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Abstract

The area of sentiment analysis has been around for at least 20 years in one form or
another. In which time, it has had many and varied applications ranging from predicting
film successes to social media analytics, and it has gained widespread use via selling it as
a tool through application programming interfaces. The focus of this thesis is not on the
application side but rather on novel evaluation methodology for the most fine grained
form of sentiment analysis, target dependent sentiment analysis (TDSA). TDSA has
seen a recent upsurge but to date most research only evaluates on very similar datasets
which limits the conclusions that can be drawn from it. Further, most research only
marginally improves results, chasing the State Of The Art (SOTA), but these prior works
cannot empirically show where their improvements come from beyond overall metrics
and small qualitative examples. By performing an extensive literature review on the
different granularities of sentiment analysis, coarse (document level) to fine grained, a
new and extended definition of fine grained sentiment analysis, the hextuple, is created
which removes ambiguities that can arise from the context. In addition, examples from
the literature will be provided where studies are not able to be replicated nor reproduced.

This thesis includes the largest empirical analysis on six English datasets across
multiple existing neural and non-neural methods, allowing for the methods to be tested
for generalisability. In performing these experiments factors such as dataset size and
sentiment class distribution determine whether neural or non-neural approaches are best,
further finding that no method is generalisable. By formalising, analysing, and testing
prior TDSA error splits, newly created error splits, and a new TDSA specific metric,
a new empirical evaluation methodology has been created for TDSA. This evaluation
methodology is then applied to multiple case studies to empirically justify improvements,
such as position encoding, and show how contextualised word representation improves
TDSA methods. From the first reproduction study in TDSA, it is believed that random
seeds significantly affecting the neural method is the reason behind the difficulty in
reproducing or replicating the original study results. Thus highlighting empirically for
the first in TDSA the need for reporting multiple run results for neural methods, to allow
for better reporting and improved evaluation. This thesis is fully reproducible through
the codebases and Jupyter notebooks referenced, making it an executable thesis.
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Chapter 1

Introduction

1.1 Introduction

Sentiment analysis is a large sub field within the larger research area of Natural Language
Processing (NLP), it has been defined by Liu (2015) as the analysis of people’s opinions
towards entities in written text. This definition to some degree is slightly out of date
as the field has grown to encompass more information than just written text, such as
images, voice, and video1 (Poria et al., 2016). However as this thesis only uses textual
information, this definition is representative of sentiment analysis in the research presented
here. Following this definition, people’s opinions are represented by sentiment values
such as positive, negative, and neutral. Further, the entities within the definition can
be an organisation, person, object, or more broadly a concept or topic such as politics
within Britain.

The applications and thus the motivation for sentiment analysis are many and varied,
due to a large degree the massive quantities of unstructured textual data that the web
contains. Application examples include understanding what audiences liked and disliked
within films and trailers (Pereg et al., 2019), linking the sentiment of the text about
a film over time with a film’s success (Vecchio et al., 2018), and providing additional
information for analysis on political tweets (Wang et al., 2017b). Further, many businesses
sell sentiment analysis via an application programming interface (API) including Google2,
Microsoft3, and Aylien4. This thesis is less focussed in the end application of sentiment
analysis, but rather whether the empirical evaluation of the methods created for the most
fine grained version, target dependent sentiment analysis (TDSA), can be improved.

The research area of TDSA has recently seen a surge5 of new research most likely due
to commercial applications. This is fantastic for any area of research, however current
research, in the majority of cases, is only publishing positive results6 on very similar

1The use of more than one source of information e.g. voice and text, is commonly known as multimodal.
2https://cloud.google.com/natural-language
3https://azure.microsoft.com/en-gb/services/cognitive-services/text-analytics/
4https://aylien.com/text-analysis-platform/
5The chart from Papers With Code, shown here https://paperswithcode.com/sota/

aspect-based-sentiment-analysis-on-semeval, plots a paper’s method and its metric score on a
set of popular TDSA datasets over time. Note that the chart states it is for the task Aspect-Based
Sentiment Analysis, but in this thesis the task is named TDSA, the difference between the two will be
explained in chapter 2.

6This is in reference to negative publication bias, of which there is a NLP workshop at EMNLP 2020

1

https://cloud.google.com/natural-language
https://azure.microsoft.com/en-gb/services/cognitive-services/text-analytics/
https://aylien.com/text-analysis-platform/
https://paperswithcode.com/sota/aspect-based-sentiment-analysis-on-semeval
https://paperswithcode.com/sota/aspect-based-sentiment-analysis-on-semeval


Chapter 1. Introduction

datasets without any empirical or quantitative reasons for these positive results. Thus
TDSA methods cannot be shown empirically to be generalisable, where in this thesis
generalisable means that a method performs well7 across many vastly different datasets.
Further, evaluation within this generalisable setup is approached by training and evalu-
ating a method on each dataset independently. By testing methods for generalisability,
rather than on a few similar datasets, it is possible to find out whether one method
performs well across the board in all circumstances, or the more likely case of which
methods perform best for different dataset properties. Thus testing for generalisability
would allow researchers to get a better understanding of their method, where the method
can be improved, and based on the dataset properties if it is the best method to use.

Even though generalisability can show some reasons why a method may work well on
one dataset compared to another, e.g. a method performs well on review data and not
social media, this form of analysis cannot explain why one method is better than another
within a dataset. Thus a more fine grained analysis that can test different phenomena
within a dataset is required, especially as the difference in results between methods on
some dataset are marginal. Some approaches for fine grained analysis already exist that
can test different phenomena within TDSA through error splits8 of a dataset. Within the
existing literature, several different error splits have been suggested that probe different
phenomena within TDSA (Nguyen et al., 2015; Wang et al., 2017a; He et al., 2018b;
Yang et al., 2018). However, so far no work has performed a detailed analysis of these
error splits, nor has any work examined how these error splits can be improved upon. By
better understanding what these prior works’ error splits probe, improvements could be
made, and more rigorous evaluation methodology can be created for TDSA.

If the results from a paper are difficult or impossible to reproduce or replicate9 to a
large extent that research is pointless, and this has been expressed through the fictional
tale of the Zigglebottom tagger (Pedersen, 2008). From a review of the literature it has
been found that one particular Neural Network (NN) based TDSA method has been
difficult to reproduce or replicate10. Within neural sequence labelling, Reimers et al.
(2017) found that NN methods can produce significantly different results between multiple
runs due to random initialisations. Thus as these prior NN works within TDSA have
only reported single runs it is plausible that the reason for the lack of replication or
reproducibility could be due to not reporting multiple runs. Therefore a review within
reporting standards for NN TDSA approaches is required for both reproducibility and
fair evaluation.

The main goal of this thesis is to improve evaluation and reporting within TDSA so
that researchers can better understand and reproduce the methods they create. This
thesis also goes one step further whereby instead of just theoretically and empirically
showing how evaluation and reporting can be improved, the whole thesis is ‘executable’

that focuses on negative results https://insights-workshop.github.io/.
7In this thesis a method performs ‘well’ when it performs either significantly better than all other

methods or it is not significantly different to the other top performing methods.
8We define an error split as a method of splitting an existing dataset into subsets of data, whereby

each subset satisfies a different condition of the split. For instance the error split suggested by Wang
et al. (2017a) is conditioned on the number of unique sentiments in a text, in this case for datasets with
two unique sentiment values there would be only two subsets of data, the first subset for texts with a
single unique sentiment, and the second for texts with two unique sentiments.

9The definition of the differences between reproduce and replicate will be explained in chapter 3.
10See chapter 3 section 3.5.4.
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as in all code to produce the findings within the thesis is reproducible through Jupyter
notebooks11 and related codebases. All codebases and notebooks that are relevant to
different sections to produce the results within those sections are stated within footnotes
as URLs attached to the relevant section headers. Lastly all empirical results within this
thesis are on datasets within the English language12.

1.2 Research Questions

Building on the motivation provided above, these are the research questions that the
thesis will answer:

Research Question 1 What lessons can be learned from reproducing a method within
TDSA?

Research Question 2 How generalisable are existing methods within TDSA?

Research Question 3 What is an appropriate empirical evaluation methodology for
TDSA?

1.3 Contributions and Findings

• The creation of a new definition, the hextuple, for fine grained sentiment
analysis that directly extends the current definition by Liu (2015).
The extended fine grained sentiment analysis definition in comparison to the
existing by Liu (2015) removes any ambiguity that arises from the context13. This
ambiguity is motivated through multiple examples and an empirical analysis of
existing datasets, wherein this empirical analysis found that for two datasets 3.68%
and 3.27% of samples would be impossible to classify through Liu’s (Liu, 2015)
original definition, due to ambiguity. Further by analysing the existing definition by
Liu (2015), this thesis justifies parts of the definition through ambiguity, whereas
in comparison the original justifications from Liu (2015) were motivated through
application rather than a more theoretical ambiguity perspective.

• The first reproduction study within TDSA.
Through the reproduction studies of two non-NN based methods (Vo et al., 2015;
Wang et al., 2017a), neither report a factor that is significant in reproducing their
results, further both of these factors, scaling features and the C-value of a Support
Vector Machine (SVM) (Chang et al., 2011), are found across many datasets to be
significant for both methods. Additionally it is found for NN based methods within
TDSA that multiple runs can produce significantly different results, which is what
Reimers et al. (2017) found for neural sequence labelling methods. The distribution
of results created from the NN method through multiple runs is thus believed to be

11https://jupyter.org/.
12This is highlighted following what has been known as the #BenderRule (Bender, 2019), which

re-iterated a point made in prior work (Bender, 2011), that not stating the language (normally English)
the data has come from misleads the reader into thinking the work is language independent.

13Ambiguity is later defined, within section 2.4, as sentiment ambiguity.
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the reason why prior works found it difficult to reproduce or replicate a particular
NN TDSA method (Tang et al., 2016b).

• The largest empirical evaluation of TDSA methods.
Due to our goal of reproducing diverse methods, in this case non-NN and NN
methods, and applying them to a large range of different datasets, it was possible to
test for generalisability. Finding that no one method was best or generalisable, but
factors such as dataset size and sentiment class distribution determined whether it
was best to use a NN or non-NN method. Further it was found for the NN methods
that by evaluating on a larger and more diverse set of datasets than the original
authors used, the novel NN methods that were created on some dataset were found
to be no better on average than the original baseline method.

• The creation of a new empirical evaluation methodology for TDSA.
Prior works’ error splits are tested and formalised with the addition of new error
splits and metrics created within this thesis. Through an extensive empirical
evaluation, two of the existing error splits and one of the new error splits are not
recommended to be used, due to them not measuring what they were hypothesised
to measure. From the recommended error splits and metrics, one error split and
the metrics have been created within this thesis to test for new phenomena within
TDSA. These recommended error splits and metrics make up this new empirical
evaluation methodology for TDSA. The new empirical evaluation methodology
is then tested on multiple case studies whereas the prior work had only justified
their hypothesis through small qualitative examples or using an error split that
this analysis does not recommend. The case studies demonstrated the use of the
empirical evaluation methodology. These analyses and experiments when combined
create the largest and most extensive review of error analysis within TDSA to date.

• An executable thesis.
As stated earlier this entire thesis is reproducible through the codebases and Jupyter
notebooks that are attached to the relevant sections throughout the thesis. All the
results that have been generated have used either the Bella14 or target-extraction15

packages created during the course of the PhD. The Bella package is more focused
towards the non-NN methods whereas target-extraction is only focused on the NN
methods. Both packages have extensive unit tests and Bella has an easy to use out
of the box functionality through its model zoo.

1.4 Organisation of the Thesis

• Chapter 2: Literature Review.
The majority of the literature review summarises the different levels of sentiment
analysis starting with the most coarse grained (document level) and finishing with
fine grained sentiment analysis. The review of coarse to fine grained sentiment
analysis is one of, if not, the most extensive review of sentiment analysis, within the
English language, showcasing the different granularities and how they link together.

14https://github.com/apmoore1/Bella
15https://github.com/apmoore1/target-extraction

4

https://github.com/apmoore1/Bella
https://github.com/apmoore1/target-extraction


1.4. Organisation of the Thesis

Within the fine grained sentiment analysis review a new extended definition for
fine grained sentiment analysis is stated. Further, the literature on TDSA has been
reviewed showing the need for a reproducibility study. Further it motivates that
error splits that do exist have not been rigorously analysed to better understand
what they show and when they are useful. The review finishes with some further
related topics to fine grained sentiment analysis, which motivate some of the future
work within the conclusion chapter.

• Chapter 3: Reproducibility and Generalisability of TDSA Methods.
The introduction motivates the need for performing both the reproducibility studies
and generalisation experiments. The chapter provides a more extensive related
work section detailing prior work within reproducibility more broadly and then
concentrating on the most related work within sentiment analysis on both repro-
ducibility and generalisability. The methods used in both the reproducibility and
generalisability are described in detail. The reproduction studies are conducted,
and the results are used to answer RQ 1. Lastly the generalisation experiments are
performed whereby the results allow RQ 2 to be answered.

• Chapter 4: Improving Experimental Methodology for TDSA.
This chapter contains an extensive review comparing and contrasting previous
error splits within TDSA. Two new error splits are created to measure different
phenomena, compared to the existing splits. All error splits are then reviewed
on three English datasets, showcasing the difference between the datasets using
the error splits. These error splits are then summarised describing what they do
and what they hypothetically measure. The error splits are then tested across
several TDSA methods and three English datasets to conclude if the error splits are
measuring what was hypothesised. From these experiments, a new TDSA metric
and its variants are created. The detailed review, analysis, and tests of the error
splits in conjunction with the new metric allows for RQ 3 to be answered.

• Chapter 5: Case Studies in Improving Experimental Methodology for
TDSA.
The new experimental methodology for TDSA created within chapter 4 is then
explored through several case studies. Each case study explores a new development
whereby these new developments including position encoding, inter-aspect encoding,
and transfer learning from a language model16. Each development is then applied
to the methods used within chapter 4, when appropriate, and evaluated using the
new experimental methodology. Within each case study the findings from the new
experimental methodology are reviewed and where appropriate will be compared
to the hypothesis that motivated the relevant development.

• Chapter 6: Conclusion.
The conclusion summarises the thesis, revisits the research questions, and finishes
with future work.

16Also known as contextualised word representations.
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Chapter 2

Literature Review

2.1 Introduction

Sentiment analysis is an integral part of Natural Language Processing (NLP) and many
parts of the NLP pipeline contribute to sentiment analysis methods. This pipeline
is therefore the starting point of the review whereby the hierarchy of NLP tasks are
described. The review then moves onto describing the many different layers of sentiment
analysis, starting with coarse grained document sentiment analysis and ending with
describing the many subtasks of fine grained sentiment analysis. This review not only
synthesises the current relevant literature but also further extends the definition of fine
grained sentiment analysis. In comparison to previous definitions of fine grained sentiment
analysis this extended version removes any ambiguity that arises from the context, which
is later defined in section 2.4 as sentiment ambiguity. Additionally the review finishes
with further related topics on fine grained sentiment analysis, which is then later used to
motivate some of the potential future work within the field in section 6.3.

2.2 Overview of Natural Language Processing

Natural Language Processing (NLP) as a field covers a wide range of computational
tasks that all relate to the concept of creating computer-based models of either some
aspect of language or more ambitiously all aspects of language. These models are then
normally used to create explicit structure for the vast quantities of text that contains only
implicit structure. NLP tasks can be categorised based on the linguistic property that
the tasks are addressing e.g. a syntactic or semantic task. These linguistic properties
and the related tasks are generally hierarchical, whereby knowing the output of a lower
level task should help the higher level task. The low level syntactic tasks tend to be
sequence labelling problems whereby each token1 (Kaplan, 2005; Dridan et al., 2012)
in the text (sequence) is assigned a label (Yannakoudakis et al., 2017), an example of
this can be seen in figure 2.1 whereby each token is assigned a Part Of Speech (POS)
tag. Examples of low level syntactic tasks are POS tagging (Church, 1988; Ling et al.,
2015) and Chunking (Tjong Kim Sang et al., 2000). The low level syntactic information
is usually used to guide the higher level syntactic tasks such as dependency (Nivre et al.,

1A token comes from tokenizing all words in the text using a tokenizer, of which this can cause some
‘words’ to be broken up further to produce more than one token per ‘word’.
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2007) and constituency parsing (Collins, 2003). As can be seen from the constituency
and dependency trees within figure 2.12 and 2.23 the POS tags correlate largely with
the constituency and dependency labels e.g. a noun (NN 4) being part of a noun phrase
(NP) and a noun (NNS 5 or NN ) being the modifier in the nominal subject modifier
(NSUBJ ). This relation between low and high level task label/tag spaces has been shown
to be effective to exploit when modelling the tasks (Hashimoto et al., 2017). The POS
tags and constituency and dependency labels come from a limited tag or label set and
the examples given here in figures 2.1 and 2.2 come from the Penn Treebank POS tag
set (Taylor et al., 2003), syntactic tags of the Penn Treebank (Taylor et al., 2003), and
Stanford typed dependencies (De Marneffe et al., 2008) respectively.

The relation between lower (POS tagging) and higher (supertagging) level syntactic
tasks has been explicitly shown to be hierarchical within Søgaard et al. (2016) multi
task learning6 work. The relation between tasks extends beyond the categories where
syntactic information is useful for semantic based tasks (Hashimoto et al., 2017), for
instance within text classification. The example sentence within the figures is a neutral
sentence as it contains an equal amount of positive and negative sentiment7. To know
the sentiment of the sentence it requires knowing that words such as great are positive
words, this type of knowledge is generally referred as semantic knowledge. Further for
the example sentence knowing that the words was n’t modifies the meaning of the word
great requires syntactic (from the dependency tree, figure 2.2) and semantic information.
Similar to the syntactic tasks, semantic tasks also have a hierarchical structure where
some tasks require less language understanding than others (Sanh et al., 2019). For a
more comprehensive overview of syntactic and semantic tasks in NLP and how they
relate, see Chapter 6 and 7 in Goldberg (2017). In recent years it has been shown that
utilising Neural Networks (NN) that have been initially trained on a high level NLP
task such as Masked Language Modelling (MLM) (Devlin et al., 2019) can be useful
for the whole NLP pipeline (syntactic to semantic tasks) (Tenney et al., 2019). Thus
finally showing how the tasks are hierarchical in nature. This brief primer into NLP
does not touch on any topics that utilise NLP with any other modality, such as images
for image captioning (Karpathy et al., 2015), audio for sentiment analysis (Raaijmakers
et al., 2008), and many more, but these areas are out of scope for this thesis.

2Constituency tree demo URL https://demo.allennlp.org/constituency-parsing
3Dependency tree demo URL https://demo.allennlp.org/dependency-parsing
4Singular noun.
5Plural noun.
6For an introduction into multi task learning and how it relates to transfer learning (which will be

mentioned later in this section) see (Ruder, 2019) chapter 3 and 3.2.
7If the sentence is put through Stanford CoreNLP 3.9.2 it would also classify the sentence as neutral.

URL to Stanford CoreNLP 3.9.2 https://corenlp.run/
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Figure 2.1: Constituency tree for the sentence ‘Coffee wasn’t great but the welsh cakes
were’. The labels in each box represents the constituency label for that span, the labels
for the leaf nodes are the POS tags for those words. The tree was created using the
AllenNLP demo, which used Joshi et al. (2018) model.

Figure 2.2: Dependency tree for the sentence ‘Coffee wasn’t great but the welsh cakes
were’. The labels within the arcs are dependency labels, and the labels within each box
represents the POS tag for the given word. An arc from word A to word B indicates that
B is modifying A, where A is the head word. For example great is the head word of coffee.
The tree was created using the AllenNLP demo, which used Dozat et al. (2017) model.

2.3 Sentiment Analysis

Sentiment analysis can be seen as a more general topic that contains multiple different
sub-tasks. These tasks tend to be related and often have different assumptions. In this
section, various coarse grained sentiment tasks within sentiment analysis will be discussed
starting with the most coarse, document level, and ending with aspect based. During the
discussion some important concepts within NLP will also be introduced such as different
neural network methods. Throughout the section the different tasks will be shown how
they link to each other. The summary of coarse grained sentiment analysis is a primer to
the fine grained sentiment analysis review in section 2.4, which contains the main topic
of this thesis Target Dependent Sentiment Analysis (TDSA).
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2.3. Sentiment Analysis

The many methods that have been used to tackle TDSA and all NLP problems fall
into three different categories; supervised, unsupervised, and semi-supervised. Supervised
methods require labelled data, in the case of sentiment analysis this would be sentiment
labels attached to their relevant text (Pang et al., 2002). Unsupervised methods on the
other hand only require unlabelled data, which in the sentiment analysis case is just
the text. Unsupervised methods within sentiment analysis are normally based around
sentiment lexicons (lists of words that have an attached sentiment) (Hu et al., 2004a)
and sometimes a combination of rules (Hutto et al., 2014). Thus unsupervised methods
tend to require some prior knowledge. Finally, semi-supervised is a combination of
the two, learning from both the labelled data and extra unlabelled data (Zhu, 2005).
For a more complete overview of the differences between supervised, unsupervised and
semi-supervised, see Weston (2007).

2.3.1 Document Sentiment Analysis

The most common sentiment analysis task is that of document level. The task here
is given a document which is made up of multiple sentences, to predict the sentiment
with the assumption that the document is about one topic (Nasukawa et al., 2003). An
example sample for this task can be seen in example 1 where the sentiment of the whole
document/review is assumed to be about the movie that is being reviewed. The first to
apply a supervised machine learning algorithm to this problem was Pang et al. (2002),
where they applied several Machine Learning (ML) classifiers with Bag Of Words (BOW)
as features to a new movie review dataset. This line of research of applying ML was
further extended by Pang et al. (2004) who found that they could reduce the number
of sentences by removing objective sentences in the document without significantly
impacting, and in some cases improving, the overall accuracy of the classifier. Mullen
et al. (2004) explored incorporating more semantic features into the BOW models such as
the average sentiment values based on the unsupervised techniques of Turney (2002). This
approach of adding more semantic information into BOW models was further explored
by Whitelaw et al. (2005) who created lexicon feature sets based around appraisal groups.
Even though the use of semantic information had improved results (Whitelaw et al.,
2005), the strong baseline performance of just using n-gram BOW features was further
investigated by Martineau et al. (2009) who showed that incorporating the class into
the TF-IDF weighting mechanism (Jones, 1972) to create Delta TF-IDF significantly
improved results. However Delta TF-IDF was only created to work with two classes8 and
not shown to generalise to n classes. However a future study by Paltoglou et al. (2010)
showed that further performance gains can be made to TF-IDF based systems by using
more enhanced weighting systems like BM25 (Robertson et al., 1995).

8In the sentiment case this is the positive and negative classes.
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a couple of criminals ( mario van peebles and loretta devine ) move into a rich family’s
house in hopes of conning them out of their jewels . however , someone else steals the
jewels before they are able to get to them . writer mario van peebles delivers a clever
script with several unexpected plot twists , but director mario van peebles undermines his
own high points with haphazard camera work , editing and pacing . it felt as though the
film should have been wrapping up at the hour mark , but alas there was still 35 more
minutes to go . daniel baldwin ( i can’t believe i’m about to type this ) gives the best
performance in the film , outshining the other talented members of the cast .

Example 1: Negative document level sentiment example. Document ID cv435 24355
taken from Pang et al. (2002) sentiment dataset.

The supervised approaches that have been mentioned so far use a BOW approach,
of which this form of vector representation is limited in what it can represent. BOW
approaches that use n-gram word features can only learn what a word means within that
n window. For instance take n to be 1 and 29 it would understand terms such as ‘very
good’ and ‘good’ where both would be associated with positive sentiment, however if
the statement was ‘not very good’ then it would not capture the full sentiment as it
would require all three words to know it is negated. One approach would be to have a
very large value for n, but this would create a very sparse vector representation which
would not generalise well (Le et al., 2014). Thus the move away from BOW sparse vector
representations to dense word representations was shown to be promising for sentiment
analysis in Maas et al. (2011) work. However, this work only found better performance
than BOW when they combined the dense vectors with the BOW sparse vector. This first
step into dense representation did show some promise as the representation can be learnt
from unlabelled data, where they found that results increased when more unlabelled
data was used. These dense representations are very similar to what a traditional BOW
model learns through its weights within the model (Goldberg, 2017)10. The benefit of
using the dense representations on the downstream task (sentiment analysis) is that a
good representation of the vectors can be learnt from another unsupervised task from
unlabelled data first11. Thus allowing the model to have prior knowledge of what words
mean (semantically and syntactically (Mikolov et al., 2013b)) is encoded into the vector
representation before training the model, unlike the BOW representation which contains
no prior knowledge.

Le et al. (2014) showed for the first time how dense vector representations using a
NN could surpass BOW representation for which Wang et al. (2012) set a high baseline
at the time for a BOW method. Le et al. (2014) created dense document/paragraph
vector representations that in comparison to the prior word level versions (Maas et al.,
2011) could encode document size texts without averaging by learning to predict the
next word within a small context window from the document, thus each document vector
would be different unlike the word representations12. Johnson et al. (2015) showed that
without any additional unlabelled data unlike Le et al. (2014) a Convolution NN (CNN)
can outperform the BOW approach. The CNN can be seen as a NN approach to a

9i.e. uni-gram and bi-gram features.
10See section 2.5.
11The task can also be supervised, but would require labelled data.
12Unless two or more documents are identical.
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BOW model whereby the CNN has a set of user defined window sizes of which these
window sizes are analogous to n-grams in a BOW model. The CNN differs from the BOW
model as it can generalise to unknown n-gram sequences, as it learns how to combine
representation from multiple word representations to create the n-gram representation. In
comparison for the BOW model it learns what that entire n-gram means and disregards
similarities between n-grams based on the words within the n-gram. Furthermore the
CNN model does not have the sparsity problem that a BOW model has thus the window
size (n-gram in BOW case) can be large; e.g. Johnson et al. (2015) found that having a
window size of 2 and 3 performed best13. For a more complete overview of CNNs, the
reader is directed to chapter 13 of Goldberg (2017).

None of the above methods, including the NN approach, take into account the word
order of the whole document. One family of NN that explicitly encodes the whole
sequences of text in order is the Recurrent NN (RNN) (Rumelhart et al., 1985). The
RNN has several popular variants; Long Short Term Memory (LSTM) (Hochreiter et
al., 1997) and the Gated Recurrent Unit (GRU) (Cho et al., 2014). Dai et al. (2015)
showed practically that LSTMs can be used for long sequence classification tasks such as
document sentiment classification. Xu et al. (2016) created the Cached LSTM to better
encode information from large sequences of text, like documents, and showed that it
can outperform the LSTM on document sentiment analysis. Hierarchical (Zhang et al.,
2015b) and dilated (Strubell et al., 2017) CNN approaches have been created which can
capture large contexts, e.g. sentences rather n-grams, where they have been shown to be
successful in sentiment analysis (Conneau et al., 2017). Finally and more recently, the
transformer NN (Vaswani et al., 2017) approach has been applied which does not preserve
word order (like the RNN or CNN) but rather treats the text more like a tree structure
through attention mechanisms, whereby each word learns to contextualise itself within
the text (can be the whole text). The transformer success can be best seen through
BERT (Devlin et al., 2019) where the architecture can be applied to a task like document
sentiment analysis (Sun et al., 2019b)14.

The majority of these more recent NN approaches have been tested on much larger
sentiment datasets (100Ks of documents) compared to the earlier work (2-25K documents).
It has also been shown that for some of these NN approaches to work well they require
extra data (Dai et al., 2015). However it was found in Dai et al. (2015) that these
NN approaches can make great use of unlabelled data through a language modelling
objective. This technique of training on one or more datasets and/or tasks before then
applying the model to the end task (in this case document sentiment analysis) is defined
as transfer learning in this thesis (Ruder, 2019)15. Both Howard et al. (2018) and Sun
et al. (2019b) found that by pretraining (a type of transfer learning) on the unlabelled
data can have large performance gains, making the models more sample efficient with
respect to labelled/annotated data. All of the neural methods within this and the last
paragraph take into account large contexts of the document, if not the whole document,
whereas none of the previous methods could effectively do so. This allows the methods
to overcome one the main challenges in document sentiment analysis that both Turney
(2002) and Pang et al. (2002) found where the sentiment of the whole document is not

13Le et al. (2014) has a good summary of the drawbacks of BOW vector representations.
14For a good comparison of RNN, CNN, and transformer based models with respect to computational

cost see section 4 of Vaswani et al. (2017).
15Chapter 3.
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the “sum of the parts” (Turney, 2002).

The approaches taken so far treat the document as one large object to encode using
some form of supervised method. However there have been methods proposed that
suggest it is better to break the document up into smaller linguistic units to encode first
into some form of intermediate representation, which is then later combined to generate
a sentiment value for the whole document. Bhatia et al. (2015) used Rhetorical Structure
Theory (RST) (Mann, 1984) to create a discourse structure for the document, which can
be represented as a dependency-based discourse tree where the nodes are represented by
Elementary Discourse Units (EDUs). They found that weighting the outputs of different
supervised and unsupervised methods applied to EDUs in the tree based on their depth
within the tree improved results. Yang et al. (2016) used sentences to represent the whole
document and weighted these sentences and the words within each sentence using two
supervised attention mechanisms. Thus this method unlike Bhatia et al. (2015) learnt
which sentences and words within those sentences were important to the document’s
sentiment rather than having a predefined weighting mechanism.

Pang et al. (2002) created the first English dataset of movie reviews (1.4K documents),
which was later revised and increased in Pang et al. (2004) (2K documents), and then
increased a lot further by Maas et al. (2011) (25K documents). The prior datasets all
contained only two classes, positive and negative, and these were based on the star rating
that the movie review was given by the user. Zhang et al. (2015b) created four much
larger datasets (600K – 4M documents) that originated from Yelp16 and Amazon reviews
(McAuley et al., 2015) which contain between two and five classes where the classes are
based around the user’s star rating. This list of English datasets is not supposed to be
exhaustive but is given as reference to popular and widely used datasets from the past
and current literature.

In this sub-section, document sentiment analysis has been covered with respect to
supervised methods and the associated popular English datasets. From the literature it
is clear to see that the SOTA are NN based methods that require some form of transfer
learning (Yang et al., 2019). All of the methods also clearly point to one of the main
challenges in document sentiment analysis which is how best to contextualise the whole
document. In the early methods, such as BOW, the methods could only create local
contexts through n-grams. This was overcome with NN approaches such as the LSTMs,
hierarchical CNNs, and transformers being able to capture the global context of all tokens
in the document. Finally within this sub-section different NN approaches have been
explained as well as defining the concept of transfer learning.

2.3.2 Sentence Sentiment Analysis

Sentence level sentiment analysis is very similar to document level, whereby the only
difference is the length of the text to be processed. Due to the length difference, the task
is somewhat conceptually easier as a sentence is less likely to have multiple conflicting
sentiments, thus the overall sentiment of the sentence is easier to predict. Many different
approaches have been used for sentence-based analysis: BOW (Wang et al., 2012), CNN
(Kim, 2014; Kalchbrenner et al., 2014), LSTM (Brahma, 2018), and BERT (Devlin et al.,
2019). However, similar to document level, “the sentiment of a sentence is not merely

16https://www.yelp.com/dataset
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the sum of the polarity of the words and phrases found in the text, but rather depends
on a number of compositional phenomena that act on indicators of polarity” (Barnes
et al., 2021). This problem can be best seen in figure 2.317, where it can be seen that
even though the sentence has multiple positive words the sentiment of the sentence is
dominated by the scope of the negation. Due to this, many approaches have been taken
to better model the sentiment phrases within the sentence using BOW with compositional
semantics (Choi et al., 2008), Conditional Random Field (CRF) (Nakagawa et al., 2010),
Recursive NN (RCNN) (Socher et al., 2012), deep RCNN (Irsoy et al., 2014), Tree-LSTM
(Tai et al., 2015), Graph NN (GNN) (Zhang et al., 2019c), and multi task learning
whereby negation scope and cue detection are the auxiliary task (Barnes et al., 2021).

Figure 2.3: Phrase and overall sentiment from Socher et al. (2013) model, where red,
white, and blue represent negative, neutral, and positive sentiment respectively. The
sentence in the figure is ‘Being unique doesn’t necessarily equate to being good, no matter
how admirably the filmmakers have gone for broke’.

Socher et al. (2013) took modelling phrases within sentences further by creating
a dataset where each phrase from the Pang et al. (2005) movie dataset was manually
annotated with a sentiment value, which can be seen in figure 2.3 whereby the model
output shown is how the dataset is annotated. Thus this dataset allows models to better
capture the compositional phenomena more explicitly by using the phrase level annotation.
In a similar trend, Yang et al. (2014) found using inter- and intra-sentence discourse
features to be useful, showing that sentence level classification can be dependent on
surrounding sentences. Similarly McDonald et al. (2007) found that jointly modelling the
sentence and document classification tasks helps improve both. More recently, Angelidis
et al. (2018) found that by framing document classification as a multiple instance learning
(MIL) (Dietterich et al., 1997) problem they were able to create a sentence (EDU) classifier
using only the document labels, this outperformed a fully supervised sentence (EDU)
level classifier. This MIL method was also shown to be useful when applied to the food
health domain (Karamanolakis et al., 2019).

This review has shown that sentence level sentiment requires both understanding
the complex structure within the sentence as well as the more global content of the
document. However, even though the literature shows the use of explicitly taking into

17The sentence was chosen from Barnes et al. (2021) and the figure was generated using the live demo
found at this URL http://nlp.stanford.edu:8080/sentiment/rntnDemo.html.
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account phrases and document level information, current SOTA uses the same techniques
as that of document level (Yang et al., 2019), utilising transfer learning mainly from a
language modelling task. Even so, Barnes et al. (2019) have annotated the errors coming
from SOTA models into eighteen different categories finding that they perform badly
on sentences containing non-standard spellings, idioms, and world knowledge, to name
a few. This shows that sentence level sentiment analysis still has plenty of error cases
to solve through better incorporating linguistic and world knowledge into new and/or
existing methods. To clarify, all of the research mentioned on sentence level sentiment
analysis was applied and thus to some extent developed for English.

2.3.3 Aspect Based Sentiment Analysis

Document and sentence level sentiment analysis both assume that they are discussing one
topic (Liu, 2015)18, for instance if the document (sentence) comes from a review (headline
of a review) of the movie, The Avengers, the topic that the sentiment is assumed to be
about is the movie, The Avengers. However, both documents and sentences can contain
sentiments on multiple different topics not just the main overall topic of the entire review.
Aspect Based Sentiment Analysis (ABSA) attempts to overcome this problem, instead of
predicting one sentiment for a document or a sentence it predicts multiple sentiments
conditioned on multiple different predefined aspects/topics. ABSA can be performed at
different linguistic granularities, typically either document or sentence level. Example
2 is a Tripadvisor review taken from Wang et al. (2010) with seven aspects and their
respective sentiments19, as well as the overall sentiment of the hotel. From this document
level ABSA example it can be seen that these aspects are latent, that is the aspect itself
does not necessarily occur in the text, this is shown in example 2 where the service
is negative as the “Hotel staff speak zero English... The process at the hotel is a bit
confusing... staff weren’t overly friendly.”. This example would be typically used as a
training example for document level ABSA. In this subsection document and sentence
level ABSA will be described along with advances in each area and popular datasets.

Good and clean but no English spoken The good: The hotel is in a great location and
withing walking distance to the Forbidden City and some other sights in this hisrotic
district. The rooms were comfortable and clean, really good value.The bad: Hotel staff
speak zero English. Breakfast is only Chinese breakfast. The process at the hotel is a bit
confusing (make sure you keep those pink receipts they give when you pay, you need them
to check out!) and staff weren’t overly friendly. Internet is expensive and slow.

Example 2: Example of document level aspect sentiment analysis. The aspects and
their receptive sentiments are: service (1), business service (2), cleanliness (3), check in
/ front desk (2), value (4), rooms (3), and location (4). The sentiments were on a scale
of 1-5 and the overall sentiment for the review was 2. This was taken from review id
447367 from the trip advisor review dataset of Wang et al. (2010).

18Page 47-48.
19They were actually ratings rather than sentiments, but the ratings are used as approximations for

sentiment.
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2.3.3.1 Document-level ABSA

Snyder et al. (2007) treated the task of document ABSA as a supervised ranking problem,
where each aspect is ranked based on a BOW feature vector. They showed the benefit of
modelling dependencies between aspects. They found that 38% of their restaurant review
training data contained the same sentiment for all aspects in their respective reviews.
Thus they added an agreement function within their model which predicts whether or not
all aspects for the review should contain the same sentiment which significantly improved
performance. In comparison Wang et al. (2010) created the Latent Rating Regression
model, which instead of learning from the aspect sentiments can train the model just
from the overall sentiment. This therefore reduces the requirement of more fine grained
sentiment training data, but the model did require a set of seed words that represented
the aspects e.g. for the aspect room a set of key words would be room, suite, view, and
bed.

More recently, supervised Neural Network (NN) approaches have been the most
popular and successful approach to document ABSA. The first to use a NN for document
ABSA was Lei et al. (2016), whose main aim was to create rationals/explanations
for the predictions given only the aspect sentiment labels for supervision. Yin et al.
(2017) showed the importance of biasing the attention mechanism within a hierarchical
NN (Yang et al., 2016) towards the aspect of interest. The attention mechanism used
a set of keywords to define each aspect, from these keywords the attention mechanism
would use a memory network (Weston et al., 2015) to learn how to best describe the
aspect so that the model focused on the most important words and sentences in the
document. Yin et al. (2017) benchmarked their approach across numerous neural and
non-neural approaches. Li et al. (2018a) used a similar hierarchical NN as Yin et al.
(2017) and found significant performance gains when incorporating both user20 and/or
the overall document sentiment information into the attention network. They found
that the document sentiment information is useful as the related aspect sentiments are
correlated. Further the user information allows the model to better capture textual and
sentiment similarities at the aspect level, e.g., a user tends to have similar sentiment
scores for aspects across documents and tends to describe aspects in a similar manner
across documents. Finally, the most recent and successful approach used a hierarchical
neural Reinforcement Learning (RL) (Williams, 1992) method (Wang et al., 2019)21,
whereby instead of splitting the document into sentences they used Elementary Discourse
Units (EDUs). They used the RL approach to first find aspect relevant EDUs and
then within the EDU the relevant aspect sentiment words. They found that if they
had used sentences instead of EDUs22 then the performance would have decreased by
2.44% on average, of which they believe this is due to 90% of EDUs only containing one
sentiment (Bayoudhi et al., 2015). Through error analysis they found that their method
performed poorly when negation is used or a comparison is made, however they did not
quantify the number of times these errors where made.

There are three main datasets to evaluate document ABSA, Tripadvisor (Wang et al.,
2010)23, BeerAdvocate (McAuley et al., 2012), and TripUser (Li et al., 2018a). Both

20On the dataset that contained user information.
21They called document ABSA, Document-level Aspect Sentiment Classification (DASC).
22They call EDUs clauses.
23This is sometimes called TripDMS.
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the Tripadvisor and BeerAdvocate datasets since have been reprocessed by Yin et al.
(2017) so that aspect sentiments per document are less correlated2425. This technique of
reducing the correlation of the aspect sentiments per document was suggested by Lei
et al. (2016), to ensure that the model does not get “confused”. It has not been shown
whether training models on datasets that have less correlation between aspect sentiments
per document produce better models, further Snyder et al. (2007) actually exploited this
correlation in their modelling. The Tripadvisor and TripUser are both hotel reviews from
the Tripadvisor website26 and contain the same seven aspects, but the TripUser dataset
also contains user information unlike Tripadvisor. The BeerAdvocate dataset comes from
a beer review website Beeradvocate27 and contains four aspects.

The datasets mentioned so far are all the datasets that have been used28 in the prior
work stated in this thesis so far. However these datasets are not expertly annotated
data, rather the data has been scraped from their representative websites where the
reviews were ‘annotated’ by many different users. One of the few datasets that has
been annotated by experts is the SemEval 2016 task 5 subtask 2 dataset (Pontiki et al.,
2016), which contains seven datasets in five different languages and varies across three
domains29. The only methods that have been applied to these datasets are those that
entered the SemEval competition.

2.3.3.2 Sentence ABSA

Sentence ABSA unlike document ABSA tends to contain far fewer aspects within its
text and unlike document it is rare for a sentence to have all aspects, which is not the
case in document ABSA (Snyder et al., 2007; Wang et al., 2010). All document ABSA
methods could be applied to sentence ABSA with minimal changes, however the vast
majority of them have been designed for longer texts, for instance the hierarchical NN
methods (Yin et al., 2017; Li et al., 2018a; Wang et al., 2019). To further iterate this
point on a sentence containing few aspects per sentence, examples 3 and 4 show two
different sentences from the widely used SemEval 2014 task 4 subtask 4 restaurant review
dataset (Pontiki et al., 2014), containing one and two aspects respectively. Further, the
statistics from the SemEval 2014 restaurant training dataset state that on average each
sentence will only have 1.22 aspects30 (Pontiki et al., 2014). In comparison to document,
sentence ABSA is less likely to have an overall sentiment31, of which some document
approaches have made use (Wang et al., 2010; Li et al., 2018a). Lastly, document ABSA

24The standard train, development, and test splits for the Tripadvisor and BeerAdvocate datasets can
be found here https://github.com/HKUST-KnowComp/DMSC.

25The less correlated method comes from Lei et al. (2016, §5.1). They train a linear regression model
to predict one of the aspect’s sentiment based on all the other aspects sentiments, they then pick the
documents that have the largest error until the aspect sentiment correlation in the documents goes
beyond a certain threshold.

26https://www.tripadvisor.co.uk/
27https://www.beeradvocate.com/
28Or derivatives of.
29Restaurant, laptop, and hotel reviews.
30This was calculated based on the training datasets containing 3041 sentences of which in total there

are 3713 aspects within that dataset.
31Overall sentiment here refers to sentence or document level sentiment, rather than an overall/general

aspect sentiment e.g. the aspect RESTAURANT#GENERAL in the SemEval 2015 task 12 restaurant
dataset (Pontiki et al., 2015).
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in effect summarises the sentiment information for each aspect that has been captured
throughout the document, which can make document sentiment analysis a more difficult
task if there are lots of contradicting sentiments for one aspect (Pontiki et al., 2016).

Overall I would recommend it and go back again.

Example 3: Example of sentence level aspect sentiment analysis. Contains one aspect
anecdotes/miscellaneous with positive sentiment. This was taken from sentence id 2609
from the trail restaurant dataset of Pontiki et al. (2014).

Even though its good seafood, the prices are too high.

Example 4: Example of sentence level aspect sentiment analysis. Contains two aspects
food and price with positive and negative sentiment respectively. This was taken from
sentence id 3440 from the trail restaurant dataset of Pontiki et al. (2014).

Sentence ABSA was popularised by task 4 in SemEval 2014 (Pontiki et al., 2014) where
20 teams created various methods. The winner, Kiritchenko et al. (2014), used a Support
Vector Machine (SVM) (Chang et al., 2011) with different BOW features including
ngrams, POS tags, and various in and out of domain sentiment lexicon features32. To
better capture the aspect specific sentiment, they utilised a domain adaptation technique
(Daumé III, 2007) such that each aspect category had its own BOW weight vector that
was learnt at the same time as the general BOW weight vector, so that aspect specific
and general features can be learnt separately. SemEval repeated a similar task for two
more years, 2015 and 2016, where the winners all use a similar BOW approach (Saias,
2015; Brun et al., 2016; Kumar et al., 2016).

NN approaches for this task are desirable due to them requiring fewer linguistic
resources, and the ease of transferring the approach to multiple languages (Ruder et al.,
2016b). Ruder et al. (2016b) applied a CNN to the task outperforming many of the
aforementioned BOW approaches on multiple languages. In later work Ruder et al.
(2016a) showed that taking into account the surrounding sentences using an hierarchical
LSTM further improved results. Wang et al. (2016b) found that by adding attention
to a sentence level LSTM improved the model by allowing it to better capture relevant
aspect specific words within the sentence. Follow on work (Bao et al., 2019) found that
regularising the attention network using sentiment lexicons and/or attention sparsity
improved the robustness of the model. Wang et al. (2018) utilised a hierarchical NN
similar to Yin et al. (2017) (document ABSA) whereby the hierarchy of the sentence was
based around EDUs within the sentence, and the words within those EDUs. This was
proposed on the premise that EDUs often discuss one aspect, thus making the task for the
NN easier, as the model could ignore EDUs that were not discussing the relevant aspect.
They found this hierarchical approach to outperform the flattened version. Current SOTA
approaches utilise transfer learning from Bi-directional Language Models (BiLM) (Sun
et al., 2019a; Jiang et al., 2019) (also known as Contextualised Word Representations
(CWR) which is what they will be called from now on).

32Sentiment lexicon is a collection of different groups of words where each group is associated to a
specific sentiment. This definition follows that of Mohammad et al. (2010) for their emotion lexicon
definition if you substitute emotion for sentiment.
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Compared to the previous approaches Kaljahi et al. (2018) explored whether adding
the aspect’s sentiment expressions to a model would improve results. The sentiment
expression which is “part of the sentence which conveys the sentiment towards a certain
aspect” (Kaljahi et al., 2018) was added to the English SemEval 2016 laptop and
restaurant datasets. Example 5 demonstrates what an aspect’s sentiment expression is.
They found that adding the sentiment expressions into the NN model improved results
greatly, however in this setup at test/inference time the model would require the aspect’s
sentiment expression. To overcome this they incorporated the sentiment expressions in a
multi task setup, but this led to the model performing as well as a model that did not
require sentiment expressions. This line of research shows promise as it demonstrates that
using aspect sentiment expressions can improve results but incorporating this information
into a model that does not require it at test time is difficult. Further aspect sentiment
expressions, if they could be predicted at the same time as the sentiment, could create
some form of explanation to the sentiment prediction, making the black box NN methods
more explainable, which is similar to what Lei et al. (2016) did in document ABSA.

However, go for the ambience, and consider the food just a companion for a trip
across the world!

Example 5: Aspect sentiment expression example, where the sentiment expression
is in bold for the related aspect food#quality. This was taken from the SemEval
2016 Restaurant dataset (Pontiki et al., 2016) with the additional sentiment expression
labelled by Kaljahi et al. (2018).

Popular sentence ABSA datasets for English are the SemEval 201433 (Pontiki et al.,
2014), 2015 (Pontiki et al., 2015), and 2016 (Pontiki et al., 2016) datasets for the laptop,
restaurant, and hotel review domain34. A large difference between the 2015 and 2016
datasets compared to the 2014 was the sentiment of an aspect may require a larger
context than just the sentence the aspect appeared in, hence why the whole review was
given as context. The 2016 SemEval dataset also expanded the number of languages from
just English to six more languages35. Also, as stated in the last paragraph, Kaljahi et al.
(2018) annotated the English SemEval 2016 laptop and restaurant dataset with sentiment
expressions. There has also been a challenge dataset, Multi-Aspect Multi-Sentiment
(MAMS) (Jiang et al., 2019), which is within the restaurant review domain36, unlike the
other datasets it ensures that each sentence contains at least two aspects and at least
two different sentiments per sentence.

Sentence level ABSA has also been known as topic sentiment analysis within the
Twitter sentiment analysis community. Topic sentiment analysis has been run as a
competition three times at SemEval (Rosenthal et al., 2015; Nakov et al., 2016; Rosenthal
et al., 2017), each year creating a new larger dataset for English and in the final year
(2017) creating an Arabic Twitter dataset as well. In their first year of running the
competition (2015) they also ran a task (D) which they described as “sentiment towards
a topic in a set of tweets” which can be viewed as a document ABSA task. These

33The restaurant ABSA dataset partially came from Ganu et al. (2009).
34The 2014 datasets ABSA annotation was only provided for the restaurant domain.
35The six languages are; Dutch, French, Russian, Spanish, Arabic, and Chinese.
36This dataset was created from the same source of restaurant reviews as the SemEval 2014, 2015, and

2016 restaurant dataset, which was the Citysearch New York dataset by Ganu et al. (2009).
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datasets are also annotated for Tweet/sentence sentiment as well as the topic, the 2017
dataset contains user information, and the 2015 dataset is also annotated with sentiment
expressions.

From this section on ABSA prior work it is clear that there is plenty of future work
that can be explored. Creating more robust models is important, especially for real world
applications. Bao et al. (2019) explored this problem, however they only evaluated on one
dataset, thus expanding this evaluation for more datasets and across a spectrum of low
to high resource settings would be of use to better understand how robust their method
is. An unexplored area is the link between sentence and document ABSA whereby one
would assume that document ABSA should improve the performance of sentence and
vice versa, of which this can be empirically tested using the SemEval 2015 (Pontiki et al.,
2015) and 2016 (Pontiki et al., 2016) review datasets.

2.4 Fine Grained Sentiment Analysis

Compared to the previous sections, this as the name suggests, is the most detailed
granularity of sentiment analysis. Fine grained sentiment analysis is made up of many
different tasks where the results of these tasks when combined creates the information
required to fully understand a sentiment in context. The literature has been very clear
on the following tasks being at the core of understanding sentiment in context (Wiebe,
1994; Kim et al., 2004; Ding et al., 2008; Liu, 2015):

1. Identifying the holder of the sentiment.

2. Identifying the target/object of the sentiment within the text37.

3. The sentiment of the holder towards the target.

The information from these three tasks creates a triplet of information (sentiment
holder, target, sentiment) to define the whole fine grained sentiment task. To better
understand this, example 638 contains five triplets; (author, food, negative), (Jonathan,
bara brith, positive), (He, leeks, neutral), (June, Welsh fruit cake, negative), and (June,
chocolate cake, positive).

(1) The food at the store was horrible, but Jonathan thought the bara brith was
fantastic.(2) He did think the leeks were so so. However June found the Welsh fruit
cake to be tasteless but the chocolate cake to be great.

Example 6: Made up fine grained sentiment analysis example written on the 24th May.
For reference bara brith is a kind of fruit cake that was created in Wales.

The triplet of information, which to some degree, was first defined within Wiebe

37In Ding et al. (2008) they use the word feature to mean target. In Kim et al. (2004) they use topic
to mean target.

38In all examples the target will be in bold, the sentiment words within the text in the colour of their
sentiment, and the holder underlined. The sentiment colours are pink for negative , grey for neutral , and
blue for positive .

19



Chapter 2. Literature Review

(1994) when stating the components of a private state39 has been expanded by Liu (2015)
who has created the clearest and most detailed definition so far and builds upon the
previous work (Wiebe, 1994; Kim et al., 2004; Ding et al., 2008). Liu’s (Liu, 2015) basic
quadruple definition40 is the same as the triplet so far with the added information of
time. The importance of time within the definition is argued as sentiment can change
over time, which is of importance for real world applications as one may want to know
how a holder’s41 sentiment changes.

This quadruple definition is then expanded to a more detailed quintuple definition42,
with the target of the sentiment replaced with entity and aspect of the sentiment;
(sentiment holder, aspect, entity, sentiment, time). Both the entity and aspect are latent
in that they do not have to link to any part of the text unlike the target within the triplet.
Further, the aspect and entity are linked via a hierarchical structure as in the aspect
would be either an attribute or part-of the entity. The motivation behind removing the
target and replacing it with the aspect-entity pairing is so that targets can be better
grouped together. For instance, in example 6 even though both June and Jonathan
are discussing the same food produce (bara brith) due to the different ways of stating
it, grouping would have to occur to know they are discussing the same thing. The
benefit of this aspect grouping is that from an application perspective an end user can
get an overall trend of a sentiment towards aspects and entities of interest rather than
sentiment towards targets, given that there could be exponentially more targets compared
to aspect-entity pairs. To make the quintuple definition more concrete, the quintuples
for example 6 are; (author, GENERAL, FOOD, negative, 24th May), (Jonathan, CAKE,
FOOD, positive, 24th May), (He, VEGETABLES, FOOD, neutral, 24th May), (June,
CAKE, FOOD, negative, 24th May), and (June, CAKE, FOOD, positive, 24th May).

The problem with the quintuple definition is that it is lacking in target information.
Even though the target might be too fine grained for some applications, it can be useful
for training models as the position of the target is useful for inferring the sentiment (Gu
et al., 2018). More so there could be a case where a text contains two contradicting
sentiments for the same aspect-entity pair, holder, and time. This can be seen in example
6 whereby June is negative about the Welsh fruit cake but positive about the chocolate
cake. This would be confusing for training a machine learning model as the same text
contains contradicting sentiments for the same aspect, entity, holder, and time. This
problem of having two contradicting sentiments for the same information and text is
defined in this thesis as sentiment ambiguity, in this case the information is aspect-entity
pair, holder, and time. To avoid this sentiment ambiguity problem one could simply
create more detailed aspect or entities which to some degree is suggested in Liu (2015)43

or as proposed in this thesis, add the target to the quintuple to create the hextuple
as in definition 1. To make this concrete, the following are hextuples for example 6;
(author, food, GENERAL, FOOD, negative, 24th May), (Jonathan, bara brith, CAKE,

39Page number 235 of Wiebe (1994), defines experiencer, attitude, and object as the components of a
private state. Experiencer, attitude, and object can be mapped to holder, target, and sentiment within
the triplet of information definition.

40Definition 2.1 in Liu (2015).
41A more concrete example of a holder could be a politician, whereby the application may want to see

when/if they changed their sentiment towards a bill/law.
42Definition 2.7 Liu (2015).
43On page 22-23 of Liu (2015) they state that if the user wants more detailed information then more

entities would need to be created, and they use a printer and its ink as an example.
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FOOD, positive, no time given), (He, leeks, VEGETABLES, FOOD, neutral, 24th May),
(June, Welsh fruit cake, CAKE, FOOD, negative, 24th May), and (June, chocolate cake,
CAKE, FOOD, positive, 24th May). It is clear that these hextuples remove any remaining
sentiment ambiguity in comparison to their quintuple counterparts from the previous
paragraph. Note, in general not all of the values of these hextuples must be filled but
rather the more that are filled potentially less ambiguous the sentiment would be and
more detailed analysis can be performed, e.g. sentiment over time or comparing sentiment
of different holders on a particular target/aspect/entity.

Definition 1 Hextuple fine grained sentiment definition: (h, t, a, e, s, ti). Where h =
sentiment holder, t = target, a = aspect, e = entity, s = sentiment, and ti = time.

Lastly, we state here some explanations and edge cases that come from the hextuple
definition. The sentiment holder can be very important in sentiment disambiguation as
shown by example 7 sentence 2, which without the sentiment holder information it would
be unclear what the sentiment value is for ‘talks’, as Lucy found it negative and Joe
positive. However, Liu (2015) motivated the reason for the sentiment holder44 within the
sentiment definition is due to the potential influence difference between different holders,
e.g. an online influencer sentiment towards a target/product could be more important
than an everyday customer. Within this thesis the importance of influence of the holder
is recognised for applications. From a sentiment perspective example 7 sentence 2 shows
the main reason for the holder being required in the sentiment definition, to resolve
sentiment ambiguity. Additionally, the target within the hextuple can be empty due to
the target being, implicit thus this is when the aspect-entity pair is required to resolve
what the implicit target is, this is shown on sentence 3 in example 7. Also, the aspect
within the aspect-entity pair is not always required if a hierarchical structure is not
required as only the entity is needed to resolve implicit target situations, as shown in
sentence 3 of example 7. Finally, as shown in example 7 sentence 1, the time element
could be required to disambiguate the sentiment, however the time effect is a very small
edge case.

In comparison to the latest SemEval fine grained sentiment analysis task, SemEval
2016 (Pontiki et al., 2016), their definition of this task is a quadruple of; (target, aspect,
entity, sentiment). This quadruple, as motivated by the previous paragraph, does not
contain enough information to remove all sentiment ambiguity because of not having
the time and more importantly the sentiment holder. Hence, showing why the hextuple
defined in the thesis is a more complete definition for fine grained sentiment analysis. This
concludes the motivation and reason behind the new fine grained sentiment definition of
the hextuple, which can be seen as a direct extension and backward compatible with the
previous definitions.

44This was on page 18 of Liu (2015).
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(1) Ben used to love lectures but no longer due to the new lecturer. (2) Lucy did
not enjoy the talks but Joe did. (3) Dave loved University but found it expensive.

Example 7: Made up fine grained sentiment example. This example contains the
following hextuples; (Ben, lectures, LECTURES, EDUCATION, positive, past), (Ben,
lectures, LECTURES, EDUCATION, negative, present day), (Lucy, talks, LECTURES,
EDUCATION, negative, past), (Joe, talks, LECTURES, EDUCATION, positive, past),
(Dave, university, -, EDUCATION, positive, present), and (Dave, -, PRICE, UNIVER-
SITY, negative, present). The dash (-) symbol within the hextuple represents the value
not existing.

Datasets that could make use of part of these hextuples are the popular SemEval 2015
and 2016 restaurant datasets, which contain (target, aspect, entity, sentiment) values
of the hextuple. This thesis has found that without including the target within the
hextuple it would be impossible to classify 3.68% and 3.27% of samples correctly from
the 2015 and 2016 datasets respectively due to sentiment ambiguity45. This is due to
texts containing the same aspect-entity pair more than once with different sentiments.
Even though these percentages are small it further empirically justifies why it is needed
to include the target within the hextuple definition.

Wiebe (1994) described that the private state, which can be seen as the original fine
grained sentiment definition, can only be found in subjective sentences. Thus the fine
grained sentiment cannot be used within objective sentences or in objective cases. In this
thesis it is argued that objective sentences can contain fine grained sentiment as stated
in section 2.4.2 of Liu (2015). Example 8 shows an objective negative sentiment towards
Rio tinto, this is also an example of implicit sentiment which is discussed in more detail
in subsection 2.5.1.

(1) Rio tinto shares went down on the 22nd of May.

Example 8: Made up fine grained objective sentiment example. This example contains
the hextuple (Author, Rio tinto, MINING, STOCKS, negative, 22nd of May).

Given this hextuple definition 1 it is clear how sentence and document ABSA from the
last two subsections 2.3.3.2 and 2.3.3.1 can be ambiguous with respect to sentiment. This
is best shown in example 7 whereby in sentence 1 for the aspect-entity pair (LECTURES,
EDUCATION) there is both a positive and negative sentiment, thus from a ABSA
perspective it would be impossible to capture both sentiments. This case will become
more problematic with longer texts e.g. document ABSA, as they are more likely to
contain multiple of the same aspect with different sentiment. Hence as stated in the
opening paragraph of sentence ABSA subsection 2.3.3.2, document ABSA in effect
summarises the sentiment information of aspects, and this would have to happen when
ambiguities occur at the sentence level as well as is the case within example 7 sentence 1.
To make this more concrete, the aspect summary for the aspect-entity pair (LECTURES,
EDUCATION) in sentence 1 of example 7 could be neutral as there is both a positive
and negative sentiment towards the aspect-entity pair.

The main tasks to create the hextuple are the following:

45URL to the python notebook that reproduces this result https://bit.ly/3gtx1RN.
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Task 1 Target extraction.

Task 2 Entity and Aspect mapping. Due to the cases of implicit targets, one would
have to treat this task as ABSA extraction46 for the given text, as one cannot
assume that a target is always in the text. Then given the aspect-entities that have
been extracted for the text map them to the targets extracted as well as a special
implicit target symbol if implicit target(s) exists. This is only one suggestion on
how to perform this task that takes into account implicit targets.

Task 3 Sentiment holder extraction.

Task 4 Link the relevant target, holder, and entity, aspect pairs within the given text
together.

Task 5 Extract the time given the holder, target, and entity, aspect pair. Time extraction
would more than likely come from the metadata e.g. the timestamp from a Tweet.
However time extract could be complex if the text is a narrative/story, thus has
to be extracted from within the text. Furthermore as in sentence 1 of example 7,
time can be target and holder specific where in this case there is both a past and
present day timestamp.

Task 6 Extract the sentiment associated to the target, holder, aspect, entity pair, and
time. Once the sentiment has been resolved dependent on the other values in the
hextuple, the hextuple has been created.

These tasks can be done either in a pipeline setup or where appropriate in a joint
multi-task setup. The tasks are not ordered, but the tasks do have dependencies, for
example task 4 cannot be done without already completing the first three tasks. These
tasks are similar to those in Liu (2015)47 but not completely the same. Liu (2015) does
not contain task 1 as target extraction is not within their quintuple definition. Tasks 2,
3, 5, and 6 map respectively to Liu (2015) tasks 1-4. Task 6, sentiment extraction task,
is different to Liu (2015) task 5, as they only take into account the aspect, entity pair
where as in this task all other values of the hextuple that have been found and linked
together from the preceding tasks is taken into account.

This thesis’s main focus is target dependent sentiment analysis (TDSA), which so far
has not been defined. Even though the definition of fine grained sentiment analysis has
been well stated, this was required to fully understand where TDSA fits into sentiment
analysis and assumptions that are made in the task. TDSA’s objective is a simplification
of task 6, instead of extracting the sentiment with respect to the target, holder, aspect,
entity pair, and time the only element of the hextuple that is taken into account is the
target.

In the rest of this section the tasks described above will be reviewed. Task 2 of entity
and aspect mapping will not be reviewed as it is believed that none have performed
entity and aspect mapping. However there are two very related strands of research, that
of ABSA extraction (Pontiki et al., 2016), and implicit target extraction which will not
be reviewed here but will point the interested reader to this survey paper (Ganganwar

46This task is described as aspect category detection in Pontiki et al. (2016).
47See pages 26-27 of Liu (2015).
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et al., 2019). Task 4 will also not be reviewed as again it is believed that none have
performed this task fully due to the lack of work in task 2. However within the holder
extraction subsection, work will be discussed that has been performed that performs both
holder (task 3) and target (task 1) extraction. Lastly task 5 will also not be reviewed,
as again time is not normally a problem that is resolved within sentiment analysis, nor
is it believed to be a problem that would affect the sentiment ambiguity of a target.
Furthermore, in a lot of use cases the time element could be extracted from the metadata
as stated before or if this is not given from the text itself. However extracting time from
the text in itself is a research area whereby the time element does not have to be just
a date or time (Bethard et al., 2016; Viani et al., 2018). Thus as the time element is
covered by either metadata or a different but somewhat related area this work will not
be covered in this thesis. Task 6 will not be reviewed as it requires all previous tasks to
be completed, of which not all prior tasks have been explored, e.g. tasks 2, 4, and 5.

2.4.1 Target Extraction

Target extraction is the task of extracting objects that are contained within the text,
where these targets have some sentiment associated towards them (Hu et al., 2004b;
Wilson, 2008, Chapter 7). This definition is fairly consistent across the whole field. There
is some inconsistency between datasets on the finer details of what is defined as a target,
for instance the SemEval datasets (Pontiki et al., 2014; Pontiki et al., 2015; Pontiki et al.,
2016) explicitly do not consider pronouns to be targets, whereas others do (Toprak et al.,
2010; Kessler et al., 2010). These subtle differences could be important depending on the
use case, thus reading the annotation guidelines associated with these datasets is always
advisable. Target extraction has also been called different names by different prior works
over the years: feature extraction (Hu et al., 2004b), opinion target extraction (Qiu et al.,
2011), and more recently aspect term extraction (Pontiki et al., 2014).

One of the first works in this area was by Hu et al. (2004b) where they state four
main points on why a list of prior known targets is not feasible, and their four points can
be summarised as the following two points: i) not all targets are known ahead of time,
and ii) targets can be known by different names e.g. laptop as notebook, and targets
can be written differently e.g. misspelling or abbreviations etc. Given this, a list of prior
targets cannot be a feasible solution to the target extraction problem.

Many of the earlier works in this area use unsupervised rule based systems. Hu
et al. (2004b) used POS and chunking information to find frequently occurring noun and
noun-phrases that are then pruned based on frequency rules, which are then considered
frequent targets. Infrequent targets are found by labelling the nearest noun or noun-
phrases that occur closest to an adjective that is within their in-domain sentiment
lexicon. This in-domain sentiment lexicon is created by extracting the nearest adjective
to all of the frequent targets. This was improved upon by (Popescu et al., 2005) by
incorporating Pointwise Mutual Information (PMI) (Church et al., 1989) between the
frequently occurring noun phrases and the known product name being reviewed through
a large information retrieval system. They show that using more external data, rather
than just the task data, within the information retrieval system, greatly improves results.

Qiu et al. (2011), similar to Hu et al. (2004b), created a syntactic approach whereby
targets are found based on the relationship with the sentiment words that affect the
target. By using just a few seed sentiment words they iteratively extract targets through
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dependency relation rules which in turn they use to find more sentiment words, this
process is repeated until no more sentiment or target words are found. Liu et al. (2012)
used a word based translation model to find the relationship between sentiment words
and targets avoiding the need for a dependency parser and the error it can introduce into
the modelling. Using this approach, unlike the previous one, they can find many-to-one
and one-to-many relationships between sentiment and target words. This approach was
shown to outperform the existing unsupervised techniques on the Hu et al. (2004b)
customer review dataset, which at the time was the standard benchmark dataset.

These unsupervised rule based approaches, which are believed to have no code releases,
are questionable in terms of how easy they are to reproduce (Marrese-Taylor et al., 2017b).
Marrese-Taylor et al. (2017b) found that they could not reproduce the results from Hu
et al. (2004b), Qiu et al. (2011), or Liu et al. (2012) with the best reproduced result
being circa 50% of the original. In general, they found that key parameter settings were
not stated in the papers, which lead to larger parameter searches. This therefore brings
into question how good these rule based approaches actually are if it is not possible to
reproduce them.

The most popular and currently best approach to target extraction are supervised
sequence labelling methods. Sequence labelling methods generally predict the current
token label based on its context, whereby the context can be the entire text and all
previous token label predictions. Due to the nature of the task being one of extracting
potentially multi-word targets the tag set used in sequence labelling has to be one that
can allow multiple words to be extracted, thus the BIO tagging scheme is commonly
used (Liu et al., 2015). Example 9 demonstrates the BIO tagging scheme48.

TheO chickenB potI pieI isO excpetiona,O theO cheeseburgerB hugeO andO delictable,O
andO theO serviceB professionalO wanO warm.O

Example 9: Target extraction example demonstrating the BIO tagging scheme, whereby
all the target words are in bold. This was taken from the SemEval 2015 restaurant
dataset (Pontiki et al., 2015), sentence id 1264954:2.

One of the first sequence labelling approaches was that of Jin et al. (2009), where they
used a Hidden Markov Model (HMM) which had a context window of the current word
and the previous, using POS tag and lexical49 information as well as the previous word
label to predict the current label. They found their approach, compared to unsupervised
methods, generalised better to new and infrequent/rare targets, as well as finding targets
that are not just noun or noun-phrases, which the prior approaches assumed targets
must be. These improvements compared to the unsupervised rule based approaches most
likely are gained from the model allowing to learn internal linguistic rules within the
black box without having large assumptions imposed on it like a target has to be noun
or noun-phrase.

The field progressed from using HMM to using Conditional Random Field (CRF)
(Lafferty et al., 2001), and the two best performing target extraction models at SemEval
2014 (Pontiki et al., 2014) were CRF based approaches using lexical, syntactic, and
semantic features (Chernyshevich, 2014; Toh et al., 2014). The drawback to these

48BIO can also be referred to as the IOB2 tagging scheme.
49The word itself.
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supervised approaches is that they all require additional linguistic features e.g. POS
tags of which finding which features are useful (feature engineering) is time consuming.
Further, some of these features might not be available in all languages. Liu et al. (2015)
showed that an RNN/LSTM, a form of NN, combined with word embeddings can learn
the features required to be competitive with the feature engineered CRF approaches.
They further showed that when the LSTM is combined with additional linguistic features,
POS tags and chunk information, the results for one of the datasets outperforms the
CRF approaches. Since Liu et al. (2015) many approaches started to use RNNs/LSTMs
and Recursive NN (RCNN) to learn feature representations.

Many approaches have combined extracting targets with extracting the sentiment
words within the text as a joint or multi task learning (MTL) setup. In all of these cases
they have found performing both tasks to improve results and in all works they have
used either a GRU with coupled attention (Wang et al., 2017c), LSTM with attention (Li
et al., 2018c), LSTM with memories (Li et al., 2017), GRU stacked on a CNN (Jebbara
et al., 2016)50 or RCNN (Wang et al., 2016a). The assumption the models make is
that by jointly learning the two tasks it can better extract the targets, as targets have
some form of sentiment associated with them, thus the sentiment words must modify the
targets. This approach can be seen as a supervised approach of Qiu et al. (2011) and Hu
et al. (2004b), whereby the model learns the relationships between sentiment words and
targets. In most cases the joint learning approach is setup using the BIO tag set but
the targets and sentiment words have a different category label e.g. t for target and s
for sentiment words as shown in example 10. For clarification, in none of these case are
they explicitly linking the sentiment words with any of the targets nor are they learning
the sentiment label of the sentiment words. Li et al. (2017) also found predicting if the
current sentence contains a target to be a useful auxiliary task within a MTL setup51,
similar to the opinion sentence feature within Jakob et al. (2010a) CRF.

TheO chickenB-t potI-t pieI-t isO excpetiona,B-s theO cheeseburgerB-t hugeB-s and I-s

delictable, I-s andO theO serviceB-t professionalB-s wan I-s warm. I-s

Example 10: Target and sentiment word extraction example demonstrating the BIO
tagging scheme with target and sentiment labels as t and s respectively. All the target
words are in bold and the sentiment words are highlighted. This was taken from the
SemEval 2015 restaurant dataset (Pontiki et al., 2015), sentence id 1264954:2., whereby
the sentiment words were annotated by the author of the thesis.

It is clear from these prior works that performing target extraction with sentiment
word prediction is useful. However two of these prior works (Wang et al., 2016a; Wang
et al., 2017c) require human annotation of the sentiment words, which is costly, but
these annotations have been made available by the authors52. Li et al. (2017) and Li
et al. (2018c) used the MPQA sentiment lexicon (Wilson et al., 2005) instead of human
annotators as a form of noisy sentiment word labels. It is interesting that models like

50Jebbara et al. (2016) state in the paper the performance increase might not be due to the joint target
extraction and sentiment word extraction but rather the larger parameter size of that model.

51They describe this task as predicting a sentimental sentence.
52For Wang et al. (2016a) the annotations can be found https://bit.ly/3cMbrok. For Wang et al.

(2017c) the annotations can be found here https://bit.ly/2zh5CBE.
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LSTMs that do not rely on feature engineering can incorporate a noisy signal from a
sentiment lexicon to improve the model, whereas a CRF that relies on features using
sentiment words cannot (Jakob et al., 2010a). It would be of interest to see the difference
in performance between human sentiment word annotations and sentiment lexicon noisy
annotations, and further the effect of different sentiment lexicons across datasets of
different domains.

The LSTM based methods have improved upon the feature engineered CRF approaches
without requiring any additional sentiment word information or linguistic features since
Wang et al. (2017c)53 and Li et al. (2017) baseline bi-directional LSTM. Li et al. (2017)
was also the first to show that bi-directionality within LSTM based methods improved
results, where previously Liu et al. (2015) found this not to be the case. The reason for
the difference could be due to Liu et al. (2015) treating each input word vector to be
based on the concatenation of the current, previous, and next word’s word embedding,
whereas Li et al. (2017) just used the current word’s word embedding. Most works since
Li et al. (2017) that have used LSTMs have used bi-directional LSTMs (Li et al., 2018c).

Most of these approaches have been fairly complex, either through incorporating
dependency information into an RCNN (Wang et al., 2016a), different forms of attention
to better incorporate sentiment word information (Wang et al., 2017c; Li et al., 2018c),
and sharing information between multiple LSTMs through memories (Li et al., 2017)
to again better capture sentiment word information. However, Xu et al. (2018) showed
that using both an in-domain embedding with a general embedding through simple
concatenation, which is then used as input to a CNN, outperforms all of these prior
methods. For clarification, most of these prior works used an in-domain embedding
(Wang et al., 2016a; Wang et al., 2017c; Li et al., 2017) but the in-domain embeddings
from prior work used Word2Vec (Mikolov et al., 2013a) whereas Xu et al. (2018) used
FastText (Bojanowski et al., 2017) which can create embeddings for out of vocabulary
(OOV) tokens. This work demonstrates the gains that can be produced from using better
pre-trained word representations in comparison to complex architectures and or human
annotated sentiment word information.

The latest supervised approaches follow this trend of using better word representations
through fine tuning BERT (Devlin et al., 2019) a CWR model54. Xu et al. (2019) showed
that fine tuning BERTbase itself is no better than using a combination of general and
in-domain word embeddings (Xu et al., 2018). However when BERTbase was adapted to
the domain the results surpassed those of Xu et al. (2018). This shows that CWR can
make large gains through adapting to the domain, which was also shown in the non-CWR
work (Liu et al., 2015; Jebbara et al., 2016), and more broadly Gururangan et al. (2020)55

has shown adapting CWR to the relevant domain to be effective across many NLP
tasks and domains. Hu et al. (2019b) in comparison found that fine tuning BERTlarge

outperformed both Xu et al. (2018) and in half the cases the domain adapted BERTbase

of Xu et al. (2019). These results are not fully comparable as Hu et al. (2019b) used span
prediction rather than a sequence labelling model. Further, the biggest difference with
respect to comparisons comes from the number of parameters in the model as BERTlarge

53See the ablation results within table 4 that only uses a GRU with attention without sentiment word
information.

54Fine tuning is explained in more detail within section 5.4.1.
55In Gururangan et al. (2020) pretrained language models is the equivalent to CWR.
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contains ≈ 340M56 compared to ≈ 110M that BERTbase contains. In general, results
improve through having better word representations, but it is important to state the
details of the CWR models used to allow for fair comparisons.

Jebbara et al. (2017) has created two quantitative error analysis splits for target
extraction, the OOV split and multi word expression (MWE) split. The OOV split
creates three subsets of the data OOV op, OOV sent, and no OOV based on a target
word containing at least one OOV word, at least one word containing an OOV in the text,
and no tokens in the text being OOV respectively. The MWE split creates subsets based
on the number of tokens that make up the target, in Jebbara et al. (2017) they had three
subsets each containing sentences that had targets that are at least two, three, or four
tokens long respectively. They found in general OOV op and OOV sent to be equally
difficult and harder than no OOV. Also discovered through the MWE split was that
the longer (based on token length) the target the more difficult the extraction. Further,
they found improvements on longer targets by adding character information into their
word embedding based GRU method, which they believe is due to the character model
being able to handle spelling variations. However the character information did not
improve over what was expected on the OOV split, which they believe is due to the word
embedding being trained on in-domain data.

The most common datasets used are the SemEval 2014 (Pontiki et al., 2014), 2015
(Pontiki et al., 2015), and 2016 (Pontiki et al., 2016) restaurant datasets, SemEval
2014 laptop dataset (Pontiki et al., 2014), and from earliest unsupervised work the
customer review dataset (Hu et al., 2004b). A potential reason why the customer
review dataset was not used as much within the latest supervised work could be due
to annotation inconsistency (Marrese-Taylor et al., 2017b). Toprak et al. (2010) also
noted this inconsistency, of which one can be seen in example 11, whereby the target
stated in the annotation is battery but the character offsets are not given for the target,
thus impossible to know without a human going through it which battery is the correct
battery. The metrics commonly used to evaluate target extraction methods is the exact
match F1, precision, and recall scores (Liu et al., 2015).

battery[+2]##the standard battery include with the g3 is a camcorder battery that will
allow me to take pictures all day without worrying about charging .

Example 11: Example from customer review dataset, whereby battery[+2] indicates the
target with positive sentiment is battery within the text after ##, no character offsets
are given. All references to battery in the text are highlighted in bold. This was taken
from Line 421 from Canon G3 text file.

2.4.2 Sentiment Holder Extraction

Sentiment holder extraction, from now on referred to as holder extraction, is the task of
extracting the direct or indirect holders or sources of the sentiments expressed in the text
(Choi et al., 2005). This task can be seen in example 12 whereby sentence 1 contains the
direct sentiment holder Bella whereas sentence 2 contains an indirect sentiment holder as
Christopher is spoken about through June. The task has also been called opinion source
identification (Choi et al., 2005), source extraction (Choi et al., 2006), opinion holder

56M stands for million.
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extraction (Johansson et al., 2010; Wiegand et al., 2012), and as part of the task of
opinion entity identification57 whereby the holder is one of the entities to identify (Yang
et al., 2013).

(1) Bella enjoyed her visit to Llanfyllin. (2) June said that Christopher did not like
the amount of traffic on the road to Llanfyllin.

Example 12: Made up example to show direct and indirect sentiment holders.

Choi et al. (2005) state that holders are i) typically noun phrases, ii) the holder
phrase should be an entity that can semantically bear or express a sentiment, and iii) the
holder phrase should be linked/related to a sentiment. From these three properties Choi
et al. (2005) points out that the third property distinguishes holder extraction from the
task of Named Entity Recognition (NER).

Choi et al. (2005) was one of the first to perform this task, whereby they framed it as
a sequence labelling problem. They used a CRF with multiple syntactic and semantic
features. Included in these features is if the current, previous, and next word is in a
sentiment lexicon, and more notably whether the dependency head of the current word
is part of a syntactic chunk that contains a sentiment word from the lexicon. These
features cover the three properties that they state make up a holder.

Choi et al. (2006) showed that by combining Choi et al. (2005) CRF tagger for
holder extraction, another CRF tagger for sentiment word extraction, and a feature
based binary classifier greatly improves holder extraction compared to a non-combined
system. Further, they state that sentiment words and holders have a one holder to a
many sentiment word relationship. Johansson et al. (2010) also found that by modelling
the relationship between sentiment words and holders improves holder extraction. These
joint models were further added to by Yang et al. (2013) combining the extraction of
holder, sentiment words, and targets using CRFs as well as the relations between the
sentiment words and their respective targets and holders using a feature based logistic
classifier. Both Johansson et al. (2010) and Yang et al. (2013) both took into account
implicit sentiment word relationships whereby the sentiment word does not affect either
a holder or a target, whereby Yang et al. (2013) shows large recall benefits within the
relation task.

All of these current approaches require a mass of features and thus feature engineering.
Katiyar et al. (2016) used a bi-directional LSTM to automatically create features while
only using pre-trained word embeddings as input to the model. They found that the
model could not outperform a feature engineered joint CRF model, but could exceed the
non-joint version after the LSTM uses a CRF type of approach to learn dependencies
within the output layer instead of the standard softmax. Marasović et al. (2018) believed
that the lack of data was one of the reasons why the LSTM approach was not as successful
as the feature engineered approach. They overcome this through MTL with Semantic
Role Labelling (SRL) as the auxiliary task, this was chosen as many of the feature
engineered approaches used SRL features (Choi et al., 2005; Johansson et al., 2010; Yang
et al., 2013). They found MTL with SRL does improve performance over just the single
task. This was further verified by Zhang et al. (2019b) which instead of creating an

57Opinion entity identification has also been called opinion entity extraction (Katiyar et al., 2016) and
opinion role labelling (Marasović et al., 2018; Zhang et al., 2019b)
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MTL model with SRL whereby they share all layers in the LSTM, added final output
of the SRL model to the first layer of the holder/target extractor. They state that the
improvement came as they do not share all layers with the SRL, thus there is less error
propagation from the SRL.

The main dataset for holder extraction is the MPQA 2.0 corpus (Wiebe et al., 2005).
There are also several evaluation metrics on a range of difficulties whereby the most strict
is exact match F1, followed by proportional, and then the easiest binary58 F1 (Zhang
et al., 2019b; Marasović et al., 2018; Katiyar et al., 2016). Both Katiyar et al. (2016) and
Marasović et al. (2018) found that their models outputted correct labels but the human
annotations from the MPQA 2.0 corpus had not labelled these as correct suggesting that
annotations might be missing from the MPQA corpus. Marasović et al. (2018) found
that their models struggled with holders and targets that are far away from their related
sentiment words, thus suggesting dependency parsing could be a useful auxiliary task
to overcome these long-range dependency problems. As Marasović et al. (2018) main
motivation for MTL was to overcome the lack of data, an alternative to MTL would be
to use CWR59 as suggested by Marasovic (2020) in section 5.3.

2.4.3 Target Dependent Sentiment Analysis

TDSA is the task of predicting the sentiment of a target with respect to the text it is
within. Unlike ABSA a target is not latent and thus has to always exist within the
text. Like other fields TDSA has also been called by other names, of which the most
frequent of these is aspect based sentiment analysis (Wang et al., 2016b). TDSA is not
the same task as targeted sentiment analysis, targeted sentiment analysis involves the
joint task of extracting and predicting the sentiment of a target (Mitchell et al., 2013),
TDSA only involves the latter task. One of the major differences between TDSA and
sentence/document level sentiment analysis is target specific sentiment, whereby most
targets are affected differently based on the sentiment words affecting it, even within the
same domain. An example of this is: The knives were sharp. From this example sharp
can easily affect a target positively or negatively, an example where it can affect a target
negatively in the same domain: The edge of the table were sharp.. This target specific
sentiment can also happen for aspects/entities when the target is implicit within fine
grained sentiment analysis and for aspects in ABSA. This is stated in Ding et al. (2008,
§2) and Popescu et al. (2005, §3.3.4).

Nasukawa et al. (2003) was one of the first to create a TDSA system in which they
created a rule based method using a manually created sentiment lexicon, POS tags,
chunking60, and dependency parsing61 information. This was then followed by (Hu et al.,
2004a) which instead of using a manually created sentiment lexicon, they automatically
create one using a few known seed adjectives62. They bootstrap off the seed adjectives to
label other adjectives, which are synonyms or antonyms using WordNet (Miller, 1995) of
these seed adjectives, with the seed’s sentiment labels. The sentiment of each target is
then labelled with the nearest adjective that has been assigned a sentiment label from

58This is sometimes called overlap instead of binary Choi et al., 2005; Choi et al., 2006
59In Marasovic (2020) thesis they use the words pre-trained language models instead of CWR.
60In the paper they use shallow parsing, of which this is interpreted as chunking.
61In the paper they use syntactic parsing, of which this is assumed to be dependency parsing.
62This lexicon can be found here https://bit.ly/2Y3iJik.
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the expanded sentiment lexicon. Even though the main sentiment part of the paper was
sentence sentiment analysis this technique of labelling targets was used to help identify
infrequent targets in the paper and can be used as a TDSA method. Furthermore, one
assumes this TDSA approach was the one used in Popescu et al. (2005) and Ding et al.
(2008) when comparing methods.

Popescu et al. (2005) used a set of dependency rules to extract sentiment words
associated with a target, those sentiment words were then labelled with an initial sentiment
based on Turney (2002) unsupervised sentiment PMI (Church et al., 1989) approach.
Lastly those sentiment words were contextualised with respect to the target and sentence
using relaxation labelling (Hummel et al., 1983), an unsupervised technique, which
finds the most likely sentiment based on a set of constraints. The constraints in this
case come from the target, dependency rules, conjunctions, synonym and antonym, and
morphological relationships. Ding et al. (2008) also created a rule based system, they
extended the sentiment lexicon from Hu et al. (2004a) to include verbs and nouns using
the same bootstrapping technique and also manually created an idiom sentiment lexicon.
Further they automatically generated a target dependent sentiment lexicon based on
linguistic rules. A target is then scored based on a distance weighted sentiment lexicon
count taking into account negation and conjunctions through a set of rules. Sentiment
for implicit targets was taken into account by assuming some adjective sentiment words
imply a target. Ding et al. (2008) compared their system to the other unsupervised rules
based systems (Hu et al., 2004a; Popescu et al., 2005) across Hu et al. (2004a) dataset
and their own dataset which used the same annotation guideline as Hu et al. (2004a).

The approaches described so far have all been rule based and unsupervised, this
approach similar to how the target extraction literature and more broadly most NLP
topics was overtaken by supervised methods. These supervised approaches could also
benefit from not requiring feature engineering through using different NN architectures
learning the required features. RCNN became popular whereby these made use of the
dependency tree structure (Dong et al., 2014; Nguyen et al., 2015). Where as some used
Neural Pooling which averaged word embeddings based on their various different windows
of text that relate to the position of the target in the text (Vo et al., 2015; Wang et al.,
2017a). LSTMs have also been used taking into account the position of the target (Tang
et al., 2016b). LSTMs have also been combined with attention to better model longer
term dependencies (Wang et al., 2016b; Chen et al., 2017).

Even though TDSA has been well explored through various different methods. None
have attempted a reproduction study to evaluate if a paper can be recreated only from
what is written within the paper. This may seem unnecessary due to the field moving
towards open sourcing code with papers. However, even when the code is open sourced
it would appear that results can differ, as shown by Chen et al. (2017) generating better
results than the original (Tang et al., 2016b). Furthermore, Tay et al. (2018) found that
when they re-implemented the paper they got a lower result than original (Tang et al.,
2016b). Thus motivating the need for a reproduction study.

Further, many of these papers are evaluated on a limited number of datasets (as
shown in chapter 3). Thus when the authors may state, state of the art performance it is
not known to what extent they are state of the art. Thus a large scale exploration into
what is state of the art across many datasets and different methods is required to allow
the field to better know the limitations of different methods.
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Lastly, very few of these works perform detailed quantitative error analysis, most
only report the metric results applied to the whole dataset. Further from the existing
quantitative error analysis techniques/splits (Nguyen et al., 2015; Wang et al., 2017a;
Zhang et al., 2019a) that do exist no detailed work has been performed to analyse what
they actually show and when they are useful.63

The main datasets for TDSA are the SemEval 2014 (Pontiki et al., 2014), 2015
(Pontiki et al., 2015), and 2016 (Pontiki et al., 2016) laptop and restaurant datasets64.
Another popular dataset is the Twitter dataset of Dong et al. (2014). The most popular
datasets during the unsupervised methods are the Hu et al. (2004a) and Ding et al. (2008)
customer review datasets. Additional datasets for TDSA include the MPQA 2.0 corpus
(Wiebe et al., 2005) and the review corpus by Toprak et al. (2010). For a more detailed
analysis of a large range of TDSA datasets see section 3.4.1. The main evaluation metrics
are accuracy and macro F1, whereby macro F1 better takes into account any unbalanced
label distributions in the evaluative dataset.

2.5 Further Related Topics

These topics are not extended directly within the thesis, but are closely related to the
overall topic of fine grained sentiment analysis. The literature review of the following
topics will be brief but will contain references to papers that will allow the interested
reader to explore the topic in more detail. The main reason for including these topics is
to give the reader a primer into parts of the future work section 6.3.

2.5.1 Implicit and Factual Sentiment

In this thesis it has not been stated whether the sentiment that is being evaluated
is explicit or implicit, this additional information has been largely ignored so far in
previous research due to most datasets not stating which kind of sentiment it is via the
annotation. Explicit and implicit sentiment usually come from subjective and objective
texts respectively (Toprak et al., 2010; Kauter et al., 2015), however in the MPQA 2.0
corpus (Wiebe et al., 2005) expressive subjective elements are still defined as subjective
even though their sentiment is not explicit. Thus implicit sentiment cannot be defined
as objective or subjective sentiment. Implicit sentiment has been defined by (Russo
et al., 2015) as “the recognition of subjective textual units where no polarity markers
are present but still people are able to state whether the text portion under analysis
expresses a positive or negative sentiment”65. Explicit, on the other hand is the opposite
where the sentiment of the text is clear based on the sentiment bearing words that appear
in the text. Example 13 and 14 show cases of implicit and explicit sentiment respectively.

I know that I have my disease under control .

Example 13: Example of implicit positive sentiment towards the event/aspect
(FEAR OF) PHYSICAL PAIN, taken from the CLIPEval corpus (Russo et al.,
2015).

63A more detailed literature review of error analysis for TDSA can be found in section 4.2.1.
64Only 2014 for the laptop dataset.
65Polarity here can be interchanged with the word sentiment.
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I have no complaints about the entire PhD journey and highly recommend this school.

Example 14: Example of explicit positive sentiment towards the both the PhD journey
and this school targets, taken from the Toprak et al. (2010) corpus.

Factual sentiment in this thesis is the same as implicit, it has been defined by Toprak
et al. (2010) as “facts which can be objectively verified, but still imply an evaluation of
the quality or value of an entity or a proposition”, whereby an entity here is considered
equivalent to a target in TDSA. From that definition it is clear that factual sentiment
occurs implicitly as the sentiment/value is implied by the fact. Example 15 shows that
factual sentiment is the same as implicit sentiment.

E*trade requires no such fee

Example 15: A factual positive sentiment towards the company E*trade, which has
come from the Toprak et al. (2010) corpus.

Implicit sentiment occurs more often in newswire datasets such as the financial dataset
of Kauter et al. (2015), where as explicit sentiment appears more often in review datasets
(Toprak et al., 2010; Mæhlum et al., 2019; Øvrelid et al., 2020). The differences in the
domains is most likely the reason for these differences as news content contains more
objective and factual content, where as review datasets are a lot more subjective (Kauter
et al., 2015). Furthermore in the financial literature, sentiment tends to be referred to as
tone (El-Haj et al., 2019), where the tone tends to be more objective than subjective
as can be seen in example 16. Thus could be seen as implicit sentiment within the
categorisation in this thesis.

our profit margins increased despite higher raw material prices

Example 16: Positive sentiment/tone sentence, taken from El-Haj et al. (2016) financial
corpus.

The CLIPEval (Russo et al., 2015) and the human need (Ding et al., 2018) corpora
both contain only English implicit sentence level ABSA sentiments66. MPQA 2.0 (Wiebe
et al., 2005) contains implicit sentiment expression denoted as expressive subjective
elements in English. Deng et al. (2013) created a good for/bad for English dataset where
by the implicit sentiment of a target is inferred from another object’s perspective rather
than the speaker or writer as is the case of TDSA, this can be best seen in example 17.
The MPQA 3.0 English dataset (Deng et al., 2015b) contains both explicit and implicit
sentiment towards eTargets67. TDSA datasets have also been annotated for implicit
and explicit sentiment in English (Toprak et al., 2010; Kauter et al., 2015) and Dutch
(Kauter et al., 2015)68. The Norwegian sentence level dataset (Mæhlum et al., 2019) that
has been labelled for evaluative and non evaluative, whereby evaluative indicates that a
sentiment exists in the sentence, has been annotated such that evaluative sentences have

66The human need corpus uses out of context phrases rather than sentences.
67They are called eTargets rather than targets, as an eTarget is only one token of a whole target span

in which it is the head of the noun/verb phrase within that span. This is a simplified explanation, more
details can be found within Deng et al. (2015b).

68The Kauter et al. (2015) dataset does not appear to be public.
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been separated based on the implicit sentiment being personal or not. The reason for
the differentialisation between personal and non-personal implied sentiment, whereby
the explicit sentiment is also with the personal implicit sentiment, is so that the explicit
and personal implicit is better separated from the implicit non-personal sentiment69.
This Norwegian dataset was further annotated with TDSA annotations (Øvrelid et al.,
2020). From the financial domain, El-Haj et al. (2016) created a dataset where the tone
of sentences within UK preliminary earning announcements have been annotated70.

Luckily Bill didn’t kill him.

Example 17: Good for the target him where by the object called an agent, Bill, did
not kill him and thus is beneficial for him. This was taken from the Deng et al. (2013)
corpus.

An early method used a lexicon based approach with linguistic rules to better identify
implicit sentiment that is created from nouns and noun phrases (Zhang et al., 2011). In
contrast, both Deng et al. (2014a) and Deng et al. (2014b) used a rule based approach
to classify implicit targets, and Deng et al. (2015a) also used a rule based approach
where they first identified the holder and target then predicted the sentiment of target
with respect to the holder. Mæhlum et al. (2019) used a NN approach and found that
identifying non-personal implicit sentiment sentences much more difficult than explicit
and personal implicit sentiment sentences, however the non-personal implicit sentiment
sentences were a very small minority class (3.77%). Finally, both İrsoy et al. (2014)
and Han et al. (2019) found that implicit sentiment expression identification is a more
difficult task than that of explicit sentiment extraction. It is clear from the literature
that understanding exactly the data you have is important, as techniques that work on
review datasets that make use of explicit subjective knowledge are unlikely to work on
more objective datasets, such as those in the financial domain and vice versa. Finally
Xiang et al. (2019) has currently achieved SOTA on the CLIPEval dataset (Russo et al.,
2015) whereby they use a GRU multi headed attention based NN similar to Wang et al.
(2016b) ABSA NN.

2.5.2 Discourse level considerations within
Fine Grained Sentiment Analysis

Within the literature review so far most of the methods for fine grained sentiment analysis
(2.4) stated do not take into account anything beyond the sentence level information. One
reason for this could be that some of the popular datasets do not require inter-sentence
knowledge for predicting the relevant properties (Pontiki et al., 2014; Øvrelid et al.,
2020). Furthermore, some of the datasets that do state that inter sentence information
is necessary do not annotate which annotations require this information (Pontiki et al.,
2015; Pontiki et al., 2016). The work reported below explores fine grained sentiment
analysis beyond the sentence level utilising discourse information (Webber et al., 2003).

Taking discourse information into account would allow methods to potentially better
contextualise words with respect to the whole text. For instance Kessler et al. (2009)

69The implicit non-personal sentiment in the paper were called FACT-NP.
70This dataset also contains tone towards two attributions, internal and external to an organisation.

This can be viewed as sentiment towards two very high level aspects within sentence ABSA.
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found that 14% of targets are pronouns, Jakob et al. (2010b) further showed on another
corpus (Zhuang et al., 2006) that 504 targets71 are pronouns but the corpus contained
over 11,000 pronouns. This shows to some degree why additional information is required,
such as co-reference information as knowing what the referent of the pronoun is can
help disambiguate whether the pronoun is a target or not, as can be seen in example 18.
Additionally this example shows that a pronoun does not have to be in the same sentence
as the referent. Jakob et al. (2010b) showed that using a co-reference system can indeed
improve the performance of a rule based target and sentiment expression extraction
system. Thus showing the importance of taking additional discourse information into
account. Another case where co-reference could be of use is resolving the holders of the
sentiment, as shown in the error analysis of Marasović et al. (2018) in table 9 row 7.

yesturday i helped me mom with brians house and then we went and looked at a kia
spectra. it looked nice, but when we got up to it, i wasn’t impressed. it looked like it
was in an accident.

Example 18: Multiple sentences taken from review car-001-027 from batch 1 of the
JDPA car corpus (Kessler et al., 2010). All the bold pronouns represent the same target,
which is the kia spectra.

Additionally, co-reference resolution can be of use to help group targets together to
allow an end user to get a better understanding of what a target (and all of its references
in the text) is positive or negative towards (Marasovic, 2020)72. In effect, this is a more
fine grained version of the aspect of a target, where the main difference is that an aspect
may contain targets that do not refer to the same referent. Stoyanov et al. (2008)73

found that by creating a noun-phrase (NP) co-reference resolution system they could
identify which targets belong to the same aspect, but their system did not perform aspect
labelling just grouping of targets.

Lastly, discourse information can be of use to disambiguate the sentiment. Kessler
et al. (2010) found 9% of sentiment expressions are linked to a target that is in another
sentence. Thus without looking further than the current sentence the limit on any method
would be 91%. This phenomenon can be seen in example 19 whereby the sentiment
of the target (‘Mac’) is in a different sentence74. Somasundaran et al. (2008b) and
Somasundaran et al. (2009b) also motivated that discourse information is required for
disambiguating some targets’ sentiments due to their reliance on other targets’ sentiments
in the same discourse75. They created an “opinion frame” corpus (Somasundaran et al.,
2008a) which consists of triplets (sentiment 1, sentiment 2, same or alternative)76 which
denote if two targets represent the same or alternative target, where the condition for
same is if the two targets refers to the same entity77. These opinion frames can then be

71 10% of all targets in the corpus.
72See section 1.3 of the thesis (Marasovic, 2020).
73In the paper they use the term ‘topic’ which is the same as aspect within this thesis. Further they

define topic and target spans, whereas in this thesis both would be defined as the target span.
74This example was taken from Pontiki et al. (2015) paper.
75Very similar to the concept of implicit sentiment from subsection 2.5.1.
76Whereby sentiment 1 and 2 refer to the sentiment of target 1 and 2 respectively. The value for

sentiment 1 and 2 could be positive or negative.
77Entity here is the same as an entity in co-reference resolution.
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used to know if two targets are reinforcing each other or not, where reinforcing means that
the sentiment of both targets are not contradicting each other just like a pros and cons
list creates contradicting sentiment to the relevant target. They found that by adding
features that incorporated reinforcing/non-reinforcing and alternative/same relations
into a classifier for predicting target sentiment greatly improved results, especially for
targets that have these relations (Somasundaran et al., 2009c). Thus showing adding
discourse level relations between targets is important for fine grained sentiment analysis.
These relations between targets is similar to inter-target encoding (Hazarika et al., 2018),
but the key difference is that the inter-target encoding was only done within sentences,
whereas these relations took into account targets within and beyond the sentence. Further
the notion of reinforcing is similar to that of comparative sentiment analysis (Varathan
et al., 2017).

I was so happy with my new Mac. for 2 months. Then the hard drive failed;

Example 19: Negative sentiment towards the Mac due to the hard drive failing. This
came from sentence ids 128:3, 128:4 and 128:5 of the laptop training dataset of Pontiki
et al. (2015).

The use of co-reference with respect to better capturing targets and their sentiment
has also been stated within Sukthanker et al. (2020)’s review of anaphora and co-reference
resolution78. They also state that co-reference can be of use to help disambiguate targets
across multiple texts/documents/reviews.

It is clear that very few datasets contain discourse information and when they do
some of these datasets are not publicly available (Zhuang et al., 2006; Stoyanov et al.,
2008; Kauter et al., 2015). Considering those that are publicly available, Toprak et al.
(2010) dataset includes co-reference of targets and sentiment holders. However their
inter-annotator agreement levels for the co-reference annotations was low79 compared to
another co-reference dataset (Passonneau, 2004). They believe this low inter-annotator
agreement was due to the guidelines not specifying which instance of the entity (target or
holder) in the text should be the referent. Thus the annotators may agree on which entity
is the referent but the annotations could be to two different instances of the same entity.
Kessler et al. (2010) also contains co-reference annotations. Somasundaran et al. (2008a)
created a corpus of “opinion frames” containing discourse level relations between targets
as stated earlier. Finally Ding et al. (2010) created a co-reference corpus within the
review domain80, where they showed that sentiment features can help with co-reference
resolution on their new corpus.

2.5.3 Stance Detection

Stance “refers to an overall position held by a person toward an object, idea or proposition”
(Somasundaran et al., 2010). Stance detection is normally set up such that given an
object/topic predict if the text is for or against that topic, where the text normally

78Specifically section 9 of the review.
79Toprak et al. (2010) inter-annotator aggrement levels for co-reference annotations was a Krippendorf’s

α (Krippendorff, 2018) value of 0.29 compared to Passonneau (2004) who obtained α values between 0.46
and 0.74.

80The corpus does not appear to be public.
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represents the position of the person who wrote it. Example 20 shows a ‘for’ position by
the Twitter user who wrote the Tweet on the topic of legalisation of abortion.

The pregnant are more than walking incubators, and have rights!

Example 20: Tweet which is for the topic legalization of abortion. This example
comes from the first example in Mohammad et al. (2016).

The reason for the relation to sentiment is due to the task setup, in that the model
has to predict label based on the text and a topic whereby the topic is latent just like an
aspect within ABSA. Second, sentiment can be used to predict stance (Somasundaran
et al., 2009a; Somasundaran et al., 2010; Mohammad et al., 2017) and has been shown
useful as an auxiliary task in a multi task setup (Li et al., 2019). Further it has also
been shown within Augenstein et al. (2018) novel label embedded multi task work that
the label embeddings between stance detection and sentiment tasks such as ABSA are
close within the embedding space81. Also they found that one of the best auxiliary tasks
for stance was TDSA. However, they did not show how useful stance detection was for
ABSA or TDSA as they found a more useful combination of other auxiliary tasks which
included other ABSA and TDSA data, fake news detection (Riedel et al., 2017), and
multi genre natural language inference (Nangia et al., 2017).

One stance dataset that is of particular interest is that of Mohammad et al. (2017).
They created a Twitter stance dataset which also included annotations for sentiment.
The sentiment labels state whether the sentiment is aimed at the stance topic or another
arbitrary topic, and an example of each can be seen in 21 and 22. A version of this dataset
was also used in the SemEval 2016 task 6 stance detection competition Mohammad et al.
(2016). For a more detailed overview of stance detection see the survey by Küçük et al.
(2020), which also states the relationship between ABSA and TDSA with stance detection
in section 2.1 of their survey.

Hillary is our best choice if we truly want to continue being a progressive nation. #Ohio
#SemST

Example 21: Tweet which is for the topic Hillary Clinton and has a positive sentiment
towards the topic. This example comes from the trial dataset of Mohammad et al. (2017).

U know what isn’t funny? Male politicians deciding what women should do with their
body’s. #SemST

Example 22: Tweet which is for the topic legalization of abortion and has a negative
sentiment towards another topic (this other topic is only labelled as other in the dataset).
This example comes from the trial dataset of Mohammad et al. (2017).

Stance has also been studied within linguistics, where the definition of stance is
similar to that of Somasundaran et al. (2010) stated above; “Stance is a public act by a
social actor, achieved dialogically through overt communicative means, of simultaneously
evaluating objects, position subjects (self and others), and aligning with other subjects,

81See figure 2 in Augenstein et al. (2018).
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with respect to any salient dimension of the sociocultural field.” (Du Bois, 2007). The
main difference between the two definitions is that of Du Bois (2007) taking into account
other people’s stance. However it could be argued that everyone takes a stance and
thus you will be implicitly aligned with other people with regards to the stance that the
person has taken.

Even though the examples given here are for stance in relation to short texts, other
domains may require the stance of the author towards a topic given an entire review/post82.
In these cases it is clearer to see that stance is a much higher level task than fine grained
sentiment analysis and can easily be seen as a document level ABSA task. This shows
that stance on many levels is very similar to sentiment, if anything perhaps a more
simplified task as it is usually setup as a binary for or against a single topic rather
multiple topics which is typical in ABSA. Further it can be seen from previous work how
TDSA is useful for stance prediction (Somasundaran et al., 2009a; Somasundaran et al.,
2010). Fine grained sentiment analysis that can link the targets’ sentiment to a holder
can be more useful for stance in cases where texts can contain many different holders
views on a topic. Potential future work could explore how fine grained sentiment analysis
could uncover stance in texts that contain multiple stances for multiple holders for a
single topic, such as political debates from Hansard. For a great overview of sentiment
and stance see Somasundaran (2010) thesis especially chapters 7 and 8.

2.6 Conclusion

The literature review has covered multiple levels of sentiment analysis from coarse grained
document/sentence level to fine grained sentiment analysis. The review has described
each granularity in detail with a large focus on methods, and it was found that the
majority of these were evaluated on English datasets making this review biased towards
the English language. Each granularity of sentiment is shown to help explain the next
level and the reason why an extra level of granularity is required. Within fine grained
sentiment analysis a new definition was created that extended the current (Liu, 2015),
whereby unlike the previous definitions the new hextuple removes sentiment ambiguity.
Further, this sentiment ambiguity was shown empirically, rather than just theoretically,
to affect the current definition of Liu (2015) through the popular SemEval 2015 (Pontiki
et al., 2015) and 2016 (Pontiki et al., 2016) restaurant dataset.

Within the TDSA review, the main area of research of this thesis, it is clear that
there has been a lack of rigour within the evaluation of the methods. As stated, very few
methods report any quantitative error analysis, whereby the error analysis breaks the
results up into meaningful error splits for TDSA. Furthermore, even within the English
language a large focus of work has been concentrated on just a few datasets making
it difficult to know which method is best, or the more likely case, when to use which
method. Additionally it highlights how one particular popular NN TDSA method (Tang
et al., 2016b) has been reproduced with varying degrees of success.

This review motivates the need to study existing methods across more diverse existing
datasets to better understand if one method is best, or if different methods work better
under different conditions. Additionally, a detailed review of existing quantitative error

82In Somasundaran et al. (2010) and Somasundaran et al. (2009a) they perform experiments on political
and product posts respectively where the posts in general are more than one sentence.
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analysis techniques to unpick what they evaluate should be carried out, and if any more
techniques are required to better understand what errors still occur within TDSA. Lastly
a replication study into existing TDSA methods will be of use to explain why different
implementations of the same method can obtain varying results.
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Chapter 3

Reproducibility and
Generalisability of TDSA Methods

3.1 Introduction12

Within this chapter the terms reproduce and replicate will be used frequently. Thus
replicate will be defined as “running the exact same system under the same conditions in
order to get the exact same results as output” (Fokkens et al., 2013), essentially running
the published code from the paper. Reproducing the results requires re-creating a system
through different means which should “lead to the same overall conclusions rather than
producing the exact same numbers” (Fokkens et al., 2013).

As highlighted within the literature review (chapter 2) there has not been a repro-
ducibility study within the TDSA literature. To many this might not be a problem as
most works publish their code alongside the paper as shown by table 3.1. However, many
of these codebases lack detailed documentation and mainly only provide a script to re-run
the experiment, which is perfectly fine, but does mean many of the details of the method
are hidden within the codebase. These finer details could well be reported in the paper
which overcomes this issue.

In this chapter, three papers are reproduced: two Neural Pooling (NP) methods3 (Vo
et al., 2015; Wang et al., 2017a) (which are not based on Neural Networks (NN)), and
one LSTM based (Tang et al., 2016b). All three have published their code. It is shown
for the two NP methods that scaling features, a setting which was not reported in the
papers, but for one (Wang et al., 2017a) did mention in part in the documentation of
the codebase4, can cause significant differences in the results. Further, it is also shown

1All code that creates the evidence for this chapter can be found in this codebase: https://github.
com/apmoore1/thesis-chapter-5-linear-models. The evidence for table 3.1 can be found in this
codebase: https://github.com/apmoore1/tdsa-paper-details.

2A lot of this chapter is based on, extends, and in some places contains complete or paraphrased
extracts from Moore et al. (2018).

3A Neural Pooling method is a method that aggregates vector values dimension wise. An example use
case for NLP is where all N words in a text are represented as dense word vectors of dimension size m,
applying a Neural Pooling method aggregating using the maximum value would return a single word
vector of size m with the maximum value for each dimension across the N words. See Vo et al. (2015) for
more information on Neural Pooling.

4The README which can be found here: https://github.com/bluemonk482/tdparse.
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for the NP methods that the C-value within the SVM classifier used in the NP methods
can also cause significant differences. This parameter is reported in Vo et al. (2015) but
not Wang et al. (2017a). Additionally, for the LSTM based method it is shown that
reported results are difficult to reproduce without taking into account random seeds,
a factor that is never mentioned in the paper and has only recently been shown to be
an issue with Neural Network (NN) based methods within NLP (Reimers et al., 2017).
The distribution of results generated from different random seeds suggests a possible
reason why some prior works, which have attempted to reproduce (Tay et al., 2018) and
replicate (Chen et al., 2017) this LSTM method, reported different results to each other
and the original authors. Lastly, a new investigation into using larger more general word
embeddings finds that they are at least as good as the original smaller more task-oriented
embeddings, resulting in a trade off between performance, efficiency, and convenience.
These reproduction findings contribute to answering RQ 1 ‘what lessons can be learned
from reproducing a method within TDSA?’.

Number of papers Code published (%) Code link in paper
(%)

Code link not in pa-
per (%)

31 16 (51.61%) 13 (41.94%) 3 (9.68%)

Table 3.1: Out of the 31 papers published between 2013 and 2019 from the relevant NLP
conferences (ACL, EACL, NAACL, EMNLP, CONLL, COLING, AAAI, TACL, and
IJCAI) and WASSA workshops, this shows how many of them publish their code. Out
of those that release their code the number that put a link to their code in the paper
compared to those that do not and have to be found through an internet search. Note
the author’s paper (Moore et al., 2018) is not included in the statistics.

The second half of the chapter explores RQ 2 ‘how generalisable are existing methods
within TDSA?’. This research question was motivated in part by the fact that many
methods do not make use of the datasets that exist5 as shown by table 3.2. Additionally
these existing datasets often vary by type (e.g. review, social media, or news), domain
(e.g. products), medium (e.g. written or spoken), dataset size, language, and many
other factors. Thus, evaluating a method only on a subset of existing datasets limits
the conclusions that can be drawn from those evaluated methods as they might perform
well on those evaluated datasets, but it is unknown if they perform well on datasets
from a different medium, domain, etc. Therefore to answer the research question, the
reproduced TDSA methods from the first half of the chapter, which were selected due
to their methodological differences, are applied to six English TDSA datasets. These
six datasets vary by the following classes: domain, type, and medium as shown by table
3.3 (see the experimental setup section 3.4 for more details on the datasets used). This
is the first large scale TDSA experiment that has evaluated a range of methods across
all three classes. Doing so allows the methods to be tested for generalisation as none
of them were originally developed for all six datasets. This research finds that methods
are more affected by dataset size and sentiment class distributions than type, domain,
and medium. Further, when controlling the dataset size the LSTM methods are greatly
affected in comparison to the NP methods. These findings have important consequences
as they bring to light to some extent when to use which method.

5Or existed at the time.

41



Chapter 3. Reproducibility and Generalisability of TDSA Methods

Datasets

Methods 1 2 3 4 5 6 7

Mitchell et al. (2013) ✓

Kiritchenko et al. (2014) ✓

Dong et al. (2014) ✓

Vo et al. (2015) ✓

Zhang et al. (2015a) ✓

Zhang et al. (2016) ✓ ✓ ✓

Tang et al. (2016b) ✓

Tang et al. (2016a) ✓

Wang et al. (2016b) ✓

Chen et al. (2017) ✓ ✓ ✓

Liu et al. (2017) ✓ ✓ ✓

Wang et al. (2017a) ✓ ✓

Marrese-Taylor et al. (2017a) ✓ ✓

1=Dong et al. (2014), 2=Wilson (2008), 3=Mitchell et al. (2013),
4=Pontiki et al. (2014), 5=Chen et al. (2017), 6=Wang et al. (2017a),
7=Marrese-Taylor et al. (2017a)

Social Media Reviews News Not Applicable

Table 3.2: A tick denotes that the method in the row has been applied to the dataset
in the column, from the method’s original paper and not a replication/reproduction
of the method. Methods in bold are those that are being reproduced in this chapter.
The dataset numbers in bold are the datasets that the reproduced methods will be
evaluated on in this chapter. The colours represent the type of the dataset, apart from
not applicable which indicates the dataset did not exist when the method was created.

3.2 Related Work

Reproducibility and replicability have long been key elements of the scientific method,
but have been gaining renewed prominence recently across a number of disciplines
with attention being given to a ‘reproducibility crisis’. For example, in pharmaceutical
research, as little as 20-25% of papers were found to be replicable (Prinz et al., 2011).
The problem has also been recognised in computer science in general (Collberg et al.,
2016). Reproducibility and replicability have been researched for sometime in Information
Retrieval (IR) since the Grid@CLEF pilot track (Ferro et al., 2009). The aim was to create
a ‘grid of points’ where a point defined the performance of a particular IR system using
certain pre-processing techniques on a defined dataset. Louridas et al. (2012) looked
at reproducibility in Software Engineering after trying to replicate another author’s
results and concluded with a list of requirements for papers to be reproducible: (a)
All data related to the paper, (b) All code required to reproduce the paper, and (c)
Documentation for the code and data. Fokkens et al. (2013) looked at reproducibility in
WordNet similarity and Named Entity Recognition, finding five key aspects that cause
experimental variation and therefore need to be clearly stated: (a) pre-processing, (b)
experimental setup, (c) versioning, (d) system output, and (e) system variation. In
Twitter sentiment analysis, Sygkounas et al. (2016) stated the need for using the same
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software library versions and datasets when replicating work.

Different methods of releasing datasets and code have been suggested. Ferro et al.
(2009) defined a framework (CIRCO) that enforces a pre-processing pipeline where data
can be extracted at each stage therefore facilitating a validation step. They stated a
mechanism for storing results, dataset and pre-processed data6. Louridas et al. (2012)
suggested the use of a virtual machine alongside papers to bundle the data and code
together, while most state the advantages of releasing source code (Fokkens et al., 2013;
Potthast et al., 2016; Sygkounas et al., 2016).

Within the the research community, conferences have added reproducible research as
a research track, and this started within IR in 20157. These tracks have now progressed
into NLP with COLING 20188, LREC 20189, LREC 202010, and COLING 202011.
Furthermore, LREC 2020 also had the first shared task on reproducing a set of NLP
papers (Branco et al., 2020). Predating these reproducible research tracks at NLP
conferences was the 4REAL workshop12 which encouraged researchers to present and
generate reproducible NLP research.

Recently within the NLP and ML fields there has been a growing consensus around
what is required to make a paper reproducbilble, with the EMNLP 2020 conference
using a checklist derived from Dodge et al. (2019) and the NeurIPS 2020 conference
checklist by Joelle Pineau13. There has also been a push for better reporting of methods,
which relates to the concept of generalisation as well as reproducibility within this thesis.
A model card (Mitchell et al., 2019) is one form of reporting a method whereby the
creator(s) of the method would state various details of the method including ethical
information, method details, and evaluative results. Companies have also created tools
to make machine learning more reproducible such as Weights & Biases14 ‘Artifacts’15

that allows users to track the data and code that created a specific model.

More closely related to TDSA, Marrese-Taylor et al. (2017b) attempted to reproduce
three different syntactic target extraction methods. They found that parameter tuning
was very important, however using different pre-processing pipelines such as Stanford’s
CoreNLP did not have a consistent effect on the results. They found that the methods
stated in the original papers are not detailed enough to reproduce the study as evidenced
by their large results differential. Within sentiment classification at the document level
Dashtipour et al. (2016) reproduced numerous non Neural Network (NN) multilingual
methods and applied them all to the same two datasets so that the methods can be easily
compared. At the sentence level Barnes et al. (2017) compares seven NN and non-NN
approaches on six datasets, where many of these datasets have only been benchmarked
against one approach. They found a bi-directional LSTM to be on average the most
effective approach, and further found that using pre-trained sentiment embeddings from
lexically similar data as the training data greatly improves results. Lastly within TDSA,

6http://direct.dei.unipd.it/
7http://ecir2015.ifs.tuwien.ac.at/wp/?page_id=227
8https://coling2018.org/index.html%3Fp=491.html
9http://lrec2018.lrec-conf.org/en/calls-papers/1st-call-papers/

10https://lrec2020.lrec-conf.org/en/calls-papers/1st-call-papers/
11https://coling2020.org/pages/call_for_papers
12http://4real.di.fc.ul.pt/
13https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
14https://www.wandb.com/
15https://www.wandb.com/articles/announcing-artifacts
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Chen et al. (2017) reproduced multiple methods and created their own methods, which
they then applied to four datasets, which contain two different languages, different
domains, and types, but all come from the same medium, written text. Thus, this chapter
presents the first reproduction study within TDSA. Also using the methods reproduced
that are known to reflect the original paper’s implementation, the largest to date study
of generalisation within TDSA within the English language that spans six datasets with
different types, domains, and mediums.

3.3 Methods

In this chapter, three popular TDSA methods are reproduced, two NP; Vo et al. (2015)
and Wang et al. (2017a), and one LSTM Tang et al. (2016b). The LSTM based method
was chosen due to the disagreement within the literature, where different prior works
have reported different results to the original. The other two methods were chosen as
they are fairly different to the LSTM whereby they use word embeddings, but those
word embeddings are only input into an SVM compared to a large parameterised LSTM.
Secondly within the two NP methods Wang et al. (2017a) is a direct extension of Vo et al.
(2015) whereby they include syntactic information directly into the model thus requiring
a dependency parser. Therefore all three methods are fairly different. These differences
are important in evaluating how generalisable the methods are across varying datasets
as stated in the introduction 3.1, as these differences could explain why one method is
better than another on certain datasets. Furthermore, even though all three have been
compared within Wang et al. (2017a), they have only been compared on Twitter based
datasets and not a range of non-Twitter datasets. In this subsection the three methods
will be explained in detail, in the following order: Vo et al. (2015) NP method, Wang
et al. (2017a) NP with dependency parsing, and Tang et al. (2016b) LSTM.

3.3.1 Neural Pooling

The Vo et al. (2015) NP method is the simplest of the three methods being presented
within the chapter. As shown in figure 3.1 it treats each word in the sentence as a word
vector that has come from a pre-trained word embedding model, e.g. GloVe (Pennington
et al., 2014). From this the method splits the sentence into four different contexts based
on the target word(s) position:

1. The whole context – the whole sentence.

2. The left context – all words left of the target word but not including the target
word.

3. The target context – the target word(s) (can be more than word e.g. camera lens).

4. The right context – all words right of the target word but not including the target
word.

From these variable length contexts, numerous NP methods are applied to these
contexts, to create fixed length feature vectors from a variable length sentence. An NP
method as stated takes a variable number of word vectors e.g. W ∈ Rd×n where n is the
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number of words and d is the dimension of the word vector which represent features of
the word. The NP then applies a pooling method e.g. maximum value across all the
d dimensions of the n words to output a feature vector of w ∈ Rd in the example. For
each context and NP method a feature vector is created, all feature vectors are then
concatenated and are inputted into the linear SVM to classify the sentiment of the target.

The method described above is the general approach Vo et al. (2015) took. More
specifically they created four different methods which all used the same NP method but
different contexts and one also incorporated sentiment lexicons in a novel way, these are
described below:

1. Target-Independent (TI) – Only used the whole context.

2. Target-Dependent Minus (TDM) – Left, right, and target contexts.

3. Target-Dependent (TD) – Left, right, target, and whole contexts (Union of the first
two methods).

4. Target-Dependent Plus (TDP) – This incorporated sentiment lexicons by filtering
all words that are not in the sentiment lexicon from a given context. This sentiment
filtering was applied to the left and right contexts denoted as LS and RS respectively.
In total this method used the left, right, target, whole, LS, and RS contexts.

As can be seen above each method from the top of the list incorporates more context
or external information as you move down the list of methods. Furthermore from the
methods above only the first method will always produce the same sentiment no matter
the target word if all targets come from the same sentence, as it does not incorporate
any target information.

This method had several important contributions; first is the splitting up of the
sentences into different contexts to model simple interaction between the different contexts.
Second the use of sentiment lexicons to filter words when the words are represented
as word vectors within sentiment analysis. Lastly the extension of NP methods from
Tang et al. (2014) original max, min, and avg functions to those listed below with the
contribution of also explaining what the functions capture with regards to sentiment:

1. max - Maximum value represents positive sentiment.

2. min - Minimum value represents negative sentiment.

3. avg - Average value represents the average sentiment.

4. std - Standard deviation represents the sentiment variation.

5. pro - Product represents the average sentiment but with larger differences between
positive and negative sentiment.

Overall the general architecture of Vo et al. (2015) can then be summarised through
figure 3.1.
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w0 w1

. . .

wl

Left Context

wl+1

. . .

wr−1

Target Context

wr

. . .

wn−1 wn

Right Context

Full Context

Pooling (Max, Min, Prod, Std, Avg)

SVM

Figure 3.1: General architecture of Vo et al. (2015) and Wang et al. (2017a).

3.3.2 Neural Pooling with Dependency Parsing

The Wang et al. (2017a) method is a direct extension of Vo et al. (2015) where they
keep the same NP methods and general architecture but change the contexts. The main
motivation of Wang et al. (2017a) is to improve the simple interaction of the different
contexts by incorporating the syntactic structure of the target word using a dependency
parser. In more detail this dependency context contains the target word and all connected
words within the same root. This makes the assumption that the dependency parser
that is used can create multiple roots from one text as it assumes the text is made of
more than one sentence. If the dependency parser does not create more than one root
in a text then the dependency context will be the same as the whole context16 from Vo
et al. (2015) method. The dependency parser they therefore used was the TweeboParser
(Kong et al., 2014)17 which was created for noisy text such as Tweets and hence why
multiple roots can occur in one text. This parser was also used because it was especially
created for noisy text and the datasets that Wang et al. (2017a) applied this method
to were Twitter datasets. Thus one expects that this method will work best on social
media type of texts as this method has been developed with this bias.

As with Vo et al. (2015), Wang et al. (2017a) had three different models each containing
either more contexts or external information, these are described in more detail below:

1. TDParse Minus – Only used the dependency context.

2. TDParse – Left, right, target, and dependency contexts.

16More precisely it will be the same as the whole context with the target word(s) removed, so very
similar to the whole context. A python notebook demonstrating the fact that the authors used the
dependency parser (TweeboParser) like this and if another parser is used e.g. Stanford the dependency
context will be similar to the whole context can be found here: https://github.com/apmoore1/Bella/
blob/master/notebooks/tdparse_parser.ipynb.

17To the author’s knowledge it is believed TweeboParser is the only dependency parser that creates
multiple roots for a given text. However the author is not an expert within the field of dependency
parsing.
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3. TDParse Plus – Left, right, target, dependency, LS, and RS contexts.

Overall the general architecture of Wang et al. (2017a) is in essence the same as that
of Vo et al. (2015), thus can then be summarised through figure 3.1.

3.3.3 LSTM

Unlike the previous two methods this is a NN method, and it was the first for TDSA to
use an LSTM. Tang et al. (2016b) created three different methods:

1. Standard LSTM (LSTM).

2. Target Dependent LSTM (TDLSTM).

3. Target Connected LSTM (TCLSTM).

The LSTM method is the most basic approach and can be seen in full in figure 3.2.
It treats each word within the text as a word vector where the word vector can be either
randomly initialised or initialised from a pre-trained word embedding like GloVe. The
word vectors are then inputted into the LSTM NN which takes the word vectors from
the left most word first to the last word in the sentence. The output from the LSTM
at the last word in the sentence (hn) is fed into a linear layer with a softmax activation
function to generate the probability of the sentiment of the text. This approach takes no
target context into account, therefore it represents a sentence level sentiment classifier,
and was used as the baseline method.

w0

LSTM

. . .

wn

LSTM
h1 hn−1

Softmax

hn

Whole Context

Figure 3.2: Architecture of the LSTM method.

The TDLSTM which can be seen in figure 3.3, is a target specific model, it splits the
sentence into two contexts:

1. Left context – The words left of the target word, including the target itself.

2. Right context – The words right of the target word, including the target itself.
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Each context has its own LSTM, the left has an LSTM that takes words vectors from
left to right, and the right LSTM takes words vectors from right to left. The last word
vector(s) that are input into both LSTMs are the target words, this was so that the
LSTM could better model the sentiment of the sentence with regard to the target word(s).
The final output of both LSTMs (hr−1, hl+1) are concatenated together, which is fed
into a linear layer with a softmax activation function to generate the probability of the
sentiment of the text.
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Figure 3.3: Architecture of the TDLSTM method.

Finally the TCLSTM method which can be seen in figure 3.4 is a direct extension
of TDLSTM with only one minor difference. The difference is the concatenation of the
target word vector (t) to each word vector within the text. The target word vector is
represented as the average of all the target word vectors when the target word is made
up of more than one word.
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Figure 3.4: Architecture of the TCLSTM method.

3.4 Experimental Setup

3.4.1 Datasets

Within the reproduction and mass evaluation experiments the following datasets will be
used:

1. Laptop – SemEval 2014 laptop dataset (Pontiki et al., 2014).

2. Restaurant – SemEval 2014 restaurant dataset (Pontiki et al., 2014).
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3. Mitchell – English Twitter dataset (Mitchell et al., 2013)18.

4. Dong – Twitter dataset (Dong et al., 2014).

5. Election – Election Twitter dataset (Wang et al., 2017a).

6. YouTuBean – Captions from YouTube review videos (Marrese-Taylor et al., 2017a).

Table 3.3 provides a description of the datasets, of which the YouTuBean is by far
the smallest dataset. The sentiment class and Distinct Sentiment (DS ) distributions can
be seen in table 3.4. The DS (Wang et al., 2017a) is based around the number of unique
sentiments per text: DS1, DS2, and DS3 would be all the samples that contain only one,
two, and three sentiments in the text, respectively. The idea behind showing the DS is
a way of judging potentially how difficult a dataset is going to be where the larger i in
DSi the more difficult the dataset might be19. Thus from both tables it is clear to see
that the datasets are all very different with some being heavily unbalanced with respect
to sentiment class distribution, like the Mitchell dataset.

Dataset DO T M No. Targets ATS Uniq AVG Len

Laptop L RE W 2951 1.58 1295 18.57

Restaurant R RE W 4722 1.83 1630 17.25

Mitchell G S W 3288 1.22 2507 18.02

Dong G S W 6940 1.00 145 17.37

Election P S W 11899 2.94 2190 21.68

YouTuBean MP RE/S SP 798 2.07 522 22.53

DO=Domain, T=Type, M=Medium, ATS=Average targets per sentence, Uniq=No.
unique targets, AVG len=Average sentence length per target, L=Laptop, RE=Review,
W=Written, R=Restaurant, G=General, S=Social Media, P=Politics, MP=Mobile
Phones, SP=Spoken

Table 3.3: Dataset descriptions and size statistics.

The Dong dataset20 is a special case out of all of the datasets, as even though it
has been used in previous research as shown in table 3.2, it is not a true TDSA dataset.
The dataset is more of an Aspect Based Sentiment Analysis dataset as the annotation
gives the target and all of its occurrences in the text, rather than just the relevant target
occurrence. Example 23 is from the training dataset, where $T$ represents all of the
places the target occurs in the text, and here it is clear that the first target ($T$) is not
the target that is negatively affected rather it is the second target ($T$). This issue of not
knowing which is the relevant target was denoted as “same target multiple appearances”
by Wang et al. (2017a). Thus when using the Dong dataset for the Tang et al. (2016b)
methods the first target ($T$) is assumed to be the relevant target in all cases, and when
using the NP approaches the feature vector of all target occurrences are median pooled

18The reason for specifying English is due to Mitchell et al. (2013) also releasing a Spanish Twitter
dataset within the same paper.

19In chapter 4 it is shown empirically that the large i is within DSi the more difficult it will be to
classify the samples within that distribution.

20This dataset can be downloaded from http://goo.gl/5Enpu7.
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Dataset Pos (%) Neu (%) Neg (%) DS1 DS2 DS3

Laptop 1328 (45) 629 (21.3) 994 (33.7) 81% 18% 1%

Restaurant 2892 (61.3) 829 (17.6) 1001 (21.2) 75% 23% 2%

Mitchell 707 (21.5) 2306 (70.1) 275 (8.4) 91% 9% 0%

Dong 1734 (25) 3473 (50) 1733 (25) 100% 0% 0%

Election 1744 (14.7) 4572 (38.4) 5583 (46.9) 44% 47% 9%

YouTuBean 224 (28.1) 504 (63.2) 70 (8.8) 82% 18% 0%

Pos=Number of positive targets, Neu=Number of neutral targets,
Neg=Number of negative targets, DS1=1 Distinct Sentiment per sentence,
DS2=2 Distinct Sentiments per sentence, DS3=3 Distinct Sentiments per
sentence

Table 3.4: Dataset sentiment class and distinct sentiment distributions.

which is the approach used by Wang et al. (2017a). It is not clear how either Vo et al.
(2015) or Tang et al. (2016b) handled the ‘same target multiple appearance’ issue.

$T$ has brought back the female rapper . - really ? $T$ is the biggest parody in popular
music since the Lonely Island .

Example 23: An example from the training dataset of Dong (Dong et al., 2014), where
$T$ is a placeholder for the target ‘nicki minaj’. The sentiment towards the target is
negative.

3.4.2 Significance Testing and Evaluation Metrics

As stated earlier, to test if the method has been successfully reproduced the results from
the reproduced method will not be statistically significantly different to the original
method’s results. To choose an appropriate statistical test, the guide from Dror et al.
(2018) has been followed, from which the non-parametric paired bootstrap test (Efron
et al., 1994) has been selected. This was chosen as the distribution of results cannot
always be assumed to come from a normal distribution, due to the macro F1 metric (Dror
et al., 2018) which is one of the metrics used within the experiments. Thus this breaks
the assumptions of the more powerful parametric tests (student’s t-test). Furthermore,
out of the two families of non-parametric tests the sampling-based tests are more powerful
(Dror et al., 2018; Søgaard et al., 2014) (fewer type 2 errors21), from this either Pitman’s
permutation test or the paired bootstrap can be used, thus we follow Søgaard et al.
(2014) in using the paired bootstrap test. The one assumption that has to be made with
the paired bootstrap is that the test data is representative of the overall population by
having a large enough test set size. Therefore we take the suggestion from Søgaard et al.
(2014) and assume that a test set of size greater than 200 is enough to ensure the type 1
errors22 are minimised. The only experiments that cannot assume the test size is greater
than 200 are those that apply five-fold cross validation on the YouTuBean dataset.

21Type 2 error: ‘refers to the case where the null hypothesis is not rejected although it should be.’(Dror
et al., 2018)

22Type 1 error: ‘refers to the case where the null hypothesis is rejected when it is actually true.’(Dror
et al., 2018)
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The metrics used in all the experiments will be both the accuracy and macro F1 scores
as these are the most frequently used metrics within TDSA (Dong et al., 2014; Wang
et al., 2017a; He et al., 2018b). The accuracy score can be calculated using equation 3.1
where TP refers to the number of correctly labelled samples and N are the number of
samples in the dataset. The macro F1 score can be calculated using equation 3.3 where
the F1(pos), F1(neu), and F1(neg) is the F1 score for the positive, neutral, and negative
classes respectively. One of the differences between the two is that the accuracy score
is performed globally and thus does not discriminate based on the class label, whereas
the macro F1 does as it has to calculate the F1 score for each class and then perform
an un-weighted average across all three classes. Due to the un-balanced nature of class
labels within all of the TDSA datasets, as shown in table 3.4, the macro F1 score is
more biased towards methods that perform well across all sentiments rather than just the
dominant sentiment. In comparison, the accuracy score can still be very high with just
predicting the most dominant sentiment all of the time. Finally, the majority baseline
for accuracy will always be greater than that of the macro F1 due to the un-weighted
averaging over the sentiment classes. Thus in general the macro F1 score is a harder
metric. The two metrics allow for fair comparison with other works in the community.

Accuracy =
TP

N
(3.1)

F1 = 2 ∗ Recall ∗ Precision

Recall + Precision
(3.2)

MacroF1 =
F1(pos) + F1(neu) + F1(neg)

3
(3.3)

The null hypothesis that is being tested within this reproduction section is the
following:

Hypothesis 1 The reproduced method (R) is no better or worse than the original method
(O) on a given population x23.

While the alternative is:

Hypothesis 2 The reproduced method (R) is better or worse than the original method
(O) on a given population x.

The null hypothesis 1 will be tested using a two tailed test as it is to be seen if the
reproduced method is better or worse rather than just one of those options otherwise a
one tailed test would be used. This null hypothesis can be expressed through equations
3.424 and 3.5, where δ(x) is expressed in equation 3.6 and M represents an evaluation
metric of which this would be either accuracy or macro F1.

p(δ(X25) ≤ 0) (3.4)

p(δ(X) ≥ 0) (3.5)

23x is defined later on in this section.
24X is defined later on in this section.
25X is defined later on in this section.

51



Chapter 3. Reproducibility and Generalisability of TDSA Methods

δ(x) = M(R(x))−M(O(x)) (3.6)

To reject the null hypothesis 1 and accept the alternative hypothesis 2 equation 3.7
or 3.8 has to be true for some given α.

p(δ(X) ≤ 0) ≤ α

2
(3.7)

p(δ(X) ≥ 0) ≤ α

2
(3.8)

The α value26 determines the upper bound on the number of type 1 errors that can occur
(Dror et al., 2018). Therefore in this thesis an α value of 0.05 is chosen as this is the
most popular value used within the field (Liu et al., 2017; He et al., 2018b).

The population x is normally our test set when comparing two systems, and we
assume that this test has come from a large population X. The null hypothesis is used
to ensure that our one test score on the given test set x has not come about by chance.
Therefore to compute the p-value for equations 3.4 and 3.5 we approximate the larger
population X using the bootstrap re-sampling method. This is a method of creating Z
test sets of size n, which is the same size as the original test set, by sampling from the
original test set with replacement. The assumption is that this creates new test sets that
are representative but different from the original, which can be used as a proxy of the
larger population X. The paired bootstrap procedure is presented in algorithm 1, which
is used to approximate the p-values of which p0 and p1 can be substituted as the p-value
in equations 3.7 and 3.8. For all experiments Z is at least equal to 100027, which is the
same as Koehn (2004) used and is computationally feasible.

Algorithm 1: The paired bootstrap algorithm adapted from figure 1 in Berg-
Kirkpatrick et al. (2012)

1 Draw Z bootstrap samples of size n by sampling with replacements from x;
2 w = 0;
3 b = 0;

4 for each x(i) increment do

5 if δ(x(i)) < 0 then
6 w = w + 1;

7 if δ(x(i)) > 0 then
8 b = b+ 1;

9 end
10 p0 ≈ 1− w

Z ;

11 p1 ≈ 1− b
Z ;

12 return p0 and p1;

This bootstrapping approach can therefore be used to create a confidence range for
a method whereby using these Z metric scores as a distribution of results. From this

26It is suggested in Søgaard et al. (2014) that an α of 0.0025 should be used and that p-values are
recorded.

27In some cases where it was computationally feasible Z was 10,000.
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distribution removing the top and bottom 2.5% of scores creates the confidence range
for an α = 0.0528, for the two tailed test, as shown by Koehn (2004). If the reproduced
confidence range does not include the original method’s score the null hypothesis must
be rejected.

The two tailed test can easily be converted into a one tailed test, to test if a method
is better than another, whereby the hypothesis now changes to:

Hypothesis 3 Reproduced method A is no better than the original method B on a given
population x.

While the alternative is:

Hypothesis 4 Reproduced method A is better than the original method B on a given
population x.

The null hypothesis 3 can be expressed by equations 3.5 and 3.9.

δ(x) = M(A(x))−M(B(x)) (3.9)

To reject this null hypothesis 3 equation 3.10 has to be true for some α, which in this
thesis is 0.05.

p(δ(X) ≥ 0) ≤ α (3.10)

3.4.3 Pre-Processing and Modelling Frameworks

The pre-processing for the two NP approaches will use the Twitter based tokeniser;
Twokenizer (Gimpel et al., 2011) as this was stated within Vo et al. (2015) and is shown
to be used within Wang et al. (2017a) codebase29. For the LSTM approach (Tang et al.,
2016b) the English Spacy tokeniser is used due to its speed and wide use within the NLP
field, as well as Tang et al. (2016b) not stating the tokeniser used. All text is lower cased
after being tokenised.

For the NP methods, scikit-learn’s (Pedregosa et al., 2011) LinearSVC is used as it is
a wrapper of LibLinear (Fan et al., 2008) which is the library that both NP papers used
for their SVMs. For Tang et al. (2016b) LSTM based methods the AllenNLP framework
(Gardner et al., 2018) is used which uses PyTorch (Paszke et al., 2019).

3.5 TDSA Reproduction Studies

These studies will explore how the results from the original methods differ with those
reproduced. Each paper will have its own subsection detailing the differences and if the
differences are statistically significant. Furthermore, at the end of the section based on
the results, suggestions are offered to make papers more reproducible. Lastly based on
the reproduction results of Tang et al. (2016b) additional suggestions are made for NN
based methods to improve reporting of results, which in itself helps with both evaluation
and reproducibility. A paper is defined as being reproduced if the main result is not
statistically significantly different on at least one metric and if the results have the same

28The percentage to remove is equal to α
2
× 100 for the two tailed test.

29https://github.com/bluemonk482/tdparse/blob/master/data/dataprocessing.py
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rank order e.g. model A is better than model B for at least one metric. In the thesis, this
is how the definition for reproducibility from the introduction 3.1 has been empirically
interpreted.

3.5.1 Neural Pooling

To state if the paper (Vo et al., 2015) has been reproduced the last experiment in the
paper (table 5 (Vo et al., 2015)) is performed which evaluates the methods on the test
set of Dong et al. (2014) Twitter dataset. To be comparable the same SVM C-value
parameters are used for all methods and sentiment lexicons for the Target-Dependent
Plus method. Also the same word vectors are used which are the concatenation of the
unified Sentiment Specific Word Embeddings (SSWE) (Tang et al., 2014) and their
own Twitter specific continuous skip-gram (Mikolov et al., 2013b) word vectors (w2v)
creating SSWE + w2v. Finally MinMax scaling, as shown in equation 3.11, is used on all
features, whereby this enforces a feature to be in a pre-defined max to min range for all
samples (X ∈ Rn×d where n is the number of samples and d is the number of features).
This therefore enforces all features to be within the same range and “avoid attributes
(features) in greater numeric ranges dominating those in smaller numeric ranges” (Hsu
et al., 2016). Xmin ∈ Rd and Xmax ∈ Rd are the smallest and largest value respectively
for each feature. Within this thesis the min and max will be 0 and 1 respectively as this
is one of the recommended ranges by Hsu et al. (2016). Only after the experiments have
been conducted within this thesis, after looking through Wang et al. (2017a) codebase,
was it found they used −1 and 1 for min and max. Thus it will be shown the difference
between using these two different min and max ranges is negligible.

X =
X −Xmin

Xmax −Xmin
∗ (max−min) +min (3.11)

The results from this experiment can be seen in table 3.5 which compares the
reproduced to the original. The original did not use the Target-Dependent Minus method
within this experiment. As can be seen the results are similar to the original. However
by adding only target context information and removing the whole text context (Target-
Dependent Minus) does not improve results greatly over the standard non-target aware
method (Target-Independent). Further Target-Dependent Minus is not statistically
significantly better than Target-Independent on either of the two metrics, as shown by
the p-values in table 3.6. Thus showing for the first time that adding the whole text
context is statistically significant within the Target-Dependent method and not just on
average better, as shown by table 3.6. Figure 3.5 shows the confidence intervals of each
reproduced method, and that for the accuracy metric all of the original results are within
confidence intervals. Further according to the results all methods are in the same rank
order as the original. Thus this paper has been reproduced.
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Accuracy macro F1

Model O R O R

Target Independent 67.3 65.0 66.4 61.9

Target Dependent Minus 0.0 66.6 0.0 62.1

Target Dependent 69.7 69.7 68.0 66.7

Target Dependent Plus 71.1 69.9 69.9 67.6

Table 3.5: Reproduced (R) and original (O) results on the test set of Dong et al. (2014)
Twitter dataset.

Metric Method TI TDM TD TDP

macro F1

TI - 0.5459 0.9976 0.9995
TDM 0.4541 - 0.9995 0.9994
TD 0.0024 0.0005 - 0.7606
TDP 0.0005 0.0006 0.2394 -

Accuracy

TI - 0.8245 0.9987 0.9986
TDM 0.1962 - 0.9935 0.9905
TD 0.0017 0.0094 - 0.6284
TDP 0.0019 0.0121 0.4223 -

Table 3.6: P-values testing if the methods in the rows are significantly better than the
methods in the columns across two metrics. All p-values that are significant ≤ 0.05 are
in bold.
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Figure 3.5: Confidence intervals for the two tailed test for the reproduced models of Vo
et al. (2015) on both the accuracy and macro F1 metrics.

As stated earlier Wang et al. (2017a) used a different scaling range, −1 to 1, for
MinMax scaling. Figure 3.6 shows the confidence intervals for each method when using
Wang et al. (2017a) scaling range on the test set of Dong et al. (2014) Twitter dataset.
As can be seen the confidence intervals would overlap with those from figure 3.5 which
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used the 0 to 1 scaling range that is used throughout the Neural Pooling experiments.
Thus showing in this case the scaling range would not appear to be a significant factor.
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Figure 3.6: Confidence intervals for the two tailed test for the reproduced models of Vo
et al. (2015) using Wang et al. (2017a) scaling range of −1 to 1, on both the accuracy
and macro F1 metrics.

Given that the paper has been reproduced, further studies are explored. The first of
which is comparing different word embeddings, in Vo et al. (2015) they compared w2v,
SSWE, and SSWE + w2v. The comparison was done using five-fold cross validation on
the training data whereby they report the mean accuracy scores within figure 4 of their
paper. This experiment has been recreated, and the word embeddings compared have
been expanded to include the non-type non-task specific 300 dimension 840 billion token
GloVe embeddings (Pennington et al., 2014) (from now on called GloVe embeddings).
These much larger word embeddings are by the far the most popular embeddings within
the TDSA literature. Furthermore unlike w2v which are type specific and SSWE which
are task and type specific these are neither and more general. Thus it would be of interest
to see if general embeddings can perform as well or better than the original task and
type specific embeddings. The results of the experiment can be seen in table 3.7. As can
be seen the GloVe and the SSWE + w2v are very similar in their performance, and both
always outperform the w2v and SSWE embeddings. However unlike the original results,
the reproduced results tend to find w2v to perform better than SSWE, as shown by the
highlighting in the table.

56



3.5. TDSA Reproduction Studies

Accuracy macro F1

Method Embedding O R O R

TI

w2v 59.20
(0.00)

60.96
(0.60)

- 56.64
(0.69)

SSWE 60.70
(0.00)

60.58
(1.08)

- 56.52
(1.46)

SSWE + w2v 62.30
(0.00)

62.24
(0.91)

- 59.16
(0.66)

GloVe - 63.72
(1.76)

- 61.31
(1.74)

TDM

w2v 65.40
(0.00)

65.67
(1.11)

- 61.38
(1.29)

SSWE 66.60
(0.00)

66.74
(0.48)

- 62.77
(0.78)

SSWE + w2v 67.60
(0.00)

67.46
(1.04)

- 64.18
(1.18)

GloVe - 67.41
(0.78)

- 64.11
(0.82)

TD

w2v 65.70
(0.00)

66.81
(0.86)

- 62.66
(1.16)

SSWE 66.70
(0.00)

66.37
(0.59)

- 62.41
(0.81)

SSWE + w2v 68.30
(0.00)

68.02
(0.82)

- 64.90
(0.91)

GloVe - 68.69
(1.13)

- 65.68
(1.24)

TDP

w2v 67.40
(0.00)

68.37
(1.17)

- 65.04
(1.39)

SSWE 67.90
(0.00)

67.72
(1.11)

- 64.39
(1.54)

SSWE + w2v 69.10
(0.00)

69.05
(1.19)

- 66.34
(1.41)

GloVe - 68.98
(1.09)

- 66.39
(1.23)

Table 3.7: Mean (standard deviation) metric score for each method and embedding on the
Dong et al. (2014) Twitter dataset, where the bold value represents the best embedding
for each method and metric. Difference in rank order is highlighted.

These results for the embedding comparison so far have only been based on mean
accuracy scores from five-fold cross validation. To be more rigorous in evaluation,
significance testing is performed whereby the one tailed test is performed on each fold
comparing the SSWE + w2v embedding score per metric and method to all other
embeddings. The SSWE + w2v embedding was compared to the others as this was the
best embedding from the original paper. The p-values generated from these significant
tests can be seen in appendix A.1 tables A.1 and A.2 for the accuracy and macro F1 scores
respectively. Furthermore as the significance testing is now performed on five folds, which
is equivalent to five datasets, thus creating five p-values for each evaluation. Therefore
here the number of folds that are significant will be reported. However using the simple
approach of counting the number of folds that are less than some α has been shown to
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introduce more type 1 errors (Dror et al., 2017) than that was set by the α parameter,
which is 0.05, in the individual significance tests. Therefore to stop the introduction
of type 1 errors and keep the upper bound to α a correction procedure is required of
which Dror et al. (2018) recommends two; Fisher and Bonferroni (Benjamini et al., 2008).
The difference between the two is that Fisher should be used when the p-values have
come from datasets that are independent, where as Bonferroni can be used for dependent
datasets. As each fold does depend on the other folds, the Bonferroni correction will be
used here. This thus introduces how significance testing can be performed in general for
multiple datasets.

Table 3.8 shows that for at least one of the folds, metric, and methods SSWE + w2v
is significantly better than the SSWE and w2v embeddings but not the GloVe. Thus
showing like the original paper that SSWE + w2v are the best embedding in general out
of SSWE and w2v. Furthermore the GloVe embedding is also tested to see if it is better
than the other embeddings using a one sided test and corrected using Bonferroni30, of
which the results can be seen in table 3.9. Thus from both experiments in tables 3.8 and
3.9 it shows that the GloVe embedding is a reasonable replacement for the type and task
specific combination of SSWE + w2v.

Method Embedding Accuracy F1

Target Independent
w2v 0 2

SSWE 1 2
GloVe 0 0

Target Dependent Minus
w2v 3 4

SSWE 0 0
GloVe 0 0

Target Dependent
w2v 0 4

SSWE 0 2
GloVe 0 0

Target Dependent Plus
w2v 0 0

SSWE 1 1
GloVe 0 0

Table 3.8: The number of folds, out of a possible of five, that the SSWE + w2v embedding
is significantly better than the given embedding and method. The significance testing
across multiple folds is corrected using Bonferroni.

The last study explores the significance of scaling the features since Vo et al. (2015)
never mentions in their paper nor codebase about scaling. So far all results have used
MinMax scaling, here the last experiment from Vo et al. (2015) is repeated (table 5 (Vo
et al., 2015)) again which evaluates the methods on the test set of Dong et al. (2014)
Twitter dataset. In this experiment no scaling is used, results can be seen in figure 3.7,
these results can be compared to the other reproduced scaled version of the methods
in figures 3.5 and 3.6. None of the non-scaled methods reproduce the results from the
original paper, nor do they preserve rank order as the original best performing method
(Target Dependent Plus) is now the worst performing method. This shows that scaling is

30The p-values associated to these tests can be seen in appendix A.1 tables A.3 and A.4 for the accuracy
and macro F1 metrics respectively.
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Method Embedding Accuracy F1

Target Independent
w2v 2 5

SSWE 1 5
SSWE + w2v 1 1

Target Dependent Minus
w2v 0 1

SSWE 0 1
SSWE + w2v 0 0

Target Dependent
w2v 1 4

SSWE 3 4
SSWE + w2v 0 0

Target Dependent Plus
w2v 0 0

SSWE 0 1
SSWE + w2v 0 0

Table 3.9: The number of folds, out of a possible of five, that the GloVe embedding
is significantly better than the given embedding and method. The significance testing
across multiple folds is corrected using Bonferroni.
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Figure 3.7: Confidence intervals for the two tailed test for the reproduced models of Vo
et al. (2015) using no scaling, on both the accuracy and macro F1 metrics. This was
evaluated on the test set of Dong et al. (2014).

3.5.2 Neural Pooling with Dependency Parsing

To test if Wang et al. (2017a) methods are reproducible, table 2 and 3 from their paper
will be reproduced. These tables test their methods across two Twitter datasets, Dong
et al. (2014) and their own Election Twitter dataset. To be comparable the SVM C-value
is tuned using five-fold cross validation on the training data, as unlike Vo et al. (2015),
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Wang et al. (2017a) does not report what C-value they found to be optimal31. The range
of C-values used within the tuning process is described within equation 3.12, which is
based on the exponential range suggested by Hsu et al. (2016) with the addition of the
default C-value (1) for linear SVMs in Scikit-learn (Pedregosa et al., 2011). The best
found C-value for the accuracy metric, for each method, on each of the datasets can
be seen in table 3.10, these C-values will be used throughout unless otherwise stated.
Additionally, the same sentiment lexicons are used, but as stated earlier when using
MinMax scaling the features are scaled between 0 and 1 rather than −1 and 1. Also the
same word vectors are used, which are the SSWE + w2v. As shown in figures 3.8 and
3.9 the methods have been reproduced on both datasets.

C = {2n|n = (i× 2)− 17 for 0 < i < 10 and i ∈ Z} ∪ {1} (3.12)

Methods

Dataset TDParse Minus TDParse TDParse Plus

Dong 2−5 2−7 2−7

Election 2−7 2−9 2−9

Table 3.10: Best C-values for the accuracy metric for Wang et al. (2017a) reproduced
methods.
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Figure 3.8: Confidence intervals for the two tailed test on the Dong et al. (2014) test set,
for the reproduced models of Wang et al. (2017a).

When using the MinMax scale range used by the original paper (Wang et al., 2017a)
(−1 to 1) the results are similar for all but the Election macro F1 scores, as shown in
figures 3.10 and 3.11. However both the MinMax scale range used in this thesis, and
the range used by Wang et al. (2017a) create significantly different results to those of

31The range of C-values Wang et al. (2017a) used for tuning was not reported within the paper. However
later on after the experiments within the thesis the C-value range used by Wang et al. (2017a) was found
through a function in their codebase: https://github.com/bluemonk482/tdparse/blob/master/src/

liblinear.py#L91.

60

https://github.com/bluemonk482/tdparse/blob/master/src/liblinear.py#L91
https://github.com/bluemonk482/tdparse/blob/master/src/liblinear.py#L91


3.5. TDSA Reproduction Studies

TDParse Minus TDParse
Models

51

52

53

54

55

56

57
Ac

cu
ra

cy
 (%

)

Original
Reproduced

TDParse Minus TDParse
Models

36

38

40

42

44

46

F1
 (%

)

Original
Reproduced

Figure 3.9: Confidence intervals for the two tailed test on the Wang et al. (2017a) Election
test set, for the reproduced models of Wang et al. (2017a).

the original paper for the macro F1 metric on the Election dataset. Thus the same
experiment is conducted, but using the C-values optimised for the macro F1 metric,
where these values can be seen in table 3.1132. The results from this experiment can be
seen in figures 3.12 and 3.13 for the Election dataset33 using the scaling range in this
thesis and the scaling range of Wang et al. (2017a) respectively. In both cases the macro
F1 scores have increased and when using Wang et al. (2017a) scaling range the original
scores for macro F1 can be reproduced. Thus showing that within the original paper it is
likely that they trained the methods separately with different C-values to optimise the
different metric scores.

Methods

Dataset TDParse Minus TDParse TDParse Plus

Election 2−3 2−7 2−7

Table 3.11: Best C-values for the macro F1 metric for Wang et al. (2017a) reproduced
methods.

As scaling is not mentioned in the paper and only stated within the run command
of the codebase, the same experiment is repeated with methods that do not scale the
features. As shown in figures 3.14 and 3.15 all results are significantly different and in
most cases do not preserve rank order. Thus showing here again the high importance of
scaling.

32These C-values were tuned using the GloVe embeddings rather than SSWE + w2v. These embeddings
were used because the C-values came from the data generated when performing the large scale C-value
experiment that is performed later in this section.

33The results for the Dong dataset can be seen in appendix A.2 figures A.1 and A.2.
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Figure 3.10: Using the original MinMax scaling range of Wang et al. (2017a), the
confidence intervals for the two tailed test on the Dong et al. (2014) test set.

TDParse Minus TDParse
Models

51

52

53

54

55

56

57

Ac
cu

ra
cy

 (%
)

Original
Reproduced

TDParse Minus TDParse
Models

38

40

42

44

46

F1
 (%

)

Original
Reproduced

Figure 3.11: Using the original MinMax scaling range of Wang et al. (2017a), the
confidence intervals for the two tailed test on the Wang et al. (2017a) Election test set.
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Figure 3.12: Using the C-values optimised for macro F1 metric, the confidence intervals
for the two tailed test on the Wang et al. (2017a) Election test set.
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Figure 3.13: Using the C-values optimised for macro F1 metric with the original MinMax
scaling range of Wang et al. (2017a), the confidence intervals for the two tailed test on
the Wang et al. (2017a) Election test set.
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Figure 3.14: Using no scaling, the confidence intervals for the two tailed test on the Dong
et al. (2014) test set.
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Figure 3.15: Using no scaling, the confidence intervals for the two tailed test on the Wang
et al. (2017a) Election test set.
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3.5.3 Large Scale Analysis of the Affect of the C-value and Scaling on
Neural Pooling Methods

These two sets of experiments will explore the importance of the C-value within the SVM
that is used in the NP methods and scaling. As it has been shown that the C-value is
statistically significantly important to recreate the macro F1 score within the Election
dataset experiments for Wang et al. (2017a) and for all NP methods scaling is statistically
significant. These sets of experiments will explore how significant these two parameters
are within the NP methods, whereby all of the NP methods from Vo et al. (2015) and
Wang et al. (2017a) will be used to make the findings more robust. Furthermore to make
the findings generalisable the methods will be applied to all six datasets from table 3.3.
The experiments will use five-fold cross validation on the training sets to ensure the test
set is not used, and thus allow researche’s to use these findings without overfitting to the
test sets. In all experiments the mean best performing configuration of the method for
either the accuracy or macro F1 metric will be compared against all other configurations
using a one sided significant test. The number of folds that the mean best configuration
is significantly better than the other configurations will be corrected using Bonferroni.

As these experiments are conducted on various different datasets, the methods will
use the general non-type and non-task specific GloVe embeddings that are also the
most popular in the area. For sentiment lexicon based methods the same lexicons used
by Wang et al. (2017a) will be used as they are a superset of the lexicons used by
Vo et al. (2015) and the lexicons come from various types of data34. The Stanford
CoreNLP tokeniser (Manning et al., 2014) will be used in preference to the Twitter
specific tokeniser; Twokenizer (Gimpel et al., 2011) to avoid type specific tools. For Wang
et al. (2017a) methods that require a dependency parser the TweeboParser (Kong et al.,
2014) will be used on all datasets but the Laptop and Restaurant datasets, whereby
the Stanford CoreNLP dependency parser will be used. This decision was made before
realising the importance of a dependency parser creating multiple roots for Wang et al.
(2017a) methods and Stanford’s parser does not create multiple roots. Thus in effect
Stanford’s parser will create a context that is almost identical to the whole text context35.
Stanford’s parser was chosen due to the Laptop and Restaurant datasets coming from a
different type of data (review rather than social media) and thus is believed to require a
more type relevant parser, such as the Stanford parser.

The SVM C-value is part of the L2-regularised L2-loss function of the linear SVM
which can be seen in equation 3.13 (taken from equation 1 in (Fan et al., 2008)). The
L2-regularisation in the equation is 1

2w
Tw and the rest is the L2-loss. As can be seen

the C-value determines the amount of weight the L2-loss has on the overall loss function.
Thus if the C-value is large the effect of the regularisation is small, which would more
likely cause the model to overfit to the training data.

34The lexicons used originate from MPQA (Wilson et al., 2005) (news data), NRC (Mohammad et al.,
2010) (general data chosen from a dictionary based on word frequency from Google n-gram corpus (Brants
et al., n.d.)), and Hu et al. (2004a) (review data).

35The reason it is not the same is due to the context not including the target word(s). Also Stanford’s
parser requires the text to go through their sentence splitter first, which in some cases does cause the
text to be split up.
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1

2
wTw + C

l∑
i=1

(max(0, 1− yiw
Txi))

2 (3.13)

The C-values that will be tested here are the same as those evaluated for the
reproduction of Wang et al. (2017a), shown in equation 3.12. Figures 3.16 and 3.17 show
the mean best C-values for each method on each dataset for the accuracy and macro
F1 metric respectively. In both cases it can be seen that all methods are significantly
sensitive to the choice in C-value no matter the dataset. In most cases and more so for
the accuracy metric the default C-value from scikit-learn (Pedregosa et al., 2011) (1) is
significantly worse than the mean best. It would be assumed that datasets that are small
like YouTuBean would prefer a small C-value to stop the methods from overfitting, but
that does not seem to be the case. Rather it would appear that for both the accuracy and
macro F1 score each have their own preferable band of C-values. For accuracy, generally
7.81e−3 performs well on all methods and datasets, whereas for macro F1 it is dataset
and method specific. Furthermore a C-value that performs best for accuracy could be
significantly worse than the best C-value for macro F1, of which this happens the most
on the Election dataset. For the mean best scores produced by these C-values for all
methods on all datasets see figures A.3 and A.4 in appendix A.2.
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Figure 3.16: For the accuracy metric the mean best C-value for each method and dataset
represented by dots and star. The size of the cross indicates the number of folds the
mean best C-value is significantly better than the other C-values for the given method
and dataset.
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Figure 3.17: For the macro F1 metric the mean best C-value for each method and dataset
represented by dots and star. The size of the cross indicates the number of folds the
mean best C-value is significantly better than the other C-values for the given method
and dataset.
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MinMax scaling with the scale range of 0 to 1, rather than Wang et al. (2017a) −1
to 1, will be compared to not scaling. When performing these experiments the optimal
C-value for each method on each dataset for the accuracy metric is used, which was found
from the last experiment. The results can be seen in figures 3.18 and 3.19. It can be
clearly seen in all cases for the accuracy metric and the majority for the macro F1 metric
that scaling is statistically significant no matter the method nor dataset, with the caveat
of Mitchell for the macro F1 metric. For the mean best scores produced by these scaling
experiments for all methods on all datasets see figures A.5 and A.6 in appendix A.2.
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Figure 3.18: For the accuracy metric the mean best scaling method for each method and
dataset represented by dots and star. The size of the cross indicates the number of folds
the mean best scaling method is significantly better than the other scaling method for
the given method and dataset.
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Figure 3.19: For the macro F1 metric the mean best scaling method for each method
and dataset represented by dots and star. The size of the cross indicates the number of
folds the mean best scaling method is significantly better than the other scaling method
for the given method and dataset.

3.5.4 LSTM

It has been found that in the previous work it is difficult to either reproduce (Tay et al.,
2018) or replicate (Chen et al., 2017) Tang et al. (2016b) LSTM based methods, most
specifically the TDLSTM version, as shown by table 3.1236. Based on these findings the

36The original Tang et al. (2016b) methods as stated in this section were never originally evaluated
on the Laptop or Restaurant datasets. However the original authors within another paper (Tang et al.,
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methods in Tang et al. (2016b) are reproduced. The reproduced methods are evaluated
on Dong et al. (2014) Twitter dataset and use the same GloVe Twitter 100 dimension
embeddings (Pennington et al., 2014). All methods used Stochastic Gradient Descent
(SGD) with a learning rate of 0.01, a cross entropy loss, and the hidden dimension of
all LSTMs equal to the dimension of the embedding being used. However the paper
did not state the number of epochs the method was trained for thus early stopping is
used keeping track of the loss value with a patience of 10. As early stopping requires a
validation set, the training set is split 80% training and 20% validation. The paper also
mentioned that they “set the clipping threshold of softmax layer as 200” (Tang et al.,
2016b) as this did not make sense, this was not used. Lastly all weights were initialised
using U(−

√
k,
√
k)37 where k = 1

embedding dimension . The original initialisation from Tang

et al. (2016b), U(−0.003, 0.003), always overfitted to the dominant class38 when used
in the reproduced methods, hence the difference in the initialisation distributions. The
tokeniser used was Spacy, as the original tokeniser that was used was not stated in the
paper39.

Authors Restaurant Laptop

Tang et al. (2016a) 75.63 68.13

Chen et al. (2017) 78.00 71.83

Tay et al. (2018) 69.73 62.38

Original authors Replicated Reproduced

Table 3.12: Accuracy of the TDLSTM method by the different authors on the Restaurant
and Laptop datasets.

The results from the experiment can be seen in table 3.13 and figure 3.20 whereby
each reproduced method has been ran 20 times. Running each method 20 times using
different random seeds allows the methods to take into account the random initialisation
problem (Reimers et al., 2017). It can be seen that if the maximum score is used the
original and reproduced results are quite close, and statistically similar as shown by
figure 3.2140. Furthermore based on the maximum score the rank of the methods are the
same as the original, thus the methods have been reproduced successfully. However the
difference between the maximum result and the minimum can be quite large, especially
for the macro F1 metric.

2016a) evaluated the TDLSTM method they created on the Laptop and Restaurant datasets and that is
what is meant by original authors within the table.

37This is the default initialisation within PyTorch (Paszke et al., 2019) and AllenNLP (Gardner et al.,
2018).

38Which is neutral for Dong et al. (2014) as shown by table 3.4.
39To note in the original paper (Moore et al., 2018) that this chapter is based on the results for Tang

et al. (2016b) did use the original weight initialisation of Tang et al. (2016b) (U(−0.003, 0.003)) and could
still reproduce the results. The main implementation difference between Moore et al. (2018) and this
chapter is that here PyTorch (Paszke et al., 2019) and AllenNLP (Gardner et al., 2018) is used rather
than Keras (Chollet et al., 2015) and also the Spacy tokeniser is used rather than Twokenizer Gimpel
et al., 2011 tokeniser. It is unknown why the original weight initialisation did not work within the code
implementation of this chapter, it is believed it could be due to subtle differences between Keras and
PyTorch.

40The best run for accuracy is not always the same best run for macro F1. Therefore we only use the
best run for each method based on the metric being evaluated.
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Metric Method Max Mean Min Original

Accuracy LSTM 64.31 62.93 61.42 66.5
TDLSTM 69.36 67.23 65.46 70.8
TCLSTM 70.23 66.74 64.74 71.5

macro F1 LSTM 61.93 58.59 54.43 64.7
TDLSTM 66.58 63.86 59.94 69.0
TCLSTM 67.61 63.26 60.29 69.5

Table 3.13: The max, mean, and minimum (min) scores from each reproduced method
over 20 runs. The last column are the original scores from the Tang et al. (2016b) paper.
The bold scores represent the best performing score between the methods for each metric,
max, mean, and minimum.
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Figure 3.20: The distribution of scores for each of the 20 runs for each reproduced method.
Whereby each horizontal line in the distribution represent the result of one run for the
reproduced method. Model names with a (O) represent the score reported in the original
models paper.

Based on the results from table 3.13 it would appear that for many seed values it
would not be possible to reproduce these results. To quantify this, the best performing
run for each method and metric is compared against all other runs for that method. The
number of runs that are significantly worse based on a one sided test corrected using
Bonferroni to the best performing run is shown in table 3.14. As can be seen out of the
19 other runs many of them for the macro F1 metric for all methods are significantly
different to the best performing run even though they are the same method. This confirms
the findings of Reimers et al. (2017) for TDSA for the macro F1 metric whereby random
seeds can cause statistically significantly different results for the same method. It further
shows that out of all of the methods the TCLSTM would appear to be the least stable,
and this could be due to it being the largest, with respect to the number of parameters,
of the three methods. From these findings and the distribution of results presented in
figure 3.20, it is believed that a possible reason why others could not reproduce (Tay
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Figure 3.21: Confidence intervals for the two sided tailed test for the reproduced models
of Tang et al. (2016b) on both the accuracy and macro F1 metrics.

et al., 2018) or replicate (Chen et al., 2017) the same scores as the original authors of
TDLSTM (Tang et al., 2016a) is due to the variance caused by random seeds.

Metric LSTM TDLSTM TCLSTM

Accuracy 0 0 13

F1 4 2 15

Table 3.14: The number of runs that the best performing run significantly outperforms
using a one side tested and corrected with Bonferroni for accuracy and macro F1.

As the methods from Tang et al. (2016b) have been reproduced, another of Tang
et al. (2016b) experiments is repeated and enhanced. The original experiment compares
SSWE, GloVe Twitter 50, 100 and 200 embeddings of which both of these embeddings
are either type or type and task specific. Thus the experiment is enhanced to include
the GloVe 300 dimension non-task nor type specific embedding, that has been already
tested in numerous other experiments in this section (see tables 3.7 and 3.8 for example).
The results on the test and validation set of Dong et al. (2014) Twitter dataset can be
seen in tables 3.15 and A.5 respectively. The findings are slightly different from the
original found in figure 3 of Tang et al. (2016b). In comparison Tang et al. (2016b) found
the TDLSTM to be worse than TCLSTM on all accuracy scores, which is not the case
here. Additionally Tang et al. (2016b) found SSWE to be worse than GloVe Twitter 50
which again is not found here. These differences in results could be due to the random
seeds. More interestingly it is shown that the non-type nor task specific embeddings is
better than all other embeddings for all methods and metrics. Thus showing again that
these larger general embeddings can be at least as good as the type and/or task specific
embeddings. After performing a one tailed test comparing the GloVe 300 embeddings
to all other embeddings for each metric and method they are significantly better in the
majority of cases for the test set, as shown in table 3.15. The significant results are
hard to interpret as the test results suggest that the majority of embeddings for at least
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TDLSTM and TCLSTM are significantly worse than the GloVe embeddings, but this is
not reflected in the validation results as the GloVe embeddings are not significantly better
than any of the embeddings41. Thus it suggests that perhaps the GloVe embeddings are
only weakly better than all other embeddings42.

Embedding Metric LSTM TDLSTM TCLSTM

SSWE Accuracy 62.07 (1.48) 66.77⋆ (1.63) 65.59⋆ (1.41)

F1 58.37⋆ (2.16) 63.35⋆ (1.89) 61.96⋆ (1.77)

Twitter 50 Accuracy 61.48⋆ (1.43) 65.11⋆ (1.46) 64.74⋆ (1.87)

F1 57.12⋆ (2.79) 61.67⋆ (2.00) 60.72⋆ (2.57)

Twitter 100 Accuracy 62.93 (0.81) 67.23⋆ (1.08) 66.74⋆ (1.32)

F1 58.59 (1.90) 63.86⋆ (1.68) 63.26⋆ (1.68)

Twitter 200 Accuracy 62.49 (1.14) 68.11⋆ (0.54) 67.89 (0.98)

F1 57.41⋆ (2.81) 65.21⋆ (0.94) 64.70 (1.39)

GloVe 300 Accuracy 64.73 (0.76) 71.04 (0.68) 69.22 (1.27)

F1 61.04 (1.45) 68.43 (0.83) 66.47 (1.78)

Table 3.15: Test set mean (standard deviation) results on the Dong et al. (2014) Twitter
dataset, across various embeddings and methods. The bold values indicate the best
embedding score for each method and metric. The ⋆ indicates when the GloVe embeddings
are statistically significantly better (p ≤ 0.05) than the other embedding for that metric
and method. The significance test used the one tailed test and used the median best run
from the 20 runs to perform the significance test.

3.5.5 Conclusion from Reproduction Studies

It is clear from the large scale NP experiments shown in figures 3.16 (3.17) and 3.18
(3.19) for the accuracy (macro F1) metric, that both the scaling method (if used) and the
C-value from the SVM should be stated within the paper. Furthermore, the suggestion
from Reimers et al. (2017) on reporting multiple runs of the method over different random
seed values is required for NN based TDSA methods as the single performance scores
can be misleading, which could explain why previous papers obtained different results to
the original for the TDLSTM method (Chen et al., 2017; Tay et al., 2018). For the first
time, it has been shown in this section that scaling method, C-value of the SVM, and
random seeds make a significant difference for TDSA methods.

41The p-values from the significant tests can be seen in appendix A.1 tables A.6 and A.7 for the test
and validation results.

42The potential reason for the significance tests to bring back very different results for the test and
validation sets could be due to the limitation of the significance test used for the LSTM methods. In this
chapter the LSTM based methods when being tested to detect significant differences a particular run
from the set of all runs for each compared LSTM method is used. In the majority of cases the median
run is used and this to some degree ensures that there is not a bias towards methods that have a large
variance in results due to the random seeds. However using the median run or any one run does not take
into the account the whole random seed distribution. Thus stating the limitation of the significance test
used in this chapter for the LSTM based methods. This limitation could also explain why there is a
difference between the significance results of the validation and test set here, as the median run might
not be a good representation of all runs results.
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Additionally, within this section it has also been shown that general word embeddings
(300 dimension GloVe embeddings) can perform as well as the type and/or task specific
embeddings. This has been shown for the NP methods (Vo et al., 2015), where as for the
LSTM methods (Tang et al., 2016b) they tend to prefer the general GloVe embeddings.
From this it shows that smaller type and/or task specific embeddings can be as useful
as larger general embeddings for at least the NP methods. This implies that from an
energy efficiency perspective43 it would be of use to train these smaller type and/or task
specific embeddings as the methods that use them will be more efficient than if they use
the larger general embeddings. Alternatively it suggests that it is not a requirement to
create smaller type and/or task specific embeddings. These findings are at least true for
TDSA methods applied to the Dong dataset.

3.6 Mass Evaluation44

Given the methods from the three reproduced papers, in this section we evaluate the
different methods across six different English datasets that are shown in table 3.3. This
will be the first TDSA study that has evaluated methods across different types, mediums,
and domains, as well as the largest TDSA evaluation with respect to the number of
datasets. This study will thus explore whether the three papers’ methods perform
differently on these various datasets, seeing if any generalise to all datasets. For all
methods they will use the same 300 dimension GloVe embedding as it is the most popular
and has been shown within the thesis to perform well on data that it was not originally
designed for (i.e. social media type data). All methods will use the Spacy tokeniser
and the Wang et al. (2017a) methods will use the TweeboParser (Kong et al., 2014)
dependency parser on all datasets45. For sentiment lexicon based methods, the same
lexicons that Wang et al. (2017a) employed will be used here. For the NP methods,
the best performing C-value for each method and dataset for the accuracy metric found
through the experiment conducted in figure 3.16 will be used. Also MinMax scaling will
be used for all NP methods. The LSTM based methods will use the same setup as that
from section 3.5.4, but the methods will only be run six times for each dataset due to
the computational cost46. Further, for all of the LSTM methods the mean result from
the six runs will be reported unless otherwise stated. For the NP methods only the two
top performing methods are evaluated, again to save on computational cost while still
allowing us to compare methods that do and do not use sentiment lexicons.

The accuracy and macro F1 results on the test set for all datasets can be seen in
tables 3.16 and 3.17. The statistically significant results comparing each method can be
seen for both metrics in figure 3.22, for the LSTM methods the median best performing

43Measured by number of parameters. A better measure for efficiency would be Floating Point
Operations (FPO) (Schwartz et al., 2019), but Schwartz et al. (2019) did state that the number of
parameters is a form of efficiency measure.

44Within this section the TDParse Plus and Target Dependent Plus methods will also be called
TDParse+ and TD+ respectively.

45This is due to the method’s requirements of a dependency parser that produces multiple roots.
46Six runs was chosen as according to Reimers et al. (2018) as it will allow future researcher’s to

compare results using significance tests that take all six runs into account. This test was not used in this
chapter as neural methods that require running multiple runs are compared to non-neural methods that
do not, and there is no literature that is known to the author that states how to compare multiple run
performances to single run performances.
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run based on the accuracy metric is used to compare to all other methods. From these
results it is clear that the NP methods are by far the better set of methods. Additionally
it can be seen that adding sentiment lexicons (NP methods with a ‘+’ in their name)
only marginally improve results on some datasets and at most significantly better on
one dataset. These findings are also similar when comparing the non-dependency parser
approaches (TD and TD+ methods) with those that do use a dependency parser (TDParse
and TDParse+), whereby they perform almost as well as each other. Both of these
findings show, for at least the methods tested here, that using additional resources such
as sentiment lexicons or a dependency parser do not make a large significant difference
in results and are thus not needed.

D E L M R Y Mean

LSTM 64.57 47.85 59.90 71.04 68.63 63.33 62.55

TDLSTM 71.12 57.50 61.76 70.52 73.56 64.17 66.44

TCLSTM 68.98 57.40 56.77 70.77 71.85 66.81 65.43

TD 68.50 57.22 66.14 73.45 77.32 82.50 70.86

TD+ 70.23 53.21 68.97 74.37 78.04 81.67 71.08

TDParse 67.77 57.46 67.08 73.96 77.95 79.58 70.63

TDParse+ 69.36 56.12 68.50 73.35 78.30 83.33 71.49

Mean 68.65 55.25 64.16 72.49 75.09 74.48 -

D=Dong, E=Election, L=Laptop, M=Mitchell, R=Restaurant,
Y=YouTuBean

Table 3.16: Accuracy results on the test sets of each dataset. For the LSTM based
methods this is the mean accuracy result. The mean accuracy across all datasets for each
method is in the right most column. Where the bold and underlined values indicate the
best and worst methods for each dataset and the overall mean accuracy, respectively.
The mean accuracy score for each dataset is in the last row.

D E L M R Y Mean

LSTM 61.58 30.65 41.91 35.51 37.15 25.85 38.78

TDLSTM 68.54 42.54 49.82 29.67 56.66 28.98 46.04

TCLSTM 65.92 43.57 45.04 38.42 53.54 36.83 47.22

TD 65.27 46.60 57.86 48.98 63.17 74.80 59.45

TD+ 67.36 44.52 62.33 48.08 64.44 72.90 59.94

TDParse 64.33 46.64 59.23 48.58 64.66 70.05 58.91

TDParse+ 66.36 46.30 61.89 51.17 65.26 74.46 60.91

Mean 65.62 42.98 54.01 42.92 57.84 54.84 -

D=Dong, E=Election, L=Laptop, M=Mitchell, R=Restaurant,
Y=YouTuBean

Table 3.17: Macro F1 results on the test sets of each dataset. For the LSTM based
methods this is the mean macro F1 result. The mean macro F1 across all datasets for
each method is in the right most column. Where the bold and underlined values indicate
the best and worst methods for each dataset and the overall mean macro F1, respectively.
The mean macro F1 score for each dataset is in the last row.
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Figure 3.22: The number of datasets where the column methods are statistically sig-
nificantly better than the row methods, corrected using Bonferroni. The left and right
heatmap represent the accuracy and macro F1 scores. This is using the median perform-
ing run based on the accuracy metric for the LSTM methods.

Between the LSTM based methods it is clear that on average the target specific LSTM
based methods (TDLSTM and TCLSTM) are better than the sentence level classifier
baseline (LSTM). However the TDLSTM and TCLSTM are worse than the LSTM on
the Mitchell dataset, and the TCLSTM is worse than LSTM on the Laptop dataset
when using the accuracy metric. Both of these represent a failure for the target specific
methods as they are beaten by a much simpler baseline. This finding demonstrates one
reason why it is important to test methods across a wide range of datasets.

Comparing the LSTM based methods to the NP it is clear that the LSTM based
methods perform better in comparison to NP on larger datasets e.g. Election and Dong.
Whereas the NP methods in comparison perform much better on the smaller datasets
(YouTuBean), further they also perform better with respect to macro F1 scores. The
macro F1 results suggest that the LSTM methods perform poorly on datasets that are
highly un-balanced e.g. Mitchell and this gets worse when the dataset is small and
un-balanced e.g. YouTuBean. Furthermore for the YouTuBean and the Mitchell datasets
the macro F1 score distribution is quite large, as shown in figure 3.2347, in comparison
to all of the other datasets. This suggests that the LSTM methods are more sensitive
to random seed/initialisation for smaller and un-balanced datasets. To overcome the
overfitting to particular labels, re-sampling techniques such as under or over sampling
could be of use. In some prior work it has been shown that transfer learning from a
document sentiment dataset has greatly improved the macro F1 score for LSTM methods
(He et al., 2018b). However more work investigating how to improve NN based TDSA
methods with respect to highly un-balanced and/or low resourced corpora should be

47For the distribution of the accuracy scores for the LSTM methods see figure A.7 in appendix A.2.
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investigated. Lastly from the significance results it is clear that the NP methods do not
struggle to beat the LSTM sentence level classifier baseline.
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Figure 3.23: Distribution of macro F1 scores from the six runs for each LSTM method
and test dataset.

From a performance perspective in general the hardest dataset, according to accuracy,
is the Election one, even though it is the largest by a large margin. The reason for its
difficulty is believed to stem from the fact it has a large distribution of samples in DS2

and DS3, as Wang et al. (2017a) suggest that DS3 is the most difficult scenario. It also
appears that the methods are less affected by the type, domain, or medium that dataset
has come from but rather the size, DS distribution, and sentiment class distribution.
This is observed as methods that do incorporate type specific features e.g. a Twitter
based dependency parser perform worse in rank terms on the social media type datasets
some of the time than on the non-social media type datasets. For example, TDParse
performs worse on Dong but better on Laptop compared to TD.

It is worth noting that to a large extent the NP methods have an advantage over the
LSTM methods as the C-value which is significant has been tuned for each dataset and
method, where as the LSTM methods have had no tuning. However some of the NP
methods still perform better than the TDLSTM results for the Restaurant dataset from
prior work, as shown by table 3.12. This is highlighted as these other prior works may
have tuned the TDLSTM or found a better seed value than in the evaluation performed
here. To give the LSTM methods an increased advantage over the NP methods, due to
the NP methods having their C-values tuned, the LSTM methods have been recompared
to the NP whereby the best performing run/seed value is used. Figures 3.24 and 3.25
show the number of datasets that the methods are significantly better on using the
best performing run based on the accuracy and macro F1 metric. However with this
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increased advantage for the LSTM methods it can be seen that the NP methods are still
significantly better and the change in the heatmap compared to figure 3.22 is minimal.
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Figure 3.24: The number of datasets where the column methods are statistically sig-
nificantly better than the row methods, corrected using Bonferroni. The left and right
heatmaps represent the accuracy and macro F1 scores. This is using the best performing
run based on the accuracy metric for the LSTM methods.

As stated earlier, the LSTM methods tend to perform worse on smaller datasets. Thus
to test how this low resource setting affects LSTM and NP methods on a larger scale all of
the datasets training set sizes have been reduced to the same size as YouTuBean training
set size, which is the smallest dataset within the evaluated datasets48. Further for the
LSTM based methods this new reduced training set size also means that 20% of that
training set is used as a validation set for early stopping. All methods are retrained using
the same settings. As the YouTuBean dataset has already been evaluated and would
not be affected by this new size reduction it will not be included in the analysis of these
experiments. The accuracy and macro F1 results on the test sets for these datasets can be
seen in tables 3.18 and 3.19. The statistically significant results comparing each method
can be seen for both metrics in figure 3.26, for the LSTM methods the median best
performing run based on the accuracy metric is used to compare to all other methods.

From the results it is clear that the NP methods perform the best in this low resource
setting. The datasets that the LSTM methods did perform better on (Dong and Election),
they are now worse on. The target specific LSTM methods (TDLSTM and TCLSTM)
now have very similar performance to the sentence level LSTM method, which was not
the case for all of the results in the normal resource setting. Furthermore the LSTM

48For the Dong et al. (2014) Twitter dataset instead of training the NP methods using the median
pooled approach due to the ‘same target multiple appearance’ issue Wang et al. (2017a). All methods
including the NP methods will use the first appearance of the target in the text. This was done due to
compatibility reason between the NP and LSTM methods after splitting the training dataset.
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Figure 3.25: The number of datasets where the column methods are statistically sig-
nificantly better than the row methods, corrected using Bonferroni. The left and right
heatmaps represent the accuracy and macro F1 scores. This is using the best performing
run based on the macro F1 metric for the LSTM methods.

Method D E L M R Mean

LSTM 50.00 46.20 53.11 70.11 65.00 56.88

TDLSTM 50.02 49.00 52.25 70.11 65.00 57.28

TCLSTM 51.01 49.91 50.89 70.11 65.00 57.39

TD 65.75 51.59 60.82 72.75 72.50 64.68

TD+ 66.62 49.08 64.58 72.64 74.29 65.44

TDParse 65.61 51.59 60.82 72.44 74.11 64.91

TDParse+ 65.75 50.45 64.26 71.94 74.91 65.46

Mean 59.25 49.69 58.10 71.44 70.11 -

D=Dong, E=Election, L=Laptop, M=Mitchell,
R=Restaurant, Y=YouTuBean

Table 3.18: Using the smaller training datasets, the accuracy results on the test sets of
each dataset. For the LSTM based methods this is the mean accuracy result. The mean
accuracy across all datasets for each method is in the right most column. Where the
bold and underlined values indicate the best and worst methods for each dataset and
the overall mean accuracy, respectively. The mean accuracy score for each dataset is in
the last row.

methods have exceptionally poor performance on the macro F1 results, so much so that
all NP methods are significantly better on all datasets compared to all of the LSTM
methods. The macro F1 results are broken down into F1 scores for each of the sentiment
classes positive, neutral, and negative which can be see in tables 3.20, 3.21, and 3.22.
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Method D E L M R Mean

LSTM 22.22 27.15 23.47 27.48 26.26 25.32

TDLSTM 22.29 26.14 29.12 27.48 26.26 26.26

TCLSTM 27.65 32.46 32.59 27.48 26.26 29.29

TD 62.48 39.18 52.11 45.73 54.66 50.83

TD+ 62.44 39.34 57.71 41.41 58.65 51.91

TDParse 62.43 39.39 51.69 44.14 57.77 51.08

TDParse+ 61.36 38.25 56.86 44.58 60.14 52.24

Mean 45.84 34.56 43.36 36.90 44.29 -

D=Dong, E=Election, L=Laptop, M=Mitchell,
R=Restaurant, Y=YouTuBean

Table 3.19: Using the smaller training datasets, the macro F1 results on the test sets of
each dataset. For the LSTM based methods this is the mean macro F1 result. The mean
macro F1 across all datasets for each method is in the right most column. Where the
bold and underlined values indicate the best and worst methods for each dataset and
the overall mean macro F1, respectively. The mean macro F1 score for each dataset is in
the last row.
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Figure 3.26: Using the smaller training datasets, the values represent number of datasets
the column methods are statistically significantly better than the row methods, corrected
using Bonferroni. The left and right heatmap represent the accuracy and macro F1 scores.
This is using the median performing run based on the accuracy metric for the LSTM
methods.

From these results it is clear that for the datasets that are most un-balanced, the LSTM
methods can only predict the majority class correctly e.g neutral for Mitchell and positive
for Restaurant. In comparison the NP methods are much less affected by the un-balanced
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datasets and can predict at least one sample correctly for all sentiment classes for all
datasets, which only the TCLSTM method can do for the Laptop and Dong dataset.

In the low resource setting for NP methods, it is still clear that the addition of a
dependency parser (TDParse and TDParse+) does not make a large significance difference.
In comparison it is more clear that for the dataset from the written medium and coming
from the review domain (Laptop and Restaurant) that using sentiment lexicons makes a
large difference for both the accuracy and macro F1 metrics. This result is most likely
due to the limited data and thus the sentiment lexicon act as a good inductive bias.
The reason why the lexicon based methods perform well only on these datasets is most
likely due to one of the lexicons coming from that medium and type, Hu et al. (2004a)
sentiment lexicon, whereas the other lexicons used are more general. This shows that
in a low resource setting sentiment lexicons are useful, only if they come from the same
type and medium, as the YouTuBean which comes from the review type but not written
medium does not benefit from the sentiment lexicons as shown in table 3.16 and 3.1749.

Method D E L M R Mean

LSTM 0.00 0.00 69.43 0.00 78.79 29.64

TDLSTM 0.00 0.00 70.53 0.00 78.79 29.86

TCLSTM 10.40 0.00 70.28 0.00 78.79 31.89

TD 57.88 6.38 76.73 41.40 84.00 53.28

TD+ 54.23 12.43 78.79 31.40 84.96 52.36

TDParse 58.20 6.83 76.82 38.30 84.57 52.94

TDParse+ 52.63 5.87 79.31 38.35 85.17 52.27

Table 3.20: Using the smaller training datasets, the F1 results for the positive class on
the test sets of each dataset. For the LSTM based methods this is the mean F1 result.
The mean F1 across all datasets for each method is in the right most column. Where the
bold and underlined values indicate the best and worst methods for each dataset and
the overall mean F1, respectively.

49For the TDParse method there is an increase for both the accuracy and macro F1 metric when
adding sentiment lexicon. This is not the case for the TD method whereby adding sentiment lexicons
harms the performance for both accuracy and macro F1.
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Method D E L M R Mean

LSTM 66.67 20.71 0.00 82.43 0.00 33.96

TDLSTM 66.69 13.70 0.00 82.43 0.00 32.56

TCLSTM 67.02 34.57 0.39 82.43 0.00 36.88

TD 72.87 52.06 33.62 83.68 31.91 54.83

TD+ 73.99 48.45 42.80 83.74 37.54 57.31

TDParse 72.41 52.79 31.62 83.38 33.21 54.68

TDParse+ 73.37 50.98 41.11 83.15 37.67 57.26

Table 3.21: Using the smaller training datasets, the F1 results for the neutral class on
the test sets of each dataset. For the LSTM based methods this is the mean F1 result.
The mean F1 across all datasets for each method is in the right most column. Where the
bold and underlined values indicate the best and worst methods for each dataset and
the overall mean F1, respectively.

Method D E L M R Mean

LSTM 0.00 60.75 1.00 0.00 0.00 12.35

TDLSTM 0.19 64.72 16.82 0.00 0.00 16.34

TCLSTM 5.54 62.81 27.09 0.00 0.00 19.09

TD 56.70 59.11 45.97 12.12 48.05 44.39

TD+ 59.09 57.14 51.53 9.09 53.46 46.06

TDParse 56.68 58.54 46.63 10.75 55.52 45.62

TDParse+ 58.09 57.90 50.15 12.24 57.58 47.19

Table 3.22: Using the smaller training datasets, the F1 results for the negative class on
the test sets of each dataset. For the LSTM based methods this is the mean F1 result.
The mean F1 across all datasets for each method is in the right most column. Where the
bold and underlined values indicate the best and worst methods for each dataset and
the overall mean F1, respectively.

3.7 Conclusion

Within this chapter, the reproduction studies have found, for the first time, that for NP
methods within TDSA both scaling features and C-values within SVMs are statistically
significant factors. Furthermore it is recommended that these factors are reported within
a structured format like that suggested by Dodge et al. (2019) within Appendix B-D with
all other relevant information about the method. For TDSA LSTM based methods it has
been shown for at least one metric (macro F1) that they can be statistically significantly
affected by random seeds for the first time, this has been shown previously by Reimers
et al. (2017) for neural sequence labelling methods. Thus it is recommended to follow
Reimers et al. (2017) advice on reporting and comparing distribution of scores that are
generated from the LSTM methods by different random seeds.

Additionally the reproduction studies found that for NP the larger general embedding
(300 dimension GloVe) can perform as well as the type and/or task specific embeddings
that the original method used (Vo et al., 2015). This implies that from an energy saving
perspective it can be useful to train smaller more relevant embeddings for NP methods.
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While the LSTM methods preferred the larger general embedding, suggesting there is
no requirement to train smaller more relevant embeddings. However these findings have
only been tested on NP and LSTM methods on one Twitter dataset (Dong (Dong et al.,
2014)), it would be beneficial to broaden the experiment to more datasets. These findings
so far in the conclusion have allowed us to answer RQ 1 ‘what lessons can be learned
from reproducing a method within TDSA?’.

The following findings help to answer RQ 2 ‘how generalisable are existing methods
within TDSA?’. It is found that in general the NP methods are better than the LSTM,
but the LSTM methods can perform better in general on larger datasets. Thus showing to
some degree that there is no one winning method. While testing methods across various
datasets that have different domains, types, and mediums it is found that on the standard
datasets sizes these factors do not differentiate the methods. Rather, testing methods
on datasets that vary by size, sentiment class distribution, and Distinct Sentiment (DS )
distribution are the most influential factors. From these factors it is shown that in general
all methods perform badly when the dataset contains a large distribution of samples from
DS3 and DS2. Further, the LSTM methods are badly affected when the datasets are
highly un-balanced and/or small, in these cases the NP methods are highly recommended.
It was found in the low resource setting, that the inductive bias of sentiment lexicons
in NP methods is useful, only if the sentiment lexicon comes from the same type and
medium. Neither, the use of sentiment lexicons nor the features from a dependency
parser are of significant use in the higher resource setting. Lastly it was found in some
cases the target specific methods (TDLSTM and TCLSTM) were no better than the
baseline (LSTM) method. This was not found in the original paper (Tang et al., 2016b),
as the datasets this was found on was not used by the original paper, demonstrating the
need to test methods across varying datasets. From these findings it is recommended
that future work investigates how to improve TDSA methods within the low resource
and/or unbalanced setting especially for NN/LSTM based methods. He et al. (2018b)
has already shown that transfer learning from document level sentiment analysis can
improve LSTM based methods performance on unbalanced TDSA datasets. Thus transfer
learning and or multi-task learning could be a good future direction.

There are some caveats with the research presented so far on ‘how generalisable are
methods within TDSA?’. Even though it was found that LSTM based methods did not
perform as well as the NP methods on small or smaller datasets, this does not mean
another different LSTM based method could not perform better. For instance the LSTM
methods used did not have any regularisation applied50, where regularisation methods
such as variational dropout (Gal et al., 2016) and label smoothing (Szegedy et al., 2016)
have been shown to enhance the performance of neural network based methods (Gal
et al., 2016; Song et al., 2019). Furthermore, it should be noted that all findings here are
constrained to the English language, thus the findings here are language dependent51.

50This decision was made as the LSTM methods used followed the original design of the LSTM methods
(Tang et al., 2016b), where the original design did not use regularisation.

51This is highlighted following what has been known as the #BenderRule (Bender, 2019), which
re-iterated a point made in prior work (Bender, 2011), that not stating the language (normally English)
the data has come from misleads the reader into thinking the work is language independent.
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Chapter 4

Improving Experimental
Methodology for TDSA

4.1 Introduction1

As clearly shown within table 3.2 of the reproducibility and generalisability chapter 3,
many methods have been created, although they have only been applied to selected
datasets. This lack of reporting is further compounded with many prior works only stating
accuracy and/or macro F1 scores on the entire dataset. This type of reporting is good at
comparing methods generally on these datasets. However having more detailed analysis
on different splits of the data or task specific metrics would advance the community in
knowing what the methods are not representing, for instance a method could generally
perform well but might perform badly when there are lots of targets in one text. Thus
the field would benefit generally from detailed error analysis. Some prior works have
suggested different TDSA specific splits of the entire dataset to overcome this error
analysis deficiency (Nguyen et al., 2015; Wang et al., 2017a; He et al., 2018a; Yang et al.,
2018), but few publications since these have used the designed splits and only report
the entire dataset score. This causes a major problem within our community, and so
‘we do not know what we know’. To further expand on the meaning of this, a lot of
the methods within the community have general scores that are fairly similar e.g. only
showing 3-4% differences on the Restaurant dataset (table 4.1)2 but what does that
mean? It could mean that a method is better on texts that contain multiple targets with
different sentiments, or the method is good at generalising to new unseen targets.

The focus of this chapter is to answer RQ 3 ‘What is an appropriate empirical
evaluation methodology for TDSA?’. To answer this question, we first compare and
contrast the different existing error analysis splits for TDSA, as well as better formalising
these splits so that they can be applied to any dataset. From these existing error splits,
two novel splits and a novel metric are created. These error splits are analysed through
the results of three different TDSA models and one text classification model to first justify

1All code that creates the evidence for this chapter can be found here: https://github.com/apmoore1/
tdsa_comparisons. Certain sections throughout this chapter may have more specific pointers to python
notebooks that created the analyses within that given section.

2For an up to date list of papers and scores see Papers With Code https://paperswithcode.com/

sota/aspect-based-sentiment-analysis-on-semeval.
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to some extent what the splits are measuring, and secondly compare the different models
performance on these splits and metrics as baselines. From the baseline results the error
splits and metrics are reviewed and recommendations of what error splits and metrics
should be used and why are given. These formalised error splits and novel metrics will
allow future researchers to better understand what the models are and are not capturing
without having to resort to qualitative case studies and will benefit from fair, easy, and
reproducible comparisons between works. Lastly to ensure all the results and analyses are
performed on varying and standard datasets in the field, all experiments in this chapter
are performed on three public English datasets: 1. SemEval 2014 Laptop (Pontiki et al.,
2014) (Laptop), 2. SemEval 2014 Restaurant (Pontiki et al., 2014) (Restaurant), and 3.
Election Twitter (Wang et al., 2017a) (Election). All three of these datasets have been
introduced in chapter 3 section 3.4, and overall dataset descriptions and statistics can be
found in tables 3.3 and 3.4.

Model Laptop Restaurant

Accuracy macro F1 Accuracy macro F1

ATAE-LSTM (Wang et al., 2016b) 69.27 - 78.50 -

TDLSTM (Tang et al., 2016b) 68.83 68.43 78.00 66.73

MemNet (Tang et al., 2016a) 72.37 - 80.32 -

IAN (Ma et al., 2017) 72.10 - 78.60 -

RAM (Chen et al., 2017) 75.01 70.51 79.79 68.86

MGAN (Fan et al., 2018) 75.39 72.47 81.25 71.94

TNet (Li et al., 2018d) 76.54 71.75 80.79 71.27

PBAN (Gu et al., 2018) 74.12 - 81.16 -

Cabasc (Liu et al., 2018) 75.07 - 80.89 -

IACapsNet (Du et al., 2019) 76.80 73.29 81.79 73.40

Table 4.1: Previous results for models that only use GloVe word embeddings. The bold
and underlined values represent the best and worse performing score for each metric and
dataset. This table has been taken from Du et al. (2019).

4.2 Error Analysis Background

As stated in the introduction of this chapter, TDSA error analysis has been lacking in
both the reporting and the error splits available to analyse the methods. Therefore in
this section the thesis will review the current error analysis splits available, as well as
creating new error splits, and lastly stating some hypotheses around what these splits
actually mean and therefore why they are useful (see table 4.2 for a full summary). The
hypothesis and use around the splits will then be tested in the baseline experiments
subsection 4.3.3.

4.2.1 Previous Work

Currently there have only been four unique error splits suggested for TDSA and these
splits can be grouped into two substantially different error split groups. The first suggested
split was by Nguyen et al. (2015) which is based on the number of targets per text, this
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split created three different subsets of data: ST1 contains samples that only have one
target per text, ST2 and ST3 include samples that have more than one target per text
but ST2 is restricted to samples that contain one sentiment within the whole text. The
second split named Distinct Sentiment (DS )3 by Wang et al. (2017a) which is very similar
to the first, is based around the number of unique sentiments per text: DS1, DS2, and
DS3 would be all the samples that contain only one, two, and three sentiments in the
text, respectively. The third split which is denoted as NT in this thesis has been used in
a couple of prior works (He et al., 2018a; Zhang et al., 2019a), this split divides the data
by the number of targets per text. Each of the two prior works use different subsets,
Zhang et al. (2019a) suggests to only subset on sentences containing up to seven targets4,
and He et al. (2018a) subsetted by sentences containing 1, 2, 3, and more than 3 targets.
From the two different NT split prior works the work by Zhang et al. (2019a) will be
compared to the most in this thesis as it is the work that contains the most subsets (7),
and thus more fine grained results. These three splits are similar as they are all based
around the number of targets and for the former two splits their sentiment class within
a text. Furthermore, the combination of the DS2 and DS3 subsets is equal to the ST3
subset. The DS1 subset is equal to the combination of ST1 and ST2. Also when there
is only one target in the text NT1 this is equal to ST1. Lastly if you create subsets
by conditioning on NTi and DS1 where i > 1 this would be equal to ST2. Following
on from these works, Xue et al. (2018) created the Hard subset which is in fact the
same as the ST3 subset5 and therefore in this thesis is not counted as a new split as it
is a direct derivative of past splits. All of these splits are relatively local splits in the
sense that they do not take into account the global information of what is in the entire
training or test datasets. Furthermore, all of these splits have been created to analyse
the difficulty of a sample based on the number of targets and sentiments in the text,
where it has been shown at least that more unique sentiments causes samples to be more
difficult (Wang et al., 2017a; Nguyen et al., 2015) but the same cannot be said about
more targets (Zhang et al., 2019a; Nguyen et al., 2015). From one of the original papers
that introduced NT (Zhang et al., 2019a), where the main objective of this split is to
increase the number of targets explicitly and the number of unique sentiments is not
taken into account, the difficulty of the samples does not increase when the number of
targets increase (see figure 4 in Zhang et al. (2019a)). Lastly even through the DSi split
was stated to get more difficult as i increased and has been shown in original work to be
true (Wang et al., 2017a), it has also been shown in the same work not to be true when
either the method and or metric changes (see table 4 in Wang et al. (2017a)). Both of
these unexpected empirical findings for the NT and DS split will be explored empirically
in the baseline results subsection 4.3.3.

The ST, DS, and NT splits are the first group of the two substantially different group
splits, the second group of splits only contains one split by Yang et al. (2018), which in
this thesis is called the n-shot split. Yang et al. (2018) were the first to explore subsets
of data based on the number of times the target/aspect has appeared in the training
data compared to the test. However it is not the first time in NLP that this type of
error analysis has been done as this is just an adaptation of the n-shot learning setup

3Distinct Sentiment has already been introduced and used in chapter 3, section 3.4.
4That is seven subsets where each subset contains; 1, 2, 3, 4, 5, 6, or 7 targets per sentence.
5And as stated earlier in this paragraph the same as the combination of the DS2 and DS3 subsets
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which has been performed in text classification (Zhang et al., 2019a), multi-lingual target
extraction (Jebbara et al., 2019), entities and relationships within Natural Language
Inference (NLI) (Levy et al., 2017), and finally many other NLP tasks while evaluating
a language model (Radford et al., 2019). This n-shot setup takes the test and training
datasets and finds the number of times (n) the target in the test dataset appears in the
training. Therefore the subset of zero shot (n = 0) targets would be all the targets in the
test that never appear in the training dataset. The n-shot setup allows the method to be
tested for its ability to generalise to unseen targets, and its capability of learning a new
target. Thus a model that can generalise well should be able to perform well with few
(or no) target examples in the training data. Furthermore, the expectation would be as n
increased the samples within that n would get easier to classify, as it has been shown in
other areas of NLP that zero-shot (n = 0) contains the most difficult samples (Jebbara
et al., 2019). However, findings of the original work by Yang et al. (2018) found that, in
general, model performance does not correlate with n, thus indicating that zero-shot is
no more difficult than any other n to classify. This finding is unexpected and will be
tested further in subsection 4.3.3.

As suggested earlier, the main difference between these two split groups is that the
first uses local information whereas the latter uses the global information between the
test and training datasets. In the next subsection, the new data splits will be created to
complement these existing splits. Given that the first split group contains three slightly
different splits, in this thesis only the DS and NT splits will be used. These two were
chosen as they complement each other well as the NT split measures the effectiveness of
a method with respect to the number of targets in a text and therefore their interactions.
The DS split measures a method’s ability to identify target sentiment relations. Thus
if a method performs well on the NT subsets but not the DS it suggests that it can
understand when targets should interact with each other such as in the conjunction case
e.g. ‘The battery is really good and so is the screen’6, but it is not good at identifying
target sentiment relationships. Thus the ST split is not required as it measures to some
extent both DS and NT.

4.2.2 New splits

In this thesis, two new splits are suggested, one based on global information the other
local information. The global split denoted as Target Sentiment Relation (TSR) focuses
on different ways to probe a method’s ability to generalise to new targets and to new
sentiment relations for already known targets. The local split denoted as Target Sentence
Sentiment Ratio (TSSR) measures the combination of DS and NT splits but taking into
account the number of different sentiments rather the unique sentiments within the DS
split. Therefore it can be used to measure the affect to some extent of overfitting to the
most frequent sentiment within a sentence.

The TSR split contains three subsets: 1. Known Sentiment Known Target (KSKT ),
2. Unknown Sentiment Known Target (USKT ), and 3. Unknown Targets (UT ). The
first subset should be the easiest as the method will have at least some information on
both the target and how it relates to that sentiment label, thus this sets the threshold
for the other two subsets to meet. The second is potentially the most difficult for the

6‘battery’ and ‘screen’ are the two targets.
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method as it would have seen the target and a relation to another sentiment label, but
not this specific label. Therefore the USKT split tests how well a method can generalise
to new sentiment relations without overfitting to known relations for that target. The
last subset is the same as the zero shot case in the n-shot split, thus it tests the ability of
the method to generalise to new targets. This split can be seen to relate to the relation
extraction task of performing zero shot entity extraction for the UT subset and zero
shot relation extraction for the USKT subset (Levy et al., 2017). The results from the
relation extraction literature (Levy et al., 2017; Abdou et al., 2019) motivates the reason
why USKT should be the most difficult split and the UT to be easier.

The TSSR is based on each target’s sentiment frequency within a sentence thus taking
into account both unique sentiments and number of targets within a sentence. Before
stating how TSSR is calculated some notation is required; given a target that is represented
as tji where j denotes the sentence index from all of the sentences X = {x1, ..., xk}, and
i denotes the index of the target within sentence j where the target is 1 of n targets
Tj = {tj1, ..., tjn} within sentence j. Furthermore the sentiment value for tji comes from
the set S = {s1, ..., si} of all sentiment values, where the sentiment value for a target
comes from the following function Sent(tji) ⊂ S. Given this notation TSSR can be
calculated from equation 4.17, thus the subsets within TSSR are a continuous value
ranging from 0 to 1. Where the minimum TSSR value would come from one of two types
of sentences:

1. A sentence that contains lots of targets but few or one come from only one unique
sentiment class.

2. A sentence that contains few targets but all targets come from a different sentiment
class.

TSSR(tji) =

∑|Tj |
n=1[Sent(tji) = Sent(tjn)]

|Tj |
(4.1)

Targets that are within the 1 subset have to be either the only target within a sentence
(NT1) or a sentence that contains multiple target all with the same sentiment, thus the
1 subset is equal to the combination of ST1 and ST2 subsets or the DS1 subset. Any
TSSR subset that is less than 1 must come from targets that are within texts that contain
more than one unique sentiment and thus more than one target hence part of either DS2

or DS3 subsets. Furthermore, the assumption is that the lower the subset value the more
difficult the sample will be to classify, as the target must have come from a sentence that
contains lots of targets and/or the target itself has a very rare sentiment value within
that sentence. For instance, a sentence that contains 3 targets and 3 different sentiments
will all be part of TSSR subset 1

3 . Another example, a sentence that contain 3 targets
where the first is positive and the rest negative, the first will be part of TSSR subset
1
3 where as the other two parts subset 2

3 . TSSR’s main purpose is to detect overfitting
to the most frequent sentiment within the sentence, of which this can be measured by
taking the absolute difference in some metric, e.g. accuracy, between high and low TSSR
values. Whereby, a large absolute difference would suggest overfitting whereas a low

7A TSSR value is assigned to each target and is calculated per target.
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would not, as performing well on the high TSSR values could come from just predicting
the most frequent sentiment in the sentence.

The TSSR split can be seen to be very similar to the DS split as they both measure
to some degree the number of sentiments within a sentence. However the main point
of TSSR unlike DS is to measure overfitting to the most frequent sentiment within the
sentence, where as DS better evaluates the target sentiment relationship as the subset
explicitly measure this. The TSSR and DS splits can be used together to measure the
target sentiment relation better, as when the TSSR shows overfitting this informs how
reliable the metrics within the DS subsets are. For example, when overfitting through
TSSR is high, the values of the DS split may be unreliable as the model is not learning
the target sentiment relationship, but just how well it is at overfitting.

Summaries of the differences in the error splits introduced in this section and section
4.2.1 can be seen in table 4.2. Examples for each of these splits and subsets can be found
in table 4.3.
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Split Description What it measures

Distinct Sentiment
(DS )(Wang et al.,
2017a).

Splits the data based on the number of unique senti-
ment classes within one text where DSi represents i
unique sentiment classes within a text.

The method’s ability to capture sentiment relations
within the text. If the method performs well on larger
values of i the better the method is at capturing these
relations. Less directly this measures the method’s
capability of modelling target interactions.

NT (Zhang et al.,
2019a).

Splits the data based on the number of targets within
the text, where NTi split contains all the texts that
have i number of targets within it.

The method’s ability to model target interactions,
where the larger i is the higher the likelihood of more
target interactions. For instance, in example 4 from
table 4.3 to infer the sentiment for Dave you need to
know the sentiment towards police and crime.

TSSR novel split. Splits the data based on the TSSR equation 4.1. The
maximum value of 1 represents a target that is within
a text that contains one unique sentiment. A TSSR
value less than 1 denotes a target that is within a text
that contains at least more than one unique sentiment.
A TSSR value gets smaller based on how unique the
targets sentiment is within that text.

Capturing overfitting to the most frequent sentiment
within a text, which can be measured to some degree by
comparing the method’s High (Multi 1) TSSR subset
to the Low (1) TSSR subset. It can also to some
degree measure both target interaction and sentiment
relations when the TSSR value is less than 1, thus a
combination of both DS and NT.

ST (Nguyen et al.,
2015).

Splits the data into three subsets ST1 for texts that
contain one target, ST2 and ST3 for texts that contain
more than one target, where ST2 texts only have one
unique sentiment.

The method’s ability to capture sentiment relations
and its interaction with other targets.

n-shot (Yang et al.,
2018).

Splits the data based on the number of times the target
has appeared in the training data, when n = i the
subset contains samples that have targets that only
appear in the training data i times.

A method’s ability to generalise to unseen targets when
n = 0, as well as its capability of learning a new target.
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TRS novel split. Splits the data into three subsets: 1. Unknown Tar-
gets(UT ) when the target has never been seen in the
training data, 2. Unknown Sentiment Known Tar-
get(USKT ) when the target has been seen in the train-
ing data but not with the same sentiment class, and
3. Known Sentiment Known Target(KSKT ) when the
target has been seen in the training data with the
same sentiment class. NOTE UT is equal to n-shot
when n = 0.

A method’s ability to generalise to unseen targets UT
split, and unknown sentiment relations USKT split,
where the KSKT split can be seen as the method’s
upper limit for the former two subset’s performance.

Table 4.2: Summary of the different error splits.
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Sample Error subsets for
each target

Examples in training data

Example 1

Conservatives1 cut the police2 budget and
this cut crime3! Maybe not... #spin #Bat-
tleForNumber10

All targets - DS2,
ST3, NT3. Target
1 and 2 - TSSR
value of 2

3 . Target
3 - TSSR value 1

3 .

Example 2

Absolutely - taxation1 is the problem
#bbcqt

All targets - DS1,
ST1, NT1, TSSR
value 1.

Example 3

Let the debate begin need a leader with tol-
erance for immigrants1/lightbluerefugees2
#BattleForNumber10

All targets - DS1,
ST2, NT2, TSSR
value 1.

Examples in test data

Example 4

20% less police1 equals 20% less
crime2...wow Dave3’s a genius... #Battle-
ForNumber10

All targets - DS1,
ST1, NT3, TSSR
value 1. Target
1 - 1-shot, USKT,
Target 2 - 1-shot,
KSKT, Target 3 -
0-shot, UT.

Blue = positive, Grey = neutral, and Red = negative sentiment.

Table 4.3: Examples of TDSA samples split into training and test datasets, where each
example states the error split that the target will be put within. All examples have come
from the Election Twitter dataset (Wang et al., 2017a).

4.2.3 Analysing the splits8

Given these five different splits DS, NT, TSSR, n-shot, and TSR, the analyses of how
often they occur within the three main English datasets that are being examined in this
chapter will be explored, through this exploration it will uncover in more detail how
these datasets differ. All analysis shown in this subsection is performed on the test set of
the datasets, this was chosen over a validation set as no standard/formal validation sets
have been created for these datasets9.

8All empirical tables and graphs within this section have been generated through the follow-
ing notebook https://github.com/apmoore1/tdsa_comparisons/blob/master/analysis/TDSA_Error_

Analysis.ipynb.
9It has also been shown that using a standard training and test split is not optimal if the aim is to

find generalisable results (Gorman et al., 2019; Moss et al., 2019). Thus, showing analysis for a validation
split is somewhat pointless as the best way of evaluation in the future would be to run models across
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The DS split subsets can be seen in both table 4.4 and figure 4.1 which clearly shows a
massive difference between the Election dataset and the Restaurant and Laptop datasets.
The Election dataset contains almost a 50-50 split between the DS1 and DS2 subsets
compared to the almost 80-20 split within the Restaurant and Laptop datasets. This
first shows that the Election dataset is likely to be a much more difficult dataset due to
the model having to properly reflect the sentiment relation between targets and their
corresponding sentiment within the text. This is in contrast to the samples that come
from the DS1 subset which could potentially be classified by a sentence level sentiment
classifier as all the targets within that sentence all contain the same sentiment. The
number of DS1 samples within the Restaurant and Laptop dataset could explain why
sentence level classifiers have performed well in TDSA tasks, which has been shown by
numerous studies (Tang et al., 2016a; Wang et al., 2016b; He et al., 2018a; Jiang et al.,
2019). Lastly, this also shows that the DS3 subset, the most difficult, should not be
analysed on the Laptop and Restaurant dataset due to the low number of samples.

Figure 4.1: Percentage of sam-
ples per DS data subset.

Data Subset

Dataset DS 1 DS 2 DS 3

Election 1164 1182 195

Laptop 535 94 9

Restaurant 892 225 3

Table 4.4: Number of samples within each
DS data subset.

The NT split, unlike the DS split, has a continuous number of subsets as i of NTi is
determined by the dataset. Figure 4.2 shows unsurprisingly that the Election dataset
compared to the other two contains far fewer samples that only have one or two targets
per text, which most likely relates to the fact that it has far fewer DS1 samples. Thus,
showing again that the Election dataset is likely to be a more difficult dataset, as a greater
number of the samples will contain sentiment that are linked through target interaction.
However, as can be seen in figure 4.2 and as stated in the work suggesting this split

multiple splits and random seeds (Moss et al., 2019) when computational costs lower. For now, our
evaluations only take into account random seeds subsection (4.3.2).
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Figure 4.2: Percentage of samples per NTi

subset.
Figure 4.3: Percentage of samples per NT
data subset.

(Zhang et al., 2019a) some of the subsets contain very few samples, thus any analysis on
these subsets can be fairly unstable. Furthermore, as the dataset contains different ranges
of i in NTi, binning the NT split into four subsets will allow the datasets to be more
comparable. The four subsets suggested would first be comprised of one subset where
i = 1 denoted. Then the other three subsets would be made up of low, medium, and high
number of i, where i values for each of these subsets are based on the equal amount of
samples per i. Each of these subsets will be termed 1-target, low-targets, med-targets,
and high-targets respectively. These subsets can be seen in figure 4.3 and table 4.5, along
with the values of i that each subset represents in table 4.6. The 1-target subset denotes
the methods baseline performance when not having to consider target interaction, which
to some extent should set the upper bound for all other subsets. The other three subsets
represent low to high likelihood of requiring target interaction knowledge to classify the
samples correctly. Thus, a method that can model these interactions well should perform
well across all four subsets, whereas a method that cannot will perform increasingly
better from high i to i = 1.

Data Subset

Dataset 1-target low-targets med-targets high-targets

Election 102 1216 728 495

Laptop 259 204 99 76

Restaurant 285 384 343 108

Table 4.5: Number of samples per NT subset.

The TSSR split has a continuous number of subsets based on the dataset, of which
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Data Subset

Dataset 1-target low-targets med-targets high-targets

Election 1, 1 2, 3 4, 4 5, 9

Laptop 1, 1 2, 2 3, 3 4, 6

Restaurant 1, 1 2, 2 3, 4 5, 13

Table 4.6: Range of i values that represent each NT subset.

the TSSR subset values can range from 1 to 0. These TSSR subsets can be seen in full in
figure 4.4 for each dataset. As noted before in section 4.2.2 the 1 TSSR subset is equal
to the DS1 subset of which this subset dominates the Laptop and Restaurant datasets.
Thus for TSSR value subsets less than 1 the Laptop, Restaurant, and Election datasets
contain ∼ 20%, ∼ 24%, and ∼ 55% of their samples respectively. Furthermore, it can be
seen clearly from figure 4.5 and 4.4 that only the Election dataset has a large number
of samples that have a TSSR value less than or equal to 0.5. These lower TSSR values
(≤ 0.5) represent the least or joint equal frequent sentiment within the text when the
text comes from the DS2 subset of which the majority of samples that contain more than
one unique sentiment do come from the DS2 for all datasets. Furthermore the lower
TSSR value subsets are going to be by far the more difficult samples to predict for, due
to them containing targets that meet at least one of the two following criteria:

1. The target coming from a text that contains lots of other targets but the target
itself is within the least dominating sentiment class within the text.

2. The target comes from a text that contains few targets but all targets come from a
different sentiment class.

Thus these two criteria therefore will measure the method’s ability to identify target
sentiment relations in a text that is dominated by other target sentiments.

Figure 4.4: The right (left) plot shows the cumulative sample count (percentage) for
decreasing values of TSSR.

As can be seen from the figures of 4.5 and 4.4 the TSSR value subsets are different
depending on the dataset just like the NT split. Therefore, the split will contain four
subsets to represent different levels of difficulty and allow the performance on the subsets
to be comparable across datasets. The four subsets are the following:
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Figure 4.5: The left plot shows the cumulative sample count percentage for decreasing
values of TSSR starting from 0.5. The right plot shows the same as the left but for the
full range of TSSR values but excluding the Election dataset.

1. 1-TSSR contains all targets that come from a sentence that only contain that one
target thus this is the same as the NT1/NT 1-target subset and ST1 subset from
section 4.2.1.

2. 1-multi-TSSR contains all targets that come from a sentence that contains more
than one target but they all have the same sentiment value. This is the same as
the difference of the DS1 subset and the NT1/NT 1-target subset, and the same as
the ST2 subset from section 4.2.1.

3. high-TSSR contains all of the targets that are within the following TSSR value
range m ≤ x < 1.

4. low-TSSR contains all of the targets that are within the following TSSR value
range 0 ≤ x < m.

The value for m is dataset specific and is based on ensuring that the low-TSSR values
contain at least 50% of the samples after the 1-TSSR and 1-multi-TSSR samples have
been removed from the dataset. The rest of the samples are given to the high-TSSR
subset.

The 1-TSSR subset explores the effect of having no target interaction nor complex
target sentiment relation due to only having one target and one sentiment. The 1-
multi-TSSR explores the effect of having target interaction with potentially easier target
sentiment relation due to the targets having all of the same sentiment, thus allowing
the method to get the target sentiment relation incorrect without any consequence. The
high-TSSR and low-TSSR measures the effect of increasing the target interaction and
target sentiment relation to a smaller and larger degree respectively.

The 1-multi-TSSR is expected to be the easiest subset as a method can make use of
the target interaction and incorrectly inferring the correct target sentiment relationships
as all targets will have the same sentiment. The next easiest subset would be the 1-TSSR
due to no target interaction nor complex target sentiment relationships, however more
difficult than 1-multi-TSSR as the method will have less sentiment signal within the text.
Lastly the high-TSSR and then low-TSSR should be the most difficult subsets in that
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order due to target interactions and complex target-sentiment relationships. Furthermore,
as stated earlier in section 4.2.2 the main purpose of this split is to measure overfitting
to most frequent sentiment within the text. Through the subsets the overfitting could be
detected if the method performs better in the 1-multi-TSSR than the 1-TSSR, this could
show that either the method is exploiting the frequent sentiment situation or it is better
at capturing the target interaction. However, the difference in performance between
the high-TSSR and low-TSSR could detect this overfitting better due to the low-TSSR
coming from the most infrequent sentiment within the texts and the high-TSSR coming
from the most frequent. Thus if the difference between the high-TSSR and the low-TSSR
is large then most frequent sentiment overfitting is more than likely occurring.

Within figure 4.6 and table 4.7 is the breakdown of the number of samples per
TSSR subset, table 4.8 shows the TSSR value range for each subset10 (the gap in range
between each subset exists because there are no samples that contain a TSSR value
in that gap). As shown in the figure and tables, the Election dataset compared to the
other two contains far fewer 1-TSSR samples compared to the number of samples in
1-multi-TSSR. Furthermore, the Election dataset also contains a large high-TSSR subset,
and low compared to the other datasets.

Figure 4.6: Percentage of samples per TSSR subset.

To further understand the relationship between the TSSR split and the NT and DS
splits figure 4.7 shows the breakdown of each TSSR subset by the NT and DS splits. As
can be seen from the figure for the 1-multi-TSSR subset, the Election dataset has a more
even distribution of samples that come from sentences that contain 2, 3, and 4 targets.
Compared to the Restaurant and Laptop datasets where the majority of samples contain
only 2 targets and then dramatically decreases as NT increases. For all datasets the
high-TSSR subset contains relatively more samples that come from texts that contain a

101-multi-TSSR is not within this table as it has the same range as 1-TSSR.
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Data Subset

Dataset 1-TSSR 1-multi-TSSR high-TSSR low-TSSR

Election 102 1062 656 721

Laptop 259 276 32 71

Restaurant 285 607 98 130

Table 4.7: Number of samples within each TSSR subset.

Data Subset

Dataset 1-TSSR high-TSSR low-TSSR

Election 1, 1 0.88, 0.56 0.5, 0.11

Laptop 1, 1 0.8, 0.6 0.5, 0.2

Restaurant 1, 1 0.86, 0.67 0.5, 0.14

Table 4.8: Range of TSSR values for each TSSR subset.

larger number of targets compared to the low-TSSR subset. This is most likely due to the
fact that targets with rare sentiment within the target’s sentence only occur once or twice
in a large NT sentence where as the lesser rare sentiment targets occur far more often in
those sentences and are counted within the high-TSSR subset. An example of this can
be thought of where the sentence contains 5 targets of which 1 comes from the positive
sentiment class and the rest negative, thus the high-TSSR will have 4 samples where as
the low-TSSR only 1 from the sentence coming from the 5 NT subset. Unsurprisingly
the majority of the limited number of DS3 samples are almost all inclusively within the
low-TSSR subset for all datasets. Figure 4.7 also shows that the main difference between
the three subsets is less about the distribution of NT but rather the distribution of
sentiment labels within a sentence. Lastly, figure 4.7 explains to some degree the reason
why Election and Restaurant datasets have a large TSSR value range as shown in table
4.8, as these datasets must contain sentences that have a large number of targets as well
as those sentences containing a different number of sentiments.

Similar to NT, and TSSR the n-shot split has different values of n based on the
dataset, of which this can be best seen in figure 4.8. From the left plot in figure 4.8
the sharpness of each curve for each dataset would appear to relate to the size of the
dataset, as Laptop is the smallest and has the sharpest curve, whereas Election is the
largest and has the least steep curve. Furthermore, in the left plot it can be seen that
both Restaurant and Election start to flatten off around 80% and 64% suggesting that
the test dataset contains a lot of samples with targets that have been very frequently
seen in the training dataset. Thus these high n samples should be easy to classify due
to the method having seen lots of samples of those targets in the training dataset. To
better capture how many samples with no target in training data appear compared to
those with targets that appear very often, figure 4.10 contains three plots showing the
low, medium, and high frequencies of n (note that the values on the Y-axis are different).
From this we can clearly see that for all datasets the largest number of samples occurs
when n = 0. Lastly, it shows that both the Restaurant and Election datasets contain a
lot of samples where the targets have been seen very frequently in the training dataset.

This analysis suggests that the n-shot split should be broken up into four different
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Figure 4.7: Percentage of samples per TSSR subset broken down by NT and DS splits.

subsets rather than n subsets, similar to the NT split. This is suggested as a comparison
of n subsets with respect to some metric can be very unstable as some of these n subsets
can contain very few samples e.g. when n = 12 for the Laptop dataset (see figure 4.10).
The four subsets suggested would first comprise of one subset where n = 0 which is
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Figure 4.8: The right (left) plot shows the cumulative sample count (percentage) for
increasing values of n.

the UT and zero-shot case. Then the other three subsets would be made up of low,
medium, and high number of n, where n values for each of these subsets are based on the
equal amount of samples per n. Each of these subsets will be termed zero-shot, low-shot,
med-shot, and high-shot respectively. These subsets can be seen in figure 4.9 and table 4.9,
along with the values of n that each subset represents in table 4.10. Lastly these subsets
should allow for comparability across datasets and better analysis of the method’s ability
of learning a new target, as a good method should have a steady high performance across
all of these subsets, whereas a method that overfits to targets would have a decreasing
performance from the high to zero shot subsets.

Figure 4.9: Percentage of samples per n-shot data subset.

TRS, the last and new split to be analysed can be best seen through figure 4.11 and
table 4.11. As can be seen the UT subset is almost the largest subset for the smallest
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Data Subset

Dataset zero-shot low-shot med-shot high-shot

Election 354 740 736 711

Laptop 269 125 123 121

Restaurant 352 267 258 243

Table 4.9: Number of samples per n-shot subset.

Data Subset

Dataset zero-shot low-shot med-shot high-shot

Election 0, 0 1, 23 24, 100 109, 433

Laptop 0, 0 1, 3 4, 14 17, 60

Restaurant 0, 0 1, 11 12, 55 56, 360

Table 4.10: Range of n values that represent each n-shot subset.

dataset (Laptop) but a relatively small subset for the largest dataset, of which this has
already been seen through the zero-shot subset. Furthermore, the USKT is the smallest
subset by far across the datasets, however it still counts for at least 10% of all data in
the Laptop dataset. Based on the two global splits, TRS and n-shot, they show the
importance of a method to generalise to new targets (UT and zero-shot cases) and new
relations (USKT ) which will more likely occur in a low resource setting, which can be
best seen by the size of these subsets on the Laptop dataset.
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Figure 4.11: Percentage of samples per TRS
data subset.

Data Subset

Dataset KSKT USKT UT

Election 2093 94 354

Laptop 302 67 269

Restaurant 708 60 352

Table 4.11: Number of samples within each
TRS data subset.
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4.2.4 Conclusion so far

Within this subsection the different error splits that exist within the TDSA literature
have been reviewed and added too. Furthermore, each of these splits have been analysed
on three major datasets showing for the first time how each dataset has different charac-
teristics. The local splits DS, NT, and TSSR show that the Election dataset contains
far more unique sentiments per text, whereas the Restaurant dataset contains the most
targets per text. The global splits, n-shot and TRS, find that in the low resource setting
a method that can generalise well to new targets and new sentiment relations would be
important, which can be seen through the contrast in subset sizes between Election and
Laptop datasets. Lastly, table 4.2 summarises the differences in the error splits, examples
for each of these splits and subsets can be found in table 4.3. Finally, a summary of all
of the statistical breakdowns of each of these splits can be found in table 4.12.

Dataset

Data Split Data Subset Election Laptop Restaurant

DSi

DS1 45.8% 83.9% 79.6%
DS2 46.5% 14.7% 20.1%
DS3 7.7% 1.4% 0.3%

NT

1-target 4.0% 40.6% 25.4%
low-targets 47.9% 32.0% 34.3%
med-targets 28.7% 15.5% 30.6%
high-targets 19.5% 11.9% 9.6%

TSSR

1-TSSR 4.0% 40.6% 25.4%
1-multi-TSSR 41.8% 43.3% 54.2%
high-TSSR 25.8% 5.0% 8.8%
low-TSSR 28.4% 11.1% 11.6%

TRS
KTKS 82.4% 47.3% 63.2%
USKT 3.7% 10.5% 5.4%
UT 13.9% 42.2% 31.4%

n-shot

zero-shot 13.9% 42.2% 31.4%
low-shot 29.1% 19.6% 23.8%
med-shot 29.0% 19.3% 23.0%
high-shot 28.0% 19.0% 21.7%

Total Samples 2541 638 1120

Table 4.12: Summary statistics of all splits

4.3 Method Performance on the Error Splits

4.3.1 Introduction

In this sub-section the performance of the following four NN based methods will be
analysed across the five different error splits stated in section 4.2. The results from these
experiments will be used to further analyse what the error splits show as well as create
multiple baselines for these splits. The four different methods are the following:
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1. CNN – The sentence level CNN from Kim (2014) that encodes the context/sentence
and does not take into account the target.

2. TDLSTM (Tang et al., 2016b) – An LSTM that encodes the target by ensuring
the target word(s) are always the last word(s) fed to the LSTM from the con-
text/sentence. Thus a position based method where the position is encoded through
the NN architecture. This is the same TDLSTM as that from chapter 3, described
in detailed within section 3.3.3.

3. IAN (Ma et al., 2017) – Encodes the target into the context via attention.

4. Att-AE – A model that is the same as the AE model from Wang et al. (2016b) but
with an attention layer after the LSTM enocder. This model is also the same as the
inter-aspect model (from now on called Inter-AE ) from Hazarika et al. (2018) but
without the LSTM aspect encoder (phase 2 in figure 1) that models other targets
from the same context/sentence.

Thus to summarise the differences in the TDSA methods (last three methods from above);
TDLSTM encodes the position of targets through its architecture, IAN encodes the
target into the context via attention and also encodes the context into the target through
attention, and Att-AE encodes the target into the context through concatenation of the
target vector onto each word vector within the context before the LSTM encoder. The
Att-AE does perform attention over the context but unlike IAN does not explicitly model
the target in the attention of the context nor does it perform attention over the target
word(s)11.

The reason why Att-AE is neither exactly AE (Wang et al., 2016b) nor Inter-AE
(Hazarika et al., 2018) is due to not wanting to add inter-target encoding to the baseline
models, as within chapter 5 all models are going to have inter-target encoding added.
Furthermore as the model will have inter-target encoding added in chapter 5 it will
convert Att-AE to Inter-AE thus making it a standard model from prior literature. The
use of different methods from those within chapter 3 is due to the surge in purely NN
based TDSA methods of recent years, thus the only methods used within this chapter
are NN based.

Due to having a non-target method CNN, all of the TDSA methods have a baseline
to compare against. Furthermore as all experiments will contain results from at least
two TDSA methods to a larger extent the results should generalise to different TDSA
NN architectures. In the following sections the thesis will:

1. State the experimental setup of all experiments within this section (section 4.3.2).

2. Explore the differences in performance on the error splits across the methods
(section 4.3.3).

11For the detailed reader, the IAN’s attention can be denoted as general where as Att-AE would be
concat based on the notation from Luong et al. (2015, §3.1).
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4.3.2 Experimental Setup12

As stated in the introductory section of this chapter (4.1), the three datasets that are
used throughout this chapter are the Election, Laptop and Restaurant datasets. However,
unlike the error analysis section (4.2), the standard training split for each of the datasets
will be further randomly split into a new training and an additional validation split, of
which the size of these splits can be seen in table 4.13. The validation set is required
so that the early stopping can be used for all of the NN methods. Furthermore, the
validation set would usually be used for more hyper-parameter tuning, e.g. finding the
best learning rate etc, but due to compute time this is not the case. Instead we selected
the most common hyper-parameters from the literature as detailed in table B.1, it will be
stated explicitly within this chapter if these hyperparameters are not used. One default
hyperparameter of note is the embedding, of which the 840 billion token 300 dimensional
GloVe vector (Pennington et al., 2014) (from now on called GloVe and is called that
in table B.1)13 was chosen, as it is the most common default embedding in the TDSA
literature. All text will be tokenised using Spacy and then lower-cased14. Lastly, all
results reported in this section will be results on the test set and all validation results will
be reported in the appendix for reproducibility reasons (Dodge et al., 2019). However if
there is a large difference between the validation and test results this will be mentioned
explicitly in this section.

Data Split

Dataset Train Validation Test Total

Election 6811 (57.24%) 2547 (21.41%) 2541 (21.35%) 11899

Laptop 1661 (56.29%) 652 (22.09%) 638 (21.62%) 2951

Restaurant 2490 (52.73%) 1112 (23.55%) 1120 (23.72%) 4722

Table 4.13: Number of samples.

Due to the splitting of the training dataset, the error analysis split statistics in
section 4.2 will not be identical for the global error splits (n-shot and TRS ) between the
train/test and train/validation as they rely on a comparison of train and validation/test.
Even though they will not be identical they are relatively similar as shown by table
B.2. Furthermore, as the local splits (DS, NT, and TSSR) are only reported for the test
set, table B.3 shows them for the validation and test set showing that they are again
relatively similar, thus results should be comparable between validation and test sets.

Furthermore, for all of the experiments performed in this chapter each model will
have trained/ran on the respective data eight times. Thus allowing for the random seed
problem, that is known in NN methods within NLP (Reimers et al., 2017), and to be able
to perform statistical significance tests that take into account this problem (Reimers et al.,
2018)15. Reimers et al. (2018) has shown that by using a minimum of eight runs two

12The code to generate table 4.13 can be found in the README at the following https://github.

com/apmoore1/tdsa_comparisons#analysis-of-the-datasets. The code to generate tables B.2 and
B.3 can be found in the following notebook https://github.com/apmoore1/tdsa_comparisons/blob/

master/analysis/TDSA_Error_Analysis.ipynb.
13This is the same 300 dimension GloVe embedding that is used in chapter 3.
14The text was lower-cased as none of the three TDSA methods stated in their original works if they

lower-cased the texts or not. The assumption here is that they did.
15These significance tests are different to those used in chapter 3, as these for the neural network based
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models can be compared with a confidence level of 99% which is equivalent to p ≤ 0.01
no matter if the scores from those runs comes from a non-normal distribution. The two
scoring metrics commonly used in TDSA and will be used in this chapter are accuracy
and macro F1, of which only accuracy can be assumed to produce scores originating from
a normal distribution and thus can use the more powerful parametric tests (Dror et al.,
2018). Therefore following Reimers et al. (2018) for the accuracy scores the significance
test used will be the Welch’s t-test (parametric test) (Welch, 1947) and for macro F1 the
Wilcoxon signed-rank test (non-parametric test) (Wilcoxon, 1945). When comparing two
models using these statistical tests for each test the one-tailed version of it will be used as
in these experiments the requirement is only to know if one model is better than another.
In this and the next chapter 5, a method is defined as the general NN architecture where
as the model is defined as the concrete configuration of that method. Thus two models
can be different but use the same method, for example the difference would be the word
vectors that the two models use. When comparing two models across multiple variables
and therefore significance tests a correction procedure is required, as explained in section
3.5.1. In this chapter, the Bonferroni correction procedure will be used where appropriate
as in none of our cases can independence be assumed.

4.3.3 Baseline Results16

4.3.3.1 Introduction

The baseline results use the four different methods stated in section 4.3.1 as is without
any changes to their respective NN architectures. These results will be explored to see
whether the intuition behind the error splits as stated in section 4.2.3 is to a degree true.

For clarification, the sentence/text level CNN method is trained differently to the
TDSA methods due to the fact that it does not model the target within the sentence.
Thus instead of training the CNN method with potentially the same sentence multiple
times with potentially multiple different sentiments as is the case with TDSA datasets17,
the TDSA dataset is converted to a text level dataset. To convert from TDSA to a text
dataset each text/sentence can only contain one sentiment, from this two options are
plausible; 1. only uses texts that contain one unique sentiment (DS1 dataset), or 2. use
the majority sentiment from the text. These two options were compared of which the
detailed results can be found in appendix B.3, of which it was found that the second/later
option performed best on 2 of the 3 datasets and all datasets for the accuracy and macro
f1 metrics respectively across both validation and test splits. For clarification, when
predicting with this text level classification method all targets within the same text will
be given the predicted text level sentiment label. This experiment of comparing the two

methods better take into account all runs produced by different random seeds.
16All tables and graphs within this section have been generated through the following

notebook https://github.com/apmoore1/tdsa_comparisons/blob/master/analysis/TDSA_Baseline_

Results.ipynb. The exception to this are the tables generated within appendix B.3, of which there is a
pointer in that appendix to the relevant notebook.

17This was how the non-target aware models from chapter 3 were trained. Therefore the non-target
aware models in some training samples would have been given the same sentence with different sentiments
to train on. Even though it may have been better to train them in the ways stated within this section,
this was not tested due to compute time. Furthermore it was assumed that they were trained in the same
way as their target aware methods as it was not stated in the papers (Vo et al., 2015; Tang et al., 2016b;
Wang et al., 2017a) that were reproduced that they were trained any differently.
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options of training a text classifier on TDSA data was required as prior works that have
shown results for text classifiers never explain how they were trained (Tang et al., 2016a;
Wang et al., 2016b; He et al., 2018b; Jiang et al., 2019). For a stronger text classifier
baseline one could consider pre-training the text classifier from large sources of annotated
data such as Yelp reviews (Tang et al., 2015), Amazon reviews (McAuley et al., 2015; He
et al., 2016), or Tweets using distant supervision (Go et al., 2009) for the Restaurant,
Laptop, and Election datasets respectively and then fine tune them on the respective
TDSA dataset. However this stronger baseline is not considered in this work as we are
not looking at transfer learning from other sources of sentiment, but this has been shown
to be beneficial for TDSA methods (He et al., 2018b).

4.3.3.2 Overall Results

Figure 4.12 shows the results of the baseline models across both the validation and test
splits with the associated tables B.4 and B.5 in appendix B.1. From these results it
can be seen that the CNN text classification baseline is indeed a strong baseline for the
Laptop and Restaurant datasets that the TDSA methods find difficult to beat.
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Figure 4.12: The mean and standard deviation error bars from running each model 8
times.

4.3.3.3 Comparison of the Original Model Scores to the Reproduced Models

Figure 4.13 compares the single run performance of the original TDSA models scores from
their associated papers to the distribution of eight accuracy scores from our reproduced
TDSA methods18. As can be seen from figure 4.13 the models original score are within
the distribution of scores from the reproduced models apart from IAN where the original

18Accuracy metric was the only metric reported in all of the original TDSA method papers and none
of them reported on the Election dataset.
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models performance is a lot higher especially for the Laptop dataset. IAN’s performance
difference is most likely due to the fact that the reproduced version uses a different
optimiser, ADAM (Kingma et al., 2015), instead of SGD with momentum (Qian, 1999),
this design choice was made so that all models used the same optimiser. Even though it
would be good to optimise the performance of the IAN model so that it produces scores
similar to the original doing so in a fair manner would mean hyperparameter tuning the
other models as well (Dodge et al., 2019), which would start becoming computationally
expensive. Thus in this thesis it is accepted that the IAN model has not been reproduced
to the same performance as the original paper reports.
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Figure 4.13: Distribution of all scores and the line represents the mean value, of which
for the original models this line represents their only reported score. Model names with
a (O) represent the score reported in the original models paper.

4.3.3.4 Overall Results Comparison between TDSA and Text Classification
Models

This thesis shows for the first time that not all TDSA models are statistically significantly
better than a text classifier as shown by table 4.14, even though all three original TDSA
papers state that their TDSA models are superior to a text classifier. Furthermore, at
the 95% confidence level none of the TDSA methods are significant on the Laptop test
split no matter what the metric is. This shows that potentially hyperparameter tuning is
very important to get the most out of the TDSA models. More likely the reason for the
text classifier’s strong performance on the Laptop and Restaurant dataset compared to
the Election dataset is that these datasets contain a large quantity of DS1 samples (see
figure 4.1), of which it is shown later in this section in figure 4.14 that the text classifier
does at least as good if not better than the TDSA models on the DS1 subset in the
Laptop and Restaurant datasets. This further shows that the overall metrics tell us very
little in what the difference is between a text classifier model and the TDSA models.
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Dataset

Model Split Metric Election Laptop Restaurant

Att-AE
Test

Accuracy 2.14e-08 0.68 0.01
Macro F1 7.86e-04 0.67 0.03

Validation
Accuracy 2.57e-10 0.40 0.84
Macro F1 3.76e-03 0.52 0.31

IAN
Test

Accuracy 2.21e-10 0.99 0.14
Macro F1 1.02e-03 0.99 0.08

Validation
Accuracy 3.98e-12 0.01 0.69
Macro F1 3.96e-03 0.16 0.30

TDLSTM
Test

Accuracy 1.29e-10 0.87 0.19
Macro F1 2.53e-05 0.46 0.01

Validation
Accuracy 1.26e-10 0.99 0.36
Macro F1 8.07e-04 0.85 0.03

Table 4.14: The P-values for each model where the null hypothesis is that each model
performs as well as a CNN text classifier. The P-Values in bold are those ≤ 0.05.

4.3.3.5 Error Split Results

The performance of all of the models across all datasets for each split and their associated
subsets can be seen in figure 4.14 (appendix B.2 figure B.1 shows the validation split
results). The figures that contain subset performance results will not contain results
for the DS3 subset for the Laptop and Restaurant datasets, this is due to the subset
containing very few samples as highlighted in subsection 4.2.3. The error split results for
the test and validation splits are better highlighted in figures 4.15 and B.2 respectively
where the accuracy on the whole dataset (overall accuracy) is subtracted from the error
subset accuracies. These figures can thus evaluate the error splits that were discussed
and created within this section. In the list below the results will be analysed by error
split:

• DS split, as expected, increases in difficulty as the number of unique sentiments
in the text increases, thus showing that target sentiment relation to be a difficult
task for the models to perform. Furthermore, it can be seen that on average the
TDLSTM model performs consistently well on the DS2 and DS3 subsets compared
to the other models.

• NT split does not have a consistent affect on the performance of the models, this
was also found in one of the original papers (Zhang et al., 2019a). One would
expect texts that contain a lot of targets to be more difficult and at times it is
as shown by the Restaurant dataset. However, on the other two datasets this is
not the case. Furthermore, the performance across the subsets can differ between
datasets splits, e.g. the performance of all models on the med-targets subset on
the Election dataset is worse than high-targets for all models on the test split,
but on the validation figure (B.2) the opposite is true. This would suggest that
even though theoretically a text with more targets should be more difficult for a
model to classify, due to the complexities of matching targets to their respective
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sentiments (Zhang et al., 2019a), this is not the case. Thus later in this section,
analysis is conducted to investigate what other factors are influencing the change
in performance within the NT split. However, for now it can be concluded that
NT cannot effectively evaluate the target interaction as no consistent trend can be
found in this split.

• TSSR As expected the 1-Multi subset is by far the easiest subset to classify
suggesting that the models are exploiting the fact that all targets have the same
sentiment. The 1 subset tends to perform the next best with the high subset at
times quite close if not the same. A reason for the high subset to have such high
performance across the models could be due to the models overfitting to the most
frequent sentiment class in the text, as suggested in section 4.2. As expected the low
subset is by far the worst across all datasets and models and in some cases harder
to classify than samples within DS2 and DS3. Only on the Laptop test split are
the high scores similar to the low, of which this might be due to the lack of samples
for the high subset (5% of the dataset) compared to the (11.1% of the dataset) in
the low subset, which is also suggested by the large error bars. Furthermore the
sentiment overfitting which this split is supposed to measure does show to some
extent where the TDSA model, TDLSTM, that performs consistently better or at
least as good in the DS2 and DS3 subsets tends to have a smaller difference between
subset 1-Multi and 1, and is consistently a lot higher than the text classifier on the
low subset. However this split does not measure sentiment overfitting explicitly
very well without the text classification baseline and the DS split. For example
without DS and the text classification baseline it would be impossible to know that
the TDLSTM is performing target sentiment relation well on the laptop dataset
as the DS2 subset performance could be high due to TDLSTM predicting the
most frequent sentiment class. This cannot be the case as the performance of
TDLSTM on the high and low TSSR subsets are both above the text classification
model unlike the other two TDSA models. Though this is a rather loose way of
measuring sentiment overfitting and is not the way that was stated in the previous
subsection 4.2.3. In the previous subsection 4.2.3 the difference between the high
and low subsets was hypothesised to indicate sentiment overfitting, but as can be
seen from the figures TDLSTM that is supposed to not be overfitting as much as
the other TDSA models does indeed contain a low difference between high and low
on the Laptop dataset, but so does IAN thus making the hypothesis less likely to
be true. Therefore to conclude on the TSSR split, it cannot measure sentiment
overfitting nor would it be able to measure target interaction as suggested in 4.2.3
either as it would be impossible to know if it was target interaction or sentiment
overfitting. However there are clear signs that the subsets measure to some degree
target sentiment relation as the score of subsets 1, high, and low are similar in order
to subsets DS1, DS2, and DS3 respectively and these subsets co-occur frequently
as shown in figure 4.7. Thus after this subsection the TSSR split will no longer be
used.

• TSR again the finding is expected where the USKT is by far the most difficult
subset. The UT is more difficult in general than the KSKT but with a much smaller
margin. This finding is therefore in line with the relation extraction literature
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where unknown entities are easier to predict than unknown relations (Levy et al.,
2017; Abdou et al., 2019). Within the validation results for the Election dataset the
margin between UT and KTKS is very small. This very much suggests that the
models do require a certain amount of supervision for all targets in all sentiment
classes or else they bias the target more towards one sentiment class than another.
This type of bias can be very harmful as shown by the USKT. This could suggest a
reason why the margin between UT and KSKT is so small as some of the KSKT
targets might not occur in enough samples within a sentiment class. Furthermore
the KSKT subset can be seen as the upper limit for the other two subsets as it can
be seen as the data rich subset.

• n-shot the expected result can be clearly seen in all the datasets within the test split
but less so within the validation split. Where the expectation is that the greater n
is the easier the subset will be. Within the validation split the Election and to some
extent Restaurant datasets are the major outliers, where no matter what the subset
is, the scores are almost all the same. A reason for this could be that the validation
split is used in early stopping therefore some information is leaked to the model.
As both the n-shot and TSR splits measure a model’s generalisation to new targets,
from the results shown it would appear that TSR does this more explicitly. The
TSR split unlike the n-shot models both the unseen targets and unseen relations,
of which modelling both has been shown through TSR to be crucial. This finding
creates another possible explanation why the n-shot subsets do not always show a
positive correlation between n and the metric score. Furthermore, the TSR KSKT
subset is always the best performing subset within the split unlike the high in the
n-shot. Thus, for exploring a model’s ability to generalise to unknown targets and
unknown sentiment relations TSR is recommended compared to n-shot. Thus, like
the TSSR split the n-shot will not be used after this subsection.

Generally, the test and validation results from figures 4.14 and B.1 respectively show
that the DS, TSSR, and TSR splits contain the most difficult subsets. The TDSA models
perform a lot better on the DS2 subset on the Election datasets compared to the Laptop
and Restaurant datasets. This could be due to the Election dataset containing far more
DS2 samples relative to it’s overall size compared to Laptop and Restaurant datasets (see
figure 4.1). This may suggest that ways to improve the models performance on the DS2

and potentially DS3 subsets could be by training the models on more of these samples
and thus improving the target sentiment relation modelling. However, this could have a
negative affect on the performance in the DS1 subset. Also how to generate more DS2

and DS3 samples could also be a difficult and interesting challenge.

From the test and validation results in figures 4.14 and B.1 respectively the text
classification model, has a few unexpected findings. The TSR, and n-shot splits do not
explicitly probe a models capability to model the target sentiment relationship rather how
well a model generalises to new targets or less seen targets and unknown sentiment classes
for known targets. These probes thus do not explicitly require target information, for
example in the DS split for the DS2 subset without modelling the target it is impossible
to get all the samples correct, this is not directly true for the subsets in the n-shot
and TSR. However, as can be seen from the results the text classification model does
not perform equally well across all subsets in the n-shot and TSR splits, this suggest
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that either the text classification model does use the target to influence the sentiment
prediction, or these subsets correlate with other dataset factors, for example zero-shot
subset has far fewer samples that belong to the DS2 subset than the high-shot subset.
These issues are not explored any further but should be looked at in the future.
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Figure 4.14: The mean and standard deviation error bars for each error subset within all
of the error splits on the test split across all datasets.

112



4.3. Method Performance on the Error Splits

1 Low Med High

4

2

0

2

4
Er

ro
r S

pl
it=

NT
Ac

cu
ra

cy
 D

iff
er

en
ce

Dataset=Election

1 Low Med High
5.0

2.5

0.0

2.5

5.0

7.5

Dataset=Laptop
Att-AE CNN IAN TDLSTM

1 Low Med High

10.0

7.5

5.0

2.5

0.0

2.5
Dataset=Restaurant

DS1 DS2 DS3

15

10

5

0

5

10

Er
ro

r S
pl

it=
DS

Ac
cu

ra
cy

 D
iff

er
en

ce

Dataset=Election

DS1 DS2
25

20

15

10

5

0

5
Dataset=Laptop

DS1 DS2

20

10

0

Dataset=Restaurant

1 1-Multi Low High
15

10

5

0

5

10

Er
ro

r S
pl

it=
TS

SR
Ac

cu
ra

cy
 D

iff
er

en
ce

Dataset=Election

1 1-Multi Low High

30

20

10

0

10
Dataset=Laptop

1 1-Multi Low High

30

20

10

0

10
Dataset=Restaurant

Zero Low Med High
4

2

0

2

4

Er
ro

r S
pl

it=
n-

sh
ot

Ac
cu

ra
cy

 D
iff

er
en

ce

Dataset=Election

Zero Low Med High

5

0

5

10

15
Dataset=Laptop

Zero Low Med High

5

0

5

10

Dataset=Restaurant

USKT UT KSKT
Error Subset

30

20

10

0

Er
ro

r S
pl

it=
TS

R
Ac

cu
ra

cy
 D

iff
er

en
ce

Dataset=Election

USKT UT KSKT
Error Subset

30

20

10

0

10

Dataset=Laptop

USKT UT KSKT
Error Subset

30

20

10

0

Dataset=Restaurant

Figure 4.15: The mean and standard deviation error bars for the difference between the
overall accuracy and the accuracy from each error subset within all of the error splits on
the test split across all datasets.
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4.3.3.6 Error Split Results Comparison between TDSA and Text Classifica-
tion Models

Using the test and validation results from the subsets shown in figures 4.14 and B.1
respectively it is possible to explore the differences between the text classification model
and the TDSA models. These differences can be better seen through the heatmaps in
figures 4.16 and 4.17, where the former is not corrected for multiple significance tests
where as the later is using Bonferroni and is aggregated across datasets. Note that for
figure 4.16 the DS3 subset results should be ignored for the Laptop and Restaurant
datasets as they were never calculated as the sample size for the DS3 subset is too
small. Also the DS3 subset is removed from figure 4.17 as only the Election dataset
contains enough samples to create confidence scores. From all of these figures it is clear
to see that the subsets that the TDSA models outperform the text classification model
in are DS2, DS3, low-TSSR, TSR KSKT, n-shot Med, and NT Low. There are other
subsets where the difference is significant as shown in the heatmaps but the majority of
these significant differences only occur because of the Election dataset as can be seen
if you compare figures 4.16 and 4.17. Furthermore, the outliers in these differences are
the n-shot Med, and NT Low subsets of which the reason why it is believed these are
outliers was described in the previous paragraphs. The DS2, DS3, and the low-TSSR
are expected to perform better for the TDSA models as they contain multiple unique
sentiments within a sentence, for which a text classification model can only predict one
of those sentiments for the sentence thus, limiting the model’s capability to perform well
on these subsets. This therefore shows that the TDSA models must be learning some
target sentiment relationship modelling or else they would not be more competitive than
the text classifier. The TSR KSKT shows that when the TDSA models have seen a
target enough times in a known sentiment context then they can perform a lot better
than the text classification model and their respective overall accuracy. However it is
the other subsets within TSR that are of more interest showing the deficiencies of the
TDSA models. The worse subset within TSR is the USKT of which this is the only
subset where the text classification model in general perform significantly better (see
figure 4.17). TDSA models are most likely biasing the target representation towards a
subset of sentiment classes for those targets and hence why the text classification models
perform better on those targets. The UT (n-shot zero is the same subset) subset is an
interesting result as it is dataset dependent as shown best in 4.16, in the Election dataset
the TDSA models are better but in all other datasets the text classification model is
better. This could be due to the size of the datasets as the Election dataset is much
larger than the rest and therefore could allow the TDSA models to create better general
target representations, thus allowing the models to leverage similarities with known
targets. From the dataset heatmap figure 4.16 it can be easily seen that on the Election
dataset the majority of subsets are statistically significant compared to the Laptop and
Restaurant dataset. This is most likely due to the Election dataset containing more
targets per text (as can be seen in table 4.15 19) and therefore far fewer texts within DS1

which is the subset the text classification model is most suited to. Even though the text
classifier does not perform statistically significantly better than all the TDSA models on
the Laptop and Restaurant datasets for DS1 they are never worse. Furthermore, as the

19Dataset statistics for the splits, rather than the whole dataset, used in this section can be seen in
table B.6.
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Laptop and Restaurant datasets are mainly made up of DS1 samples (see figure 4.1) this
is most likely the reason why the TDSA models are not statistically significantly better
than the text classification models on these datasets.
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Figure 4.16: Plots in the first column represent the number of TDSA models that are
statistically significantly better than the text classification model. Plots in the second
column show the opposite, the number of TDSA models where the text classification is
statistically significantly better. All plots have a confidence level of 95% (p ≤ 0.05).
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Figure 4.17: Plots in the first column represent the number of TDSA models that are
statistically significantly better than the text classification model across all datasets.
Plots in the second column show the opposite, the number of TDSA models where the
text classification is statistically significantly better. All plots have a confidence level of
95% (p ≤ 0.05) and have been corrected using Bonferroni.
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Name No. Sents(t) No. Targs (Uniq) ATS(t) POS (%) NEU (%) NEG (%)

Laptop 1872 2950 (1181) 1.58 1328 (45.02) 628 (21.29) 994 (33.69)

Restaurant 2578 4722 (1528) 1.83 2892 (61.25) 829 (17.56) 1001 (21.2)

Election 4045 11899 (2179) 2.94 1744 (14.66) 4572 (38.42) 5583 (46.92)

No. Sents(t)=number of sentences that contain a target, No. Targs (Uniq)=Number of (unique) targets (all targets are
lower cased), ATS(t)=Average Target per Sentence where the sentences must contain a target, LABEL (%)=Number of
LABEL samples (percentage of LABEL samples).

Table 4.15: Dataset statistics for each datasets where each dataset represent the combination of all the dataset’s splits e.g. train,
validation, and test.
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4.3.3.7 Comparing the Error Split Results to the Prior Work

From the results in this subsection the findings can relate back to some of the original
work on these splits confirming the same findings. The findings of the TSSR 1-Multi
performing better than TSSR 1 is the same finding as Nguyen et al. (2015) as both of
these subsets are the equivalent to ST2 and ST1. When the number of unique sentiments
increase in a text, which can be measured through the DS and TSSR splits, this reduces
the performance of a method, which is the same finding as Xue et al. (2018) comparing
the normal test to the hard test, and that of Nguyen et al. (2015) comparing ST1 or
ST2 with ST3.

The n-shot findings do not confirm the findings of the original work by Yang et al.
(2018) where they found that in general models performance do not correlate with the
number of times the target/aspect appeared in the training data. However, our findings
show that they do correlate where the more the target appears in the training data
the better the performance in general. The reason for the difference could come from
the task itself, as Yang et al. (2018) was not solving the task of TDSA but rather the
task of Multi-Entity Aspect Based Sentiment Analysis (ME-ABSA), where TDSA would
be equivalent if when predicting the sentiment of the target the latent aspect was also
given. This difference in task could make a large difference as knowing a target’s latent
aspect could greatly improve a model’s performance on unknown targets. The reason
why the latent aspect would make such a large difference is because the dataset would
contain a few aspects which occur frequently therefore allowing the model to create a
good representation for the aspects. Furthermore, given these aspects the likelihood is
that there could be many unknown aspect target pairs but due to the model potentially
having a good representation of the aspect the performance on these zero-shot pairs
could be quite high. Thus, a reason for Yang et al. (2018) finding no correlation between
performance and number of times the target/aspect appeared in the training data could
be due to the aspects.

As found earlier in figures 4.14 and B.1 for the test and validation results respectively
the NT split does not show any consistent trend, which to some degree is what is found
in the original works (He et al., 2018a; Zhang et al., 2019a). The expected trend was as
the number of targets increase the lower the performance. A potential reason for this
could be that there are other factors that influence the NT split. The factors that will
be explored here are the target sentiment relationship factors which can be measured to
some extent using the DS and TSSR splits. To explore this all the datasets will be first
subsetted by one of the DS or TSSR subsets and then further subsetted by one of the
NT subsets, the model’s performance will be measured on each one of these compounded
subsets. Figures 4.18 and 4.19 show the performance on these compounded subsets
whereby the former subsets the data by DS and the latter TSSR, for the validation data
this can be seen in figures B.3 and B.4. Note that in the figures some of the NT subsets
do not exist on the x-axis, this is because after the subset compounding no data exists
for those subsets. These figures show that in general for the DS1 and TSSR 1-Multi rows
the larger NT the better the performance of the models, of which for the DS1 row this
can be better seen in the validation data (figure B.3) than the test. This is most likely
the case because of the models exploiting the fact that there are more targets expressing
the same sentiment. This exploitation of targets expressing the same sentiment can also
be seen in the DS2 rows (better seen in the validation data) where the more targets the
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better the score. Within the Low and High TSSR subsets the trend is less clear. The
expectation within these subsets would be, when there are more targets (larger NT ) this
will results in poorer performance for the Low TSSR subset, but better results for the
High TSSR subset. This expectation is under the assumption that the more targets there
are within the High TSSR subset the greater the likelihood that the targets have the same
sentiment and exploiting the most frequent sentiment would gain a higher performance
score. The opposite is true when there are more targets within the Low TSSR subset
the greater the likelihood that the targets have a different sentiment and exploiting the
most frequent sentiment would gain a lower performance. However, this expectation
is not always true and can be inconsistent between splits, for example the High TSSR
Laptop results have different trends between test and validation splits. Furthermore, this
assumption of more targets within the TSSR Low and High subsets does not necessarily
mean more targets of the most frequent sentiment class due to the way TSSR subsets are
created (equation 4.1), hence a potential reason why there is no consistent correlations in
those subsets. Thus, this analysis shows to some extent why the NT split has no trend as
the target sentiment relationship factors are more influential than the number of targets
on the performance of the models. This therefore solves to some extent why Zhang et al.
(2019a)20 and He et al. (2018a)21 also could not find a steady trend for the NT split.

The DSi split was stated to get more difficult as i increased and this has been shown
in this work and in the original (Wang et al., 2017a). However, as mentioned in section
4.2.1, in the original work it was also shown for some methods and metrics that the
models perform best on the DS3 subset. In this work that phenomena did not occur
when using the accuracy metric, which Wang et al. (2017a) did not use. Therefore, to
test if the DS split results do change because of the metric, in figure 4.20 are the DS
results on all datasets using the macro F1 metric which was one of the metrics used by
Wang et al. (2017a). As can be seen from the results the only dataset where i in DSi

does not negatively correlate with the macro F1 results is the Election test dataset. The
Election test datasets was also the only dataset Wang et al. (2017a) used when measuring
model performance on the DS split22. The other results follow the trend shown in this
section when using the accuracy metric.

To investigate why the Election test dataset does have a different trend when using
a different metric the approach taken was to explore the individual F1 scores for each
sentiment label on the Election dataset. This approach was taken as the main difference
between accuracy and macro F1, as the macro F1 is not biased by the un-balanced label
distribution that is within the dataset, of which all datasets used are very un-balanced
(see table 4.15). Figure 4.21 shows the results of each sentiment label’s F1 score and as
expected the most frequent sentiment (negative) has the highest scores no matter the
subset. These results highlight why the macro F1 score does not have the same negative
correlation as the accuracy metric does for the DS split. As the results show the positive
and the neutral sentiments do not follow the negative correlation that the negative
sentiment does. Thus, as the scores of each sentiment are weighted the same in the macro
F1 metric this therefore causes the macro F1 score for the DS3 subset to be higher than
the DS2 subset in the test split. The potential reason for this unusual correlation could

20See figure 4 in the paper.
21See figure 3 in the paper.
22Results can be found in table 4 of Wang et al. (2017a).
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Figure 4.18: Each plot shows the performance (y-axis accuracy) of the given models and
sample size of the data evaluated on (y-axis dataset size) on the different test datasets
(columns) after being subsetted by the relevant DS subset (rows) and then NT subset
(x-axis).

be due to the model overfitting to the most frequent sentiment class (negative) and hence
why if the model predicted negative for all samples in a DS3 sentence then it would get
some samples correct but it would get at least 2 samples wrong.

To further investigate whether the most frequent sentiment class always has this
negative correlation the results for the Restaurant and Laptop datasets are shown in
figures 4.22 and 4.23 respectively. From these two plots we can see that the most frequent
sentiment class (positive for both datasets) has the largest drop in F1 score from DS1

to DS2. This large drop in F1 score gives some extra merit to the idea that the models
are overfitting to the most frequent sentiment class23. Due to this overfitting the model
is most likely predicting the most frequent sentiment class more often than it should
where as in the cases for the least frequent sentiment classes it could be only predicting
these when it is confident. These reasons are not empirically proven but the results have
shown further insight into the DS split. Lastly, these results show more that the results
from the original paper (Wang et al., 2017a) do not generalise across datasets and that
the general result is that the metrics normally correlate negatively with the DS subsets.

23It was also found in chapter 3 section 3.6 that NN based methods overfit to the most frequent
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Figure 4.19: Each plot shows the performance (y-axis accuracy) of the given models and
sample size of the data evaluated on (y-axis dataset size) on the different test datasets
(columns) after being subsetted by the relevant TSSR subset (rows) and then NT subset
(x-axis).

sentiment class on many datasets in a low resource setting.
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Figure 4.20: Macro F1 score where the data is subsetted by the DS split.

5

10

15

20

25

30

35

F1

Split = Validation | Sentiment = Positive

45

50

55

60

65

70

75
Split = Validation | Sentiment = Negative

35

40

45

50

55

60

Split = Validation | Sentiment = Neutral

DS1 DS2 DS3
DS Subset

5

10

15

20

25

30

35

F1

Split = Test | Sentiment = Positive

DS1 DS2 DS3
DS Subset

45

50

55

60

65

70

Split = Test | Sentiment = Negative

DS1 DS2 DS3
DS Subset

30

35

40

45

50

55

60

Split = Test | Sentiment = Neutral

AE CNN IAN TDLSTM

Figure 4.21: The Election test and validation split F1 scores for each sentiment label,
where the data has been further broken down through DS subsets.
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Figure 4.22: The Restaurant test and validation split F1 scores for each sentiment label,
where the data has been further broken down through DS subsets.
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Figure 4.23: The Laptop test and validation split F1 scores for each sentiment label,
where the data has been further broken down through DS subsets.
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4.3.4 The Strict Text ACcuracy (STAC) Metric

Both the DS and TSSR error splits explore the concepts of target sentiment relationships
and overfitting to the most common sentiment within a text. However, neither of these
can create error subsets that will explicitly inform you if the model can detect sentiment
for all the targets in the text and thus performing the target sentiment relationship task
perfectly. Both the DS and TSSR splits do attempt to show this but both are subject
to the model finding the most frequent or easiest to find sentiment for some/all of the
targets in the subsets. Thus, the creation of the Strict Text ACcuracy (STAC ) metric.
This metric works on the sentence/text level compared to the accuracy and macro F1
metrics that are based at the target level. STAC treats each sentence as a sample and
each sentence can only be correct if all targets within that sentence have been classified
correctly, it is then averaged by the number of sentences. The TAC equation 4.2 that is
used within the STAC equation 4.3 finds the average number of targets that are correct
within a sentence. The notation to describe STAC and TAC in equations 4.3 and 4.2
is the same notation used in equation 4.1, which describes the TSSR split. Tj within
STAC represents all of the targets within sentence j from all sentences X that is within
the dataset, and tji represents target i true sentiment within sentence Tj where t̂ji is the
predicted sentiment.

Text ACcuracy (TAC)(Tj) =

∑|Tj |
i=1[tji = t̂ji]

|Tj |
(4.2)

Strict Text ACcuracy (STAC) =

∑|X|
j=1

{
1, if TAC(Tj) = 1

0, otherwise

|X|
(4.3)

The STAC metric is more useful when applied to subsets of a dataset, thus two
specific versions of the STAC metric are created:

1. STAC 1 - The STAC metric applied to only the data in the DS1 subset.

2. STAC Multi - The STAC metric applied to only the data in the DS2 and DS3

subsets.

The STAC Multi gives in one metric how well overall a TDSA model is at target
sentiment relation modelling removing all factors of overfitting to a sentiment class, or
predicting the most frequent sentiment, of which this is possible in STAC 1. STAC
Multi can also be seen as a coarse grained and much stricter version of the DS split,
as both measure target sentiment relationship modelling. However, due to STAC Multi
being such a strict and thus difficult metric the DS subsets can be useful to measure
target sentiment relationship modelling at a more fine grained scale. For example, if a
model does not perform significantly better nor worse than another on STAC Multi but
does perform better on DS2 and DS3 subsets, then the likelihood is that the model is
performing target sentiment relationship modelling better. The difference between STAC
1 and STAC Multi can show to some degree how much the model is overfitting to the
most frequent sentiment class in a text. The performance of all models across all metrics
including accuracy and macro F1 can be seen in 4.24, the STAC metric is shown for
completeness. As can be seen from the figure the STAC Multi is by far the most difficult
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metric and scores much lower than any of the accuracy metrics on any of the subsets
shown in figure 4.14 (validation split figure B.1). However, the STAC 1 results can be the
easiest metric as shown by the Restaurant dataset. The difference between STAC 1 and
STAC Multi for the TDSA models is rather large and more so for the Restaurant and
Laptop datasets which could be due to the fact there are proportionally and overall more
DS2 and DS3 sentences in Election than the Restaurant and Laptop datasets as shown
by table 4.16. Furthermore, as should be the case, the text classification model (CNN )
scores 0 in all of the STAC Multi thus showing again the point of the metric and the
relevancy to TDSA. These scores highlight that TDSA models have much to improve upon
with regards to target sentiment relation modelling as shown by the STAC Multi metric
without resorting to simpler majority sentiment classification of the sentence as shown by
STAC 1, and the other error subsets (DS1, TSSR 1, and TSSR 1-Multi). Furthermore,
from the results it is interesting to see that the TDLSTM model generally performs well
on the STAC Multi metric compared to the other models across all datasets, of which
this could be due to the model encoding position of the target within its architecture.
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Figure 4.24: Performance across all metrics for all models across all datasets and splits.
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Subset

Split Dataset DS1 DS2 and DS3 Total

Train
Election 1227 1092 2319
Laptop 933 118 1051

Restaurant 1162 216 1378

Validation
Election 467 396 863
Laptop 364 47 411

Restaurant 497 103 600

Test
Election 469 394 863
Laptop 373 38 411

Restaurant 520 80 600

Table 4.16: Number of sentences in each split for all datasets.

4.4 Reflection on Error Splits, STAC, and the Results

Through these error splits and new metrics (STAC ) the differences between the TDSA
and text classifier can be seen and where the TDSA models do outperform the text
classifiers by a large margin. The flip side to distinguishing the performance of TDSA and
text classifier models is by creating ‘challenge datasets’ that examine the performance of
a model in specific circumstances. This approach was taken by Jiang et al. (2019) where
they created a new version of the Restaurant dataset called Multi-Aspect Multi-Sentiment
(MAMS). The MAMS dataset as the name suggests only contain texts that have at least
two targets with at least two different sentiments, thus removing all texts that only have
one sentiment. This new dataset was created to avoid samples being easily classified
by a text level classifier. This dataset therefore fits into the DS2 and DS3 only subsets
from the DS split. They found a large difference in scores between the text classifier
models and the TDSA (≥ 10%), which is what was found in the error split analysis in
section 4.3.3.5 on all datasets as shown in figures 4.14 and 4.15. However, to overcome
this problem they have had to create a new dataset which costs in either money and/or
time, which is not the case in the error split approach shown here. The approach of
creating new datasets to examine properties of TDSA models is not scalable without
large resources thus the error split approach is a very feasible alternative and as shown
effective. Furthermore, using the new STAC-Multi metric it is now possible to quantify
TDSA model performances on samples that only TDSA models can correctly predict.
This does not mean that these challenge datasets are not useful, for instance using this
dataset can help answer the question of whether using more DS2 and DS3 samples will
improve TDSA models performance on those subsets and how much would that affect
the performance on the DS1 subset.

The baseline experiments (section 4.3.3) have brought about many different findings,
of which some have confirmed prior findings, where as others have not. Unlike previous
work it has been shown that TDSA models on datasets that do not contain a lot of targets
per text such as the Laptop and Restaurant datasets can be statistically no better than
a text classifier, prior work has shown this in absolute performance but not statistically
(Jiang et al., 2019). From these baseline experiments we can conclude that all the error
splits have been successfully tested across a range of models and datasets. From analysing
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the error split results the baseline TDSA models generally perform best on subsets of
data that contain one unique sentiment (DS1) and on targets that appear multiple times
in different sentiment classes within the training data (KSKT ). This finding suggests
that the baseline models are very brittle and cannot generalise to unknown targets (UT ),
unknown sentiment relations (USKT ) or texts that contain multiple unique sentiments
(DS2 and DS3). Due to these factors the models are unlikely to perform well in low
resourced or cross domain settings. Subsection 4.3.4 introduced a novel TDSA metric
STAC and its two variants STAC-Multi and STAC 1 of which when used together can
show sentiment overfitting to the most frequent sentiment class in a text to some extent.
Furthermore the STAC-Multi shows how well the TDSA models can perform target
sentiment relationship modelling perfectly, as well as how the DS subsets are a fine
grained and easier version of STAC Multi.

Subsection 4.3.3.7 has related back to the original work that created these error splits
in doing so explained why the NT split does not have a consistent trend. From exploring
the different splits many of them have been dismissed due to the results not matching
the hypothesis of what the split is supposed to measure. Thus the NT split, due to
having no consistent trend, cannot be used to measure target interaction. The TSSR
split cannot measure sentiment overfitting, and the n-shot split is not as useful as the
TSR. Therefore the recommended splits to use are the DS for measuring fine grained
target sentiment relation modelling and TSR to measure the model’s ability to generalise
to unseen targets and sentiment relationships. Furthermore, the STAC-Multi metric is
recommended to measure target sentiment relation modelling, but it is a much stricter
and coarser measure compared to DS. The STAC 1 should also be used so that it can
show to some degree with STAC-Multi the extent of overfitting to the most frequent
sentiment class in a sentence.

Lastly, from exploring the results across these different splits future research directions
have surfaced. Due to none of the splits being capable of explicitly measuring target
interaction, an annotated corpus incorporating this annotation would be of use. He
et al. (2018a) has shown that using an un-supervised autoencoder objective to mimic
encoding a latent aspect into the target representations improves general results as well
as results on multi word targets, and visually has shown on selected targets to create
better target representations. However it would be of interest to see if such a method
can help target representations for unknown targets (UT ) as this would be similar to the
Multi-Entity Aspect Based Sentiment Analysis (ME-ABSA) task, where Yang et al. (2018)
had found no difference between UT and Known Sentiment Known Targets (KSKT ).
Thus suggesting that encoding the latent aspect could greatly benefit the UT samples.

4.5 Conclusion

The research question that this chapter was attempting to answer is RQ 3 ‘What is an
appropriate empirical evaluation methodology for TDSA?’. To investigate this, section 4.2
reviewed the prior work in error analysis splits within TDSA. From this literature review,
several existing error splits were found, DS which measured target sentiment relationship
modelling, NT measuring target interaction, and n-shot measuring generalisation to
unknown targets. From this literature review, two novel error splits were created, TSSR
that measured target sentiment overfitting to the most frequent sentiment in a sentence
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and TSR measuring generalisation to unknown sentiment relationships and targets. These
existing error splits were rigorously tested in section 4.3.3 across three TDSA methods
and a text classification method to ensure they were measuring what was hypothesised.
From this, NT error split was removed due to it not measuring target interaction but
rather the sentiment factors DS. TSSR was dropped due to it not measuring target
sentiment overfitting without a text classification model and the DS split. Lastly, the
n-shot split was removed as when the value of n increased it was expected the accuracy
should increase as well or at the least not drop, which was not always true. Thus
the TSR split which measured both unknown targets and sentiment relationships was
recommended as a better replacement to n-shot. The findings from reviewing the NT
split bring the recommendation that the only way to investigate target interaction is
through an annotated corpus with this explicitly annotated. A novel TDSA metric is
created, STAC Multi and STAC 1, which when used together can be used to evaluate
sentiment overfitting to the most frequent sentiment in the sentence. Furthermore, the
STAC Multi metric can be seen as a coarse grained version of the DS error split as
they both measure target sentiment relationship modelling, but STAC Multi cannot be
influenced by sentiment overfitting to the most frequent sentiment in the sentence.

In this chapter the error splits have been reduced to those that match their hypotheses
(DS and TSR) and a new novel metric has been created to overcome previous limitations
in the error splits. Therefore a new empirical evaluation methodology for TDSA has been
created, whereby each error split and metric can be used to quantify different theories
about a TDSA method.
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Chapter 5

Case Studies in
Improving Experimental
Methodology for TDSA

5.1 Introduction1

Following on from chapter 4, several case studies will be explored using the newly
developed TDSA evaluation methodology to test if it can quantify the justification behind
these new developments. These justifications are normally qualitative case studies which
are hard to quantify and to a large extent impossible to compare. Thus the importance
on testing if this new TDSA evaluation methodology can work in practice is highly
motivated to overcome the issues with qualitative analysis. Furthermore in each case
study a rigorous experimental setup2 will be conducted unlike many previous works.

The new developments, where each is a separate case study within the chapter, within
the TDSA literature that will be tested are; encoding the target’s position (position
encoding) (Gu et al., 2018), inter-target encoding where each target is aware of all targets
within the same text (Hazarika et al., 2018), and CWR (Sun et al., 2019a; Xu et al.,
2019). Of these developments, only the first two are TDSA specific whereas the transfer
learning is a general machine learning concept that has been shown useful in many
NLP tasks (Peters et al., 2018a). These developments have been mainly justified by the
improvements on the overall accuracy and/or macro F1 score, but the justification in the
paper is normally more detailed. An example justification (and one that is typical of
most developments) of inter-target encoding from Hazarika et al. (2018), where they first
show improvements on the general accuracy scores over baselines. They then further
state these improvements are due to the model being able to infer one target’s sentiment
from knowing another target’s sentiment, and show this through a case study (section
4.2) from a few samples. The reason for inter-target encoding does sound valid but the
case studies are qualitative and thus hard to quantify and compare too. Furthermore in

1All code that creates the evidence for this chapter can be found here: https://github.com/apmoore1/
tdsa_comparisons. Certain sections throughout this chapter may have more specific pointers to python
notebooks that created the analyses within that given section.

2This is through statistical testing, comparing across more models and datasets, and in the inter-target
encoding setup comparing to a more suitable baseline model.
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both position and inter-target encoding there have been papers by He et al. (2018a) and
Majumder et al. (2018) that respectively use more detailed quantitative metrics through
their own error splits to justify these improvements. However the error splits used in
both cases (NT ) have been shown within chapter 4 to be unsuitable.

All of these new developments will be applied to the methods that were used within
chapter 4, as these methods can easily be enhanced with these new developments.
Furthermore the same experimental setup that was used within chapter 4, described in
section 4.3.2, will be used throughout this chapter.

5.2 Position Encoding3

5.2.1 Introduction

This is the first model enhancement that will be explored in this chapter. As stated in
section 4.3.1, the two models that will be explored in this section are IAN and Att-AE
due to the TDLSTM already having position information somewhat encoded into its NN
architecture. Within the prior work, position information has been encoded into different
TDSA methods in broadly three different approaches; weighting, embedding, and via the
construction of the NN architecture (construction).

Position weighting is probably the simplest approach as it weights the vectors of
tokens/words4 based on some distance metric to the relevant target word(s). However
there is no one standard distance metric in the literature but a lot of them are very
similar; Chen et al. (2017) (equation 7 and section 3.3) based the weighting on how
many tokens are between the context word and the nearest target word (token) and then
normalised via sentence length5. Other methods have created an arbitrary cut off so
that context words that are too distant are ignored (He et al., 2018a; Zhao et al., 2019),
Zhang et al. (2019a) uses the same weighting as Chen et al. (2017) but ignores the target
words. He et al. (2018a) incorporated syntax into the weighting where the position to the
target word(s) is defined by the distance through the dependency tree. Lastly Li et al.
(2018d) used the same weighting as Chen et al. (2017) but normalises using an arbitrary
constant rather than the sentence length (n). In most cases across all of the experiments
within the prior work on position weighting when the work has shown ablation studies
position weighting has increased the performance of the models6.

Position embeddings unlike the weighting mechanism encodes the position of a
token/word via a learnt embedding space. Position embeddings are similar to the
weighting mechanism in that they create position indexes that are relative to the target,
where the indexes are created similar to the weighting mechanism. These position indexes
for each word are calculated based on token distance from the closest target word. These
position indexes, unlike the weighting method, are integers not floats as these integers
are then used as an index to the random initialised (position) embedding. These position
embeddings are then normally concatenated onto the word embeddings that represent

3All graphs within this section have been generated through the following notebook https://github.

com/apmoore1/tdsa_comparisons/blob/master/analysis/Position_Encoding.ipynb.
4Normally after they have been encoded via some sequence encoder e.g. LSTM.
5They further encoded the relative position of the word into the model.
6The only work that has shown position weighting to harm performance is Zhang et al. (2019a) on

the Twitter and Rest14 datasets in table 3.
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the tokens in the sentence that the target occurs in (Gu et al., 2018; Li et al., 2018b;
Chen et al., 2019; Sun et al., 2019c; Kumar et al., 2020). Unlike the position weighting
literature all prior works that have used position embeddings calculate the position
indexes based on relative distance to the nearest target token. Out of the five prior
works, three use a position embedding dimension of 100, one uses 50, and another 307.
For clarification on position weighting and embeddings, table 5.1 shows an example text
that has been tokenised where the target that is being predicted for is ‘Apple Mac’,
beneath each token is the weighting value and position index where the weighting value
is calculated using equation 5.1, which has come from Chen et al. (2017). In equation 5.1,
i represents the index of the token/word whose position is to be weighted, τ represents
the index of the closest target token to i, and n is the length of the text in tokens.

wi = 1− |τ − i|
n

(5.1)

Tokens: The Apple Mac is great

Position indexes 1 0 0 1 2

Position weighting 0.8 1 1 0.8 0.6

Table 5.1: Example text which contains the target ‘Apple Mac’, where the text has been
tokenised and the associated position indexes and weightings are shown.

Construction based approaches have used numerous different NN methods. Tang
et al. (2016b) (TDLSTM ) used RNNs where a forward RNN would process all tokens
up to the last target token and a backward RNN for all tokens to the first target token.
Other approaches have split the sentence up into left, right, and target contexts and
aggregated the word embeddings using Neural Pooling methods (Vo et al., 2015; Zhang
et al., 2016) or using a RNN based sequence encoder (Liu et al., 2017). Another direction
is to make use of a dependency parser to explicitly model the syntactic structure of the
target’s position, Dong et al. (2014) re-ordered the dependency tree to ensure the target
word is the root and then used a Recursive NN (RCNN). Sun et al. (2019c) and Huang
et al. (2019) both use the dependency tree without re-ordering it and apply a Graph NN
(GNN) to encode words that are close to the target word through the dependency tree.
Nguyen et al. (2015) used both a dependency and constituency parser to create a phrase
dependency tree where the the tree is re-ordered such that the target word phrase is
always at the root of the tree, they then used a RCNN to encode the tree data. Lastly
one prior work has combined both position embeddings and a position based architecture
(Sun et al., 2019c).

From this prior literature, the main reason for using position information is to create
a more explicit bias in the model. The bias assumes that words that are closer to the
target word(s) are more important and therefore should be given more weight, attention,
or priority in the model. This bias is more or less explicit depending on the method
used, in the case of weighting it is more explicit as words that are closer are always
weighted higher than those further away. In comparison the embedding approach can be
less biased as it allows the model to choose which words are closer and more important
through the embedding. The construction method is hard to compare to the embedding

7Another prior work does not state the dimension of the position embeddings (Du et al., 2019).
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and weighting approaches on bias as these approaches to some degree change their whole
model so that position information is prioritised. In the case of TDLSTM (Tang et al.,
2016b) the bias of relatively close words are prioritised, compared to Dong et al. (2014)
where they prioritise the syntactic distance between tokens and the targets words.

In general, encoding position information is used to improve the performance on
sentences that contain multiple targets as it should help match relevant words with their
respective target (Li et al., 2018b; He et al., 2018a). This indicates that the point of
position encoding is to help improve target sentiment relation modelling. From these
position encoding papers, He et al. (2018a) is the only one to quantitatively evaluate
the importance of position information further than just using overall metrics on the
entire dataset. He et al. (2018a) have shown that using syntactic position weighting
improves the performance for sentences that contain more than one target. The way
this was evaluated was in effect using the NT splits where they subsetted the data
based on 1, 2, 3, and more than 3 targets per text. As has been shown in subsection
4.3.3, the performance on the NT split tends to be dominated by sentiment factors and
does not directly measure target sentiment relationships. Even though He et al. (2018a)
has performed a good quantitative evaluation, this cannot determine if the position
information is actually improving target sentiment relation modelling, due to He et al.
(2018a) using the NT split in their evaluation. Therefore in this section position encoding
will be evaluated across the two TDSA methods using the recommended error splits
from the last subsection DS and TSR as well as using the TDSA specific metrics STAC
Multi and STAC 1. In doing so, position encoding will be thoroughly evaluated for
target sentiment relation modelling that it is claimed to do from the literature, as well
as exploring any other positive or negative side effects. Furthermore, the NT subsets
will also be included in the evaluation to demonstrate the point of why this split is not
suitable for error analysis as it has been used in the prior work (He et al., 2018a).

Given this prior literature the position encoding that will be used in this section is
position weighting. This was chosen as it requires no extra parameters unlike the position
embeddings and does not require fundamentally changing the NN architecture. The
distance metric proposed by Chen et al. (2017) as shown in equation 5.1 will be used
as it does not require any arbitrary cut off or normalising parameter to be tuned (Zhao
et al., 2019; Li et al., 2018d), nor does it mask any words (Zhang et al., 2019a), and
finally does not require a dependency parser (He et al., 2018a). Furthermore, as this
weighting method does not remove any words it allows the model to ignore the explicit
bias of the position weighting in cases where the closest words are not always the most
important e.g. in the case that the affecting opinion word(s) are a few syntactic hops
away from the target. The position weighting will be applied to the context/sentence
vectors after being encoded by the LSTM layer and before the attention is applied in
both IAN and Att-AE.

5.2.2 Experiments

Figure 5.1 shows the overall scores of the position encoded IAN and Att-AE models.
These scores are somewhat meaningless without comparing them to their respective
non-position encoded baseline models.

Figure 5.2 shows the metric score difference between the position and the respective
baseline models. As we can see from the results the overall trend is that, no matter
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Figure 5.1: Columns represent different datasets, rows different metrics. Each plot
represents the two position encoded models metric score on the test and validation splits.

the dataset or metric, position weighting on average improves the model’s performance.
There are a few exceptions to this in the STAC 1 results for both Election and Laptop
datasets, and the accuracy metric for the Laptop dataset. Furthermore there are several
results where even though the mean is positive the standard deviations are so large that
they go into the negative of the metric score difference. This shows that the trend might
show an overall improvement in performance but the improvement is marginal.

To better visualise the differences figures 5.3 and 5.4 show the number of models that
are significantly better than their baseline, where the former is not corrected for multiple
significance tests whereas the latter is using Bonferroni and is aggregated across datasets.
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Figure 5.2: Columns represent different datasets, rows different metrics. Each plot
represents the differences between the position and baseline models for the relevant
metric score on the test and validation splits.

There were no models on any of the metrics or dataset splits where the baseline models
were significantly better than the position models. From these heatmaps it can indeed
be seen that the Restaurant dataset does benefit the most.

As can be seen from the heatmaps, the Laptop and the Restaurant datasets are the
only datasets that consistently have position models that are significantly better on the
STAC Multi metric. Furthermore, the Laptop dataset is the only dataset that does not
find the position models to be consistently significantly better than the baselines on
Accuracy. This might not be a surprising finding considering that the Laptop dataset
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contains the least number of DS2 and DS3 samples relative to its size (see figure 4.1).
Thus, the findings suggest that the position information improves the scores on the
samples that have multiple unique sentiments within the sentences (DS2 and DS3),
compared to a dataset that is made up of mainly sentences that only contain one unique
sentiment. This reason is also related to another, of why position information does not
perform significantly better on the STAC 1 metric. As the STAC 1 metric is only looking
at the accuracy score for sentences that contain one unique sentiment and that the model
predicts all samples in those sentences correctly. A model that overfits to the most
frequent sentiment class will perform well on this metric. As the position information is
biasing the model towards only looking at local context around the target it removes
the bias for the model to look at the global context. This shows that biasing the model
towards the local context through the position information removes some of the position
overfitting that the baseline models exploited. It is clear to some degree that for at
least the Laptop and Restaurant datasets that as the position models have improved on
the STAC Multi metric and not regressed on the STAC 1 metric, that the models are
less prone to sentiment overfitting and do perform better at target sentiment relation
modelling.

Figure 5.3: Heatmaps that represent the number of position models that are statistically
significantly better than their baseline equivalents at the 95% confidence level.

Furthermore, from the heatmap results we can see that the Election dataset is
the only one that the models do not perform significantly better than the baseline
version on the STAC Multi metric. However, they do consistently perform better on
the Accuracy metric. This may suggest that the position information does improve the
target sentiment relationship modelling but cannot be shown through the STAC Multi
metric as it requires all targets in the sentence to be correctly classified. The further
reason why it is believed that it is improving the target sentiment relationship modelling
rather than overfitting to the overall sentiment as the STAC 1 metric has not improved
on the dataset. To investigate if the position models are improving the target sentiment
relationship modelling on the Election dataset the results across all datasets for the DS,
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Figure 5.4: Heatmaps that represent the number of position models that are statistically
significantly better than their baseline equivalents across all datasets at the 95% confidence
level. Where the multiple hypothesis tests have been corrected using Bonferroni.

TSR, and NT error splits are shown in figures 5.5 and C.1 for the test and validation splits
respectively. The figures show the difference between the position and respective baseline
model8. From figure 5.5 it is clear that that the position models improve the results
for the DS2 subset on the Restaurant and Laptop datasets. However, for the Election
dataset it would appear that the Att-AE model is the one that benefits most from the
position encoding (better seen in the validation results). The heatmaps in figures 5.6 and
5.79 show the number of models that are significantly better than their baseline on each
error subset, where the former is not corrected for multiple significance tests whereas
the latter is using Bonferroni and is aggregated across datasets. The heatmaps differ
by a large margin between the validation and test splits. The Laptop dataset from the
validation split appears to be the only one that has no significant difference in any of the
subsets, of which this differs from the overall metric results in figure 5.3 showing that
there is a significant difference for the STAC Multi and Accuracy. It can be seen for the
Election dataset for both validation and test splits that for all subsets in the DS split
that a position model is significantly better. Furthermore, when correcting for multiple
hypothesis tests on the test split figure 5.7 shows that the Election dataset must contain
at least one position model that is significantly better for the DS2 and DS3 subsets.
This to some degree confirms that the position encoding must be improving the target
sentiment relationship modelling even though it does not show through the STAC Multi
metric. This shows the reason why the DS split is still useful as it shows a more fine
grained analysis of the target sentiment relationship modelling.

As was suggested in sub section 4.3.3 the DS and TSR splits should be used when
analysing the results, this is the reason why the TSR split was included in the figures.
From figure 5.7 for the TSR split it can be seen that in general the only subset that the
position models consistently perform better on is the KSKT subset. This is most likely

8Figures C.2 and C.3 show the test and validation results respectively for the splits without subtracting
from their respective baseline models.

9The legend goes to 6 as the number of position models that can be better than their baseline is 6, as
there are 2 models and 3 datasets per evaluation, and each model is evaluated against its baseline across
all datasets.
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Figure 5.5: Test split results. Columns represent different datasets, rows different error
splits. Each plot represents the differences between the position and baseline models for
the Accuracy metric on the given error subset.

due to the target sentiment relationship modelling improvement, as the KSKT subset is
the dominate subset within the TSR split (see figure 4.11).

Lastly, as in the previous work by He et al. (2018a), the way they evaluated the
position encoding was through using a similar method to the NT error splits. Therefore
to show quantitatively that the NT splits are not the best way to show that a method
improves on target sentiment relationship modelling, figure 5.7 finds that only a few
models are significantly better across the different NT subsets. When any of the NT
subsets are compared to the DS2 subset none have more significant models. Furthermore,
figures 5.8 and 5.9 show the validation and test split performance difference between the
position and baseline models when the data has been first subsetted by the DS subsets
(rows in the figures) and then further subsetted by the NT subsets. From these figures
it shows some inconsistencies of which the most of these are in the validation results.
The validation results for the Restaurant dataset when subsetted by DS1 show a large
negative correlation of which this is most likely due to the baseline model being better
at sentiment overfitting on sentences that contain lots of targets. Furthermore, on the
Laptop test and validation splits for the DS1 subsetted row several of the results mean
value is less than 0 suggesting the baseline model is better in these circumstances. From
across the test and validation splits out of all the DS1 subsetted models 29.16%(1448)
perform on average worse than their baseline models compared to 10.4%( 5

48) from the
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Figure 5.6: Heatmaps that represent the number of position models that are statistically
significantly better than their baseline equivalents at the 95% confidence level based on
the accuracy metric.

Figure 5.7: Heatmaps that represent the number of position models that are statistically
significantly better than their baseline equivalents across all datasets at the 95% confidence
level based on the accuracy metric. Where the multiple hypothesis tests have been
corrected using Bonferroni.

DS2 and DS3
10 subsetted models. This to some degree shows that the NT split for the

DS1 subsetted data at least is more likely measuring sentiment overfitting than target
sentiment relationship modelling, as the baseline models perform competitively. From

10The DS3 subsetted models from the Laptop and Restaurant datasets were not included as they
contain very few samples (less than 20).
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Figure 5.8: Validation split results. Columns represent different datasets, rows different
DS error split subsets. Each plot represents the differences between the position and
baseline models for the Accuracy metric on the given error subset.

this it can be seen that when the number of targets does increase the performance of the
position models do not always improve the results. Furthermore, the NT split is more
affected by the sentiment factors within the sentence and can be skewed by sentiment
overfitting.
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Figure 5.9: Test split results. Columns represent different datasets, rows different DS
error split subsets. Each plot represents the differences between the position and baseline
models for the Accuracy metric on the given error subset.

5.2.3 Conclusion

This section has found that position encoding does improve TDSA models performance
in general. Further it has been shown quantitatively that the theory from the literature
on position encoding improving target sentiment relationship modelling (Li et al., 2018b;
He et al., 2018a) is true through the novel TDSA metrics (STAC Multi and STAC 1 ) and
existing error split (DS ). This finding could explain the reason why the TDLSTM model
performed generally better than the others on the STAC Multi metric, and DS2 and
DS3 subsets within the baseline results section (4.3.3). Lastly, it has been shown again
that the NT split is not a useful error split to use due to it being skewed by sentiment
overfitting. From this the results that He et al. (2018a) presented using a similar error
analysis split as NT does not quantitatively prove that position encoding does improve
target sentiment relationship modelling. Therefore, the results presented here are the first
quantitative results demonstrating that position encoding does improve target sentiment
relationship modelling.
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5.3 Inter-Target Encoding11

5.3.1 Introduction

The majority of TDSA methods do not explicitly take into account other targets that
may occur within the same sentence as the target that it is currently classifying, methods
that do take this into account are target-aware. The standard non-target aware methods
generally treat the problem as shown in figure 5.10a, where for each target (from the
three) within the sentence is inputted into the (TDSA) model individually to create a
target sentiment aware representation for the target (red/pink square), this representation
is then projected down to a vector Rc, where c is the number of sentiment classes for
prediction. Whereas a target-aware model as shown in figure 5.10b takes all of the targets
as input and makes predictions on all targets (three of them in this case) in-effect at
the same time, where the model explicitly makes itself aware of all targets within the
text through the inter-target encoding layer. The inter-target encoding layer was first
suggested by Hazarika et al. (2018), where they used an LSTM as their inter-target
encoder as shown in figure 5.10c. As can be seen the LSTM layer is uni-directional thus
all targets preceding other targets within the sentence would not be aware of these future
targets. This limitation was overcome by Majumder et al. (2018) where they used a
similar network to Hazarika et al. (2018) but added a memory network on top, of which
this memory network performed attention so that each target sentiment representation
was aware of all other targets. Zhao et al. (2019) instead of using attention and an RNN
structure made the targets aware of each other explicitly through a GNN, as shown
in figure 5.10d. This inter-target encoding layer method is one of two general ways
of making a model target aware. The other approach is through regularisation of the
attention layer (Fan et al., 2018) that is applied to the encoded word representations
within the sentence, to make the representations target aware. This form of regularisation
was called ‘Aspect Alignment Loss’12 (Fan et al., 2018), where the intuition behind it
was to penalise similar attention weight of targets in the same sentence that contain
different sentiment13. This was to try and force the attention weights of targets that
have different sentiment to focus on different words within the sentence. The only other
work that has used regularisation to make a model target aware is Hu et al. (2019a). Hu
et al. (2019a) applied a very similar technique to Fan et al. (2018), however this work
was done on the task of aspect based sentiment analysis rather than target14.

The main benefit that these papers believe that the inter target encoding layer brings,
is the improvement for targets that depend on the sentiment of other targets within
the same text. This target interaction was hypothesised within sub section 4.2.1 when
describing the different error splits to be quantifiable through the NT split. However
this was shown not to be the case through the experiments in section 4.3.3. Thus testing
the theory of whether target aware models do perform better on targets that do rely on
others cannot be tested here, this would require a specialist corpus as stated in chapter
4. Furthermore, only one prior work (Majumder et al., 2018) tested this hypothesis more

11All graphs within this section have been generated through the following notebook https://github.

com/apmoore1/tdsa_comparisons/blob/master/analysis/Aspect_Encoding.ipynb.
12Aspect here is the same as target.
13Equation 24 shows the Aspect Alignment Loss in Fan et al. (2018).
14Aspect based in this thesis is the latent version of target based.
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(a) General non-target aware setup. (b) General target aware setup.

(c) Target aware setup of Hazarika et al. (2018). (d) Target aware setup of Zhao et al. (2019).

Figure 5.10: The first row shows in abstract the difference between non target aware and
aware setups. The second row shows more concrete target aware methods.
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than just qualitatively showing some samples, or dataset statistics on the number of
sentences that contain multiple targets. Majumder et al. (2018) stated the results of
their target encoding method on two error subsets of the data, the subset that contains
sentence with one target and the sentences that contain more than one target. These two
subsets are equivalent to NT 1-target and the combination of all of the other NT subsets
combined respectively. Even though this error analysis Majumder et al. (2018) performed
would not directly test the target interaction hypothesis, it was an alternative form of
measurement. This alternative form of measurement, as shown in section 4.3.3 would not
measure target interaction. However, in these prior works including the regularisation
work (Fan et al., 2018), it was suggested that target aware methods should perform
better in sentences that contain multiple targets. Hence the error analysis in Majumder
et al. (2018) was somewhat a valid choice. This form of coarse measuring of sentences
that contain one target and others that contain multiple targets does not measure how
good a method is on multiple targets. Rather this measurement is mainly dominated by
sentiment factors as shown in section 4.3.3 where sentences that contain one sentiment
are easier to classify when they have multiple targets rather than one, even for text
classifier methods. Thus knowing that using the number of targets in a sentence cannot
state anything about the method in general, the models here will not be evaluated using
the same error split as Majumder et al. (2018). The models within this section will use
the recommended error splits and metrics from section 4.3.3. These error splits and
metrics will inform the community on what the target aware models actually capture
more than their baseline equivalents.

The target aware method used in this section is the LSTM approach by Hazarika
et al. (2018) due to the model that is used within the paper to create the target sentiment
aware representations being that of the Att-AE method. Therefore the Att-AE model
when enhanced within the inter target encoding will be the same as the model used
in Hazarika et al. (2018). This will allow direct comparisons with the overall results
from Hazarika et al. (2018). Furthermore, the approach from Hazarika et al. (2018) was
chosen over Majumder et al. (2018) due to it containing far fewer components within
the inter-target encoding and the results being only slightly worse15. As stated in the
introduction the target aware enhancement will be added to all of the TDSA models.

5.3.2 Experiments

As stated in the introduction to this section the Att-AE model when enhanced with the
LSTM target encoding of Hazarika et al. (2018) becomes the same model that was used
in Hazarika et al. (2018). Therefore the first experimental results presented in figure
5.11 shows the single run performance from the reported accuracy scores of Hazarika
et al. (2018)16 and the distribution of eight scores from the reproduced version in this
thesis. As can be seen the reproduced model does not contain the original model’s stated
performance within its distribution of scores, thus it failed to reproduce the original model.
The reproduced model does use the same hyperparameters and components as those
stated in Hazarika et al. (2018), the only parameter difference is the output dimension of

15Hazarika et al. (2018) (Majumder et al. (2018)) reported 79% (80%) and 72.5% (73.8%) accuracy on
the Restaurant and Laptop datasets respectively. The reported results are only one accuracy score as
they did not run the models multiple times to take into account the random seed/initialisation problem.

16The accuracy scores were taken from table 2.
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the LSTM that creates a representation for the target words,17 in the reproduced model
it is 300 whereas in the original it is 100. The reason for it being 300 dimension instead
of 100 is that the Att-AE model is based on two prior works Hazarika et al. (2018) and
Wang et al. (2016b) and in Wang et al. (2016b) the parameter is 300 not 10018. Even
though the Att-AE model could not reproduce that of Hazarika et al. (2018), it may
not be due to the different parameter decision on the LSTM. As Hazarika et al. (2018)
report similar models that use their inter target encoding layer but have results more
similar to those of the reproduced model 74.5% and 73.42% on the Restaurant dataset
and 69.6% and 63.7% of the Laptop dataset. As the results reported in Hazarika et al.
(2018) are single run scores, it is hard to determine if the LSTM parameter difference is
the reason or the authors had a favourable random seed, as it has been shown for the
macro F1 score that NN TDSA models can range by up to 15 F1 points (Moss et al.,
2019)19. Even though the results are not reproduced, it is still reasonable to compare
and contrast the results from the reproduced models that use target encoding and the
models that do not. As models being compared are reproductions rather than comparing
to the original works results directly.

Figure 5.11: Distribution of eight scores and the line represents the mean value, for the
original model this line represents their only reported score. Model name with a (O)
represents the score reported in the original models paper.

Figure 5.12 presents the overall results across the different metrics for the inter target
encoding models. For easier comparison, figure 5.13 reports the metric differences between
the inter target encoding models and their respective baseline. As can be seen the results
are either no better or worse in the majority of cases, only for the TDLSTM model
for the STAC 1 metric on the Election dataset are the results better as the standard
deviation bars are greater than zero. This shows without performing any statistical tests
that, in general, target aware models are not any better than their baseline models.

Thus the heatmaps in figures 5.14 and 5.15 show for the left and right column the
number of target aware and baseline models respectively that are statistically significantly
better than their respective baseline and target aware models, where the former (figure
5.14) is not corrected for multiple significance tests whereas the latter (figure 5.15) is
using Bonferroni and is aggregated across datasets. As can be seen the only significant

17This is LSTMa within section 3.1 of Hazarika et al. (2018).
18See the first paragraph of section 4 in Wang et al. (2016b).
19See figure 3.
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Figure 5.12: Each plot represents the three target aware enhanced models metric score
on the test and validation splits. Columns represent different datasets, rows different
metrics.

metric difference for the target aware models is on the STAC 1 metric for the Election
dataset, of which when corrected with Bonferroni does not exist. On the other hand the
baseline models appear to be better on the accuracy and STAC Multi metric across both
test and validation splits. This may suggest that for the Election dataset at least that
the target aware models are somewhat overfitting to the most frequent sentiment more
as they improve the results on the STAC 1 metric while becoming worse on the STAC
Multi metric. This would seem intuitive as the model could take advantage of knowing
roughly the sentiment of all of the other targets within the sentence due to its target
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Figure 5.13: Each plot represents the differences between the target aware and the
baseline models for the relevant metric score on the test and validation splits. Columns
represent different datasets, rows different metrics.

awareness, and thus take the most likely overall sentiment. However, when taking into
account multiple tests (figure 5.15), only two of the metrics show any differences between
the target aware and their baseline equivalents, of which both of these differences only
occur on two of the nine possible models both showing that the baseline models are
better than their target aware equivalents. Thus showing the differences between the
target aware and the baselines models are small, and that the baseline models are always
at least as good as their target aware equivalent.

The results comparing target aware to the baseline models across DS and TSR error
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Figure 5.14: The left hand side heatmaps represent the number of target aware models
that are statistically significantly better than their baseline equivalents at the 95%
confidence level. The right hand side heatmaps represent the number of baseline models
that are statistically significantly better than their target aware equivalents at the 95%
confidence level.

Figure 5.15: The left hand side heatmaps represent the number of target aware models that
are statistically significantly better than their baseline equivalents across all datasets at
the 95% confidence level. The right hand side heatmaps represent the number of baseline
models that are statistically significantly better than their target aware equivalents across
all datasets at the 95% confidence level. In both cases the multiple hypothesis tests have
been corrected using Bonferroni.
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splits are shown in figures 5.16 and 5.17 20. These heatmaps (figures 5.16 and 5.17) show
once again that the target aware models are not any better than their baseline equivalents
on any subset of any split of any dataset consistently across data splits. Furthermore,
even though the baseline models are significantly better and consistently better for some
subsets of splits as shown in figure 5.16 when corrected for multiple testing they are
not, as shown in figure 5.17. Thus this shows once again the target aware models are no
better if not worse in some cases than their baseline equivalents.

Figure 5.16: The left hand side heatmaps represent the number of target aware models
that are statistically significantly better than their baseline equivalents at the 95%
confidence level. The right hand side heatmaps represent the number of baseline models
that are statistically significantly better than their target aware equivalents at the 95%
confidence level. In both cases are based on the accuracy metric.

20The accuracy results for each subset for the test and validation splits are shown in figures C.4 and
C.5 respectively. The accuracy difference between the target aware and their associated baseline models
are in figures C.6 and C.7 for the test and validation split respectively. These results are within the
appendix as they do not show any additional information that the heatmaps in figures do not represent
better. They are also within the thesis itself for reproducibility reasons.
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Figure 5.17: The left hand side heatmaps represent the number of target aware models that
are statistically significantly better than their baseline equivalents across all datasets at
the 95% confidence level. The right hand side heatmaps represent the number of baseline
models that are statistically significantly better than their target aware equivalents across
all datasets at the 95% confidence level. In both cases the multiple hypothesis tests have
been corrected using Bonferroni and evaluated using the accuracy metric.

5.3.3 Conclusion

To conclude, even though the previous works that incorporated some form of target
awareness into their models have shown improvements over their own baseline models
(Zhao et al., 2019; Fan et al., 2018), this has not been shown here. Furthermore, it has
been shown that on some datasets and some baseline models that they are significantly
better than their target aware version. This negative result showing that unlike the
previous work here it has been shown that the target aware models are no better than
their baseline models, this could be due to none of the previous works performing rigorous
testing of their methods. In all of the previous works, none perform statistical significance
testing nor do they take into account the random seed problem (Reimers et al., 2017)
which has been shown significant in chapter 3 for NN TDSA methods. In comparison this
work takes both the significance testing and random seeds into account. Even though
it was shown that the Att-AE model could not reproduce the results from the original
paper (Hazarika et al., 2018), it can be concluded here that at least for Hazarika et al.
(2018) inter-target encoding method it does not perform any better than not using it.
Even though it is stating that opposite of Hazarika et al. (2018), the results here are
more rigorously tested and on more models and datasets.

5.4 Contextualised Word Representations (CWR)21

5.4.1 Introduction

The majority of TDSA work so far has only used the standard 840 billion token 300
dimensional GloVe vectors (Pennington et al., 2014) to initialise word representation
within the NN (Tang et al., 2016a; Tang et al., 2019). These non-CWR word vectors in

21All graphs within this section have been generated through the following notebook https://github.

com/apmoore1/tdsa_comparisons/blob/master/analysis/CWR.ipynb.
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effect transfer semantic and syntactic knowledge of words from the semi-supervised task
they were trained from (Mikolov et al., 2013b). Due to this transferring of knowledge
they have been shown to help in multiple NLP settings such as Semantic Role Labelling
(Collobert et al., 2008), Named Entity Recognition, Chunking (Turian et al., 2010), and
text classification (Kim, 2014). The word vectors are normally the embedding layer
(the first layer) of the NN that is usually trained with a Language Model (LM) type of
objective. Thus the data they train from does not require any human annotation. Due
to the word vectors coming from this embedding layer the vectors themselves are not
contextualised as the NN at this point has not seen any of the other words within the
context/text. Therefore, the main drawback of non-CWR is that they suffer from word
ambiguity (Camacho-Collados et al., 2018).

To overcome this, CWR have been devised which are still trained on a LM objective,
but instead of using the embedding layer they either use the second to last layer of the
NN (Peters et al., 2017), or a weighted combination of each layers weights which has
been shown to be more effective (Peters et al., 2018a). These CWR have been shown
to outperform non-CWR across a spectrum of NLP tasks by a large margin (Liu et al.,
2019a). The CWR work that has been stated are used in a feature based approach
where the CWR are fed to a task specific architecture. However, work has also been
focused on an alternative approach fine-tuning where normally the last layer of the LM
NN is replaced with a new task specific layer, and then the whole NN is tuned to the
new task (Radford et al., 2018; Howard et al., 2018). This approach has become very
popular since the arrival of BERT (Devlin et al., 2019), due to its impressive performance
across multiple tasks compared to other State Of The Art (SOTA) approaches, and its
accessibility through the release of its code base22.

For the interested reader on CWR, there are many different CWR each with subtle
differences. These differences are normally based around their learning objective e.g.
Bi-LM (Peters et al., 2018a), masked LM (Devlin et al., 2019), etc, how they are trained,
e.g. discriminative fine-tuning (Howard et al., 2018), model design choices (Liu et al.,
2019c), distillation (Tsai et al., 2019), etc if they are multi-lingual (Conneau et al., 2019),
multi task learning with supervised objectives (Liu et al., 2019b), for a whole list of
papers on CWR see the following GitHub list23.

As stated in the introduction section 5.1, previous works have already started to use
CWR within TDSA, of which a comprehensive list of these works and metadata details
can be seen in table 5.224. The table clearly shows that a lot of the prior works have tried
different architectures: Task Specific Architecture (TSA) and non-TSA25, fine-tuning or
feature based, and pre-training the CWR and not. From this prior work some general
insights can be drawn, which will be discussed below.

Pre-training in this thesis is defined as the process of fine-tuning the LM NN that
the CWR come from with a separate task and dataset before using the LM NN on the

22https://github.com/google-research/bert
23https://github.com/thunlp/PLMpapers
24This is most likely already out of date due to the speed that new publications are coming out, and

the fact that CWR produce the SOTA results. The raw data that has created this table can be found
at the following URL: https://github.com/apmoore1/tdsa_comparisons/blob/master/Overview_of_
TDSA_methods_that_use_CWR.csv.

25non-TSA is defined as adding a linear layer on top of the CWR class vector in the case of the BERT
model (which is the only CWR model used in prior work).
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final task, which here is TDSA. A concrete example of pre-training from table 5.2, is
pre-training to Yelp and/or Amazon datasets by using an LM objective to fine-tune the
BERTb LM NN to these dataset, thus making the BERTb model more domain specific.
Generally one would expect pre-training to improve results as it adapts the CWR to the
domain, and this is what both Rietzler et al. (2020) and Xu et al. (2019) found. However,
considering both works use the same pre-training datasets and technique, as well as same
CWR and model architecture there is a 2-3% difference in results. This is most likely
due to the lack of pre-training that Xu et al. (2019)26 did not perform, as Rietzler et al.
(2020) showed that at least 10 million sentences27 are required before any improvements
can be seen for the Laptop domain.

Another insight that can be drawn from the works that use TSAs (Zeng et al., 2019;
Zhao et al., 2019; Song et al., 2019; Huang et al., 2019; Jiang et al., 2019) is that using
a CWR instead of a non-CWR is always better. This finding is more interesting for
the works that do not fine-tune the CWR (Zhao et al., 2019; Huang et al., 2019) as it
shows that by using CWR alone, and not more parameters, results improve over using
non-CWR. Furthermore Song et al. (2019), Jiang et al. (2019), and Huang et al. (2019)
all found that using a TSA with CWR in a feature based or fine-tuning approach to be
better than fine tuning the CWR model with no TSA.

Lastly shown in table 5.3 are the best performing non-CWR methods28, of which
these are a lot worse in performance compared to any of the CWR methods within table
5.2.

26Used around 1 and 2 million sentences for Laptop and Restaurant domain respectively. This was
calculated by multiplying the batch size (16) by the number of training steps.

27These do not have to be the same sentences, as they had 1 million ‘unique’ sentences and 10 million
sentence comes from training the model for 10 epochs.

28In both cases they are using GloVe vectors and have a TSA.

151



C
h
a
p
ter

5
.

C
a
se

S
tu
d
ies

in
Im

p
ro
vin

g
E
xperim

en
ta
l
M
eth

od
o
logy

fo
r
T
D
S
A

Authors Laptop (%) Restaurant (%) Fine Tuned CWR Model Pre-Trained TSA

Rietzler et al., 2020 80.23 87.89 Yes BERTb Yelp, Amazon No

Zeng et al., 2019 82.45 87.14 Yes BERTb No Yes

Jiang et al., 2019 - 85.93 Yes BERTb No Yes

Xu et al., 2019 78.07 84.95 Yes BERTb Yelp , Amazon, SQuAD No

Zhao et al., 2019 81.35 83.57 No BERTb No Yes

Song et al., 2019 79.93 83.12 Yes BERTb No Yes

Huang et al., 2019 80.1 83.0 No BERTl No Yes

Bertb=BERT base model, Bertl=BERT large model (Devlin et al., 2019)
TSA=Task Specific Architecture

Table 5.2: Overview of TDSA methods that use CWR. Results on the Laptop and Restaurant datasets are reporting accuracy scores.
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Authors Laptop (%) Restaurant (%)

Zhao et al., 2019 75.55 82.95

Zeng et al., 2019 76.02 82.5

Table 5.3: Top performing non-CWR TDSA methods

Thus to summarise from this prior work, we can determine that:

1. Pre-training is always useful but to be fully utilised it requires fitting on large
amounts of pre-training data.

2. Using a TSA with CWR is better than using no TSA with CWR.

3. Using CWR is always better than non-CWR.

The CWR that will be used to investigate the effect it has on the TDSA and text
classification methods in this thesis is the ELMo transformer (ET)29, as it is quicker for
both training and inference than the standard LSTM ELMo, and generally better than
a Gated CNN version (Peters et al., 2018b). Furthermore, this is used in the feature
based manner with a weighted combination of it each layers weights. Feature based was
chosen over fine-tuning as fine-tuning adds a large number of parameters to the task
specific model, which would therefore mean that we are testing not just CWR but also
the affect of adding more parameters. The effect of adding more parameters is thus
undesirable and not needed, hence a feature based approach was chosen. Furthermore,
ET was chosen over BERT due to practicalities of training these models at the time of
experimentation. Lastly, the point of these experiments is to test the differences between
CWR and non-CWR rather than differences in CWR for TDSA. As it has been shown
in the prior work that domain specific CWR out perform non-domain specific, the ET
model is pre-trained using an LM task for each domain Laptop, Restaurant and Election.
For the Laptop dataset the ET model is pre-trained on the Amazon electronics reviews
dataset30 (McAuley et al., 2015), where the ET model is trained on 28,742,985 in domain
sentences. The Restaurant dataset uses the 2019 Yelp dataset31 where the ET model
is trained on 27,286,698 in domain sentences. Finally the Election dataset unlike the
others trains the ET model from scratch32 on 9,903,000 in domain tweets33. All of the
detailed pre-processing, analysis and training of these domain specific ET models can be
found here https://github.com/apmoore1/language-model. As Rietzler et al. (2020)
found that at least 10 million pre-training sentences are required before the CWR models
perform any better than their non-domain specific CWR, furthermore the performance of
their models saturate after 17 million sentences. This advice from Rietzler et al. (2020)
has been followed for the Laptop and Restaurant ET models but not the Election ET

29The base ET model can be found here https://allennlp.org/elmo named as the ‘Transformer
ELMo’ model.

30Can be found here http://jmcauley.ucsd.edu/data/amazon/
31https://www.yelp.com/dataset
32Both the Laptop and Restaurant domain specific ET models were first pre-trained on the 1 Billion

word corpus (Chelba et al., 2014) before being further trained on their respective domain specific Amazon
and Yelp datasets. In comparison the Election domain specific ET model was trained from scratch, as
in it was not trained on this 1 Billion word corpus and all parameters were random initialised before
training on the MP Twitter data.

33These tweets were collected by scraping Tweets that originate from the current MPs of the time.
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model. Within the experiment section considering none of the prior work investigated
what effect the CWR had on TDSA and text classification methods other than overall
Accuracy and macro F1, this will be explored through the recommended metrics and
error splits.

5.4.2 Experiments

To fully report the results figure 5.18 shows the different metric scores the CWR TDSA
and text classification (CNN ) models scored on all datasets. The more informative is
figure 5.19 which compares the metric scores of the CWR and their respective baseline
models. From this figure it can be seen that all of the TDSA models perform better on
almost every metric. The STAC 1 metric on the Election dataset some of the TDSA
models perform worse/no better, which may suggest the models are becoming better
at the target sentiment relationship modelling and overfitting less to the most frequent
sentiment in the sentence as they improve on the STAC Multi metric. Also some of
the TDSA models perform worse/no better on the STAC Multi metric on the Laptop
and Restaurant dataset but perform much better on the STAC 1 metric suggesting
the models are overfitting to the most frequent sentiment in the sentence. This initial
analysis suggests to some extent that the CWR increase the performance of the TDSA
model by exploiting the artefacts of the datasets. This is shown through the fact that
the datasets that contain the least number of DS2 and DS3 sentences, Laptop and
Restaurant, the CWR TDSA models perform a lot better compared to their baseline
on the STAC 1 metric, but not the STAC Multi. Whereas the Election dataset that
contains more sentences of DS2 and DS3 combined than DS1, the CWR models perform
better compared to their baseline on the STAC Multi than the STAC 1 in general.

To investigate this further the heatmaps in figure 5.20 and 5.2134 show the number
of TDSA only CWR models that are statistically significantly better than their baseline,
where the former is not correct for multiple significance tests where as the later is using
Bonferroni and is aggregated across datasets. It can be seen that for the accuracy metric
the CWR improve over the baseline significantly. Macro F1 when corrected for multiple
tests it is not shown as significant as seen in figure 5.21. In general and as stated before
the CWR models perform significantly better on the STAC Multi for the Election dataset
but for those that contain far fewer DS2 and DS3 samples this is not true. The STAC 1
metric is similar to the accuracy in that in almost all cases the CWR are significantly
better than their baselines. These significant test somewhat agree with the initial analysis
that the CWR are exploiting the artefacts of the datasets, as they perform generally
no better on the STAC Multi metric for datasets that contain far fewer DS2 and DS3

samples (Laptop and Restaurant).
To further investigate whether this initial analysis is true the DS error split significance

heatmaps can be seen in figures 5.22 and 5.23. Also within those heatmaps are the TSR
error analysis results, which can be used to study if the CWR improve zero shot target and
sentiment relation prediction through the UT and USKT subsets respectively. The results
from the DS error splits somewhat confirm the initial analysis as the laptop validation
results for the DS2 subset have no significantly better CWR models. Furthermore,
out of the nine possible model and dataset combinations only six and five models are

34This heatmap does not show the number of baseline models that are significantly better than their
CWR model as none were.

154



5.4. Contextualised Word Representations (CWR)

Figure 5.18: Each plot represents the CWR models metric score on the test and validation
splits. Columns represent different datasets, rows different metrics.

significantly better than their baseline for the DS2 subset on the test and validation data
splits respectively. This in comparison to almost all CWR models being significantly
better on the DS1 subset.

In comparison to any of the other enhancements, this is the first time that the UT
and USKT subsets have improved significantly. This suggests that contextualising the
target representations greatly improves the generalisation of them to new targets that
are most likely similar to seen targets.
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Figure 5.19: Each plot represents the differences between the CWR and the baseline
models for the relevant metric score on the test and validation splits. Columns represent
different datasets, rows different metrics.

156



5.4. Contextualised Word Representations (CWR)

Figure 5.20: The left hand side heatmaps represent the number of CWR models that
are statistically significantly better than their baseline equivalents at the 95% confidence
level. The right hand side heatmaps represent the number of baseline models that are
statistically significantly better than their CWR equivalents at the 95% confidence level.

Figure 5.21: The number of CWR models that are statistically significantly better than
their baseline equivalents across all datasets at the 95% confidence level. Where the
multiple hypothesis tests have been corrected using Bonferroni.
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Figure 5.22: Heatmaps represent the number of CWR models that are statistically
significantly better than their baseline equivalents at the 95% confidence level based on
the accuracy metric.

Figure 5.23: The number of CWR models that are statistically significantly better
than their baseline equivalents across all datasets at the 95% confidence level based on
the accuracy metric. Where the multiple hypothesis tests have been corrected using
Bonferroni.

158



5.5. Conclusion

5.4.3 Conclusion

To conclude, in accordance with the existing literature, it is found that through the
general accuracy metric, CWR improve TDSA methods significantly compared to using
non-CWR (baseline). Unlike the previous work, much greater emphasis has been placed
on finding for the first time how CWR improve TDSA models. It has been shown here
that the CWR significantly improve the performance of samples that contain unknown
targets (UT ) or unknown sentiment relationship (USKT ). Thus suggesting that CWR
models will perform better in the real world or low resource setting where a lot of the
targets or sentiment relationships are not known. It was also found that the macro
F1 scores for the CWR are significantly better than non-CWR, but when correcting
for multiple tests was not found to be true. The CWR would appear to only improve
significantly for the STAC Multi metric and DS2 subsets when the dataset contains
more DS2 and DS3 samples like the Election dataset, improving the target sentiment
relationship modelling for those TDSA models. Where as the CWR would almost always
improve the STAC 1 metric and accuracy on the DS1 subset, this suggesting that in
some cases the CWR may be overfitting to the most frequent sentiment in the sentence.
Lastly, unlike the previous CWR works the overall accuracy results are somewhat lower.
This could be due to the fact that a different CWR model was used, ET instead of
BERT. Where BERTb, even though it contains a similar transformer architecture, it
has 12 transformer layers compared to ET’s 6. Even though the number of layers may
not be significant, it has been shown for cross lingual performance in Natural Language
Inference to be of great importance (Wang et al., 2020) 35.

5.5 Conclusion

From these three investigations, the position encoding showed successfully that the original
hypothesis that adding position information does improve target sentiment relationship
modelling, due to the position model’s significant improvements on the STAC Multi metric
and DS2 subset. Negative results were found for the inter-target encoding experiments
as all results showed that the baseline models were no worse if not at times better than
their inter-target encoded enhanced models. Furthermore, the original hypothesis that
inter-target encoding would improve the model target interaction was not measured using
any error split or metric. Lastly, testing on the CWR where the main hypothesis from
the previous work was that the models generally improved as shown through either the
accuracy or macro F1 score was confirmed in this thesis. Furthermore, the results from
the error splits and novel metrics showed for the first time that they significantly improve
results for unknown targets (UT ) and unknown sentiment relationships (USKT ). This
result was not found in any of the other model enhancements. It was also shown that
in general they improve target sentiment relationship modelling through the results of
STAC Multi and DS2. However, these results were more convincing on the Election
dataset that contained more DS2 and DS3 samples, whereas it appeared that the CWR
might be overfitting to the overall sentiment in the sentence for datasets that contain
less DS2 and DS3 samples (Laptop and Restaurant). These three model investigations
to a large extent successfully showed the use of this new evaluation methodology and in

35See table 4. Depth in table 4 is the same as layers.
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the position encoding investigation how they can match the original hypothesis of why
position information is important.

In comparison to previous works, this chapter has systematically evaluated multiple
TDSA models across multiple datasets, multiple random seeds, and model enhancements
evaluating using the appropriate statistical tests. Potentially due to this empirical rigour
it has shown negative results with respect to inter-target encoding, which is the opposite
of what the original work found (Hazarika et al., 2018), which is believed due to the
original work not reporting results across multiple random seeds. For future work it
would be of interest to see if increasing the number of DS2 and DS3 samples could create
models that are better at target sentiment relationship modelling without affecting the
DS1 samples. Additionally, it was shown that the STAC Multi metric is still by far the
worst performing metric through the CWR experiment, this therefore shows that this
metric is what future researchers need to focus on.
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Chapter 6

Conclusion

6.1 Thesis Summary

This thesis, in chapter 2, has summarised the literature related to sentiment analysis
from a coarse to fine grained perspective, in doing so has created one of, if not, the most
extensive reviews of sentiment analysis applied to the English language, that links the
different granularities together. In the review a new extended definition of fine grained
sentiment analysis has been created, the hextuple, which in comparison to the original
(Liu, 2015) removes sentiment ambiguity that was shown through multiple examples and
empirical evidence from two existing datasets. Further, parts of the original definition
by Liu (2015) that is used within the hextuple, time and sentiment holder, are justified
for the first time in this thesis through sentiment ambiguity rather than application
uses (Liu, 2015). The literature review concludes with multiple further related topics
on implicit sentiment, discourse level considerations, and stance detection, the first two
related topics will be revisited in the future work section 6.3 whereas the stance detection
topic discussed the similarities between it and sentiment analysis.

The first reproduction study for TDSA was conducted in chapter 3, in which all three
chosen papers were successfully reproduced. From these studies it was found for the two
NP methods (Vo et al., 2015; Wang et al., 2017a) that scaling features and the C-value for
the SVM classifier are significant factors in these methods, and it was noted that Vo et al.
(2015) never reported scaling the features and Wang et al. (2017a) did not report the
C-value they used. It was further tested that both scaling features and the C-value are not
just significant factors for the methods on the one (two) dataset(s) that Vo et al. (2015)
(Wang et al. (2017a)) used, but is shown to be significant across six diverse datasets1.
Thus it was concluded that both scaling and the C-value used should be reported within
a structured format like that suggested by Dodge et al. (2019) within Appendix B-D. For
the LSTM methods it was shown for at least one metric (macro F1) that they can be
statistically significantly affected by random seeds, which is what Reimers et al. (2017)
found for neural sequence labelling methods. These findings suggests a possible reason
why previous papers that attempted to replicate (Chen et al., 2017) and reproduce (Tay
et al., 2018) Tang et al. (2016b) methods could not do so, this problem was the original
motivation behind the reproduction of Tang et al. (2016b). From this it was concluded to
follow Reimers et al. (2017) advice on reporting the distribution of results from multiple

1These six datasets include the datasets from Vo et al. (2015) and Wang et al. (2017a).
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runs to allow for better evaluative comparisons and more accurate representation of the
method, as single run scores can be misleading.

Additionally, it was found for Vo et al. (2015) methods that larger general word
embeddings (GloVe) are at least as good and in Tang et al. (2016b) case were found to be
in general better than smaller type and/or task specific embeddings. This suggests that for
Vo et al. (2015) methods that once the smaller type and/or task specific embeddings have
been trained the methods can be more energy efficient without losing any performance
gains. Alternatively it can be seen that smaller type and/or task specific embeddings
are not required. These findings are rather restricted findings as they were only tested
on the one Twitter dataset (Dong et al., 2014). These findings from the reproduction
studies thus answers RQ 1 ‘What lessons can be learned from reproducing a method
within TDSA?’.

Additionally, in chapter 3, the methods reproduced from the chosen studies are then
used within the mass evaluation experiments to test the methods’ generalisable capabilities.
These three diverse sets of methods are then evaluated across six English datasets that
differ in type, domain, medium, dataset sizes, and sentiment class distributions. It was
found that no one method performs best or could be declared generalisable, but the
NP methods performed better across more datasets than the LSTM methods, however
the LSTM methods tend to prefer larger datasets. The LSTM methods were shown
to be greatly affected by dataset size and/or sentiment class distribution and when in
the low resource setting for all datasets the LSTM methods in some cases can only
predict the majority class correctly. Thus it was found that the NP methods are the
preferred method in low resource or highly unbalanced class distribution settings. When
in the low resource setting it was found that sentiment lexicons, for the NP methods, as
an inductive bias, can be useful if the lexicon comes from the same type and medium.
However when the NP methods were tested in the normal settings the sentiment lexicons
were not shown to be useful, this was also found for the dependency parser features in
both low and normal settings. By testing the methods across these six datasets it showed
that the novel target aware LSTM methods (TDLSTM and TCLSTM) could be beaten
by the non-target aware baseline on at least one dataset, and this was never found in
the original work (Tang et al., 2016b), as they only evaluated on one dataset. All of
these findings from the mass evaluation experiments answer RQ 2 ‘How generalisable are
existing methods within TDSA?’.

In chapter 4 the prior work on error analysis splits were reviewed extensively, from
which two new error splits are created: TSSR which measures sentiment overfitting to the
most frequent sentiment class within the text, and TSR which measures generalisation
to Unknown Targets (UT s) and Unknown Sentiment relationships for Known Targets
(USKT s). The prior and new error splits are then analysed across three English datasets
showcasing the differences between the datasets through the splits, through which it is
found that smaller datasets tend to have more UT s and USKT s. These findings thus
show that in the low resource setting a method that can generalise well to UT and
USKT is required to perform well. Lastly, these prior and new splits are summarised
describing what they do and what they hypothetically measure. Three different Neural
Network (NN) based TDSA methods and one baseline non-target aware NN method
are compared across three English datasets and the results are analysed using the splits.
From the analysis it is found that the NT split does not measure target interaction,
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6.1. Thesis Summary

which it was originally hypothesised to measure (Zhang et al., 2019a). Further, it is
recommended to use the TSR split over a prior works’ n-shot split due to it measuring
the difference between known targets and UT better as well as being capable of also
measuring USKT s. Also the TSSR split could not identify sentiment overfitting to the
most frequent sentiment class, however a new metric STAC was created whereby the
metric difference between its two variants STAC 1 and STAC Multi is hypothesised to
better measure the sentiment overfitting. The DS split was shown to increase in difficulty
when more unique sentiments existed within the text, and thus believed to measure
target sentiment relationship modelling. However the DS split can be influenced by the
most frequent sentiment class within the text. Thus the STAC Multi metric can be used
as a coarse grained version of DS whereby this measure is not influenced by the most
frequent sentiment class within the text. Therefore this chapter concludes with a set
of recommended error splits and metrics that can measure different phenomena within
TDSA, forming the new empirical evaluation methodology for TDSA. Thus the chapter
answers RQ 3 ‘What is an appropriate empirical evaluation methodology for TDSA?’

Following the creation of this new empirical evaluation methodology within chapter
4, chapter 5 conducts several case studies to further test the evaluation methodology.
These case studies use the same methods and datasets as chapter 4, but each case
study enhances the method with a new development. These enhanced methods are then
compared to their non-enhanced version using the new evaluation methodology. The
findings from these case studies are then compared, where appropriate, to the original
hypothesis that were associated with the relevant development. The original hypothesis
from the prior works have only ever been justified either through small qualitative case
studies, improvements in overall metric scores, such as accuracy on the entire datasets,
or through the unsuitable NT error split as shown in chapter 4. From the three case
studies the position encoding enhancement was shown to match the original hypothesis
of improving target sentiment relationship modelling through significant improvements
on the STAC Multi metric and DS2 subset. A negative result was found through the
inter-target encoding enhancement, whereby the non-enhanced version was no worse
and at times better than the enhanced one. Further it would not have been possible
to measure the original hypothesis of inter-target encoding as the empirical evaluation
methodology cannot measure target interaction. Additionally it is believed that the
negative results might be due to the original work by Hazarika et al. (2018) not evaluating
their methods rigorously enough, as they only report results from one run, and it has
already been shown in chapter 3 that results from different runs can be significantly
different. The last case study evaluated the CWR enhancement, where no prior work
has shown how they improve over non-CWR apart from through overall metrics like
accuracy. The CWR significantly performed better on the UT and USKT and this was
not found for any of the other developments. Additionally, significant improvement also
occurred for the STAC Multi metric and DS2 samples suggesting that it improves target
sentiment relationship modelling, but these results were more convincing on the Election
dataset which contained higher quantities of DS2 and DS3 samples. This suggests in part
that the CWR enhancement might be overfitting to artefacts within the trained dataset.
These case studies have rigorously tested the new empirical evaluation methodology
and demonstrated how it can better quantify new developments and how these new
developments improve TDSA.
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Chapter 6. Conclusion

Throughout this thesis each experiment has been conducted within a rigorous ex-
perimental setup, which includes significance testing and using a correction procedure,
Bonferroni, when appropriate.

6.2 Research Limitations

Given that the thesis summary has stated how the three research questions have been
addressed within this thesis, this section will state the limitations of the answers to these
research questions.

• What lessons can be learned from reproducing a method within TDSA?
(RQ 1)
The answer to this has only tested for two parameters for the NP methods, scaling
features and C-values within the SVM, and one parameter, random seeds, within
the neural LSTM methods. There are many more parameters that could have
been tested, for instance not having a standard train, validation, test setup for
the neural methods and only having a training and test setup. It has already
been shown that there can be differences between methods when using different
train and test splits as shown for POS tagging (Gorman et al., 2019) and NER
(Moss et al., 2019). Thus it is likely that by not having a standard validation split
within the already standard train test splits will create reproducibility problems.
However the parameters that were explored were justified as it was already shown
by Reimers et al. (2017) that it was important to report multiple runs of a neural
based method. The C-values were tuned for one of the NP methods (Vo et al.,
2015) thus it seemed logical to investigate if this was important for the other NP
method (Wang et al., 2017a). Also scaling features was used within the codebase
of one of the NP methods (Wang et al., 2017a), but it was not stated to be used
for the other NP method (Vo et al., 2015). Thus there are likely many parameters
that are known and unknown that would affect reproducibility, but in this thesis
only three key parameters were explored.

• How generalisable are existing methods within TDSA? (RQ 2)
There are two large limitations with this work. The first being the set of methods
that were evaluated, which were in general Neural Pooling (NP) and LSTM methods.
Even though they represent two different large sets of methods non-neural and
neural, however there are a number of different non-neural and neural methods e.g.
transformers (Vaswani et al., 2017) which have become very popular recently and
unlike LSTM does not have a strong dependency/bias between its past encoded
tokens. Further, both the NP and LSTM methods use the same type of input
representation, the word embedding, where for the non-neural methods a bag of
words input would be appropriate and could have created another strong and
interesting baseline to compare too. The second limitation is that all datasets are
in the same language, English, thus the findings are currently restricted to the
English language only.

• What is an appropriate empirical evaluation methodology for TDSA?
(RQ 3)
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6.3. Future Work

The empirical evaluation methodology is limited to testing phenomena that can
be automatically created but has not yet been tested for linguistic phenomena.
There are many linguistic phenomena that would be of interest to explore such as
those suggested by Barnes et al. (2019) that includes negation, amplifier, emoji,
and many more.

6.3 Future Work

In this section, the future work will be stated that is based upon the findings within
this thesis and the literature review. However, it is worth noting that there has been a
very comprehensive survey on the future of sentiment analysis by Poria et al. (2020) that
explores many worthwhile avenues for sentiment analysis in general.

• As found within chapter 3, the generalisation experiments showed the neural meth-
ods under perform on small and un-balanced datasets. Thus testing different
methods such as transfer learning from language models, which has been demon-
strated to be successful in low resource settings (Howard et al., 2018), and transfer
learning from document sentiment analysis which has already been shown useful
on un-balanced datasets (He et al., 2018b) would be of interest.

• Through the error analysis studies in chapters 4 and 5 it was found that many
methods did not perform well on target sentiment relationship modelling, measured
through the DS split and STAC Multi metric. Thus finding a way to improve this
would be of use.

• Also through the error analysis, within chapter 4 and 5, Unknown Targets (UT s)
and especially Unknown Sentiment Known Targets (USKT s) performed poorly in
comparison to Known Sentiment Known Targets (KSKT). Again finding a way
to improve on samples within the UT and USKT would be a potentially fruitful
future direction, more so as these subsets of data tend to occur more within low
resource settings as shown by chapter 4. A proposed approach to this problem
would be to better model the target itself as done within He et al. (2018a).

• The literature review highlighted, within section 2.5.2, the importance of discourse
information within fine grained sentiment analysis. It would be of interest to
study the importance of discourse information within TDSA. One area of discourse
information that could be of use is co-reference resolution. This is motivated by the
fact that Kessler et al. (2009) found that 14% of targets are pronouns2, thus if recent
TDSA methods perform differently on these pronoun targets it could motivate the
need for incorporating co-reference information into the TDSA method. Further,
alternative discourse information could be of use too so that methods take into
account more than the current sentence, as Kessler et al. (2010) found that 9% of
sentiment expressions are not within the same sentence as the target they affect.

• Poria et al. (2020) indicates that commonsense information could help improve
implicit and factual sentiment analysis and we agree with Poria et al. (2020) that
this would be a fruitful avenue of future research. In the pursuit of this research

2The corpus this was performed on was an early version of JDPA corpus (Kessler et al., 2010).
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Chapter 6. Conclusion

the review on implicit and factual sentiment analysis, within section 2.5.1, should
be of use.
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Appendix A

Reproducibility and
Generalisability of TDSA Methods

A.1 Tables

Fold

Method Embedding 1 2 3 4 5

TI
w2v 0.0187 0.0492 0.1708 0.1891 0.4314

SSWE 0.1132 0.0533 0.0567 0.0099 0.4532
GloVe 0.7992 0.9976 0.6734 0.4927 0.8801

TDM
w2v 0.4774 0.0046 0.0023 0.0328 0.0124

SSWE 0.0858 0.0717 0.2807 0.8586 0.1042
GloVe 0.8991 0.3767 0.1138 0.8357 0.2367

TD
w2v 0.1236 0.0158 0.0274 0.0533 0.6894

SSWE 0.0103 0.0117 0.0652 0.1148 0.1054
GloVe 0.7350 0.8223 0.1859 0.6779 0.9725

TDP
w2v 0.1314 0.1086 0.1825 0.2366 0.5573

SSWE 0.0798 0.0027 0.0311 0.2026 0.4478
GloVe 0.5684 0.4610 0.0743 0.6331 0.8284

Table A.1: P-values for the accuracy metric, testing if SSWE + w2v embedding is
significantly better than the other embeddings for each method on each fold of the
five-fold cross validation. The five folds came from the Dong et al. (2014) Twitter training
dataset. All p-values that are significant ≤ 0.05 are in bold.
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Appendix A. Reproducibility and Generalisability of TDSA Methods

Fold

Method Embedding 1 2 3 4 5

TI
w2v 0.0028 0.0057 0.0362 0.0192 0.1254

SSWE 0.1101 0.0023 0.0348 0.0012 0.1321
GloVe 0.9057 0.9990 0.8106 0.6867 0.8499

TDM
w2v 0.2474 0.0024 0.0000 0.0044 0.0018

SSWE 0.0429 0.0241 0.1018 0.5029 0.0754
GloVe 0.8688 0.4317 0.0740 0.8162 0.2744

TD
w2v 0.0108 0.0063 0.0031 0.0052 0.3455

SSWE 0.0012 0.0008 0.0280 0.0188 0.0738
GloVe 0.6811 0.8059 0.2267 0.7103 0.9657

TDP
w2v 0.0194 0.0382 0.0650 0.0961 0.3623

SSWE 0.0221 0.0003 0.0151 0.0819 0.3732
GloVe 0.5240 0.4813 0.0969 0.7047 0.8225

Table A.2: P-values for the macro F1 metric, testing if SSWE + w2v embedding is
significantly better than the other embeddings for each method on each fold of the
five-fold cross validation. The five folds came from the Dong et al. (2014) Twitter training
dataset. All p-values that are significant ≤ 0.05 are in bold.

Fold

Method Embedding 1 2 3 4 5

TI
w2v 0.0112 0.0002 0.1359 0.2858 0.0954

SSWE 0.0403 0.0001 0.0485 0.0375 0.1191
SSWE + w2v 0.2157 0.0034 0.3456 0.5330 0.1276

TDM
w2v 0.1051 0.0469 0.1746 0.0125 0.2010

SSWE 0.0176 0.2131 0.7693 0.4632 0.4148
SSWE + w2v 0.1169 0.6399 0.8943 0.1793 0.7803

TD
w2v 0.0568 0.0034 0.2774 0.0486 0.0679

SSWE 0.0127 0.0072 0.3882 0.0939 0.0041
SSWE + w2v 0.2800 0.1882 0.8277 0.3421 0.0351

TDP
w2v 0.1747 0.2198 0.7834 0.1974 0.1889

SSWE 0.1218 0.0275 0.4635 0.1772 0.1763
SSWE + w2v 0.4610 0.5737 0.9357 0.3973 0.1862

Table A.3: P-values for the accuracy metric, testing if GloVe embedding is significantly
better than the other embeddings for each method on each fold of the five-fold cross
validation. The five folds came from the Dong et al. (2014) Twitter training dataset. All
p-values that are significant ≤ 0.05 are in bold.
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A.1. Tables

Fold

Method Embedding 1 2 3 4 5

TI
w2v 0.0001 0.0000 0.0125 0.0246 0.0278

SSWE 0.0120 0.0000 0.0107 0.0014 0.0350
SSWE + w2v 0.0904 0.0014 0.1828 0.3076 0.1542

TDM
w2v 0.0523 0.0159 0.0520 0.0033 0.0635

SSWE 0.0099 0.0889 0.6647 0.2007 0.3209
SSWE + w2v 0.1325 0.5576 0.9246 0.1876 0.7198

TD
w2v 0.0078 0.0021 0.0640 0.0065 0.0164

SSWE 0.0057 0.0015 0.2117 0.0226 0.0017
SSWE + w2v 0.3191 0.1955 0.7637 0.2803 0.0334

TDP
w2v 0.0575 0.1054 0.5351 0.0542 0.1034

SSWE 0.0582 0.0064 0.2749 0.0461 0.1327
SSWE + w2v 0.4589 0.5115 0.9006 0.2989 0.1690

Table A.4: P-values for the macro F1 metric, testing if GloVe embedding is significantly
better than the other embeddings for each method on each fold of the five-fold cross
validation. The five folds came from the Dong et al. (2014) Twitter training dataset. All
p-values that are significant ≤ 0.05 are in bold.

Embedding Metric LSTM TDLSTM TCLSTM

SSWE Accuracy 60.13 (1.24) 66.38 (1.18) 65.30 (1.09)

F1 56.13 (2.25) 62.63 (1.53) 61.14 (1.51)

Twitter 50 Accuracy 59.13 (0.92) 64.36 (1.33) 63.94 (0.77)

F1 54.62 (2.47) 60.38 (1.74) 59.05 (1.56)

Twitter 100 Accuracy 60.76 (0.91) 65.29 (0.96) 65.62 (1.01)

F1 56.23 (2.31) 61.54 (1.50) 61.20 (1.52)

Twitter 200 Accuracy 61.08 (1.41) 66.44 (0.92) 66.35 (0.94)

F1 56.14 (2.73) 63.40 (1.51) 62.32 (1.38)

GloVe 300 Accuracy 63.65 (0.94) 68.29 (0.66) 67.86 (1.29)

F1 60.32 (1.48) 65.16 (0.87) 64.35 (1.60)

Table A.5: Validation set mean (standard deviation) results on the Dong et al. (2014)
Twitter dataset, across various embeddings and methods. The bold values indicate the
best embedding score for each method and metric.
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Method Embedding Accuracy F1

LSTM SSWE 0.0745 0.0509
Twitter 50 0.0392 0.0211
Twitter 100 0.1400 0.1442
Twitter 200 0.1032 0.0392

TDLSTM SSWE 0.0079 0.0010
Twitter 50 0.0002 0.0000
Twitter 100 0.0039 0.0006
Twitter 200 0.0097 0.0083

TCLSTM SSWE 0.0057 0.0013
Twitter 50 0.0001 0.0004
Twitter 100 0.0176 0.0100
Twitter 200 0.0958 0.0509

Table A.6: P-values for the one sided significant test on the test set comparing the GloVe
embeddings to the other embeddings for each metric and method. The significant test
compared the median best run from the 20 runs that each method, embedding, and
metric produced. The bold values indicate all p-values that are significant (≤ 0.05).

Method Embedding Accuracy F1

LSTM SSWE 0.8901 0.4171
Twitter 50 0.4878 0.9470
Twitter 100 0.5957 0.9509
Twitter 200 0.7947 0.9560

TDLSTM SSWE 0.9885 0.8986
Twitter 50 0.2894 0.9415
Twitter 100 0.9149 0.4421
Twitter 200 0.9023 0.6515

TCLSTM SSWE 0.9765 0.9444
Twitter 50 0.3615 0.3511
Twitter 100 0.2046 0.9283
Twitter 200 0.3832 0.3809

Table A.7: P-values for the one sided significant test on the validation set comparing the
GloVe embeddings to the other embeddings for each metric and method. The significant
test compared the median best run from the 20 runs that each method, embedding, and
metric produced.
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Figure A.1: Using the C-values optimised for macro F1 metric, the confidence intervals
for the two tailed test on the Dong et al. (2014) test set.
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Figure A.2: Using the C-values optimised for macro F1 metric with the original MinMax
scaling range of Wang et al. (2017a), the confidence intervals for the two tailed test on
the Dong et al. (2014) test set.
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Figure A.3: The mean accuracy from five-fold cross validation on the training set for
each C-value.
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Figure A.4: The mean macro F1 from five-fold cross validation on the training set for
each C-value.
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Figure A.5: The mean accuracy from five-fold cross validation on the training set for the
two scaling methods.
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Figure A.6: The mean macro F1 from five-fold cross validation on the training set for
the two scaling methods.
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Appendix B

Improving Experimental
Methodology for TDSA

B.1 Tables

Hyperparameter Value

embedding GloVe

embedding trainable False

number of epcohs 100

patience 10

metric early stopping monitored Accuracy

batch size 32

dropout 0.5

learning rate optimiser Adam

learning rate 0.001

regularisation type L2

regularisation value 0.0001

Table B.1: Default hyperparameters.

177



Appendix B. Improving Experimental Methodology for TDSA

D
ataset

E
lection

L
ap

top
R
estau

ran
t

S
p
lit

O
T

S
T

V
O
T

S
T

V
O
T

S
T

V

D
ata

S
p
lit

D
a
ta

S
u
b
set

T
R
S

K
T
K
S

82.4
80.8

80.9
47.3

42.5
58.6

63.2
60.4

67.9
U
S
K
T

3.7
4.1

4.4
10.5

10.8
8.4

5.4
6.2

5.8
U
T

13.9
15.1

14.7
42.2

46.7
33.0

31.4
33.4

26.3

n
-sh

o
t

zero
-sh

o
t

13.9
15.1

14.7
42.2

46.7
33.0

31.4
33.4

26.3
lo
w
-sh

o
t

29.1
28.3

28.9
19.6

19.9
23.6

23.8
23.1

25.9
m
ed
-sh

o
t

29.0
28.7

28.8
19.3

17.7
23.5

23.0
22.4

29.5
h
igh

-sh
o
t

28.0
28.0

27.6
19.0

15.7
19.9

21.7
21.1

18.3

O
T

=
origin

a
l
train

in
g
w
ith

test
d
ataset,

S
T

=
sp
lit

train
in
g
w
ith

test
d
ataset

V
=

sp
lit

train
in
g
w
ith

valid
ation

d
ataset

T
a
b
le

B
.2
:
D
iff
eren

ces
b
etw

een
d
iff
eren

t
d
ataset

com
b
in
ation

s
w
ith

resp
ect

to
glob

al
error

sp
lits.

178



B.1. Tables

Dataset Election Laptop Restaurant

Split T V T V T V

Data Split Data Subset

DSi

DS1 45.8 44.6 83.9 80.4 79.6 72.0
DS2 46.5 47.2 14.7 19.2 20.1 25.3
DS3 7.7 8.2 1.4 0.5 0.3 2.7

NT

1-target 4.0 4.3 40.6 38.0 25.4 26.4
low-targets 47.9 46.8 32.0 33.7 34.3 31.5
med-targets 28.7 25.4 15.5 17.0 30.6 22.7
high-targets 19.5 23.5 11.9 11.2 9.6 19.4

TSSR

1-TSSR 4.0 4.3 40.6 38.0 25.4 26.4
1-multi-TSSR 41.8 40.2 43.3 42.3 54.2 45.6
high-TSSR 25.8 25.7 5.0 7.8 8.8 12.5
low-TSSR 28.4 29.7 11.1 11.8 11.6 15.5

T = test dataset, V = validation dataset

Table B.3: Differences between the test and validation datasets with respect to local
error splits.
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Model

Metric Dataset Att-AE CNN IAN TDLSTM

Accuracy
Election 58.42 (0.40) 54.07 (0.56) 60.14 (0.40) 58.73 (0.38)
Laptop 70.74 (0.75) 70.65 (0.68) 71.57 (0.64) 69.69 (0.63)

Restaurant 71.99 (0.45) 72.31 (0.69) 72.13 (0.57) 72.43 (0.46)

Macro F1
Election 46.05 (1.85) 42.74 (2.09) 45.80 (1.48) 46.83 (1.80)
Laptop 66.28 (1.21) 66.32 (0.96) 66.94 (1.32) 65.74 (1.00)

Restaurant 60.77 (0.67) 60.51 (1.20) 60.84 (1.08) 61.63 (0.87)

Table B.4: Mean and standard deviation from running each model 8 times on the datasets validation split.
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Model

Metric Dataset Att-AE CNN IAN TDLSTM

Accuracy
Election 56.49 (0.76) 52.35 (0.69) 58.60 (0.36) 58.39 (0.74)
Laptop 67.99 (1.30) 68.26 (0.69) 66.58 (0.53) 67.46 (1.60)

Restaurant 76.62 (0.59) 75.81 (0.55) 76.51 (1.49) 76.09 (0.62)

Macro F1
Election 44.23 (1.81) 39.98 (2.20) 43.90 (1.52) 46.95 (2.33)
Laptop 59.97 (2.29) 60.43 (1.36) 58.78 (0.62) 60.52 (2.63)

Restaurant 61.01 (1.47) 59.40 (1.52) 61.22 (2.85) 61.59 (1.57)

Table B.5: Mean and standard deviation from running each model 8 times on the datasets test split.
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Name Split No. Sents(t) No. Targs (Uniq) ATS(t) POS (%) NEU (%) NEG (%)

Laptop
Train 1051 1661 (739) 1.58 695 (41.84) 319 (19.21) 647 (38.95)
Val 411 652 (368) 1.59 292 (44.79) 141 (21.63) 219 (33.59)
Test 411 638 (389) 1.55 341 (53.45) 169 (26.49) 128 (20.06)

Election
Train 2319 6811 (1496) 2.94 1014 (14.89) 2645 (38.83) 3152 (46.28)
Val 863 2547 (741) 2.95 352 (13.82) 970 (38.08) 1225 (48.1)
Test 863 2541 (751) 2.94 378 (14.88) 957 (37.66) 1206 (47.46)

Restaurant
Train 1378 2490 (914) 1.81 1489 (59.8) 422 (16.95) 579 (23.25)
Val 600 1112 (480) 1.85 675 (60.7) 211 (18.97) 226 (20.32)
Test 600 1120 (520) 1.87 728 (65.0) 196 (17.5) 196 (17.5)

No. Sents(t)=number of sentences that contain a target, No. Targs (Uniq)=Number of (unique) targets (all
targets are lower cased), ATS(t)=Average Target per Sentence where the sentences must contain a target, LABEL
(%)=Number of LABEL samples (percentage of LABEL samples).

Table B.6: Dataset statistics for each split for all datasets.182



B.2. Figures

B.2 Figures

1 Low Med High

54

56

58

60

62

Er
ro

r S
pl

it=
NT

Ac
cu

ra
cy

Dataset=Election

1 Low Med High

65

70

75

80
Dataset=Laptop

Att-AE CNN IAN TDLSTM

1 Low Med High

65.0

67.5

70.0

72.5

75.0

77.5

Dataset=Restaurant

DS1 DS2 DS3

40

45

50

55

60

65

Er
ro

r S
pl

it=
DS

Ac
cu

ra
cy

Dataset=Election

DS1 DS2

55

60

65

70

75

Dataset=Laptop

DS1 DS2

50

60

70

80

Dataset=Restaurant

1 1-Multi Low High

40

45

50

55

60

65

Er
ro

r S
pl

it=
TS

SR
Ac

cu
ra

cy

Dataset=Election

1 1-Multi Low High

40

50

60

70

80
Dataset=Laptop

1 1-Multi Low High

40

50

60

70

80

Dataset=Restaurant

Zero Low Med High

52

54

56

58

60

62

Er
ro

r S
pl

it=
n-

sh
ot

Ac
cu

ra
cy

Dataset=Election

Zero Low Med High
62.5

65.0

67.5

70.0

72.5

75.0

77.5

Dataset=Laptop

Zero Low Med High

68

70

72

74

76

Dataset=Restaurant

USKT UT KSKT
Error Subset

20

30

40

50

60

Er
ro

r S
pl

it=
TS

R
Ac

cu
ra

cy

Dataset=Election

USKT UT KSKT
Error Subset

40

50

60

70

80
Dataset=Laptop

USKT UT KSKT
Error Subset

30

40

50

60

70

80
Dataset=Restaurant

Figure B.1: The mean and standard deviation error bars for each error subset within all
of the error splits on the validation split across all datasets.
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Figure B.2: The mean and standard deviation error bars for the difference between the
overall accuracy and the accuracy from each error subset within all of the error splits on
the validation split across all datasets.
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Figure B.3: Each plot shows the performance (y-axis accuracy) of the given models and
sample size of the data evaluated on (y-axis dataset size) on the different validation
datasets (columns) after being subsetted by the relevant DS subset (rows) and then NT
subset (x-axis).
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Figure B.4: Each plot shows the performance (y-axis accuracy) of the given models and
sample size of the data evaluated on (y-axis dataset size) on the different validation
datasets (columns) after being subsetted by the relevant TSSR subset (rows) and then
NT subset (x-axis).
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B.3 Text Classifier Performance1

The results of the CNN method trained using two different ways of creating a text level
dataset from the TDSA datasets are reported. To re-iterate the two ways of creating
a text level dataset are; 1. only use texts that contain one unique sentiment (single),
and 2. use the majority sentiment from the text (average). The model trained using the
first dataset creation will be called CNN (single) and the model trained using the second
dataset creation will be called (CNN (average)). The training dataset statistics for these
two datasets are shown in table B.7, from this it is clear and expected that the average
dataset has far more samples. For clarification the validation and test split statistics are
those of the TDSA dataset statistics found in table 4.13, as the text classification models
are being tested as TDSA classifiers.

Dataset

Creation Method Election Laptop Restaurant

Sample Size
average 2319 1051 1378
single 1227 933 1162

Negative
average 49% 43% 24%
single 52% 44% 21%

Neutral
average 37% 17% 16%
single 37% 14% 14%

Positive
average 15% 40% 60%
single 11% 42% 64%

Table B.7: Dataset statistics for the training split for the two CNN models average and
single. The Negative, Neutral, and Positive rows show the proportion of samples that
represent the respective sentiment classes.

Tables B.8 and B.9 show the mean and standard deviation of the scores over eight
runs on the validation and test splits respectively.

CNN Model

Metric Dataset average single Difference

Accuracy
Election 54.07 (0.56) 54.54 (0.43) -0.48 (0.67)
Laptop 70.65 (0.68) 69.46 (0.72) 1.19 (1.14)

Restaurant 72.31 (0.69) 71.98 (0.41) 0.34 (0.74)

Macro F1
Election 42.74 (2.09) 39.62 (1.75) 3.12 (2.58)
Laptop 66.32 (0.96) 63.33 (1.70) 2.99 (2.18)

Restaurant 60.51 (1.20) 58.74 (1.44) 1.77 (1.69)

Table B.8: Validation results for CNN (single) and CNN (average).

From these results the majority of the time CNN (average) is the better model, of
which the result is larger on the Macro F1 metric. This is most likely due to the fact that
the dataset for CNN (single) contains very few samples for the minority classes. Table

1Notebook that created these results can be found here: https://github.com/apmoore1/tdsa_

comparisons/blob/master/analysis/Baseline_non_target_results.ipynb.
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CNN Model

Metric Dataset average single Difference

Accuracy
Election 52.35 (0.69) 54.29 (0.73) -1.94 (1.36)
Laptop 68.26 (0.69) 65.99 (0.80) 2.27 (1.00)

Restaurant 75.81 (0.55) 75.19 (0.94) 0.62 (1.31)

Macro F1
Election 39.98 (2.20) 39.73 (1.88) 0.24 (3.00)
Laptop 60.43 (1.36) 55.36 (2.00) 5.07 (2.76)

Restaurant 59.40 (1.52) 56.71 (1.63) 2.69 (2.82)

Table B.9: Test results for CNN (single) and CNN (average)

B.10 shows the p-values from the appropriate one-tailed hypothesis tests where the null
hypothesis is that the CNN (average) model performs just as well as the CNN (single)
model. After correcting the p-values using Bonferroni the CNN (average) is significantly
better with a confidence of 95% on the validation split for 1 out of the 3 and 3 out of the
3 datasets for the accuracy and Macro F1 metrics respectively. On the test split after
correcting the p-values using Bonferroni the CNN (average) is significantly better with a
confidence of 95% for 1 out of the 3 and 2 out of the 3 datasets for the accuracy and
Macro F1 metrics respectively.

Dataset

Split Metric Election Laptop Restaurant

Test
Accuracy 0.999921 0.000029† 0.077711
Macro F1 0.444319 0.005859† 0.024975∗

Validation
Accuracy 0.950955 0.003293† 0.144942
Macro F1 0.005859† 0.005859† 0.017846∗

Table B.10: P-Values. † and ∗ indicates p-values less than or equal to 0.01 and 0.05
respectively
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Figure C.1: Validation split results. Columns represent different datasets, rows different
error splits. Each plot represents the differences between the position and baseline models
for the Accuracy metric on the given error subset.
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Figure C.2: Test split results. Columns represent different datasets, rows different error
splits. Each plot represents the Accuracy metric for the position models on the given
error subset.
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Figure C.3: Validation split results. Columns represent different datasets, rows different
error splits. Each plot represents the Accuracy metric for the position models on the
given error subset.
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Figure C.4: Test split results. Columns represent different datasets, rows different error
splits. Each plot represents the Accuracy metric for the target aware models on the given
error subset.

Figure C.5: Validation split results. Columns represent different datasets, rows different
error splits. Each plot represents the Accuracy metric for the target aware models on the
given error subset.

193



Appendix C. Case Studies in Improving Experimental Methodology for TDSA

Figure C.6: Test split results. Columns represent different datasets, rows different error
splits. Each plot represents the differences between the position and baseline models for
the Accuracy metric on the given error subset.

Figure C.7: Validation split results. Columns represent different datasets, rows different
error splits. Each plot represents the differences between the target aware and baseline
models for the Accuracy metric on the given error subset.
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