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ABSTRACT In this paper, the problem of simultaneous localization and mapping (SLAM) using a
modified Rao Blackwellized Particle Filter (RBPF) (a modified FastSLAM) is developed for a quadcopter
system. It is intended to overcome the problem of inaccurate localization and mapping caused by inertial
sensory faulty measurements (due to biases, drifts and noises) injected in the kinematics (odometery based)
which is commonly used as a motion model in FastSLAM approaches. In this paper, the quadcopter’s
dynamics with augmented bias and drift models is employed to eliminate these faults from the localization
and mapping process. A modified FastSLAM is then developed in which both Kalman Filter (KF) and
Extended Kalman Filter (EKF) algorithms are embedded in a PF with modified particles weights to
estimate biases, drifts and landmark locations, respectively. In order to make the SLAM process robust
to model mismatches due to parameter uncertainties in the dynamics, measurements are incorporated in
the PF and in the particle generation process. This leads to a cascaded two-stage modified FastSLAM in
which the extended FastSLAM 1.0 (to include dynamics and sensory faults) is employed in first stage and
the results are used in second stage in which probabilistic inverse sensor models are incorporated in the
particle generation process of the PF. The efficiency of the proposed approach is demonstrated through a
co-simulation between MATLAB-2019b and Gazebo in the robotic operating system (ROS) in which the
quadcopter model is simulated in Gazebo in ROS using a modified version of the Hector quadcopter ROS
package. The collected pointcloud data using LiDAR is then utilised for feature extraction in the Gazebo.
The simulation environment used to this aim is validated based on experimental data.

INDEX TERMS Unmanned aerial vehicle (UAV), Rao Blackwellized Particle Filtering (RBPF), Si-
multaneous Localization and Mapping (SLAM), FastSLAM, Inertial Sensors, Sensor Calibration, Robot
Operating System (ROS).

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is the prob-
lem of localization of an object when the environment is not
modeled and needs to be mapped at the same time. SLAM
is required for autonomous navigation of mobile robots in
different scenarios, including indoor, outdoor, underwater,

and space applications. Although Global Navigation Satellite
System (GNSS) can be employed for localization on the
planet earth, this system is not always accurately available
[1]. SLAM is a very important part of autonomous naviga-
tion using unmanned aerial vehicles (UAVs), especially in
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highly dangerous environments. In some applications such
as nuclear decommissioning [2], a UAV quadcopter, which
is subject to radiation, should be able to map a radioactive
environment and localize itself simultaneously.
There exist a variety of approaches available for SLAM
depending on some factors such as spatial representation,
the structure and dynamics of environment and employed
sensors [3]. Although the diversity of approaches [4], [5]
are important, in this paper we focus on Bayesian methods
and landmark based mapping to localize a quadcopter system
maneuvering in an unknown 3D environment. Most sensors
can not provide full 3D information. However, stereo or
RGBD cameras, such as Kinect or Asus Xtion, and 3D laser
rangers, such as Velodyne laser scanners, are the most well-
known sensors which can provide 3D measurements [4].
In the field of Bayesian methods, Extended Kalman Filter
(EKF) based SLAM named as EKF-SLAM [6] was firstly
proposed to localize and map by estimating the posterior
probability distribution over robot pose and landmark posi-
tions. However, this algorithm suffers from computational
complexity in larger environments with alot of landmarks [7].
In this algorithm, the dimension of the state vector, including
robot pose and landmark positions, grows with time as new
landmarks appear in the environment which leads to an
overall O(L3) complexity for each time step where L is the
number of landmarks. As the size of the map increases, the
performance of EKF-SLAM quickly degrades until it is not
feasible anymore for a real-time operation [3]. To overcome
this problem, FastSLAM [7] was proposed, in which the
filtering based SLAM is decomposed into a robot localization
problem, and a collection of landmark estimation problems
conditioned on the robot pose estimate. This can be obtained
using Bayes’ rule combined with the statistical independency
of landmark positions which leads to Rao Blackwellized
particle filtering (RBPF) SLAM [8].
System model, robot’s motion model in FastSLAM algo-
rithm, is employed for particle generation as proposal dis-
tribution in the PF. This degrades the performance of the PF
when the proposal distribution is poorly matched with the
posterior due to model mismatches and noises. To overcome
this drawback, FastSLAM 2.0 incorporates the measurement
model into the proposal distribution. The distribution is de-
rived with Gaussain assumption and linearization of a gener-
ally nonlinear measurement model around the robot pose and
landmarks position vectors [9], [10].
The SLAM algorithm has also been employed for unmanned
aerial vehicles (UAV) in many research works [11], [12],
[13]. Inertial sensors (accelerometers and gyroscopes) are
normally used in such applications as proprioceptive sensors
[3], especially in applications that global positioning system
(GPS) is unavailable [12]. In [14] an airborne EKF-SLAM is
implemented to fuse data from an Inertial Measurement Unit
(IMU) and a passive vision system in a real time fashion. In
[12] design and implementation of a robust inertial sensor
based EKF-SLAM algorithm for a UAV using bearing-only
observations provided by a single color vision camera, is

studied. [13] provides a solution to SLAM problem for a
UAV system using a camera and inertial sensors. The pro-
posed method is an optimization based method, which results
in a smoother, rather than a filter. In spite of using inertial
sensors, none of the mentioned works consider the problem
of sensory biases and drifts. The importance of considering
inertial sensory errors is due to the fact that although MEMS
inertial sensors are small, light, inexpensive and they con-
sume less power and have short start-up time, they suffer
from sensory soft faults such as biases, drifts and noises [15].
Such faulty measurements are normally used as the inputs to
the kinematic model (odometery based) of the robot to solve
the SLAM problem, which leads to an inaccurate localization
and mapping. The problem of bias and drift compensation in
SLAM scenarios has been proposed in some research works
and mostly for ground mobile robots [11], [16]–[26]. Table 1
provides a general comparison between the existing methods
and then to see how we are improving on the existing ones in
this paper.

Referring to Table 1, it can be easily understood that the
problem of FastSLAM is still not developed for our LiDAR-
IMU dynamic based SLAM problem. Although the RBPF
with the corresponding PF and EKFs for different subsystems
is developed in [11] for the augmented kinematics, it is
not possible to employ the proposed method in this paper.
First off, since the sensory biases have been appearing in
the kinematic model through the sensor measurements as
mentioned in [11], a tightly coupled bias and pose subsystem
will be achieved and this requires a special derivation of
EKF. Besides, although the particle weights are computed
in [11] for the developed RBPF, it is with the assumption
of Gaussianity and the linearity of the camera measurement
model for the observed landmark states. However, even in the
presence of the Gaussian assumption for the measurement
noise, the LiDAR measurement model, as explained later in
the paper, is not a linear function of the observed state of
landmarks.
Due to the difficulties in using the kinematic models when
sensory measurements are faulty, compared to the commonly
used kinematics motion model in FastSLAM, in this paper
an exact dynamic model of 6DOF quadcopter system is
employed. The idea of using dynamics instead of kinematics
has been previously studied in [27] for autonomous racing
and maneuvering using EKF-SLAM method. In the paper, it
is shown that taking the tire forces into account and using
the dynamic model of the system yields a significantly better
accuracy for the pose estimation.
In the current investigation, however, an RBPF algorithm
is proposed in which the algorithm is augmented with the
dynamic model of the system as well as the LiDAR-IMU
measurement model. The motivation behind this comes from
the fact that the nonlinearity of the LiDAR measurment
model with respect to both the robot’s and landmarks’ poses
requires a more general weight computation method.
In this paper, both biases and drifts are estimated exactly
and eliminated from measurements. To this end, an accurate
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TABLE 1: Comparison of existing methods for joint inertial bias estimation and SLAM
Reference No. Sensors Motion Model General Method Impelementation Method

[24] IMU, monocular
camera

kinematics with
augmented bias model

optimization based tracking and ORB-SLAM with BA1

mapping
simulation using the EuRoC dataset

[18] IMU, LiDAR kinematics with
augmented bias model

graph based optimization approach is employed to esti-
mate bias and motion parameters through linearization. 3-D
planar landmarks with CP2 representation is employed for
mapping

simulation

[19] IMU, camera kinematics with
augmented bias model

pose calibration of camera to inertial sensor is performed
along with inertial bias estimation using UKF

experimental results only for sensor
to sensor (MEMS-IMU and camera)
calibration

[16] gyroscope,
encoder, camera

kinematics with
augmented gyro z-axis
deviation

EKF-SLAM experimental results using the Sam-
sung cleaning robot VC-RE70V

[20] IMU, LiDAR kinematics with
augmented bias model

EKF-SLAM along with observability study for 1D and 2D
environments and investigation of uncertainty bounds in
estimation of biases for 2D environments

experimental results on a in-house
built mobile robot

[26] IMU, stereo cam-
era

kinematics with
augmented bias model

EKF-SALM experimental results in the sea

[22], [21] IMU, LiDAR kinematics with
augmented bias model

to apply Fast-SLAM the general partitioning in posterior
distribution to localization and mapping with embedded bias
estimation is presented, however, no derivation of RBPF for
the augmented model is presented.

simulation

[11] IMU, camera kinematics with
augmented bias model

the extended Fast-SLAM method for the augmented motion
model considering the kinematics and camera measurement
model with the assumption of Gaussianity and the linearity
of camera measurement model of the observed landmark’s
state

experimental results on a UAV plat-
form

6DOF dynamic model of quadcopter is employed through
which the true motion of the system, i.e. the linear ac-
celeration and angular velocity of the quadcopter can be
modeled. Biases and drifts are also modeled and augmented
to the system dynamics. Since this augmentation leads to
an increased dimension compared to the normal FastSLAM,
in this paper more decomposition according to the posterior
distribution function and Bayes’ rule is performed. This leads
to an extended RBPF consisting of a PF with embedded KF
and EKF due to posterior factorization into conditional land-
mark, conditional bias and drift distributions and posterior
distribution over robot path. The developed RBPF recursively
estimates the full posterior distribution over the quadcopter’s
states including its 6DOF pose, landmark positions as well
as the sensory biases and drifts. It can be easily proved that
the extra KF set, in addition to the existing EKF set in the
normal RBPF SLAM, is required to estimate the inertial
biases and drifts conditioned on the robot’s pose particles.
In the PF, the particles corresponding to the robot’s path are
generated using the robot’s dynamics. Although the robot’s
dynamics provides a more precise model of robot’s path than
its kinematics, it still suffers from the model mismatch due
to reasons such as noises and parametric uncertainties. Thus,
it is proposed to incorporate the measurements for particle
generation similar to FasSLAM 2.0. However, there are some
drawbacks in FastSLAM 2.0 such as Gaussain assumption of
noise probability models and linearizations in measurement
models. These drawbacks degrade the performance of Fast-
SLAM 2.0. Therefore, in this paper, the inverse sensor mod-
els are employed for the particle generation in addition to the
robot’s dynamics where possible and depending on the sensor
models. Accordingly, two different proposal distributions are

employed for particle generation in the proposed FastSLAM
algorithm of this paper and the corresponding weights of
the particles are computed. It is shown that for the parti-
cles generated using the robot’s dynamics, both inertial and
LiDAR measurement likelihoods get involved in the weight
computation process. Also, through the posterior distribution
manipulations it is proved that the particles generated using
the inverse sensor model are weighted equivalently if the
particles generated in the previous stage get involved in
this stage. Thus, a cascaded 2-stage modified FastSLAM
algorithm is proposed where, in the first stage the typical
FastSLAM 1.0 is extended to include the bias and drift
estimation and in the second stage, using the results of the
first stage, some generated particles are regenerated using the
inverse sensor models to overcome model uncertainties. It
is worth noting that, both range and bearing are measured
using an exteroceptive sensor such as a LiDAR while the
IMU sensor is employed as a proprioceptive one and their
inverse sensor model is applied for the particle generation
process.
In order to implement the proposed method, Gazebo in the
Robot Operating System (ROS) is employed in this paper
in which the quadcopter model is simulated in Gazebo in
ROS using a modified version of the Hector quadcopter
ROS package and a Velodyne VLP-16 3D LiDAR is also
simulated using Gazebo. The collected pointcloud data is
then visualized in RViz and a ROS package is then imple-
mented to allow features placed in the Gazebo simulation
environment to be extracted. The simulation environment we
are using is validated based on experimental data. The model
parameters are amenable to change due LiDAR installation
and the algorithm is robust to the parameter changes in spite
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of designing and embedding the continuous time recursive
least square (RLS) [28] algorithm.
To summarize, the main contributions of this paper are sum-
marized as follows
1) An extended RBPF to solve the SLAM problem in a
quadcopter system is developed by augmenting the dynamics
of the quadcopter with the bias and drift models.
2) To make the approach robust to model uncertainties, it is
proposed to generate particles using both system dynamics
and inverse sensor models to involve measurements in the
particle generation and to overcome the drawbacks of the
FastSLAM 2.0 approach. Moreover. the exact formulation is
provided for the posterior distribution approximation using
the inverse sensor model.
3) A modified FastSLAM algorithm which is a cascaded
2-stage approach is proposed. In the first stage, the typical
FastSLAM 1.0 is extended to include the bias estimation and
in the second stage, using the results of first stage, some
generated particles are regenerated using the inverse sensor
models to overcome the model uncertainties.
4) The algorithm is evaluated through a co-simulation be-
tween MATLAB-2019b and Gazebo in Robot Operating
System (ROS).
This paper is organized as follows. In Section II the problem
is formulated by introducing the quadcopter dynamic model,
the inertial sensor measurement and bias-drift model as well
as range and bearing measurement models. The modified
FastSLAM algorithm is extended and derived in Section III.
Section IV presents simulation results and conclusions are
provided in Section V.

II. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION
A. SYSTEM MODEL
A quadcopter UAV includes four rotors that generate pro-
peller forces. A schematic of the quadcopter with the body
coordinate system is depicted in Figure 1. Variations on
forces (f1 to f4) and moments (τM1 to τM4 ) by adjusting
rotors’ speeds (ω1 to ω4) produce attitude and translation
change in the quadcopter.
The quadcopter attitude dynamics can be written in the
following form [29]:

ṗ =
Iyy − Izz
Ixx

qr − IrΩr
q

Ixx
+

u2
Ixx

,

q̇ =
Izz − Ixx
Iyy

pr + IrΩr
p

Iyy
+
u3
Iyy

,

ṙ =
Ixx − Iyy

Izz
pq +

u4
Izz

,

(1)

where, p, q and r are angular velocities rotating around x-
axis, y-axis and z-axis in the body frame, respectively. The
inertia tensors are represented as Ixx, Iyy and Izz . The input
signals u2, u3 and u4 are torques in the direction of the
corresponding body frame angles. Ir is the inertia of the
propellers and Ωr = ω1−ω2 +ω3−ω4 describes the relative
speed of the propellers.

FIGURE 1: Schematic of quadcopter with coordinate axes [29].

The relationship between angular velocities in the body and
inertial frames are described as follows [29]:

φ̇ = p+ sin(φ) tan(θ)q + cos(φ) tan(θ)r,

θ̇ = cos(θ)q − sin(φ)r,

ψ̇ =
sin(φ)

cos(θ)
q +

cos(φ)

cos(θ)
r,

(2)

where [φ θ ψ]T is the attitude vector of quadcopter which is
defined in the inertial frame where roll angle φ, pitch angle
θ and yaw angle ψ determine rotations around x-axis, y-axis
and z-axis, respectively.
The quadcopter’s translational dynamics are presented in the
following [29]:

ẍ =
u1
m

(cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ)),

ÿ =
u1
m

(sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ)),

z̈ = −g +
u1
m

cos(φ) cos(θ),

(3)

where, [x y z]T represents the position of quadcopter in the
inertial frame, u1 defines the main thrust created by com-
bined forces of rotors, that is u1 =

∑4
i=1 fi. Moreover, in

(3) g is the gravity constant and m is mass of quadcopter.
Let xD = [x y z ẋ ẏ ż φ θ ψ p q r]T and

u = [u1 u2 u3 u4]T . It is worth mentioning that in
xD, D stands for "Dynamic". After time discretization and
considering process noises, the following general nonlinear
state space model is obtained:

xDk+1 = f(xDk ,uk) + ωk, (4)

where xDk ∈ R12 , k ≥ 0, is the system state vector at time
instant k and uk ∈ R4, is the input vector and ωk ∈ R12,
is the zero mean and generally non-Gaussian random process
noise vector with a known probability density function.

B. MEASUREMENT MODEL
In this paper, both proprioceptive and exteroceptive sensors
are employed to perform localization and mapping. Iner-
tial sensors, including gyroscopes and accelerometers, are
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the priopricaptive ones which measure respectively angular
velocities and linear accelerations in the body frame. A
LiDAR is used in this paper as the exteroceptive sensor which
measures relative range and bearing to a landmark.

1) Inertial sensors faulty measurement models
The inertial sensors are mostly disturbed with sensory biases
and drifts. Bias is a constant offset and drift is a time varying
offset from the nominal statistics of the sensor signal [15].
Firstly, in the following, the acceleration measurement model
is presented:

am = ab + b0a + b1a + νa (5)

where, am ∈ R3 and ab ∈ R3 are, respectively, the vector of
measured acceleration and the true value of acceleration in
the body frame. The Term νa is measurement noise with the
covariance matrix of σ2

νaI and I is a 3×3 identity matrix. The
term b0a in (5) represents the constant offset and b1a shows
the sensor drift.
Since the accelerations in (5) are measured in the body frame,
the rotation matrix as a function of φ, θ and ψ, is used
to transform the measurements from the body frame to the
inertial frame. The rotation matrix (XYZ rotation) from the
body frame to the inertial frame is described as:

Rw
b =CψCθ CψSθSφ− SψCφ CψSθCφ+ SψCφ

SψCθ SψSθSφ+ CψCφ SψSθCφ− CψSφ
−Sθ CθSφ CθCφ

 ,
(6)

where C and S stand for cosine and sinusoid functions,
respectively.
Therefore, the measurement model can be rewritten as:

am = (Rw
b )Taw + b0a + b1a + νa, (7)

where aw = [ẍ ÿ z̈]T is acceleration in the inertial frame
given in equation (3). Accelerometer bias and drift in (7) can
be modeled as a random walk process [30]:

ḃ0a = 0,

ḃ1a = −1

τ
b1a + ωb1a ,

(8)

where, τ is the time constant and ωb1a is the process noise
with covariance matrix of σ2

b1a
I.

Similarly, the gyroscope measurement model is as follows:

ωm = ωb + b0ω + b1ω + νω, (9)

where, ωm ∈ R3 and ωb ∈ R3 are, the vector of mea-
sured and true angular velocities in the body frame i.e.
ωb = [p q r]T given in (1). The term b0ω in (9) represents
the constant offset and the term b1ω shows sensor drift in
(9). νω is zero mean Gaussian measurement noise with the
covariance matrix of σ2

νω I and I is a 3× 3 identity matrix.

Gyroscope’s bias and drift dynamics can be modeled as
random walk process [30]:

ḃ0ω = 0,

ḃ1ω = −1

τ
b1ω + ωb1ω ,

(10)

where, τ is time constant and ωb1ω is the process noise with
covariance matrix of σ2

b1ω
I and I is a 3× 3 identity matrix.

Let xB = [bT0a bT0ω bT1a bT1ω]T ∈ R12 be the augmented
state vector, the discrete time state space model of the second
subsystem (sensory bias and drift dynamics) can be written
as:

xBk+1 = AbxBk + ωbk, (11)

where, Ab = blkdiag(I, I, (1 − T
τ )I, (1 − T

τ )I) and
blkdiag refers to the block diagonal matrix, I is a 3 × 3
identity matrix and T is sampling time. Besides, ωbk =
[0 0 TωTb1a TωTb1ω ]T ∈ R12 is the vector of a zero
mean process noise with covariance matrix of Qb =
blkdiag(0,0, T 2σ2

b1a
I, T 2σ2

b1ω
I). Inωbk, 0 ∈ R3 while in Qb,

0 is a 3× 3 zeros matrix.
Assuming zI = [aTm ωTm]T , the following measurement
model is obtained:

zIk = hd(xDk ) +HbxBk + νIk. (12)

Here hd(xDk ) = [aTωRω
b ω

T
b ]T and νIk = [νTa ν

T
ω ]T are 6×1

vectors and νI is zero mean Gaussian measurement noise
with the covariance matrix of RI = blkdiag(σ2

νaI, σ2
νω I)

and,

Hb =

[
I 0 I 0

0 I 0 I

]
,

where I and 0 are 3 × 3 identity and zero matrices, respec-
tively.

2) Range and bearing measurement models
LiDAR sensors measure the relative range and bearing to a
landmark as depicted in Figure 2. By range measurement
(r), a LiDAR can measure the distance from the sensor to
the landmark and by bearing measurement, azimuth (α) and
elevation (β) angles are measured.

For simplicity, it is assumed in this paper that the the
UAV local coordinate system and the coordinate system
attached to the LiDAR are collocated with the location of
the origin [x y z]T relative to the inertial frame. Besides,
mj = [xj yj zj ]

T is the location of the origin of jth
landmark’s frame relative to the inertial frame. Thus the
range and bearing measurement models are:

rj =
√

(xj − x)2 + (yj − y)2 + (zj − z)2,

βj = arcsin
zj − z√

(xj − x)2 + (yj − y)2 + (zj − z)2
,

αj = arctan2
yj − y
xj − x

,

(13)
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FIGURE 2: LiDAR range and bearing measurements with body
frame.

Let zS = [βj αj rj ]
T . Then by adding the measurement

noise, the measurement model for the LiDAR measuring the
jth landmark, is:

zSk = hj(x
D
k ,mj) + νSj , (14)

where hj is described in (13), xDk is presented in (4), and νSj
is a zero mean Gaussian measurement noise vector with the
covariance matrix of RS

j . The inverse measurement model
which gives the position of jth landmark obtained easily
using Figure 2 is given by:

xj = x+ rj cos(βj) cos(αj).

yj = y + rj cos(βj) sin(αj).

zj = z + rj sin(βj).

(15)

In fact, (15) represents mj = h−1j (xDk , z
S
k ).

It is worth mentioning that at different time samples,
different landmarks, j = 1, 2, ..., L, are observed. Therefore,
index j changes in zSk at different time samples. In other
words, for simplicity, it is assumed that only one landmark
is observed at every sampling step. This assumption does not
restrict the method to only one landmark observation at each
sampling time and it can be easily extended to the general
case of observing multiple landmarks at each sampling step.

III. SLAM PROBLEM
In this section, the problem of full-SLAM [3] is extended
to solve the SLAM problem using the system dynamics
in the presence of model noises and uncertainties, as well
as sensory biases and drifts. In the full-SLAM the whole
trajectory of the vehicle and the map given all the control
inputs and all the measurements are estimated [5]. It is also
assumed that the problem of data association [3] has been
solved during this paper. In other words, the corresponding
model of observed feature in the map is considered to be
perfectly identified.

A. MODIFIED FASTSLAM
In this section, the problem of FastSLAM [7] is extended
to include both quadcopter uncertain and noisy dynamics,
as well as the inertial sensors bias and drift models, fusing

information from inertial and LiDAR sensors.
In the FastSLAM, Rao Bleackwellized Particle Filtering
(RBPF) is employed to estimate both vehicle trajectory and
landmark positions where each landmark is estimated with
Extended Kalman Filters (EKF) and PFs are employed to
generate particles only used for the trajectory. In this paper,
it is proposed to incorporate not only the robot’s dynamics
but also the inverse sensory models in the particle generation
process. The idea of using dynamics is for inertial sensory
bias and drift isolation and identification and incorporating
the inverse sensor model in the particle generation, makes
the method robust to model mismatches.
The SLAM problem in this paper, is to determine the whole
history of quadcopter states (which includes its path) xD1:k =
{xD1 , ...,xDk }, sensory biases and drifts xBk and landmark
locations m = m1:L = {m1, ...,mL}, where L refers to
the number of landmarks in the map, given control signal
sequence u1:k = {u1, ...,uk}, inertial sensor measurement
history zI1:k = {zI1, ..., zIk} and LiDAR measurement history
zS1:k = {zS1 , ..., zSk }.
The goal of Bayesian estimation theory [31] is to compute
posterior probability distribution. The posterior distribution,
in our SLAM problem, is as follows:

p(m1:L,x
D
1:k,x

B
k |zI1:k, zS1:k,u1:k−1). (16)

Due to the increased dimension of the state vector, because
of the bias and drift augmentation, in this paper, more de-
composition is performed, compared to normal FastSLAM,
according to the posterior distribution function and Bayes’
rule as follows.
Using Bayes’ rule and the fact that m1:L is statistically inde-
pendent of zI1:k and u1:k−1, and moreover xBk is statistically
independent of zS1:k and u1:k−1, one can conclude:

p(m1:L,x
D
1:k,x

B
k |zI1:k, zS1:k,u1:k−1)

Bayes’
=

p(m1:L|xD1:k,xBk , zI1:k, zS1:k,u1:k−1)×

p(xD1:k,x
B
k |zI1:k, zS1:k,u1:k−1)

Bayes’ & indep.
=

p(m1:L|xD1:k, zS1:k)×
p(xBk |xD1:k, zI1:k)p(xD1:k|zI1:k, zS1:k,u1:k−1),

(17)

where, indep. refers to independencies of stochastic vari-
ables and p(xD1:k|zI1:k, zS1:k,u1:k−1) can be estimated by
means of a particle filter (PF) [32] in which probability
distributions are approximated by a set of particles and their
corresponding weights, {xD,i1:k , w

i
k}, i = 1, ..., N . In other

words:

p(xD1:k|zI1:k, zS1:k,u1:k−1) ≈
N∑
i=1

wikδ(x
D
1:k − xD,i1:k ), (18)

where δ(.) is the Kronecker Delta function.
Then for each particle sequence, xD,i1:k , a Kalman Filter (KF)
and Extended Kalman Filter (EKF) are respectively em-
ployed to estimate p(xBk |x

D,i
1:k , z

I
1:k) and p(m1:L|xD,i1:k , z

S
1:k),

where:

p(xBk |x
D,i
1:k , z

I
1:k) ∼ N (xBk , x̂

B,i
k|k ,Σ

B,i
k|k), (19)
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where x̂B,ik|k is the updated estimate of xBk given xD,i1:k and
ΣB,i
k|k is the corresponding updated covariance matrix. More-

over:

p(m1:L|xD,i1:k , z
S
1:k) =

L∏
j=1

p(mj |xD,i1:k , z
S
1:k), (20)

where,
p(mj |xD,i1:k , z

S
1:k) ∼ N (ml,µ

i
j ,Σ

i
j), (21)

where µij and Σi
j are the mean vector and the covariance

matrix of the estimated location of jth landmark given xD,i1:k .
In the following, the sequential Monte Carlo (SMC) particle
filtering is derived to approximate the posterior distribution
of p(xD1:k|zI1:k, zS1:k,u1:k−1). This is performed in two cas-
caded stages as explained in the following:
Stage 1: Using Bayes’ rule one can conclude:

p(xD1:k|zI1:k, zS1:k,u1:k−1)
Bayes’
∝

p(zIk, z
S
k |xD1:k, zI1:k−1, zS1:k−1,u1:k−1)×

p(xD1:k|zI1:k−1, zS1:k−1,u1:k−1).

(22)

Using the fact that the process model of (4) can be explained
by p(xDk |xDk−1,uk−1), the following is obtained:

p(xD1:k|zI1:k−1, zS1:k−1,u1:k−1)
Bayes’ & indep.

=

p(xDk |xDk−1,uk−1)×
p(xD1:k−1|zI1:k−1, zS1:k−1,u1:k−2).

(23)

The filtering is recursive, since the term
p(xD1:k−1|zI1:k−1, zS1:k−1,u1:k−2) is appeared. Moreover, due
to statistical independency of zIk and zSk , the following is
obtained:

p(zIk, z
S
k |xD1:k, zI1:k−1, zS1:k−1,u1:k−1) =

p(zIk|xD1:k, zI1:k−1, zS1:k−1,u1:k−1)×
p(zSk |xD1:k, zI1:k−1, zS1:k−1,u1:k−1),

(24)

where,

p(zIk|xD1:k, zI1:k−1, zS1:k−1,u1:k−1) =∫
p(zIk|xD1:k, zI1:k−1, zS1:k−1,u1:k−1,x

B
k )

× p(xBk |xD1:k, zI1:k−1, zS1:k−1,u1:k−1)dxBk .

(25)

Using the probabilistic measurement model of zIk, that is
p(zIk|xDk ,xBk ), and since xBk is statistically independent from
zD1:k−1, zS1:k−1 and u1:k−1, (25) becomes:

p(zIk|xD1:k, zI1:k−1, zS1:k−1,u1:k−1) =∫
p(zIk|xDk ,xBk )p(xBk |xDk , zI1:k−1)dxBk ,

(26)

where, p(xBk |xDk , zI1:k−1) is the probabilistic prediction
model for the bias and drift subsystem. This can be approx-
imated by δ(xBk − x̂B,ik|k−1) for the ith particle sequence,
in which x̂B,ik|k−1 is the estimation prediction of xBk in
the KF algorithm for the ith particle sequence. Therefore,
the observation likelihood of the ith particle sequence is,

p(zIk|x
D,i
k , x̂B,ik|k−1).

Similarly,

p(zSk |xD1:k, zI1:k−1, zS1:k−1,u1:k−1) =∫
p(zSk |xD1:k, zI1:k−1, zS1:k−1,u1:k−1,m1:L)×

p(m1:L|xD1:k, zI1:k−1, zS1:k−1,u1:k−1)dm1:L
indep.
=∫

p(zSk |xDk ,m1:L)p(m1:L|xD1:k−1, zI1:k−1)dm1:L.

(27)

where, p(m1:L|xD1:k−1, zI1:k−1) is the posterior pdf of the
map at previous time sample k − 1 which can be approxi-
mated by δ(m1:L −µi1:L) for the ith particle sequence. µi1:L
denotes the map estimation using the EKF algorithm for the
ith particle sequence. Therefore, the observation likelihood
of the ith particle sequence is, p(zSk |x

B,i
k ,µi1:L). Therefore,

the unnormalized weight of the ith particle sequence before
re-sampling is as follows:

wik ∝ wik−1p(zSk |x
D,i
k ,µi1:L)p(zIk|x

D,i
k , x̂B,ik|k−1). (28)

Stage 2: Using Bayes’ rule and since xD1:k−1 is independent
of zIk and zSk , one can conclude:

p(xD1:k|zI1:k, zS1:k,u1:k−1)
Bayes’ & indep.

=

p(xDk |xD1:k−1, zI1:k, zS1:k,u1:k−1)×
p(xD1:k−1|zI1:k−1, zS1:k−1,u1:k−2).

(29)

Applying again the Bayes’ rule, it is concluded:

p(xDk |xD1:k−1, zI1:k, zS1:k,u1:k−1)
Bayes’
∝

p(xD1:k−1|xDk , zI1:k, zS1:k,u1:k−1)×
p(xDk |zI1:k, zS1:k,u1:k−1)

(30)

Now, let xDk decompose to xD1

k = [x y z]T , xD2

k = [ẋ ẏ ż]T ,
xD3

k = [φ θ ψ]T and xD4

k = [p q r]T . Due to the discretized
version of the system dynamics, see (4), xDk is a function
of xDk−1 and uk−1 and thus xD1

k to xD4

k are statistically
independent. Therefore, one can conclude:

p(xDk |zI1:k, zS1:k,u1:k−1) =

p(xD1

k |z
I
1:k, z

S
1:k,u1:k−1)×

p(xD2

k ,xD3

k |z
I
1:k, z

S
1:k,u1:k−1)×

p(xD4

k |z
I
1:k, z

S
1:k,u1:k−1).

(31)

Moreover:

p(xD4

k |z
I
1:k, z

S
1:k,u1:k−1) =∫

p(xD4

k |z
I
1:k, z

S
1:k,u1:k−1,x

B1

k )×

p(xB1

k |z
I
1:k, z

S
1:k,u1:k−1)dxB1

k ,

(32)

where xB1

k = [bT0ω bT1ω]T .
Considering the measurement model of the gyroscope in
(9), the gyroscope’s probabilistic inverse sensor model is
p(xD4

k |ωm,x
B1

k ). Due to the statistical independence:

p(xD4

k |z
I
1:k, z

S
1:k,u1:k−1,x

B1

k )
indep.
= p(xD4

k |ωm,x
B1

k ).
(33)
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Moreover:

p(xB1

k |z
I
1:k, z

S
1:k,u1:k−1)

indep.
= p(xB1

k |z
I
1:k) =∫

p(xB1

k |x
D
1:k, z

I
1:k)p(xD1:k|zI1:k, zS1:k,u1:k−1)dxD1:k,

(34)

where p(xB1

k |xD1:k, zI1:k) can be approximated by δ(xB1

k −
x̂B1,i
k|k ) for the ith particle sequence, in which x̂B1,i

k|k is the
estimation of xB1

k using the KF algorithm and is then resam-
pled in first stage: Substituting (33) and (34) in (32), the ith
particle, xD4,i

k , is generated using the proposal distribution of
p(xD4

k |ωm, x̂
B1,i
k|k ).

Similarly, considering the LiDAR measurement model ex-
plained in (13) and (14), the proposal distribution to generate
particles for xD1

k using the LiDAR inverse sensor model
is p(xD1

k |zSk ,µi1:L) where µi1:L denotes the map estimation
using the EKF algorithm corresponding to the ith particle
sequence in first stage.
Since xD2

k and xD3

k do not appear directly in the measure-
ment models, the generated particles in the previous stage,
xD2,i
k and xD3,i

k , are employed, as there exist no inverse
sensor model to generate them in second stage.

p(xD2

k ,xD3

k |z
I
1:k, z

S
1:k,u1:k−1) =∫

p(xD2

k ,xD3

k |x
D
1:k−1, z

S
1:k,u1:k−1)×

p(xD1:k−1|zI1:k−1, zS1:k−1,u1:k−2)dxD1:k−1.

(35)

It is worth mentioning that, since the resampled ith
paths xD,i1:k and xD,i1:k−1 are respectively employed in
(34) and (35) to approximate the posterior distributions,
p(xD1:k|zI1:k, zS1:k,u1:k−1) and p(xD1:k−1|zI1:k−1, zS1:k−1,u1:k−2),
the corresponding weight of each particle is 1

N after normal-
ization.
Finally, let x̄D,ik = [(xD1,i

k )T (xD2,i
k )T (xD3,i

k )T (xD4,i
k )T ]T .

The general framework of the method is depicted in Figure
3 and the corresponding pseudo code of the method is
presented in Table 2.
It is obvious from Figure 3 that the proposed modified
FastSLAM is a cascaded 2-stage approach where in first
stage the typical FastSLAM 1.0 is extended to include bias
estimation and in second stage, using the results of first stage,
some generated particles are regenerated using the inverse
sensor models to overcome model uncertainties. Table 3 and
Table 4 elaborate the KF and EKF algorithms embedded
in the main part (Table 2). It is worth mentioning that a
reinitialization step using the inverse measurement model of
z̄Ik is added to the KF algorithm in Table 4 to correct the
initialization process of the bias subsystem’s estimate.

IV. SIMULATION RESULTS
In this section, simulation results, obtained through a co-
simulation between MATLAB-2019b and Gazebo in the
Robot Operating System (ROS), are presented to evaluate
the performance of the proposed cascaded SLAM approach
in which the states of the quadcopter UAV system, as well as

TABLE 2: Pseudo Code corresponding to the proposed self-
calibration based FastSLAM

Initialization: xD,i
0 , wi

0

N

i=1
.

At the time sample k:
Stage 1:
for i = 1 to N :

Step 0: Receive:

{x̄D,i
1:k−1, (µ

i
1,Σ

i
1), ..., (µi

L,Σ
i
L), (x̂B,i

k−1|k−1
,Pi

k−1|k−1)}

. Step 1: Generate particles for UAV’s state vector using the first subsystem
model:

xD,i
k ∼ p(xD

k |x
D,i
k−1,uk−1).

Step 2: Bias and drift estimation prediction (Table 4):

(x̂B,i
k|k−1

,Pi
k|k−1) = KF − prediction(x̂B,i

k−1|k−1
,Pi

k−1|k−1).

Step 3: Normalized weight computation:

wi
k =

p(zSk |x
D,i
k ,µi

1:L)p(zIk|x
D,i
k , x̂B,i

k|k−1
)

N∑
j=1

p(zSk |x
D,j
k ,µj

1:L)p(zIk|x
D,j
k , x̂B,j

k|k−1
)

.

Step 4: Bias and drift estimation update (Table 4):

(x̂B,i
k|k ,P

i
k|k) = KF − update(x̂B,i

k|k−1
,Pi

k|k−1, z
I
k).

Step 5: Map generation:

For the observed landmark j:
if the landmark is observed for the first time then (use Table 3):

(µi
j ,Σ

i
j) = EKF − prediction(zSk ),

else
(µi

j ,Σ
i
j) = EKF − update(µi

j ,Σ
i
j , z

S
k ),

endif.
Leave all unobserved landmarks unchanged.

endfor.

Step 6: Re-sample the particles:

{wi
k,x

D,i
1:k , (µi

1,Σ
i
1), ..., (µi

L,Σ
i
L), (x̂B,i

k|k ,P
i
k|k)}Ni=1,

and obtain N equally weighted particles.
Step 7: Return:

{
1

N
,xD,i

1:k , (µi
1,Σ

i
1), ..., (µi

L,Σ
i
L), (x̂B,i

k|k ,P
i
k|k)}Ni=1.

Stage 2:
for i = 1 to N :

Step 8: Generate particles for UAV’s position and angular velocity using
the inverse sensor models:

xD4,i
k ∼ p(xD4

k |ωm, x̂B1,i
k|k ),

xD1,i
k ∼ p(xD1

k |z
S
k ,µ

i
1:L),

and, use the corresponding parts of xD,i
k generated in Step 7 for xD2,i

k and
xD3,i
k .

endfor.

Step 9: Let x̄D,i
k = [(xD1,i

k )T (xD2,i
k )T (xD3,i

k )T (xD4,i
k )T ]T and

return:

{
1

N
, x̄D,i

1:k , (µi
1,Σ

i
1), ..., (µi

L,Σ
i
L), (x̂B,i

k|k ,P
i
k|k)}Ni=1.
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FIGURE 3: The schematic of proposed method for ith particle sequence.

TABLE 3: EKF algorithm for jth landmark and ith particle

EKF-predict: If landmark j is observed for the first time:
• Initialize the landmark position estimate:

µi
j = h−1

j (xD,i
k , zSk ).

• Compute Jacobian of hj(.) with respect to mj :

Hi
j =

dhj(mj ,x
D
k )

dmj
|
mj=µi

j ,x
D
k

=x
D,i
k

.

• Initialize the landmark estimate covariance:

Σi
j = (Hi

j)−1RS
j ((Hi

j)−1)T .

EKF-update:
• Compute measurement prediction:

ẑSk = hj(xD,i
k ,µi

j).

• Compute Jacobian of hj(.) with respect to mj :

Hi
j =

dhj(mj ,x
D
k )

dmj
|
mj=µi

j ,x
D
k

=x
D,i
k

• Compute measurement covariance: Si
j = Hi

jΣ
i
j(Hi

j)T + RS
j .

• Compute Kalman gain: Ki
j = Σi

j(Hi
j)T (Si

j)−1.

• Update estimation: µi
j = µi

j + Ki
j(zSk − ẑSk ).

• Update covariance: Σi
j = (I−Ki

jH
i
j)Σi

j .

inertial sensors biases and drifts and landmarks’ positions are
estimated.The simulation environment we are using here is
validated based on the experimental data as reported in [33].
Therefore, here we use this platform as a realistic environ-
ment to evaluate and test the performance of the proposed
algorithm. The algorithm developed in this way can be easily
deployed into the hardware for a real experimental test and
it brings the advantage of iterative development and tuning
of the algorithm without the risk of damaging expensive
hardware. Also, ROS and Gazebo allow for the parallel
simulation of other sensors such as inertial and visual sensors
in complex 3D environments similar to what happens in the
laboratory settings. This makes ROS an ideal environment for

TABLE 4: KF algorithm for bias and drift estimation for ith particle

KF-prediction:
• Initialize: x̂B,i

0|0 and Pi
0|0.

• Predict bias and drift estimate: x̂B,i
k|k−1

= Abx̂B,i
k−1|k−1

.

• Predict covariance: Pi
k|k−1

= AbPi
k−1|k−1

Ab + Qb.

KF-update:
• Compute measurement: z̄Ik = zIk − hd(xD,i

k ).

If k=1
• Reinitialize: x̂B,i

k|k = (HT
b Hb)−1HT

b z̄Ik .

else:
• Compute measurement prediction: ˆ̄z

I
k = Hbx̂

B,i
k|k−1

.

• Compute measurement covariance:

Si
b = HbPi

k|k−1(Hb)T + RI .

• Compute Kalman gain: Ki
2 = Pi

k|k−1
(Hb)T (Si

b)−1.

• Update estimation: x̂B,i
k|k = x̂B,i

k|k−1
+ Ki

2(z̄Ik − ˆ̄zIk).

• Update covariance: Pi
k|k = (I−Ki

2Hb)Pi
k|k−1

.

practical evaluation of the algorithm developed in this paper.

A. SETTING UP THE ROS ENVIRONMENT
The quadcopter model is simulated in Gazebo in ROS using
a modified version of the Hector quadcopter ROS package
[34]. A Velodyne VLP-16 3D LiDAR is also simulated
using Gazebo and the collected pointcloud data is visu-
alized in RViz. A ROS package is implemented to allow
features placed in the Gazebo simulation environment to be
extracted [35]. The package takes the collected pointcloud
data and uses it to identify features, in this case poles, placed
around the environment. These features are then identified
as landmarks and assigned an ID. Figure 4 shows a graph
of the ROS nodes and topics used in the co-simulation.
An ellipse identifies a ROS node while a rectangle iden-
tifies a ROS topic through which information travels. The
node ROSLINK_ALLINONE_FINAL_87413 is the Simulink
model which subscribes to the topics /ground_truth/state
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and /feature_extraction_node/keypoints, and publishes topics
/PosForce and /AngleForce which carry control signals to
ROS. Figure 5 shows a screenshot from the Gazebo dis-
playing the quadcopter and poles simulated in Gazebo on
the left, and the 3D pointcloud data and estimated landmark
positions in RViz on the right. The feature extraction package
is able to be implemented on an on-board computer using
real pointcloud data collected from a 3D LiDAR, making
it possible for this approach to be implemented on a real
system.
The Gazebo simulation environment allows a more com-
prehensive simulation to run with non-linearities and dis-
turbances, providing a more accurate-to-life scenario. The
quadcopter is stabilized using a nested PID controller in
Simulink, with control signals u1, u2, u3 and u4 transferred
to the Gazebo simulation of the quadcopter model. The
ground truth states from Gazebo can then be read in the
Simulink environment. The simulations are synchronised
using a Gazebo Pacer block in Simulink with a time step
of T = 0.01s. The co-simulation environment is depicted in
the flow diagram in Figure 6.
The physical parameters of the quadcopter system are as-
sumed as Ixx = 0.01152kgm2, Iyy = 0.01152kgm2, Izz =
0.0218kgm2, and m = 1.477kg. However, these parameters
are amenable to change due to installation of the LiDAR
sensor. One way to overcome the problem of parameter
uncertainty in the model, is to use RLS algorithm to estimate
the parameters of moment of inertia online. For example, a
continuous time RLS [28], can be used by converting the
three equations in (1) to a regression vector.However, as it
will be shown in the next section, the proposed dynamic-
based estimation technique is robust enough with respect to
the changes in the inertial values and hence no RLS algorithm
is used here in the sequel.

B. EVALUATION OF THE ALGORITHM
The performance of the proposed algorithm is evaluated and
compared against the kinematic SLAM in this subsection.
To capture all four landmarks, the quadcopter is controlled
to move about z-axis in a helical trajectory. The number
of particles is selected as N = 500. Figure 7 depicts the
estimated and real position of the quadcopter as well as
the landmarks in 3D space. Four landmarks are placed in
the environment in the form of poles with the following
coordinates, where the center of each pole is tracked as a
landmark:

m1 = [2 2 − 1]T , m2 = [−2 2 − 1]T ,

m3 = [−2 − 2 − 1]T , m4 = [2 − 2 − 1]T .

Real and estimated Euler angles are depicted in Figure 8.
The bias of 0.005 m/s2 is considered for the accelerometer
in three axes of x, y and z. Figure 9 depicts the estimation
of the biases compared with the real ones. In Figures 10 and
11, the proposed method is compared with kinematics based

FastSLAM without calibration of inertial sensors when the
biases of 0.0005 m/s2 and 0.0005 rad/s are considered for
the accelerometer and the gyroscopes in three axes of x, y and
z, respectively. The results are also shown for the biases of
0.005 m/s2 and 0.005 rad/s in Figures 12 and 13. It is clear
from the figures that when the sensory faults are increased,
using dynamics instead of kinematics and compensating
sensory biases and drifts, improve the estimation signifi-
cantly. Finally, to assess the robustness of the algorithm, it
was tested with biases of 0.0005 m/s2 and 0.0005 rad/s
and with parametric uncertainty for inertia. The new pa-
rameters were Ixx = 0.0288kgm2, Iyy = 0.0288kgm2,
Izz = 0.0545kgm2, which are a 150% increase on their
actual values and no RLS algorithm is used to be estimated.
Figure 14 shows that dynamics based FastSLAM remained
robust, while kinematic SLAM had increased deviation in
the estimation of the z position of the quadcopter.That means
on top of the uncertainty added by the LiDAR the proposed
estimation algorithm has shown a good robustness property
with respect to parametric uncertainties in the UAV model.

V. CONCLUSIONS
In this paper, a modified two-stage FastSLAM algorithm was
proposed for a quadcopter UAV system in which inertial
sensory biases and drifts are estimated during the SLAM
process. In this method, the quadcopter’s dynamics with
augmented bias and drift models instead of a commonly used
kinematics makes the estimation and elimination of such
sensory faults possible. For this purpose, the FastSLAM 1.0
approach was developed by factorization of the full posterior
distribution into conditional landmark, conditional bias and
drift distributions, and the posterior distribution over the
robot path. This led to an extended FastSLAM 1.0 in the
first stage in which both KF and EKF were embedded in
the PF to estimate biases, drifts and landmarks’ positions, re-
spectively, and then the particles’ the corresponding weights
were updated. In the second stage, the PF was extended to
include measurements in the particle generation to overcome
the inaccuracies caused by the model mismatches.
Simulation results, achieved through a co-simulation be-
tween MATLAB-2019b and Gazebo in the Robot Operating
System (ROS), were presented to evaluate the performance
of the proposed cascaded SLAM approach in a realistic
setting. The quadcopter model was simulated in Gazebo in
ROS using the modified version of the Hector quadcopter
ROS package. The robustness of the proposed estimation
algorithm is evaluated against uncertainties when the quad-
copter’s moments of inertia parameters are changed signifi-
cantly.
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FIGURE 13: Real, dynamics and kinematics based estimation of
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FIGURE 14: Real, dynamics and kinematics based estimation of
quadcopter’s position (biases: 0.0005 m/s2 and 0.0005 rad/s)
without RLS and increased inertia estimate.
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