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Statistically Evolving Fuzzy Inference System for Non-Gaussian Noises
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Abstract—Non-Gaussian noises always exist in the nonlinear
system, which usually lead to inconsistency and divergence of
the regression and identification applications. The conventional
evolving fuzzy systems (EFSs) in common sense have succeeded to
conquer the uncertainties and external disturbance employing the
specific variable structure characteristic. However, non-Gaussian
noises would trigger the frequent changes of structure under
the transient criteria, which severely degrades performance.
Statistical criterion provides an informed choice of the strategies
of the structure evolution, utilizing the approximation uncertainty
as the observation of model sufficiency. The approximation
uncertainty can be always decomposed into model uncertainty
term and noise term, and is suitable for the non-Gaussian
noise condition, especially relaxing the traditional Gaussian
assumption. In this paper, a novel incremental statistical evolving
fuzzy inference system (SEFIS) is proposed, which has the
capacity of updating the system parameters, and evolving the
structure components to integrate new knowledge in the new
process characteristic, system behavior, and operating conditions
with non-Gaussian noises. The system generates a new rule
based on the statistical model sufficiency which gives so insight
into whether models are reliable and their approximations can
be trusted. The nearest rule presents the inactive rule under
the current data stream and further would be deleted without
losing any information and accuracy of the subsequent trained
models when the model sufficiency is satisfied. In our work, an
adaptive maximum correntropy extend Kalman filter (AMCEKF)
is derived to update the parameters of the evolving rules to
cope with the non-Gaussian noises problems to further improve
the robustness of parameter updating process. The parameter
updating process shares an estimate of the uncertainty with the
criteria of the structure evolving process to make the computation
less of a burden dramatically. The simulation studies show that
the proposed SEFIS has faster learning speed and is more
accurate than the existing evolving fuzzy systems (EFSs) in the
case of noise-free and noisy conditions.

Index Terms—Evolving fuzzy system, maximum correntropy,
Kalman filter, model sufficiency.

I. Introduction
Numerous evolving fuzzy systems (EFSs) with remarkable

flexibility, linguistic interoperability and dynamical autonomy
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were introduced during the last two decades, which could
be seen as a synergy between fuzzy systems as evolvable
structures for information representation and computationally
efficient method for lifelong self-learning to address non-
stationary process [1, 2]. Consequentially, the mechanisms
for structure evolution and parameter adaption are crucial
for the overall performance of online learning in the case
of significant dynamic system changes and non-stationary
environments, which has motivated the development of various
application domains, such as regression [3], identification [4],
and classification [5].

Different criteria were used to trigger the structural evolu-
tion process. In [6–8], the self-organizing fuzzy neural network
(SOFNN), the self-evolving fuzzy system (SEFS) and the
metacognitive neuro-fuzzy inference system (McFIS) adopted
the error criterion between the estimated and the real value for
rule generation. However, the error criterion is very susceptible
to the outliers, which would cause frequent changes. Moreover,
when the error of the system remains high within a time range
under an inappropriate threshold, the system is forced to grow
the rules violently using the error criterion. Consequentially,
the system obtains too many rules obviously and achieves the
short-term Band-Aid solution, which is also known as the issue
of overfitting. In [9–13], an Euclidean distance-based strategy
between the new data and all the existing rules in the dynamic
evolving neural-fuzzy inference system (DENFIS), the self-
organizing fuzzy modified least-square (SOFMLS), the flexible
fuzzy inference system (FLEXFIS), and the evolving fuzzy
participatory learning (ePL) was utilized to implement a scatter
partitioning of the input space to create fuzzy inference rules.
Euclidean distance was used when eliciting the winner cluster,
triggering ellipsoidal clusters parallel to the axes, while the
Mahalanobis distance measure to the clustering process would
trigger ellipsoidal clusters in arbitrary position. In [14], evolv-
ing possibilistic fuzzy modelling (ePFM) employed participa-
tory learning to adapt the model structure using a Mahalanobis
distance criterion. The distance criterion provided the efficient
approach to evaluate the novelty of the datum. Moreover,
a kind of evolving Takagi-Sugeno models (eTSs) [15, 16]
were proposed that employs the recursive calculation of the
information potential of the new data sample, which represents
the spatial proximity measure used to define the antecedent
parameters.

Except the instantaneous information of each datum, the
statistical contribution of the rules defined as the significance
criterion was proposed as an effective way to determine the
structural strategy. The sequential adaptive fuzzy inference
system (SAFIS) [17] and its improved vision of Extended
SAFIS (ESAFIS) [18] used the concept of influence of a fuzzy
rule to the overall output based on all input datum, in addition
to the distance criterion. In [19], a parsimonious network
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based on fuzzy inference system (PANFIS) with the multidi-
mensional membership functions employed an extended rule
significance which is extended from the concept in SAFIS
by integrating hyperplanes consequents and generalizing to
ellipsoids in arbitrary position.

Excellent results in the existing EFSs has been illustrated
adequately from multiple aspects to demonstrate the effec-
tiveness of the criteria. However, the scale of global rules
are lack of adequacy measurement. In the existing criteria,
error criterion describes the transient performance of the
overall system. Distance criterion and informative potential
give the novelty measurement of the current datum, and the
significance criterion is the impact degree of each local rule
which influence the overall output. The general condition for
recruiting new rules includes one or any combination of two
criteria when the structure is considered under inadequately
dynamically capturing capacity, however, the drawback which
is inevitably introduced can be either susceptibility to the
outliers or computational complexity. Besides, to cope with
the non-Gaussian noises, such as impulsive noises with heavy-
tailed distributions, which are common in many real scenarios
of nonlinear identification and regression, the performance
adopting these criteria would be significantly deteriorated as
drifting with the data stream volatility and confusing by the
outliers.

Considering the non-Gaussian noises, the learning algo-
rithms which are highly efficient and have better learning
performance for systems with various statistics are keenly
sought. Due to the merits of correntropy in handling the
non-Gaussian noises with strong outliers rejection ability,
a correntropy-based evolving fuzzy neural system (CEFNS)
[20] was proposed based on the correntropy concept of the
information theoretic learning to achieve the evolution of the
rules and adjustment of the rule parameters. The CEFNS relied
on the gradient ascent method to update the system parameters
under the maximum correntropy criterion, which generally
suffered from the convergence problem that was determined
by the learning step. A recursive maximum correntropy based
evolving fuzzy systems (RMCEFS) was proposed [21], in
which the analytical and recursive solution of the maximum
correntropy cost function was utilized to update the consequent
parameters of the recruited rules. The architected condition
for recruiting rules was a combination of distance criterion
and the proposed maximum correntropy criterion that came
down in one continuous line from the CEFNS. In both CEFNS
and RMCEFS, an exponential function of the error as the
extra scaling factor was utilized to depict the outlier rejection
property. Although the existing EFSs have achieved satisfied
accuracy performance to reduce the effects of non-Gaussian
noises with the distance criterion and the correntropy born
of the error criterion, the congenital flaw of overmany pa-
rameters restricts the lightweight design and modest resource
requirements. In this review, we mainly concentrate on how
EFS can be constructed for non-Gaussian noises with better
global convergence and less consumerism. A novel statistically
evolving fuzzy inference system (SEFIS) is proposed, and the
salient contributions of this paper are organized as follows.
1) We provide a uniform criterion for recruiting and pruning

rules based on the statistical concept in minimalism, named
as the statistical model sufficiency from a global perspec-
tive. The statistical criterion provides an informed choice
of the strategies of the structure evolution to eliminate
the disturbances from different noises. The approximation
uncertainty as the observation of model sufficiency in the
criterion is utilized which can be always decomposed into
model uncertainty term and noise term. This is suitable
for the non-Gaussian noise model, especially relaxing the
traditional Gaussian assumption. The conventional criteria
for the evolving system structure, are hard to link directly to
model sufficiency. Besides, the existing recruiting process
[8, 17] are generally consisted of several criteria, such as
error criterion, distance criterion and so on, which increases
the computation complexity. In this way, the utilization
of the only model sufficiency is optimal either in the
expressibility or in the computational burden.

2) The proposed statistical approximation uncertainty realizes
the rule evolution by describing patterns of variability
and covariation. It is represented by the system output
and noise covariance. To achieve its computation, a novel
adaptive maximum correntropy extended Kalman filter
(AMCEKF) is proposed. In our work, another merit of the
AMCEKF is to update the consequence parameters under
the non-Gaussian noise circumstance. The AMCEKF is
an extension of EKF in which the minimum mean square
criterion is replaced by maximum correntropy criterion. In
its strictest sense, the evolution criterion is independent
of the developed parameter updating algorithm. There has
been, nevertheless, a legitimately valuable computational
links, where the parameter updating process has been
sharing an estimate of the uncertainty with the structural
evolution process. It has further made the computation less
of a burden.

3) The two general thresholds in the statistical rule evolution
criterion are dimensionless statistic. They represent the
level of significance. However, the existing rule recruiting
criteria [8] may require some thresholds and generally
are obtained by trial and error in response to different
applications. Thus, the threshold of statistical optimality
in this work has the strong universality, which releases the
workload of the parameter tuning.

The rest of this paper is organized as follows. Section
II gives the problem foundation. Section III describes the
statistical model sufficiency criterion used in the structural
evolution process. Section IV presents the adaptive maximum
correntropy extended Kalman filter used in the parameter
updating process. Learning process of SEFIS is designed in
Section V. The performance evaluation is illustrated in Section
VI and Section VII gives the conclusions of this work.

II. Problem Foundation
A general class of MIMO nonlinear systems can be de-

scribed by the following discrete model,

y(k) = f
(
y(k − 1), y(k − 2), . . . , y(k − q)

)
+ ηk (1)

where y(k) = [y1k, . . . , yNyk]T . f(·) is an unknown nonlinear
mapping function, k is time script, and p is the maximum
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lags. The system is considered in the presence of the non-
Gaussian noises that are expressed as an interference term
ηk. The external impulsive noises are a kind of common
non-Gaussian noises, which are of heavy-tailed distribution.
Besides, the noises of the Cauchy distribution and uniform
distribution also belong to non-Gaussian noises.

When the uncertainty caused by the negative interference
from the exterior environment grows more global, Gaussian
distribution can be insufficient and becomes too crude as an
approximation to the true posterior belief. Thus, we have to
look for an efficient way to get over the resulting failure
in the non-Gaussian situations. This limitation has been well
recognized, and a common and popular method is the Gaussian
paradigm extensions using mixtures of Gaussians to represent
multimodal beliefs, e.g. approximating the predictive distribu-
tion by weighted Gaussian mixtures [22, 23]. The considered
external non-Gaussian disturbances can be expressed with a
mixed-Gaussian distribution, such that,

ηk =

N∑
i=1

siηki (2)

where, si(
∑N

i=1 si = 1) is the weight of the different superim-
posed Gaussian noise ηki, and as a special case, some of these
consisted Gaussian noises with the smallest possible variance
σi can be analogized as the impulsive noises. Obviously,
the aforementioned mixed-Gaussian distribution is a more
general description of many extremes of the external distur-
bance, either containing one single Gaussian noise indicated as
ηk ∼ N(µ, σ),N = 1, or at multiple random values of (µi, σi)
indicated as ηk =

∑N
i=1 siηki, ηki ∼ N(µi, σi). The proposed

EFS is potential to solve more general noise situations, if it
can work well under the typical extreme of the non-Gaussian
noise.

Selecting {y(k − 1), . . . , y(k − q)} as the mapping function’s
input xk, Eq.(1) can be rewritten as

y(k) = f(xk) + ηk (3)

In our work, the SEFIS algorithm is utilized to approximate
f(·) and restrain the negative impacts of the non-Gaussian
noises such that

ŷ(k) = f̂(xk) (4)

where, ŷ(k) is the output of SEFIS. This means that the
objective is to minimize the error between the system output
and the approximator output, ‖y(k) − ŷ(k)‖ under the non-
Gaussian noises. Before describing the details of the algorithm,
the structure of SEFIS is first described below.

The SEFIS is comprised of Takagi-Sigeno (T-S) type rules
that are constructed in an adaptive and evolvable way based
on the given input-output data. The nth rule has the following
form,

Rule n :if (x1k is Uk
1n) · · · and (xik is Uk

in) · · · and (xNxk is Uk
Nxn)

then (̂y1k is ak
1n) · · · and (̂y jk is ak

jn) · · · and (̂yNyk is ak
Nyn)

where ak
jn( j = 1, . . . ,Ny, n = 1, . . . ,Nh) is a constant conse-

quent parameter in nth rule. Uk
in(i = 1, . . . ,Nx) is the fuzzy set.

Nx is the dimension of the input vector xk = [x1k, . . . , xNxk]T ,

Nh is the number of the fuzzy rules, Ny is the dimension of
the output vector ŷ(k) = [ŷ1k, . . . , ŷNyk]T .

With the weighted average method, the approximation func-
tion of the output ŷ(k) is computed as

f̂(xk) =

Nh∑
n=1

R̄n(xk)ak
n (5)

where, ak
n = [ak

1n, . . . , a
k
Nyn]T , and R̄n(xk) is the nth normalized

firing strength which is given by

R̄n(xk) =
Rn(xk)∑Nh

n=1 Rn(xk)
(6)

where, Rn(xk) is nth firing strength and calculated using
unidimensional Gaussian membership function with center µk

in
and width σk

n,

Rn(xk)=

Nx∏
i=1

Ak
in(xi)=

Nx∏
i=1

exp
− (xik−µ

k
in)2

(σk
n)2

=exp
(
−
‖xk−µ

k
n‖

2

(σk
n)2

)
(7)

where µk
n = [µk

1n, . . . , µ
k
Nxn]T . The membership degree Ak

in of
the ith input variable xik in nth rule reflects the degree of
satisfaction with the fuzzy set Uk

in.

Remark 1. Illustrated by Eq.(7), the fuzzy membership func-
tion is applied to obtain the fuzzy membership for a fuzzy
set. In our proposed SEFIS, there will be no restriction
on the type of fuzzy membership functions. Other type of
fuzzy membership functions, such as triangle and trapezoid,
are also feasible. Based on these membership functions, the
fuzzy system also can obtain good approximation capability.
Considering Gaussian membership function is commonly used
one with smooth and strictly positive definite properties, we
choose it as the fuzzy membership function.

The infrastructure of proposed SEFIS described in Eq.(5)∼
Eq.(7) is similar with the other existing EFSs [8, 17]. Al-
though their infrastructures are similar, the targeted problems
are different. It is required to evolve system structure and
update parameter by integrating new knowledge under the
non-Gaussian noise environment. The common used transient
criterion or the other supportive criterion are inefficient either
in the reliability or in the computational consumption. One of
the key problem in our work that has to be settled is screening
the appropriate criterion to determine the strategies of the
structural evolution to evade the unreasonable pruning and
recruiting resulted by the non-Gaussian noises or outliers from
the input data stream. The another problem between optimal
parameters ak

n and current moody data that contains knowledge
concerns the strong outliers rejection ability as well as the
convergence speed. In this paper, the two problems are realized
based on the statistical concept and correntropy theory. They
are described below in detail.

III. StatisticalModel Sufficiency Criterion

Recruiting or pruning the rules to obtain the optimal
structural scale is highly significant for EFSs, which would
be triggered perceiving the change of the model sufficiency
immediately. Under the condition of the non-Gaussian noises,
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var(y(N + 1)|xN+1)

=var

f(xN+1) +

N∑
i=1

siη(N+1)i


=E


f(xN+1) +

N∑
i=1

siη(N+1)i

2 −
E f(xN+1) +

N∑
i=1

siη(N+1)i

2

=E

(f(xN+1))2 +

N∑
i=1

(siη(N+1)i)
2 + 2

N∑
i=1

f(xN+1)(siη(N+1)i) + 2
N∑

i=1

N∑
j=1

(
siη(N+1)i

) (
s jη(N+1) j

)
−

(E [f(xN+1)])2 +

N∑
i=1

(
E

[
siη(N+1)i

])2
+ 2

N∑
i=1

(
E [f(xN+1)]E

[
siη(N+1)i

])
+ 2

N∑
i=1

N∑
j=1

(
E

[
siη(N+1)i

]) (
E

[
s jη(N+1) j

])
=

(
E

[
(f(xN+1))2

]
− (E [f(xN+1)])2

)
+

 N∑
i=1

E
[
(siη(N+1)i)

2
]
−

N∑
i=1

(
E

[
siη(N+1)i

])2


+ 2

 N∑
i=1

N∑
j=1

E
[(

siη(N+1)i

) (
s jη(N+1) j

)]
−

N∑
i=1

N∑
j=1

(
E

[
siη(N+1)i

]) (
E

[
s jη(N+1) j

])
=var (f(xN+1)) +

N∑
i=1

var
(
siη(N+1)i

)
+ 2

N∑
i=1

N∑
j=1

cov
(
siη(N+1)i, s jη(N+1) j

)

(8)

it is not expected to be sensitive due to the outliers. A statistical
criteria to judge the model sufficiency from a structural global
perspective is imperative to replace the significance criterion
based on each local rule. The quantification of the uncertainty
in the approximation process is critical for assessing how much
to trust the quality of the nonlinear learning approach, which
has profound criteria in the detection of model sufficiency. We
have denoted a fuzzy system as function f̂(xk), which captures
the model architecture. It is assumed that the model and
each of the component ηki of the mixed-Gaussian noises are
independent events. For a trained EFS where the parameters
has been estimated along with its error covariance matrix, the
EFS output uncertainty can be determined.

Given a set of N observations X = {x1, . . . , xN}, and Y =

{y(1), . . . , y(N)}. The fuzzy system aims at locating some local
minimum θ of the cost function in the approximation, to be
used in inference on new data. While it is hard to predict how
accurate these approximations will be in practice, their form at
least gives some idea of the interaction between the posterior
expected output of the given input, as well as the posterior
expected regression variance, and the behavior of the system
output for the parameter in the vicinity of the optimal[24].
In particular, the variance of the approximation distribution
quantifies the approximation uncertainty with a new data xN+1,
which can be decomposed using law of total variance as shown
in Eq.(8).

Due to E
[
f(xN+1)

(
siη(N+1)i

)]
−

(
E [f(xN+1)]E

[
siη(N+1)i

])
=

cov
(
f(xN+1), siη(N+1)i

)
= 0, we can see that the variance

in Eq.(8) is decomposed into two terms. The first term
var (f(xN+1)) can be represented as follows,

σ2
y = var (ŷ) (9)

which reflects our ignorance over model parameter θ, referred
to as the model uncertainty. The second term is written as

follows,

σ2
ed =

N∑
i=1

var
(
siη(N+1)i

)
+2

N∑
i=1

N∑
j=1

cov
(
siη(N+1)i, s jη(N+1) j

)
=cov

 N∑
i=1

siη(N+1)i


(10)

which is the noise level during data generating process. Then,
a reliable reference interval of model sufficiency for the error
norm can be constructed by[

0, zd

√
σ2

y + σ2
ed

]
(11)

where, zd is the value of the T-statistic at d% level of signifi-
cance, and

√
σ2

y + σ2
ed derived from the var(y(N + 1)|xN+1) in

Eq.(8) reflects the uncertainty in the expected output for the
given input observation which can be computed as part of the
following parameter estimation algorithm and hence there is no
computational overhead in testing for model sufficiency. The
reference interval in Eq.(11) is critical for approximation tasks,
which means the error norm lies within a bound with a certain
level of confidence. Model insufficiency will be warned when
the error norm falls outside the constructed interval. So the null
hypothesis for the statistical inference of model sufficiency is
expressed as follows,

H0 :
‖ek‖√
σ2

y + σ2
ed

≤ zd for d% of data (12)

This implies the null hypothesis could mean that the approx-
imation error has fairly high probability of locking in the
constructed interval, but don’t rule out the matter of events
of vanishingly small probability unpredictably happening. ek

is the approximation error for the observation (xk, y(k)) which
is given by

ek = y(k) − ŷ(k) (13)
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If the condition for H0 is violated, the null hypothesis is
rejected so that the SEFIS scale is insufficient. The rejection
implies that the system scale must be increased to match the
complexity of the unknown nonlinear functions f(·), and hence
a new rule is added to the SEFIS. The rule recruiting to be
sufficient system can effectively increase the complexity of
the fuzzy inference system when the scale beneficial results
are low. Meanwhile, if the model sufficiency is enough to be
satisfied, in other word, the approximation error falls inside the
predefined minor constructed interval, it can be assumed the
structural scale is efficient with some rule redundancy. Then
the pruning strategy is done using an inactive rule concept
where the nearest rule is defined as the one closest to the
input data and further would be deleted without losing any
information and accuracy of the subsequent trained models.

Remark 2. The proposed model sufficiency Eq.(12) refers to
the notion of system structure with appropriate quantities of
rules, which is deemed to be sufficient if the approximation
error is within a certain level of confidence exhibited by
the approximation system. This feature will help to avoid
recruiting the rules blindly with the action of the error. If
the approximation uncertainty and external noises are high,
the approximation system may achieve large errors which are
within the expectations of the system and hence it is not
necessary to add a new rule.

IV. AdaptiveMaximum Correntropy Extended Kalman
Filter

A. Calculation of approximation uncertainty

From H0, one can see that the approximation uncertainty of
the statistical properties requires calculating the covariance of
output and noise in different time, which is brought into the
Kalman filter naturally due to the indispensable and shared
calculation process. The traditional Kalman filter works well
under Gaussian noise, but its performance may deteriorate
significantly under non-Gaussian noises. The main reason
for this is that Kalman filter is developed based on the
minimum mean square error criterion, which captures only the
second order statistics of the error signal and is sensitive to
large outliers. To address this problem, an adaptive maximum
correntropy extend Kalman filter (AMCEKF) is proposed to
calculate the covariance in different time. Simultaneously, the
AMCEKF is presented to update the parameters based on the
correntropy theory, which can perform better in non-Gaussian
noise environments, since correntropy contains second and
higher order moments of the error. This will be described
below.

We can take the output ŷ(k) with the parameter vector θ(k) =

[akT
1 , . . . , akT

Nh]T ∈ RNhNy×1 existing in all the fuzzy rules. It is
analogous to a nonlinear system described by the following
state and measurement equations

θ(k) = F(θ(k − 1)) + q(k − 1) (14a)

y(k) = H(θ(k)) + r(k) (14b)

where, F and H denote the continuously differentiable non-
linear state function and nonlinear measurement function,

respectively. q(k − 1) and r(k) denote the process noise and
the measurement noise, which are mutually uncorrected with
zero means. The covariance matrices satisfy

cov (q(k − 1)) = Q(k − 1) (15a)

cov (r(k)) = cov

 N∑
i=1

siη(N+1)i

 = R(k) (15b)

The prior mean and corresponding covariance matrix are
given by

θ̂(k|k − 1) = F
(
θ̂(k − 1|k − 1)

)
(16a)

P(k|k − 1) = F(k − 1)P(k − 1|k − 1)FT (k − 1) + Q(k − 1) (16b)

where, F(k − 1) is the Jacobian matrix gradient given by

F(k − 1) =
∂F
∂θ

∣∣∣∣∣
θ=θ̂(k−1|k−1)

(17)

We approximate the measurement in Eq.(14) by

y(k) ≈ H
(
θ̂(k|k − 1)

)
+ H(k)

(
θ(k) − θ̂(k|k − 1)

)
+ r(k) (18)

where, H(k) is the Jacobian matrix gradient given by,

H(k) =
∂H
∂θ

∣∣∣∣∣
θ=θ̂(k|k−1)

(19)

The matrix P(k|k − 1) represents the uncertainty in the
estimated parameters, and the matrix H(k) is the the gradient of
H(·) with respect to the parameters evaluated with P(k−1|k−1).
The model uncertainty can be represented as follows,

σ2
y = var(ŷ) = H(k)P(k|k − 1)HT (k) (20)

Substituting Eq.(15b), the approximation uncertainty in Eq.(8)
can be rewritten as follows,

var(y(N + 1)|xN+1) = H(k)P(k|k − 1)HT (k) + R(k) (21)

Combining the nonlinear system in Eq.(14) with Eq.(16a)
and Eq.(18), we have θ̂(k|k − 1)

y(k) − H
(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)


=

[
INh×Nh

H(k)

]
θ(k) + v(k)

(22)

where,

v(k) =

[
−

(
θ(k) − θ̂(k|k − 1)

)
r(k)

]
(23)

with

cov(v(k)) =

[
P(k|k − 1) 0

0 R̂(k)

]
(24)

where, R̂(k) is the estimation of the covariance matrix of inno-
vation residual to be consistent with its theoretical covariance
adaptively. This is obtained by averaging the previous residual
sequence over the window length Nw,

Ce =
1

Nw

k∑
s=k0

(
y(s)−H(s)θ̂(s|s−1)

)T (
y(s)−H(s)θ̂(s|s−1)

)
(25)
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where k0 = k − Nw + 1. The estimated measurement noise is
computed by comparing the theoretical covariance H(k)P(k|k−
1)HT (k) + R(k) with the estimated covariance as follow,

R̂(k + 1) = Ce −H(k)P(k|k − 1)HT (k) (26)

Hence, the approximation uncertainty in Eq.(21) can be
rewritten as

var(y(N + 1)|xN+1) = H(k)P(k|k − 1)HT (k) + R̂(k) (27)

Remark 3. In the measurement noise variance, for example,
the initialization of the sensor error states in the family of
Kalman filter algorithms is the key step to meet the time-
varying property. When estimating sensor errors, a low mea-
surement noise variance will result in a precise yet most likely
biased estimate. This will result in a long transition to the
correct error estimate. Conversely, a larger a priori estimate
of measurement noise will result a quicker transition to the
correct error estimate but will result in a less precise estimate.
By adapting the process matrix in the Kalman filter, both
characteristics can be utilized to result in a quick transition to
a precise unbiased estimate. Therefore, it is necessary to adapt
the measurement noise covariance R(k) to accommodate for
changes in dynamic model and environmental conditions.

B. The optimal estimate solution of parameters

Traditional Kalman filter works well under Gaussian noises,
but it will be deteriorated significantly under non-Gaussian
noises, especially when the underlying system is disturbed by
impulsive noises, since the Kalman filter captures only the
second order statistics of the error signal and is sensitive to
the large outliers. The maximum correntropy criterion can be
integrated to address this problem, which inherently contains
second and higher order moments of the error.

Through Cholesky decomposition, cov(v(k)) can be further
described as

cov(v(k))

=

[
BP(k|k − 1)BT

P(k|k − 1) 0
0 Br(k)BT

r (k)

]
=B(k)BT (k)

(28)

where B(k) can be obtained by Cholesky decomposition of
cov(v(k)). Multiplying both sides of Eq.(22) by B−1(k), we
have

D(k) = W(k)θ(k) + ε(k) (29)

where,
ε(k) = B−1(k)v(k) (30)

W(k)=B−1(k)
[

I
H(k)

]
=

[
B−1

P (k|k − 1) 0
0 B−1

r (k)

][
I

H(k)

]
=

[
B−1

P (k|k − 1)
B−1

r (k)H(k)

] (31)

D(k)=B−1(k)
 θ̂(k|k − 1)

y(k) − H
(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

 (32)

Since cov(ε(k)) = cov
(
B−1(k)v(k)

)
= B−1(k)cov(v(k))(B−1)T =

I, the residual error ε(k) are white.
We propose the following maximum correntropy criterion

based cost function

J(k) =
1
L

L∑
l=1

Gσ (dl(k) − wl(k)θ(k)) (33)

where, dl(k) is the lth element of D(k), wl(k) is the lth row of
W(k). Then the optimal estimate of θ(k) is

θ̂(k|k) = arg max
θ

J(k) = arg max
θ

L∑
l=1

Gσ(εl(k)) (34)

where, εl(k) = dl(k) − wl(k)θ̂(k|k).

Remark 4. Different from the well-known mean square error
consisting only second order moment, correntropy can be
described by a weighted sum of all even order moments,
i.e., second order and higher order moments, resulting from
the Taylor series expansion of the Gaussian kernel. These
higher moments make it possible to be used in robust adaptive
filtering in impulsive (heavy-tailed) noise environments.

The solution of the θ̂(k|k) can be found by solving

∂J(k)
∂θ̂(k|k)

= 0 (35)

Then we have
L∑

l=1

Gσ(εl(k))
(
dl(k) − wl(k)θ̂(k|k)

)
wT

l (k) = 0 (36)

It is easy to get

θ̂(k|k) =

 L∑
l=1

wT
l (k)Gσ(εi(k))wl(k)

−1  L∑
l=1

Gσ(εl(k))dl(k)wT
l (k)


=

(
WT (k)C(k)W(k)

)−1 (
WT (k)C(k)D(k)

)
(37)

where,

C(k) =

[
Cx(k) 0

0 Cy(k)

]
(38)

with Cx(k) = diag
(
Gσ (ε1(k)) , . . . ,Gσ

(
εNhNy (k)

))
, and

Cy(k) = diag
(
Gσ

(
εNhNy+1(k)

)
, . . . ,Gσ

(
εNhNy+Ny (k)

))
.

Substituting Eq.(31) and Eq.(38), we have(
WT (k)C(k)W(k)

)−1

=

([
B−1

P (k|k − 1)
B−1

r (k)H(k)

]
T
[

Cx(k) 0
0 Cy(k)

][
B−1

P (k|k − 1)
B−1

r (k)H(k)

])−1

=
(
(B−1

P (k|k − 1))T Cx(k)B−1
P (k|k − 1)

+ HT (k)(B−1
r )T (k)Cy(k)B−1

r (k)H(k)
)−1

(39)

Using the following matrix inversion lemma,

(A+CBCT )−1 = A−1 −A−1C(B−1 +CTA−1C)−1CTA−1 (40)

and defining

A =
(
B−1

P (k|k − 1)
)T

Cx(k)B−1
P (k|k − 1) (41a)
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(WT (k)C(k)W(k))−1

=

((
B−1

P (k|k − 1)
)T

Cx(k)B−1
P (k|k − 1)

)−1
−

((
B−1

P (k|k − 1)
)T

Cx(k)B−1
P (k|k − 1)

)−1
HT (k)

(((
B−1

r (k)
)T

Cy(k)B−1
r (k)

)−1

+H(k)
((

B−1
P (k|k − 1)

)T
Cx(k)B−1

P (k|k − 1)
)−1

HT (k)
)−1

H(k)
((

B−1
P (k|k − 1)

)T
Cx(k)B−1

P (k|k − 1)
)−1

=BP(k|k − 1)C−1
x (k) (BP(k|k − 1))T

− BP(k|k − 1)C−1
x (k) (BP(k|k − 1))T HT (k)(

Br(k)C−1
y (k)BT

r (k) + H(k)BP(k|k − 1)T C−1
x (k)BT

P(k|k − 1)HT (k)
)−1

H(k)BP(k|k − 1)C−1
x (k)BT

P(k|k − 1)

=P̄(k|k − 1) − P̄(k|k − 1)HT (k)
(
R̄(k) + H(k)P̄(k|k − 1)HT (k)

)−1
H(k)P̄(k|k − 1)

(43)

B =
(
B−1

r

)T
(k)Cy(k)B−1

r (k) (41b)

C = HT (k) (41c)

we can further obtain Eq.(43), where

P̄(k|k − 1) = BP(k|k − 1)C−1
x (k)(BP(k|k − 1))T (44a)

R̄(k) = Br(k)C−1
y (k)BT

r (k) (44b)

Substituting Eq.(31) and Eq.(38), we have

WT (k)C(k)D(k)

=

[
B−1

P (k|k − 1)
B−1

r (k)H(k)

]T [
Cx(k) 0

0 Cy(k)

]
 B−1

P (k)θ̂(k|k − 1)
B−1

r (k)
(
yk − H

(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

) 
=

(
B−1

P (k|k − 1)
)T

Cx(k)B−1
P (k)θ̂(k|k − 1) + HT (k)

(
B−1

r (k)
)T

Cy(k)B−1
r (k)

(
yk − H

(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

)
=

(
P̄(k|k − 1)

)−1
θ̂(k|k − 1) + HT (k)

(
R̄(k)

)−1(
yk − H

(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

)
(45)

Therefore, Eq.(37) can be further written as Eq.(46), where

K̄(k) = P̄(k|k − 1)HT (k)
(
R̄(k) + H(k)P̄(k|k − 1)HT (k)

)−1
(47)

Here, the term in Eq.(46) can be rewritten as

P̄(k|k−1)HT (k)
(
R̄(k)

)−1
−K̄(k)H(k)P̄(k|k−1)HT (k)

(
R̄(k)

)−1
=P̄(k|k−1)HT (k)

(
R̄(k)

)−1
−
(
P̄(k|k−1)HT (k)−K̄(k)R̄(k)

)(
R̄(k)

)−1
=K̄(k)

(48)

Thus, the posterior state mean in this case is updated as,

θ̂(k|k) =θ̂(k|k − 1) − K̄(k)H(k)θ̂(k|k − 1)

+ K̄(k)
(
yk − H

(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

)
=θ̂(k|k − 1) + K̄(k)

(
yk − H

(
θ̂(k|k − 1)

))
=θ̂(k|k − 1) + K̄(k)ek

(49)

Meanwhile, the posterior corresponding covariance matrix is
updated as Eq.(50), where S(k) = H(k)P(k|k − 1)HT (k) + R(k)
is the theoretical covariance.

Remark 5. Since the theoretical covariance S(k) is also
utilized in the null hypothesis H0 regarded as an estimate

interval of the uncertainty in the expected output for the given
input observation, it is not necessary to repeat computing
in the parameter updating process saving the computation
resources.

To minimize tr (P(k|k)), we have
dtr (P(k|k))

d
(
K̄(k)

) = −2P(k|k − 1)HT (k) + K̄(k)S(k) = 0 (51)

Thus, it can be obtained that

K̄(k)S(k)K̄T (k) = P(k|k − 1)HT (k)K̄T (k) (52)

Substituting Eq.(52) to Eq.(50), the posterior corresponding
covariance matrix is rewritten as

P(k|k) =P(k|k − 1) − P(k|k − 1)HT (k)K̄T (k)

− K̄(k)H(k)P(k|k − 1) + K̄(k)S(k)K̄T (k)

=P(k|k − 1) − P(k|k − 1)HT (k)K̄T (k)

− K̄(k)H(k)P(k|k − 1) + P(k|k − 1)HT (k)K̄T (k)
=P(k|k − 1) − K̄(k)H(k)P(k|k − 1)
=(I − K̄(k)H(k))P(k|k − 1)

(53)

The AMCEKF algorithm is summarized in Algorithm 1.

Remark 6. The while loop in the parameter updating process
represents a fixed-point iterative algorithm. It mainly is used to
obtain the optimal θ̂(k|k) at time k since the parameter θ(k|k)
at time k satisfies the solution expression θ̂(k|k) = f (θ̂(k|k))
according to Eq.(37). In the iterative procedure, the optimal
θ̂(k|k) would be achieved by updating successively its value
based on Eqs.(54)∼(60) and the latest estimate θ̂(k|k − 1).
According to the fixed-point solution principle, we can see
that the parameter updating process only uses the sample at
time k without using all past data samples. This indicates that
parameter updating process is a sequential learning process.
The for loop in Algorithm 1 gives the online sequential
learning process of SEFIS. Also, we can observe that the while
loop is embedded inside the for loop, that is to say, for each
data arriving, the while loop would be invoked and aborted as
an alternative efficient way to solve the optimal solution θ̂(k|k).
In this case, the proposed algorithm is an online model.

V. Learning Process of SEFIS
The learning process of SEFIS is presented based on the

above statistical criterion and parameters updating algorithm,
which incorporates the advantages of using AMCEKF for esti-
mation and evolving criterion that detects model insufficiency.
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θ̂(k|k)

=

(
P̄(k|k − 1) − P̄(k|k − 1)HT (k)

(
R̄(k) + H(k)P̄(k|k − 1)HT (k)

)−1
H(k)P̄(k|k − 1)

)
((

P̄(k|k − 1)
)−1

θ̂(k|k − 1) + HT (k)
(
R̄(k)

)−1 (
yk − H

(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

))
=

(
P̄(k|k − 1) − K̄(k)H(k)P̄(k|k − 1)

) ((
P̄(k|k − 1)

)−1
θ̂(k|k − 1) + HT (k)

(
R̄(k)

)−1 (
yk − H

(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

))
=θ̂(k|k − 1) + P̄(k|k − 1)HT (k)

(
R̄(k)

)−1
y(k) − K̄(k)H(k)θ̂(k|k − 1) − K̄(k)H(k)P̄(k|k − 1)HT (k)

(
R̄(k)

)−1(
yk − H

(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

)
=θ̂(k|k − 1) − K̄(k)H(k)θ̂(k|k − 1) +

(
P̄(k|k − 1)HT (k)

(
R̄(k)

)−1
− K̄(k)H(k)P̄(k|k − 1)HT (k)

(
R̄(k)

)−1
)

(
yk − H

(
θ̂(k|k − 1)

)
+ H(k)θ̂(k|k − 1)

)

(46)

P(k|k) =cov
(
θ(k) − θ̂(k|k)

)
=cov

(
θ(k) −

(
θ̂(k|k − 1) + K̄(k)

(
θ(k|k) − H

(
θ̂(k|k − 1)

))))
=cov

(
θ(k) −

(
θ̂(k|k − 1) + K̄(k)

(
H(k)θ(k) + r(k) −H(k)θ̂(k|k − 1)

)))
=cov

((
I − K̄(k)H(k)

) (
θ(k) − θ̂(k|k − 1)

)
− K̄(k)r(k)

)
=cov

((
I − K̄(k)H(k)

) (
θ(k) − θ̂(k|k − 1)

))
+ cov

(
K̄(k)r(k)

)
=

(
I − K̄(k)H(k)

)
cov

(
θ(k) − θ̂(k|k − 1)

) (
I − K̄(k)H(k)

)T
+ K̄(k)cov (r(k)) K̄T (k)

=
(
I − K̄(k)H(k)

)
P(k|k − 1)

(
I − K̄(k)H(k)

)T
+ K̄(k)R(k)K̄T (k)

=P(k|k − 1) − P(k|k − 1)HT (k)K̄T (k) − K̄(k)H(k)P(k|k − 1) + K̄(k)H(k)P(k|k − 1)HT (k)K̄T (k) + K̄(k)R(k)K̄T (k)

=P(k|k − 1) − P(k|k − 1)HT (k)K̄T (k) − K̄(k)H(k)P(k|k − 1) + K̄(k)S(k)KT (k)

(50)

A. Recruiting of Fuzzy Rules

The growth criterion developed above is independent of
the model structure, even though it is demonstrated on the
evolving fuzzy interference system, and hence is applicable to
any type of model. In this paper, the statistical approximation
sufficiency is used as the criterion to determine whether a rule
needs to be generated. Then the selected type of basic rule to
be recruited is the Gaussian membership functions. When the
first input-output data x1, y1 sample comes in, the first new
rule is generated with the mean and center of the new fuzzy
set and its consequent parameters assigned by

ak
Nh+1 = y1,µ

k
1 = x1, σ

k
Nh+1 = κ‖x1‖ (65)

When the model sufficiency null hypothesis is rejected
for the kth observation in the region of rejection which is
described as follows

‖ek‖ > zd ‖S(k)‖ (66)

the number of the fuzzy rules is set to Nh + 1. The region of
rejection for null hypothesis H0 signifies that the statistical
model sufficiency cannot be satisfied. For the newly recruited
rules, the parameters are assigned as follows

ak
Nh+1 = ek,µ

k
Nh+1 = xk, σ

k
Nh+1 = κ‖xk − µ

k
nr‖ (67)

where, κ is an overlap factor that determines the overlap of
fuzzy rules in the input space, µk

nr is the center of the fuzzy

rule nearest to xk. The parameter vector simply tags the new
parameters to the existing ones,

θ(k) =
[
akT

1 , . . . , akT
Nh
, akT

Nh+1

]T
(68)

and the parameter error covariance matrix becomes

P̄(k|k) =

(
P̄(k|k − 1) 0

0 p0INy×Ny

)
(69)

where p0 is an estimate of the uncertainty in the initial
values assigned to the parameters which is set 1.0 for all the
examples.

Eq.(65) shows that the antecedent parameters are evolved
from scratch in an evolvable way. For any new sample, a new
rule is recruited when the criteria of adding rule are satisfied
as shown in Eq.(66) and then its antecedent parameters are
determined with the newly loaded sample based on Eq.(67). In
this way, the antecedent parameters are permanently updated
whenever a new rule is generated. In Eq.(66), the statistical
model sufficiency criterion ensures that the new rule is added at
the time of architecture deficiency, which could be effectively
avoided to passively increase scale by the influence of the
outliers.

B. Updating of Fuzzy Rules

In the SEFIS, the antecedent parameters of the rules are
determined according to Eq.(67) in an evolvable way. When
there is no addition of rules, the consequent parameters are
updated. The parameter vector existing in all the fuzzy rules
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Algorithm 1 Adaptive Maximum Correntropy Kalman Filter
Set the initial estimate P(0|0), θ̂(0|0), R̂(1).
for Each observation (xk, yk) do

Compute the prior state mean θ̂(k|k − 1) via Eq.(16a) and
corresponding covariance matrix P(k|k − 1) via Eq.(16b)
Use Cholesky decomposition to obtain BP(k|k − 1) and Br(k)
Given t = 1, and θ̂(k|k)t = θ̂(k|k − 1), where θ̂(k|k)t denotes the
estimated state at fixed-point iteration t

while
‖θ̂(k|k)t − θ̂(k|k)t−1‖

‖θ̂(k|k)t−1‖
≤ ν do

θ̂(k|k)t = θ̂(k|k − 1) + K̄(k)e(k) (54)
with

εl(k) = dl(k) − wl(k)θ̂(k|k)t−1 (55)

Cx(k) = diag
(
Gσ (ε1(k)) , . . . ,Gσ

(
εNhNy (k)

))
(56)

Cy(k) = diag
(
Gσ

(
εNhNy+1(k)

)
, . . . ,Gσ

(
εNhNy+Ny (k)

))
(57)

P̄(k|k − 1) = BP(k|k − 1)C−1
x (k)(BP(k|k − 1))T (58)

R̄(k) = Br(k)C−1
y (k)BT

r (k) (59)

K̄(k) = P̄(k|k − 1)HT (k)
(
R̄(k) + H(k)P̄(k|k − 1)HT (k)

)−1

(60)
t → t + 1

end while

P(k|k) = (I − K̄(k)H(k))P(k|k − 1) (61)

S(k) = H(k)P(k|k − 1)HT (k) + R̂(k) (62)

Ce =
1

Nw

k∑
s=k0

(
y(s)−H(s)θ̂(s|s−1)

)T (
y(s)−H(s)θ̂(s|s−1)

)
(63)

R̂(k + 1) = Ce −H(k)P(k|k − 1)HT (k) (64)

end for

is given by θ(k) =
[
akT

1 , . . . , akT
n , . . . , akT

Nh

]T
, where akT

n is the
parameter vector and its gradient is derived as follows,

ȧk
n =

∂ŷk

∂ak
n

=
Rn(xk)∑Nh

n=1 Rn(xk)
INy×Ny (70)

After obtaining the gradient vector of the parameters, that
is H(k) = [ȧk

1, . . . , ȧ
k
n . . . , ȧk

Nh], AMCEKF is utilized to update
the parameters θ(k).

In AMCEKF, the system output is ensured to be close to
the desired response through maximizing the correntropy of
the synthetic of the process error and measurement error in
Kalman filter with an adaption process. Also, the AMCEKF
can be applied in any noise environments which is insensitive
to the peak in the noise, and effectively handle the bulk
of residuals around the origin. Thus, the AMCEKF being a
Kalman filter-like recursion algorithm outperform the original
extended Kalman filter significantly, especially when the un-
derlying system is disturbed by some impulsive non-Gaussian
noises.

C. Pruning the fuzzy rule

If the null hypothesis for the statistical inference of system
sufficiency is satisfied as

‖ek‖ < z f ‖S(k)‖ for f % of data with f < d (71)

 Begin

     Given (x1,y(1)),

     Choose the first rule

     a1
1=e1, μ1

1=x1, σ1
1=κ||x1||

k:=k+1

Read next data samples xk+1

Compute the overall system output 

ŷ(k) by Eq.(5), nth normalized firing 

strength Rn(xk) by Eq.(6) and Eq.(7), 

and approximation error ek by Eq.(14) 

   |ek|>zα||H(k)P(k|k-1)HT(k)+R(k)||

Add a new rule Nh+1, aNh+1
k=ek, 

μNh+1
k=xk, σNh+1

k=κ||xk-μNh+1
k||

Adjust the parameters an
k by 

AMCEKF

   |ek|<zf||H(k)P(k|k-1)H
T
(k)+R(k)||

Remove the nearest rule

Reduce the dimensionality of AMCEKF

Export the trained SEFIS

Yes

No

Yes

No

Fig. 1. SEFIS algorithm

where, f is usually designed small enough. That is to say that,
the system structure has the appropriate quantities of rules
or nodes, especially when the approximation error converges
to a minor constructed interval relative to the approximation
uncertainty. The pruning strategy searches for the minimum
redundancy as well as avoids deleting the components that
most dominate the interpretability by calculating membership
functions. The nearest rule R̄nr presents the inactive rule under
the current data stream and further would be deleted without
losing any information and accuracy of the subsequent trained
models when the model sufficiency is redundant.

The SEFIS algorithm is summarized in Fig. 1.

D. Computational complexity
The SEFIS algorithm mainly involves recruiting and prun-

ing of rules and AMCEKF for parameter updating. Besides,
the recruiting and pruning of rules mainly depends on the
statistical sufficiency criterion, that can be also obtained by
AMCEKF. Thus, the computational complexity of the pro-
posed SEFIS mainly relies on the AMCEKF calculation pro-
cedure. We analyze its computational complexity in terms of
the floating point operations. The computational complexities
for the equations used in AMCEKF are given in Table I.
Assuming that the average fixed-point iteration number is T
that is relatively small in general, based on Table I the upper
limit of the computational complexity is obtained as,
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TABLE I
Computational complexities of some equations

Equation Addition/subtraction
and multiplication

Division, matrix inversion,
Cholesky decomposition
and exponentiation

Eq.(16a) 2P2 − P 0
Eq.(16b) 4P3 − P2 0
Eq.(54) 2PQ 0
Eq.(55) 2Q 0
Eq.(56) 2P2 P

Eq.(57) 2Q2 Q

Eq.(58) 2P2 + P O(P3)
Eq.(59) 2Q2 + Q O(Q3)
Eq.(60) 4P2Q + 4Q2P − 3PQ O(Q3)
Eq.(61) 2P2Q + 2P3 − P2 0
Eq.(62) 2P2Q + 2Q2P − PQ 0
Eq.(63) (2PQ + Q2)Nw 0
Eq.(64) 2P2Q + 2Q2P − PQ 0

For simplicity, NhNy = P, Ny = Q.

S S EFIS =6P3+(6+4T )P2Q+(4+4T )Q2P+(2T−1)P

+(2Nw−2−T )PQ+(Nw+4T )Q2+4TQ

+4TP2+2TO(Q3)+TO(P3)

(72)

Eq.(72) indicates that the computational complexity is obvi-
ously with the number of rules and it can be efficiently reduced
by restricting the size of rules under the statistical sufficiency
criterion.

VI. Performance Evaluation of SEFIS

In this section, the performance of the proposed SEFIS is
evaluated by a nonlinear system identification problems, some
regression problem, the adaptive noise cancellation, and the
Typhoon tracking prediction. The first two examples have been
added some impulse noises deliberately to verify the rejection
property of non-Gaussian noises. The latter two are endowed
with the real non-Gaussian noises, which require new targeted
solution to improve the performance under the complicated
noise conditions. For purposes of comparison, other fuzzy neu-
ral system algorithms, such as SAFIS[17], ESAFIS [18], OS-
Fuzzy-ELM[25], eTS[15], and Simpl eTS[16], CEFNS[20],
RMCEFS[21], et.al., are utilized to further demonstrate the
performance superiority.

A. Nonlinear System Identification

The nonlinear system [26, 27] to be identified is described
as

y(t + 1) =
y(t)y(t − 1)[y(t) + 2.5]
1 + y2(t) + y2(t − 1)

+ u(t) (73)

If a series-parallel identification model is used for identifying
the system, the model can be described as follows,

ŷ(t + 1) = f (y(t), y(t − 1), u(t)) (74)

where f is the function implemented to the SEFIS with three
inputs and one output.

The input and output data have been collected in such a way
that the input is given as u(t) = sin(2πt/25). For the purposes
of training and testing, 500 samples are produced. Also to
further assess the non-Gaussian noise resistance performance

of the SEFIS, the impulse noise with amplitude 2 at an interval
of ten samples are added in the input data. Another common
type of non-Gaussian white noise called non-Gaussian white
noise is considered in the nonlinear system identification. To
verify the statistical performance of the testing results, we uses
the bootstrapping for the dataset of nonlinear identification
system as an example. Bootstrapping is a test or metric that
relies on random sampling with replacement. We randomly
choose 300 samples each time for testing, and the other are
used to train the system. The mean results are achieved by
repeating 10 times and shown in Table II.

The performance comparison between different algorithms
under the noise-free, non-Gaussian white noise, and impulse
noise conditions are given in Table II. From Table II, one
can find that the proposed SEFIS obtains better testing ac-
curacy with lesser training time and number of rules in the
impulse noise condition. In noise-free condition, the ESAFIS
and OS-Fuzzy-ELM with less rules perform better accuracy
than SEFIS, however, they cost more training time in the
learning process than SEFIS. This further verifies the robust
and noise rejection abilities of the proposed SEFIS. Besides,
the table reveals that the proposed SEFIS achieves better
performance than the CEFNS and RMCEFS based on the
proposed rule revolution and parameter updating methods in
rejecting outliers.

The training process of the nonlinear system identification
using the first 300 samples as an example to indicate the
statistical significance is shown in Figs.2. From Fig.2(b), one
can see that the identification errors under non-Gaussian noise
would be very volatile and high, and the continuous real-
time observation of statistical approximation uncertainty is
utilized to measure the model sufficiency. If the conventional
error criterion with a threshold is used to recruit the new
rules, the sizes of the rules would be either too large with
a relatively small threshold, or zero growth with a large
threshold. Both cases are not desirable. The statistical model
sufficiency gives the perfect solution. At the beginning of
the learning process, the error lies beyond the constructed
interval of the proposed statistical approximation uncertainty
and some rules are added consequentially. And then the
statistical approximation uncertainty becomes relative stability
and the current error falls inside the interval with a certain level
of confidence. At about 170th time step, the system appears to
obtain appropriate quantities of rules which manifests smaller
approximation uncertainty shown in Fig.2(c). Thus, when the
current error lies in a minor constructed interval relative to
the approximation uncertainty, the pruning strategy would be
triggered shown in Fig.2(d).

B. Regression

In this example, five real-world regression data sets [28] are
further considered to validate the performance of SEFIS. For
all the data sets, the input and output attributes are normalized
into the range [0 1]. The testing error as well as the training
time and number of rules for different algorithms are given in
Table III. The table shows that the proposed SEFIS achieves
better generalization than SAFIS, ESAFIS, OS-Fuzzy-ELM,
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TABLE II
Performance Comparison for Nonlinear System Identification

Algorithms Without Noise With non-Gaussian White Noise With Impulse Noise
Testing
RMSE

Training
Time Rules Testing

RMSE
Training

Time Rules Testing
RMSE

Training
Time Rules

SAFIS 0.2097 0.3438 6 0.1887 0.7344 10 0.2973 1.2500 13
ESAFIS 0.0686 0.5000 8 0.1780 0.4375 10 0.3592 5.1094 12

OS-Fuzzy-ELM 0.0374 0.1406 3 0.1967 1.0469 20 0.4389 0.9688 15
eTS 0.2124 0.2188 5 0.1971 0.2969 9 0.2936 0.1875 8

Simpl eTS 0.1972 0.2969 6 0.1972 0.3281 9 0.2906 0.3428 35
CEFNS 0.1731 0.5156 12 0.1731 0.5939 15 0.2026 0.4844 11

RMCEFS 0.0969 0.8594 10 0.1652 1.5313 19 0.1945 0.2928 12
SEFIS 0.0952 0.1204 8 0.1399 0.2415 8 0.1487 0.1979 6
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Fig. 2. Identification results

eTS, Simpl eTS and CEFNS with the least testing error and
shortest training time even in the noise-free case. Nevertheless,
it achieves much close learning accuracy with RMCEFS in
less time. Under the impulse circumstances, SEFIS obviously
spends less time and obtains much better testing accuracies
than all those algorithms with its outlier resistance capability.
However, SEFIS requires more rules due to the more stable
recruiting and pruning criterion based on the statistical concept
with a slower-growing and slower-reducing way. Although the
more rules result in the increase of the nominal computation
burden, the statistical criterion in minimalism release the cost
greatly which can effectively reduce the final training time.

C. Adaptive Noise Cancellation

Consider an adaptive noise canceler shown in Fig.3, where
the signal source is s(k) = sin(0.06k) cos(0.01k) and the noise
signal n(k) is generated by a white noise. After passing through

Adaptive Noise Canceller

+

Nonlinear 

Channel

ISEFIS

-

Signal

Source s(k)

Primary

Input u(k)

 Noise                   Reference

Source n(k)          Input n0(k) 

Recover

Input e(k)

y(k)

Fig. 3. Structure of adaptive noise cancellation

a nonlinear channel with a nonlinear function, a corrupting
noise n1(k) is created. The relationship between n(k) and n1(k)
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TABLE III
Result comparison for regression benchmark problems

database Algorithms Without Noise With Impulse Noise
Testing
RMSE

Training
Time Rules Testing

RMSE
Training

Time Rules

Autos

SAFIS 0.1184 0.4524 5 0.1377 0.3120 9
ESAFIS 0.0604 0.2184 3 0.1290 0.3276 5

OS-Fuzzy-ELM 0.0595 0.0296 2 0.1612 0.0866 5
eTS 0.0535 0.2184 3 0.1449 1.1856 19

Simpl eTS 0.0689 0.5772 10 0.1208 0.1716 6
CEFNS 0.0666 0.0156 2 0.0976 0.0312 5

RMCEFS 0.0409 0.0156 2 0.0654 0.0312 4
SEFIS 0.0622 0.0156 5 0.0661 0.0156 8

Triazines

SAFIS 0.0581 5.2260 9 0.1006 15.1976 17
ESAFIS 0.0331 24.4438 19 0.0907 12.4824 13

OS-Fuzzy-ELM 0.0100 2.4633 6 0.2338 8.6846 8
eTS 0.0179 3.6816 9 0.1121 14.5237 17

Simpl eTS 0.0197 3.5220 9 0.1125 41.8083 25
CEFNS 0.0452 0.1560 6 0.0647 0.0313 4

RMCEFS 0.0055 0.1560 4 0.0120 0.1716 4
SEFIS 0.0068 0.0313 4 0.0102 0.0313 5

Auto
MPG

SAFIS 0.0979 0.2188 2 0.1662 0.3791 5
ESAFIS 0.0679 0.2500 2 0.1335 0.4219 2

OS-Fuzzy-ELM 0.2037 0.0469 5 0.2346 0.0625 5
eTS 0.1735 0.6250 5 0.1786 0.6406 5

Simpl eTS 0.0993 0.2969 4 0.1602 0.1719 4
CEFNS 0.0750 0.0781 2 0.0845 0.1710 2

RMCEFS 0.0672 0.2344 2 0.0763 0.0781 3
SEFIS 0.0678 0.0313 5 0.0691 0.0313 5

Real Estate
Valuation

SAFIS 0.1015 0.4219 13 0.1090 0.4063 12
ESAFIS 0.1052 0.9219 20 0.1155 0.4642 37

OS-Fuzzy-ELM 0.0712 1.1875 10 0.1247 0.2072 12
eTS 0.0886 5.2656 14 0.1016 5.4688 13

Simpl eTS 0.0910 3.7031 10 0.1139 3.2188 10
CEFNS 0.1006 0.5496 15 0.0970 0.6719 15

RMCEFS 0.0855 2.1875 14 0.0899 8.0938 20
SEFIS 0.0836 0.1719 9 0.0826 0.3750 8

Yacht
Hydrodynamics

SAFIS 0.2890 0.2188 13 0.2950 0.6406 3
ESAFIS 0.1784 2.1406 12 0.2396 4.6250 18

OS-Fuzzy-ELM 0.1459 0.6919 8 0.1892 0.7500 10
eTS 0.1419 0.4844 10 0.1731 0.4063 12

Simpl eTS 0.1423 0.3750 12 0.1734 0.4844 11
CEFNS 0.1732 1.0938 15 0.1686 0.3906 7

RMCEFS 0.1476 1.6406 19 0.1261 12.9063 26
SEFIS 0.0986 0.4531 10 0.0990 0.2656 10
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Fig. 4. Simulation results by SEFIS

is represented as n1(k) = 0.6n3(k). The reference signal is the
input of the SEFIS, that is n0(k) = n(k). When the output of
the SEFIS equals to n1(k), the noise is canceled. Then, the
output of the adaptive noise canceler is the recovered source
signal. The number of the training data is 1000. Different from
the existing results which achieved from 100 training epochs
shown in [29], after only one training epoch, the simulation
result is obtained. The compared models are considered to
have the same initial values. After 10 independent runs, the
average RMSE by the proposed model has a value of 0.0082,
which achieves the best filtering performance compared with
the five models reported in [29] for this adaptive noise canceler
system. To further assess the non-Gaussian noise resistance
performance of the SEFIS, the impulse noise with amplitude
1 at an interval of ten training data are added in the input
data. The recovered signals after the training by using the
SEFIS are shown in Fig.4. Table IV gives the RMSE for the
different algorithms under non-Gaussian noise. From the table,
SEFIS obtains better filter performance than the other fuzzy
algorithms. The results indicate that the performance of the
proposed filters is quite well, and the development of nonlinear
filters for impulse noise condition is necessary.

D. Typhoon Path Prediction

Due to the dynamical and thermodynamical asymmetric
structure, and the environmental systems of different scales,
typhoon track prediction is a challenge problem in typhoon
research. Accuracy is one of the significant criteria when
talking about the prediction of typhoon disasters, as well as
the speed and flexibility. Forecasts should be done quickly
and forecast tools should be able to react immediately on
sudden track disturbances, which is resulted by, for instance,
subtropical anticyclone and multi-time scale summer monsoon
circulation. These disturbances are different from the noises of
underlying surfaces and secondary low pressure, and may lead
to the transient abrupt path. In this work, track of typhoons are
predicted using the proposed SEFIS with the past track and the
other meteorological conditions as inputs taking advantages
of the evolvable structure and the rejection property of a
broad spectrum of noise environment. Time series of dataset
of typhoons provided by National Tibetan Plateau Data Center
[30], which occurred in the West-Pacific in the past are
used to train the SEFIS automatically. In such a scenario,
evaluating the algorithm by dividing the data into training
and testing sets is unsuitable. Here, we need to develop an
online tracker that the training SEFIS is employed to produce
a full life cycle track of a typhoon. The predicted tracking of a
typhoon favorably identifies the future location of the typhoon
center. Errors between predicted and real typhoon centers are
measured quantitatively.

In this study, we predict the typhoon track based on the
previous three data, i.e.,

Input


Lat(t−2) Lat(t−1) Lon(t)
Lon(t−2) Lon(t-1) Lon(t)
Vel(t−2) Vel(t−1) Vel(t)
Pre(t−2) Pre(t−1) Pre(t)

Output
{

Lat(t+1)
Lon(t+1) (75)
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TABLE IV
Comparison of RMSE for different algorithms under non-Gaussian noise

Algorithms SAFIS ESAFIS OS-Fuzzy-ELM eTs Simpl eTS CEFNS RMCEFS SEFIS

RMSE 0.0639 0.0598 0.0504 0.1297 0.1296 0.0791 0.0587 0.0503
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Fig. 5. The track prediction of Typhoon Bebinca (No. 1816, 12th Aug 2018-
17th Aug 2018), red point indicating actual path and green point indicating
prediction path

TABLE V
Comparison of RMSE time for different algorithms

Algorithms Latitude Longitude

SAFIS 5.2057 1.1531
ESAFIS 2.1606 1.3027

OS-Fuzzy-ELM 1.7578 1.0139
eTS 1.6792 0.8063

Simpl eTS 1.0358 1.8816
CEFNS 5.6299 2.6846

RMCEFS 0.6745 0.9027
SEFIS 0.1822 0.6479

A total of 113 data points every hour are collected for this
study. The prediction performance of SEFIS for this problem
is shown in Fig. 5. This figure show the actual path and
the prediction path by SEFIS. From the figure, it could be
observed that SEFIS is able to predict the path and sudden
changes in complex environmental system, satisfactorily. Even
during the period of typhoon genesis (112◦E-114◦E), SEFIS
is able to give an acceptable tracking performance. Next,
we quantitatively evaluate the performance of SEFIS. Table
V gives the perdition RMSE for the different algorithms.
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Fig. 6. Evolution of rules during the prediction period

From the table, it could be observed that SEFIS attains
better tracking result than the other fuzzy algorithms. The
evolution of rules is illustrate in Fig. 6, which begins with
an empty fuzzy rule base, gradually increases or decrease the
number to capture the complex dynamics of typhoon, and
reaches a steady state finally. Also, SEFIS has a smooth rule
evolution process despite the prediction is a process of intense
uncertainties and sudden changes.

E. State Prediction for the Turbofan Engine

To further demonstrate the availability and performance of
the proposed system, the state prediction for the turbofan
engine rooted in the industrial application problem of PHM
system is tested and verified. In PHM applications, predictor
generally aims at computing long-term state evolution from
continuous observations in order to detect the fault mode and
to finally estimate the remaining useful life of the system.

Turbofan engine dataset gained from NASA prognostic data
repository are taken into consideration [31]. The dataset train-
FD001.txt contain 21 sensor measurements. The dataset are
generated by considering one failure mode of the engines. The
dataset are normalized in the range [0, 1]. By denoting state
x, we design the following prediction model,

x̂(k + 1) = f (x(k), x(k − 1), x(k − 2)) (76)

where x(k) = [x1(k), . . . , x21(k)] are the states of the 21 sensors.
In this problem, the sensor data are contaminated with

noises. The main sources of noises are from manufacturing
and assembly variations, process noises, and measurement
noises. Fig.7(a) gives the values from sensors 2,8,11,13,15
chosen arbitrarily to show the data characteristics. It can be
seen that degradation trajectories shown by sensor states are
masked by a mixture of random noises. Research shows that
mixture noise models are more difficult to characterize even if
they consist of simple individual components. Moreover, the
random measurement noise components are mingled with all
output channels. This multistage noise contamination results
in complex noise characteristics and poses a challenge to carry
out appropriate denoising operations. The proposed SEFIS
is expected to reflect the trend of engine states hiding in
the noise. The continuous prediction for multidimensional
future signals is shown in Fig.7(b). From Fig.7(b), it can
be found that although the engine continues running with
heavy degradation and multistage noise contamination, the
inherent noise rejection capacity of the proposed algorithm
depicts a relatively high level of satisfactory. Considering the
noise interference that masks the degradation trend, the locally
weighted scatter plot smoothing [32] as filter is used to denoise
and restore the original state trajectories shown in Fig.7(c).
Obviously, the state prediction by SEFIS can reflect the long-
term state evolution and suppress noise interference effectively.
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(b) State prediction by SEFIS
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(c) Filter results
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(d) State prediction by CENFS

Fig. 7. State prediction for turbofan engine

Fig.7(d) shows the prediction results using CEFNS. In terms of
RMSE evaluation metrics, the proposed SEFIS achieves better
prediction performances with “RMSE=0.1407” compared to
CENFS with “RMSE=0.1809’.

VII. Conclusion

This paper introduces a novel statistical evolving fuzzy
inference system (SEFIS) for nonlinear process modeling in
the non-Gaussian noise environments. The proposed system
utilizes the statistical criterion and is capable of simulta-
neously constructing the rule components and adapting the
rule parameters. The system generates a new rule based on
the statistical model sufficiency which gives so insight into
whether models are reliable and their approximations can be
trusted. The statistical model sufficiency would help to achieve
an optimal solution either in the expressibility or in the com-
putational burden. An adaptive maximum correntropy Kalman
filter algorithm is derived to update the parameters of the
evolving rules to cope with the non-Gaussian noises problems,
which is robust to noisy data and outliers. The parameter
updating process shares an estimate of the uncertainty with
the criterion of the structure evolving process to reduce the
computation burden. The proposed system is further evaluated
using some benchmark problems. Their results suggest that the
proposed SEFIS owns faster convergence and better learning
accuracy with more compact structure than the RMCEFS and
CEFNS although they can resist the non-Gaussian noises.
Besides, the results demonstrate that the proposed SEFIS

has better performance than other popular EFSs due to its
statistical rule evolution way in both noise-free and non-
Gaussian noise environments. This implies that the proposed
SEFIS is an effective modeling method for real-time nonlinear
process with any uncertainty property. The superior non-
Gaussian noise rejection ability of this proposed system makes
it a promising candidate for online modeling and control of
complex processes with various non-Gaussian noises.
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