
Infiltrating Security into Development: Exploring the World’s
Largest Software Security Study

Charles Weir
Lancaster University

England
c.weir1@lancaster.ac.uk

Sammy Migues
Synopsys

USA
Samuel.Migues@synopsys.com

Mike Ware
Synopsys

USA
Michael.Ware@synopsys.com

Laurie Williams
North Carolina State University

USA
lawilli3@ncsu.edu

ABSTRACT
Recent years have seen rapid increases in cybercrime. The use of
effective software security activities plays an important part in
preventing the harm involved. Objective research on industry use
of software security practices is needed to help development teams,
academic researchers, and educators to focus their activities.

Since 2008, a team of researchers, including two of the authors,
has been gathering objective data on the use of 121 software secu-
rity activities. The Building Security In Maturity Model (BSIMM)
study explores the activity use of 675,000 software developers, in
companies including some of the world’s largest and most security-
focused.

Our analysis of the study data shows little consistent growth
in security activity adoption industry-wide until 2015. Since then,
the data shows a strong increasing trend, along with the adoption
of new activities to support cloud-based deployment, an emphasis
on component security, and a reduction in security professionals’
policing role. Exploring patterns of adoption, activities related to
detecting and responding to vulnerabilities are adopted marginally
earlier than activities related to preventing vulnerabilities; and
activities related to particular job roles tend to be used together. We
also found that 12 developer security activities are adopted early,
together, and notably more often than any others.

From these results, we offer recommendations for software and
security engineers, and corresponding education and research sug-
gestions for academia. These recommendations offer a strong con-
tribution to improving security in development teams in the future.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Applied computing → Cross-organizational business processes; •
Social and professional topics→ Industry statistics.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3473926

KEYWORDS
Software engineering, Software security, Developer centered secu-
rity, Software security group, Secure software development lifecycle,
SDLC, DevSecOps

ACM Reference Format:
Charles Weir, Sammy Migues, Mike Ware, and Laurie Williams. 2021. Infil-
trating Security into Development: Exploring the World’s Largest Software
Security Study. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3468264.3473926

1 INTRODUCTION
According to the NIST National Vulnerability Database [34], re-
ported vulnerabilities continue to rise through 2020 including a
600% rise in cybercrime in 2020 due to the covid-19 pandemic [10].
However, the growth in cybersecurity spending is expected to slow,
and corporate boards are questioning the effectiveness of cyberse-
curity activities as implemented across enterprises globally [12].
As organizations seek to address mounting cybersecurity risk as
efficiently as possible and to comply with regulations, a myriad of
activities is available for improving software security. Organiza-
tions desire guidance on which of many possible software security
activities to undertake first and how to structure adoption.

The goal of this paper is to aid software and security engi-
neers, software engineering educators, and software engineering
researchers in understanding opportunities for software security ac-
tivity improvement, education, and research through an analysis of
records of software security activity bymany software development
teams over a 12-year period.

Organizations prefer to adopt new practices based upon under-
standing their use in organizations similar to their own [28]. As
a result, a good process to identify such opportunities is to base
them on the practice of leading organizations that have focused on
security, leveraging the trials and errors of teams as they ‘infiltrate’
security into their development practices. Accordingly, our first
research question is:

RQ1: What have been the patterns of adoption and usage
of software security activities by software development
teams in security-focused companies?

https://doi.org/10.1145/3468264.3473926
https://doi.org/10.1145/3468264.3473926

ESEC/FSE '21, August 23�28, 2021, Athens, Greece Charles Weir, Sammy Migues, Mike Ware & Laurie Williams

Software security is a fast-moving �eld. Accordingly, adoption
trends over an extended period provide insight, leading to a second
research question:

RQ2: What have been the trends in adoption of developer
security activities industry-wide?

1.1 Introducing the Study
Since 2008, the Building Security In Maturity Model (BSIMM) team
has provided organizations with support in obtaining security guid-
ance through an assessment process [27]. Each BSIMM assessment
is a major undertaking involving approximately one consultant-
month of work, including over a dozen detailed interviews with
company experts and the creation of a report for the company. Each
assessment evaluates which of 121 software security `activities'
have been adopted by the organization. These activities range from
�Ensure host/network security basics in place� to the rarely-found
�Build/use abuse cases in QA process�1.

The model suits the needs of organizations with a focus on
software security: every participating organization must have a
Software Security Group. Named participants include Microsoft,
Qualcomm, SAP, Visa, Citigroup, and PayPal. As Section 5.1 will
discuss, at least 55 of the companies named are in the Forbes Global
2000 list of the world's largest public companies; and the list also
includes many trailblazers in large company software security, in-
cluding 70% of the members of SAFECode, an early initiative in this
�eld.

Working with the companies in this list, two of the authors and
a team of assessors have built a highly sensitive dataset of 322
objective assessments of the security practices of 211 companies
throughout the world over a 12-year period, relating to the work
of some 675,000 software developers. We are aware of no similar
work of this magnitude in the �eld of development security. The
BSIMM team has published 11 yearly reports containing a high-
level descriptive analysis of that year's data, all publicly available
to those willing to provide contact information; the latest is the
BSIMM11 report from 2020 [27].

To address the research questions in this paper, we studied partic-
ipants' software security development activities. This paper, there-
fore, explores �ndings from the analysis of the BSIMM dataset
related only to the 43 security activities used bysoftware devel-
opment teams: groups of software engineers, IT sta�, and Quality
Assurance (QA) specialists. E�ective security requires other orga-
nizational roles, of course, but their activities are out of scope for
this paper. We studied bothadoption, starting new activities, and
continuedusageof activities.

To explore RQ1, we started with two approaches: clustering algo-
rithms looked for activities used or adopted together; and charts and
graphs explored the most used, most adopted, and most discarded
activities.

To look for further patterns in the data, we used a segmenta-
tion based on prior work [5, 40, 49] into Prevention, Detection, and
Responseactivities. We used statistical hypothesis tests to explore

1Figure 6 contains a list of activities with identi�er codes, and detailed descriptions
may be found in the BSIMM11 report [27].

if this segmentation contributed to adoption patterns within indi-
vidual companies (RQ1) and within the industry as a whole (RQ2).
Finally, we used graphical and statistical analysis to explore indus-
try adoption further (RQ2).

1.2 Contributions
The main contributions of this paper are as follows:
(1) A longitudinal analysis of the trends in developer security ac-

tivities in industry over a period of 12 years;
(2) The identi�cation of a small set of software security activities

that are adopted �rst, together, and most often by software
development teams; and

(3) The observation that software security activities used together
tend to be those supported by speci�c other job roles.

The rest of this paper is structured as follows. Section 2 discusses
related work; Section 3 introduces the BSIMM; Section 4 describes
our methodology; Section 5 describes the results we found; Section
6 explores these results, answers the research questions, and dis-
cusses threats to validity; and Section 7 summarizes the �ndings
and suggests future work.

2 RELATED WORK
Software security is a major and pressing problem with current
software systems. This section explores frameworks and related
studies into how companies and development teams are addressing
security.

2.1 Software Security Practice Frameworks
Several frameworks in addition to BSIMM provide guidance or
enumeration of software security practices. The OWASP Software
Maturity Model (SAMM or OpenSAMM) [36] is an open framework
to help organizations assess, formulate, and implement, through
a self-assessment model, a strategy for software security practice
adoption that is tailored to the speci�c risks facing the organization.
OpenSAMM is a prescriptive model in that it posits that an organi-
zation matures its cybersecurity e�orts by progressing through the
maturity levels.

The US National Institute of Standards and Technology (NIST)
Cybersecurity Framework (CSF) [33] provides organizations with a
structure to aid in understanding and improving cybersecurity risk.
The framework is organized around �ve functions: identify, protect,
detect, respond, and recover. In this paper, we utilize three of the
�ve NIST functions in our analysis: identify, detect, and respond;
but we replace the term `identify' with its goal of 'prevent' to align
with the frequently used model [5, 40] ofprevent, detect, respond.

The US Department of Defense (DoD) Cybersecurity Maturity
Model Certi�cation (CMMC) [8] framework combines cybersecu-
rity standards and best practices and maps 171 practices into �ve
maturity levels that range from basic cyber hygiene to advanced
optimization. For a given CMMC level, the associated practices are
designed to reduce risk against a speci�c set of cyber threats.

The ISO/IEC 27001 [18] and NIST SP 800-53 [32] standards pro-
vide requirements for establishing, implementing, operating, mon-
itoring, maintaining, and improving the security of a digital in-
formation management system. The ISO/IEC 27034 Application
Security standard [17] o�ers de�nitions, concepts, principles and

Infiltrating Security into Development: Exploring the World's Largest So�ware Security Study ESEC/FSE '21, August 23�28, 2021, Athens, Greece

non-prescriptive guidance to help organizations integrate security
into the processes used for managing their applications. Finally,
the OWASP Application Security Veri�cation Standard (ASVS) [37]
provides developers with a list of requirements for secure develop-
ment.

None of these frameworks have databases of company results
with which we could compare our study results.

2.2 Software Security Practice Studies
Cisco [6] surveyed 4,800 active IT, security, and privacy profes-
sionals from 25 countries about, �rst, their organization's use of
25 security practices spanning governance, strategy, spending, ar-
chitecture, and operations; and, second, their program's level of
success across 11 high-level security objectives. They found that
having a proactive, best-of-breed technology refresh strategy al-
lows an organization to keep up with business growth; and that
having a well-integrated technology stack improves recruitment
and retention of security talent. The report provides valuable indus-
try data; however, the responses were self-reported, and the result
is not longitudinal. Since the Cisco security software practices do
not map cleanly to the BSIMM practices, the two studies cannot
usefully be compared.

Such et al. [41] conducted a comprehensive review of the use
of 25 assurance techniques from the ISO/IEC 27001 standard [18]
using a large-scale stakeholder-supported study with 14 interviews
and 115 respondents to an online survey. The responses identi-
�ed the most cost-e�ective techniques to be architectural review,
vulnerability scans, and penetration tests.

Further surveys of security activity by software developers in-
cluded Venson et al.'s survey [44, 45] of 110 software professionals,
which found that security practices had been applied thoroughly in
the projects, but revealed high variability in secure software devel-
opment e�ort across the participants' projects. Oyetoyan et al. [38]
surveyed security practice usage, competence, and training needs
in two organizations, �nding that regardless of cost or bene�t, skill
drives the kind of activities that are performed, and that secure
design may be the most important training need. And Jaatun et
al. [19] used the BSIMM structure for a survey and interview study
of software security activities used by 20 Norwegian companies,
�nding that those companies excelled at compliance and policy
activities.

Other research teams studied historical data. Morrison [29] de-
�ned the Security Practices Evaluation Framework (SP-EF), a mea-
surement framework for software development security activities,
and evaluated the framework on historical data and industrial/open-
source projects [30]. Kwon and Johnson [21] conducted an empirical
analysis of data from 2,386 healthcare organizations to identify how
di�erent types of security investment a�ect subsequent security
failures. They distinguishedproactiveactivities that happen before
a security incident fromreactiveactivities that occur after an inci-
dent. Kwon and Johnson [22] also analyzed breach disclosure and
detailed data on security investments in the healthcare sector. In
both reports, they found that proactive security investments are
associated with lower security failure rates and longer intervals
before subsequent breaches than reactive investments.

Considering literature surveys, Venson et al. [46] conducted a
mapping study to classify and analyze 54 papers in the literature
related to the impact of security on software development costs.
Perform Security Review, Apply Threat Modeling, and Perform
Security Testing were the three most frequent activities related to
cost, and the Common Criteria [15] was the most applied standard.
Another systematic literature review by Wen [48] found the most
studied software security practice to be veri�cation, which includes
design review, code review, and security testing.

Moving to the theory behind developer security, Barth et al. [2]
challenged the conventional wisdom that proactive security is supe-
rior to reactive security, using a game-theoretic model. This showed
that reactive security can be competitive with proactive security
as long as the reactive defender learns from past attacks instead of
myopically overreacting to the last attack. Maguire and Miller [23]
contended that resistance to proactively implementing application-
layer security may stem from the perceived expense and the idea
that risk is a natural part of doing business.

Our work complements these studies by providing insights based
on higher �delity data over a longer timeframe.

3 THE BSIMM STUDY
In 2008, Gary McGraw, Sammy Migues, and Brian Chess created the
BSIMM as adescriptivemodel to allow external assessment of or-
ganizations' state-of-practice in secure software development. The
BSIMM framework is built around the assessment of the activities
an organization may adopt in support of its software security initia-
tive. The number of activities evolves with each version: BSIMM11,
published in 2020, de�nes 121 activities. Activities are categorized
into three `maturity levels'; and 12 `practices' grouped into 4 `do-
mains' [27]. All the activities are proactive [21]; the handling of
security events and �xing of vulnerabilities are assumed to happen
and are not considered activities.

Each assessment is carried out in cooperation with the organi-
zation's Software Security Group (SSG), whose role is to manage
an organization-wide program to instill software security activities.
For each assessment, security professionals, including two authors
of this paper, conduct approximately 20 in-person interviews. These
typically include the SSG leader and representative SSG members;
plus samples of those whose roles involve implementing security,
and of those whose roles are a�ected by the security processes.
The interviewers create a `scorecard' report of an organization's
software security activities, including a comparison with other sim-
ilar organizations. They also record in a database the company
demographic data and which activities were practiced.

Annual BSIMM reports provide high-level �ndings based upon
descriptive analysis. The latest such report is freely available to
those willing to provide contact information [25]. Each report pro-
vides detailed descriptions of the activities; a grouping of the ac-
tivities into 12 practices; adoption percentages for each activity;
observations of industry trends noted during the collection; and a
description of several di�erent `adoption approaches' for compa-
nies.

These reports contain the names of some of the companies as-
sessed, which opens the possibility of re-identi�cation of compa-
nies even in anonymized data, so the dataset cannot be contributed

ESEC/FSE '21, August 23�28, 2021, Athens, Greece Charles Weir, Sammy Migues, Mike Ware & Laurie Williams

to the community. All the authors are subject to Non-Disclosure
Agreements to have access to the data.

4 ANALYSIS METHODOLOGY
For academic analysis, we used an anonymized version of the
BSIMM dataset in spreadsheet form. This contained three types of
data:
(1) Demographic data for each company assessed, such as the in-

dustry verticals, number of developers, size of Security Services
Group (SSG), and dates of each assessment;

(2) Descriptions of each software security activity; and
(3) For each assessment, the activities practiced by the company.
Figure 1 provides an overview of the analysis we performed on
this data. To achieve independent insights, we used only the `raw'
data, ignoring the constructs used in the BSIMM reports such as
the report number in which each assessment was reported, and the
activity categorizations of `maturity level', `practice', and `domain' .

Figure 1: Overview of the Analysis Methodology

One di�culty we identi�ed is that the �eld of software security
activities changes fast. Since the goal of our study is to aid software
engineers and academics to understand opportunities for practice
improvement, we opted to limit the analysis related to RQ1 to
the last �ve years to provide a timely view of current trends �
speci�cally, since the start of 2015.

To categorize the activities, we applied dual coding to the de-
tailed description for each. Since our research questions address
only development teams, we coded each activity as `carried out
by developers' (adeveloper activity) or not. We then coded these
developer activities into Prevention, Detection, and Response (see
Section 2.1): Prevention activities slow the introduction of vul-
nerabilities during product design or implementation; Detection
activities discover vulnerabilities that have been injected during
design or implementation; and Response activities are used after
the discovery by attackers and/or researchers of vulnerabilities in
a deployed product.

Two authors �rst coded independently; then compared di�er-
ences to identify discrepancies in interpretation; then re-coded
all the activities; and �nally agreed on the coding for the few re-
maining di�erences. We used the Cohen's Kappa calculation of
Inter-Rater Reliability [13] to quantify agreement for each of the
�rst two coding cycles.

4.1 Hypothesis Testing Methods
To achieve methodologically defensible statistical results, we wanted
to avoid the poor research practice of `data dredging'�cherry-
picking interesting-looking results from many statistical tests on
the same data�since this leads to conclusions that are unlikely to
be replicable [16]. We, therefore, used two best practices: de�n-
ing hypotheses only before accessing the data and correcting the
analysis for multiple uses of the same data.

In a gold standard research project [7] we would make predic-
tions, de�ne the analysis, and write programs to do the analysis,
all before we collected the data. However, in this case the data was
already collected and available before the start of the analysis. To
compensate, we randomized the raw data (without analyzing it)
to create a dummy dataset. We then worked out the analysis ap-
proaches for the given hypotheses and implemented the approaches
in software to work on the dummy dataset. This step was su�cient
to verify that the implementation worked correctly. We then sub-
stituted the true dataset for the dummy one and recalculated the
results.

To correct the analysis for multiple uses of the same data, we
used the Bonferroni correction, which divides the threshold for
statistical signi�cance by the number of hypotheses tested [39].

Our �rst hypotheses were those to answerRQ1. We hypothe-
sized that certain types of activities would tend to be adopted earlier
than others:

H1: Development teams adopt Response activities before
Detection activities .

H2: They adopt Detection activities before Prevention ac-
tivities .

H3: Development teams adopt the most-used practices ear-
lier than other practices

Our remaining hypotheses addressRQ2. Software security is a
fast-moving discipline, and we hypothesized that the data would
show continuous industry progress:

H4: During the period 2008-2020, companies have increas-
ingly adopted Prevention activities

H5: During the period 2008-2020, companies have increas-
ingly adopted Detection activities

In each case, the corresponding null hypothesis would be that
there is no evidence of which kind of activity comes �rst. That
makes �ve tests on the data set, and accordingly, for the Bonferroni
correction, we used a p-value for signi�cance of:0”05•5 = 0”01.

In testing hypotheses H1 through H3 we found a problem: each
BSIMM assessment records only which activities are present at
the assessment time and has no record of when each activity had
been adopted. So, a single assessment provides no information
to help con�rm or reject each hypothesis. We, therefore, looked
only at the 70 companies that had undergone multiple assessments:
for each pair of consecutive assessments and each type of activity
(Prevention, Detection, Response) we calculated the proportion of
the later assessment's activities that were newly adopted in the
later assessment. A larger proportion means later adoption for that
type of assessment.

The null hypothesis for H1 thus becomes: that the distributions
of proportions (Detection, Response) are the same�i.e., the distribu-
tion of di�erences between the pairs of measurements is consistent

Infiltrating Security into Development: Exploring the World's Largest So�ware Security Study ESEC/FSE '21, August 23�28, 2021, Athens, Greece

with a zero-based distribution. We plotted this distribution of di�er-
ences and used the Shapiro�Wilk test [43] to see if it was consistent
with the Normal distribution. If so, we used a one-sided Students T-
Test to assess the hypothesis; if not, we used the Wilcoxon rank-sum
(Mann-Whitney) test [43]. We used the same approach to assess
hypothesis H2 and (after identifying the most-used activities) H3.

Moving to RQ2, hypotheses H4 and H5 were �rst tested using
linear regression. We used the Pearson R calculation to �t a line to
the counts of each kind of activity found on each date. To check
the preconditions for Pearson R, we plotted the data and used the
Shapiro�Wilk test to test for a Normal distribution of the residuals.
If (as we expected) the preconditions were not satis�ed, we could
then use techniques such as graphical plots and rolling averages to
see what was happening in the data; and the Mann Whitney U test
to look for signi�cant increases in the population values between
years.2

Even if a hypothesis is statistically signi�cant, the e�ect might
be small. We therefore also calculated, for each accepted hypothesis,
a measurement of the e�ect involved.

4.2 Descriptive Analysis Methods
To explore the data further than our hypotheses could take us, we
used descriptive statistics.

First, to give context for readers, we provided a descriptive
overview of the companies assessed and the timing of assessments
based on the demographic data. We created graphical summaries
of the data most relevant to development teams: team sizes and
industry verticals, for example. We also explored the number of
assessments per year and the incidence of repeated assessments.

To start exploring RQ1, we then plotted the frequency of adoption
of each activity, arranging the activities in order of that frequency
to explore if there was any logical cut-o� point to justify focusing
on a particular subset.

Next we explored how activities clustered together. We consid-
ered it likely that the patterns of activity usage and activity adoption
would di�er. So, we addressed RQ1 with two further questions:

RQ1.1: Which activities tend to be used together?

RQ1.2: Which activities tend to be adopted together?

To answer these questions, we used Hierarchical (Agglomerative)
Clustering [31]. For RQ1.1, in order to �nd clusters of activities that
occurredtogether, even if notfrequently, we used the following as
the `distance' measurement between two activities:

1 �
0BB4BB<4=CB C�0C 5 >D=3 1>C� 02C8E8C84B 8= DB4

0BB4BB<4=CB C�0C 5 >D=3 48C�4A 02C8E8C~ 8= DB4

For the clustering `linkage' method we used `complete', in which
the distance between two clusters is themaximumdistance between
any item in one cluster and any item in the other.

For RQ1.2, we again considered companies that had undergone
multiple assessments. We clustered the activities adopted in each

2Note that these last tests do not prove hypotheses, since the speci�c tests were de�ned
after the �rst data analysis

Figure 2: Industry Sectors

repeated assessment, using the following as the distance measure-
ment:

1 �
A4?40C 0BB4BB<4=CB C�0C 03>?C43 1>C� 02C8E8C84B

A4?40C 0BB4BB<4=CB C�0C 03>?C43 48C�4A 02C8E8C~

Often clustering analysis aims to partitioneveryitem into clusters;
in these analyses we wanted instead to �ndany activities that
clustered together. We, therefore, looked for clusters where the
distance between all the items was less than an appropriate cut-o�
point, chosen by increasing the cut-o� point until the new clusters
stopped showing meaningful relationships to each other.

Finally, to explore RQ2 beyond the simple trends suggested by
hypotheses H4 and H5, we used graphical and statistical analysis
to explore trends in the assessments over time. We considered that
changes in the type of companies undertaking the assessments
might be a driver of such change, so we also plotted how some key
company statistics changed over time.

For all the analyses, we used Python statistical and graphical
packages (Pandas, Statsmodels, Pyplot, Seaborn) hosted in Jupyter
Notebooks [20]. Statistical results are quoted using APA conven-
tions [1].

5 RESULTS
5.1 Participants and Assessments
The dataset describes a total of 322 assessments of 211 companies.
In addition to those named in Section 1, participating companies
included Nokia, Salesforce, Cisco, Goldman Sachs, Alibaba, and
Verizon. A full listing of the companies who did not choose to
remain anonymous can be found in the BSIMM reports (e.g. [27]).
Of a sample of 107 companies named in two of the reports, we
found 55 in the Forbes Global 2000 list of the world's largest 2000
companies in the world [11,26,27]. All had active Software Security
Groups.

Figure 2 shows the 15 industry sectors represented: 44% of the
companies operated in more than one sector, so the total adds
up to more than 100%. As shown, Independent Software Vendors,
Financial, Tech, and Cloud are strongly represented. Other sectors,
such as Energy, Gaming, and Internet Service Providers have low
representation. Participants include many early adopters of security
processes, including 9 of the 16 members of SAFECode [35], a
global nonpro�t organization set up in 2007 to promote scalable
and e�ective software security programs.

ESEC/FSE '21, August 23�28, 2021, Athens, Greece Charles Weir, Sammy Migues, Mike Ware & Laurie Williams

Figure 3: Number of Assessments Carried Out Each Year

In terms of geography, 79% of the organizations are based in
America, 17% in the EU or UK, and 4% in Asia-Paci�c, re�ecting
that the assessors are based in the USA.

Table 1 characterizes the distributions of four relevant aspects of
the companies assessed: the number of developers, the number of
applications produced, and the size of the SSG. For each aspect, the
table shows rounded values for the lowest decile, the median, and
the highest decile. The large developer numbers emphasize that
these are mostly big and therefore high-pro�le companies, likely
to be targeted by attackers or damaged by adverse press coverage;
we conclude that their decisions on software security approaches
are likely to be worth emulating. The SSG numbers are relatively
small for all the companies; remember that the SSG provides the
`evangelist' role for software security and does not include those
operating Security Operations Centers, for example.

Table 1: Participant Attributes

Feature Low 10% Median Top 10%
Dev. team size 100 800 7500
Number of Apps 5 175 3000
SSG team size 1 6 35

Summing the number of developers involved in each organization
showed that the assessments have covered approximately 675,000
developers.

Figure 3 shows the number of assessments carried out each
year. The latest date for the dataset is April 2020, so there are
relatively few assessments for 2020. The chart indicates how many
assessments are repeated; blue bars show assessments that were
superseded later.

One third (70) of the 211 companies involved have received
more than one assessment so far, as shown in Table 2. The interval
between assessments for a company varied widely, from under a
year to ten years, with a median of 2.5 years.

Table 2: Number of Assessments per Company

Assessments: 1 2 3 4 5
Companies: 141 42 18 7 3

5.2 Coding Developer Software Security
Activities

Two authors independently coded the 121 activities, as described in
Section 4. The �rst round of coding by the two authors gave a Kappa

Figure 4: Final Coding Categories

coe�cient of 0.51, a surprisingly low level of agreement. On discus-
sion, the authors discovered several reasons for the discrepancies,
and resolved them as follows:
� First, should work done by the SSG with developers be consid-

ered developer activities? With increasing DevOps and cloud
usage, developers are increasingly carrying out activities that
previously would be considered SSG-only. Although this trend
is documented in the BSIMM11 report [27], the activity descrip-
tions for some practices do not distinguish who carries each out.
We, therefore, agreed to not include these shared activities in the
set of developer activities.

� Activities detecting design problems (such as "Do design review
for high-risk apps" could be categorized either as Detection (�nd-
ing `�aws') or Prevention (preventing the implementation of
�awed code). We chose `Detection'.

� Activities that are a large-scale response to bugs, such as "Fix
all instances of SW bugs found in ops", could be considered Pre-
vention (stopping future defect reports) or Response (to a defect
report). We agreed `Response'.

The second round of independent coding led to a more acceptable
Kappa coe�cient of 0.89. We resolved the remaining discrepancies
in coding by discussing each activity and coming to a consensus.
Figure 4 shows the �nal coding. For consistency, tables and illustra-
tions throughout this paper will use the same colors for Prevention,
Detection, and Response activities.

5.3 Descriptive Analysis
As discussed in Section 4.2, Figure 5 considers assessments since
2015. The x-axis shows the 43 developer activities sorted in order of
increasing usage; the y-axis shows the proportion of assessments
that found each activity. The �gure shows a marked jump between
a large number of little-used activities and a smaller number of
much-used activities. By taking a cut-o� point at 50%, as shown
by the dashed amber line, we get a set of 12 `most-used activities',
which can be found listed at the top of Figure 6.

To determine the prevalence of these most-used activities, we
explored to what extent they are found together. We found that
92% of all the assessments found at least half (6) of the most-used
activities. We also explored to what extent these most-used activi-
ties dominated activity usage. We found that in most assessments
(88%), these 12 activities made up more than half the total activities
adopted.

To address RQ1.1, we then used the clustering approach as de-
scribed in Section 4.2. We found the results shown in Figure 6, which
shows all 43 developer activities. The code in parentheses after each
description is the activity identi�er to enable readers to �nd the full

	Abstract
	1 Introduction
	1.1 Introducing the Study
	1.2 Contributions

	2 Related Work
	2.1 Software Security Practice Frameworks
	2.2 Software Security Practice Studies

	3 The BSIMM Study
	4 Analysis Methodology
	4.1 Hypothesis Testing Methods
	4.2 Descriptive Analysis Methods

	5 Results
	5.1 Participants and Assessments
	5.2 Coding Developer Software Security Activities
	5.3 Descriptive Analysis
	5.4 Hypothesis Tests

	6 Discussion
	6.1 Adoption and Usage by Individual Companies
	6.2 Further Industry Trends
	6.3 Implications
	6.4 Threats to Validity

	7 Conclusion and Future work
	References

