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Summary

Statistical models for extreme values are generally derived from non-degenerate probabilis-

tic limits that can be used to approximate the distribution of events that exceed a selected

high threshold. If convergence to the limit distribution is slow, then the approximation may

describe observed extremes poorly, and bias can only be reduced by choosing a very high

threshold, at the cost of unacceptably large variance in any subsequent tail inference. An

alternative is to use sub-asymptotic extremal models, which introduce more parameters

but can provide better fits for lower thresholds. We consider this problem in the context

of the Heffernan–Tawn conditional tail model for multivariate extremes, which has found

wide use due to its flexible handling of dependence in high-dimensional applications. Recent

extensions of this model appear to improve joint tail inference. We seek a sub-asymptotic

justification for why these extensions work, and show that they can improve convergence

rates by an order of magnitude for certain copulas. We also propose a class of extensions

of them that may have wider value for statistical inference in multivariate extremes.

KEYWORDS:

asymptotic dependence, asymptotic independence, conditional extremes, Gaussian distri-

bution, logistic model, sub-asymptotic approximation

1 INTRODUCTION

Catastrophic events can have a major impact on physical infrastructure and on society. Multivariate extreme value models are used to cap-

ture the structure of such events, for a single hazard at multiple sites, for multiple hazards at a single site or multiple hazards at multiple

sites, and are used to extrapolate measures of risk beyond the available data. Applications include river flooding (Asadi, Davison, & Engelke

2015; Katz, Parlange, & Naveau 2002; Keef, Svensson, & Tawn 2009; Keef, Tawn, & Svensson 2009), extreme rainfall (Coles & Tawn 1996;

Huser & Davison 2014; Süveges & Davison 2012), wave height and extreme sea surge (de Haan & de Ronde 1998) and high concentrations

of air pollutants (Heffernan & Tawn 2004). Such methods also provide improved assessments of financial risk (Hilal, Poon, & Tawn 2011 2014;

Poon, Rockinger, & Tawn 2003).

The first limit theorems for multivariate extremes were for componentwise maxima of independent and identically distributed random vectors

X1, . . . ,Xn which, when suitably normalised, have a non-degenerate limiting distribution as n → ∞, where that limit distribution is a member

of the class of multivariate extreme value distributions (de Haan & Resnick 1977; Pickands 1981; Sibuya 1960; Tiago de Oliveira 1962/63).

However, these limit distributions are independent for a broad range of distributions, including all non-perfectly dependent Gaussian distributions

and copulas identified by Heffernan (2000), suggesting that these limits may provide poor approximations for componentwise maxima when n

is finite, as then the maxima may still be strongly dependent. The class of distributions with this property is elucidated by one of the standard
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measures of extremal dependence (Coles, Heffernan, & Tawn 1999; Joe 1993),

χ = lim
p→1

Pr {F2(X2) > p | F1(X1) > p} , (1)

where Xi ∼ Fi for i = 1, 2. The values χ > 0 and χ = 0 are respectively termed asymptotic dependence and asymptotic independence; with a

dependent/independent bivariate extreme value distribution, the largest values of X1 and X2 can/cannot occur together. A related quantity, χ̄, lies

in the interval [−1, 1] and is used to distinguish among different degrees of asymptotic independence (Coles et al. 1999). Owing to the breadth

of the class of asymptotically independent distributions, there have been numerous studies of sub-asymptotic properties of bivariate maxima. For

example, Bofinger and Bofinger (1965) and Bofinger (1970) derived the correlation of componentwise maxima for bivariate Gaussian and certain

other copulas for n ≤ 50; more recent examples are Beranger, Padoan, and Sisson (2017) and Beranger, Padoan, Xu, and Sisson (2019).

There have been parallel developments for multivariate threshold methods. The underpinning limit theory is based on point processes and

multivariate regular variation (Coles & Tawn 1991; de Haan 1985; Resnick 2007). Some work focuses on how second-order features influence

estimators (Cai, Einmahl, & de Haan 2011), whereas other approaches reframe the problem by converting second-order features into the primary

term in the limit theory. Ledford and Tawn (1997) take X1 and X2 to have unit Fréchet marginal distributions and consider limt→∞ t1/ηPr(X1 >

xt,X2 > yt) for fixed x, y > 0 and some constant η, with 0 < η ≤ 1, yielding a finite limit which gives a first-order limit model that smoothly encom-

passes perfect dependence, asymptotic dependence, asymptotic independence and complete independence. This limit characterisation was later

extended to limt→∞ tλ(γ)Pr(X1 > xtγ ,X2 > yt1−γ)where λ(γ) is a positive function of γ (0 ≤ γ ≤ 1) satisfying a range of conditions described

in Wadsworth and Tawn (2013) and de Valk (2016). These results, and other related asymptotically motivated models (Huser & Wadsworth 2019;

Wadsworth, Tawn, Davison, & Elton 2017), encompass both asymptotic dependence and asymptotic independence, but they only consider growth

rates in the arguments of the joint survivor function, on Fréchet marginals, that are linked through a power; on exponential margins these growth

rates are proportional. Furthermore, current results in these cases are for low-dimensional cases only.

In this paper we focus on the conditional extremal model of Heffernan and Tawn (2004), which places no preconditions on the relative growth

of the large variables and has been widely used for substantive applications owing to its ability to handle a wide range of joint tail dependen-

cies, its parsimony, its simple computational properties, and its applicability to high dimensions (Tawn, Shooter, Towe, & Lamb 2018). To simplify

the notation we deal with the bivariate case, but extension to the general multivariate case, of both existing methods and our developments, is

straightforward. This model was originally presented for marginally Gumbel distributed random vectors, but Keef, Papastathopoulos, and Tawn

(2013) showed that formulation on the Laplace scale is preferable when positive or negative dependence is possible, so we first transform (X1,X2)

to random variables (X,Y) with Laplace margins via the probability integral transform

X = sign{1− 2F1(X1)} log [1− {|1− 2F1(X1)|}] ,

and similarly for Y, preserving the dependence structure through the copula, according to Sklar’s (1959) representation theorem.

Under conditions specified by Heffernan and Tawn (2004), which include the joint distribution of (X,Y) being in the standard domain of attrac-

tion of the bivariate extreme value distribution, the conditional extremal model presupposes the existence of normalising functions a(·) : R+ → R

and b(·) : R+ → R+ such that for x > 0,

Pr

{

Zu :=
Y − a(X)

b(X)
≤ z, X − u > x | X > u

}

→ H(z) exp(−x), u → ∞, (2)

where H(·) is a non-degenerate distribution function with no mass at infinity. Under mild assumptions on the distribution of (X,Y), results in

Heffernan and Resnick (2007) imply that

a(x) = xLa(x), b(x) = xβLb(x), β < 1, (3)

with the functions La(x) and Lb(x) slowly varying: L(xt)/L(x) → 1 for any fixed t > 0 as x → ∞, where L is either La or Lb. Two aspects of the

limit distribution should be noted. Firstly, the Laplace margins imply that the exponential limit for X − u is exact for any positive u. Secondly, (2)

corresponds toZu andX becoming independent as u → ∞, so the finite-u distributionHu ofZu depends less and less onX as the limit is approached,

i.e., Hu → H.

In order to construct a statistical model, Heffernan and Tawn (2004) and Keef et al. (2013) assume that the limit on the right-hand side of (2)

holds exactly above some finite u, i.e.,Hu = H, and they adopt parametric families for a(·) and b(·) that satisfy (3), yield a parsimonious model and

encompass a broad range of asymptotic dependence and asymptotic independence structures. By considering the forms of a(·) and b(·) in a broad
class of copulas, they propose taking canonical parametric forms for a and b, i.e.,

a0(x) = αx, α ∈ [−1, 1], b0(x) = xβ , β ∈ (−∞, 1), (4)

which include all the normings they found and correspond to approximating the slowly-varying functions by La(x) ≡ α and Lb(x) ≡ 1 in expres-

sion (3). The latter is equivalent to setting Lb(x) = b for any constant b > 0, with the change in norming absorbed into the variance of H(·). If
α = 1 and β = 0, then (X,Y) are asymptotically dependent with χ =

∫

∞

0
H̄(−z)e−zdz, and otherwise they are asymptotically independent with

χ = 0 and the value of χ̄ dependent on the upper tail form of H.
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Evidence is emerging that the canonical norming functions (4) are not optimal for all theoretical copulas or in statistical practice.

Papastathopoulos and Tawn (2016) found examples of the inverted multivariate extreme value copula (i.e., the lower joint tail of the multivariate

extreme value copula) for which more general forms ofLa(x) and Lb(x) of the form (3) are required. Tendijck, Eastoe, Tawn, Randell, and Jonathan

(2020) and Simpson, Opitz, and Wadsworth (2020) have also found improved fits using a0(x) = α0 + αx for some constant α0.

In this paper we study possible theoretical justification for this improved performance by exploring the sub-asymptotic behaviour of the con-

ditional multivariate extreme value limit (2) for some well-studied copulas. We quantify the relative benefits of different characterisations in (3)

by determining their respective rates of convergence in (2). We also explore whether relaxing the limiting independence assumption for X and Zu

can further improve rates of convergence. Another motivation for our study is that when simulating data on which to assess the performance of

methods to fit the conditional model (e.g., Lugrin 2018), the estimates of a0(x) and b0(x) for x > u can misleadingly suggest a poor fit, as it is a(x)

and b(x) for x > u that are being estimated; sub-asymptotic forms for a(x) and b(x) are helpful in providing a baseline for comparison.

The sub-asymptotic behaviours that we find suggest novel parsimonious sub-asymptotic parametric forms for a(x) and b(x), which should

reduce the sensitivity of inferences to the choice of threshold u and enable a lower threshold to be used in practice. This is important, as small

differences in parameter estimates and uncertainty at finite levels can lead to large differences when extrapolating to rarer events.

Section 2 introduces the framework used to study the sub-asymptotic behaviour of the conditional tail model and our rate of convergence

metrics. In Section 3, we consider three copulas for which incorporating sub-asymptotic structure can lead to improved convergence; the proofs are

in the Supplementary Information. In Section 4, we unify our findings and propose sub-asymptotic parametric models that extend the Heffernan–

Tawn class of norming functions.

2 CONVERGENCE FORMULATIONS

The right-hand side of expression (2) encapsulates the limiting conditional independence of Zu = {Y − a(X)}/b(X) and the excesses X − u for

large X. We first consider the marginal limiting behaviour of Z. Under further assumptions, relating to convergence and existence of joint densities,

Heffernan and Resnick (2007), Resnick and Zeber (2014) and Wadsworth et al. (2017) show that

lim
x→∞

Pr

{

Y − a(x)

b(x)
≤ z | X = x

}

= H(z), (5)

where a(·), b(·) and H(·) are the same as in (2).

The purpose of our sub-asymptotic analysis is to characterise the behaviour of the remainder terms, defined in the notation of (4) by

a(x) − a0(x) ∼ ra(x), b(x)− b0(x) ∼ rb(x), x → ∞,

where ra(x) and rb(x) satisfy ra(x) = o{a0(x)} and rb(x) = o{b0(x)} as x → ∞, and are to be interpreted as the leading order terms only in the

differences a(x)− a0(x) and b(x) − b0(x) respectively. Specifically, we consider the second-order normalisation for a(·) and b(·), with

a1(x) = a0(x) + ra(x), b1(x) = b0(x) + rb(x). (6)

With these sub-asymptotic forms, we are able to refine the normalisation of Y in (5), yielding the sub-asymptotic conditional distribution

Pr

{

Y − a1(X)

b1(X)
≤ z | X = x

}

= Hx(z), x > u, (7)

with Hx(z) → H(z) as u → ∞.

Heffernan and Tawn (2004) gave the rate of convergence of the conditional distribution for various copula models in terms of r0(x, z) → 0, as

x → ∞ for fixed z ∈ R, where

r0(x, z) =

∣

∣

∣

∣

Pr

{

Y − a0(X)

b0(X)
≤ z | X = x

}

−H(z)

∣

∣

∣

∣

, (8)

with (X,Y) on the Gumbel scale, finding that the rate at which r0(x, z) → 0 did not depend on z. We shall need similar results with Laplace

margins. We consider how much we can improve the convergence rate of r0(x, z), when using the sub-asymptotic norming, by studying the rate

of convergence to zero of

r1(x, z) =

∣

∣

∣

∣

Pr

{

Y − a1(X)

b1(X)
≤ z | X = x

}

−H(z)

∣

∣

∣

∣

. (9)

We also want to quantify the sub-asymptotic remainder, using

r
(s)
1 (x, z) =

∣

∣

∣

∣

Pr

{

Y − a1(x)

b1(x)
≤ z | X = x

}

−Hx(z)

∣

∣

∣

∣

. (10)

We hope to show that r
(s)
1 (x, z) = o{r1(x, z)} and r1(x, z) = o{r0(x, z)} as x → ∞ for all z, and that the rates of convergence to zero for the

distances r, r1 and r
(s)
1 do not depend on z. Section 3 gives two examples where this improved convergence is achieved and one where it is

impossible to find better normalisations than a0(x) and b0(x). We shall present these rates on a scale that is invariant to the marginal choice, by

converting to a return period n, where Pr(X > x) = n−1.
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3 EXAMPLES

3.1 Gaussian distribution

Let (V,W) have a bivariate standard normal distribution with nonzero correlation ρ and let (X,Y) be its marginal transform to the Laplace scale,

given by

X =







− log 2{1 −Φ(V)}, V > 0,

log 2Φ(V), V ≤ 0,

and similarly for Y as a function of W. The dependence structure of (X,Y) displays asymptotic independence, as χ = 0 when ρ < 1 and χ̄ = ρ

when ρ ∈ [−1, 1].

Theorem 1. For (X,Y) with the Gaussian dependence structure just defined and ρ 6= 0, the ultimate and sub-asymptotic normings (4) and (6) for

Y given that X = x, with x positive and large, have

a0(x) = sign(ρ)ρ2x, a1(x) = sign(ρ)ρ2x+
1

2
(1− ρ2) log(πx) + 1

2
log(ρ2),

b0(x) = x1/2, b1(x) = x1/2
{

1− ρ2 log(πx)− 2

4xρ2

}

.

(11)

The limit distribution H(z) in (5) is Gaussian with mean zero and variance 2ρ2(1 − ρ2), and the sub-asymptotic distribution (7) is

Hx(z) = Φ

[

z

{2ρ2(1− ρ2)}1/2
+

z2

{25(1− ρ2)ρ3x}1/2

]

, z > −2(|ρ| x)1/2.

For all z, r0(x, z) = O{log(x)x−1/2}, r1(x, z) = O(x−1/2) and r
(s)
1 (x, z) = O{log2(x)x−3/2}.

If we choose x such that Pr(X > x) = 1/n, then the rate of convergence to the limit distribution is O(log log n/
√
log n) using the

ultimate norming in (8), which is improved to O(1/
√
log n) by the sub-asymptotic norming in (9), and the sub-asymptotic remainder (10) is

O{(log log n)2/(log n)3/2}.
If b0(x) = 1+(ρ2x)1/2 then Theorem 1 still holds for all ρ, including ρ = 0, though the variances ofH andHx no longer have the ρ2 term and the

third-order terms of a1(x) and b1(x) diverge as ρ → 0. Moreover Hx is not Gaussian for finite x, and has a truncated lower tail, with the truncation

diminishing as x → ∞.

When assessing the performance of different methods to fit the Heffernan and Tawn model to simulated data above a finite threshold u, it is

tempting to use the limiting norming functions a0(x) and b0(x) in (4) as the true values of the location and scale functions in (2). In the case of

simulated data from the Gaussian copula, Theorem 1 shows that this can be misleading, as the sub-asymptotic norming a1(·), b1(·) gives a better
approximation to the location and scale functions above u. By replacing x by the threshold u in the logarithmic terms of (11) and taking u large, we

derive second-order approximations for α = a1(x)/x and β = log b1(x)/ log x of the forms

α̃1 = sign(ρ)ρ2 +
(1− ρ2) log(πu)

2u
+

log(ρ2)

2u
≈ sign(ρ)ρ2 +

(1 − ρ2) log(u)

2u
, (12)

β̃1 ≈ 1

2
− 1

4u
. (13)

Figure 1 illustrates convergence of these approximations when ρ = 0.5, and for values of u corresponding to Laplace quantiles from 0.975 to the

0.99998, for both the simplified forms in (12) and (13) and those including the next-order term from (11). Convergence is very slow, so it makes

sense to consider second-order approximations whenmeasuring the adequacy of finite-sample estimates. For an idea of the amount of data needed

to reach such quantiles, we change the scale of the abscissa to the return period scale, using

1

1− FL(x)
× 1

nY
,

with FL(·) the Laplace distribution function, x any quantile on the Laplace scale and nY = 365.25 the number of observations per year. Even with

the equivalent of more than 100 years of daily data, the parameters differ strikingly from their asymptotic values.

3.2 Inverted logistic distribution

We consider a bivariate random vector (X,Y) with inverted logistic distribution and Laplace margins (Ledford & Tawn 1997;

Papastathopoulos & Tawn 2016). Its joint survivor function is

Pr(X > x, Y > y) = exp

[

−V

{

−1

log
(

1
2
e−x

) ,
−1

log
(

1
2
e−y

)

}]

, x, y > 0,
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FIGURE 1 Comparison of first-order (black), second-order from (12) and (13) (dashed) and from (11) (dotted) approximations to the Heffernan–

Tawn parameters α and β for a Gaussian copula with correlation ρ = 0.5. Lower abscissa on Laplace scale; upper abscissa on the return period

scale, in years, assuming daily observations.

where

V (z,w) = (z−1/γ +w−1/γ)γ , 0 < γ ≤ 1, (14)

is the logistic exponent function. Here χ = 0 and χ̄ = 21−γ − 1 for 0 < γ ≤ 1, with γ → 0 corresponding to complete dependence and γ = 1

corresponding to independence.

Theorem 2. Let (X,Y) have a bivariate inverted logistic distribution with dependence parameter 0 < γ ≤ 1 and Laplace margins. Then the

asymptotic and sub-asymptotic normings (4) and (6) for Y given that X = x, with x large, are

a0(x) = 0, a1(x) = − log 2,

b0(x) = x1−γ , b1(x) = x1−γ ,

so the sub-asymptotic form for b1(·) equals b0(x).
The limit distributionH(z) in (5) isWeibull, specifically H̄(z) = 1−H(z) = exp(−γz1/γ), and the sub-asymptotic distributionHx(·) in (7) satisfies

− log H̄x(z) = γz1/γ + (1 − γ)[(1 − log 2)z1/γ − γz2/γ/2]/x, (15)

with bounded support

[0, zHx ] = [0, {x/(1 − γ) + (1 − log 2)/γ}γ ] −→ R+, x → ∞.

If Pr(X > u) = n−1 , the rate of convergence to the limit distribution is r0(x, z) = O{(log n)−(1−γ)} using the ultimate norming in (8) and

r1(x, z) = O{(log n)−1} using the sub-asymptotic norming in (9). The sub-asymptotic remainder (10) is r
(s)
1 (x, z) = O

{

(log n)−(2−γ)
}

.

Figure 2, which illustrates the convergence of Hx to H for γ = 1/3, 2/3 and 3/4, and x corresponding to 0.8, 0.9, 0.95 and 0.99 quantiles,

suggests that the adequacy of the approximation in the upper tail depends heavily on γ.

3.3 Logistic distribution

Let (X,Y) have a bivariate logistic distribution with Laplace margins,

Pr(X ≤ x, Y ≤ y) = exp

[

−V

{

−1

log
(

1− 1
2
e−x

) ,
−1

log
(

1− 1
2
e−y

)

}]

, x, y > 0,



6 Lugrin et al

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

γ = 1/3

z

H
x
(z

)

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

γ = 2/3

z

H
x
(z

)

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

γ = 3/4

z

H
x
(z

)

FIGURE 2 Convergence of the sub-asymptotic distribution Hx (grey) towards H (black) for the inverted logistic distribution, with x corresponding

to the 0.8, 0.9, 0.95 and 0.99 quantiles (from light to dark). The panels illustrate the convergence for dependence parameter γ = 1/3, 2/3, 3/4.

with V given at (14). In the following, we do not consider the case γ = 1 corresponding to complete independence. The degree of asymptotic

dependence is χ = 2− 2γ .

Theorem3. Let (X,Y) have a bivariate inverted logistic distribution with dependence parameter γ ∈ (0, 1] and Laplace margins. Then the ultimate

normings (4) for Y given that X = x, with x large, are a0(x) = x and b0(x) = 1, the sub-asymptotic normings (6) are identical to a0 and b0 , and

r0(x, z) = O{r1(x, z)} = O{r(s)1 (x, z)}.

4 SUB-ASYMPTOTIC MODEL

Based on the examples studied in Section 3, in this section we suggest a class of sub-asymptotic models for the Heffernan and Tawn (2004) model

that improves convergence rates relative to the limit model and contains the models of Tendijck et al. (2020) and Simpson et al. (2020) and all the

terms that improved convergence rates for the three copulas studied above. This model should yield better statistical inferences than the canonical

formulation (4). The proposed extension is parsimonious, with just two further parameters in its simplest form,

a(x) = αx+ α0 +
La(x)

xγa
, log b(x) =

{

β +
Lb(x)

xγb

}

logx,

where α and β are from the first-order norming functions a0 and b0 , γa > −1, γb ≥ 0, and the functions La , Lb are slowly varying at infinity.

For statistical modelling we must specify La and Lb, and as in earlier work (e.g., Ledford & Tawn 1996) we fix them to be constant above some

threshold u, i.e., La(x) = δa and Lb(x) = δb for x > u. Second-order effects are hard to estimate, so in practice it may suffice to set γa = γb = 1.
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