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Abstract—Hyperspectral image (HSI) classification is an im-
portant topic in the community of remote sensing, which has a
wide range of applications on geoscience. Recently, deep learning-
based methods have been widely used in HSI classification. How-
ever, due to the scarcity of labeled samples in HSI, the potential
of deep learning-based methods has not been fully exploited. To
solve this problem, a self-supervised learning (SSL) method with
adaptive distillation is proposed to train the deep neural network
with extensive unlabeled samples. The proposed method consists
of two modules: adaptive knowledge distillation with spatial-
spectral similarity and 3D transformation on HSI cubes. The
SSL with adaptive knowledge distillation uses the self-supervised
information to train the network by knowledge distillation, where
self-supervised knowledge is the adaptive soft label generated by
spatial-spectral similarity measurement. The SSL with adaptive
knowledge distillation mainly includes the following three steps.
First, the similarity between unlabeled samples and object classes
in HSI is generated based on the spatial-spectral joint distance
(SSJD) between unlabeled samples and labeled samples. Second,
the adaptive soft label of each unlabeled sample is generated to
measure the probability that the unlabeled sample belongs to each
object class. Third, a progressive convolutional network (PCN) is
trained by minimizing the cross entropy between the adaptive soft
labels and the probabilities generated by the forward propagation
of the PCN. The SSL with 3D transformation rotates the HSI
cube in both the spectral domain and the spatial domain to fully
exploit the labeled samples. Experiments on three public HSI
datasets have demonstrated that the proposed method can achieve
better performance than existing state-of-the-art methods.

Index Terms—Deep neural network, hyperspectral image clas-
sification, self-supervised learning, knowledge distillation, spatial-
spectral feature extraction.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) usually contain hun-
dreds of spectral channels, and each pixel in HSI has a

corresponding spectral curve [1], [2]. Combining both spatial
texture information and spectral reflectance information, HSIs
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have been widely used in many fields, e.g., agriculture, marine
monitoring, geological exploration, environment, and ecology.
HSI classification is utilized to determine the corresponding
object category for each pixel (e.g., soil, trees, grass, building,
roads, and river) which plays a key role in many remote
sensing applications [3], [4].

In recent decades, many HSI classification methods have
been proposed, including spectral matching-based methods,
which determine the object types of samples based on the
matching degree of spectral curves. Typical spectral matching-
based methods include spectral angle mapper (SAM) [5], [6]
and spectral information divergence (SID) [7]. Due to the
high spectral dimensionality in HSIs, many statistical feature
reduction methods have been proposed to transform spectral
vector of HSI from high-dimensional feature space to low-
dimensional feature space, including linear discriminant anal-
ysis [8], principal components analysis (PCA) [9], independent
component analysis (ICA) [10] and minimum noise fraction
(MNF) [11]. In addition, because of the nonlinear character-
istics of HSI, many nonlinear feature extraction methods have
been proposed in recent years, such as manifold coordinate
representations [12], [13], [14], locality-preserving discrimi-
nant analysis [15], locality preserving projections (LPP) [16]
and sparsity preserving projections (SPP) [17].

Due to the characteristics of spatial homogeneity and
heterogeneity of HSI, it is hard to make full use of the
features of HSI only by spectral feature extraction. Therefore,
researchers have proposed a series of joint spatial-spectral
feature extraction methods [18], [19]. The typical one is
extended morphological profile (EMP) [20]. The first step of
this method is to extract features by PCA, and then generate
spatial features by morphological operations (opening or clos-
ing operations). Recently, morphological-based joint spatial-
spectral feature extraction methods have been continuously
improved, including extended attribute profile (EAP) [21], and
directional morphological profiles (DMP) [22].

With the introduction and rapid development of deep learn-
ing [23], [24], [25], it has achieved great success in many
tasks such as image classification [26], [27], [28], object
detection [29], [30], [31], image segmentation [32], [33], [34],
scene recognition [35], natural language processing [36], [37],
optical character recognition [38] and so on. At the same time,
researchers have proposed a series of deep learning-based
methods for HSI classification, and the classification accuracy
of HSI has been gradually improved [18]. To fully exploit
spatial-spectral features of HSI, some joint spatial-spectral
feature extraction methods with deep neural network have
been proposed [39], including stacked autoencoders [40], deep
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Fig. 1: Self-supervised learning with 3D transformation and progressive convolutional network, where PC and FC are
abbreviations for progressive convolution and fully connected layer.

belief network [41], superpixel-based discriminative sparse
model [42] and local covariance matrix representation [43].

However, the application of deep learning for HSI classi-
fication has not been well-addressed. One of the important
reasons is that deep learning-based method requires a large
number of labeled samples to obtain satisfactory accuracy. In
the process of supervised HSI classification, there are usually
two ways to obtain training samples: (1) field investigation;
and (2) visual interpretation directly from high-resolution
images. In particular, the training samples collected through
field investigation can usually lead to higher classification
accuracy [44]. However, compared with visual interpretation,
field investigation is costly, complex and time-consuming,
which greatly limits the number of training samples. In fact, it
is difficult to obtain enough training samples to fully meet the
training requirements of the deep neural network, which limits
the researchers’ attempts to further improve the classification
accuracy of HSI by using deep neural network.

To solve this problem, several HSI classification methods
based on few-shot learning have been proposed. Few-shot
learning is an important branch of machine learning which is
designed to address the problem of limited training samples.
Usually, metric learning and meta learning strategies are used
to learn the features of HSIs, and the absolute distance or
relative distance between features is used to identify the object
class of each unlabeled pixel in HSI [45], [46]. However,
these methods still do not solve the problem of lack of
samples very well. As a result, researchers began to explore
some solutions to get supervision from the data itself, one of
which is self-supervised learning (SSL). SSL mines its own
supervised information from large-scale unsupervised data. In
other words, the supervised information used in SSL does not
need to be obtained by manual annotation, but the algorithm
automatically constructs the supervised information from un-
supervised data to train the model [47], [48]. The existing
SSL methods include the method based on spatial relationship
[49], [50], inpainting [51], image reconstruction [52], color
transformation [53], super resolution [54] and spatial rotation

transformation [55], [56], etc. In the field of HSI classification,
some super-pixel based self-supervised learning methods have
been proposed to fully exploit each labeled samples [57], [58].
However, none of the above methods generate corresponding
soft labels for unlabeled samples and use them to train the
network. From the perspective of training data transformation,
the existing SSL-based methods for image classification are
based on transformation in two-dimensional space. Since
hyperspectral data is a three-dimensional cube with two-
dimensional spatial dimension and spectral dimension, it is
necessary to update the SSL with 2D transformation to SSL
with 3D transformation.

In this paper, we propose a self-supervised learning method
with adaptive distillation (SSAD) to train a deep neural net-
work with a large number of unlabeled samples. The SSAD
mainly consists of two modules: SSL with adaptive knowledge
distillation and SSL with 3D transformation. In the adaptive
knowledge distillation, the unlabeled samples are adaptively
labeled based on the spatial-spectral distance measurement. By
calculating the similarity between unlabeled samples and pre-
defined object classes, the adaptive soft label of each unlabeled
samples is generated. The adaptive soft label includes the
probability that the sample belongs to each pre-defined object
class. The proposed adaptive knowledge distillation method
mainly includes the following steps. First, in order to mea-
sure the similarity between samples in an HSI, the spatial-
spectral joint distance considering both spectral Kullback-
Leibler (KL) divergence and spatial Euclidean distance is
calculated. Second, based on the spatial-spectral joint distance
(SSJD) between unlabeled samples and labeled samples, the
distance between unlabeled samples and pre-defined object
classes in HSI is generated. Third, the adaptive soft label
of each unlabeled sample is generated by distance-probability
transformation method. Fourth, the proposed progressive con-
volutional network (PCN) is trained by minimizing the cross
entropy between the probabilities generated by PCN and the
adaptive soft label of each unlabeled samples. In addition, SSL
with 3D transformation further exploits each labeled sample



3

by transforming HSI in spectral and spatial domains.
The main contributions of this paper are threefold.
(1) An unsupervised similarity measurement method be-

tween samples is proposed. This method considers both the
spectral distance and the spatial distance between samples in
HSI. Based on the SSJD, the similarity between each unlabeled
sample and each pre-defined object class is generated.

(2) A self-supervised learning strategy with adaptive soft
label is proposed. The adaptive soft label of each unlabeled
sample measures the probability that each unlabeled sample
belongs to each pre-defined object class. We add the adaptive
soft label to the FCN model training process by calculating the
cross entropy between the adaptive soft label and the output
of the FCN model.

(3) A self-supervised learning strategy with 3D transforma-
tion is proposed by rotating the original HSI image in spectral
domain and spatial domain.

This paper is organized as follows. In Section II, the
proposed method is explained in detail, including spatial-
spectral joint distance, adaptive soft label and adaptive knowl-
edge distillation, self-supervised learning strategy with 3D
transformation. In Section III, the experimental data and
parameters are described. In Section IV, the results are shown
and discussed, and the ablation study is analyzed. In Section
V, the conclusions of this paper are summarized.

II. METHOD

In this paper, an SSL method is proposed, which consists of
two main modules: SSL with 3D transformation and SSL with
adaptive knowledge distillation. These two modules improve
the existing SSL methods from the aspects of data input, self-
supervised label generation, and self-supervised training.

A. Self-supervised learning with 3D transformation

The existing SSL methods include the approaches that are
based on spatial relationship [49], [50], and the approaches
that are based on spatial rotation transformation [55], [56], etc.
But these methods are based on operations in two-dimensional
space. This paper presents an SSL method for geometric
transformation in three-dimensional space. Since HSIs are
three-dimensional cubes with 2D spatial dimension and 1D
spectral dimension, it can be rotated and flipped in three-
dimensional space. The details of the method are shown in
Fig. 1.

1) Spatial and spectral domain geometric transformation:
Different from the nature images, the HSIs are rotational
invariance and symmetry in spatial domain. In other words,
the horizontal rotation in spatial domain does not change the
predictions of the pixels in HSIs. Therefore, we rotate and
mirror the HSI in spatial domain to promote the robustness
of the HSI classification model. The cross entropy loss can
be calculated by rotating the ground-truth map with the
same horizontal rotation operation as the input HSI. In our
implementation, We define four horizontal rotation operations,
and the corresponding rotation angle set is T = {90◦ · i | i ∈
[0, 1, 2, 3]}. Specifically, given an HSI H, we first generate its
four horizontal rotated replicas {Ht | t ∈ T }, where Ht is the

3

3

P
C
k L
ay
er

kth kernel:W

H

D

H

W

Input Output

Progressive Convolutional Network

Fig. 2: The operations of the kth progressive convolution layer.
The size of the input matrix and the output matrix of the kth

PC layer are [W,H, k ×D] and [W,H,D], respectively.

replica of HSI H rotated by t degrees. We define mirroring in
2D spatial dimension as horizontal mirror. For each HSI Ht,
we perform a horizontal mirror operation as shown in Fig. 1
to generate the corresponding mirroring HSI H̄t.

Since HSIs have three dimensions (i.e., 2D spatial dimen-
sion and 1D spectral dimension), this paper proposes to rotate
HSIs in the spectral domain and predict the order of spectral
sequence. We define two kinds of spectral sequences. One is
frequency from high to low and its label is defined as 1. The
other is frequency from low to high and its label is defined as
0. We define mirroring in spectral dimension as hyperspectral
mirror operation. Combining three operations (i.e., horizon-
tal rotation, horizontal mirror and hyperspectral mirror), the
training set can be denoted as {Ht

1 ∪ H̄t
1 ∪Ht

0 ∪ H̄t
0 | t ∈ T },

where Ht
1 is the HSI H rotated by t degrees, and its spectral

sequence is arranged from high frequency to low frequency.
Ht

0 is the HSIH rotated by t degrees, and its spectral sequence
is arranged from low frequency to high frequency. H̄t

1 is the
HSI H̄ rotated by t degrees, and its spectral sequence is
arranged from high frequency to low frequency. H̄t

0 is the HSI
H̄ rotated by t degrees, and its spectral sequence is arranged
from low frequency to high frequency.

2) Progressive convolutional network: In order to realize
the geometric transformation in spatial and spectral domain, a
fully convolutional neural network called progressive convo-
lutional network (PCN) is designed. In PCN, the output of the
forward propagation rotates with the HSI. The operations of
the kth progressive convolution (PC) layer are shown in Fig.
2. In the kth PC layer, the input matrix size is W ×H and the
number of channels is D× k, where W and H are the width
and height of the HSI, respectively. The input matrix of the kth

PC layer is formed by concatenating the outputs of the 0th to
(k− 1)th PC layer. First, we use the padding strategy around
the input of the 0th PC layer. Second, for the (k − 1)th PC
layer, we employ D PC filters to generate the feature matrix
Ok−1. Third, for the kth PC layer, we concatenate the outputs
across all the previous PC layers into a matrix with a size
of W × H × D × k as the input of the kth PC layer. The
operations of the 0th PC layer of PCN can be formulated as
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follows: {
I0 =H , k = 0

O0 =PC0(I0) , k = 0
(1)

where O0 represents the output of the 0th PC layer. Then, the
input and output of the kth PC layer can be formulated as
follows:

{
Ik =[O0,O1, . . . ,Ok−1] , k > 0

Ok =PCk(Ik) , k > 0
(2)

where Ik and Ok is the input and output of the kth PC layer,
respectively. In each PC layer, the activation function ReLU
(Rectified Linear Unit) [59] is applied to promote the learning
ability of the PCN. In addition, the dropout strategy [60] is
adopted to improve the generalization ability of the model
and avoid over-fitting. In convolutional neural networks, the
deeper the layers, the larger the receptive field. Therefore, the
proposed PCN structure can perform convolution operation
on multi-scale receptive fields and extract multi-scale features
effectively.

3) Multi-PC layers fusion: The self-supervised learning
with 3D transformation strategy enlarges the input hyper-
spectral data, and the corresponding classification results are
expanded accordingly. In each PC layer, we introduce a fully-
connected (FC) layer to transfer each pixel feature into class
predictions (logits). The calculations are defined as follows:

αk = FCk(Ok) = Ok ·Wk + bk , k > 0 (3)

where αk is the prediction of the kth PC layer. Wk and bk
are the parameters of the kth FC layer. Thus, given the inputs
{Ht

1 ∪ H̄t
1 ∪Ht

0 ∪ H̄t
0 | t ∈ T } of PCN, the output αk of the

kth PC layer is a set of logits, i.e. Qk = {αt
k ∪ ᾱt

k | t ∈ T }.
We then fuse the set of logits to generate the merged result of
the kth PC layer by

α̃k =
1

|Qk|
∑

£(α̇t
k),∀α̇t

k ∈ Qk (4)

where £ is the softmax operation and |Qk| is the size of the
logits set.

Furthermore, we fuse the output logits generated from multi-
PC layers. Given the output logits set R = {α̃k | k ∈
[1, 2, ...Nk]} which were generated by the 1st to the N th

k PC
layers, we use the softmax function to normalize each logits
vector, and sum all normalized logits vectors from multi-layers
as follows:

αo =
1

Nk

Nk∑
k=1

£(α̃k),∀α̃k ∈ R (5)

where αo is the final prediction of our proposed network, Nk

is the total number of PC layers. Finally, we apply the argmax
function on αo and generate the HSI pixel-level labels with
the maximum logit value.
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B. Self-supervised learning with adaptive knowledge distilla-
tion

Knowledge distillation is a training strategy by transferring
the knowledge from one teacher network with a higher preci-
sion and larger model size to a student network with a smaller
model size. Knowledge distillation uses a larger network to
generate soft label, which is used to guide the training of the
student network. In this paper, adaptive knowledge distillation
is proposed by transferring the self-supervised knowledge to
the network with adaptive soft label and hard label. The flow
chart of SSAD distillation is shown in Fig. 3. The SSAD
method consists of two steps. The first step is to generate
adaptive soft labels for all unlabeled samples. The second
step is to distill the self-supervised adaptive soft labels into
the network.

Algorithm 1 Adaptive soft label generation

Input:
The labels set C
The labeled samples set L
The unlabeled samples set U

Output:
The adaptive soft labels set S;

1: for ui ∈ U do
2: for li ∈ L do
3: Compute the Euclidean Distance between ui and li
4: Compute the Kullback-Leibler divergence between ui

and li
5: Compute SSJD(ui, li) between ui and li by Eq. (6)
6: end for
7: end for
8: for ui ∈ U do
9: for ci ∈ C do

10: Compute the average SSJD(ui, ci) between ui and
class ci by Eq. (8)

11: Calculate the probability P (Φ(ui) = ci) that ui
belongs to class ci by Eq. (9)

12: end for
13: Generate the adaptive soft label S(ui) by Eq. (10)
14: Add S(ui) to adaptive soft label set S
15: end for
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1) Adaptive soft label generation: Given a hyperspectral
image H, we denote its labeled samples set, unlabeled samples
set and labels set as L, U and C. In order to label all unlabeled
samples based on spectral-spatial correlation between L and
U , we first define the spatial-spectral joint distance between
samples (SSJD). SSJD is composed of spatial distance and
spectral distance, which can be calculated by

SSJD(ui, li) =
√

ED(ui, li) · SID(ui, li) (6)

where li ∈ L, ui ∈ U , ED(ui, li) is the Euclidean Distance
between li and ui, SID(ui, li) is the spectral information
divergence [10] between ui and li which can be formulated
as:

SID(ui, li) = KL(ui ‖ li) + KL(li ‖ ui) (7)

where KL(li ‖ ui)) denotes the relative entropy of ui with
respect to li, which is also known as Kullback–Leibler diver-
gence. Based on SSJD between samples, we define the spatial-
spectral joint distance between sample and class, which can
be formulated as:

SSJD(ui, ci) =

Nci∑
r=1

SSJD(ui, lr)

|C|n(ui,lr)
,∀Φ(lr) = ci (8)

where ci ∈ C, Φ(lr) denotes the label of lr, |C| is the size of
the labels set, Nci is the total number of labeled samples which
belongs to class ci, n(ui, lr) is the ordinal by sorting all SSJDs
between ui and lr,∀Φ(lr) = ci. Given the distance between
sample and class, the probability that unlabeled sample ui
belonging to class ci can be formulated as:

P(Φ(ui) = ci) =
e−SSJD(ui,ci)|C|∑|C|
r=1 e

−SSJD(ui,cr)|C|
(9)

where e is the natural constant. Finally, the adaptive soft label
of ui can be generated by

S(ui) = [P(Φ(ui) = c1),P(Φ(ui) = c2), ...,

P(Φ(ui) = c|C|)]
(10)

The procedure of the adaptive soft label generation is given
in Algorithm 1.

2) Adaptive knowledge distillation: We design an optimiza-
tion method called adaptive knowledge distillation to help
PCN learn from both the hard labels and the adaptive soft
labels. We first calculate the loss between the prediction αk

and the hard labels G:

LGk = ∆(αk,G) = ∆(δ(αk),G) (11)

where ∆ is cross-entropy function and δ is softmax operation.
Second, we calculate the loss between the prediction αk and

the adaptive soft labels S by

LSk = ∆(δ(αk),S) (12)

In addition, we introduce another FC layer after each PC
layer to transfer each pixel feature into spectral sequence

TABLE I: The details of the HSI datasets, where W , H
and NB is the width, the height and the number of spectral
channels of the HSI, respectively. NC is the number of object
categories and NA is the number of activating pixels.

Datasets W H NB NC NA

IP 145 145 200 16 10249
UP 610 340 103 9 42776
HS 1905 349 144 15 15029

predictions. The forward propagation of spectral sequence
prediction is formulated by

ssk = FCs
k(Ok) = Ok ·W s

k + bsk , k > 0 (13)

where W s
k and bsk are the weights and bias of the kth FC

layer for predicting the spectral sequence, respectively. The
self-supervised loss on spectral domain can be formulated as
follows:

LS
k = ∆(αs

k, y) (14)

where y ∈ {0, 1} represents the order of the spectral sequence.
y = 1 indicates that the frequency of the input hyperspectral
data is from high to low. Otherwise, y = 0 indicates that the
frequency of the input hyperspectral data is from low to high.
Finally, the total loss for training PCN is defined as follows:

L =
1

Nk

Nk∑
k=1

(LG
k + LP

k + LS
k ) (15)

where NK is the total number of PC layers.

III. EXPERIMENTS

A. Datasets and evaluation

To demonstrate the effectiveness of the proposed method,
experiments are conducted on three well-known HSI datasets
including Indian Pines (IP), University of Pavia (UP) and
Houston (HS) 1. The details of the three datasets are listed
in Table I.

(1) IP dataset: This dataset was collected by Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensors in
northwestern Indiana. The spatial resolution of this image is
20 m covering spectral channels from 200 nm to 2400 nm.
This image is consisting of 349 by 1905 pixels. Before data
preprocessing, the spectral channels affected by noise and
water absorption (104–108, 150- 163, and 220) are removed,
and the remaining 200 spectral channels are involved in the
experiment. The corresponding ground-truth of IP dataset
contains 16 object categories. The false color composite image
of IP dataset and its corresponding ground-truth map is shown
in Fig. 4.

(2) UP dataset: This dataset was collected by the Reflective
Optics Systems Imaging Spectrometer (ROSIS) sensor in
Pavia, Italy. This image is mainly composed of urban features
around the University of Pavia with 610 by 340 pixels. The

1We will release the source code on GitHub after the paper is accepted.
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Fig. 4: The false color composite image and the corresponding
ground-truth map of the IP dataset.

Fig. 5: The false color composite image and the corresponding
ground-truth map of the UP dataset.

spatial resolution of this image is 1.3 m covering spectral
bands from 430 nm to 860 nm. UP dataset contains 115
spectral bands, 12 of which are removed becasue of noise and
water absorption, and the remaining 103 spectral channels are
involved in the experiment. The corresponding ground-truth
of UP dataset contains 9 object categories. The false color
composite image and the corresponding ground-truth map of
the UP dataset is shown in Fig. 5.

(3) HS dataset: This dataset was collected by the ITRES-
CASI 1500 sensor [61]. This image is mainly composed of
urban features around the University of Houston with 349 by
1905 pixels. The spatial resolution of this image is 2.5 m
covering spectral bands from 380 nm to 1050 nm. HS dataset
contains 144 spectral bands. The corresponding ground-truth
of UP dataset contains 15 object categories. The false color
image and the corresponding ground-truth map of HS dataset
is shown in Fig. 6.

The proposed method was evaluated on several tasks. In
each task, L labeled samples of each object category are
randomly sampled for training, and the rest of the activating

samples are used for testing. To report the classification results,
we conduct 10 independent runs for each task and compute
the mean OA (overall accuracy), AA (average accuracy) and
kappa coefficient with standard deviation over the 10 runs.

B. Parameter settings

Defining the format of the parameters of the kth(k > 0)
PC layer as [kernel size, Ni, No, padding, stride], where
Ni and No are the number of input filters and output filters,
respectively. The proposed PCN is a fully convolutional neural
network and the input size of the PCN is W×H×NB for each
epoch. Specifically, the input sizes of IP, UP and HS datasets
are 145× 145× 200, 610× 340× 103 and 1905× 349× 144,
respectively. We set the parameters of the kth PC layer as
[3×3, D, k×D, 1, 1]. As a result, the size of the input matrix
and the output matrix of the kth PC layer are [W,H, k×D] and
[W,H,D], respectively. In our proposed PCN, the embedding
operation of each PC layer is transferring a matrix with Ni

filters into a matrix with No filters and we set D = NB in
our experiments. Thus, given an HSI with NB bands and NC

categories, the parameters W and b of each FC are a matrix
in RNB×NC and a vector in RNC , respectively.

We set the range of the depth NK of our proposed network
from 1 to 15, and train these PCNs only under the cross-
entropy loss by Eq. (11). During training the model, we remove
the self-supervised learning with 3D transformation module.
For each depths of PCN, we conduct 10 independent runs,
and the average accuracy over 10 runs as well as the 70%
confidence intervals is in shown in Fig. 7. For each run, we
fuse the output predictions of all PC layers by Eq. (5). As
depicted in Fig. 7, with the increasing of the depth of PCN,
the average accuracy of the PCN rises first and falls later. As
the depth of PCN increases, the receptive field increases and
the oversized receptive field results in redundancy of input
information. Therefore, we set the depth of PCN to be 3
since the PCN with 3 PC layers requires less computation
and achieves better performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Depth of the PCN

45

50

55

60

65

70

A
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L=15
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Fig. 7: The accuracies of PCN with different layers on IP
dataset.



7

Fig. 6: The false color composite image and the corresponding ground-truth map of the HS dataset.

Fig. 8: Learning curves under different learning rates. The loss
values are recorded every 200 epochs.

In the proposed PCN, the parameter of the dropout (dropout
probability) is ρ = 0.5, and all the dropout layers are removed
in the testing stage. To avoid outliers, for each unlabeled
samples, we set the minimum SSJD to be no larger than
0.085. During the training stage, we train our network by Eq.
(15) and use Adam to perform stochastic optimization. The
learning rate determines the convergence of the model, which
indirectly affects the classification performance. Referring
to some relevant experiments [62], [63], we discussed the
influence of learning rate on the loss value at 10−3 and 10−4.
As depicted in Fig. 8, the learning curves show that when
the learning rate is 10−4, a smaller and more stable loss
value can be obtained.We set the initial learning rate and the
weight decay to 10−4 and 10−5, respectively. After each 1000
iterations, the learning rate is reduced by 0.1.

IV. RESULTS AND DISCUSSION

A. Accuracies

In this study, for the IP and the UP datasets, the experiments
were conducted with the L number of supervised samples
for classification as 5 and 10, respectively, due to the limited
number of labeled samples for a class (i.e., ’Oats’). For the

HS dataset, L was set to 50 and 80, respectively, because this
dataset has relatively larger number of training samples. The
classification maps are shown in Figs. 9-11.

We compare our method with state-of-the-art HSI clas-
sification ones under the small-scale training samples. The
compared methods include 2D-CNN, 3D-CNN [64], DRNN
(deep recurrent neural networks) [61], DBMA (double-branch
multi-attention mechanism network) [65], MSDN (end-to-end
3-D dense convolutional network) [66] and DFSL (deep few-
shot learning for HSI classification) [45]. The comparisons
of IP, UP, and HS datasets are shown in the Table II-IV,
respectively.

B. Ablation study

The proposed method in this paper mainly consists of
two strategies, i.e., SSL with 3D transformation and adaptive
knowledge distillation. To demonstrate the effectiveness of
each strategy, an ablation study was performed on IP dataset.
In other words, the accuracy of the proposed method was
tested when the two strategies were removed.

1) Effectiveness of SSL with 3D transformation: In this
ablation study, the SSL with 3D transformation is used in
both the training and the testing stages. Thus, the output of
PCN with 3 PC layers is a set of logits: Q = {αt

k ∪ ᾱt
k | t ∈

T , k ∈ [1, 2, 3]}. Then, the output logits are fused by Eq. (4) to
generate the prediction α̃k of the kth PC layer. The accuracies
are shown in Table V, where ‘w/ SSL-3DT’ means the network
was trained with the 3D transformation strategy (3DT). The
‘Baseline’ method is a pure 3 layer PCN without the 3D
transformation strategy. Compared with the results generated
by the ‘Baseline’ method, the results generate by PCN with
the 3D transformation strategy perform better in all settings.
Meanwhile, the results generated by the deeper PC layer are
higher than these generated by previous PC layers. Finally,
we fuse the output logits of all the PC layers by Eq. (5) to
generate the fused results: αo. As shown in Table V, the fused
results αo perform the best accuracies. These improvements
indicate the usefulness of SSL with 3D transformation.
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TABLE II: Classification results (%) by using 5 and 10 labeled samples for each class on the IP dataset (the bold value is the
best accuracy in each case).

Class 2D-CNN 3D-CNN DRNN DBMA MSDN DFSL SSAD(Ours)
L=5 L=10 L=5 L=10 L=5 L=10 L=5 L=10 L=5 L=10 L=5 L=10 L=5 L=10

1 73.3±3.1 77.3±2.7 80.8±2.9 88.9±2.7 79.5±3.9 87.0±3.5 91.8±3.2 92.5±4.4 85.0±4.7 95.7±1.3 83.3±1.6 92.7±1.8 97.3±1.8 99.3±0.3
2 62.2±9.6 71.0±8.7 61.3±8.7 69.4±9.2 71.0±7.6 79.3±5.3 59.7±11.9 67.3±10.6 54.8±12.0 70.5±5.6 53.1±7.1 64.1±5.9 70.4±4.1 80.9±2.5
3 55.1±9.2 61.0±8.2 67.4±6.7 65.3±9.1 62.2±8.6 67.3±7.6 64.9±10.9 73.5±9.6 61.4±10.9 74.7±4.8 63.7±7.3 70.7±5.4 75.1±3.8 79.7±2.3
4 63.0±5.2 65.7±7.6 69.0±8.1 73.5±1.6 67.6±3.7 74.9±4.9 89.3±2.1 79.8±2.6 81.1±7.3 85.3±4.7 90.1±5.6 90.7±3.9 79.8±6.7 83.5±3.4
5 60.6±9.1 63.6±9.1 70.4±7.9 68.7±8.2 65.2±8.7 71.9±8.4 66.8±8.3 74.8±12.7 60.2±7.2 75.3±8.0 65.0±10.0 71.0±5.4 75.0±1.9 82.1±2.3
6 62.4±7.1 66.0±9.3 72.4±6.4 70.6±9.5 66.4±7.5 73.7±6.6 66.5±13.1 78.7±11.8 65.1±15.6 80.0±6.6 71.7±8.3 69.3±7.9 81.6±6.2 83.0±2.4
7 70.9±4.5 70.2±4.4 82.8±5.1 75.1±5.1 74.5±4.8 81.9±4.9 91.3±1.3 73.1±2.5 83.9±2.5 84.8±0.0 90.7±3.1 100.0±0.0 92.6±3.0 89.4±3.6
8 66.0±6.1 78.0±5.3 80.7±9.5 86.8±4.0 78.0±4.4 84.1±5.0 90.4±3.7 90.7±3.8 84.2±6.0 92.4±2.8 91.9±3.5 90.5±3.4 95.3±4.5 97.8±2.5
9 80.3±4.6 89.6±2.5 83.6±2.3 100.0±0.0 89.3±3.3 98.5±1.2 85.9±7.1 84.6±6.9 81.1±13.9 90.8±1.4 94.7±1.8 89.5±4.9 95.1±7.2 96.0±1.4
10 53.0±9.4 60.8±9.2 57.5±8.3 67.6±11.0 59.8±8.1 65.3±8.9 69.2±15.6 74.6±13.7 70.7±15.5 77.7±6.7 68.6±8.5 75.4±7.4 76.3±4.2 80.4±2.4
11 63.5±8.4 68.7±8.7 59.2±7.5 68.8±7.7 71.0±8.4 73.3±7.7 61.8±9.9 75.1±16.0 63.4±14.2 75.2±8.0 60.9±10.2 71.2±7.4 81.1±2.5 82.9±1.9
12 52.5±7.7 68.7±6.1 52.9±9.5 67.2±4.3 65.0±6.6 72.3±7.2 71.9±5.2 74.8±4.5 64.2±8.3 77.2±3.4 66.2±4.2 77.0±2.5 75.2±2.6 81.2±2.1
13 66.7±7.5 72.1±4.3 75.5±1.4 77.3±2.5 73.0±4.2 71.6±4.2 88.9±4.4 82.8±4.9 86.8±2.9 88.5±1.2 85.2±1.6 92.4±1.7 93.9±1.6 91.5±2.6
14 73.7±4.8 79.7±4.6 81.6±5.9 78.8±3.1 80.6±3.9 88.3±2.6 85.5±3.1 85.1±2.6 79.8±4.7 88.8±1.7 86.2±2.2 86.6±2.1 88.6±3.1 91.8±2.1
15 66.9±6.2 70.2±2.5 79.4±3.1 73.5±2.1 71.7±3.5 79.8±3.6 89.3±2.4 80.2±3.5 83.9±5.3 87.5±1.1 94.8±1.4 90.9±2.7 88.4±3.5 87.1±2.3
16 67.0±8.7 70.9±7.1 91.0±2.2 83.6±1.2 72.0±3.5 80.5±2.2 90.7±3.1 94.8±3.1 85.4±6.0 99.0±0.4 84.9±1.1 82.5±2.7 89.8±2.4 97.7±2.0

OA 62.4±5.5 69.1±4.8 66.6±4.0 71.3±3.5 69.8±5.8 75.5±4.3 70.5±5.9 76.7±5.4 67.7±6.3 78.9±2.4 69.4±3.1 75.4±2.9 80.3±2.5 84.3±2.0
AA 64.8±4.9 70.8±4.6 72.8±3.7 75.9±2.5 71.7±4.4 78.1±3.4 79.0±4.3 80.2±2.4 74.4±3.9 84.0±2.2 78.2±2.3 82.2±2.4 84.7±2.3 87.8±1.6
κ 61.8±4.7 69.0±5.1 64.7±4.3 69.1±3.6 68.6±5.1 75.6±3.9 70.5±6.2 75.3±5.5 62.6±7.1 75.6±2.6 68.7±3.2 74.4±3.3 78.8±3.1 79.9±2.0

TABLE III: Classification results (%) by using 5 and 10 labeled samples for each class on the UP dataset (the bold value is
the best accuracy in each case).

Class 2D-CNN 3D-CNN DRNN DBMA MSDN DFSL SSAD(Ours)
L=5 L=10 L=5 L=10 L=5 L=10 L=5 L=10 L=5 L=10 L=5 L=10 L=5 L=10

1 64.6±6.0 74.9±5.6 65.6±8.5 78.9±3.3 62.4±5.1 83.5±3.4 73.9±5.8 82.0±3.5 65.9±5.9 68.5±7.8 72.8±6.1 84.1±4.5 82.5±2.2 86.6±1.9
2 68.9±4.4 76.2±3.3 71.9±4.1 78.5±4.3 74.2±3.8 78.9±3.1 79.9±9.8 79.5±4.5 75.8±5.3 78.8±5.3 80.3±5.1 80.1±5.6 80.3±2.8 84.5±2.4
3 61.8±5.5 75.4±3.8 63.4±7.2 80.8±3.4 55.4±4.9 86.4±3.2 66.4±8.5 75.7±3.7 63.4±6.5 66.1±7.4 56.3±6.2 76.7±4.8 85.0±2.3 82.2±2.0
4 76.6±4.6 85.0±3.6 81.7±6.5 79.4±3.2 82.3±3.6 81.9±2.0 90.0±5.8 88.2±3.6 86.0±4.9 87.6±6.5 96.7±2.5 89.6±4.6 83.6±2.5 91.6±1.9
5 79.0±3.6 86.8±2.8 83.8±3.1 79.4±4.3 86.2±2.2 81.2±2.7 91.0±5.9 91.2±4.4 91.2±2.0 91.3±2.4 97.9±2.4 90.1±2.6 83.9±2.8 93.9±2.4
6 68.6±5.4 71.1±4.2 67.2±6.8 80.9±3.8 71.4±5.3 73.1±4.8 75.3±6.0 85.0±3.9 81.8±3.2 84.3±6.2 73.8±6.4 85.4±7.0 84.2±2.4 89.4±2.1
7 73.6±4.6 81.3±3.5 81.5±5.6 80.8±3.9 80.1±3.9 78.8±2.6 83.0±5.1 88.4±4.1 88.5±4.5 84.0±3.4 85.8±4.8 89.4±3.7 83.9±2.6 91.8±2.2
8 68.7±6.7 75.9±4.9 71.4±8.2 81.0±4.5 76.0±6.2 79.1±4.5 80.5±5.5 84.4±4.5 86.0±3.7 89.4±4.2 80.1±8.4 86.1±5.2 85.1±2.8 89.0±2.4
9 77.5±3.5 86.3±2.9 81.1±2.7 79.7±3.4 84.4±2.2 81.3±2.1 93.3±3.2 90.9±3.5 89.1±2.8 87.9±2.4 92.4±2.3 93.2±2.2 84.8±2.2 90.2±1.9
OA 69.0±4.9 76.7±4.5 71.5±4.2 79.4±3.7 72.6±4.1 79.7±4.1 79.3±4.1 82.3±4.1 77.1±3.8 79.5±3.1 79.3±3.3 83.3±2.9 82.3±2.5 86.8±2.3
AA 71.0±4.3 79.2±4.1 74.2±3.8 79.9±3.7 74.7±3.8 80.5±3.9 81.5±4.0 85.0±3.9 80.9±3.4 82.0±2.9 81.8±3.2 86.1±2.8 83.7±2.6 88.8±2.1
κ 68.4±5.1 74.8±4.7 67.9±4.8 76.2±4.2 71.9±4.3 77.3±3.8 75.1±4.6 79.3±4.4 73.9±4.2 76.0±3.2 75.4±3.7 80.0±3.3 81.2±2.8 83.4±2.4

TABLE IV: Classification results (%) by using 50 and 80 labeled samples for each class on the HS dataset (the bold value is
the best accuracy in each case).

Class 2D-CNN 3D-CNN DRNN DBMA MSDN DFSL SSAD(Ours)
L=50 L=80 L=50 L=80 L=50 L=80 L=50 L=80 L=50 L=80 L=50 L=80 L=50 L=80

1 77.1±2.7 80.6±4.6 84.6±3.5 86.8±1.6 83.7±2.5 84.2±4.2 84.7±1.6 90.3±2.8 84.0±1.5 85.5±3.8 87.6±3.0 90.3±1.7 89.0±2.1 86.3±1.4
2 77.8±4.1 79.7±5.0 81.4±4.1 87.4±1.1 78.0±4.6 81.8±3.0 85.6±1.0 87.9±2.6 84.9±1.0 82.4±2.4 86.5±1.9 84.5±1.5 87.8±1.9 89.0±1.9
3 81.5±1.8 83.8±1.5 85.5±1.8 88.8±0.7 82.9±2.0 91.0±2.5 86.6±0.5 95.9±1.1 85.9±1.7 91.3±0.4 91.6±0.4 99.9±0.1 96.9±1.3 92.6±0.7
4 75.3±4.1 72.0±3.3 80.6±4.8 85.4±1.5 74.2±4.2 79.7±4.7 84.5±1.3 85.0±3.2 84.0±1.4 80.9±3.3 84.9±2.5 80.1±1.6 87.6±2.0 90.0±1.9
5 77.7±3.8 84.9±2.9 80.0±2.8 87.2±1.1 80.4±4.0 86.4±2.9 84.7±1.0 88.8±2.0 84.1±1.1 84.0±2.8 86.8±2.0 87.3±1.5 85.9±1.9 91.9±0.7
6 80.9±3.9 84.9±3.5 86.4±3.4 87.4±1.3 82.3±1.7 88.1±2.3 85.7±1.4 93.4±2.3 85.0±1.7 87.4±2.4 89.1±1.9 95.8±1.3 88.4±1.6 90.8±1.2
7 70.0±3.8 71.4±5.1 73.6±4.6 77.3±3.1 77.1±5.3 77.6±5.9 74.5±2.8 77.7±4.0 74.2±3.0 80.1±1.4 79.2±2.4 76.6±2.4 85.3±3.1 87.0±2.0
8 67.0±4.3 76.6±5.6 67.9±4.7 77.5±2.4 66.9±6.5 76.1±4.4 73.5±3.2 76.6±3.8 72.5±3.9 69.0±4.2 73.8±3.5 74.0±2.2 72.2±2.9 84.1±2.0
9 66.2±7.3 80.0±4.2 68.4±4.7 72.8±4.6 72.9±3.3 84.9±5.4 68.4±5.1 72.2±5.7 68.5±5.2 74.3±3.1 72.8±4.8 72.8±4.1 83.7±5.3 84.4±2.6
10 71.5±4.3 76.5±3.7 77.1±3.8 80.8±3.5 81.5±4.2 84.2±3.3 78.2±3.0 85.5±3.9 77.7±3.1 81.5±1.4 82.0±2.7 88.3±2.4 90.2±3.1 89.8±1.8
11 68.5±5.4 71.3±2.9 71.9±4.0 75.4±3.4 73.7±4.0 80.9±4.9 71.5±3.9 79.5±4.4 71.8±4.1 76.7±2.0 75.4±3.3 85.0±2.9 89.0±3.8 87.3±2.3
12 66.5±6.1 68.2±3.7 67.9±4.6 74.0±4.4 70.3±4.2 77.5±4.4 69.9±4.0 74.1±4.6 69.8±4.4 76.3±3.9 74.7±4.3 74.7±3.4 81.5±4.4 89.0±1.6
13 57.8±6.2 88.0±4.1 64.2±5.0 65.9±4.2 81.9±5.9 88.0±4.1 57.7±4.9 68.0±5.5 58.3±5.2 73.6±5.3 66.2±5.6 77.7±3.6 88.4±4.6 85.0±2.8
14 79.9±3.7 85.9±3.3 83.7±2.2 88.6±0.7 83.7±2.8 90.3±2.5 86.6±0.7 95.0±1.5 85.9±1.2 89.0±2.4 90.4±1.6 98.1±1.3 87.1±1.7 92.3±0.7
15 79.1±4.8 84.1±3.4 81.0±2.2 88.8±1.1 81.6±3.5 89.3±3.4 86.5±1.0 92.7±1.8 85.7±1.0 87.9±3.3 89.9±2.3 95.1±1.5 85.1±1.9 92.2±0.8
OA 72.5±4.7 77.5±3.4 76.2±3.7 81.1±3.5 76.9±3.8 82.6±3.5 78.2±2.5 83.0±3.1 77.7±2.6 80.2±3.3 81.3±2.4 83.3±2.9 85.9±2.2 88.3±1.7
AA 73.1±3.8 79.2±3.2 76.9±2.1 81.6±2.3 78.1±3.5 84.0±2.9 78.6±2.4 84.2±2.5 78.2±2.6 81.3±2.8 82.1±1.7 85.3±3.8 86.5±1.8 88.8±1.6
κ 71.2±4.1 77.4±4.0 75.0±3.9 80.3±3.9 75.9±3.7 81.4±3.4 77.3±3.0 81.8±3.3 77.0±2.8 79.2±3.3 80.3±2.8 81.6±2.7 84.9±2.5 87.9±1.8



9

Fig. 9: The classification map of the IP dataset. (a) 2D-CNN (L=5). (b) 3D-CNN (L=5). (c) DRNN (L=5). (d) DBMA (L=5).
(e) MSDN (L=5). (f) DFSL (L=5). (g) The proposed method (L=5). (h) 2D-CNN (L=10). (i) 3D-CNN (L=10). (j) DRNN
(L=10). (k) DBMA (L=10). (l) MSDN (L=10). (m) DFSL (L=10). (n) The proposed method (L=10).

Fig. 10: The classification map of the UP dataset. (a) 2D-CNN (L=5). (b) 3D-CNN (L=5). (c) DRNN (L=5). (d) DBMA (L=5).
(e) MSDN (L=5). (f) DFSL (L=5). (g) The proposed method (L=5). (h) 2D-CNN (L=10). (i) 3D-CNN (L=10). (j) DRNN
(L=10). (k) DBMA (L=10). (l) MSDN (L=10). (m) DFSL (L=10). (n) The proposed method (L=10).

TABLE V: The effectiveness of SSL with 3D transformation
strategy.

Methods L = 5 L = 10 L = 15

Baseline 53.0 ± 3.1 59.1 ± 2.7 66.5 ± 2.4
α̃1 w/ SSL-3DT 57.7 ± 2.4 61.1 ± 2.9 67.4 ± 2.5
α̃2 w/ SSL-3DT 58.5 ± 3.9 64.6 ± 1.8 68.1 ± 1.6
α̃3 w/ SSL-3DT 60.7 ± 2.9 66.3 ± 2.8 70.1 ± 1.9
αo w/ SSL-3DT 69.3 ± 3.0 74.7 ± 1.8 78.1 ± 1.6

2) Effectiveness of SSL with Adaptive Knowledge Distilla-
tion: In this ablation study, we train the PCN with ataptive
knowledge distillation but without 3D transformation. The

TABLE VI: The effectiveness of SSL with adaptive knowledge
distillation strategy.

Methods L = 5 L = 10 L = 15

Baseline 53.0 ± 3.1 59.1 ± 2.7 66.5 ± 2.4
α1 w/ SSL-AKD 59.3 ± 3.7 60.3 ± 2.8 63.7 ± 2.3
α2 w/ SSL-AKD 71.1 ± 3.2 77.2 ± 3.3 78.0 ± 2.5
α3 w/ SSL-AKD 72.1 ± 3.5 80.3 ± 2.7 82.2 ± 2.7
αo w/ SSL-AKD 73.2 ± 3.9 83.5 ± 2.1 84.6 ± 2.3

classification results are shown in Table VI, where ‘w/ SSL-
AKD’ means the PCN trained under the strategy of SSL
with adaptive knowledge distillation (AKD). The ‘Baseline’
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Fig. 11: The classification map of the HS dataset. (a) 2D-CNN (L=50). (b) 2D-CNN (L=80). (c) 3D-CNN (L=50). (d) 3D-CNN
(L=80). (e) DRNN (L=50). (f) DRNN (L=80). (g) DBMA (L=50). (h) DBMA (L=80). (i) MSDN (L=50). (j) MSDN (L=80).
(k) DFSL (L=50). (l) DFSL (L=80). (m) The proposed method (L=50). (n) The proposed method (L=80).

TABLE VII: The effectiveness of the proposed method.

Methods L = 5 L = 10 L = 15

Baseline 53.0 ± 3.1 59.1 ± 2.7 66.5 ± 2.4
α̃1 w/ 3DT&AKD 67.4 ± 3.4 73.3 ± 2.6 73.4 ± 2.2
α̃2 w/ 3DT&AKD 74.5 ± 2.5 82.7 ± 2.7 81.7 ± 2.2
α̃3 w/ 3DT&AKD 76.5 ± 3.0 83.5 ± 1.9 83.9 ± 2.3
αo w/ 3DT&AKD 80.3 ± 2.5 84.3 ± 2.0 86.4 ± 1.5

TABLE VIII: The comparisons of different components in the
proposed method.

Methods L = 5 L = 10 L = 15

Baseline 53.0 ± 3.1 59.1 ± 2.7 66.5 ± 2.4
αo w/ SSL-3DT 69.3 ± 3.0 74.7 ± 1.8 78.1 ± 1.6
αo w/ SSL-AKD 73.2 ± 3.9 83.5 ± 2.1 84.6 ± 2.3
αo w/ 3DT&AKD 80.3 ± 2.5 84.3 ± 2.0 86.4 ± 1.5

method is a pure 3 layer PCN without the ataptive knowledge
distillation strategy. Similar to the performances in the Table
V, the results generated by different PC layers are higher
than those generated by the ‘Baseline’ model. The fused
results show better performance than the results generated
by the ‘Baseline’ method and each single PC layer. These
improvements indicate the usefulness of ataptive knowledge
distillation.

3) Effectiveness of SSL with both 3D transformation and
adaptive knowledge distillation: In this ablation study, the
PCN was trained under adaptive knowledge distillation with
the 3D transformation strategy. The results of different PC
layers ({α̃k}3k=1) and the fused result (so) over all PC layers
are generated by Eq. (4) and Eq. (5), respectively. The results
are shown in Table VII, where ‘w/ 3DT&AKD’ means the
PCN is trained under adaptive knowledge distillation with 3D
transformation strategy. Compared with the results generated
by ‘Baseline’ method, the improvements of our final fusion
results for L = 5, 10, and 15 are 27.3%, 25.2%, and
19.9%, respectively, showing the effectiveness of the proposed
method.
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TABLE IX: The testing time of the proposed method and
comparison methods.

Methods 3D-CNN DBMA MSDN DFSL Ours

Time(s) 13.67 13.56 12.46 11.13 10.82

To clearly show the effectiveness of different strategies in
our proposed method, the final results of the PCN trained
with different strategies are listed in Table VIII. The results
show that the combination of these strategies helps the PCN
to achieve the best results over all settings. This ablation study
illustrates the complementarity between adaptive soft labels
and 3D transformation strategy.

C. Time Consumption

The time consumption of the proposed method and the
comparison methods was tested on the IP dataset. The detailed
results are shown in Table IX. The computer environment for
time testing in this paper is shown as follows: the processor is
“Intel(R) Xeon(R) Gold 5118”; the graphics card is “NVIDIA
GeForce RTX 2080 Ti” with “CUDA version 10.0.130”; the
programming language and the deep learning platform are
Python (version 3.6.2) and PyTorch (version 1.2.0), respec-
tively. Table IX shows that the time consumption for testing
the whole IP dataset of the proposed method is similar with
those of other methods under the same computer environment.

V. CONCLUSION

This study proposed a self-supervised learning method
with adaptive distillation, including the strategies of adaptive
knowledge distillation, data transformation in spectral domain
and spatial domain, for HSI classification with a small number
of labeled samples. The experiments were conducted for veri-
fication, and some main conclusions were reached as follows.

(1) The proposed method outperforms existing popular HSI
classification methods in presence of small annotated training
samples. The comparative analysis of results suggest that the
proposed method achieves state-of-the-art result for the few-
shot hyperspectral image classification.

(2) The ablation study demonstrates that both modules
(SSL with adaptive knowledge distillation and SSL with 3D
transformation) are effective for improving the accuracy.

(3) The fusion strategies improve the performance of pixel-
level classification under the limited labeled training samples.

The SSL method proposed in this paper boosts the existing
SSL methods by two modules: SSL with 3D transformation
and SSL with adaptive knowledge distillation. Next, we will
explore the SSL method based on nonlinear transformation
and generative adversarial network.
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