Introduction

We target a major challenge of understanding and measuring the thermal transport in 2D materials, their nanostructures and the heterostructures. We employ a nanoscale scanning thermal microscopy (SThM) under high vacuum (HV) conditions to directly map the thermal transport in exfoliated InSe flakes and InSe nano-wedge structures.

Methodology

SThM can map the effective thermal resistance (inverse of thermal conductance) of Graphene, MoS$_2$ and Graphene/MoS$_2$ heterostructures.

Results

We use SThM to image and quantify the nanoscale thermal transport from single to few-layer to bulk InSe flakes in high vacuum (HV) of 10^{-6} torr.

Acknowledgements: Authors are grateful to Jean Spiece, Charalampos Evangelii and Alex Robson for useful discussion on the SThM and BEXP instrumentation and measurements. The support of Graphene Flagship Core 3 project, EPSRC EP/V00767X/1 HiWiN project and Paul Instrument Fund (c/o The Royal Society) is gracefully acknowledged.