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Abstract

We study equity premium out-of-sample predictability by extracting the information contained

in a high number of macroeconomic predictors via large dimensional factor models. We compare the

well-known factor model with a static representation of the common components with the Generalized

Dynamic Factor Model, which accounts for time series dependence in the common components. Using

statistical and economic evaluation criteria, we empirically show that the Generalized Dynamic Factor

Model helps predicting the equity premium. Exploiting the link between business cycle and return

predictability, we find accurate predictions also by combining rolling and recursive forecasts in real-

time.
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1 Introduction

How should stock return prediction models incorporate the information contained in a large number of

predictors that exhibit a factor structure? To the very best of our knowledge, this issue has not been

addressed in the literature. We answer this question by comparing three classes of large dimensional

factor models: in estimating the underlying factor space, these models differ from each other in how

they account for the time series dependence in the common components. This allows us to study to

what extent the information contained in the time series dimension of the common components helps

predicting stock returns. This paper thus contributes to the literature on predictability of financial

returns with a large number of predictors: see Elliott and Timmermann (2016).

Forecasting stock returns plays a key role in several areas of finance such as asset pricing, portfolio

allocation and evaluation of investment managers performance: see Rapach and Zhou (2013) for a

review of the literature. However, this is a challenging task: as discussed in Timmermann (2008),

equity premium predictability is short-lived due to traders’ searches for forecasting patterns. Early

contributions conclude that out-of-sample predictability is either confined to specific periods (Pesaran

and Timmermann, 1995) or completely absent (Bossaerts and Hillion, 1999; Goyal and Welch, 2003;

Welch and Goyal, 2008). More recent evidence shows that returns are predictable by macroeconomic

and financial variables (Campbell and Thompson, 2008; Rapach et al., 2010; Ferreira and Santa-Clara,

2011; Pettenuzzo et al., 2014; Pettenuzzo and Ravazzolo, 2016; Pan et al., 2020), and by technical

indicators (Neely et al., 2014).

The majority of existing contributions study equity premium out-of-sample forecasting using a small

set of predictors (see Rapach and Zhou, 2013): for example, the Welch and Goyal (2008) dataset is

made of 14 and 15 variables at monthly and quarterly frequency, respectively. However, there is clear

evidence of comovement and latent factor structure in large datasets of stock returns: these returns can

be decomposed into common and idiosyncratic components, which are mutually orthogonal at all leads

and lags; common components are driven by a small number of latent common factors, which determine

comovements in the data.1 This paper studies equity premium out-of-sample forecasting using a high

number of macroeconomic predictors to estimate the factors driving the comovements in returns.

Early work on factor models considered small-scale datasets: Geweke (1977), and Sargent and Sims

1See Connor and Korajczyk (1986, 1988).
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(1977), employ exact factor models, which impose the restriction of no cross-sectional dependence on

the idiosyncratic terms. On the other hand, large dimensional factor models, pioneered by Chamberlain

and Rothschild (1983), rely upon an approximate factor structure, in which the idiosyncratic terms are

allowed to exhibit some degree of cross-sectional dependence. More recent contributions thus study large

scale information sets: see Connor and Korajczyk (1986, 1988), Forni et al. (2000), Bai and Ng (2002),

Stock and Watson (2002a, b), Forni et al. (2005) and Forni et al. (2015, 2017).

We focus on the following three classes of large-dimensional factor models, which differ from each

other in how they account for time series dependence in the common components, in the estimation

strategy, and in the forecasting equation; within each class, we then consider several specifications,

which include different numbers of common factors.

(a) Stock and Watson (2002a) estimate common factors by principal components and compute pre-

dictions as projections onto the factor space. Based only on contemporaneous covariances, this is

a static method for factor estimation and predictions are computed using a static representation,

in which the factors are loaded contemporaneously.

(b) Forni et al. (2005) also compute predictions in a static way as projections onto the factor space.

However, they allow for a data generating process with a dynamic representation known as the

Generalized Dynamic Factor Model (henceforth GDFM), in which the common factors are loaded

dynamically via one-sided filters (Forni et al., 2000).

(c) Forni et al. (2015, 2017) extend the dynamic method of Forni et al. (2005) by allowing for an

infinite-dimensional factor space: this relaxes any restriction on the lead-lag relationships among

the variables and common factors, and allows for a dynamic forecasting equation. In this sense,

Forni et al. (2015, 2017) provide a fully fledged dynamic approach to the estimation of the GDFM.

Existing evidence on stock returns predictability with large factor models is limited to Stock and

Watson (2002a) static method. Ludvingson and Ng (2007) find evidence of predictability in quarterly

returns using a large number of macroeconomic and financial variables. At monthly frequency, Neely

et al (2014) conclude that Welch and Goyal (2008) low-dimensional dataset provides valuable informa-

tion to predict returns when it is augmented with technical indicators. Baetje and Menkoff (2016) find

that predictability stemming from Welch and Goyal (2008) dataset is unstable and declining over time.
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Çakmaklı and van Dijk (2016) successfully exploit large macroeconomic information to predict monthly

returns via factor augmented regressions; in a similar exercise, Gonçalves et al. (2017) find statisti-

cally significant predictability for some of the estimated factors. Ohno and Ando (2018) propose factor

augmented regressions based on a shrinkage estimator.

None of the above mentioned contributions assesses the performance of the GDFM in predicting

stock returns. Forni et al. (2018) extract factors from a large macroeconomic dataset similar to the one

we consider in this work: their results show that the GDFM often yields more accurate predictions of

macroeconomic variables than the commonly used factor model based on the static approach. Motivated

by this encouraging result, we fill a gap in the stock return forecasting literature by contributing with

the very first evidence of predictability based on the GDFM. Forni et al. (2018) focus on forecasting

macroeconomic variables: our work crucially differs from theirs in that equity premium predictability

patterns tend to be short-lived due to traders behavior and thus difficult to identify, as previously

discussed.

We use the monthly FRED-MD large dimensional macroeconomic database of McCracken and Ng

(2016) to conduct a pseudo real-time one-step-ahead equity premium forecasting exercise. We consider

several forecasting methods (Giacomini and White, 2006; Timmermann, 2008) comprising aspects such

as: the specification of the factor model (Stock and Watson, 2002a; Forni et al., 2005; Forni et al., 2015,

2017); recursive or rolling estimation windows (Timmermann, 2008); statistical and economic evaluation

criteria (Leicht and Tanner, 1991; Pesaran and Timmermann, 1995). In order to facilitate comparison

with the existing literature and assess the role of the macroeconomic information contained in our large

dataset, we also consider the updated small-dimensional Welch and Goyal (2008) monthly dataset.

We obtain three main results. First, the information contained in large macroeconomic datasets

leads to more accurate predictions both in statistical and economic terms: factor models estimated using

the large-dimensional McCracken and Ng (2016) database outperform those that employ the small-

dimensional Welch and Goyal (2008) dataset, as well as a range of small and medium-sized datasets

obtained via a LASSO-driven variable selection. Second, predictions based on the GDFM, either by the

estimator of Forni et al. (2005), or by that of Forni et al. (2015, 2017), prevail over those based on the

static method of Stock and Watson (2002a). Third, we propose a novel method selection criterion that

selects the best performing method in pseudo real-time and exploits the well known cyclicality in stock
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returns predictability (Rapach et al., 2010)2: this allows us to pick a model within a given class at each

point in time and to timely switch between estimation windows depending on the phase of the business

cycle.3 We check the robustness of our findings when real-time data, as opposed to revised FRED-MD

data, are used to estimate the factors. Our results are qualitatively unaffected by data revisions.

Finally, we study the linkages between statistical and economic measures of forecast accuracy (Leicht

and Tanner, 1991; Pesaran and Timmermann, 1995). We consider a risk-averse investor with mean-

variance preferences and relative risk aversion parameter γ (see Rapach and Zhou, 2013, and references

therein). Our results favour the factor models of Forni et al. (2005), and Forni et al. (2015, 2017); they

also show that statistical and economic measures of forecast accuracy are generally positively correlated

(Cenesizoglu and Timmermann, 2012), and that the strength of the correlation increases with γ.

The remainder of the paper is organized as follows. Section 2 explains how we forecast the equity

premium with the latent factor models we consider. Section 3 describes the data. For each model, Section

4 shows the making of estimated factors, that is the contribution of each variable and how this changes

over time. Section 5 assesses the out-of-sample predictive ability of the factor models. Section 6 provides

two sets of additional findings: it reports real-time results and compares them with their pseudo real-time

counterparts; it presents inferential results on the temporal pattern of forecast accuracy. Finally, Section

7 concludes.

2 Forecasting with latent factor models

Due to the curse of dimensionality, high-dimensional modelling is a challenge for standard parametric

frameworks. Latent factor modelling turns dimensionality from a curse into a blessing: it exploits the

idea that the bulk of the dynamics in the data concentrates into a few latent factors, which can be

recovered by aggregating an increasing number of variables of interest. The factor models we consider

differ in the way such aggregation is done.

Let xt = (x1t, . . . , xnt)′ be a panel of covariance stationary time series xit (with cross-section i =

1, . . . , n, and time t = 1, . . . , T ), Γk = Extx
′
t−k its covariance matrix with lag time k, and Σ (θ)

2Pesaran and Timmermann (2005) discuss the role of automated selection in forecasting. Timmermann (2008) stresses
the importance of monitoring local predictability patterns for successful out-of-sample forecasting of stock returns.

3See Pesaran and Timmermann (1995), and Bossaerts and Hillion (1999), for early contributions on model selection as
applied to stock returns forecasting. Clark and McCracken (2009) provide analytical, Monte Carlo, and empirical evidence
of the benefits of combining estimation windows in the presence of structural breaks.
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its spectral density matrix at frequency θ ∈ [−π, π]. Define {vj , zj}nj=1 and {λj (θ) , pj (θ)}nj=1 the

eigenvalues (sorted in decreasing order) and the corresponding eigenvectors of Γ0 and Σ (θ), respectively.

Factor models imply the orthogonal decomposition

xit = χit + ξit,

where χit is xit’s common component in the sense that is driven by common factors, and ξit is its

idiosyncratic component. Since the dynamics of the common components are driven by relatively few

latent factors, the number of parameters in factor models does not increase with n. Consistent estimation

is typically achieved as n→∞.

As the two components are mutually orthogonal at all leads and lags, the same decomposition holds

true for both Γk and Σ (θ), that is

Γk = Γχk + Γξk,

Σ (θ) = Σχ (θ) + Σξ (θ) ,

where Γχk and Γξk are common and idiosyncratic covariances, and Σχ (θ) and Σξ (θ) are common and

idiosyncratic spectral densities.

Approximate factor structures are inferred both in the time and in the frequency domain. In fact, as

n→∞ we have:

(i) the number r � n of static common factors corresponds to the number of diverging eigenvalues vj

of Γ0 (Bai and Ng, 2002);

(ii) the number q � n of dynamic common factors is equal to the number of spectral eigenvalues λj (θ)

diverging almost everywhere in [−π, π] (Hallin and Liska, 2007).

In the same way, as n→∞, idiosyncrasy is characterized by bounded idiosyncratic eigenvalues and

spectral eigenvalues.4

In the rest of the paper, we refer to a dynamic estimation method for models with dynamic factors

4Therefore, limited amount of cross-sectional dependence between the idiosyncratic terms is allowed. This is the distinc-
tive feature between the approximate factor models described here and the exact factor model studied by Geweke (1977),
and Sargent and Sims (1977). In addition, serial correlation in the idiosyncratic terms is not dismissed.
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estimated considering the common-idiosyncratic decomposition of the spectral density matrix and there-

fore account for the whole covariance structure of the data: to this category belong the factor models

described in subsections 2.2 and 2.3 below. On the other hand, the static estimation method refers to

models employing static factors, which are estimated considering contemporaneous covariances only (i.e.,

Γ0), rather than the whole covariance structure of the data: to this category belongs the factor model

described in subsection 2.1 below.

The most general factor model, namely the GDFM, involves the following dynamic representation for

the common components

χit = ci (L)
di (L)f t, (1)

where ci (L) and di (L) are one-sided polynomials in the lag operator L with square-summable coeffi-

cients, and f t is a q−dimensional orthonormal white noise (see Forni et al. 2000) . The main advantage

with respect to competing factor models is that, beyond stationarity and regularity conditions for the

existence of spectral density matrix Σ (θ), the GDFM does not require assumptions on the dynamics of

the factor structure to achieve consistent estimation of the common components. On the contrary, the

widespread static representation

χit = λ′iF t, (2)

where λλλi are factor loadings and the factors F t are possibly serially correlated, imposes strong restrictions

on the data generating process if consistency is to be achieved (see Hallin and Lippi, 2013; Forni et al.

2015, 2017). Nevertheless, factor models with static representation should still be considered dynamic

time series models because they can accommodate some forms of dynamics. For instance,

χit = ai1
f1t

1− αL︸ ︷︷ ︸
F1t

+ ai2 f2t︸︷︷︸
F2t

+ ai3 f2t−1︸ ︷︷ ︸
F3t

(3)

allows for a static representation with three static factors (F1t, F2t, F3t) and a dynamic representation

with two dynamic factors (f1t, f2t). On the contrary,

χit = ai
f1t

1− αiL
= ai

(
f1t + αif1t−1 + α2

i f1t−2 + . . .
)

(4)

does not allow for a (finite-order) static representation. The model in subsection 2.3 below is based on the
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dynamic representation (1); those in subsections 2.1 and 2.2 below are based on the static representation

(2).

In the following three subsections we outline the predictive methods considered and their correspond-

ing forecasting equations. In so doing, without any loss of generality, we assume that the excess return

— i.e. our target, which we label ρt (see Section 3) — is the first variable in our vector of observables.

Formally, x1t = ρt.

2.1 Static method, static representation (SW)

The method proposed by Stock and Watson (2002a), henceforth SW, involves static principal components

and projections on the factor space. Let Γ̂0 be the sample counterpart of Γ0. Static factors are extracted

from xt by taking the r principal components of Γ̂0 that solve the eigenvalue problem

ẑjΓ̂0 = v̂j ẑj , j = 1, . . . , r.

The estimated factors are F SWt = ẑxt, where ẑ = (ẑ1, . . . , ẑr)′, and the h−step ahead forecast of ρt is

ρ̂SWt+h|t = β̂F SWt , (5)

where β̂ is a r-dimensional row vector of projection coefficients onto the space spanned by F SWt .

2.2 Dynamic method, static representation (FHLR)

The dynamic method proposed by Forni et al. (2005), henceforth FHLR, is a two-step procedure based

on the dynamic estimation method and predictions formed from a static representation via a constrained

projection onto the factor space.

Step one: estimation

The spectral density matrix of the data at frequency θ ∈ [−π, π] is estimated through discrete Fourier

transforms of the sample covariance matrix

Σ̂ (θ) = 1
2π

M∑
k=−M

e−ikθwkΓ̂k,
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where wk are the weights of a window function and M is a truncation parameter.5

Letting p̂j (θ) and λ̂j (θ) be the eigenvector and eigenvalues of Σ̂ (θ), the spectral density matrices of

the common and idiosyncratic components are computed as

Σ̂χ (θ) =
q∑
j=1

λ̂j (θ) p̂j (θ)′ p̂j (θ) , (6)

Σ̂ξ (θ) =
n∑

j=q+1
λ̂j (θ) p̂j (θ)′ p̂j (θ) , (7)

respectively; the covariances via inverse Fourier transforms are

Γ̂
χ

k = 2π
2H + 1

H∑
j=−H

eikθΣ̂χ (θj) , (8)

Γ̂
ξ

k = 2π
2H + 1

H∑
j=−H

eikθΣ̂ξ (θj) , (9)

with Fourier frequencies θj = 2πj
2H+1 .

Step two: forecasting equation

The so-called generalized principal components of the couple
(
Γ̂
χ

0 , Γ̂
ξ

0

)
solve the eigenvalue problem

ẑgj Γ̂
χ

0 = v̂gj ẑ
g
j Γ̂

ξ

0, j = 1, . . . , r,

subject to


ẑgj Γ̂

ξ

0ẑ
g
j = 1

ẑgi Γ̂
ξ

0ẑ
g
j = 0, i 6= j.

Letting ẑg = (ẑg1 , . . . , ẑgr )′ be a vector of the first r generalized eigenvectors, F FHLRt = ẑgxt is the vector

of estimated factors.6 Notice that this requires r < ∞, so just like the static one of SW, this estimator

becomes inconsistent if the data generating process does not admit a finite dimensional static factor

representation – like e.g. the model (4).

5All empirical results in Section 5 are obtained using a standard triangular window.
6Generalized eigenvectors correspond to eigenvectors of data weighted according to their signal to noise ratio (Forni et

al., 2005).
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Finally, the h−step ahead forecast of ρt is given by

ρ̂FHLRt+h|t = δ̂F FHLRt , (10)

where δ̂, equal to the first row of the n×r matrix Γ̂
χ

hẑ
g ′
(
ẑgΓ̂0ẑ

g′
)−1

, is an r-dimensional row vector of

constrained projection coefficients onto the space spanned by F FHLRt . Notice that such constrained pro-

jection imposes dynamic factor structure restrictions through Γ̂χh rather than Γ̂h as in the unconstrained

projection (5) employed by SW.

2.3 A fully fledged dynamic method (FHLZ)

The method proposed by Forni et al. (2015, 2017), henceforth FHLZ, shares with FHLR the decomposi-

tion of the spectral density matrix in (6) and (7), and that of the covariances in (8) and (9), estimated

as in Step one described in subsection 2.2.

Letting χχχ(i)
t be any q + 1−dimensional subvector of common components, according to (1) it has a

common factor moving average representation χχχ(i)
t = c(i)(L)

d(i)(L)f t, where c(i)(L)
d(i)(L) is a (q + 1)× q-dimensional

filter. Forni et al. (2015, 2017) prove that, since moving average representations with such “tall” filters

— i.e. with more rows than columns — are generically fundamental7, they can be inverted into an

autoregressive representation

A(i) (L)χ(i)
t = R(i)f t,

where A(i) (L) is (q + 1)× (q + 1), R(i) is (q + 1)× q, and the lag order of A(i) (L) is finite and can be

suitably determined.8 Let us stack all q+1−dimensional vectors of common components: we thus obtain

an autoregressive representation in which the dynamic factors f t are loaded only contemporaneously in

A(i) (L)χ(i)
t .9 The dynamic factors can then be consistently estimated via principal components of

filtered data

St = A (L)xt = Rf t +A (L) ξt,

7More precisely, they are invertible because tall filters are generically zeroless. On the other hand, non-zeroless moving
averages admit a multitude of nonfundamental representations which cannot be inverted into causal vector autoregressive
representations (e.g., see Soccorsi, 2016). The genericity argument means that such property holds everywhere in the
parameter space apart from a measure zero subset.

8In Section 4 results are obtained by determining the lag order of A(i) (L) via a BIC information criterion.
9In order to avoid heavier notation, we are assuming without loss of generality that g = n/ (q + 1); as discussed by Forni

et al. (2015, 2017) no special challenge arises when n is not a multiple of q + 1.
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where St collects the stacked vectors A(i) (L)χ(i)
t , R is a tall n× q matrix and the n× n autoregressive

filter takes the form

A (L) =



A(1) (L) 0 . . . 0

0 A(2) (L) 0
...

. . .

0 0 . . . A(g) (L)


.

Denote by Ŝt the estimator for St. Let (ω1, . . . , ωq) be the first q eigenvalues of the covariance matrix

of Ŝt, and Ψ = (ψ1, . . . , ψq)′ be a q × n matrix collecting the associated eigenvectors: the estimated

dynamic factors are fFHLZt = ΨŜt. The estimated autoregressive coefficients of A (L) are computed

from the estimated common covariances Γ̂
χ

k in equation (8) and R̂ = Ψ. Given these quantities, we

estimate impulse responses to the dynamic factors as

ŵ (L) = Â (L)−1
R̂ ,

where its generic element ŵi is consistent for ci(L)
di(L) in (1), for any i ∈ [1, n]. Finally, recalling that ρt is

the first element of the n-dimensional vector xt, h−step ahead predictions of excess returns are:

ρ̂FHLZt+h|t = ŵ1hf
FHLZ
t + ŵ1h+1f

FHLZ
t−1 + . . . , (11)

where ŵ1h is a q-dimensional row vector of projection coefficients onto the space spanned by fFHLZt .

3 Data

Letting Te be the end point of the estimation period, our aim is to produce one-step-ahead out-of-sample

forecasts for the sequence of stock returns at each point in time τ + 1 given the information available at

time τ , for τ = Te, . . . , T − 1. We use monthly data on stock returns along with a large set of predictors

from which we estimate the factors: these are 122 variables included in the FRED-MD database described

in McCracken and Ng (2016). Our data sample spans the period January 1960 to December 2019. We

also use the 14 predictors originally proposed in Welch and Goyal (2008), and subsequently extended up

to 2019 by the same authors: this allows for comparison with existing studies using low dimensional sets
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of predictors, which are reviewed in Rapach and Zhou (2013).

Stock returns are computed from the S&P 500 index in excess of a short T-bill rate and include

dividends. Formally, we let ρt+1 be the excess return at period t + 1, for t = 1, · · · , τ − 1: the goal is

to produce one-step-ahead out-of-sample forecasts of ρτ+1 given the information set available at time τ ,

for τ = Te, . . . , T − 1.

The FRED-MD database organizes the variables into eight groups: (i) output and income; (ii) labor

market; (iii) consumption and orders; (iv) orders and inventories; (v) money and credit; (vi) interest

rate and exchange rates; (vii) prices; (viii) stock market. The choice of the 122 variables was based on

data availability over the period of interest as reported in the Appendix.

The 14 predictors proposed in Welch and Goyal (2008) are: log dividend-price ratio (log (DP)), log

dividend-yield (log (DY)), log earnings-price ratio (log (EP)), log dividend-payout ratio (log (DE)), stock

variance (SVAR), book-to-market ratio (BM), net equity expansion (NTIS), treasury bill rate (TBL),

long-term yield (LTY), long-term return (LTR), term spread (TMS), default yield spread (DFY), default

return spread (DFR), lagged inflation (INFL).10 As discussed in Pettenuzzo et al. (2014), the predictors

fall into the following broad categories: (i) valuation ratios (log (DP), log (DY), log (EP), BM); (ii)

measures of bond yields (TBL, LTY, TMS, DFY, DFR); (iii) estimates of equity risk (LTR, SVAR);

corporate finance variables (log (DE), NTIS); (iv) macroeconomic variables (INFL).

Table 1 about here

Table 1 provides summary statistics for the series of excess stock returns and for the variables included

in the Welch and Goyal (2008) dataset. Despite the difference in the sample period of interest, the figures

are aligned to those displayed in Table 1 in Pettenuzzo et al. (2014) .11

As argued in Hansen and Timmermann (2012), a crucial issue in out-of-sample forecasting exercises is

the choice of the sample-split between estimation and evaluation periods to avoid data mining. Following

Timmermann (2008), we use the first 10 years of data as a training sample and we evaluate the forecasts

over the period January 1970 to December 2019: a long evaluation sample allows for stronger power of

forecast evaluation tests and minimizes the likelihood of spurious rejections. The end point Te of the

10As in Welch and Goyal (2008), we lag inflation by an extra period to allow for the delay in CPI releases.
11Table 1 in Pettenuzzo et al. (2014) covers the sample period January 1927 to December 2010.
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estimation window thus is December 1969.

4 A preliminary look at the factors

We now look at the role that each variable in the FRED-MD dataset, as described in Section 3, plays

in estimating the factors through the three models discussed in Section 2. We do so through the Degree

of Commonality (hereafter DC): this measures the share of the variance of xit explained by the common

factors. Formally, DC is defined as

DC
(m)
it =

var
(
χ

(m)
it

)
var (xit)

, i ∈ [1, n] , t ∈ [Te + 1, T ] , (12)

where m ∈ (SW,FHLR,FHLZ) denotes the factor model, var
(
χ

(m)
it

)
is the variance of the common

component estimated by the factor model m, and var (xit) is the variance of xit. We calculate this

measure through a rolling exercise, replicating the forecasting exercise carried out in Section 5. We

present DC(m)
it for each cross-sectional unit i and time period t through the heat-maps in Figure 1: the

variables are divided into the groups described in Section 3; the groups are labelled in the ordinate and

separated by thick horizontal red lines.

Figure 1 about here

DC displays patterns both across groups and over time. Variables included in “output and income”

and in “interest and exchange rates” contribute the most to the estimated factors in all the three factor

models. “Price” variables are also relevant, especially in the second half of the sample. “Money and

credit” variables become important in the second half of the sample.

Although the three models display clear similarities, some differences are worth discussing. On the one

hand, the evolution of DC(SW )
it resembles that of DC(FHLR)

it ; on the other hand, DC(FHLZ)
it generates

somehow different paths, which may be due to the unique fully fledged dynamic form of the FHLZ

estimator discussed in Section 2. For example, “interest and exchange rate” variables play an important

role over the whole sample period in the case of SW and FHLR factors; conversely, the same variables

are important for FHLZ factors mainly in the central and final parts of the sample.
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5 Out-of-sample analysis

5.1 Forecasting methodology

As in Timmermann (2008), we explicitly follow Giacomini and White (2006) and distinguish between

forecasting model and forecasting method. The former refers to the underlying econometric specification,

in our case the three factor models described in Section 2. The latter includes the model and other

choices made by the forecaster, such as the estimator for the model unknown parameters (as discussed

in Section 2), the length of the estimation window, and the evaluation criteria.

5.1.1 Econometric model

We estimate the factors from the small-dimensional Welch and Goyal (2008) dataset and from the large

collection of FRED-MD variables described in Section 3. In the former case, we consider r = 1, 2, 3 static

and q = 1, 2 dynamic factors. From the FRED-MD database, we estimate up to r = 15 and q = 5 static

and dynamic factors, respectively: for ease of exposition and without loss of generality, we report results

for r = 1, 5, 15, and q = 1, 3, 5, only.

5.1.2 Estimation window

We consider recursive window and rolling window estimation schemes. Given the sample split described

in Section 3, the former uses data from 1960:01 up to the time the forecast is made to produce a series of

one-step ahead forecasts: the first forecast uses data from 1960:01 to 1969:12 to obtain an out-of-sample

prediction for 1970:01; the second forecast uses data from 1960:01 to 1970:01 to produce a forecast

for 1970:02, and so on. As in Timmermann (2008), the rolling window scheme employs a fixed-length

window of the most recent ten years of data (i.e., 120 monthly observations) to estimate the models and

produce the sequence of one-step ahead forecasts. The recursive window scheme is commonly used in

the empirical literature on out-of-sample stock return forecasting: see Pesaran and Timmermann (1995),

Campbell and Thompson (2008), Welch and Goyal (2008), Rapach et al. (2010), and Pettenuzzo et al.,

(2014). The rolling window scheme is common in the macroeconomic forecasting literature concerned

with structural breaks in macroeconomic data: see Stock and Watson (2012) and Forni et al. (2018).
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5.1.3 Evaluation criteria

As in Pesaran and Timmermann (1995), and Bossaerts and Hillion (1999), the first evaluation criterion

we consider is the mean squared prediction error (MSPE), which assesses the absolute performance of

a sequence of forecasts. These are produced as in equations (5), (10) and (11) for SW, FHLR and

FHLZ, respectively. We next compare the forecasts obtained from the factor models in relation to a

given benchmark. Following Campbell and Thompson (2008), and Welch and Goyal (2008), we take as

a benchmark the prevailing mean (PM), namely

ρt+1 = α+ εt+1, t = 1, . . . , τ − 1, τ = Te, . . . , T − 1, (13)

where εt+1 is a white noise error term with unpredictable mean. The equity premium forecast for

period τ + 1 made at time τ is ρ̂τ+1,rec = τ−1∑τ
t=1 ρt under recursive window; it is equal to ρ̂τ+1,rol =

T−1
e

∑τ
t=τ−Te+1 ρt under rolling window. The recursive window scheme produces the benchmark usually

employed in the equity premium forecasting literature: see Campbell and Thompson (2008), and Welch

and Goyal (2008). As discussed in Timmermann (2008), the choice of the estimation window is a function

of the underlying assumption made about the mean of the equity premium: when estimated recursively,

the model in (13) assumes the equity premium has a constant mean and it is not predictable; the rolling

window scheme implies that the mean of the equity premium slowly changes over time.

The MSPE may be used to measure the out-of-sample goodness of fit of a sequence of forecasts.

To this purpose, we next consider the out-of-sample R2 employed in Campbell and Thompson (2008),

Timmermann (2008), Welch and Goyal (2008), Rapach et al. (2010), and Pettenuzzo et al. (2014). Let

MSPE1 and MSPE0 be the mean squared prediction errors from any factor model and from the prevailing

mean in (13), respectively: the out-of-sample R2 is R2
OoS = 1 − MSPE1 /MSPE0 . By construction,

R2
OoS ≤ 0 if and only if MSPE1 ≥ MSPE0, meaning that the benchmark is at least as good as the

alternative model at forecasting ρτ+1; conversely, R2
OoS > 0 if and only if MSPE1 < MSPE0.

Finally, we assess the statistical significance of the improvement of the alternative model over the

benchmark by testing the null hypothesis R2
OoS ≤ 0 against the one-sided alternative R2

OoS > 0. We

run the Clark and West (2007) test (hereafter CW): this is robust to the different degrees of estimation

error between models, which would otherwise favor the more parsimonious benchmark.
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5.1.4 The role of the business cycle

Rapach et al. (2010), Henkel et al. (2011), and Rapach and Zhou (2013) argue that stock returns

predictability exhibit discernible patterns linked to business cycle dynamics. We then assess our forecasts

over the entire evaluation period, as well as during NBER-dated expansions and recessions.

5.2 Empirical results

5.2.1 Recursive window

Table 2 displays the out-of-sample R2 for the recursive window scheme.

Table 2 about here

When factors are extracted from Welch and Goyal (2008) small dimensional dataset (Panel A), the best

performing model is FHLZ with q = 1 dynamic factor: the model outperforms all other specifications

over the entire evaluation period, as well as during recessions and expansions; the out-of-sample R2 is

always positive and significant at 5% level or less.12 The out-of-sample R2 is equal to 0.98% over the

whole evaluation period, and to 0.81% and 1.39% during expansions and recessions, respectively. The

forecasts produced by FHLZ with q = 1 dynamic factor are thus more accurate during contractionary

periods: this is consistent with Campbell and Cochrane (1999), Menzly et al. (2004), and Bekaert et al.

(2009), who argue that risk premia are countercyclical and drive (at least part of) predictability; it also

resembles Rapach et al. (2010), Henkel et al. (2011), and Rapach and Zhou (2013), who empirically show

that out-of-sample stock returns predictability increases during recessions as compared to expansions.

Panel B in Table 2 also includes results from the best performing specifications. It shows that when

the whole large dimensional FRED-MD dataset is used to estimate the factors, the best performing model

is FHLR. The specifications with r = 2, 3 static factors and q = 1 dynamic factor overall produce the

most accurate forecasts, with statistically significant improvements over the prevailing mean at 10% level

or less. These two models also outperform FHLZ with q = 1 dynamic factor estimated from the small-

dimensional Welch and Goyal (2008) dataset (see Panel A): with the data at hand, large dimensional

12As stressed in the footnote 19 of Pettenuzzo et al. (2014), the p-values from the Clark and West (2007) test should be
interpreted with caution and in line with Diebold (2015): those p-values should be intended to compare forecasts rather
than models.
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factor models provide a hedge over smaller scale counterparts.

Boivin and Ng (2006) question whether adding series with little factor structure to estimate factors

may result in factors being less useful for out-of-sample forecasting purposes. Panels C, D and E in

Table 2 show results when factors are estimated from 25, 50 and 75 series from the FRED-MD dataset,

respectively: the series are selected through a pseudo real-time LASSO procedure at each time τ the

forecast is made. When only a subset of the series is used to estimate the factors, the forecasting ability

of the models, as measured by the out-of-sample R2, deteriorates. The performance of the forecasts

improves as more series are used to estimate the factors. This result shows the usefulness of large data

and is in line with basic asymptotic results on consistent factor estimation, which is achieved for growing

cross-sections.

Given the data at hand, large dimensional datasets are more informative than small-dimensional

counterparts in a recursive window framework; FHLR models overall produce the most accurate forecasts

with r = 2, 3 static factors and q = 1 dynamic factor.

5.2.2 Rolling window

Table A1 in Online Appendix displays the out-of-sample R2 for the rolling window scheme.As with the

recursive window, factor models estimated using the large dimensional FRED-MD dataset (see Panel B)

generally produce more accurate forecasts than those based on the small scale Welch and Goyal (2008)

dataset (see Panel A). Over the whole forecasting period, FHLZ forecasts are the most precise: the

out-of-sample R2 ranges between 0.88% and 1.96%, and it is always statistically greater than zero at

least at 5% level. During expansionary periods, no large dimensional model unambiguously dominates

any other specification: in particular, FHLZ with q = 1 dynamic factors as obtained from the Welch

and Goyal (2008) dataset has the highest out-of-sample R2 out of all models, which is equal to 1.09%

and it is significant at 5% level. During economic recessions, FHLR and FHLZ models combined with

the large dimensional FRED-MD dataset produce forecasts of similar accuracy: almost all out-of-sample

R2 are positive and significant at least at 10% level. Overall, the forecasts from SW models are less

accurate. When factors are estimated from a subset of 25, 50 and 75 variables from the FRED-MD

dataset selected using a LASSO type procedure (see Panels C, D and E, respectively), the quality of

the forecasts deteriorates; as in the case of the recursive window scheme, the precision of the forecasts
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improves as more variables are used to estimate the factors.

In conclusion, the results from the rolling window scheme generally favor large dimensional factor

models, with FHLR and, especially, FHLZ having a hedge over SW.

5.2.3 The role of large macroeconomic information

In order to assess the role of our large cross-section of macroeconomic information, in Table 3 we resume

the LASSO results obtained for r = 1, 2, 3, 4, 5, 10, 15, and q = 1, 2, 3, 4, 5, by picking the best specifica-

tions of SW, FHLR, FHLZ for each level of variable selection (i.e., 25, 50, and 75 variables) under both

estimation windows over the full sample.

Table 3 about here

Comparing the results from the cross-sections restricted by the LASSO with those from the full FRED-

MD dataset, we observe an almost monotonic improvement in the number of included variables, as

evidenced by the increasing out-of-sample R2. In line with standard asymptotic results on factor models

as discussed in Section 2, this empirical finding suggests that the underlying assumptions are likely to

hold in the data at hand and the models we consider are not misspecified. This confirms the conclusion

of McCracken and Ng (2016), who propose the FRED-MD dataset as a resource for factor analysis.

Stock and Watson (2012), and Giannone et al. (2017), find similar results regarding the performance of

shrinkage methods as applied to forecasting problems with large-dimensional macroeconomic datasets.

5.3 An adaptive method selection approach

The results discussed in Sections 5.2.1 and 5.2.2 and displayed in Tables 2 and A1 in Online Appendix,

respectively, show two important findings: factor models estimated using large dimensional datasets tend

to produce more reliable forecasts than those estimated using a smaller number of macroeconomic series;

models based on the dynamic method (i.e., FHLR and FHLZ) outperform SW, which is based on the

static method. These findings come from a high number of forecasting methods, as discussed in Section

5.1.

We also find an empirical regularity along the business cycle: rolling forecast are more accurate

during recessions, while recursive forecasts have an edge during expansions. As argued in Pesaran and
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Timmermann (2005), decision makers require selecting the best performing method in real-time. We

thus implement what we label a method selection criterion: in the spirit of Pesaran and Timmermann

(1995), and Bossaerts and Hillion (1999), this allows us to pick a model within a given class at each point

in time; it further allows us to timely switch between estimation windows, whose importance is stressed

in Clark and McCracken (2009), and Pesaran and Timmerman (2007). We can thus exploit more fully

the cyclical behaviour in returns predictability discussed in Rapach and Zhou (2013).

5.3.1 Model selection strategy

In the spirit of Pesaran and Timmermann (1995), and Bossaerts and Hillion (1999), we study the model

selection problem within SW, FHLR and FHLZ for a given estimation window.

When implementing model selection criteria using the recursive window scheme, we have to account

for structural instability in the underlying factor model: see Baltagi et al. (2017), and references therein.

We adopt the following strategy to tackle the problem of model selection in the presence of structural

instability under the recursive window scheme. As suggested in Stock and Watson (2012), we a priori

select r = 5 static factors and we keep this number fixed over the entire out-of-sample evaluation period.

To the very best of our knowledge, no existing study allows us to a priori fix the number of dynamic

factors. At each point in time, we choose q = 4 dynamic factors using Hallin and Lǐska (2007) criterion

as applied to the rolling window scheme: model instability is less likely to affect this estimation scheme

as the dynamic window effectively adapts to time variation in the loadings.13

The empirical results with r = 5 and q = 4 show that FHLR and FHLZ outperform SW: the former

two produce forecasts with higher out-of-sample R2 than the latter during the entire out-of-sample

evaluation period, as well as during expansions and recessions.14 Between the two dynamic models,

FHLZ generates more accurate forecasts than FHLR over the full evaluation period and in expansionary

phases: the out-of-sample R2 is equal to 0.68% and 0.48%, respectively, and in both cases it is significant

at 5% level. During recessions, the out-of-sample R2 from FHLZ forecasts is marginally higher than that

from FHLR forecasts; in the latter case, statistical significance is achieved at 10% level. Overall, FHLZ

13At each point in time, Hallin and Lǐska (2007) criterion selects between q = 4 and q = 5 dynamic factors. We choose
q = 4 as a matter of parsimony. Results with q = 5 are very similar and are available upon request.

14The out-of-sample R2 for FHLR with r = 5 and q = 4 is equal to −0.36, −0.98, 1.12 in the full sample, expansions
and recessions, respectively. The corresponding values for FHLZ with q = 4 are 0.68, 0.48, 1.15, respectively. For both
models, the out-of-sample R2 computed over the full sample and in expansionary periods are significant at 5% level; for
FHLR, 10% statistical significance is achieved during recesssions.
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has an edge over FHLR under the recursive window scheme.

Under rolling window estimation, at each point in time we choose the number of static and dynamic

factors according to Bai and Ng (2002), and Hallin and Lǐska (2007) criteria, respectively: the problem

of structural instability is likely to be less relevant in this case, as rolling window estimation accounts for

time-variation in the parameters. As with the recursive window scheme, FHLR and FHLZ fare better

than SW (see Panel B in Table A1 in Online Appendix). Between the two dynamic models, FHLZ

forecasts are better during the whole evaluation period and in expansionary phases: the out-of-sample

R2 is equal to 1.51% and 0.38%, respectively and, in both cases, it is significant at 5% level. Rolling

forecasts from FHLR are more accurate during recessions: the higher out-of-sample R2 is 5.24% and

significant at 5% level.

5.3.2 Switching the estimation window in pseudo real-time

As shown in Paye and Timmermann (2006), and Rapach and Wohar (2006), return prediction models are

subject to structural instabilities. Clark and McCracken (2009), and Pesaran and Timmerman (2007),

argue that forecast accuracy in the presence of breaks may be improved by combining recursive and

rolling estimation windows in such a way that optimally handles the trade-off between variance (which

decreases with the sample size and so in recursive windows) and bias (which is generated by the breaks

and so is less harmful within rolling windows). Inoue et al. (2017) develop a procedure to determine

the window size in the presence of structural instability. Based on our empirical findings, we propose

to select the estimation window as a function of business cycle conditions so that forecast accuracy can

enhance in the presence of instabilities linked to the business cycle. This is relevant as out-of-sample

stock returns predictability depends on the business cycle, as stressed in Rapach et al. (2010).

Table 4 about here

In order to empirically motivate our strategy, Table 4 reports mean squared prediction errors (mul-

tiplied by 100) for the three large dimensional factor models we consider under recursive and rolling

window estimation (Panels A and B, respectively). We first look at the whole set of available factor

models. During economic expansions, all models produce better forecasts under recursive window es-

timation. The scenario changes during contractionary periods: forecasts from SW models have similar
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MSPE under recursive and rolling windows; FHLR and FHLZ models produce more accurate forecasts

under rolling window. This finding is confirmed when the model selection strategy detailed in Section

5.3.1 is applied within each class of factor models: this a priori selects r = 5 and q = 4 under recursive

window; it resorts to Bai and Ng (2002), and Hallin and Lǐska (2007) criteria under rolling window. The

results confirm that FHLR and FHLZ generate better forecasts under recursive and rolling window dur-

ing expansions and recessions, respectively.15 This last finding suggests that timely switching between

estimation windows may improve the quality of the forecasts.

In order to select the estimation window, we follow Banbura et al. (2011) and employ a nowcasting

procedure that tracks the current state of the economy. At each point in time τ , we use the sequence

{ADSt}τt=1 of business cycle indicators of Aruoba et al. (2009) and select the estimation window by

solving

θ̂τ = arg min
θ

∣∣∣∣[τ−1
τ∑
t=1

I (ADSt < θ)
]
−R

∣∣∣∣ , τ = Te, . . . , T − 1,

where I (·) denotes the indicator function and |·| the absolute value of the argument: R = 0.14 is the

approximate sample frequency of recessions over the 1946 : 01 − 1969 : 12 period as identified by the

NBER business cycle dates.16 At each point in time τ , the threshold θ̂τ minimizes the distance between

the empirical frequency R and the one identified by Aruoba et al. (2009) business cycle indicator; for

each τ , we select recursive and rolling window if ADSτ ≥ θ̂τ and ADSτ < θ̂τ , respectively.

Table 5 about here

Results related to the proposed model selection criterion are displayed in Table 5. The table collects

results for the PM model in (13), and for the large dimensional factor models SW, FHLR and FHLZ:

under recursive and rolling windows, factor models are estimated as detailed in Sections 5.2.1 and 5.2.2,

respectively; the model selection criterion chooses the estimation window according to the procedure

previously described in this section. The results show that the mean squared prediction error (multiplied

by 100) for FHLR and FHLZ is minimized when the method selection criterion is implemented and it

is equal to 0.1911 and 0.1897, respectively (see Panel A): these value are lower than any other obtained

15See Section 5.3.1 for details.
16We also considered the case in which the empirical frequency of recessions at time τ is determined by the expanding

window between 1946 : 01 and τ . The results are quantitatively very similar to those from the case R = 0.14 and are
available upon request.
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from PM and SW. Table 6 also calculates the out-of-sample R2 with respect to the most accurate

benchmark, namely PM estimated by recursive window (Panel B): SW delivers negative values regardless

of the estimation window; FHLR forecasts obtained from the method selection criterion outperform the

benchmark with a positive and strongly significant out-of-sample R2 equal to 0.65%; FHLZ produces

the most accurate forecasts, which always deliver positive values for the out-of-sample R2, with highest

value equal to 1.41% achieved under the proposed method selection procedure.

5.3.3 Statistical forecast accuracy and portfolio choice

Following the pioneering work of Leicht and Tanner (1991), and Pesaran and Timmermann (1995),

we finally study the economic value of equity premium forecasts. Our interest lies in understanding

the linkages between statistical and economic measures of forecasting performance. This is an open

issue: Leicht and Tanner (1991), and Cenesizoglu and Timmermann (2012), only find weak relationships

between statistical and economic measures of forecast accuracy; at the same time, Pesaran and Granger

(2000) advocate a closer link between decision theory and the forecast evaluation problem.

In line with Campbell and Thompson (2008), Rapach et al. (2010), Ferreira and Santa Clara (2011),

Rapach and Zhou (2013) and Neely et al. (2014), we economically evaluate the forecasts by computing

the certainty equivalent return for a risk-averse investor with mean-variance preferences and relative

risk aversion parameter γ. At the end of each month, the investor allocates her wealth between stocks

and a riskless asset. The choice depends on a dynamic trading strategy based on a benchmark and an

alternative prediction method. As customary in the literature, our benchmark is the prevailing mean

estimated with recursive window: as pointed out in Timmermann (2008), it assumes the equity premium

has a constant mean and it is not predictable; it also produces the lowest mean squared prediction error

out of all methods based on the prevailing mean (see Panel A in Table 5).

Formally, let j = 0 and j = 1 denote the benchmark and the alternative method, respectively. If the

investor opts for method j at period τ + 1, at period τ she assigns to stocks a share wjτ equal to

wjτ = 1
γ

ρ̂j,τ+1

σ̂2
j,τ+1

, j = 0, 1,

where ρ̂j,τ+1 and σ̂2
j,τ+1 are the point forecasts of ρτ+1 and of its variance σ2

τ+1 made at time τ , respec-

tively: as in Campbell and Thompson (2008), we compute the latter as the five-year moving window of
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past monthly returns, so that σ̂2
j,τ+1 = σ̂2

τ+1 is independent of the underlying forecasting method j. The

realized return on the investment portfolio from method j at time τ + 1 then is

Rpj,τ+1 = wjτρτ+1 + rfτ , τ = Te, . . . , T − 1, j = 0, 1.

The certainty equivalent return is the average realized utility from method j over the out-of-sample

period and it is defined as

Ūj = µ̄pj −
1
2γ
(
σ̂pj
)2
, j = 0, 1,

where µ̄pj and
(
σ̂pj
)2 are the sample mean and variance, respectively, of the portfolio returns Rpτ,t+1 over

the out-of-sample period. Following Campbell and Thompson (2008), we constrain the portfolio weights

w0τ and w1τ such that 0 ≤ w0τ , w1τ ≤ 1.5. We then compute the utility gain

∆ = Ū1 − Ū0 :

as discussed in Fleming et al. (2001), the utility gain represents the portfolio management performance

fee that a mean-variance investor is willing to pay to switch from the dynamic trading strategy based

on the benchmark to the one based on the alternative method. In the empirical application, we set

γ = 3, 4, 5, 10: these are aligned to the values chosen in Rapach et al. (2010), Rapach and Zhou

(2013), and Cenesizoglu and Timmermann (2012). We then multiply ∆ by 1200 to express it in average

annualized percentage returns.

The results are displayed in Panels C, D, E and F of Table 5 for γ = 3, 4, 5, 10, respectively. The

recursive window estimation scheme leads to less accurate forecasts than those produced by the bench-

mark uniformly across models as all utility gains are negative. Interesting results arise under the rolling

window scheme and the method selection criterion. The most accurate forecasts are produced by FHLR

and FHLZ: the former prevails for γ = 3, 4 and γ = 5 under rolling window and method selection, re-

spectively; the latter is preferable for γ = 10 under method selection. The empirical results indicate that

the link between statistical and economic measures of forecast accuracy increases with risk aversion. An

analysis of the correlation between out-of-sample R2 and utility gains confirms this first impression: the

correlation is equal to −0.41, 0.06, 0.25 and 0.61 for γ = 3, 4, 5, 10, respectively, and thus monotonically
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increases in γ. This empirical regularity is further illustrated in Figure 2, which plots utility gains against

out-of-sample R2 for the values of γ of interest.

Figure 2 about here

In conclusion, our results show that for the empirically relevant values γ = 3, 4, 5, FHLZ with rolling

window produces the most accurate forecasts as evaluated in economic terms. In the extreme case γ = 10,

the method selection criterion as applied to FHLZ is preferable. As in Cenesizoglu and Timmermann

(2012), we further show that statistical and economic measures of forecast accuracy tend to be positively

correlated; in addition, the strength of the correlation increases with γ.

6 Further results

6.1 Real-time evidence

The results in Section 5 are based on the FRED-MD dataset: since the macroeconomic variables in

FRED-MD are observed at their final vintage after multiple revisions, those results come from a pseudo

real-time forecasting exercise. As noticed in Ghysels et al. (2018), data revisions affect bond return

predictability: we investigate whether we face a similar issue in forecasting stock returns with large

dimensional factor models.

We assess the robustness of our main findings by running an analysis similar to the one in Section

5 using data that are available in real-time. We employ a dataset of 62 variables collected from the St.

Louis Fed ALFRED data archive: the sample starts in February 1982 and ends in December 2019.17

The ADS business cycle indicator we use to combine rolling and recursive forecasts according to the

method selection criterion described in Section 5.3 is also subject to data revisions: for this reason, we

consider its real-time version. ADS vintage data are provided by the Federal Reserve of Philadelphia

and are available starting from 2009.18 Due to real-time data availability, rolling and recursive forecasts

are evaluated between February 1992 to December 2019, whereas forecast combinations obtained using

the method selection criterion begin in January 2009 and finish in December 2019.

17ALFRED data are available at https://alfred.stlouisfed.org. In the construction of the dataset here employed,
we discarded time series therein for which too few vintages are available together with other irregular time series. More
details on the ALFRED dataset are provided in the Appendix.

18All ADS data are available at https://www.philadelphiafed.org/research-and-data/real-time-center/
business-conditions-index.
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The sample for real-time analysis is a subsample of that available for the pseudo real-time exercise

conducted in Section 5: for a meaningful comparison, we also report the results from the pseudo real-

time exercise (i.e., based on the FRED-MD dataset) over the sample period that begins in 2009. Table 6

compares the results in terms of MSPE and out-of-sample R2: panels A and B refer to the exercise with

data in pseudo real-time; panels C and D show the results obtained using only information available in

real-time. Recursive window forecasts are less accurate than those produced by the benchmark uniformly

over all models when real-time data are involved; these results are in line with the findings from pseudo

real-time data with the exception of those obtained from FHLZ, which produces enhanced forecasts

with respect to the benchmark when revised data are employed. Under rolling window, SW and FHLR

underperform with respect to the benchmark with real-time data, whereas FHLZ becomes more accurate.

Finally, when the method selection criterion is used, real-time and pseudo real-time information produce

qualitatively similar results.

Table 6 about here

The results in Table 6 let us conclude that there is no sizeable difference in predictive accuracy when

real-time, as opposed to revised, data are used for factor estimation and return forecasting. It should also

be noticed that ALFRED and FRED-MD are datasets of different cross-sectional dimensions, being made

of 62 and 122 variables, respectively. Other conditions being equal, this difference in the cross-sectional

dimension between the two datasets would a priori predict a relative deterioration in factor estimation

when ALFRED is involved. In fact, such a deterioration is not observed in our empirical findings: unlike

those in Ghysels et al. (2018) on bond returns, our results show that stock return predictability does not

deteriorate when real-time data are employed; a possible explanation is that bond and equity markets

react differently to macroeconomic news, as argued in Andersen et al. (2007).

6.2 Local predictability

Following Farmer et al. (2019), we now study local predictability, as opposed to global predictability,

which was the focus of the analysis up to now: we do so using the FRED-MD data described in Section 3.

In order to perform time-varying inference, we employ the test proposed by Giacomini and Rossi (2010)

(hereafter GR): this allows us to investigate how the predictability provided by our forecasting methods

distributes over time with respect to the benchmark. GR test results on the forecasts produced by the
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selected specifications of SW, FHLR and FHLZ are reported in Figure 3. The solid lines correspond

to the GR test statistics, which is the normalized and smoothed difference between the square forecast

errors of a given factor model, estimated with one of the methods considered, and the benchmark;

the smoothing considered is the centred moving average of 60 observations corresponding to 5 years of

forecast. The zero horizontal line indicates equal performance, the dotted lines indicate the 5% critical

values, so that the factor model considered outperforms (underperforms) the benchmark locally in time

at the 5% significance level when the solid line is below (above) the lower (upper) dashed line.

Figure 3 about here

Recursive and rolling predictions are the top and central plots, respectively. All models significantly

outperform the benchmark during the first decade of our sample, regardless of whether the estimation

window is recursive or rolling: this finding is consistent with Pesaran and Timmermann (1995), who find

evidence of predictability during the 1970s. The remaining part of our sample is also associated with

some predictability: this is obtained with the rolling window and is caught for a more sustained period

by FHLZ, while it is very short-lived in the case of SW and FHLR forecasts. SW recursive and FHLR

(either rolling and recursive) outperform the benchmark at some point in the late 80s, although only for

a short period of time.

We present GR test results for SW, FHLR and FHLZ forecast combinations based on our method

selection criterion in the bottom plots of Figure 3. By comparing our forecast combinations with recursive

and rolling forecasts in the top and centre plots, respectively, we can see that the improvements within

that time period are evident for all the factor models: FHLR predictions are significantly more accurate

than the benchmark for a relatively long time after the crisis; our method selection criterion as applied

to FHLZ produces significantly more accurate forecasts for a prolonged period despite the fact that the

underlying recursive and rolling forecasts only infrequently outperform the benchmark; SW recursive

and, less frequently, SW rolling are significantly outperformed by the benchmark, whereas SW combined

predictions are generally as accurate as the benchmark.
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7 Conclusions

We study one-step-ahead out-of-sample predictability of the monthly equity premium using large dimen-

sional factor models. We compare the static method of Stock and Watson (2002a,b) with the more general

approach known as Generalized Dynamic Factor Model, for which the two estimators proposed in Forni

et al. (2005), and Forni et al. (2015, 2017), are considered. Through statistical and economic forecast

evaluation criteria, we show that large dimensional factor models condense the information contained

in a high number of predictors to accurately forecast stock returns, especially when the Generalized

Dynamic Factor Model is considered. Further improvements are found by applying a combination of

recursive and rolling forecasts, which we label method selection: this combines information stemming

from both windows, depending on the underlying state of the economy.

Our work may be extended in several ways: three of them are worth discussing. Barigozzi et al.

(2019) study a two-step Generalized Dynamic Factor Model for volatilities, which also accounts for the

factor structure in returns: it would be worth exploring whether our method selection criterion delivers

more accurate volatility predictions within that framework. More generally, it would be interesting to

study how well large dimensional factor models predict the conditional distribution of equity returns

following an approach similar to that in Massacci (2015). Finally, we focused on stock returns: the

analysis of bond returns predictability is high in our research agenda (see Gargano et al., 2017, and

references therein).
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Table 1: Summary Statistics, 1960 - 2019

Variables Mean Std. Dev. Skewness Kurtosis

Excess Returns 0.002 0.042 -0.706 5.482
log(DP) -3.606 0.393 -0.130 2.241
log(DY) -3.600 0.392 -0.136 2.269
log(EP) -2.853 0.422 -0.609 6.051
log(DE) -0.753 0.305 2.792 18.807
SVAR 0.002 0.004 10.455 145.403
BM 0.490 0.257 0.812 2.802

NTIS 0.010 0.020 -0.644 3.127
TBL 0.045 0.032 0.736 3.890
LTY 0.063 0.027 0.713 3.143
LTR 0.006 0.029 0.436 5.661
TMS 0.018 0.014 -0.259 2.797
DFY 0.010 0.004 1.797 7.586
DFR 0.000 0.015 -0.393 9.409
INFL 0.003 0.004 0.050 6.071

Notes. This table reports summary statistics for excess returns on the S&P 500 index in excess of the treasury bill
rate and for the following 14 predictors proposed in Welch and Goyal (2008): log dividend-price ratio (log (DP)), log
dividend-yield (log (DY)), log earnings-price ratio (log (EP)), log dividend-payout ratio (log (DE)), stock variance (SVAR),
book-to-market ratio (BM), net equity expansion (NTIS), treasury bill rate (TBL), long-term yield (LTY), long-term return
(LTR), term spread (TMS), default yield spread (DFY), default return spread (DFR), inflation (INFL). The sample period
is 1960 − 2019.
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Table 2: Out-Of-Sample Forecast Performance, Recursive Window, 1970 - 2019

Panel A: Welch and Goyal (2008) Data

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -1.21 -0.58 -2.73 q = 1 r = 1 -0.82 -0.35 -1.94 q = 1 0.98*** 0.81** 1.39**
r = 2 -0.16* 0.01** -0.56 r = 2 -1.79 -0.06 -5.98
r = 3 -2.73 -1.67* -5.29 r = 3 -2.36 0.28** -8.74

q = 2 r = 2 -0.07 0.14 -0.57 q = 2 0.17 0.5* -0.62
r = 3 -0.88 -0.42* -1.98

Panel B: FRED-MD Data

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -0.73 0.23* -3.06 q = 1 r = 1 -0.71 0.02 -2.47 q = 1 0.58* 0.39* 1.03
r = 2 -0.04** 0.02*** -0.18 r = 2 1.30*** 0.71** 2.74*

r = 3 1.30*** 0.63** 2.91*
r = 5 -1.48** -1.91* -0.45 r = 5 0.46** 0.19** 1.12
r = 15 -4.44* -4.57* -4.13 r = 15 -0.79* -1.73 1.48*

q = 3 r = 5 -0.2** -0.88** 1.43* q = 3 0.46* 0.33* 0.79
r = 15 -2.33* -3.04 -0.61

q = 5 r = 5 -0.25** -0.97** 1.48* q = 5 0.87** 0.58** 1.55
r = 15 -2.95 -3.61 -1.34

Panel C: FRED-MD Data, Lasso 25

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -0.88 -0.38* -2.11 q = 1 r = 1 -0.59 -0.12* -1.72 q = 1 -0.20 0.07 -0.85
r = 5 -2.87* -3.25 -1.95 r = 5 -1.19** -1.19** -1.19
r = 15 -7.27 -7.95 -5.64 r = 15 -1.84* -2.79 0.46*

q = 3 r = 5 -2.44 -2.01* -3.49 q = 3 -1.83 -2.61 0.04
r = 15 -6.09 -6.61 -4.82

q = 5 r = 5 -2.34 -2.39 -2.21 q = 5 -3.08 -4.49 0.34
r = 15 -5.75 -6.18 -4.72

Panel D: FRED-MD Data, Lasso 50

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -0.71 0.14* -2.75 q = 1 r = 1 -0.16 0.7** -2.21 q = 1 -0.86 -0.19 -2.48
r = 5 -2.56* -3.00 -1.49 r = 5 -0.9* -0.82* -1.08
r = 15 -6.44 -6.43 -6.45 r = 15 -1.06* -1.38 -0.27

q = 3 r = 5 -2.17 -1.72* -3.25 q = 3 -0.80 -0.55 -1.41
r = 15 -3.72 -5.02 -0.59

q = 5 r = 5 -1.76* -1.63* -2.06 q = 5 -0.62 -1.77 2.14*
r = 15 -2.93* -5.00 2.07*

Panel E: FRED-MD Data, Lasso 75

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -0.63 0.66** -3.74 q = 1 r = 1 -0.49 0.79** -3.57 q = 1 1.05** 0.65** 2.00
r = 5 -1.87* -1.42** -2.95 r = 5 0.02** 0.26** -0.54
r = 15 -5.70 -5.31 -6.66 r = 15 -1.02* -0.69* -1.83

q = 3 r = 5 -0.64** -0.54** -0.88 q = 3 -0.06 0.32* -0.97
r = 15 -2.58* -4.01 0.86

q = 5 r = 5 -0.98** -0.64** -1.79 q = 5 -0.37 -0.18 -0.81
r = 15 -3.44 -4.96 0.24

Notes. This table shows the out-of-sample R2 (%) of prediction models for the monthly excess return ρτ+1 using the
recursive window estimation scheme. The factor models are Stock and Watson (2002) (SW), Forni et al. (2005) (FHLR),
and Forni et al. (2015, 2017) (FHLZ), described in Section 2. Factors are estimated from the Welch and Goyal (2008)
dataset in Panel A. Factors are extracted from the FRED-MD dataset detailed in MacCracken and Ng (2015) in Panel B,
and from 25, 50 and 75 series selected with a LASSO estimator in Panels C, D and E, respectively. Statistical significance
is assessed through the Clarke and West (2007) CW statistic: ∗, ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1%,
respectively. The sample period is 1970 − 2019.
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Table 3: Resume of small to medium LASSO Results, FRED-MD Data, 1970 - 2019

LASSO, 25 LASSO, 50 LASSO, 75 full FRED-MD dataset
SW −0.88 −0.71 −0.63 −0.04∗∗

Panel A: Recursive Window FHLR −0.59 −0.16 0.08∗∗ 1.30∗∗∗
FHLZ −0.20 −0.22 1.05∗∗ 0.87∗∗
SW −2.25 −2.32 −0.30∗ −1.13

Panel B: Rolling Window FHLR −1.33 −1.03 −0.43∗∗ 0.67∗∗∗
FHLZ −0.63 1.57∗∗ 1.04∗∗ 1.96∗∗∗

Notes. This table shows the out-of-sample R2 (%) of prediction models for the monthly excess return ρτ+1 using recursive
window (Panel A) and rolling window (Panel B) estimation schemes. The factor models are Stock and Watson (2002)
(SW), Forni et al. (2005) (FHLR), and Forni et al. (2015, 2017) (FHLZ), described in Section 2. For each model, we
report the most accurate specification among all results obtained for r = 1, 2, 3, 4, 5, 10, 15, and q = 1, 2, 3, 4, 5. Factors
are extracted from 25, 50 and 75 series selected at each point in time with a LASSO estimator applied to the FRED-MD
dataset detailed in MacCracken and Ng (2015). Statistical significance is assessed through the Clarke and West (2007) CW
statistic: ∗, ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1%, respectively. The sample period is 1970 − 2019.
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Table 4: Out-Of-Sample Results, FRED-MD Data, MSPE, 1970 - 2019

Panel A: Recursive Window

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 0.1938 0.1575 0.4196 q = 1 r = 1 0.1937 0.1579 0.4172 q = 1 0.1913 0.1573 0.4030
r = 5 0.1952 0.1609 0.4089 r = 5 0.1915 0.1576 0.4026
r = 15 0.2009 0.1651 0.4239 r = 15 0.1939 0.1606 0.4011

q = 3 r = 5 0.1928 0.1593 0.4013 q = 3 0.1915 0.1574 0.4039
r = 15 0.1968 0.1627 0.4096

q = 5 r = 5 0.1929 0.1594 0.4011 q = 5 0.1907 0.1570 0.4008
r = 15 0.1980 0.1636 0.4126

Panel B: Rolling Window

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 0.1952 0.1591 0.4199 q = 1 r = 1 0.1964 0.1594 0.4267 q = 1 0.1913 0.1591 0.3920
r = 5 0.2013 0.1692 0.4010 r = 5 0.1938 0.1639 0.3798
r = 15 0.2323 0.1932 0.4756 r = 15 0.2012 0.1703 0.3941

q = 3 r = 5 0.1951 0.1648 0.3842 q = 3 0.1907 0.1583 0.3923
r = 15 0.2045 0.1713 0.4116

q = 5 r = 5 0.1954 0.1650 0.3851 q = 5 0.1892 0.1578 0.3848
r = 15 0.2055 0.1735 0.4053

BN 0.2029 0.1696 0.4105 HL, BN 0.1946 0.1641 0.3844 HL 0.1901 0.1583 0.3884

Notes. This table shows the mean squared prediction error (MSPE ×100) of prediction models for the monthly excess
return ρτ+1 using recursive window (Panel A) and rolling window (Panel B) estimation schemes. The factor models are
Stock and Watson (2002) (SW), Forni et al. (2005) (FHLR), and Forni et al. (2015, 2017) (FHLZ), described in Section
2. Factors are extracted from the FRED-MD dataset detailed in MacCracken and Ng (2015). BN and HL denote Bai and
Ng (2002), and Hallin and Lǐska (2007) model selection criteria, respectively. The sample period is 1970 − 2019.
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Table 5: Out-Of-Sample Forecast Performance, Method Selection Criterion, 1970 - 2019

PANEL A: MSPE

Recursive Window Rolling Window Method Selection
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

0.1924 0.1952 0.1931 0.1911 0.1930 0.2029 0.1946 0.1901 0.1928 0.1986 0.1911 0.1897

PANEL B: Out-of-Sample R2

Recursive Window Rolling Window Method Selection
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

- -1.48** -0.36** 0.68** -0.33 -5.47** -1.14** 1.19** -0.24 -2.87** 0.65*** 1.41**

Panel C: Portfolio Choice, ∆ %(ann.) (%), γ = 3

Recursive Window Rolling Window Method Selection
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

- 1.07 -0.29 -1.54 0.99 0.35 1.27 1.38 -0.03 0.56 0.80 0.013

Panel D: Portfolio Choice, ∆ %(ann.) (%), γ = 4

Recursive Window Rolling Window Method Selection
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

- -0.30 -1.00 -1.60 0.58 -0.16 0.62 1.00 -0.02 0.19 0.48 0.17

Panel E: Portfolio Choice, ∆ %(ann.) (%), γ = 5

Recursive Window Rolling Window Method Selection
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

- -1.33 -1.54 -1.39 0.16 -0.73 -0.13 0.60 -0.02 0.08 0.23 0.21

Panel F: Portfolio Choice, ∆ %(ann.) (%), γ = 10

Recursive Window Rolling Window Method Selection
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

- -2.85 -2.62 -0.68 -0.20 -2.94 -1.75 -0.04 -0.01 -0.23 0.04 0.12

Notes. This table shows mean squared prediction error (MSPE ×100), out-of-sample R2 (%) and annualized utility gain
(%) of prediction models for the monthly excess return ρτ+1. The prevailing mean PM is defined in (13). Stock and
Watson (2002a) (SW), Forni et al. (2005) (FHLR), and Forni et al. (2015, 2017) (FHLZ) factor models are described in
Section 2. Factors are extracted from the FRED-MD dataset detailed in MacCracken and Ng (2015). Under recursive
window, r = 5 and q = 4 static and dynamic factors, respectively, are selected as detailed in Section 5.2.1. Under rolling
window, the number of static and dynamic factors is selected according to Bai and Ng (2002), and Hallin and Lǐska (2007)
model selection criteria, respectively. The method selection criterion allows to switch between estimation windows using the
procedure described in Section 5.3.2. Statistical significance is assessed through the Clarke and West (2007) CW statistic:
∗, ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1%, respectively. The sample period is 1970 − 2019.
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Table 6: Real-time vs pseudo real-time results

PSEUDO REAL TIME

PANEL A: MSPE based on FRED Dataset

Recursive Window (1992-2019) Rolling Window (1992-2019) Method Selection (2009-2019)
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

0.1664 0.1692 0.1676 0.1655 0.1676 0.1819 0.1745 0.1668 0.1548 0.1769 0.1663 0.1631

PANEL B: Out-of-Sample R2 based on FRED Dataset

Recursive Window (1992-2019) Rolling Window (1992-2019) Method Selection (2009-2019)
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

- -1.65 -0.77 0.53 -0.74 -9.3 -4.89 -0.77 -3.07 -17.76 -10.81 -8.71

REAL TIME

PANEL C: MSPE based on ALFRED Dataset

Recursive Window (1992-2019) Rolling Window (1992-2019) Method Selection (2009-2019)
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

0.1664 0.1693 0.1685 0.1667 0.1676 0.1682 0.1688 0.1629 0.1593 0.1650 0.1627 0.1591

PANEL D: Out-of-Sample R2 based on ALFRED Dataset

Recursive Window (1992-2019) Rolling Window (1992-2019) Method Selection (2009-2019)
PM SW FHLR FHLZ PM SW FHLR FHLZ PM SW FHLR FHLZ

- -1.77 -1.31 -0.22 -0.74 -1.10 -1.45 2.01∗∗ -1.83 -5.52 -4.04 -1.71

Notes. This table shows mean squared prediction error (MSPE ×100) and out-of-sample R2 (%) of prediction models for
the monthly excess return ρτ+1. The prevailing mean PM is defined in (13). Stock and Watson (2002a) (SW), Forni et
al. (2005) (FHLR), and Forni et al. (2015, 2017) (FHLZ) factor models are described in Section 2. Factors are extracted
from the FRED-MD dataset detailed in MacCracken and Ng (2015). Under recursive window, r = 5 and q = 4 static
and dynamic factors, respectively, are selected as detailed in Section 5.2.1. Under rolling window, the number of static
and dynamic factors is selected according to Bai and Ng (2002), and Hallin and Lǐska (2007) model selection criteria,
respectively. The method selection criterion allows to switch between estimation windows using the procedure described
in Section 5.3.2. Statistical significance is assessed through the Clarke and West (2007) CW statistic: ∗, ∗∗ and ∗∗∗ denote
significance at 10%, 5% and 1%, respectively. The sample period is 1992 − 2019.
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Figure 1: Degree of commonality

SW

FHLR

FHLZ

Notes. The heatmaps above report the (rolling) degree of commonality estimated by the three factor
models as in equation (12)
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Figure 3: GR test: SW, FHLR, FHLZ vs PM benchmark.

SW FHLR FHLZ

Notes. Forecasting methods are: recursive (top), rolling (centre) and method selection (MSC, bottom).
GR test statistics (blue) within 5% confidence bands (red dashed); the smoothing adopted is 60 data
points.
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Online Appendix

Rolling Window Results

Table A1: Out-Of-Sample Forecast Performance, Rolling Window, 1970 - 2019

Panel A: Welch and Goyal (2008) Data

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -0.90 0.01 -3.10 q = 1 r = 1 -3.32 -1.57 -7.60 q = 1 1.07** 1.09** 1.03
r = 2 -0.44** -0.24** -0.93 r = 2 -2.35 -1.83 -3.62
r = 3 -3.19 -2.18* -5.67 r = 3 -4.54 -2.73 -8.94

q = 2 r = 2 -3.55 -3.71 -3.15 q = 2 0.40* 0.97** -0.98
r = 3 -4.19 -3.03 -7.01

Panel B: FRED-MD Data

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -1.13 -0.15* -3.51 q = 1 r = 1 -1.76 -0.36 -5.18 q = 1 0.88** -0.15 3.37**
r = 5 -4.30** -6.53 1.14** r = 5 -0.41** -3.19 6.37**
r = 15 -20.35 -21.62 -17.24 r = 15 -4.27 -7.18 2.84*

q = 2 r = 2 0.67*** -0.15** 2.66*
q = 3 r = 5 -1.09** -3.71 5.29** q = 3 1.22** 0.37** 3.29*

r = 15 -5.97 -7.81 -1.48
q = 5 r = 5 -1.27** -3.86 5.06** q = 5 1.96*** 0.66** 5.14**

r = 15 -6.50 -9.20 0.09

BN -5.12** -6.73 -1.19* HL, BN -0.81** -3.29 5.24** HL 1.51** 0.38** 4.26*

Panel C: FRED-MD Data, Lasso 25

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -2.25 -2.38 -1.93 q = 1 r = 1 -1.33 -1.82 -0.11 q = 1 -0.96 -1.35 -0.01
r = 5 -8.12 -7.08 -10.65 r = 5 -2.79 -5.35 3.43*
r = 15 -25.94 -28.63 -19.39 r = 15 -2.88* -7.58 8.58***

q = 3 r = 5 -2.79* -4.55 1.51* q = 3 -0.76 -2.67 3.92*
r = 15 -8.68 -13.82 3.87**

q = 5 r = 5 -1.62** -3.13 2.06* q = 5 -1.14 -2.70 2.68*
r = 15 -10.24 -14.38 -0.16

Panel D: FRED-MD Data, Lasso 50

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -2.32 -1.12 -5.23 q = 1 r = 1 -1.03 -0.09 -3.33 q = 1 0.39 -0.61 2.83**
r = 5 -7.88 -8.03 -7.53 r = 5 -3.24 -3.89 -1.66
r = 15 -18.66 -19.75 -16.00 r = 15 -4.12 -6.87 2.58*

q = 3 r = 5 -1.89** -2.89 0.56* q = 3 1.12** -0.34 4.7**
r = 15 -5.58* -8.62 1.85*

q = 5 r = 5 -1.99** -3.18 0.91* q = 5 0.72** -0.95 4.79**
r = 15 -5.24** -8.62 2.99*

Panel E: FRED-MD Data, Lasso 75

SW FHLR FHLZ

Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions Model Full Sample Expansion Recessions
r = 1 -0.3* -0.26* -0.42 q = 1 r = 1 -0.52 -0.06 -1.63 q = 1 0.71** -0.14 2.77**
r = 5 -5.58* -7.10 -1.87 r = 5 -2.61 -2.99 -1.68
r = 15 -17.02 -18.95 -12.32 r = 15 -2.21 -4.11 2.43*

q = 3 r = 5 -0.43** -3.33 6.64** q = 3 0.89** -0.06 3.21*
r = 15 -1.93** -4.56* 4.47*

q = 5 r = 5 -0.28** -3.32 7.13** q = 5 1.04** -0.20 4.06*
r = 15 -5.02 -8.76 4.1*

Notes. This table shows the out-of-sample R2 (%) of prediction models for the monthly excess return ρτ+1 using the rolling
window estimation scheme. The factor models are Stock and Watson (2002) (SW), Forni et al. (2005) (FHLR), and Forni et al.
(2015, 2017) (FHLZ), described in Section 2. Factors are estimated from the Welch and Goyal (2008) (WG) dataset in Panel A.
Factors are extracted from the FRED-MD dataset detailed in MacCracken and Ng (2015) in Panel B, and from 25, 50 and 75
series selected with a LASSO estimator in Panels C, D and E, respectively. Statistical significance is assessed through the Clarke
and West (2007) CW statistic: ∗, ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1%, respectively. BN and HL denote Bai and Ng
(2002), and Hallin and Lǐska (2007) model selection criteria, respectively. The sample period is 1970− 2019.
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FRED-MD Data
We adopt the balanced version of FRED-MD dataset discarding the series with missing values at beginning of
the sample. These are: PERMIT, PERMITNE, PERMITMW, PERMITS, PERMITW, ACOGNO, ANDENOx,
TWEXMMTH, UMCSENTx.
Letting xt be a raw series, the transformations adopted are:

(1) no transformation;
(2) ∆xt;
(3) ∆2xt;
(4) ∆log(xt);
(5) log(xt);
(6) ∆2log(xt);

(7) ∆
(

xt
xt−1−1

)
log(xt);

Table A2: List of FRED-MD time series

mnemonic description tcode

1 RPI Real Personal Income 5
2 W875RX1 RPI ex. Transfers 5
3 INDPRO IP Index 5
4 IPFPNSS IP: Final Products and Supplies 5
5 IPFINAL IP: Final Products 5
6 IPCONGD IP: Consumer Goods 5
7 IPDCONGD IP: Durable Consumer Goods 5
8 IPNCONGD IP: Nondurable Consumer Goods 5
9 IPBUSEQ IP: Business Equipment 5
10 IPMAT IP: Materials 5
11 IPDMAT IP: Durable Materials 5
12 IPNMAT IP: Nondurable Materials 5
13 IPMANSICS IP: Manufacturing 5
14 IPB51222S IP: Residential Utilities 5
15 IPFUELS IP: Fuels 5
16 NAPMPI ISM Manufacturing: Production 1
17 CAPUTLB00004S Capacity Utilization: Manufacturing 2

1 HWI Help-Wanted Index for US 2
2 HWIURATIO Help Wanted to Unemployed ratio 2
3 CLF16OV Civilian Labor Force 5
4 CE16OV Civilian Employment 5
5 UNRATE Civilian Unemployment Rate 2
6 UEMPMEAN Average Duration of Unemployment 2
7 UEMPLT5 Civilians Unemployed <5 Weeks 5
8 UEMP5TO14 Civilians Unemployed 5-14 Weeks 5
9 UEMP15OV Civilians Unemployed >15 Weeks 5
10 UEMP15T26 Civilians Unemployed 15-26 Weeks 5
11 UEMP27OV Civilians Unemployed >27 Weeks 5
12 CLAIMSx Initial Claims 5
13 PAYEMS All Employees: Total nonfarm 5
14 USGOOD All Employees: Goods-Producing 5
15 CES1021000001 All Employees: Mining and Logging 5
16 USCONS All Employees: Construction 5
17 MANEMP All Employees: Manufacturing 5
18 DMANEMP All Employees: Durable goods 5
19 NDMANEMP All Employees: Nondurable goods 5
20 SRVPRD All Employees: Service Industries 5
21 USTPU All Employees: TT&U 5
22 USWTRADE All Employees: Wholesale Trade 5
23 USTRADE All Employees: Retail Trade 5
24 USFIRE All Employees: Financial Activities 5
25 USGOVT All Employees: Government 5
26 CES0600000007 Hours: Goods-Producing 1
27 AWOTMAN Overtime Hours: Manufacturing 2
28 AWHMAN Hours: Manufacturing 1
29 NAPMEI ISM Manufacturing: Employment 1
30 CES0600000008 Ave. Hourly Earnings: Goods 6
31 CES2000000008 Ave. Hourly Earnings: Construction 6
32 CES3000000008 Ave. Hourly Earnings: Manufacturing 6

1 HOUST Starts: Total 4
2 HOUSTNE Starts: Northeast 4
3 HOUSTMW Starts: Midwest 4
4 HOUSTS Starts: South 4
5 HOUSTW Starts: West 4

- Continued on next page -
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Table A2 – continued from previous page

1 DPCERA3M086SBEA Real PCE 5
2 CMRMTSPLx Real M&T Sales 5
3 RETAILx Retail and Food Services Sales 5
4 NAPM ISM: PMI Composite Index 1
5 NAPMNOI ISM: New Orders Index 1
6 NAPMSDI ISM: Supplier Deliveries Index 1
7 NAPMII ISM: Inventories Index 1
8 AMDMNOx Orders: Durable Goods 5
9 AMDMUOx Unfilled Orders: Durable Goods 5
10 BUSINVx Total Business Inventories 5
11 ISRATIOx Inventories to Sales Ratio 2

1 M1SL M1 Money Stock 6
2 M2SL M2 Money Stock 6
3 M3SL MABMM301USM189S in FRED, M3 for the United States 6
4 M2REAL Real M2 Money Stock 5
5 AMBSL St. Louis Adjusted Monetary Base 6
6 TOTRESNS Total Reserves 6
7 NONBORRES Nonborrowed Reserves 6
8 BUSLOANS Commercial and Industrial Loans 6
9 REALLN Real Estate Loans 1
10 NONREVSL Total Nonrevolving Credit 6
11 CONSPI Credit to PI ratio 2
12 MZMSL MZM Money Stock 6
13 DTCOLNVHFNM Consumer Motor Vehicle Loans 6
14 DTCTHFNM Total Consumer Loans and Leases 6
15 INVEST Securities in Bank Credit 6

1 FEDFUNDS Effective Federal Funds Rate 2
2 CP3M 3-Month AA Comm. Paper Rate 2
3 TB3MS 3-Month T-bill 2
4 TB6MS 6-Month T-bill 2
5 GS1 1-Year T-bond 2
6 GS5 5-Year T-bond 2
7 GS10 10-Year T-bond 2
8 AAA Aaa Corporate Bond Yield 2
9 BAA Baa Corporate Bond Yield 2
10 COMPAPFF CP - FFR spread 1
11 TB3SMFFM 3 Mo. - FFR spread 1
12 TB6SMFFM 6 Mo. - FFR spread 1
13 T1YFFM 1 yr. - FFR spread 1
14 T5YFFM 5 yr. - FFR spread 1
15 T10YFFM 10 yr. - FFR spread 1
16 AAAFFM Aaa - FFR spread 1
17 BAAFFM Baa - FFR spread 1
18 EXSZUS Switzerland / U.S. FX Rate 5
19 EXJPUS Japan / U.S. FX Rate 5
20 EXUSUK U.S. / U.K. FX Rate 5
21 EXCAUS Canada / U.S. FX Rate 5

1 PPIFGS PPI: Finished Goods 6
2 PPIFCG PPI: Finished Consumer Goods 6
3 PPIITM PPI: Intermediate Materials 6
4 PPICRM PPI: Crude Materials 6
5 oilprice Crude Oil Prices: WTI 6
6 PPICMM PPI: Commodities 6
7 NAPMPRI ISM Manufacturing: Prices 1
8 CPIAUCSL CPI: All Items 6
9 CPIAPPSL CPI: Apparel 6
10 CPITRNSL CPI: Transportation 6
11 CPIMEDSL CPI: Medical Care 6
12 CUSR0000SAC CPI: Commodities 6
13 CUUR0000SAD CPI: Durables 6
14 CUSR0000SAS CPI: Services 6
15 CPIULFSL CPI: All Items Less Food 6
16 CUUR0000SA0L2 CPI: All items less shelter 6
17 CUSR0000SA0L5 CPI: All items less medical care 6
18 PCEPI PCE: Chain-type Price Index 6
19 DDURRG3M086SBEA PCE: Durable goods 6
20 DNDGRG3M086SBEA PCE: Nondurable goods 6
21 DSERRG3M086SBEA PCE: Services 6

1 S&P 500 S&P: Composite 5
2 S&P: indust S&P: Industrials 5
3 S&P div yield S&P: Dividend Yield 2
4 S&P PE ratio S&P: Price-Earnings Ratio 5

3



ALFRED data

Table A3: List of ALFRED time series

Mnemonic Variable Description TCode Start Date

AWHMAN Avg Weekly Hours of Production and Nonsupervisory Employees: Manufacturing 4 11/1/1964
AWHNONAG Avg Weekly Hours Of Production And Nonsupervisory Employees: Total private 4 5/1/1970
AWOTMAN Avg Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing 4 8/1/1966
CE16OV Civilian Employment 4 12/1/1964
CLF16OV Civilian Labor Force 4 11/1/1964
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 4 6/1/1972
CURRDD Currency Component of M1 Plus Demand Deposits 4 11/1/1964
CURRSL Currency Component of M1 4 11/1/1964
DEMDEPSL Demand Deposits at Commercial Banks 4 9/1/1964
DMANEMP All Employees: Durable goods 4 11/1/1964
DSPI Disposable Personal Income 4 1/1/1980
DSPIC96 Real Disposable Personal Income 4 2/1/1980
HOUST Housing Starts: Total: New Privately Owned Housing Units Started 4 12/1/1964
HOUST1F Privately Owned Housing Starts: 1-Unit Structures 4 2/1/1972
HOUST2F Housing Starts: 2-4 Units 4 2/1/1973
INDPRO Industrial Production Index 4 11/1/1964
M1SL M1 Money Stock 4 12/1/1979
M2SL M2 Money Stock 4 12/1/1979
MANEMP All Employees: Manufacturing 4 11/1/1964
NDMANEMP All Employees: Nondurable goods 4 11/1/1964
OCDSL Other Checkable Deposits 4 2/1/1981
PAYEMS All Employees: Total nonfarm 4 11/1/1964
PCE Personal Consumption Expenditures 4 12/1/1979
PCEC96 Real Personal Consumption Expenditures 4 3/1/1980
PCEDG Personal Consumption Expenditures: Durable Goods 4 12/1/1979
PCEDGC96 Real Personal Consumption Expenditures: Durable Goods 4 3/1/1980
PCEND Personal Consumption Expenditures: Nondurable Goods 4 12/1/1979
PCENDC96 Real Personal Consumption Expenditures: Nondurable Goods 4 3/1/1980
PCES Personal Consumption Expenditures: Services 4 12/1/1979
PCESC96 Real Personal Consumption Expenditures: Services 4 3/1/1980
PFCGEF Producer Price Index: Finished Consumer Goods Excluding Foods 4 1/1/1982
PI Personal Income 4 2/1/1966
PPICFF Producer Price Index: Crude Foodstus \& Feedstus 4 1/1/1982
PPICPE Producer Price Index: Finished Goods: Capital Equipment 4 1/1/1978
PPICRM Producer Price Index: Crude Materials for Further Processing 4 3/1/1978
PPIFCF Producer Price Index: Finished Consumer Foods 4 1/1/1982
PPIFGS Producer Price Index: Finished Goods 4 1/1/1982
PPIIFF Producer Price Index: Intermediate Foods \& Feeds 4 1/1/1982
PPIITM Producer Price Index: Intermediate Materials: Supplies \& Components 4 3/1/1978
SAVINGSL Savings Deposits - Total 4 12/1/1979
SRVPRD All Employees: Service-Providing Industries 4 9/1/1971
STDCBSL Small Time Deposits at Commercial Banks 4 12/1/1979
STDSL Small Time Deposits - Total 4 12/1/1979
STDTI Small Time Deposits at Thrift Institutions 4 12/1/1979
SVGCBSL Savings Deposits at Commercial Banks 4 12/1/1979
SVGTI Savings Deposits at Thrift Institutions 4 12/1/1979
SVSTCBSL Savings and Small Time Deposits at Commercial Banks 4 12/1/1979
SVSTSL Savings and Small Time Deposits - Total 4 12/1/1979
TCDSL Total Checkable Deposits 4 3/1/1981
UEMP15OV Civilians Unemployed - 15 Weeks \& Over 4 11/1/1964
UEMP15T26 Civilians Unemployed for 15-26 Weeks 4 1/1/1982
UEMP27OV Civilians Unemployed for 27 Weeks and Over 4 1/1/1966
UEMP5TO14 Civilians Unemployed for 5-14 Weeks 4 11/1/1964
UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 4 11/1/1964
UEMPMEAN Average (Mean) Duration of Unemployment 4 1/1/1972
UEMPMED Median Duration of Unemployment 4 1/1/1982
UNEMPLOY Unemployed 4 12/1/1964
UNRATE Civilian Unemployment Rate 2 2/1/1960
USCONS All Employees: Construction 4 12/1/1964
USFIRE All Employees: Financial Activities 4 12/1/1964
USGOOD All Employees: Goods-Producing Industries 4 9/1/1971
USGOVT All Employees: Government 4 12/1/1964
USMINE All Employees: Mining and logging 4 12/1/1964
USPRIV All Employees: Total Private Industries 4 8/1/1971
USSERV All Employees: Other Services 4 12/1/1964
USTPU All Employees: Trade, Transportation \& Utilities 4 12/1/1964
USTRADE All Employees: Retail Trade 4 12/1/1964
USWTRADE All Employees: Wholesale Trade 4 12/1/1964

4


