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Abstract—In Smart Grids (SG), Electricity Theft Detection
(ETD) is of great importance because it makes the SM cost-
efficient. Existing methods for ETD cannot efficiently handle
data imbalance, missing values, variance, and non-linear data
problems in the smart meter data. Therefore, an effective
integrated strategy is required to address underlying issues and
accurately detect electricity theft using big data. In this work,
a simple yet effective approach is proposed by integrating two
different modules, such as data pre-processing and classification,
in a single framework. The first module involves data imputation,
outliers handling, standardization, and class balancing steps to
generate quality data for classifier training. The second module
classifies honest and dishonest users with a Support Vector
Machine (SVM) classifier. To improve the classifier’s learning
trend and accuracy, a Bayesian optimization algorithm is used to
tune SVM’s hyperparameters. Simulation results confirm that the
proposed framework for ETD significantly outperforms previous
machine learning approaches such as random forest, logistic
regression and SVM in terms of accuracy.

Index Terms—Big data, Electricity theft detection, Feature
engineering, Data classification, Smart grid.

I. INTRODUCTION

In the energy sector, power systems are electrical grids
that provide electricity to homes and industries within a large
geographical area. Electricity is an expensive commodity and
needs to be carefully and efficiently utilized. From genera-
tion to distribution, a power network encounters two types
of losses: Technical Losses (TL) and Non-Technical Losses
(NTL). TL occur due to losses in cables, transmission lines and
transformers during energy transfer and cannot be prevented
within a distributed network. In contrast, NTL occur when
there is an illegal usage of electricity with an aim to escape
from utility charges. Meter tempering and bypassing, tapping
on secondary voltages, and synchronously switching power
circuits are one of the few examples of NTL in power network.
The primary cause of NTL is electricity theft, which gives rise
to approximately $89.3 billion of revenue loss annually [1].

Electricity theft is one of the SG’s leading drivers that often
causes a wide range of anomalies at planning and distribution
levels. To counter this, the role of Electricity Theft Detection
(ETD) has become increasingly important in the SG. The
advanced methods for ETD based on big data is always
an essential and challenging issue. The primary purpose of
ETD is to minimize NTL in the power system and balance
the energy supply-demand gap. An accurate and stable ETD

method brings extraordinary energy management compliance
and develops a win-win situation for the generation and
consumption side stakeholders [2].

Accurate ETD methods are of great importance for SGs but
many intricate factors in big data would intensify the difficulty
of using these methods for ETD. The big data phenomenon
is dynamic and complex that involves distinctive aspects of
the time series data where the variation trends over time are
non-linear. Accurate ETD is essential, but it is challenging
to increase scalability, robustness, and accuracy due to the
widespread non-linear data. SMs continuously monitor the
associated factors such as time and consumption pattern of a
consumer’s consumption in real-time. As a result, the amount
of data available for ETD is significantly big and hence
challenging to handle, especially for ETD [4].

In recent years, researchers have extensively explored dif-
ferent types of techniques for theft detection using big data
from SG. For instance, Maddilina et al. [5] used Support
Vector Machine (SVM) and a well-known boosting classifier,
named XGBoost for identifying anomalies in usage pattern of
consumers. With smart meter’s (SM) data analysis, consumers
are ranked based on their load profiles. Afterwards, essential
features are extracted from auxiliary data. The SVM utilized
the empirical risk minimization principle to improve the train-
ing process and enhance classification performance with the
boosting algorithm. In the proposed strategy, the authors did
not take into account the data preparation steps. However,
like any other Machine Learning (ML) algorithms, SVM’s
performance is further improved when refined data are fed
into the classifier for training.

Authors in [6] proposed a hybrid technique combining
Multi-Layer Perceptron (MLP) and Long Short-Term Memory
(LSTM) methods. The MLP is used for auxiliary data, whereas
time-sequenced electricity data are evaluated with LSTM. The
authors achieved good prediction results; however, model’s
classification performance could be further improved if the
class imbalance problem was solved during the data prepara-
tion stage. Besides, the model’s performance is relatively high
on fewer data training in terms of False Positive Rate (FPR).
However, when the data input for model training is high, its
performance degraded to 54.5% Precision-Recall Area Under
the Curve (PR-AUC).

In [7], Shuan et al. used a well-known deep neural network
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model named as Convolutional Neural Network (CNN) for the
detection of electricity theft accurately. Nevertheless, a major
drawback of model’s generalization arises when classification
output is taken from a fully connected layer CNN. To address
this problem, authors in [8] applied a Random Forest (RF)
technique to get final output of the classification task. In
the proposed work, the imbalanced class problem is solved
with Synthetic Minority Oversampling Technique (SMOTE).
Although the proposed method achieved better generalization
capabilities however, SMOTE’s synthetic data generation cre-
ates overfitting problem. When a model overfits, it means that
model is better for training but not for testing/classification.

Most of the recent works are based on selection or clas-
sification approaches where ML and Artificial Neural Net-
works (ANNs) have shown improved performance for ETD
strategies. However, both methods have limited abilities. For
example, ML models have low detection rate and high FPR,
failing to handle imbalanced class and overfitting problems.
Similarly, ANN models have limited generalization capabil-
ities, sensitivity to erroneous values, limited control over
convergence/stability, and limited abilities to deal with the un-
certainty. Besides, the learning-based models do not consider
the big data characteristics, and their performance evaluation
criterion are based only on price/load data, which is not large
[8], [9]. With the consideration of big data characteristics,
the classification accuracy of a model needs to be further
improved.

This work investigates ETD issues like binary classification
task using big data from the SG. Inspired by [6], Fig.1 shows
the framework of the proposed system that is based on two
modules: data preparation and classification. For this purpose,
an SVM underpinned framework is proposed to solve the chal-
lenging binary classification task. To divide the given data into
correct classes (honest and fraudulent), SVM is used where
it finds an optimal boundary among different data points.
Although SVM is an appropriate approach for classification
tasks, the following challenges need to be addressed to further
enhance classification accuracy.

• Computational Overhead: In the work, Hu et al. [10] in-
vestigated that SVM’s performance is adversely affected
by unreliable information due to which model’s compu-
tational overhead increases. In ETD problem, extraneous
and redundant features increase computational overhead
and make the classifier’s training process difficult, which
in return decrease the classification accuracy of the
model.

• Hard to Tune Hyperparameters: In SVM, three super
parameters, namely kernel parameter, intensive loss func-
tion, and cost penalty control the classifier’s performance.
To obtain optimum results, tuning these super parameters
is a relatively tricky task for higher accuracy and bet-
ter efficiency. Two well-known methods, namely cross-
validation and gradient descent are used to adjust SVM’s
super parameters [6]. However, both methods make the
converging process hard and increase computational com-
plexity.

To address above mentioned challenges, an integrated frame-
work for ETD is proposed as shown in Fig.1. First, data
preparation module performs interpolation, normalization, and
balancing tasks. Precisely, data interpolation fills the missing
values and brought consistency in the data set. Afterward,
the data normalization (puts the values between 0–1) is per-
formed to bring uniformity. Once the data preparation step
is completed, the processed data are sent to the classifier. In
the proposed framework, we chose SVM because it performs
well on the classification tasks [6]. SVM is very sensitive to
the value of the hyperparameter. For this purpose, a Bayesian
Optimization Algorithm (BOA), is employed to detect elec-
tricity theft accurately. The main contributions of the research
work to achieve higher accuracy are listed below:

1) We propose an integrated framework that is based on
two modules, namely pre-processing and classification.
Due to the cascading effect, SM’s theft data is efficiently
handled and analysed.

2) To achieve this framework, data preparation steps are
proposed to accomoate data imputation, outliers handling,
standardization and handling imbalanced class for refin-
ing data.

3) We also design a BSVM algorithm to tune the hyperpa-
rameters of SVM. The BSVM has higher accuracy and
computational efficiency than the basic SVM and recent
ML techniques in the proposed area.

4) For performance evaluation, extensive simulations on
real-world data traces of grid’s workload have been
considered. The numerical results show that the proposed
model achieve better performance statistics than bench-
mark methods.

The rest of the article is organised as follows. Section II
describes the data preparation module of the proposed ETD
framework. Similarly, Section III demonstrates the SVM clas-
sifier and its enhancement with BOA. The proposed framework
for ETD is verified with multiple scenarios in Section IV.
Finally, Section V concludes this work.

II. DATA PREPARATIONS

The preliminary analysis of data is a mandatory step in
high dynamic time series analysis, which includes imputation,
data standardization and handling imbalanced class data. The
details of these methods are given below.

A. Handling Missing Values

The electricity consumption record of consumers is usually
composed of incomplete information or missing values. The
reasons behind the issue may be the failure of hardware and
corruption of data. In high time-series data, the missing values
can not be dropped; therefore, the imputation is performed
synthetically to fill these values. In most cases, the filling of
missing values is performed through averaging. In this paper,



Fig. 1: Proposed Framework for Electricity Theft Detection

the missing values are recovered through interpolation method
[11] calculated using Eq. (1):

f(xi) =

{ (
xi−1+xi+1

2

)
, if xi ∈ NaN, xi±1 /∈ NaN,

xi, otherwise,
(1)

where xi is the recorded or missed (null) observation in the
dataset. The null value is represented as NaN. If xi is null
then it is filled according to Eq. (1).

B. Handling Outliers
In the State Grid Corporation of China (SGCC) dataset,

there are numerous outliers due to which data is skewed;
hence training process becomes complex. These outliers must
be identified and removed to avoid overfitting and time com-
plexity problems while preparing data for training. The “three-
sigma rule of thumb” proposed in [12] is utilized for detecting
and recovering the outliers. Mathematically, it is expressed in
Eq. (2):

xout =

{
X, if xi > X,
xi, otherwise,

(2)

where X denotes Avg(xi + 2σ(xi)).

C. Data Standardization
The data standardization is performed by min-max normal-

ization method [13] as given in Eq. (3):

xnew =
xi −min(x)

max(x)−min(x)
. (3)

D. Handling Imbalanced Data
One of the critical problems in SM’s data is the majority

class’s domination (honest consumers) compared to the mi-
nority class (thieves). In such a scenario, the distribution is
not normal and skewed towards the majority class because
of an unclear decision boundary [14]. The classifier would
become biased, may not learn critical features, and tend
to become overfit. Traditional methods to deal with such
issues are random under-sampling and random oversampling.
However, these methods are not preferred because of specific

problems, namely computational overhead, under and overfit-
ting. Considering the nature of these problems, we opt for
a relatively new class balancing approach that combines the
properties of SMOTE and Tomek Links techniques; we name
the new technique as STLU. This technique has not been
utilized in ETD strategies for class balancing to the best of our
knowledge. In STLU, SMOTE is an oversampling technique,
which synthesizes new plausible examples in the majority
classes. In contrast, Tomek Links identifies different nearest
neighbors’ classes in a dataset and removes majority class
samples to achieve a suitable balance between both classes
of honest and fraudulent customers.

III. CLASSIFICATION
This module describes the final classification task via the

processed data. We chose SVM because it is one of the most
adopted, robust and efficient machine learning methods to
provide a higher classification accuracy. We define a matrix
of electricity consumption data below in Eq. (4):

X =



x11 x12 ... x1n
x21 x22 ... x2n

. . . .

. . . .

. . . .
xm1 xm2 ... xmn


, (4)

where, rows and columns represent the time stamps and the
feature index of the data, respectively. The classified compo-
nent xmn is n− th component of m electricity consumption
value that is to be classified. The diagonal matrix can also be
formulated as shown in Eq. (5):

X =



−→
t1−→
t2
.
.
.
−→
tm

 , (5)

where,
−→
tk = [xk1, xk2, ...xkn] k ∈ [1,m]. (6)



For a given training set {(xi, yi)}Ni=1 (xi and yi represent samples
and target classes, respectively) with binary output yi = ±1, the
classification problem is investigated below using Eqs. (7–9) [6]:

f(x, c) =

N∑
i=1

ciλi(x) + b, (7)

where b depends on data distribution and c∞i (i = 1, 2, ...) are
classifier parameters to be adjusted. Eq. 7 defines a hyperplane in N
dimensional space. The regularized risk function is calculated using
following Eq. (8):

w(c) =

∑N
i=1 |yi − f(xi, c)|∈ + µc2

N
, (8)

where ∈ represents parameter for intensive loss function, µ is a
constant, and yi is the actual class. To obtain optimal values of
classifier’s parameters c, reguarized risk function minimzation is
required for which the robust error function is calculated below in
Eq. (9):

x =

{
0, if |yi − f(xi, c)| <∈,

|yi − f(xi, c)|, otherwise,
(9)

A. Optimal Classification with Bayesian Optimization Algo-
rithm

In SVM, we aim to minimize the regularized risk function.
The regularized risk function has a strong relationship with
three super parameters: the type of SVM kernel parameter (σ),
cost penalty (c) and the intensive loss function (∈). The need
for parameter optimization is undeniable, and computational
efficiency is achievable if optimal values for these super
parameters are chosen. In the past, various methods, such as
Cross-Validation (CV), Grid Search (GS), Gradient Descent
(GD), and heuristic algorithms are proposed to adjust super
parameters of SVM. However, these methods may cause a
problematic convergence process due to high computational
overhead. Furthermore, CV, GS, and RS methods are compar-
atively ineffective because of random search values are not
updated on the previous best to choose the next hyperparame-
ters. For this purpose, a reliable BOA is chosen to tune SVM’s
super parameters.

The BOA is chosen for parameter optimization because it is
more directed, faster, and predictable according to the posterior
probability. The BOA improves the hyperparameter selection
by making use of earlier experiments. First, it constructs a
probabilistic model of the function with super parameters and
evaluates it on the validation test. With multiple iterations, the
BOA gathers relevant information about the optimal locations
with a perfect balance between exploration (super parameters
likely to give uncertain outcome) and exploitation (expected
optimum parameters). It provides better results in fewer itera-
tions as compared to the RS and GS algorithms. It starts with
taking a history of super parameters settings λn = λ1, λ2, . . .
λn and respective function evaluation y1 = y1, y2, . . . yn to
acquire a new set of super parameters λn+1. In next iteration,
λn+1 is used as new population for model evaluation to get
new function value yn+1. Both function and super parameter
values are saved to the history for execution of next iteration
λn+1, yn+1. In this way, the objective function’s optimized
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Fig. 2: Confusion Matrix for BSVM

value is achieved with a history of function evaluation and
super parameters values.

With efficient data pre-processing and enhanced classifica-
tion methodologies, the proposed framework is capable of
performing ETD accurately. In the next section, a detailed
analysis of real-world electricity theft data is given.

IV. NUMERICAL ANALYSIS
A. Simulation Setup

This section investigates the capabilities of the proposed
framework and the simulator is developed with Python ac-
cording to the system framework devised in Section II. The
simulator runs on a platform with MAC i7, 16GB RAM, and
a 256 GB hard disk. For this framework, the input data are
acquired from the most extensive power providing company
in China, i.e., SGCC, from 2014 to 2016. The data contain
an electricity consumption profile of over 42372 consumers
where 38757 consumers are identified as fair consumers and
the remaining 3615 are fraudsters consumers.

B. Performance Matrix:
The performance metrics are determined from the confusion

matrix (CM), i.e., a matrix that describes different results in
classification problems, as shown in Fig. 2 which will be
explained late in the paper. In a binary classification problem,
the CM has four possible outcomes with two rows and two
columns. These are True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). TN and TP
score mean that honest and dishonest consumers are identified
accurately by the classifier. Similarly, FP and FN score means
that the numbers of honest and dishonest consumers are
misclassified. Based on CM results, the following Eqs. (10–13)
calculate the performance of any classifier:

Precision =
T+

T+ + F+
, (10)

Recall =
T+

T+ + F−
, (11)

F1 Score = 2× Precision×Recall
Precision+Recall

, (12)



Accuracy =
T+ + T−

T+T− + F+ + F−
, (13)

where, T+, T−, F+ and F− represent TP, TN, FP and FN,
respectively.

C. Simulation Results
1) Impact of Handling Imbalance Class: In an imbalanced

class problem, one class significantly dominates the other
class; hence, it results in the suppression of the minority class.
Fig. 3 shows the difference between minority and majority
classes before handling imbalance class. Clearly, the majority
class (red circles) customers are in a much higher ratio,
and biased classification is expected. Without addressing the
imbalance class issue, the value of AUC is 0.5850, Precision
is 0.7021 and Recall is 0.4453. The model fails to provide
promising results while calculating Recall, as many fraud
instances are misclassified as fair. To solve this problem, we
apply STLU, which efficiently balances minority and majority
classes, and its impact is shown in Fig. 4. With balanced data,
model training and generalization are improved as shown in
Table 1.
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Fig. 4: Balanced Data After Sampling

2) The BSVM Performance on Theft Detection: SVM
is a prevalent technique for classification tasks, and like
any other ML methods, its performance is mainly based on
hyperparameter values. We tuned SVM’s super parameters
with BOA, and the objective is to find an optimal hyperplane
that distinguishes between different classes.

The Receiver Operating Characteristic (ROC) curve is the
best performance metric used for detecting suspects in imbal-
anced class distribution [13]. It is the graphical representation

of T+ rate and F+ rate and area under the ROC curve is called
Area under the Curve (AUC). It separates the distribution of
fraudulent class from fair class and is expressed as follows in
Eq. (14):

AUC =
Σi ∈ SRi − 1

2 |S|(|S|+ 1)

|S| × |H|
, (14)

where Ri denotes the rank of suspicion number of fraudulent
consumers in ascending order, |S| and |H| are the cardinality
of suspicious and honest consumers.
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Fig. 5: ROC-AUC Curve of SVM
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Fig. 6: ROC-AUC Curve of BSVM
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Fig. 7: ROC-AUC-based Performance Comparison

The limit of ROC curve ranges from 0 to 1. An ideal
situation arises, when no curve overlaps each other. When
AUC approaches 1, it demonstrates the validity of classifier
while AUC less than 0.5 shows that the classifier does not
have the ability to discriminate among classes. Figs. 5 and 6
show ROC-AUC curves of SVM and BSVM. The AUC of
BSVM has been significantly improved both for training and
testing. The BOA optimizes SVM’s super parameters jointly.
Therefore, the BSVM’s performance is better both in training
and testing. Simultaneously, the AUC of SVM for training
and testing are 0.91 and 0.90, whereas, for BSVM, the values
are 0.94 and 0.93, respectively. This demonstrates that the
acquired results are improved if BOA is used to find the
hyperparameters’ values of the SVM classifier



TABLE I: Comparision among BSVM and other Benchmark Schemes

Methods Training Ration 60% Training Ratio 80%
Precision Recall F1 Accuracy AUC Precision Recall F1 Accuracy AUC

LR 0.713 0.710 0.688 0.700 0.700 0.770 0.725 0.725 0.770 0.720
RF 0.688 0.677 0.687 0.687 0.755 0.751 0.753 0.747 0.757 0.755

SVM 0.680 0.689 0.683 0.682 0.690 0.680 0.689 0.683 0.682 0.690
BSVM 0.969 0.915 0.941 0.941 0.938 0.969 0.915 0.941 0.941 0.938
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Fig. 8: Precison-Recall Curve for ALL Methods

3) BSVM Performance Comparision with Benchmark
Schemes: In this case study, the performance of BSVM is
compared with conventional SVM and two other benchmark
classifiers, i.e., RF and LR. Figs. 7 and 8 show ROC-AUC and
Precision-Recall curves for all techniques. In this case, BSVM
achieves higher accuracy for training and testing, which is
up to 0.95 and 0.92, respectively. Furthermore, the confusion
matrix in Fig. 2 shows that the ratio of FPR for BSVM is
only 2.30%, which is significantly less and is acceptable for
real-world scenarios. It implies that the proposed approach is
reliable and can be applied in a practical network to identify
fraudulent consumers.

4) BSVM Performance on Different Train/Test Data:
ML models are sensitive to the size of training data. This
case study aims to confirm whether BSVM maintains its
effectiveness when medium to high sizes (60% and 80%)
of training data is available for classifier’s training. Table I
provides an overview of LR, RF, SVM, and BSVM perfor-
mance for different training dataset sizes. All obtained results
of traditional classifiers show an expanding trend. Following
investigation of the results, it is observed that the increase in
training instances enhance traditional classifiers’ performance.
Morever, BSVM outperforms other algorithms in terms of
Precision, Recall, F1 score, Accuracy, and AUC performance
metrics.

V. CONCLUSIONS
An accurate and reliable ETD method is essential for

the electric power industry’s planning and decision-making
process. In this work, the SG’s ETD problem is investigated
via the combined effect of feature pre-processing and
improved classification modules. Precisely, missing and
inconsistent values of SM’s data are adjusted with data
interpolation and standardization techniques. Additionally, the

class imbalance problem is resolved with a newly developed
STLU technique. Finally, the BOA obtains suitable values
for cost penalty, kernel function, and intensive loss function
automatically and efficiently for SVM. The numerical results
show that our proposed framework is more accurate than LR,
DT, and SVM in terms of Precision, Accuracy, etc,. and can
effectively be applied to industrial applications.
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