
 

 

1 

Integrating spatio-temporal-spectral information for downscaling Sentinel-3 

OLCI images 

 

Yijie Tang 
a
, Qunming Wang 

a,*
, Xiaohua Tong 

a
, Peter M. Atkinson

 b, c 

a
 College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai 200092, China 

b
 Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YR, UK 

c
 Geography and Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK 

*Corresponding author. Email: wqm11111@126.com 

 

 

Abstract: Sentinel-3 is a newly launched satellite implemented by the European Space Agency (ESA) for 

global observation. The Ocean and Land Colour Imager (OLCI) sensor onboard Sentinel-3 provides 21 band 

images with a fine spectral resolution and is of great value for ocean, land and atmospheric monitoring. The 

two platforms (Sentinel-3A and -3B) can provide OLCI images at an almost daily temporal resolution. The 

coarse spatial resolution of the 21 band OLCI images (i.e., 300 m), however, limits greatly their utility for local, 

precise monitoring. Sentinel-2, another satellite provided by ESA, carries the Multispectral Imager (MSI) 

sensor which can supply much finer spatial resolution (e.g., 10 m and 20 m) images. This paper introduces a 

new fusion framework integrating spatio-temporal-spectral information for downscaling Sentinel-3 OLCI 

images, which has two parts. Based on bands with similar wavelengths (i.e., bands 2, 3, 4 and 8a for Sentinel-2 

and bands Oa4, Oa6, Oa8 and Oa17 for Sentinel-3), the four Sentinel-3 bands are first downscaled to the 

spatial resolution of Sentinel-2 images by applying spatio-temporal fusion to Sentinel-2 MSI and Sentinel-3 

OLCI images. Then, to take full advantage of all 21 available OLCI bands of the Sentinel-3 images, the 

extended image pair-based spatio-spectral fusion (EIPSSF) method is proposed in this paper to downscale the 

other 17 bands. EIPSSF is performed based on the new concept of the extended image pair (EIP) and by 

exploiting existing spatio-temporal fusion approaches. The framework consisting of spatio-temporal and 
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spatio-spectral fusion is entirely general, which provides a practical solution for comprehensive downscaling 

of Sentinel-3 OLCI images for fine spatial, temporal and spectral resolution monitoring. 
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1. Introduction 

 

Sentinel-3 is a new Earth observation mission of the Global Monitoring for Environment and Security 

(GMES) program implemented by ESA (Berger et al., 2012; Drinkwater and Helge, 2007; Seitz et al., 2010). It 

is designed mainly to provide long-term monitoring of the land, ocean and atmosphere (Berger and 

Aschbacher, 2012; Donlon et al., 2012; Verhoef and Bach, 2012). For Sentinel-3, two constellations 

(Sentinel-3A and Sentinel-3B launched in February 2016 and April 2018, respectively) provide observations 

jointly at the global scale (Kravitz et al., 2020). For both the Sentinel-3A and Sentinel-3B satellites, a Sea and 

Land Surface Temperature Radiometer (SLSTR), Synthetic Aperture Radar Altimeter (SRAL) and Ocean and 

Land Colour Imager (OLCI) are provided onboard for maritime, land, atmospheric and climate change 

monitoring (Guzinski and Nieto, 2019; Zhou et al., 2020). The images produced by the OLCI sensor consist of 

21 spectral channels ranging from about 400 nm to 1020 nm (i.e., from the visible to near-infrared 

wavelengths, see Fig. A1 in the Appendix) with a fine spectral resolution. Furthermore, given the 

complementarity of Sentinel-3A and Sentinel-3B, the temporal resolution of OLCI data reaches <1.4 days, 

which greatly facilitates frequent monitoring (Malenovský et al., 2012; Nieke et al., 2012; Giannini et al., 

2021). Owing to the global spatial coverage and fine spectral and temporal resolutions, the Sentinel-3 OLCI 

images have been employed widely for monitoring water clarity (Shen et al., 2020), retrieval of chlorophyll-a 

(Kravitz et al., 2020; Pahlevan et al., 2020) and inversion of inherent optical properties (Xue et al., 2019). 
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However, the coarse spatial resolution of 300 m limits the applications of OLCI images at the local scale, 

particularly for heterogeneous landscapes. 

One approach to increase the spatial resolution of Sentinel-3 OLCI images is to blend them with fine spatial 

resolution images acquired by other satellites. Sentinel-2, another mission of ESA, can provide images with a 

much finer spatial resolution (i.e., ranging from 10 m to 60 m). Similarly to Sentinel-3, Sentinel-2 is also 

composed of two platforms, Sentinel-2A and -2B, launched in June 2015 and March 2017, respectively 

(Drusch et al., 2012; Du et al., 2016; Lefebvre et al., 2016; Xu and Somers, 2021). The Multispectral Imager 

(MSI) onboard the two platforms can provide observations with 13 spectral bands (Ansper and Alikas, 2018; 

Du et al., 2016; Hagolle et al., 2015; Wang et al., 2021b). The temporal resolution of the MSI, however, is up 

to 5 days, even though the images from both Sentinel-2A and -2B are considered. Moreover, the number of 

available images will in practice be much smaller due to cloud and shadow contamination. Alternatively, the 

daily temporal resolution of Sentinel-3 can maximize the number of effective observations across time for 

areas affected by cloud and shadow. Thus, it is of great interest to make full use of the fine spatial resolution of 

Sentinel-2 MSI images and the fine temporal resolution of Sentinel-3 OLCI images to create images with not 

only fine spatial but also fine temporal resolutions. It is acknowledged that spatio-temporal fusion is a 

technique developed for this goal (Gao et al., 2006). For spatio-temporal fusion of images from different 

satellite sensors, bands with similar spectral ranges are required. Among the 13 bands of Sentinel-2 images, 

the three 10 m MSI bands (i.e., bands 2, 3 and 4 spanning from 458-523 nm, 543-578 nm and 650-680 nm, 

respectively) and the 20 m MSI band 8a spanning from 855-875 nm have similar wavelengths with the four 

bands of Sentinel-3 images (i.e., Oa4, Oa6, Oa8 and Oa17). Therefore, spatio-temporal fusion can be applied 

to downscale the four bands of Sentinel-3 images to the spatial resolution of MSI images. 

Over the last decade, a number of spatio-temporal fusion methods have been proposed (Belgiu and Stein, 

2019; Wu et al., 2015; Zhou et al., 2021; Zhu et al., 2018). Spatio-temporal fusion methods are commonly 

divided into three main categories: spatial weighting-based, spatial unmixing-based and hybrid methods (Zhu 

et al., 2018). Typical spatial weighting-based methods include the spatial and temporal adaptive reflectance 
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fusion model (STARFM) (Gao et al., 2006), spatial temporal adaptive algorithm for mapping reflectance 

change (Hilker et al., 2009), the enhanced spatial and temporal adaptive reflectance fusion model (Zhu et al., 

2010), the Fit-FC method (Wang and Atkinson, 2018) and the virtual image pair-based spatio-temporal fusion 

(VIPSTF) method. Based on the multisensor multiresolution technique, several spatial unmixing-based 

methods were developed by adding different constraints to the unmixing model (Amorós-López et al., 2013; 

Busetto et al., 2008; Gevaert and García-Haro, 2015; Mustafa et al., 2014; Wang et al., 2021a; Wu et al., 2012; 

Xu et al., 2015; Zurita-Milla et al., 2008; Zurita-Milla et al., 2011). The hybrid methods integrated the 

mechanisms of spatial weighting and spatial unmixing, including the Flexible Spatiotemporal DAta Fusion 

(FSDAF) method (Zhu et al., 2016), the improved FSDAF (Liu et al., 2019) and the enhanced FSDAF that 

incorporates sub-pixel class fraction (Li et al., 2020). 

Up to now, spatio-temporal fusion has generally been performed for downscaling coarse spatial resolution 

Moderate Resolution Imaging Spectroradiometer (MODIS) or MEdium Resolution Imaging Spectrometer 

(MERIS) images, by fusing with fine spatial resolution images from the Landsat sensors (e.g., Thematic 

Mapper (TM), Enhanced Thematic Mapper (ETM+) or Operational Land Imager (OLI)) (Chen and Huang, 

2015; Gao et al., 2015; Zhang et al., 2015). Fit-FC is one of the very few methods proposed originally for 

fusing Sentinel-2 MSI with Sentinel-3 OLCI images (Wang and Atkinson, 2018), where the four bands of 

Sentinel-3 images (i.e., Oa4, Oa6, Oa8 and Oa17) were downscaled to the spatial resolution of Sentinel-2 

images. However, when downscaling Sentinel-3 images in practical cases, two issues remain open. First, from 

the perspective of data, almost no study has been conducted for downscaling real Sentinel-3 images based on 

spatio-temporal fusion. Wang and Atkinson (2018) performed spatio-temporal fusion using simulated 

Sentinel-3 images, which were created by degrading bands 2, 3, 4 and 8a of Sentinel-2 images. In practice, 

large differences may exist between Sentinel-2 and -3 images, resulting in a non-negligible difference between 

the real and simulated Sentinel-3 images. The performances of existing spatio-temporal fusion methods 

remain to be validated for real Sentinel-3 images. Second, based on spatio-temporal fusion, only four bands of 

Sentinel-3 images can be downscaled since they have similar wavelengths with the four bands of Sentinel-2 
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images. As acknowledged widely, however, all 21 bands of Sentinel-3 OLCI images convey specific semantic 

information, as presented in Fig. A1 (Donlon et al., 2012). Therefore, there exists a great need for approaches 

for downscaling the other 17 OLCI bands. 

Spatio-spectral fusion can be a solution for downscaling the other 17 OLCI bands, using four fine spatial 

resolution OLCI bands predicted by spatio-temporal fusion. Various spatio-spectral fusion methods have been 

exploited over the past decades, including the component substitution-based and multiresolution 

analysis-based methods. Gram-Schmidt transformation (Laben and Brower, 2000), Intensity-hue-saturation 

(Tu et al., 2001), principal component analysis (Shettigara, 1992) and Hyperspherical Color Space (Padwick et 

al., 2010) are typical component substitution approaches. The multiresolution analysis approaches include the 

high-pass filtering (Chavez et al., 1991), decimated wavelet transform using an additive injection model (Khan 

et al., 2008), Morphological Half Gradient (Restaino et al., 2016) and smoothing filter-based intensity 

modulation (Liu, 2000). There are also several deep learning-based methods developed in recent years (Xie et 

al., 2019; Xiong et al., 2021; Zhang et al., 2019). Several reviews on the methods are available (Amolins et al., 

2007; Garzelli, 2016; Javan et al., 2021). The majority of the existing spatio-spectral fusion methods, however, 

have some shortcomings when introduced to the downscaling of the other 17 OLCI bands. First, most of the 

spatio-spectral fusion approaches are mainly designed for pan-sharpening, that is, the case with only one fine 

spatial resolution band. Thus, the application of these methods will fail to fully utilize all four fine spatial 

resolution bands in downscaling the 17 OLCI bands. Second, these methods are generally suitable for a small 

zoom factor (e.g., 2 to 4) between the fine and coarse spatial resolution images. The fusion process becomes 

more challenging when the zoom factor is large (e.g., the zoom factor for downscaling the 300 OLCI bands is 

more than 10). Third, in traditional spatio-spectral fusion, the spectral ranges of the coarse bands are required 

to have a great degree of overlap with those of fine spatial resolution bands. Thus, considering the small 

overlap between the spectral ranges of the OLCI bands, the application of traditional spatio-spectral fusion 

approaches will be of great challenge. Therefore, it is necessary to develop specific spatio-spectral fusion 

methods for the task of downscaling the remaining 17 OLCI bands. 
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In this paper, a fusion framework integrating spatio-temporal-spectral information is proposed to tackle the 

above issues. The framework aims at downscaling all 21 OLCI bands of real Sentinel-3 images to the spatial 

resolution of Sentinel-2 images by fusing with Sentinel-2 images through two steps. First, the Oa4, Oa6, Oa8 

and Oa17 bands of Sentinel-3 images are downscaled by spatio-temporal fusion. Second, the other 17 OLCI 

bands are downscaled through an extended image pair-based spatio-spectral fusion (EIPSSF) method. In 

spatio-temporal fusion, the image pair is acquired at a different time from the coarse band image at the 

prediction time, but they fall in the same wavelength. Inspired by the traditional image pair, the new concept of 

the extended image pair (EIP), is proposed in this paper for spatio-spectral fusion. The definition of EIP also 

follows the same basic assumption of consistent spatial extent, acquisition time and spectral range for the fine 

and coarse images. However, EIP is acquired at the prediction time, and its wavelength is different from the 

target coarse bands to be downscaled. For downscaling the remaining 17 OLCI bands, four EIPs are required, 

composed of the coarse-fine images for the Oa4, Oa6, Oa8 and Oa17 bands, where the fine spatial resolution 

images can be obtained by the pre-spatio-temporal fusion step. Using the EIPSSF-based spatio-spectral fusion 

method, the other 17 OLCI bands are downscaled by fusing with the four EIPs. 

Three main contributions can be summarized for this paper. 

1) Real Sentinel-3 data are considered for downscaling. Different from Wang and Atkinson (2018), which 

used simulated Sentinel-3 images, the employment of real Sentinel-3 images provides an objective and 

authentic assessment of current spatio-temporal fusion methods and, more generally, downscaling 

methods. 

2) The typical spatio-temporal fusion methods are compared systematically to identify the most accurate 

method for fusion of Sentinel-2 and -3 images (i.e., downscaling 300 m Oa4, Oa6, Oa8 and Oa17 bands 

to 10 m or 20 m). 

3) EIPSSF is developed to downscale the other 17 OLCI bands of Sentinel-3 images. EIPSSF inherits the 

core idea of an image pair in spatio-temporal fusion and makes full use of the Sentinel-3 Oa4, Oa6, Oa8, 

Oa17 bands based on the proposed concept of EIP. The method is developed to deal with the cases 
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involving large zoom factor and small overlap between the spectral ranges of the fine and coarse spatial 

resolution bands. 

 

 

2. Methods 

 

2.1. Processing Sentinel-2 and -3 data 

 

ESA provides open access to Sentinel-2 MSI and Sentinel-3 OLCI images. For the Sentinel-2 MSI images, 

Level-2A products were used since they provide directly the bottom of atmosphere (BOA) reflectance. For the 

Sentinel-3 OLCI images, Level-1 products representing top of atmosphere (TOA) reflectance were chosen 

since the BOA reflectance products were not available. As the fusion of images requires strict consistency in 

reflectance and spatial extent between the images from two sensors, pre-processing of the Sentinel-2 and -3 

data was required before applying any algorithms (Cazzaniga et al., 2019). To our knowledge, however, very 

few studies have presented the specific steps for processing Sentinel-2 and -3 data prior to fusion. In this paper, 

we display the detailed data processing in Fig. 1, which includes two main parts, that is, radiometric correction 

and geometric correction. All steps were performed using ENVI 5.5.3. 

For the input Sentinel-3 OLCI Level-1 data products, the pre-processing step involved geometric 

positioning, to relate the image to geographic coordinates. Then, radiometric correction and geometric 

correction were performed separately. In the radiometric correction part, the digital number (DN) value was 

first transformed to TOA reflectance by radiometric calibration based on the Sentinel-3 data with geographic 

coordinates. To make the Sentinel-3 data comparable with the Sentinel-2 BOA data, the TOA reflectance of 

the Sentinel-3 data needs to be converted to BOA reflectance by atmosphere correction. Specifically, the 

MODTRAN-based Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) atmospheric 

model was applied (Anderson et al., 2002), which is available for Sentinel-3 in ENVI 5.5.3. For geometric 
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correction, the Sentinel-3 data were first reprojected to the same projection coordinates as the Sentinel-2 data 

(i.e., the Universal Transverse Mercator (UTM) zone), thus, achieving a consistent coordinate system. Due to 

possible variation in the spatial resolution caused by the reprojection process, the Sentinel-3 data were then 

resized to the original spatial resolution of 300 m by adapting the nearest neighbor interpolation. After the 

above procedures, the Sentinel-2 and -3 data were comparable in terms of reflectance and their coordinates. In 

image fusion, however, images with the same spatial extent are required. Since the Sentinel-3 data have a 

larger swath compared to Sentinel-2 data, the Sentinel-3 data were clipped based on the spatial extent of the 

Sentinel-2 data. Finally, to minimize the impact of registration error on image fusion, manual geometric 

rectification was applied between the Sentinel-2 and -3 data, producing the final Sentinel-2 MSI and 

Sentinel-3 OLCI data for the fusion framework integrating spatio-temporal-spectral information. 

 

Sentinel-3 OLCI 

Level-1 data products

Sentinel-3 data with 

geographic coordinates

Geometric positioning

Sentinel-3 data with 

TOA reflectance

Radiometric calibration

Sentinel-3 data with 

BOA reflectance

Atmospheric correction

Radiometric correction

Sentinel-3 data with the same 

projection coordinates of Sentinel-2

Geometric correction

Reproject

Sentinel-2 MSI 

Level-2A data products

Sentinel-2 MSI data for fusion

Sentinel-3 OLCI data for fusion

Final images

Geometric registration

 

Fig. 1. The processing of Sentinel-2 and -3 data. 

 

2.2. The fusion framework integrating spatio-temporal-spectral information 
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Based on the acquired Sentinel-2 MSI and Sentinel-3 OLCI images, a fusion framework integrating 

spatio-temporal-spectral information is proposed to downscale all 21 bands of Sentinel-3 images to the spatial 

resolution of Sentinel-2 images. More precisely, the target fine spatial resolution was defined as 20 m in this 

paper. The finer spatial resolution of 10 m was not considered as the zoom factor of 30 in this case necessarily 

involves greater uncertainty and may be too large for meaningful downscaling. The proposed fusion 

framework integrating spatio-temporal-spectral information can be divided into two separate steps, 

spatio-temporal fusion and spatio-spectral fusion, as shown in Fig. 2. In the first step, spatio-temporal fusion 

methods are applied to fuse the four corresponding bands of Sentinel-2 (i.e., MSI bands 2, 3, 4 and 8a) and 

Sentinel-3 images (OLCI bands Oa4, Oa6, Oa8 and Oa17). For the Sentinel-2 images, the 10 m bands 2, 3 and 

4 are upscaled to 20 m in advance to match the spatial resolution of band 8a. For the Sentinel-3 images, only 

bands Oa4, Oa6, Oa8 and Oa17 are involved in spatio-temporal fusion since they have similar spectral ranges 

with the four bands of the Sentinel-2 images. In the second step, the novel EIPSSF method is developed to 

downscale the other 17 bands (i.e., bands Oa1 to Oa21, excluding bands Oa4, Oa6, Oa8 and Oa17) of the 

Sentinel-3 images. The details of the two parts are further illustrated in Sections 2.2.1 and 2.2.2. 
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EIPSSF

.  .  .
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.
.
.
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Fig. 2. Flowchart illustrating the proposed fusion framework integrating spatio-temporal-spectral information. 

 

2.2.1. Spatio-temporal fusion 

 

Suppose the acquisition times of the known Sentinel-2 image and coarse Sentinel-3 image to be downscaled 

(i.e., the prediction time) are kt  and pt , respectively. In spatio-temporal fusion, the 300 m Oa4, Oa6, Oa8 and 

Oa17 bands of Sentinel-3 images at pt  are downscaled to 20 m by fusing with 20 m Sentinel-2 images 

acquired at kt  and 300 m Sentinel-3 images acquired at kt  and pt . In this paper, seven typical spatio-temporal 

fusion methods, the unmixing-based data fusion (UBDF) algorithm (Zurita-Milla et al., 2008), the 

spatial-temporal data fusion approach (STDFA) (Wu et al., 2012), spatial unmixing-based VIPSTF 

(VIPSTF-SU), FSDAF, STARFM, Fit-FC and spatial weighting-based VIPSTF (VIPSTF-SW), are 
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considered. This section introduces the mechanisms of the seven methods, categorized by the type of the 

spatio-temporal fusion methods. Generally, the framework of spatio-temporal fusion can be represented as 

= +

( )

( )

p k

k

k p k

f

f



  

  

F F F

F C

F C C

                                                                  (1) 

where kF  and pF  are the fine spatial resolution images at the known and prediction times, respectively. kC

and pC  are the coarse spatial resolution images at the known and prediction times, respectively. F  

represents a fine spatial resolution level increment estimated by applying different downscaling operations f  

to C , which refers to the increment from kC  to pC . The difference between various spatio-temporal fusion 

methods mainly lies in the estimation of F . 

1) Spatial weighting-based methods (STARFM, Fit-FC and VIPSTF-SW) 

The basic principle of spatial weighting-based methods is to estimate the reflectance of each fine spatial 

resolution pixel by applying a weighting function to spatially neighboring pixels. In this category of method, 

for clarity, F in Eq. (1) is represented as SWF , which is estimated by applying different spatial 

weighting-based operations f  to C . For STARFM, SWF  is calculated by applying a weighting function 

to spatially neighboring, spectrally similar pixels, which takes consideration of the temporal difference 

between the images at the known and prediction times. In Fit-FC, a local fitting model is first applied to 

enhance the correlation between the coarse images at the known and prediction times, and SWF  is further 

estimated through a spatial filtering and a residual compensation process. VIPSTF-SW is implemented by 

employing the spatial weighting strategy of STARFM to the VIPSTF framework. For VIPSTF-SW, a linear 

transformation is first applied to the fine and coarse images at the known time to produce a virtual image pair, 

as expressed in Eqs. (2) and (3) 

VIP
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n

i i

i

a b


 F F                                                                      (2) 
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VIP

1

n

i i

i

a b


 C C                                                                     (3) 

where ia  is the transformation coefficient for the ith fine spatial resolution image, n is the number of known 

image pairs and b  is a constant. iF  and iC  are the ith fine and coarse spatial resolution images, respectively. 

VIPF  and VIPC  are the virtual fine and coarse images, respectively. Based on the assumption and derivation in 

Wang et al. (2020), the transformation coefficients (i.e., ia  and b) can be obtained through a linear regression 

model constructed between the coarse images at the known and prediction times.  

Application of the virtual image pair reduces the difference (in feature space) between the images at the 

known and prediction times, and the difference between the coarse images can be updated to 

VIPp
  C C C .                                                                    (4) 

Then, the spatial weighting strategy is adopted to predict the fine spatial resolution level increment SWF  

based on the coarse spatial resolution level increment C  

sw 0 0

1

( , ) ( , )
sn

i i i

i

F x y C x y


                                                           (5) 

where ( , )i iC x y  is the coarse increment for the ith similar pixel located at ( , )i ix y  surrounding the pixel 

located at 0 0( , )x y , sn  is the number of similar pixels. Moreover, i  is the weight for the ith similar pixel, 

which is characterized by the inverse of its spatial distance (i.e., Euclidean distance) to the center pixel. 

2) Spatial unmixing-based methods (UBDF, STDFA and VIPSTF-SU) 

Spatial unmixing-based methods estimate the reflectance for each class of the fine spatial resolution image 

by applying an unmixing model to the coarse spatial resolution image. Alternatively, F  in Eq. (1) is 

represented as SUF , which is estimated by different spatial unmixing-based methods. For UBDF, kF  and 

SUF  are considered as a whole to provide the prediction. Specifically, the fine spatial resolution image at the 

known time is used to acquire a land cover map. pF  is predicted by an unmixing model, which decomposes 
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the target coarse image directly to predict the class reflectance, with the coarse proportion image produced by 

upscaling the known fine spatial resolution land cover map. For STDFA, SUF  is calculated alternatively by 

decomposing the coarse increment C . VIPSTF-SU is derived from the VIPSTF framework by employing 

the spatial unmixing model in STDFA. 

3) Hybrid methods (FSDAF) 

FSDAF is a hybrid method combining the strengths of both the spatial unmixing- and the spatial 

weighting-based methods. The fine spatial resolution level temporal change is first estimated using the spatial 

unmixing model in STDFA. Then, residuals calculated by thin plate spline interpolation are distributed to the 

fine spatial resolution pixels based on the spatial weighting scheme in STARFM. 

 

2.2.2. Spatio-spectral fusion 

 

In the second step of the fusion framework integrating spatio-temporal-spectral information, the EIPSSF 

method is proposed to downscale the other 17 OLCI bands of Sentinel-3 images. Different from 

spatio-temporal fusion, EIPSSF is performed based on the new concept of the EIP, which differs from the 

image pair in spatio-temporal fusion. To present clearly the definition of EIP, the general concepts of 

spatio-temporal fusion and spatio-spectral fusion are shown in Fig. 3. In spatio-temporal fusion, suppose that 

we have coarse spatial resolution images 1( , )iC t B  to ( , )n iC t B  with the spectrum iB  acquired from 1t  to nt , 

and fine spatial resolution images 1( , )iF t B  and ( , )n iF t B  with the spectrum iB  acquired at 1t  and nt . The 

absent fine spatial resolution images between 1( , )iF t B  and ( , )n iF t B  need to be predicted. Here, the fine and 

coarse images acquired on the same date (e.g., 1( , )iF t B  and 1( , )iC t B ) can be regarded as an image pair, which 

are consistent in their spatial extent, acquisition time and spectral range. Moreover, the image pairs in 

spatio-temporal fusion are acquired at different times from the coarse resolution image to be downscaled. 
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In spatio-spectral fusion, however, all the images are acquired at the same prediction time pt . Suppose that 

we have coarse spatial resolution images 1( , )pC t B  to ( , )p sC t B  acquired on the same date pt , but with 

different spectra ranging from 1B  to sB , and fine spatial resolution images 1( , )pF t B  and ( , )p sF t B  acquired 

on the same date pt  but with different spectra 1B  and sB . In this case, 1( , )pC t B  and 1( , )pF t B  is defined as 

an EIP. The missing fine spatial resolution images between 1( , )pF t B  and ( , )p sF t B  need to be predicted 

based on the EIPs. In spatio-spectral fusion, it is acknowledged that the corresponding coarse and fine band 

images (e.g., 1( , )iC t B  and 1( , )iF t B ) are also in accordance with the definition of an image pair in terms of 

consistency in space, time and spectrum. Importantly, the EIP in spatio-spectral fusion differs from the image 

pair in spatio-temporal fusion in two aspects. First, the EIP has a different spectrum from the coarse image to 

be downscaled (i.e., ( , )p iC t B ), while the spectra of both types of images are consistent in spatio-temporal 

fusion. Second, the EIP is acquired at the prediction time in spatio-temporal fusion. 
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Fig. 3. Difference between image pairs in spatio-temporal fusion and spatio-spectral fusion. 
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With the use of the EIP, existing spatio-temporal fusion methods can be transferred to spatio-spectral fusion. 

Specifically, by applying different spatio-temporal methods to spatio-spectral fusion, different EIPSSF 

methods (e.g., UBDF-based EIPSSF or FSDAF-based EIPSSF) can be produced. Thus, the proposed EIPSSF 

provides a general, modular framework for spatio-spectral fusion, which is theoretically applicable to almost 

all spatio-temporal fusion methods. It is noted that there is a prerequisite for EIPSSF, that is, the spectral 

distance between EIPs and the coarse bands should be limited to a certain range to ensure the accuracy of 

fusion. To further explain the principle of EIPSSF, we specify the mechanism using the VIPSTF-SW method 

in spatio-temporal fusion as an example, producing the VIPSTF-SW-based EIPSSF method. After the 20 m 

Oa4, Oa6, Oa8, Oa17 bands of Sentinel-3 images have been predicted by spatio-temporal fusion in Section 

2.2.1, the other 17 OLCI bands are downscaled based on EIPSSF separately. When downscaling a specific 

band image within the 17 OLCI bands, the virtual 20 m band image 20m

VIPB  and the virtual 300 m band image 

300m

VIPB  are created by applying a linear transformation to the four known 20 m and 300 m band images (i.e., 

four EIPs), respectively 

20m 20m

VIP

1

s

i i

i

a b


 B B                                                                  (6) 

300m 300m

VIP

1

s

i i

i

a b


 B B                                                                 (7) 

where 20m

iB  and 300m

iB  are the ith 20 m and 300 m images, respectively, among the Oa4, Oa6, Oa8 and Oa17 

bands, and s is the number of EIPs (e.g., 4s   in this case). ia  and b are the transformation coefficients 

estimated based on the regression model constructed between the 300 m band to be predicted and the four 300 

m images. Then, the 20 m downscaling result 
20m

pB  of band p can be predicted by 

20m 20m 20m

VIP

20m 300m

VIP

20m 300m 300m

VIP VIP

= +

( )

( )

p

p

f

f



  

  

B B B

B B

B B B

                                                        (8) 
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where 
300m

pB  is the 300 m image for band p and 300mB  is the difference between 
300m

pB  and 300m

VIPB . 20mB  is 

estimated by applying the algorithm f  (i.e., the same spatial weighting strategy applied in VIPSTF-SW) to 

300mB . 

 

 

3. Experiments 

 

3.1. Data and experimental setup 

 

Three datasets were utilized to examine the performance of the proposed fusion framework integrating 

spatio-temporal-spectral information for downscaling Sentinel-3 images. For Sites 1 and 2, Sentinel-2 and -3 

time-series images covering two 15 km by 15 km sites in the State of North Dakota, America were utilized. 

They were clipped from the Sentinel-2 and -3 time-series images covering the same 109.5 km by 109.5 km 

area, which were processed according to the steps in Section 2.1. Site 3 covers an area of 15 km by 15 km in 

Angers, France. The acquisition times of Sentinel-2 and -3 images for three sites were listed in Table 1. For 

Sites 1 and 2, the acquisition dates of the Sentinel-2 and -3 time-series images range from 6 June 2019 to 10 

October 2020, presenting a relative uniform distribution. Note that the images from October 2019 to February 

2020 are absent owing to the influence of the snow cover. For both sites, the Sentinel-3 image acquired on a 

certain date was chosen for downscaling, with the images acquired on other dates known. In the experiments, 

the Sentinel-3 images acquired on 16 September 2019 and 20 August 2019 were selected for downscaling for 

Sites 1 and 2, respectively. For Site 3, the known and prediction dates are 2 June 2020 and 6 August 2020, 

respectively. Ultimately, all 21 bands of Sentinel-3 images were downscaled to the spatial resolution of 

Sentinel-2 images by applying the proposed fusion framework integrating spatio-temporal-spectral 

information. The partial Sentinel-2 and -3 time-series images for Sites 1, 2 and 3 are presented in Figs. 4, 5 and 
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6, respectively. Both Sites 1 and 2 are mainly covered by vegetation (e.g., crops), while Site 3 presents a more 

complex landscape, consisting of vegetation, urban and river. 

 

Table 1 Acquisition dates of the Sentinel-2 and -3 images 

 
Site 1 Site 2 Site 3 

Known dates 

2019.6.6 2019.6.6 2020.6.2 

2019.7.18 2019.7.18  

2019.9.16 2019.8.20  

2020.3.27 2020.3.27  

2020.6.7 2020.6.7  

2020.8.11 2020.8.11  

2020.8.24 2020.8.24  

2020.9.10 2020.9.10  

2020.9.25 2020.9.25  

2020.10.10 2020.10.10  

Prediction date 2019.8.20 2019.9.16 2020.8.6 

 

      
 

      
(a)                             (b)                             (c)                           (d)                             (e)                            (f) 

Fig. 4. Partial Sentinel-2 (first line) and Sentinel-3 (second line) BOA reflectance images for Site 1 (8a, 4, 3 bands for Sentinel-2 and 

Oa17, Oa8, Oa6 for Sentinel-3 as RGB, respectively). (a) 6 June 2019. (b) 20 August 2019. (c) 16 September 2019. (d) 7 June 2020. 

(e) 24 August 2020. (f) 25 September 2020. 
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(a)                             (b)                             (c)                           (d)                             (e)                            (f) 

Fig. 5. Partial Sentinel-2 (first line) and Sentinel-3 (second line) BOA reflectance images for Site 2 (8a, 4, 3 bands for Sentinel-2 and 

Oa17, Oa8, Oa6 for Sentinel-3 as RGB, respectively). (a) 18 July 2019. (b) 16 September 2019. (c) 27 March 2020. (d) 11 August 

2020. (e) 10 September 2020. (f) 10 October 2020. 

 

    
(a)                              (b)                           (c)                             (d) 

Fig. 6. Sentinel-2 and Sentinel-3 BOA reflectance images for Site 3 (8a, 4, 3 bands for Sentinel-2 and Oa17, Oa8, Oa6 for Sentinel-3 

as RGB, respectively). (a) Sentinel-2 on 2 June 2020. (b) Sentinel-2 on 6 August 2020. (c) Sentinel-3 on 2 June 2020. (d) Sentinel-3 

on 6 August 2020. 

 

Generally, the experiments are divided into two parts, spatio-temporal fusion and spatio-spectral fusion, as 

illustrated in Sections 3.2 and 3.3, respectively. Section 3.2 provides downscaling results for bands Oa4, Oa6, 

Oa8 and Oa17 of Sentinel-3 for Sites 1 and 2 based on different spatio-temporal fusion methods (i.e., UBDF, 

STDFA, VIPSTF-SU, FSDAF, STARFM, Fit-FC and VIPSTF-SW), and also the applicability of the results 

for land cover mapping. Section 3.3 provides downscaling results for the other 17 bands of Sentinel-3 by 

applying the EIPSSF-based spatio-spectral fusion method. Section 3.4 presents the application of the entire 

fusion framework to more complex landscapes in Site 3. 
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3.2. Spatio-temporal fusion for downscaling OLCI bands Oa4, Oa6, Oa8 and Oa17 

 

3.2.1. Experiment on Site 1 

 

Amongst the 11 Sentinel-2 and -3 image pairs acquired for Site 1, the Sentinel-3 image acquired on 16 

September 2019 was selected to be downscaled using the different spatio-temporal fusion methods. The 

Sentinel-2 and -3 image pairs acquired on other dates were chosen as inputs, in turn, together with the 

Sentinel-3 image acquired on 16 September 2019. Consequently, 10 predictions for downscaling bands Oa4, 

Oa6, Oa8 and Oa17 were obtained with 10 image pairs acquired on different dates as input. The predictions of 

the seven methods with the use of the image pair acquired on 20 August 2019 are displayed in Fig. 7 for visual 

observation. It is obvious that the predictions for UBDF, VIPSTF-SU, Fit-FC and VIPSTF-SW are closer to 

the reference image visually. For exmaple, the green block in the middle-upper part of the subarea is wrongly 

predicted as blue in the predictions of the other methods. Moreover, in the predictions of UBDF and 

VIPSTF-SU, the block effect emerges to some extent. Fit-FC produces a smoothing effect. With respect to 

VIPSTF-SW, its prediction is visually more accurate as it is closest to the reference in terms of the recovery of 

both spatial detail and spectral information. To present the difference between the seven methods more clearly, 

the errors between the downscaling result and the reference images for bands Oa4, Oa6, Oa8 and Oa17 are 

shown in Fig. 8. The white represents the prediction with no error, while the blue and red represent the largest 

negative and positive errors, respectively. It is noted that the error images of UBDF, STDFA and VIPSTF-SU 

are mainly covered by red and blue for all four bands. The difference between the results of seven methods 

tend to be more obvious in bands Oa8 and Oa17. Specifically, the error images of UBDF, STDFA, 

VIPSTF-SU, FSDAF and STARFM are generally dominated by blue and red pixels, while those of Fit-FC and 

VIPSTF-SW are mainly covered by white, light red and light blue pixels. Therefore, the predictions of Fit-FC 

and VIPSTF-SW are considered to be closer to the reference. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Fig. 7. Results of different spatio-temporal fusion methods for downcaling 300 m bands Oa4, Oa6, Oa8 and Oa17 to 20 m for Site 1 

(prediction time on 16 September 2019; image pair on 20 August 2019 as input) (bands Oa17, Oa8 and Oa6 as RGB). (a) UBDF. (b) 

STDFA. (c) VIPSTF-SU. (d) FSDAF. (e) STARFM. (f) Fit-FC. (g) VIPSTF-SW. (h) Reference. (i) Input Sentinel-2 image. 
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 (a) (b) (c) (d) (e) (f) (g)  

 
Fig. 8. Error images of different methods for Site 1. (a) UBDF. (b) STDFA. (c) VIPSTF-SU. (d) FSDAF. (e) STARFM. (f) Fit-FC. (g) 

VIPSTF-SW. 

 

Quantative evaluation was conducted based on the indices of the root mean square error (RMSE) and the 

corelation coefficient (CC), as displayed in Table 2. It is noted that for the predictions of each band, 

VIPSTF-SW produces consistently the smallest RMSE and the largest CC, indicating that the VIPSTF-SW 
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has the greatest accuracy, which is in accordance with the conclusion based on visual assessment. More 

precisely, the mean CCs for UBDF, STDFA and VIPSTF-SU are 0.5713, 0.6388 and 0.6417, respectively, 

which are obviously smaller than for Fit-FC, FSDAF and STARFM. Fit-FC, FSDAF and STARFM produce 

mean CCs of 0.7741, 0.7606 and 0.7458, which are 0.0380, 0.0515 and 0.0663 smaller than for VIPSTF-SW, 

respectively. Overall, VIPSTF-SW is found to be more accurate than the other six methods according to both 

visual and quantitative assessment. 

 

  
(a)                                                                                           (b) 

Fig. 9. Accuracies of spatio-temporal fusion based on image pairs collected at different times for Site 1. (a) Mean RMSE of four 

bands. (b) Mean CC of four bands. 

 

Table 2 Accuracies of different spatio-temporal fusion methods for Site 1 (prediction time on 16 September 2019; image pair on 20 

August 2019 as input) 

  UBDF STDFA VIPSTF-SU FSDAF STARFM Fit-FC VIPSTF-SW 

RMSE 

Oa4 0.0207 0.0217 0.0205 0.0189 0.0194 0.0184 0.0178 

Oa6 0.0245 0.0265 0.0240 0.0217 0.0227 0.0211 0.0207 

Oa8 0.0340 0.0330 0.0310 0.0263 0.0283 0.0259 0.0249 

Oa17 0.0626 0.0728 0.0618 0.0540 0.0573 0.0472 0.0444 

Mean 0.0355 0.0385 0.0343 0.0302 0.0319 0.0281 0.0269 

CC 

Oa4 0.5885 0.6980 0.6956 0.8108 0.7977 0.7912 0.8248 

Oa6 0.4680 0.5040 0.5109 0.6615 0.6316 0.6985 0.7560 

Oa8 0.5524 0.6631 0.6508 0.7730 0.7575 0.7790 0.8109 

Oa17 0.6762 0.6903 0.7097 0.7969 0.7965 0.8278 0.8566 

Mean 0.5713 0.6388 0.6417 0.7606 0.7458 0.7741 0.8121 
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Fig. 9 shows the RMSEs and the CCs of the seven methods using the Sentinel-2 and -3 image pair acquired 

on different dates (i.e., 6 June 2019 to 10 October 2020, except 16 September 2019, 10 cases in all). For all 

predictions based on 10 different dates, VIPSTF-SW produces consistently the smallest mean RMSE and the 

largest mean CC. Specifically, the mean RMSEs and the mean CCs for VIPSTF-SW range from 0.0269 to 

0.0422 and 0.6680 to 0.8121, respectively. Also, the accuracy of VIPSTF-SW is the most stable among all the 

methods (see the CC from 27 March 2020 to 10 October 2020), as VIPSTF-SW is less sensitive to the 

temporal change of landscapes owing to the construction of the vitual image pair (Wang et al., 2020). Amongst 

all seven methods, the accuracy of Fit-FC is similar in trend and is the closest to that of VIPSTF-SW. 

Moreover, FSDAF and STARFM produce less accurate predictions than VIPSTF-SW and Fit-FC, and 

produce more accurate predictions than UBDF, STDFA and VIPSTF-SU in most cases. To provide a more 

intuitive presentation of the accuracies for each band produced by the different methods, the bias, RMSE and 

CC for each case are summarized by blocks with different colors, as shown in Fig. 10. Specifically, each block 

represents the accuracy evaluation index for one of the four bands of one method, using one image pair of the 

10 cases. Thus, for each method, there are 40 blocks for an index, and there are 21 groups of blocks in all. For 

bias, prediction with zero bias is displayed as white while the prediction with the largest positive bias and 

negative bias are presented as red and blue, respectively. It is noted that the results for STDFA, FSDAF and 

STARFM present obvious dark blue blocks in a number of cases, indicating a large bias. Compared with 

UBDF and VIPSTF-SU, Fit-FC and VIPSTF-SW provide more accurate results in most cases. For the RMSE, 

darker red represents a larger value. It can be seen that the RMSEs of different methods do not differ as greatly 

as the bias values and the difference is more noticeable for the results of band Oa17. Amongst the seven 

methods, the results for VIPSTF-SW present the lightest color in all 40 blocks, especially for the 10 blocks of 

band Oa17. Moreover, the CCs of different methods vary from 0.17 to 0.85 and the result is shown in dark blue 

when the CC is large. Obviously, the color in VIPSTF-SW is the darkest in all cases, which indicates that 

VIPSTF-SW produces the largest CC amongst the seven methods. Therefore, VIPSTF-SW produces 

consistently the greatest accuracy for all four bands when using different image pairs. 
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(a) 

 
(b) 

 
(c) 

 
 

Fig. 10. Accuracies of spatio-temporal fusion for bands Oa4, Oa6, Oa8 and Oa17 based on image pairs collected at different times 

for Site 1. (a) Bias. (b) RMSE. (c) CC. 

 

3.2.2. Experiment on Site 2 

 

Spatio-temporal fusion was implemented for Site 2 to downscale bands Oa4, Oa6, Oa8 and Oa17 of the 

Sentinel-3 image acquired on 20 August 2019. The Sentinel-2 and -3 image pairs collected on the other 10 

dates were used. The results of using the image pair acquired on 18 July 2019 as input are shown in Fig. 11. 

For the UBDF, STDFA and VIPSTF-SU results, small fragments exist noticeably, which are substantially 

different from the reference. Although the FSDAF and STARFM predictions are cleaner compared to the 

above three methods, the colors are obviously different from the reference image, indicating great spectral 
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distortion. It can be noted that the Fit-FC and VIPSTF-SW predictions have a more similar color to the 

reference image (see the red blocks in the subarea). Moreover, the prediction of VIPSTF-SW presents more 

spatial detail, such as for roads. For quantitative evaluation, the accuracies of the seven methods for Site 2 are 

displayed in Table 3. It is seen that Fit-FC and VIPSTF-SW produce smaller RMSE and larger CC values than 

the other five methods. Moreover, VIPSTF-SW produces the largest mean CC of 0.6819, which is 0.0066, 

0.0548 and 0.0303 larger than that of Fit-FC, STARFM and FSDAF, respectively. UBDF, STDFA and 

VIPSTF-SU produce much less accurate predictions, with the mean CCs below 0.52 and mean RMSEs above 

0.05 generally. 

 

         
         

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

(i) 

 

Fig. 11. Results of different spatio-temporal fusion methods for downcaling the 300 m bands Oa4, Oa6, Oa8 and Oa17 to 20 m for 

Site 2 (prediction time on 20 August 2019; image pair on 18 July 2019 as input) (bands Oa17, Oa8 and Oa6 as RGB). (a) UBDF. (b) 

STDFA. (c) VIPSTF-SU. (d) FSDAF. (e) STARFM. (f) Fit-FC. (g) VIPSTF-SW. (h) Reference. (i) Input Sentinel-2 image. 

 

Table 3 Accuracies of different spatio-temporal fusion methods for Site 2 (prediction time on 20 August 2019; image pair on 18 July 

2019 as input) 

  UBDF STDFA VIPSTF-SU FSDAF STARFM Fit-FC VIPSTF-SW 

RMSE 

Oa4 0.0237 0.0274 0.0240 0.0214 0.0220 0.0199 0.0209 

Oa6 0.0276 0.0335 0.0278 0.0244 0.0251 0.0211 0.0217 

Oa8 0.0492 0.0551 0.0498 0.0413 0.0419 0.0434 0.0420 

Oa17 0.0993 0.1038 0.0969 0.0665 0.0682 0.0682 0.0624 

Mean 0.0500 0.0550 0.0496 0.0384 0.0393 0.0382 0.0368 

CC 

Oa4 0.4744 0.4176 0.4528 0.6017 0.5611 0.6072 0.5377 

Oa6 0.4725 0.3843 0.4668 0.5760 0.5409 0.6954 0.7056 

Oa8 0.5455 0.4798 0.5500 0.6620 0.6523 0.6480 0.6744 

Oa17 0.5481 0.5729 0.5759 0.7668 0.7540 0.7508 0.8097 

Mean 0.5101 0.4637 0.5114 0.6516 0.6271 0.6753 0.6819 
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(a)                                                                                            (b) 

Fig. 12. Accuracies of spatio-temporal fusion based on image pairs collected at different times for Site 2. (a) Mean RMSE of four 

bands. (b) Mean CC of four bands. 

     

 

 

 
(a) 

 
(b) 

 
(c) 

 
 

Fig. 13. Accuracies of spatio-temporal fusion for bands Oa4, Oa6, Oa8 and Oa17 based on image pairs collected at different times 

for Site 2. (a) Bias. (b) RMSE. (c) CC. 
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The RMSEs and CCs for the predictions using different image pairs are shown in Fig. 12. Clearly, 

VIPSTF-SW produces consistently the most accurate results, with the smallest mean RMSEs and the largest 

mean CCs in all cases. Amongst the other six methods, the accuracy of Fit-FC is the closest to that for 

VIPSTF-SW and both are more accurate than FSDAF, STARFM, UBDF, STDFA and VIPSTF-SU. The 

biases, RMSEs and CCs for the four bands produced by different methods and image pairs are summarized as 

blocks in Fig. 13. For STDFA, FSDAF and STARFM, the biases appear as dark blue and red, indicating large 

errors. Generally, the biases of Fit-FC and VIPSTF-SW are smaller. Moreover, for VIPSTF-SW, the color 

appears to be the lightest in the RMSE results and the darkest in the CC results, which demonstrates that 

VIPSTF-SW provides the most accurate predictions. 

 

3.2.3. Land cover mapping based on the spatio-temporal fusion results 

 

To examine the performance of different spatio-temporal fusion methods more comprehensively, land cover 

classification was also conducted based on different fusion results, as shown in Fig. 14. Specifically, the 

images were classified into two classes (vegetation and non-vegetation) with k-means-based unsupervised 

classification. It is noted in Fig. 14 that there are obvious speckle artifacts in the classification results of UBDF, 

STDFA, VIPSTF-SU, FSDAF and STARFM. In comparison with other methods, Fit-FC and VIPSTF-SW 

produce more satisfactory results, with much less speckle artifacts and greater similarity to the reference. 

Furthermore, influenced by the smooth effect, Fit-FC fails to reproduce the detailed boundaries of vegetation 

and several small patches. Thus, the prediction of VIPSTF-SW has the greatest classification accuracy. 

Quantative evaluation for the classification accuracy was conducted based on the indices of overall accuracy 

(OA), as listed in Table 4. Checking the classification accuracy for all seven methods, VIPSTF-SW produces 

the largest OA of 0.9280, with an increase of 0.0091 to 0.0563 compared to Fit-FC and UBDF. 
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(a) (b) (c) (d) (e) (f) (g) (h) 

 Vegetation  Non-vegetation 

Fig. 14. Land cover mapping based on different spatio-temporal fusion results for Site 1. (a) UBDF. (b) STDFA. (c) VIPSTF-SU. (d) 

FSDAF. (e) STARFM. (f) Fit-FC. (g) VIPSTF-SW. (h) Reference. 

 

Table 4 Classification accuracy (in terms of OA) for different spatio-temporal fusion results 

UBDF STDFA VIPSTF-SU FSDAF STARFM Fit-FC VIPSTF-SW 
0.8717 0.8807 0.8782 0.9134 0.9069 0.9189 0.9280 

 

 

3.3. Spatio-spectral fusion for downscaling the other 17 OLCI bands 

 

Spatio-spectral fusion was performed to downscale the other 17 OLCI bands of the Sentinel-3 images at the 

corresponding prediction times defined in Section 3.2 (i.e., 16 September 2019 for Site 1 and 20 August 2019 

for Site 2) to the same target spatial resolution of 20 m. The method identified as the most accurate in the 

spatio-temporal fusion part, VIPSTF-SW, was applied to spatio-spectral fusion. That is, EIPSSF was 

implemented using VIPSTF-SW. For VIPSTF-SW-based EIPSSF, 30 similar pixels were selected within each 

local window with 65 by 65 Sentinel-2 pixels at the spatial resolution of 20 m. Considering the fact that the 

performance for downscaling the 17 bands cannot be evaluated quantitatively because of the lack of 20 m 

reference images, a simulation test was performed to validate the feasibility of the VIPSTF-SW-based EIPSSF 

method. Specifically, one of the 300 m bands Oa4, Oa6, Oa8 and Oa17 was downscaled to 20 m separately, 

using the 20 m results of the other three bands obtained by spatio-temporal fusion and the four 300 m bands of 

Sentinel-3 (i.e., three EIPs coupled with a 300 m coarse band to be downscaled). Moreover, the real 20 m 

image for the target band (i.e., the corresponding band of Sentinel-2 with the same spectral range) was applied 

for objective evaluation. For example, when downscaling the 300 m band Oa4, the EIPs composed of 20 m and 

300 m images of bands Oa6, Oa8 and Oa17, together with the 300 m band Oa4 are used as input, and the band 
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2 of the Sentinel-2 image (corresponds to band Oa4 of Sentinel-3) serves as reference. For the 

pre-spatio-spectral fusion step, the known image pairs on 20 August and 16 September 2019 were selected for 

Sites 1 and 2, respectively. Quantitative evaluation for Sites 1 and 2 is shown in Table 3. In terms of the RMSE, 

it can be noted that the predictions for band Oa17 are less accurate than for the other three bands, with RMSEs 

of 0.0550 and 0.0696 for Sites 1 and 2, respectively. For the other three bands, the RMSEs range from 0.0164 

to 0.0265 and 0.0177 to 0.0299 for Sites 1 and 2, respectively. Moreover, the CCs range from 0.7420 to 0.8347 

and 0.7799 to 0.8775 for Sites 1 and 2, respectively. The CC for Site 2 is generally above 0.80 and the largest 

CC (i.e., the CC for band Oa8) even reaches 0.8775. Thus, the results suggest that the EIPSSF scheme can 

produce downscaling results with satisfactory accuracy. 

 

300 m                                                                                    20 m 

      
(a1)                         (b1)                         (c1)                          (a2)                         (b2)                         (c2) 

      
(d1)                         (e1)                         (f1)                           (d2)                         (e2)                         (f2) 

                                                                  
(g1)                                                                                         (g2) 

Fig. 15. Downscaling results for all 21 OLCI bands of Sentinel-3 images for Site 1. (a1)-(g1) are original 300 m bands of Sentinel-3 

images. (a2)-(g2) are the 20 m downscaling results. (a1) and (a2) are displayed using Oa1, Oa8, Oa15 as RGB. (b1) and (b2) are 

displayed using Oa2, Oa9, Oa16 as RGB. (c1) and (c2) are displayed using Oa3, Oa10, Oa17 as RGB. (d1) and (d2) are displayed 

using Oa4, Oa11, Oa18 as RGB. (e1) and (e2) are displayed using Oa5, Oa12, Oa19 as RGB. (f1) and (f2) are displayed using Oa6, 

Oa13, Oa20 as RGB. (g1) and (g2) are displayed using Oa7, Oa14, Oa21 as RGB. 
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300 m                                                                                      20 m 

      
(a1)                         (b1)                         (c1)                          (a2)                         (b2)                         (c2) 

      
(d1)                         (e1)                         (f1)                           (d2)                         (e2)                         (f2) 

                                                                  
(g1)                                                                                         (g2) 

Fig. 16. Downscaling results for all 21 OLCI bands of Sentinel-3 images for Site 1. (a1)-(g1) are original 300 m bands of Sentinel-3 

images. (a2)-(g2) are the 20 m downscaling results. (a1) and (a2) are displayed using Oa1, Oa8, Oa15 as RGB. (b1) and (b2) are 

displayed using Oa2, Oa9, Oa16 as RGB. (c1) and (c2) are displayed using Oa3, Oa10, Oa17 as RGB. (d1) and (d2) are displayed 

using Oa4, Oa11, Oa18 as RGB. (e1) and (e2) are displayed using Oa5, Oa12, Oa19 as RGB. (f1) and (f2) are displayed using Oa6, 

Oa13, Oa20 as RGB. (g1) and (g2) are displayed using Oa7, Oa14, Oa21 as RGB. 

 

Table 5 Accuracies of EIPSSF-based spatio-spectral fusion for downscaling OLCI bands Oa4, Oa6, Oa8 and Oa17. When 

downscaling each band, the coarse-fine EIPs of the other three bands are used as input. 

  Oa4 Oa6 Oa8 Oa17 

RMSE 
Site 1 0.0164 0.0213 0.0265 0.0550 

Site 2 0.0177 0.0196 0.0299 0.0696 

CC 
Site 1 0.8347 0.7420 0.7929 0.7551 

Site 2 0.8096 0.8020 0.8775 0.7799 

 

Figs. 15 and 16 exhibit the 300 m Sentinel-3 images and the corresponding 20 m downscaling results for 

Sites 1 and 2, respectively. The spatio-spectral fusion step was implemented by using the VIPSTF-SW-based 

predictions in Fig. 7 and Fig. 11 as the EIPs for Sites 1 and 2, respectively. The results are displayed using 

every three bands as RGB, where the bands for each composite were selected according to the principle of the 

maximum spectral distance to enhance the contrast, that is, the bands furthest apart from each other were 
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chosen as RGB (e.g., bands Oa1, Oa8 and Oa15 as RGB). Seven different composite images were produced by 

using different combinations amongst the 21 bands. Compared with the original 300 m Sentinel-3 images, 

more spatial detail is reproduced obviously in the downscaling results for both Sites 1 and 2 (e.g., the 

boundaries of the ground objects appear to be much clearer). With the implementation of the proposed fusion 

framework integrating spatio-temporal-spectral information, all 21 OLCI bands were downscaled 

satisfactorily. 

The ablation analysis was also conducted to show the performances of spatio-spectral fusion where bands 2, 

3, 4 and 8a of MSI at the prediction time are available in the input EIPs. That is, no spatio-temporal fusion 

results are used in the spatio-spectral fusion part. The accuracy for this case is shown in Table 6. Obviously, 

EIPSSF is again demonstrated to be a satisfactory solution for spatio-spectral fusion, where the CCs are 

generally above 0.90. Moreover, the accuracy of spatio-spectral fusion in this case is obviously greater than 

the case where bands 2, 3, 4 and 8a of MSI at the prediction time are unavailable. This reveals that if the bands 

2, 3, 4 and 8a of MSI at the prediction time are available, they are certainly preferable choice in EIPSSF, rather 

than predictions based on pre-spatio-temporal fusion. 

 

Table 6 Accuracies of the ablation analysis (i.e., bands 2, 3, 4 and 8a of MSI at the prediction time are available) for EIPSSF-based 

spatio-spectral fusion 

  Oa4 Oa6 Oa8 Oa17 

RMSE 
Site 1 0.0041 0.0041 0.0105 0.0288 

Site 2 0.0070 0.0070 0.0164 0.0489 

CC 
Site 1 0.9821 0.9884 0.9790 0.9451 

Site 2 0.9863 0.9881 0.9811 0.8941 

 

3.4. Application of the fusion framework to the urban area (Site 3) 

 

To further examine the applicability of the fusion framework, the case study for a more complex landscape 

in an urban area was also conducted, using the Sentinel-2 and -3 images in Site 3. Compared to Sites 1 and 2, 

the distribution of land cover in Site 3 presents stronger heterogeneity, bringing greater challenge to 

spatio-temporal and spatio-spectral fusion. The spatio-temporal fusion results for Site 3 are shown in Fig. 17. 
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Overall, the predictions of STDFA, VIPSTF-SU, FSDAF, STARFM and VIPSTF-SW are closer to the 

reference image visually. Checking the sub-area, the FSDAF and VIPSTF-SW results present more similar 

color to the reference image (see the vegetation). The quantitative evaluation results for the seven methods are 

displayed in Table 7. It is noted that VIPSTF-SW produces the smallest mean RMSE of 0.0388, which is 

0.0025 greater than for FSDAF. As the CC for FSDAF is only 0.0049 larger than for VIPSTF-SW, the 

performance of FSDAF and VIPSTF-SW can be regarded to be very similar. Again, VIPSTF-SW was chosen 

to perform the spatio-spectral fusion for downscaling the other 17 bands of OLCI, and the results are shown in 

Fig. 18. Obviously, the texture appears to be clearer and the boundaries of the river and roads are recovered 

satisfactorily in the downscaling results. Thus, the proposed fusion framework is also applicable to urban areas 

with complex spatial structure. 

        
        

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 17. Results of different spatio-temporal fusion methods for downcaling 300 m bands Oa4, Oa6, Oa8 and Oa17 to 20 m for Site 

3 (prediction time on 6 August 2020; image pair on 2 June 2020 as input) (bands Oa17, Oa8 and Oa6 as RGB). (a) UBDF. (b) 

STDFA. (c) VIPSTF-SU. (d) FSDAF. (e) STARFM. (f) Fit-FC. (g) VIPSTF-SW. (h) Reference. 

 

Table 7 Accuracies of different spatio-temporal fusion methods for Site 3 (prediction time on 6 August 2020; image pair on 2 June 

2020 as input) 

  UBDF STDFA VIPSTF-SU FSDAF STARFM Fit-FC VIPSTF-SW 

RMSE 

Oa4 0.0403 0.0356 0.0288 0.0334 0.0359 0.0316 0.0284 

Oa6 0.0434 0.0362 0.0315 0.0328 0.0359 0.0324 0.0309 

Oa8 0.0573 0.0542 0.0489 0.0478 0.0537 0.0474 0.0460 

Oa17 0.0854 0.0631 0.0529 0.0514 0.0609 0.0558 0.0500 

Mean 0.0566 0.0473 0.0405 0.0414 0.0466 0.0418 0.0388 

CC 

Oa4 0.3278 0.6867 0.6908 0.7186 0.6965 0.6412 0.7039 

Oa6 0.3086 0.6437 0.6484 0.6815 0.6540 0.6457 0.6630 

Oa8 0.3150 0.5374 0.5215 0.5885 0.5476 0.5770 0.5804 

Oa17 0.6235 0.7636 0.8095 0.8108 0.7960 0.8006 0.8323 

Mean 0.3938 0.6578 0.6676 0.6999 0.6735 0.6661 0.6949 
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300 m                                                                                      20 m 

       
(a1)                         (b1)                         (c1)                          (a2)                         (b2)                         (c2) 

       
(d1)                         (e1)                         (f1)                           (d2)                         (e2)                         (f2) 

                                                                  
(g1)                                                                                         (g2) 

Fig. 18. Downscaling results for all 21 OLCI bands of Sentinel-3 images for Site 3. (a1)-(g1) are original 300 m bands of Sentinel-3 

images. (a2)-(g2) are the 20 m downscaling results. (a1) and (a2) are displayed using Oa15, Oa8, Oa1 as RGB. (b1) and (b2) are 

displayed using Oa16, Oa9, Oa2 as RGB. (c1) and (c2) are displayed using Oa17, Oa10, Oa3 as RGB. (d1) and (d2) are displayed 

using Oa18, Oa11, Oa4, as RGB. (e1) and (e2) are displayed using Oa19, Oa12, Oa5 as RGB. (f1) and (f2) are displayed using Oa20, 

Oa13, Oa6 as RGB. (g1) and (g2) are displayed using Oa21, Oa14, Oa7 as RGB. 

 

 

4. Discussion 

 

4.1. The feasibility of downscaling Sentinel-3 images using spatio-spectral fusion 

 

In this paper, the spatio-temporal fusion method (i.e., VIPSTF-SW) was applied to implement 

spatio-spectral fusion, which transfers the fusion problem from the temporal domain to the spectral domain. In 

spatio-temporal fusion, it is validated that the prediction accuracy is greater when the correlation between the 

images at the known and prediction times is larger (Tang et al., 2020). Generally, high-quality images acquired 

at times close to the prediction time are involved in the spatio-temporal fusion to ensure a high accuracy. On 



 

 

33 

the contrary, when a large difference exists between the images at the known and prediction times, the 

uncertainty will undermine the practical value of spatio-temporal fusion. Similarly, to ensure the feasibility of 

the spatio-spectral fusion scheme in this paper, a requirement is presented when downscaling a specific coarse 

band, that is, the spectral distance between the EIPs and the bands for fusion should be limited within a certain 

range. This can ensure a sufficiently large correlation between the known bands and the bands for 

downscaling. To investigate the distribution of the data (i.e., BOA reflectance) of the Sentinel-3 images, the 

box plot for the 21 bands of the Sentinel-3 image acquired on 20 August 2019 for Site 2 are shown in Fig. 19. 

Generally, the range of the reflectance changes continuously from bands Oa1 to Oa20, with a gradual, 

increasing trend. Moreover, the box plots for the spectrally adjacent bands appear to be similar (see, e.g., bands 

Oa8, Oa9 and Oa10). 

To further explore the correlation between the bands of Sentinel-3 images, the absolute CCs between every 

two bands were calculated. To allow a clear presentation of the 231 absolute CCs, we summarize them in color 

blocks, as shown in Fig. 20. Specifically, the absolute CC is larger when the color is darker. It is obvious that 

the dark color is distributed mainly amongst bands Oa1 to Oa11, and amongst bands Oa12 to Oa21, indicating 

a large correlation between these bands. Conversely, relatively smaller correlations lie mainly between bands 

Oa1 to Oa11 and Oa12 to Oa21. This phenomenon is caused mainly by the difference in spectral range of the 

bands, as a gap can be observed noticeably between the data of bands Oa11 and Oa12 in Fig. 19. Thus, the 

majority of the bands of Sentinel-3 images is suitable for spatio-spectral fusion. In EIPSSF, however, the EIPs 

of all four bands (i.e., bands Oa4, Oa8, Oa6 and Oa17) are involved in the downscaling of the other 17 bands, 

including the bands with small correlations. Fortunately, the linear transformation strategy in the 

VIPSTF-SW-based EIPSSF method can reduce the negative influence of these weakly correlated bands 

effectively. In VIPSTF-SW-based EIPSSF, the virtual EIP is produced by assigning different coefficients to 

the images of bands Oa4, Oa8, Oa6 and Oa17. In Fig. 21, the values of normalized a  for 17 bands are 

exhibited, which represents the contribution of the four bands in the production of the virtual EIP. Specifically, 
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the normalized ia  for each band i is calculated as 

4 6 8 17

normalized ,  4,  6,  8 or 17
i

i

a
a i

a a a a
 

  
.                                  (9) 

When downscaling a specific band amongst the 17 bands, 4a , 6a , 8a  and 17a  are the coefficients for band 

Oa4, Oa6, Oa8 and Oa17, respectively. 
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Fig. 19. Box plot of the BOA reflectance of 21 bands for the Sentinel-3 images acquired on 20 August 2019 for Site 2. For each box 

plot, the interquartile range (IQR) between the first and third quartiles is presented, and the 1.5 IQR is indicated by the whiskers. The 

upper and lower quartiles are indicated by the top and bottom boundaries of the box, respectively. The square and the line within the 

box corresponds to the mean and median, respectively. 
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Fig. 20. Absolute CC between OLCI bands of the Sentinel-3 image acquired on 20 August 2019 for Site 2. 

 

Generally, for each band Oa4, Oa6, Oa8 and Oa17, the largest normalized a  in downscaling lies around the 

coarse bands spectrally closest to it. Thus, when creating the virtual EIP for downscaling a coarse band, the 

spectrally closest known bands will be assigned the largest weights, while the other bands will be given 

Oa1 1.000

Oa2 0.985 1.000

Oa3 0.908 0.951 1.000

Oa4 0.805 0.865 0.970 1.000

Oa5 0.794 0.854 0.963 0.997 1.000

Oa6 0.765 0.814 0.917 0.947 0.966 1.000

Oa7 0.726 0.788 0.922 0.977 0.987 0.966 1.000

Oa8 0.699 0.768 0.910 0.979 0.982 0.933 0.991 1.000

Oa9 0.694 0.764 0.907 0.979 0.980 0.925 0.987 0.999 1.000

Oa10 0.693 0.763 0.906 0.978 0.980 0.926 0.988 1.000 1.000 1.000

Oa11 0.654 0.692 0.802 0.842 0.878 0.960 0.911 0.857 0.843 0.845 1.000

Oa12 0.430 0.489 0.589 0.611 0.587 0.425 0.607 0.649 0.653 0.652 0.323 1.000

Oa13 0.441 0.500 0.599 0.621 0.598 0.440 0.619 0.658 0.661 0.661 0.341 0.999 1.000

Oa14 0.441 0.500 0.600 0.622 0.598 0.441 0.619 0.658 0.662 0.661 0.342 0.999 1.000 1.000

Oa15 0.443 0.501 0.601 0.622 0.599 0.441 0.620 0.659 0.662 0.662 0.342 0.999 0.999 1.000 1.000

Oa16 0.443 0.501 0.601 0.622 0.598 0.440 0.618 0.657 0.661 0.660 0.340 0.999 0.999 1.000 1.000 1.000

Oa17 0.430 0.488 0.581 0.597 0.571 0.407 0.586 0.628 0.632 0.631 0.297 0.998 0.997 0.997 0.998 0.998 1.000

Oa18 0.426 0.483 0.576 0.591 0.564 0.399 0.578 0.621 0.625 0.624 0.288 0.997 0.996 0.996 0.997 0.997 1.000 1.000

Oa19 0.422 0.479 0.571 0.585 0.558 0.392 0.572 0.615 0.619 0.618 0.280 0.996 0.995 0.995 0.996 0.996 1.000 1.000 1.000

Oa20 0.399 0.454 0.542 0.553 0.524 0.356 0.538 0.581 0.586 0.585 0.243 0.990 0.988 0.988 0.989 0.990 0.995 0.996 0.997 1.000

Oa21 0.353 0.410 0.498 0.508 0.479 0.309 0.493 0.537 0.542 0.541 0.197 0.982 0.979 0.980 0.980 0.981 0.989 0.991 0.992 0.994 1.000

Oa1 Oa2 Oa3 Oa4 Oa5 Oa6 Oa7 Oa8 Oa9 Oa10 Oa11 Oa12 Oa13 Oa14 Oa15 Oa16 Oa17 Oa18 Oa19 Oa20 Oa21
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smaller weights. For example, the largest and the smallest normalized a  for downscaling band Oa10 lie in 

band Oa8 and Oa17, respectively. This mechanism takes full advantage of the known band images with large 

correlations, and reduces the negative influence of the bands with small correlations. Therefore, the feasibility 

of EIPSSF can be ensured. 

 

 

Fig. 21. The normalized |a| of the four known bands (i.e., bands Oa4, Oa6, Oa8 and Oa17) for downscaling the remaining 17 bands 

of the Sentinel-3 images acquired on 20 August 2019 for Site 2. 

 

4.2. Difference between Sentinel-2 and -3 images 

 

An objective evaluation is presented in this paper for the performance of different spatio-temporal fusion 

methods based on real Sentinel-3 data. It is necessary to compare this evaluation to previous research 

performed on simulated Sentinel-3 data, which were created by upscaling Sentinel-2 data (Wang and 

Atkinson, 2018). To quantify the differences between the two studies, the predictions based on simulated 

Sentinel-3 images are provided in this section. Specifically, two methods, Fit-FC and VIPSTF-SW, were 

considered. The former was developed for simulated Sentinel-3 data in Wang and Atkinson (2018), while the 
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latter was identified to be the most accurate method in the experiments in this paper. Fig. 22 shows the CCs for 

the predictions using real and simulated Sentinel-3 images for the two methods. The dataset for Site 1 was 

used, and the known images on different dates were considered. It is obvious that the CCs for the predictions 

using simulated Sentinel-3 images are consistently larger than for the real Sentinel-3 images. For example, 

when using the image pair acquired on 24 August 2020 as input for the case of simulated Sentinel-3 images, 

the CC increases by 0.1582 and 0.0785 for Fit-FC and VIPSTF-SW, respectively. Moreover, Fit-FC and 

VIPSTF-SW have very close performances for simulated Sentinel-3 images, but VIPSTF-SW is more 

advantageous for the real case. Since the simulated Sentinel-3 images were produced by degrading the 

Sentinel-2 images, the difference between the predictions using real and simulated Sentinel-3 images is caused 

mainly by the difference between the Sentinel-2 and -3 images. 

 

 

Fig. 22. CC for downscaling bands Oa4, Oa6, Oa8 and Oa17 of the Sentinel-3 images acquired on 16 September 2019 for Site 1 

using real and simulated Sentinel-3 images. 
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(a)                                                 (b)                                                   (c) 

   
(d)                                                 (e)                                                   (f)  

Fig. 23. Comparison between Sentinel-2 and -3 data. (a) Sentinel-2 image acquired on 20 August 2019 for Site 1 (bands 8a, 4 and 3 

as RGB). (b) Simulated Sentinel-3 image produced by upscaling (a). (c) Real Sentinel-3 image acquired on 20 August 2019 for Site 

1 (bands Oa17, Oa8 and Oa6 as RGB). (d-f) Difference between the real and simulated Sentinel-3 images for (d) Oa17, (e) Oa8 and 

(f) Oa6. 

 

Table 8 CC between real and simulated Sentinel-3 images for Site 1 

 Oa4 Oa6 Oa8 Oa17 Mean 

2019.6.6 0.7400  0.7723  0.8126  0.8034  0.7821  

2019.7.18 0.7363  0.8160  0.8064  0.8048  0.7909  

2019.8.20 0.8028  0.7959  0.8238  0.8364  0.8147  

2019.9.16 0.8527  0.8430  0.8501  0.8609  0.8517  

2020.3.27 0.8086  0.8173  0.8256  0.8288  0.8201  

2020.6.7 0.8142  0.8221  0.8177  0.8046  0.8147  

2020.8.11 0.7763  0.8241  0.8127  0.7932  0.8016  

2020.8.24 0.8060  0.8183  0.8251  0.8315  0.8202  

2020.9.10 0.8548  0.8567  0.8617  0.8479  0.8553  

2020.9.25 0.7488  0.7487  0.7468  0.7452  0.7474  
2020.10.10 0.8339  0.8347  0.8332  0.8424  0.8360  

 

To further investigate the differences between the Sentinel-2 and -3 images, we chose the images acquired 

on 16 September 2019 for Site 1 for illustration, as shown in Fig. 23. It is noted that the simulated Sentinel-3 
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image differs noticeably from the real Sentinel-3 image (see, e.g., the pixels in the yellow circles). As the 

Sentinel-2 image appears to be in rectangular blocks generally, the simulated Sentinel-3 image also presents a 

similar blocky distribution, with straight boundaries for objects. For the real Sentinel-3 image, however, the 

shape of the objects tends to be more irregular, with curving boundaries. The difference images for bands 

Oa17, Oa8 and Oa6 are also displayed in Fig. 23. Obviously, the main difference lies in the boundaries 

between land cover classes. Furthermore, the CCs between the real and simulated Sentinel-3 images for Site 1 

are provided in Table 8. As can be observed, the CCs for images acquired on different dates range from 0.7363 

to 0.8617, with most of the values larger than 0.8000. The difference between the two types of images is 

caused mainly by acquisition conditions (e.g., Sun-sensor geometry, atmospheric effects, the response 

function and noise) (Wang et al., 2020). In future research, more mature processing techniques (i.e., 

radiometric correction and geometric correction, as mentioned in Section 2.2) need to be developed to 

decrease the differences between Sentinel-2 and -3 images, and more importantly, to increase the accuracy of 

spatio-temporal fusion. 

 

4.3. The target fine spatial resolution 

 

In this paper, 20 m is selected as the target spatial resolution for downscaling Sentinel-3 images. Actually, 

among the four bands of Sentinel-2 images for fusion, only the spatial resolution of band 8a is 20 m, while the 

other three bands have a finer spatial resolution of 10 m. Theoretically, images with finer spatial resolution are 

deemed to be more advantageous as they can be used for more detailed monitoring. However, the downscaling 

process can be more challenging as the uncertainty generally increases with the zoom factor. To investigate the 

influence of the zoom factor on downscaling Sentinel-3 images, we also conducted experiments for 

downscaling the Oa4, Oa6, Oa8 and Oa17 bands to 10 m, 50 m, 60 m and 100 m, in turn, with the image 

acquired on 16 September 2019 for Site 1 used as an example, and the image pair acquired on 20 August 2019 

used as input. It is noted that when the target spatial resolution is 10 m, band 8a of the Sentinel-2 image needs 
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to be downscaled to the spatial resolution of 10 m in advance by fusing the 20 m band 8a with the 10 m bands 

2, 3 and 4. A previously justified method, area-to-point regression kriging (ATPRK) (Wang et al., 2016), was 

applied for this purpose. For the other target spatial resolutions (i.e., 50 m, 60 m and 100 m), the 20 m 

Sentinel-2 images should be upscaled to harmonize the resolution in advance. 

The accuracies, or more specifically the prediction precision (in terms of CC), of the different methods are 

depicted in Fig. 24. Generally, for all methods, the CC increases as the zoom factor decreases, and the 

predictions at 10 m are the least accurate amongst all predictions. Specifically, the decrease in CC can reach 

0.1514 when the zoom factor increases from 3 to 30 for UBDF. Thus, although 10 m predictions are able to 

provide more spatial detail, the accuracies decrease on the contrary, suggesting that the reliability of the spatial 

detail at 10 m decreases simultaneously. It is necessary to find a suitable balance between the accuracy of 

prediction and the target spatial resolution (Wang et al., 2019). In this paper, 20 m was selected as the target 

spatial resolution since it can satisfy common monitoring requirements. In practice, the target spatial 

resolution should be basically determined by the requirements of each specific application. 

 

 

Fig. 24. CC for downcaling Oa4, Oa6, Oa8 and Oa17 bands of the Sentinel-3 image (acquired on 16 September 2019 for Site 1) to 10 

m, 20 m, 50 m, 60 m and 100 m. 
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4.4. The applicability of EIPSSF 

 

In this paper, the EIPSSF method is proposed to downscale the remaining 17 OLCI bands. Based on the 

principles of various spatio-temporal fusion methods, different EIPSSF methods may be developed. Thus, 

EIPSSF is a general framework which is applicable to almost all existing spatio-temporal fusion methods. The 

key of adjusting spatio-temporal fusion methods to EIPSSF is to make full use of the four EIPs. Moreover, 

different from traditional pan-sharpening, EIPSSF takes full advantage of all fine spatial resolution images as 

well as their coarse observations. In this paper, a specific form of EIPSSF, VIPSTF-SW-based EIPSSF, is 

proposed, as the VIPSTF-SW method was shown to be the most accurate choice in spatio-temporal fusion of 

Sentinel-2 and -3 images. However, it should be stressed that it is also worthwhile to explore more 

spatio-temporal fusion methods (e.g., Bayesian-based (Li et al., 2013; Shen et al., 2016; Xue et al., 2017) or 

learning-based (Das and Ghosh, 2016; Liu et al., 2016; Song and Huang, 2012) methods) for the 

implementation of EIPSSF. In addition, the fusion framework integrating spatio-temporal-spectral information 

proposed in this paper performs the spatio-temporal and spatio-spectral fusion parts independently. It would 

also be promising to develop a joint model to consider information of the three aspects (i.e., spatial, temporal 

and spectral) simultaneously in future research, where the uncertainty in exploring bands 2, 3, 4 and 8a of 

Sentinel-2 and all 21 Sentinel-3 OLCI bands could be controlled jointly. The potential model may be 

theoretically superior, but computationally impractical. 

 

4.5. The applicability of the fusion framework integrating spatio-temporal-spectral information 

 

In this paper, the fusion framework integrating spatio-temporal-spectral information was developed to blend 

two products (i.e., Sentinel-2 and -3) among the Sentinel satellite constellation series. From the perspective of 

the input data, the implementation of the framework requires images from two sensors, one with fine spatial 
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resolution, together with another with fine temporal and spectral resolutions. Although this framework is 

proposed for Sentinel-2 and -3 images, it is also potentially applicable to other sensor systems satisfying the 

abovementioned requirements. For example, it can be applied to fuse MERIS images (containing 15 bands at 

the spatial resolution of 300 m and with the revisit period of 2-3 days) with 30 m Landsat TM/ETM+/OLI 

images to create 15 bands at 30 m. Apart from the MERIS-Landsat sensor system, several other combinations 

(e.g., MERIS-Sentinel-2 and Sentinel-3-Landsat) are also amenable to this framework. Thus, the fusion 

framework integrating spatio-temporal-spectral information provides a general solution to fuse images with 

different spatial, temporal and spectral resolutions. 

It should be noted that this framework is designed for fusion of optical data, but may not work for other 

categories of remote sensing data (e.g., Synthetic Aperture Radar (SAR)). Furthermore, in this paper, 

Sentinel-2 and -3 images covering three sites were selected to examine the fusion framework integrating 

spatio-temporal-spectral information. Since this framework is not limited to the spatial pattern of images, it 

will be worthwhile to test images for more sites from Sentinel-2 and -3 satellites or other optical sensor 

systems, to validate more widely the effectiveness of the fusion framework in future research. 

 

4.6. Quantitative evaluation of EIPSSF for downscaling the remaining 17 OLCI bands 

 

In the EIPSSF-based spatio-spectral fusion process, only visual comparison between the original Sentinel-3 

images and the downscaling results was performed for evaluation. Apart from the visual evaluation, two 

possible quantitative evaluation strategies could also be considered in future research, but both carrying 

uncertainties. First, hyperspectral data with finer spatial resolution than 20 m (e.g., aerial data) could be 

acquired and used as reference for evaluating the downscaling results. The spectral range of the hyperspectral 

data, however, may not correspond to that of the OLCI bands of Sentinel-3 exactly. Thus, to match the spectral 

range between the hyperspectral data and the OLCI bands, the convolution operation should first be applied to 

the hyperspectral data. Specifically, the convolution function can be applied by assigning different weights to 
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the bands by referring to the spectral response function of Sentinel-3 images. It should be pointed out, however, 

that the spectral response function is generally defined for spectrally continuous (in a mathematical sense) 

bands. Although hyperspectral images have a very fine spectral resolution, they are still spectrally discrete. It 

is a key issue to appropriately define the spectral response function in transformation between the two 

categories of images. Moreover, the difference in the platform and the acqusition condition between the 

hyperspectral data and the Sentinel-3 images are also important problems. 

Second, quantitative evaluation might be conducted by performing spatio-spectral fusion at a spatial 

resolution coarser than the original Sentinel-3 images. Specifically, the 300 m Sentinel-3 images can first be 

degraded to 4.5 km with a scale factor of 15. Correspondingly, the four 20 m Sentinel-2 bands can be degraded 

to 300 m, which can match the spatial resolution of the observed 300 m Sentinel-3 bands. Based on the 4.5 km 

degraded Sentinel-3 images and the 300 m degraded Sentinel-2 images, the 300 m images of the 17 OLCI 

bands can then be predicted by EIPSSF. In this case, the orginal 300 m Sentinel-3 bands can be used to 

evaluate the accuracy quantitatively. Although the reference image is known perfectly, the practical meaning 

remains to be considered for this strategy. In geography, it is acknowledged widely that the information 

presented in images with different spatial resolutions varies greatly owing to the scale effect (Quattrochi and 

Goodchild, 1997). For example, a method suitable for downscaling from 4.5 km to 300 m may not be a good 

choice for downscaling the 300 m images to 20 m. In future research, more unsupervised approaches (i.e., 

without the need of reference) should be investigated for evaluating the downscaling predictions, such as 

evaluation based on spatial texture. 

 

4.7. The potential of Sentinel-3-downscaled products 

 

This research provides a practical means for processing Sentinel-3 data and for producing Sentinel-3 images 

with finer spatial resolution (i.e., 20 m in this paper). This research can be of great value cosidering its typical 

contributions. First, the processing procedure of Sentinel-2 and -3 data presented in this paper can provide 
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guidance for ESA. Since ESA offers open access to data from the Sentinel missions, the processed data can 

provide more choices for users when Sentinel data are required for their research. Second, the 20 m Sentinel-3 

products can potentially support more applications than the original 300 m data. For example, estimation of 

local carbon flux, monitoring of vegetation seasonal dynamics and precise characterization of land surface 

changes place strict requirements on the spatial resolution of images. With the downscaled Sentinel-3 images, 

all these tasks can be undertaken more reliably. Finally, it is acknowledged that the processing and 

downscaling approach proposed in this paper is not confined to a certain region. Thus, considering the large 

number of Sentinel-3 images acquried everyday, the proposed method can be applied to all available 

Sentinel-3 images. Therefore, daily 20 m Sentinel-3 products can be produced potentially at the global scale, 

which would provide extremely beneficial support for fine scale monitoring across the entire globe. 

 

 

5. Conclusion 

 

The Sentinel-3 satellite supported by ESA provides an effective data source for global monitoring of ocean, 

land and atmosphere. The OLCI sensor onboard the Sentinel-3 satellite provides 21 spectral channels with 

various significant functions at a coarse spatial resolution of 300 m. To facilitate the application of Sentinel-3 

data at a local scale, this paper proposed a fusion framework integrating spatio-temporal-spectral information 

to downscale the 21 OLCI bands to the 20 m Sentinel-2 spatial resolution through two separate steps, 

spatio-temporal fusion (by fusing with Sentinel-2 MSI images) and spatio-spectral fusion (based on EIPSSF). 

The fused images inherit the fine spatial resolution of Sentinel-2, and the fine temporal and spectral resolutions 

of Sentinel-3. Through the experiments on the three sites, we summarized three main findings. 

1) The VIPSTF-SW method is shown to be the most appropriate (through both qualitative and quantitative 

evaluation) for downscaling the Oa4, Oa6, Oa8 and Oa17 bands of Sentinel-3 OLCI images amongst the 

seven spatio-temporal fusion methods investigated in this paper. 
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2) The proposed EIPSSF is a feasible solution to downscale the other 17 bands of Sentinel-3 OLCI images. 

The 20 m downscaling predictions are visually more pleasant than the orignal 300 m images. The 

rationale of EIPSSF is based on the large correlation (due to the close spectral distance) between the four 

EIPs of bands Oa4, Oa6, Oa8 and Oa17 and the other 17 OLCI bands. 

3) The proposed spatio-temporal-spectral fusion provides a flexible framework for downscaling the 21 

bands of Sentinel-3 OLCI images.  

This paper is one of the very few studies for comprehensive downscaling of Sentinel-3 images and will 

provide important guidance for future studies and applications based on the need for downscaled Sentinel-3 

time-series images. The Sentinel-2 and -3 time-series images used in the experiments will be publicly 

available on https://qunmingwang.github.io/. 
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Fig. A1. Band characteristics of the Sentinel-3 OLCI sensor. 
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