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Abstract—Recurrent neural networks (RNNs) are the most 

effective technology to study and analyze the future performance 

of solar irradiance. Bidirectional RNNs (BRNNs) provide the key 

benefit of manipulating the data with two different hidden layers 

in two opposite directions and can feed back to the same layer of 

output.  In this approach, the output layers can simultaneously 

receive information from the past (backward layers) and the 

future (forward layers). A bidirectional long short-term memory 

(BI-LSTM) model was developed and employed to predict solar 

irradiance values for the next 169 hours based on hourly historical 

data (01-01-1985 to 16-09-2020) from Tabuk city. The findings 

specifically demonstrate that in terms of classification and 

considerations, the BI-LSTM model has promising performance 

with notable accuracy. In addition, the model is capable of coping 

with the selected size of sequential data. The prediction accuracy 

and performance of the BI-LSTM model were highly enhanced 

when external data such as wind speed and temperature were 

provided.   

Keywords— BI-LSTM, recurrent neural network, backward 

layers, forward layers, bidirectional, prediction, solar irradiances. 

I. INTRODUCTION  

Solar energy is perceived to be a great solution to coping 
with climate crisis and the power generation issues, making it 
the most important option along with the increasing interest in 
renewable energy [1]. Studies devoted to wind and solar energy 
mainly focus on the intermittent, fluctuation, and non-
dispatchable issues of these kinds of energy and the stability of 
conventional electricity systems. Solar energy forecasting has 
been commonly used as a sufficient technique to alleviate 
multiple issues caused by intermittent issues. Several 
approaches have been proposed to build effective models that 
can be applied to predict the pursuit and behaviour of solar 
energy [1-11]. Zhao et al. [12] mentioned that time series 
prediction models that focus on historical data or historical  
observations, such as artificial neural networks (ANNs), are 
appropriate for ultra-short-term minutes to hours. In addition, 
Yadav and Chandel [13] thought that most of these approaches 
are based on complicated statistics, artificial intelligence (AI) 
techniques and vast volumes of topographical and 
meteorological historical data. However, these approaches can 

minimize the probability of solar energy system failure by 
predicting future scenarios. According to Alsharif et al. [1], 
prediction models contain three main categories: (i) Qualitative 
approaches, (ii) Quantitative approaches, and (iii) ANNs. (i) 
Qualitative approaches are based on experts’ experience, 
judgment and/or resource evaluation [1]. (ii) Quantitative 
approaches are based on mathematical models and can be 
categorized as time series or causal forecasting techniques that 
determine the relationships between the variables as dependent 
and independent [1]. However, the accuracy of these approaches 
is questionable due to uncertain and high fluctuation factors of 
solar energy. (iii) ANN techniques are developed to demonstrate 
the method of how the human brain's nervous system analyzes 
and controls more complicated data such as nonlinear data, 
optimization and pattern recognition [5]. ANNs are the 
cornerstone of AI which address problems that would be 
impossible to solve using human or computational criteria. ANN 
techniques have learning abilities which allowing them to 
achieve the best possible results as more data become available 
and can connect to large numbers of neurons to process any data 
and respond to it automatically with no prior assumption. There 
are two types of deep learning (DL) of models: (i) recurrent 
neural networks (RNNs) [14] and (ii) convolutional neural 
networks (CNNs) [15]. In addition, RNNs are a class of ANNs 
which  figure out how much information is required for each 
forecasting step, and they can access data from any point in the 
acoustic series [16]. Bidirectional long short-term-mmemory 
(BI-LSTM) recurrent neural networks (RNNs) are widely 
utilized in natural language processing (NLP) as an approach 
that produces the lowest recorded value, particularly with time 
series forecasting error metrics [16], [17]. RNNs have achieved 
promising performance in processing sequences of arbitrary 
length and modeling tasks [18]. This technology made a great 
leap in the field of forecasting, such as solar energy forecasting, 
and made it a more reliable method with notable accuracy. 

In this paper, a prediction model will be built based on BI-
LSTM to estimate the future solar irradiance values, which are 
the global horizontal irradiance (GHI), direct normal irradiance 
(DNI) and diffuse horizontal irradiance (DHI), for one week 
ahead as hourly values (169—h). The remainder of this paper is 
organised as follows: Section II contains the model architecture 



and algorithm. Section III debates the results and discussion. 
Finally, the conclusions present  in Section IV. 

II. PREDICTIVE MODEL ARCHITECTURE AND ALGORITHM 

In this section, the main concepts and the architecture of the 
RNN, LSTM and BI-LSTM will be discussed along with their 
algorithms. 

A. Recurrent Neural Networks (RNN) 

The RNN emulates a dynamical system of discrete time that 

has sequence vectors as input variables at a (t) time step [19],[8]. 

The RNN input patterns are defined as (x (1), x (2),...x (t)), and 

every sample/datapoint x(t) is considered to be real-valued 

variable [8]. The (y (1), y (2),...y (t)) represents the goal 

sequence vectors or the predicted target datapoint of the RNN, 

and its hidden layers are (h (1), h (2), ...h (t)) (see Fig. 1a). 

(a) 

(b) 
Fig. 1. Structure of RNN (a) [19] and input representation for the RNN (b) [8]. 

The RNN architecture is described by relations between all of 

its layers, this enables mapping from the present input to the 

required vectors, as well as mapping the required vectors from 

the entire previous inputs. [20]. The RNN has 3 parameters of 

the input as follows: (i) The minibatch size, which is the sample 

length (datapoints); (ii) The columns' number  in the vector per 

time steps, which are the features in the vector input; and (iii) 

The timesteps number, which presents a distinguishing feature 

of RNN, and it can unfold the input vector through the time (see 

Fig. 1b) [8]. The input pattern is injected into the neurons in each 

layer, where it is multiplied by the activation function to 

generate the neuron's median output, which is then used as the 

input to the next neuron in the second phase layer [8]. Sᵢ is an 

overall input to the next layer's neuron, which is the connection 

weight (W) multiplied by the previous neuron's output and 

aggregated to the bias (b ∈ R), as presented in equation 1 [8]. 

𝑆ᵢ = 𝑊ᵢ .  𝑥ᵢ + 𝑏                               (1) 

 

In addition, g is the function of activation applied to the Sᵢ to 
generate neuron's output (aᵢ), as shown in equations 2 and 3 [8]. 

 

     𝑎ᵢ = g (Sᵢ)                                        (2) 
  

𝑎ᵢ = g (Wᵢ .  𝑥ᵢ + b)                         (3) 

 

At time (t), the neurons with recurrent edges fed by the input 
from the current sample 𝑥𝑡 with another input from the hidden 
layer h(t-1), as shown in equation 4. In equation 4, Ң is the 
hidden layer, 𝑊ℎ𝑥   represents the conventional weight matrix 
between the input and the hidden layer, and 𝑊ℎ𝑦   is the recurrent 

weights matrix [8]. The output y(t) at each time step (t) can be 
found by applying equation 5 to hidden layer h(t). In addition, 
the 𝑏𝑦 and 𝑏ℎ represent bias parameters. 

 
         ℎ(𝑡) = Ң( 𝑊ℎ𝑥   𝑥𝑡 + 𝑊ℎℎ   ℎ𝑡−1   + 𝑏ℎ  )                       (4) 

 

                           𝑦(𝑡) = 𝑔(𝑊ℎ𝑦   ℎ𝑡   + 𝑏𝑦)                              (5) 

 

B. Long Short-Term Memory (LSTM) 

LSTM is a RNN variant that was proposed in 1997 [21], 
[22]. LSTM can overcome the issues of vanishing and exploding 
gradient challenges during the training in RNNs [21]. The best 
way to find and exploit the long-range context is LSTM 
architecture-built memory cells that store data [16], [22]. Fig. 2 
shows the configuration of an LSTM memory cell including the 
main components of the LSTM, such as the addition of element 
levels; where the multiplication sign refers to the element-level 
multiplication and the vector merge is denoted by con. LSTM 
consists of four functions with the same size: (i) The forget gate 
(𝑓𝑡), which regulates the amount of data that remains in the cell. 
(ii) The input gate (𝑖𝑡), which monitors the amount of data that 
flows into the cell. (iii) The input node (𝑔𝑡  ), which can be a cell 
activation vector. (iv) The output gate (𝑜𝑡), which performs the 
output activation of the LSTM. In addition, the LSTM functions 
can be presented as equations such as equations 6-10. In these 
equations, σ is the logistic sigmoid function, and  ℎ𝑡  is the 
hidden vector. 

 

𝑓(𝑡) = σ( 𝑊𝑥𝑓   𝑥𝑡 + 𝑊ℎ𝑓   ℎ𝑡−1   + 𝑊𝑐𝑓   𝑐𝑡−1   + 𝑏𝑓 )            (6) 

𝑖(𝑡) = σ( 𝑊𝑥𝑖   𝑥𝑡 + 𝑊ℎ𝑖   ℎ𝑡−1   + 𝑊𝑐𝑖   𝑐𝑡−1   + 𝑏𝑖  )               (7) 

𝑔(𝑡) = 𝑓𝑡   𝑔𝑡−1   + 𝑖𝑡 tanh( 𝑊𝑥𝑔   𝑥𝑡 + 𝑊ℎ𝑔   ℎ𝑡−1   + 𝑏𝑔)      (8) 

 

𝑜(𝑡) = σ( 𝑊𝑥𝑜   𝑥𝑡 + 𝑊ℎ𝑜   ℎ𝑡−1   + 𝑊𝑐𝑜   𝑐𝑡   + 𝑏𝑜  )                   (9) 

 

                                    ℎ(𝑡) = 𝑜𝑡   tanh(  𝑔𝑡  )                                     (10) 



Fig. 2. The structure of the long short-term memory (LSTM) unit. 

C. Bidirectional long short-term memory (BI-LSTM) 

The main advantage of Bidirectional RNNs (BRNNs) is that 
they process data in two directions with two separate hidden 
layers and can feed forward to the same output layer [17], [23]. 
The main components of bidirectional RNNs are the forward 

hidden sequence  h ⃗⃗⃗⃗ , the backward hidden sequence h← and the 
output sequence (y) that iterate the backward layer from t = T 
to 1, as illustrated in Fig. 3. In addition, the output layer of a 
bidirectional RNN can be presented in equations 11—15. 
 

  ℎ⃗⃗⃗  (𝑡) = Ң( 𝑊𝑥 ℎ⃗⃗  ⃗   𝑥𝑡 + 𝑊 ℎ⃗⃗  ⃗ ℎ⃗⃗  ⃗    ℎ
⃗⃗⃗  

𝑡−1   + 𝑏 ℎ⃗⃗  ⃗ )                       (11) 

 
 ℎ← (𝑡) = Ң( 𝑊𝑥ℎ←   𝑥𝑡 + 𝑊ℎ← ℎ←    ℎ

← 𝑡−1   + 𝑏ℎ←  )           (12) 

 

        y(𝑡) = (𝑊𝑦 ℎ⃗⃗  ⃗    ℎ
⃗⃗⃗  

𝑡 + 𝑊𝑦ℎ←    ℎ
← 𝑡      + 𝑏𝑦  )                  (13) 

 

Fig. 3. The bidirectional RNN unit [17]. 

BI-LSTM will be generated by combining BRNNs with LSTM, 
which can process long-range contexts in both input directions 
[17]. Deep RNNs can be built by integrating several RNN 
hidden layers on top of one another, including the output 
sequence of one layer that shaping the input iteration process of 
the next. The same hidden layer can be employed for N numbers 
of layers in the stack, and the hidden vector series ℎ𝑛  can be 
iteratively calculated from n=1 to N (t=1) as presented in 
equation 14, where ℎ0 = 𝑥 . 𝑦𝑡   refers to the final network 
output, as illustrated in equation 15. 
 
ℎ𝑛

(𝑡) = Ң( 𝑊ℎ𝑛−1ℎ𝑛    ℎ
𝑛−1 𝑡 + 𝑊ℎ𝑛 ℎ𝑛    ℎ

𝑛 𝑡−1   + ℎ𝑛 ℎ )     (14) 

 

             𝑦(𝑡) = ( 𝑊ℎ𝑁y    ℎ
𝑁 𝑡 + 𝑏(𝑦))                           (15) 

 

BRNNs can replace the hidden sequences ( ℎ𝑛 ) with the 

backward sequences (ℎ𝑛←) and the forward sequences (ℎ𝑛→). 

In BI-LSTM, every single hidden layer obtains input from both 

backward and forward layers. BI-LSTM uses LSTM for the 

hidden layers. 

D. Data description and preparation 

Tabuk city in Saudi Arabia was selected as a case study. It is 
located between 28° 23' 59.28" N in latitude and 36° 34' 17.44" 
E in longitude. A historical data was collected to predict the 
future performance of the three types of solar irradiance (W/m²), 
including global horizontal irradiance (GHI), direct normal 
irradiance (DNI) and diffuse horizontal irradiance (DHI), one 
week ahead hourly values (169—h). The historical data were 
obtained from the station situated in the meteoblue weather 
service [24]. The historical wind speed (m/s) and temperature 
(°C) data of Tabuk city were employed as external data to 
provide more details to the BI-LSTM model and to support the 
model due to the high correlation between them. All the gathered 
historical data used in this study cover the period from 01-01-
1985 to 16-09-2020, and hourly values are shown in Figs (4—
10). To achieve better future prediction values, the quality and 
quantity of the datasets are important. The data were reviewed, 
checked, and analyzed to maintain any missed or duplicated 
values. All the datasets were maintained as stationary, and the 
p-value hypotheses were checked by applying the Dickey-Fuller 
test to confirm that, the p-values are less than 0.05 (p-values < 
0.05). 
 

Fig. 4. The DHI, GHI and DNI performance as hourly values of the first week 
during January 1985. 

Fig. 5. The DHI, GHI and DNI performance as hourly values of the second week 
during September 2020. 

Fig. 6. The GHI performance as hourly values over 35 years. 



Fig.7. The DHI performance as hourly values over 35 years. 

Fig. 8. The DNI performance as hourly values over 35 years.  

Fig. 9. The wind speed performance as hourly values over 35 years. 

Fig. 10. The temperature performance as hourly values over 35 years. 

E. Model structure 

Python programming language was employed to build the 
predicted model due to the large memory of Python, which is 
able to handle large amounts of historical data. The historical 
data were prepared and cleaned to be processed. The BI-LSTM 
model was built as a code based on the mathematical algorithm 
(section II), and the model parameters were defined as 3 hidden 
layers (Fig. 11). The first and second layers were set to 100 
neurons, and the third layer was set to 50 neurons. If the number 
of hidden neurons increases, the predictive errors decrease 
sharply. However, the root mean square error remains almost 
constant with only small variations when the number of neurons 
is more than 150 and less than 300, created by the randomization 
of input weights for extreme learning machine networks [12]. If 
the number of inputs is greater than 2, the predictive error will 
be dramatically higher. In addition, the number of inputs and the 
number of neurons of hidden layer are the two main parameters 
for BI-LSTM in factorization learning machine networks. The 
number of epochs is adjusted as 30, batch size is 64 and the 
validation split is 0.011. The target training data were adjusted 
to the maximum size, and the test size was set at the minimum 

size to reduce the simulation time and to obtain a better fit of the 
model due to the specific size of the historical data. Moreover, 
for each future predicted value of the solar irradiance, the other 
historical data, such as wind speed, temperature and the other 
two types of solar irradiance data, were used as external support 
data, which can provide the model with more details due to the 
high coloration between the data. 

 Fig. 11. Flowchart of the proposed model. 

F. Error metrics and Evaluation 

The BI-LSTM model's accuracy can be evaluated using 
various statistical error metrics such as the root mean square 
error (RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE). Moreover, the R-squared (R²) is a 
statistical metric reflecting the percentage of the variance of a 
dependent variable accounted for an independent variable. 
Although the intensity of the relationship between an 
independent and dependent variable is explained by the 
correlation, the R² describes how the variance of one variable 
explains the variance of the second variable. The various 
statistical error metrics that are used to evaluate the output of the 
BI-LSTM model are described by equations 16-19. In these 
equations, j is the generic hour of the predicted data, n is the 

number of forecasted datapoints, 𝑦𝑗 is the real values and 𝑦𝑗
^ is 

the predicted observation value. 𝑆𝑆res  is the sum of squared 
residuals; and 𝑆𝑆𝑇𝑜𝑡 is the absolute number of squares, which is 
proportional to the variance of the data. 

            RMSE = √
1

n
∑

(  yj− yj
^
 
)2

n

n

j=1
                                                       (16) 



               MAE =
1

n
∑ ∣ yj− yj

^

 
∣

n

j=1
                                                (17) 

 

            MAPE =
1

n
∑  ⃒ 

yj− yj
^
 

yj
⃒n

j=1  *100                                           (18) 

 

                    𝑅2 = 1 − 
SSres

SSTot
                                                   (19) 

III. RESULTS AND DISCUSSION 

Based on the historical solar irradiance data and the external 
historical wind speed and temperature data, the future values of 
the three types of solar irradiances were predicted. The results 
of the BI-LSTM model illustrated a significant performance and 
notable fitting of the model (see Fig. 12). The number of epochs 
and the error values have a direct relationship, which means that 
if the number of epochs increases, the errors will decrease. In 
addition, using a large historical dataset with a large amount of 
training data resulted in slow simulation times with notable error 
values. As presented in Fig. 12, the BI-LSTM model does not 
show major overfitting, even with this type of training data. 
Overfitting would be minimized by the size of the dataset. In 
some cases, such as future prediction, rather than splitting the 
dataset into training (80%) and testing (20%), we used all of our 
data for training and reduced the testing data to the minimum 
size; however, the model can still handle this technique and 
generated acceptable results, as shown in Fig. 13. The BI-LSTM 
model perfectly considered the zero values of the solar 
irradiances during the sunset period (6 PM—5 AM) and 
predicted them as zero values, which means that this model has 
promising performance. Furthermore, 169 hours from 17-09-
2020 to 23-09-2020 were predicted, as illustrated in Fig. 13, with 
acceptable error metrics. The MAPE is 4.3%, the MAE is 11 
W/m² and the RMSE is 31 W/m², as shown in Table 1. In 
addition, the R² value is 0.98%, which shows acceptable 
correlation and variance between the variables. The accuracy of 
the predicted models primarily depends on the number of 
variables. The formulas do not balance dimensional characters, 
this creates uncertainty. If multiple variables most used, it is 
required to specify the units and quantities in the equations. 

 

Fig. 12. The actual and predicted GHI performance show the model fitting. 
 

 

Fig. 13. The future predicted values of the GHI 169 hours ahead. 

The BI-LSTM model has made incredible progress in 
discriminative tasks for the DNI, as depicted in Figs. 14 and 15. 
This has been fueled by the development of model architectures 
and the use of big data with the support of external data, which 
have played significant roles in  developing the model. The 
RMSE and MAE are improved to 11.6 W/m² and 6 W/m². In 
addition, R² also improved to 0.99%, and the MAPE is 19%, as 
illustrated in Table 1. However, one of the most challenging 
issues is enhancing the generalization ability of this model and 
achieving high-accuracy outputs. Generalizability indicates the 
difference in the performance of the model when evaluating 
previously seen data, such as training data versus data the model 
has never seen before, such as testing data. In addition, the poor 
generalizability of the model can result in overfitting of the 
training data. The BI-LSTM model predicts the DHI with 
acceptable error metrics. Its MAPE is 29%, and its RMSE is 
19.8 W/m², as shown in Table 1 (see Figs. 16 and 17). The MAE 
is 5.9 W/m² and R² is 0.97%, which means that the values have 
high correlation. It is clear that the BI-LSTM model can cope 
with the three types of solar irradiance data. Predictive models 
are important in the predictive control of energy systems to 
optimize energy-saving performance. Therefore, it is essential to 
upgrade the model by learning the observed data on a regular 
basis in order to enhance the model's potential results. The BI-
LSTM model would be suitable for predicting solar irradiances 
for other location applications. 

TABLE I.  THE FORECASTING ACCURACY OF THE BI-LSTM MODEL. 

No. 
Solar 

irradiance 

P-value 

(%) 

RMSE 

(W/m²) 

MAE 

(W/m²) 

MAPE 

(%) 

R2 

(%) 

1 GHI 5.8 e-22 31 11 4.3 0.98 

2 DNI 6.4 e-24 11.4 6 19 0.99 

3 DHI 2.5 e-23 19.8 5.9 29 0.97 

 

Fig. 14. The actual and predicted DNI performance show the model fitting. 

Fig. 15. The future predicted values of the DNI 169 hours ahead. 



Fig. 16. The actual and predicted DHI performance show the model fitting. 

 

Fig. 17. The future predicted values of the DHI 169 hours ahead. 

IV. CONCLUSIONS 

The BI-LSTM prediction model was developed by using 

strength of neural connections and layers based on both 

backward and forward layers, which are the best described 

prediction patterns of solar irradiances in this model. The BI-

LSTM model was verified to predict 169 hours ahead based on 

the historical weather data of Tabuk city in Saudi Arabia. The 

data included three types of solar irradiances, which are the GHI, 

DNI and DHI. The historical wind speed and temperature data 

of Tabuk city were used as external data to support the model 

due to the high correlation between them. The hourly values 

from 01-01-1985 to 16-09-2020 were used to study the ability 

of BI-LSTM to cope with these types of historical data. The BI-

LSTM model predicted the GHI, DNI, and DHI 169 hours ahead 

with excellent predictive performance supported by RMSEs of 

40, 13.3 and 20.4 W/m², respectively. The BI-LSTM model was 

shown to achieve maximum and minimum MSEs of 13—5.9 

W/m² and MAPEs of 4.8%, 21% and 27%. In addition, this 

model is characterized by high computational performance. 

However, the model can be improved in several ways including 

applying hyperparameter tuning, reinforcing the hidden layers 

and further testing the numbers of epochs or learning iterations 

to maximize the learning performance; however, extreme 

learning machine performance environments can necessitate a 

significant amount of time as well as a high-performance 

learning system or overfitting could occur. Finally, extending 

the proposed BI-LSTM model to predict wind speeds will be a 

potential future research subject in this domain. 
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