states of707

self-stress of the framework as for unpinned frameworks above. We leave this708

discussion, as well as the straightforward computations for other groups, to709

the reader. We conclude this section with a practical example instead.710

Figure 12: The form diagram of the gridshell structure in Figure 1. As a pinned framework
it has freedom number k = 4 and C2v symmetry. (The pinned vertices are shown in blue.)
This framework has 7 independent symmetry-detectable self-stresses, 5 of which are fully-
symmetric and 2 of which are anti-symmetric with respect to σh (the reflection in the
horizontal mirror).

Example 5. The pinned framework in Figure 12 is the form diagram of the
gridshell structure shown in Figure 1 (i.e., it is the vertical projection of the
gridhell structure onto the xy-plane). This framework has e = 2v−4 = 1102,
so k = 4. It was form-found using the force density method (Schek, 1974)
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so it is known to have at least one fully-symmetric self-stress. A symmetry
analysis reveals significant further information. The framework has vc = 1,
eσv = 18 and eσh = 4. So if we analyse it with the full C2v symmetry, then
we obtain

Γ(m)− Γ(s) = −5A1 + 6A2 + 5B1 − 2B2.

Thus, we see that this framework has at least 5 self-stresses that are fully-711

symmetric and 2 self-stresses of symmetry B2. (We also detect 6 mechanisms712

of symmetry A2 and 5 mechanisms of symmetry B1.) As has previously713

been discussed (see Section 3.4 and note that the reasoning is analogous for714

unpinned and pinned frameworks), the existence of the B2-symmetric self-715

stresses is a consequence of the large difference between eσv and eσh .716

Note that an analysis of the framework with Cs symmetry, where the717

reflection is in the vertical mirror, also finds 7 self-stresses all of which are718

fully-symmetric with respect to the vertical mirror. A Cs analysis with the719

other reflection does not find any self-stresses.720

6. Further comments and future work721

The methods of this paper can easily be extended to non-planar frame-722

works. However, since for non-planar frameworks there can be multiple bars723

that are unshifted by a C2 rotation, for example, some of the formulas become724

slightly more involved. The methods can also be extended to frameworks in725

3-space, which has potential applications in the analysis of space frames, for726

example.727

As has previously been discussed, this paper provides an efficient method728

for increasing the number of independent states of self-stress in symmetric729

frameworks. However, finding a realisation of a given graph that has the730

maximum possible number of states of self-stress (with or without a speci-731

fied point group symmetry) remains a challenging open problem. Note that732

maximising the space of self-stresses is equivalent to maximising the space733

of mechanisms or parallel redrawings (see (Schulze and Whiteley, 2017a;734
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Whiteley, 1996), for example), or the decomposibility of the discrete Airy735

stress function polyhedron (Smilansky, 1987), so there are several different736

but equivalent ways to formulate this problem.737

An important tool in analysing a form diagram is the reciprocal diagram738

or force diagram, which is a geometric construction that has appeared, inde-739

pendently, in areas such as graphical statics, rigidity theory, scene analysis740

and computational geometry since the time of Maxwell (Schulze and White-741

ley, 2017a). In a recent paper McRobie et al. describe the relationship742

between mechanisms and states of self-stress in the form and force diagrams743

(McRobie et al., 2015). It would be interesting to investigate this relationship744

with an emphasis on symmetry. This is left to a future paper.745

Finally, it would be useful to establish procedures for subdividing faces746

of a planar framework in such a way that additional non-local self-stresses747

are created. This is left as another area of future research.748
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Appendix836

The expression (8) for Γ(m)− Γ(s) for frameworks with rotational sym-837

metry follows from the following proposition.838

Proposition 1. For t ∈ {1, . . . , n− 1} and ε = e
2πi
n , we have

n−1∑
j=0

εtj cos
(j2π
n

)
=

{
n
2

if t = 1 or n− 1

0 otherwise

Proof. It is well known that the sum of the entries of each character At,839 ∑n−1
j=0 ε

tj, is zero for each t ∈ {1, . . . , n−1}. Suppose first that t ∈ {2, . . . , n−840

47



2}. From the trigonometric identities cosx cos y = 1
2

(
cos(x−y)+cos(x+y)

)
841

and sinx cos y = 1
2

(
sin(x+ y) + sin(x− y)

)
we obtain for

∑n−1
j=0 ε

tj cos
(
j2π
n

)
:842

n−1∑
j=0

(
cos
(tj2π

n

)
+ i sin

(tj2π
n

))
cos
(j2π
n

)
=

1

2

n−1∑
j=0

cos
((t− 1)j2π

n

)
+ cos

((t+ 1)j2π

n

)
+ i
(

sin
((t+ 1)j2π

n

)
+ sin

((t− 1)j2π

n

))
=

1

2

n−1∑
j=0

(
ε(t−1)j + ε(t+1)j

)
= 0

since 1 ≤ t− 1 < t+ 1 ≤ n− 1.843

Suppose next that t = 1. Then

n−1∑
j=0

εj cos
(j2π
n

)
=

n−1∑
j=0

(
cos2

(j2π
n

)
+ i sin

(j2π
n

)
cos
(j2π
n

))
.

Now, using the trigonometric identity cos2 x = 1
2

cos 2x+ 1, we have

n−1∑
j=0

cos2
(j2π
n

)
=

1

2

n−1∑
j=0

(
cos
(j4π
n

)
+ 1
)

=
n

2

since
n−1∑
j=0

cos
(j4π
n

)
= Re

n−1∑
j=0

ε2j = Re
(1− ε2n

1− ε2
)

= 0.

Also, using the trigonometric identity sinx cosx = 1
2

sin 2x, we have

n−1∑
j=0

i sin
(j2π
n

)
cos
(j2π
n

)
=
i

2

n−1∑
j=0

sin
(j4π
n

)
=
i

2
Im
( n−1∑
j=0

ε2j
)

= 0.
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Finally, if t = n− 1, then the result follows from the argument for t = 1 and844

the fact that cosine and sine are even and odd functions, respectively. �845
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