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Reservation-Based EV Charging Recommendation

Concerning Charging Urgency Policy

Shuohan Liu, Xu Xia, Yue Cao *, Qiang Ni, Xu Zhang, Lexi Xu

Abstract

Electric Vehicles (EVs) are environmental friendly comparing with traditional internal combustion vehicles

(ICVs), and have great application potential to achieve green transportation. However, due to the battery technology

under development, the charging time of EVs is still longer than refuelling time of ICVs. Importantly, CS-Selection

scheme (which/where to charge) and charging scheduling (when/whether to charge) are key solutions, for coping

with long charging time and uneven distribution of Charging Stations (CSs) in urban city. In this paper, we propose

an Urgency First Charging (UFC) scheduling policy, which orders EVs via their charging urgency (calculated by

their charging demand and remaining parking duration). With the underlying UFC policy, we further propose a

reservation-based CS-Selection scheme that selects the optimal CS with the minimum trip duration (summation

of travelling time through CS, and the charging time spent at CS), where the EVs would further report their

reservations to help anticipate the service congestion status of CSs in future. We have conducted simulations

through Helsinki’s city traffic scenarios. The simulation results show that our proposed CS-Selection scheme has

advantages in improving users quality of experience, which shortens the overall trip duration of EVs and fully

charges more EVs before departure deadline.

Index Terms

Electric Vehicle, EV Charging Recommendation, Charging Scheduling, CS-Selection, Charging Urgency.

I. INTRODUCTION

In the past few decades, human consumption of fossil fuels is constantly increasing. This causes

undesirable impact of environment, such as greenhouse effect. Thus Electric Vehicles (EVs) have attracted

more attention as they are more environmentally friendly comparing with traditional Internal Combustion

Vehicles (ICVs). Here, EVs use electrical energy as the power supplement, this alleviates carbon dioxide
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and harmful gases generated by ICVs. Meanwhile, EVs allow lower travelling costs considering potential

shortage of fossil fuels [1].

However, there are still constraints for the substantial replacement of ICVs by EVs, as EVs need to

recharge to extend travel distance. Due to the current charging technology limitation, the charging time

of EVs is often longer than the refueling time of ICVs. As such, EV drivers may experience long time to

wait for charging, and this degrades the charging service quality. Meanwhile, inappropriate distribution

of CSs has an adverse impact on EV charging, deemed as a challenge in ensuring the stable charging

service. As the distribution of Charging Stations (CSs) depends on urbanization policy, in some area, EVs

may experience extra time to find CSs for charging.

Most previous works on EVs charging problem have focused on the parking mode, where EVs have

been parked in a fixed place (CS or communities with charging equipment, etc.) [2], [3], [4], [5]. Here,

the charging scheduling optimization is the key to solve the problem concerning when/whether to charge.

In previous work [3], the First In First Serve (FIFS) policy is applied to order EVs charging. However,

the FIFS policy is lack of flexibility when processes EVs with different charging energy demands. For

example, the work in [6] proposes a charging scheduling policy where the charging order of EVs depends

on their charging demand rather than their arrival time.

In addition, the on-the-move mode is also crucial. Here, EVs driving on the road need to solve the

problem of where/which CS to get charging service. Due to the dynamic charging demand in time and

spatial dimension, some CSs are overloaded and unable to meet the charging demand of EVs, thus charging

congestion [7] will happen. This will reduce the Quality of Experience (QoE) of EV drivers, because EVs

have to wait till a charging slot becomes available. Therefore, an efficient CS-Selection scheme is required

to coordinate demand from on-the-move EVs and alleviate charging congestion at CSs. Since CS-Selection

scheme aims to guide EVs towards CSs with higher availability [8], [9], [10] (meaning the faster time to

available for charging or more free charging slots), it is important to accurately capture the status of all

EVs and CSs in the network. Here, the Global Aggregator (GA) is utilized to capture status and make

CS-Selection decision via aggregated CSs charging status and EVs requests. The work in [10] selects

the CS with the minimum waiting time (the time EV spends until a charging slot becomes available),

and proves that it has advantages over selecting the closest CS. However, since the charging status at

CSs are uncertain (due to lack of information of moving EVs travelling towards CSs), the CS-Selection

decision is non-optimal. The work in [2] develops a reservation mode. Here, EVs send their reservations
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to improve the accuracy of CSs charging status. Considering the practical case, EVs usually have their

trip destinations, and would not park at a fixed CS for a long time. The works in [11], [12] introduce the

parking duration as the upper time limitation that an EV parks at CS, but limited parking duration can

lead that many EVs have to depart before they get fully recharged.

In this paper, we propose an Urgency First Charging (UFC) charging scheduling policy and a reservation-

based CS-Selection scheme underlying the UFC charging scheduling policy. These approaches aims to

reduce the charging congestion problems that exists in large-scale EVs applications. Technically:

1) Firstly, we propose a UFC scheduling policy, which calculates charging urgency by EVs’ charging

demand and parking duration. Here, the charging urgency is enabled as a metric for prioritized

scheduling. The EV with higher charging urgency is allowed to be preempted charged. The UFC

policy is different from previous works without considering the parking duration (like in works

[3], [4], [6]) and those without providing preempted charging (like in works [3], [11]), instead, it

guarantees as many EVs as possible to get fully charged before their departure.

2) Further to UFC scheduling policy, we propose a reservation-based CS-Selection scheme via a total

trip duration estimation (based on the summation of time spent at CS and travelling time towards

and departs from the CS). Here, the estimation of the time spent at CS applies the UFC scheduling

policy. Many previous CS-Selection schemes are based on historic data (like in works [2], [10]), it is

novel in our proposed CS-Selection which is based on real-time charging status at CSs. Meanwhile,

in our proposed scheme, EVs are asked to send their charging reservations. Such reservations would

benefit the overall allocation of EVs in the network and would significantly improve the user’s QoE.

II. RELATED WORK

There are two main use cases in solving the charging problem of EVs. The first use case addresses

charging scheduling when EVs are under parking mode, since a single CS might be unable to handle

charging demand of multiple parked EVs. In the other use case, the EV (with insufficient energy) moving

on the road, needs to find a suitable CS to get charging service (CS-Selection).

A. Charging Scheduling

To efficiently manage parked EVs, most of previous charging scheduling works in [3], [4], [13]

propose EVs charging scheduling policy via EVs’ arrival time and apply FIFS policy to order EVs’

charging priority. The work in [2] proposes a distributed charging scheduling policy based on the deduced
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approximation model of waiting time. The work in [14] manages the EVs’ charging scheduling by a

proposed dynamic programming-game theory based approach, which schedules EVs in a decentralized

scheme. However, the above works do not consider EVs’ departure time. Different from the FIFS policy,

the work in [6] proposes two scheduling policies: Earliest Start Time (EST) and Earliest Finish Time (EFT).

In EST, the order of charging depends on the time order of EV arrival. In EFT, the order of charging

depends on how early the EV could finish its charging. However, the above works do not consider EVs’

departure deadline. The work in [15] introduces parking duration and proposes deadline-driven charging

optimization to allow more EVs get fully charged. Here, the parking duration is used to restore the time

limitation that an EV would stay at a CS in practice. Meanwhile, to consider the EVs’ type influence, the

work in [16] optimizes the scheduling problem for EVs with multiple vehicle types in public transport.

Here, EVs’ charging time and energy consumption for different vehicle types are considered. The work

in [12] proposes the scheduling policy for heterogeneous EVs, where those EVs with higher charging

priority (in terms of vehicle type) is able to be preempted charged.

B. CS-Selection

By comparing the results based on two different CS-Selection schemes either on the closest distance or

the minimum waiting time, the work in [10] shows that selecting the CS with the minimum waiting time

performs better in the urban scenario. Meanwhile, the work in [17] simulates under highway scenario

and selects the CS with the minimum waiting time estimation. The work in [18] combines waiting time

estimation with charging intention detection. It is based on EV’s historical CS preference and real-time

location. To alleviate charging congestion at CSs, the work in [19] further models the CS-Selection

as a multi-objective optimization problem. The optimal CS-Selection in this work is selected by jointly

considering charging time, travel time, and charging cost. The works in [20], [21] also consider the charging

cost and adopt pricing strategies depending on CSs congestion level, a CS with charging congestion would

have a higher charging price. These pricing strategies prevent EVs from moving towards CSs with high

congestion level and also maximize CSs profits.

The work in [22] considers energy demand response, which focuses on producing energy demand-

supply balance. However, optimizing demand-supply cannot guarantee charging service quality. Therefore,

estimating EVs’ uncertainty is necessary to ensure the overall charging performance [23]. The work in

[24] proposes a navigation system that allows EV drivers to communicate their intentions to other EV

drivers, this improves the accuracy of estimation of CSs charging status. Furthermore, reservation-based



5

schemes have been proposed, which anticipate EVs status (energy demand and current location). The

work in [2] simulates EVs’ reservations under highway scenario, and the work in [25] simulates under

city scenario. The above reservation-based CS-Selection schemes adequately improve the overall charging

performance (reducing the average waiting time and alleviating the charging congestion). To better restore

the EV charging process, the work in [26] considers EV drivers’ activities and the range anxiety. This

work presents coverage location model for CS to minimize the missed trips. Furthermore, considering the

charge anxiety, the works in [11], [12], [15] adopt the parking duration. Here, when allocating EVs, the

GA needs to consider whether EVs could get charging service within the parking duration. Furthermore,

the works in [11], [27] adopt traffic jam as an influence factor, EVs avoid selecting CS via a crowded

path.

III. SYSTEM MODEL

A. Urgency First Charging

CS

EV1

EV2

Time Axis

EV Remaining Parking Duration

EV Charging Time Estimation

t0

Charging Urgency = Charging Time Estimation - Remaining Parking Duration 

Charging Urgency 

t2t1

EV Waiting Time  

Fig. 1. Urgency First Charging

We propose a UFC policy as an underlying scheduling policy (concerning when to charge EVs). The

UFC takes into account EVs’ parking duration, charging energy demand and allows preempted charging

for those EVs with higher “charging urgency”. Here, the charging urgency is given by the difference that

EV’s remaining parking duration minus EV’s charging time estimation.

In Fig.1, both EV1 and EV2 have been parked when a charging slot becomes available (t0). Here, t1

and t2 refer to the arrival time of EV1 and EV2 respectively. As EV1 arrives earlier than EV2 and the

parking duration is fixed, EV1 has a shorter remaining parking duration. However, comparing the charging

demand of EV1 and EV2 (the EV’s full energy minus the EV’s current energy), EV2 requests a longer

charging time. Although EV2 has longer time left for departure than EV1, its charging time is also much
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longer than EV1. By formulation defined in Fig.1, EV2 has a higher charging urgency. Therefore, EV2

will get preemptive charging service although EV1 arrives earlier.

If an EV is with higher charging demand and shorter remaining parking duration, the UFC policy

scheduling will improve the possibility that the EV gets charging service. Meanwhile, the UFC policy can

reduce the number of EVs miss fully charging (due to that some EVs may need to depart before being

fully charged). It is worth mentioned that the preempted charging will only occur between EVs plan to

be charged, the UFC policy will not interrupt EVs being charged.

B. Assumption

In this paper, we distribute CSs in different locations over the city scenario. The GA globally manages

EV charging and is equipped with communication module for wireless information exchange with CSs

and EVs. EVs’ on-board system can communicate with the GA with the equipped wireless devices such as

3G/Long Term Evolution (LTE). EVs request/reply to the GA for CS-Selection. Here, the GA processes the

charging requests on the cloud in a centralized manner to optimize the distribution of charging facilities.

When an EV is on-the-move and its SOC is lower than the preset threshold, the EV sends its charging

request to the GA. The GA processes EV’s charging request and starts ranking CSs through which the EV

perceive the minimum trip duration (mainly influenced by waiting time). To fully recharge more EVs, the

GA jointly considers EVs charging demand and CSs charging status. Here, the UFC scheduling policy is

applied to provide preempted charging service for EVs with charging urgency. With this, the GA estimates

total trip duration that the EV charges at each CS and selects the CS with the minimum total trip duration.

C. Problem Formulation

To alleviate potential charging congestion and achieve a better allocation of V2V charging among PLs,

the CS-Selection optimization is formulated in this subsection, starting with the notations and following

with the objective functions. To facilitate problem formulation, we have the notations as follows:

• δlcs: Number of EVs being fully charged at a CS.

• υlcs: Average trip duration for each EV being fully charged at CS.

• NCS: Queue of CSs.

• M : Total trip duration for all EVs being fully charged in the network.

• X: Total number of all EVs being fully charged in the network.
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Then we have the objective functions:

Maximize X =
∑

lcs∈Ncs

δlcs (1)

Minimize M =
∑

lcs∈Ncs

δlcs × υlcs (2)

Here, the time an EV could stay at a CS is constrained by the parking duration. An EV has to depart from

the CS after its departure deadline. The objective function (1) is set to maximize the total number of all

EVs get fully charged, which could better reflects charging scheduling efficiency. To fully charge more

EVs in the network, δlcs at each CS needs to increase. The objective function (2) aims to minimize the

total trip duration for all EVs being fully charged in the network. As δlcs increases in objective function

(1), υlcs needs to decrease. υlcs and δlcs are related to Ncs, a larger Ncs enables a small υlcs, this is

because EVs could be distributed at more CSs. Since Ncs is immutable as it refers to number of total

CSs, υlcs can only be reduced by distributing EVs equally among the CSs as an ideal situation.

TABLE I
LIST OF NOMENCLATURES

LIST Output including available time per charging slot at CS

Tarrev EV’s arrival time at CS

T traev EV’s travelling time to reach CS

T chaev Estimated charging time upon arrival of EV

T staev Time EV has stayed at the CS after its arrival

Tcur Current time in network

Sev Moving speed of EV

α Electric energy consumed per meter

Dev Parking duration of EV

β Charging power at CS

NC Queue of EVs under charging at CS

NW Queue of EVs waiting for charging at CS

NR Queue of EVs reserved for charging at CS

Vev Charging urgency of EV

δ Number of charging slots at CS

Emaxev Full volume of EV battery

Ecurev Current volume of EV battery

T finev Charging finish time of EV

EACTcs Estimated available charging time at CS

Ncs Queue of CSs

lcs Location of a CS

Tmincs,d Travelling time from a CS to EV’s trip destination

T cs,dev(r) Trip duration of EVr through charging at a CS

Fig.2 illustrates T-variables in a timeline from EVr’s original location to its destination with an inter-

mediate charging at a CS.
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Fig. 3. Flow Chart of Computation Logic

IV. SYSTEM DESIGN

EV drivers want to shorten their trip durations. Therefore, the GA calculates EV’s total trip duration at

each CS with an intermediate charging and select the optimal CS. Referred to Fig.3, the total trip duration

of an incoming EV with reservation (EVr) is obtained through the follow steps:

Step 1: Through the local charging status, the GA estimates the available time at charging slots.

Step 2: When EVr requests, the output of Step 1, the queue of parked EVs and reservations of on-

the-move EVs are aggregated to estimate the charging scheduling (via UFC policy) when EVr arrives.

Step 3: The GA calculates charging waiting time through the scheduling estimated by Step 2.

Step 4: Through the charging waiting time estimation by Step 3 and the EVr’s trip time drives to/departs

from the CS, the total trip duration is estimated.

A. Estimation of CS Charging Status

Considering that CS has several charging slots to charge multiple EVs in parallel, the EVs under

charging is characterized in the queue of NC . The current time in the network is denoted as Tcur. If no

EV currently parking at the CS for charging, Tcur will be added into the LIST (available charging time

list of the charging slots) with δ (number of charging slots) times to indicate the CS is available, and
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Algorithm 1 Estimation of CS Charging Status
1: if no EV is under charging then
2: add Tcur in LIST with δ times
3: return LIST
4: end if
5: for (n = 1; n ≤ NC ; n++) do
6: if ((Tcur − T arrev(n)

+
Emax

ev(n)
−Ecur

ev(n)

β
) ≤ (T arrev(n)

+Dev(n)
)) then

7: LIST.ADD(
Emax

ev(n)
−Ecur

ev(n)

β
+ Tcur)

8: else
9: LIST.ADD(T arrev(n)

+Dev(n)
)

10: end if
11: end for
12: if (NC < δ) then
13: for (m = 1; m ≤ (δ −NC); m++) do
14: LIST.ADD(Tcur)
15: end for
16: end if
17: sort LIST with ascending order
18: return LIST

the available charging time of all charging slots is Tcur, as line 2 in Algorithm 1 demonstrated. Lines

from 5 to 11 present the charging process of EVn (EVs in the queue of NC). Line 6 compares parking

duration Dev(n) and time (
Emaxev(n)

−Ecurev(n)

β
) to fully charge EVn. If EVn could get fully charged before its

departure, given by the condition ((Tcur − T arrev(n)
+

Emaxev(n)
−Ecurev(n)

β
) ≤ (T arrev(n)

+Dev(n))), its charging finish

time (
Emaxev(n)

−Ecurev(n)

β
+ Tcur) will be added to the LIST. Otherwise, the charging finish time will be given

by (T arrev(n)
+Dev(n)) instead, which indicates that EVn has to leave after the departure deadline.

The lines between 12 and 16 consider the situation that not all charging slots are occupied, Tcur will

be added to the LIST with (δ − NC) times (number of available charging slots). Here, Tcur will be the

available charging time for these unoccupied charging slots. Followed by lines 17 and 18, Algorithm 1

returns the LIST with ascending order. The LIST indicates the charging status for each charging slot in

the order of their available time.

B. Estimation of Available Charging Time

To alleviate charging congestion at CSs, the CS-Selection scheme attempts to allocate EVs evenly

across CSs. In practice, EVs have different charging urgency requirements and some EVs may need to

be preempted charged. Therefore, the GA estimates charging status of CSs when the on-the-move EV

that sends charging request (EVr) arrives. Algorithm 2 and Algorithm 3 calculate the Estimated Available

Charging Time (EACT) at the CS underlying the UFC policy charging scheduling. There are two cases

separately introduced in Algorithm 2 and Algorithm 3:

• Case-1: Algorithm 2 considers the incoming EVs (EVr and other EVs made reservations) have chance
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to be preempted charged upon their arrival (only with high charging urgency), comparing with EVs

in the queue of NW .

• Case-2: Algorithm 3 considers the incoming EVs will be charged, in which case, all EVs in the

queue of NW have been charged or the CS has no parked EV.

Algorithm 2 EACT Case-1〈LIST, NR〉
1: sort the queue of NW according to UFC order
2: add EVr into the queue of NR
3: sort the queue of NR according to UFC order
4: if no EV is waiting for charging then
5: return EACT Case-2〈LIST, NR〉
6: else
7: for (i = 1; i ≤ NW ; i++) do
8: for (j = 1; j ≤ NR; j ++) do
9: if (LIST.GET(0) > T arrev(j)

) ∩ (Vev(j) > Vev(i)) then
10: if (EVj equals to EVr) then
11: return LIST.GET(0)
12: else
13: if ((T chaev(j)

+ LIST.GET(0)) < (Dev(j) + T arrev(j)
)) then

14: T finev(j)
= LIST.GET(0) + T chaev(j)

15: else
16: T finev(j)

= Dev(j) + T arrev(j)
17: end if
18: replace the LIST.GET(0) with T finev(j)
19: sort LIST with ascending order
20: record EVj into DELETESET
21: end if
22: end if
23: end for
24: remove EVs recorded in DELETESET, from the queue of NR
25: if ((T chaev(i)

+ LIST.GET(0)) < (Dev(i) + T arrev(i)
)) then

26: T finev(i)
= LIST.GET(0) + T chaev(i)

27: else
28: T finev(i)

= Dev(i) + T arrev(i)
29: end if
30: replace the LIST.GET(0) with T finev(i)
31: sort LIST with ascending order
32: end for
33: end if
34: return EACT Case-2〈LIST, NR〉

1) Case-1: Initially, the queue of NW is sorted with the UFC policy, EVr is added into the queue of NR

(sorted with the UFC order). Lines between 4 and 6 refer to the condition that EVr arrives at a CS with

no other EVs waiting for charging, then the EACT will be further calculated in Algorithm 3. The LIST

has been sorted in Algorithm 1 with the earliest available order of charging slots. Thus, LIST.GET(0)

represents the first available charging time. When the first charging slot is available, EVi (the EV in the

queue of NW ) and EVj (the EV in the queue of NR) will be compared to decide their charging priority.

The comparison is indicated in loop operation starts from line 7. Here, the charging urgency (Vev) will

be the indicator to determine the charging order among the EVs, given by:
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Vev = T chaev − (T arrev +Dev − T staev ) (3)

In this equation, T arrev reflects the time slot an EV arrives at CS, T chaev reflects the charging time. T staev

reflects the time that the EV has stayed at the CS after its arrival, calculated by (Tcur − T arrev ). Here,

(T arrev +Dev − T staev ) refers to the remaining parking duration of a EV. Line 9 refers to the condition that

EVj’s charging urgency Vev(j) is higher than EVi’s charging urgency Vev(i) , and EVj has arrived at the CS

when the first charging slot is available (LIST.GET(0) > T arrev(j)
), then EVj can preempt charging before

EVi. However at line 10, there are two different conditions.

On the one hand, if EVj (the EV in the queue of NR being processed in current loop operation) is the

EVr. This implies that EVr is able to be preempted charged upon its arrival, Algorithm 2 will return the

EACT as LIST.GET(0) at line 11.

On the other hand, lines from 13 to 18 consider the other condition that EVj could preempt charging

prior to EVi, but EVj is other than EVr. EVj’s charging finish time T finev(j)
will take place LIST.GET(0).

As EVj is currently travelling and has not yet arrived the CS, its charging time T chaev(j)
is estimated by:

T chaev(j)
=
Emaxev(j)

− Ecurev(j)
+ (Sev × T traev(j)

× α)
β

(4)

Here, extra energy is consumed due to EVj’s travelling from its current location to the CS, which is

calculated as (Sev ×T traev(j)
×α). Under the condition that meets line 13, EVj can get fully charged within

its parking duration (Dev(j) + T arrev(j)
), then T finev(j)

is estimated as (LIST.GET(0) + T chaev(j)
). If EVj can not

get fully charged, line 16 estimates T finev(j)
as EVj’s departure deadline (Dev(j) + T arrev(j)

).

Because the charging slot is occupied by EVj , the LIST will be updated in the ascending order so that

LIST.GET(0) will still be the earliest available charging time. Since EVj has been scheduled, it will be

removed from the queue of NR which is given at line 24. EVj will not be scheduled to get preempted

charged when it does not meet the preempt charging condition (Vev(j) is higher than Vev(i) and there is an

available slot when EVj arrives). Therefore, only EVi could get charged. Lines from 25 to 28 calculate

EVi’s charging finish time T finev(i)
. Considering the parking duration, If EVi could be fully charged ((T chaev(i)

+ LIST.GET(0)) < (Dev(i) + T arrev(i)
)), T finev(i)

will be calculated as (LIST.GET(0) + T chaev(i)
). Otherwise, T finev(i)

will be calculated as (Dev(i) + T arrev(i)
). Lines 30 and 31 update the LIST to ensure that LIST.GET(0) is

the first available charging time. Eventually, if EVr is still not scheduled for charging within the loop

operation, Algorithm 3 is applied to schedule the rest EVs in the queue of NR at line 34.
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Algorithm 3 EACT Case-2〈LIST, NR〉
1: insert all EVs (in the queue of NR) into Nf

R

2: sort the queue of Nf
R according to FIFS order

3: for (k = 1; k ≤ NR; k ++) do
4: for (l = 1; l ≤ Nf

R; l ++) do
5: if ((LIST.GET(0) > T arrev(l)

) ∩ (LIST.GET(0) > T arrev(k)
) ∩ (Vev(l) > Vev(k)

)) then
6: if (EVl equals to EVr) then
7: return LIST.GET(0)
8: else
9: if ((T chaev(l)

+ LIST.GET(0)) < (Dev(l) + T arrev(l)
)) then

10: T finev(l)
= LIST.GET(0) + T chaev(l)

11: else
12: T finev(l)

= Dev(l) + T arrev(l)
13: end if
14: replace the LIST.GET(0) with T finev(l)
15: sort LIST with ascending order
16: record EVl into DELETESET
17: end if
18: end if
19: end for
20: remove EVs recorded in DELETESET, from the queues of NR and Nf

R

21: if (EVk is not EVr) then
22: if (LIST.GET(0) > T arrev(k)

) then
23: if ((T chaev(k)

+ LIST.GET(0)) < (Dev(k)
+ T arrev(k)

)) then
24: T finev(k)

= LIST.GET(0) + T chaev(k)

25: else
26: T finev(k)

= Dev(k)
+ T arrev(k)

27: end if
28: else
29: if ((T arrev(k)

+T chaev(k)
) < (Dev(k)

+ T arrev(k)
)) then

30: T finev(k)
= T arrev(k)

+ T chaev(k)

31: else
32: T finev(k)

= Dev(k)
+ T arrev(k)

33: end if
34: end if
35: replace the LIST.GET(0) with T finev(k)

36: sort LIST with ascending order
37: else
38: if (LIST.GET(0) > T arrev(r)

) then
39: return LIST.GET(0)
40: else
41: return T arrev(r)
42: end if
43: end if
44: end for

2) Case-2: If the queue of NW is empty or EVr fails to get preempted charged, the GA only needs to

consider charging priority among EVr and the other EVs in the queue of NR. The inputs of Algorithm

3 (the LIST and the queue of NR) have been updated by Algorithm 2. All EVs in the queue of NR are

added into the queue of N f
R at line 1. The queue of N f

R is then sorted as a queue scheduled in FIFS

order. The loop operation from line 3 goes through EVl (the EV in the queue of N f
R), meanwhile loop

operation from line 4 goes through EVk (the EV in the queue of NR). If EVl has arrived at the CS before

LIST.GET(0), EVk has arrived at the CS before LIST.GET(0) and EVl is with a higher charging urgency

(Vev(l) > Vev(k)), EVl is allowed to be charged prior to EVk. Under the condition meets line 5, we have:
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• At lines 6 and 7, if the EVl in the current loop is EVr, the EACT will be returned as LIST.GET(0).

• Lines 8 to 16 refer that EVl could get charged before EVk, however EVl is other than EVr.

LIST.GET(0) will be replaced with EVl’s charging finish time T finev(l)
. Note that if EVl could get

fully charged before its departure, T finev(l)
will be calculated as (LIST.GET(0)+T chaev(l)

). If EVl could not

get fully charged, T finev(l)
will be calculated as (Dev(l) + T arrev(l)

). Then line 15 sorts the LIST to ensure

the LIST is with available time order.

As EVl has been scheduled for charging, it will be removed from the queues of NR and N f
R at line

20. It should be mentioned that EVl and EVk are EVs in the initial queue of NR, the queues of NR and

N f
R have same EVs but sorted with two different scheduling policy. Any EVl mapping to EVk that is

excluded at line 20, will no longer appear in subsequent loop operations. After EVl that meets the above

condition has been scheduled, Algorithm 3 only needs to schedule the rest EVk. There are two different

cases depends on whether EVk is EVr:

• Lines from 21 to 36 process the condition that EVk is other than EVr. Depending on whether

EVk arrives before LIST.GET(0) and whether EVk could be fully charged, there are four different

sub-cases. Firstly, if EVk arrives before LIST.GET(0) and could be fully charged within its parking

duration ((T chaev(k)
+ LIST.GET(k)) < (Dev(k) + T arrev(k)

)), T finev(k)
will be calculated as (LIST.GET(0)+T chaev(k)

)

at line 24. Secondly, if EVk arrives before LIST.GET(0) but could not be fully charged within its

parking duration, T finev(k)
will be calculated as (Dev(k) + T arrev(k)

) at line 26. Thirdly, if EVk arrives later

than LIST.GET(0) but could be fully charged within its parking duration, T finev(k)
will be calculated as

(T arrev(k)
+ T chaev(k)

). In the last sub-cases, if EVk arrives later than LIST.GET(0) and could not be fully

charged within its parking duration, T finev(k)
will be returned as (Dev(k) + T arrev(k)

). Then T finev(k)
will take

place LIST.GET(0) at line 35 and the LIST will be sorted with ascending order at line 36.

• Lines from 37 to 43 consider the final condition that EVk in current loop is EVr. EVr’s arrival

time will be compared with LIST.GET(0) concerning when EVr could get charged. LIST.GET(0) is

returned as the EACT at lines 39 if EVr arrives before the first available charging slot. In the other

condition under line 41, its arrival time (T arrev(r)
) is returned as the EACT.

C. CS-Selection Decision Making

As to select the CS with the minimum time spent through an entire charging process (total trip duration

T cs,dev(r)
), the CS-Selection scheme calculates total trip duration (T cs,dev(r)

) at each CS. Here, T cs,dev(r)
is calculated
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Algorithm 4 CS-Selection Decision Making
1: for ∀lcs ∈ Ncs do
2: calculate T traev(r)

3: calculate Tmincs,d

4: calculate EACTcs via Algorithm 3
5: if ((T chaev(r)

+ EACTcs) ≤ (Dev(r) + T arrev(r)
)) then

6: T cs,dev(r)
= T traev(r)

+ T chaev(r)
+ EACTcs + Tmincs,d

7: else
8: T cs,dev(r)

= T traev(r)
+ T arrev(r)

+Dev(r) + Tmincs,d

9: end if
10: end for
11: lmincs ← argmin(T cs,dev(r)

)

12: return lmincs

with the following three inputs:

1) The travelling time from EVr’s current location to the selected CS, given by T traev(r)
.

2) The duration EVr spends at the selected CS, which is given by the lines between 6 and 8 in

Algorithm 4. It refers to the EV’s charging and waiting time (duration before the EV gets charging

service). Here, the EACT at CS (with location lcs) has been estimated by the Algorithm 3.

3) The travelling time from the selected CS to EVr’s trip destination, given by Tmincs,d .

Considering the parking duration, T cs,dev(r)
is calculated in two cases to refer that EVr to be fully/not

fully charged respectively. Firstly, if EVr could get a fully charged service before it departure deadline

((T chaev(r)
+ EACTcs) ≤ (Dev(r) + T arrev(r)

)), T cs,dev(r)
is given by:

T cs,dev(r)
= T traev(r)

+ T chaev(r)
+ EACTcs + Tmincs,d (5)

In the other case, EVr could not get a fully charged because it has to depart at its departure deadline

(T arrev(r)
+Dev(r)), T

cs,d
ev(r)

is calculated by the following calculation at line 8:

T cs,dev(r)
= T traev(r)

+ T arrev(r)
+Dev(r) + Tmincs,d (6)

When loop operation finished at line 10, T cs,dev(r)
for each CS is obtained. The GA will select the CS

with the minimum T cs,dev(r)
together with its location lmincs back to EVr as the CS-Selection decision.

V. PERFORMANCE EVALUATION

We use Opportunistic Network Environment (ONE) [28] to build a city charging system simulation

scenario. In Fig.4, a 4500×3400 m2 area scenario demonstrates the urban area of Helsinki city in Finland.

EVs are configured using Coda Automotive [29] with 33.8 kWh maximum electricity capacity, 193 km

max travelling distance and average energy consumption of 0.1751 kWh/km. All EVs’ batteries are with
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Fig. 4. Simulation Scenario of Helsinki City

full volume at the beginning of the simulation.

To classify different EVs types, three SOC thresholds 30%, 40% and 50% are set. EVs are initialized

in the scenario with variable moving speed from 30km/h to 50km/h. The speed of EVs change upon

each path to reflect the impact of traffic. Each EV would randomly select its destination. Whenever the

destination is reached, a new destination will be randomly selected again, until its SOC reaches the preset

threshold.

Besides, 7 CSs are deployed in the city scenario and provide fast charging. CSs are equipped with

5 charging slots. We apply the centre manner for communication between EVs, CSs and the GA. The

GA processes all charging requests from all EVs and make CS-Selection decision to EVs whenever EVs

request CS-Selection. The EV with request then would travel towards the decided CS for charging with

the shortest road path underlying the Helsinki road topology.

The simulation lasts for a 12 hours’ duration with updating per 0.1s, where EVs’ positions, speeds

and energies are updated every 0.1s, no matter EVs are on the road or parked at CSs. Unless mentioned,

incoming EVs are scheduled underlying the UFC policy, as detailed in Section III-A. The following

CS-Selection schemes are evaluated for comparison:

• Proposed: The GA returns the decided CS with the minimum total trip duration by the Algorithm 4.

• Urgency First Charging Without Reservation (UFCWR) [30]: Literature work that the GA selects

the CS with the EACT which is detailed in Algorithm 2, but does not ask EVs making reservations

to CSs. The EVs’ charging scheduling in simulation is based on the UFC policy.

• Reservation: The reservation scheme is based on FIFS charging scheduling [25]. The GA returns the

CS-Selection decision by the EACT which considers both parked EVs and EVs made reservations.
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To compare different simulation results, the following performance metrics are evaluated:

• Number of EVs Fully Charged: It is a performance metric at the CS side, which refers to the

total number counting of EVs get fully charged service in the network within the simulation duration

(each EV can be fully charged and counted for several times).

• Number of EVs Not Fully Charged: Number of EVs not fully charged although they have arrived

at a CS. In the extreme case, an EV could not get charging service within its parking duration, which

degrades user QoE, and the EV needs to continuously find a new CS for charging.

• Average Waiting Time: It is a performance metric at the EV side, which represents the average time

costs that an EV get fully charged after it arrives at a selected CS.

• Average Trip Duration: The average trip duration sums the travelling time that an EV travels through

the decided CS and its charging time the EV spends at the CS.

A. Influence of Parking Duration
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Fig. 5. Influence of Parking Duration (EV Density: 330 EVs & Charging Power: 62kWh)

In the first group of simulations, we fix EV density and charging power. Here, we set parking duration

to 1300s, 1500s, 1800s, and 2100s respectively. In 1800s, an EV could complete a fully charging from

empty battery volume to full battery volume. Here, charging slots would terminate EVs’ charging service

after their departure deadline. We observe that with a higher parking duration, all of the three CS-Selection

schemes achieve a higher number of EVs get fully charged in Fig. 5(a). However, as both the proposed

scheme and the reservation scheme allow EVs making reservations, they have more accuracy in the EACT
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than the UFCWR scheme. Thus the GA can allocate EVs towards a CS with lower congestion level. Since

the proposed scheme takes into account the charging urgency and would allow preempted charging, it

avoids some EVs having to leave CS when the parking duration expires after a long wait but not getting

fully charged. With the benefit of the UFC policy, more EVs could get fully charged comparing with the

reservation scheme.

In Fig.5(b), the proposed scheme has an obvious advantage over the reservation scheme and the UFCWR

scheme. Especially when the parking duration is the primary constrain, congestion would occur at CSs,

EVs with higher charging urgency would require preempted charging, thus charging scheduling becomes

significant. In Fig.5(c), the UFCWR scheme suffers from the longest average waiting time among the three

schemes, no matter how parking duration changes. The average waiting time of the proposed scheme and

the reservation scheme are at a similar level. Because both the reservation scheme and the proposed scheme

enable the GA to estimate CSs charging status more accurate, it can prevent EVs from driving to a CS

with a high level of congestion. However the proposed scheme has certain advantages as the proposed

scheme achieves a larger number of EVs fully charged (in Fig.5(a)). The proposed scheme achieves a

shorter average trip duration than the UFCWR scheme and the reservation scheme in Fig.5(d). With the

increasing parking duration, the advantage of the proposed scheme becomes more significant. Because in

Algorithm 4 the proposed CS-Selection scheme jointly considers the time from the EV’s current location

to the CS and the time from the CS to EV’s destination, so the proposed scheme performs better than the

other two schemes in average trip duration.

We set the parking duration to 3600s in the last set of simulations. As there are not many EVs in the

network, most EVs can be fully charged in Fig.5(a) and only a few EVs can not fully charged in Fig.5(b).

Meanwhile, the average waiting time and trip duration fail to reflect the difference between the three

schemes. This is because the advantages of schemes can be better reflected when congestion occurs.

B. Influence of EV Density

In the second group of simulations, we fix EV’s parking duration to 1800s and charging power to 62kW.

Then we observe the results of three different CS-Selection schemes when changing number of EVs. In

Fig.6(a), the result shows that the proposed scheme achieves the highest number of EVs fully charged.

Especially when the total number of EVs increases, the proposed scheme performs much better than the

reservation scheme and the UFCWR scheme. Here, the proposed scheme achieves the higher number of

EVs fully charged because it considers the charging urgency of EVs and allows preempted charging.



18

0

200

400

600

800

1000

1200

240 EVs 270 EVs 300 EVs 330 EVs

N
u

m
b

e
r 

o
f 

E
V

s 
F

u
ll

y
 

C
h

a
rg

e
d

Proposed UFCWR Reservation

(a) Number of EVs Fully Charged

0

200

400

600

800

1000

240 EVs 270 EVs 300 EVs 330 EVsN
u

m
b

e
r 

o
f 

E
V

s 
N

o
t 

F
u

ll
y

 

C
h

a
rg

e
d

Proposed UFCWR Reservation

(b) Number of EVs Not Fully Charged

 

1050

1100

1150

1200

1250

1300

1350

1400

240 EVs 270 EVs 300 EVs 330 EVs

A
v

e
ra

g
e

 W
a

it
in

g
 T

im
e

 

Proposed UFCWR Reservation

(c) Average Waiting Time

 

0

500

1000

1500

2000

2500

240 EVs 270 EVs 300 EVs 330 EVs

A
v

e
ra

g
e

 T
ri

p
 D

u
ra

ti
o

n

Proposed UFCWR Reservation

(d) Average Trip Duration
Fig. 6. Influence of EV Density (Parking Duration: 1800s & Charging Power: 62kWh)

Performance Metrics\CS-Selection Schemes Proposed UFCWR Reservation
Number of EVs Fully Charged 1401 883 870
Number of EVs Not Fully Charged 1844 2973 2922
Average Waiting Time (s) 2031 2377 2242
Average Trip Duration (s) 4288 4883 4743

TABLE II
INFLUENCE OF EV DENSITY (EV DENSITY: 660 & PARKING DURATION: 3600S & CHARGING POWER: 62KWH)

The result in Fig.6(b) also proves the advantage of the proposed scheme. It is worth mentioning that

when the number of EVs increased by 330, the difference between the proposed scheme and the reservation

scheme has a huge increase, this is because more congestion occurs when the number of EV increases and

charging scheduling becomes significant. As the total number of EVs increases, the average waiting time

and the average trip duration in Fig.6(c) and Fig.6(d) increase as well. This is due to the more charging

congestion happens. The average waiting time of the proposed scheme and the reservation scheme are at a

similar level as shown in Fig.6(c), shorter than the UFCWR scheme. This is because the UFCWR scheme

calculates the EACT without considering EVs’ reservations, thus the CSs charging status are not able to

be accurately predicted and the GA may select a CS with charging congestion. Due to the difference of

number of EVs fully charged, the proposed scheme has an advantage over the reservation scheme as it

allows more EVs get fully charged (in Fig.6(a)). In Fig.6(d), the proposed scheme achieves the shortest

average trip duration among the three schemes. This is because Algorithm 4 jointly considers travelling

time and charging time, which is different from the reservation scheme and the UFCWR scheme.

In Table II, we further increase the number of EVs and the parking duration to 3600s (otherwise
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most EVs cannot be fully charged). This setting reflects that when the number of vehicles increases and

congestion occurs, the proposed scheme increases the probability of EV get fully charged within the

limited parking duration. This scheme also reduces the total trip time as it considers the charging urgency.

C. Influence of Charging Power
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(d) Average Trip Duration
Fig. 7. Influence of Charging Power (EV Density: 330 EVs & Parking Duration: 1800s)

In the third group of simulations, we fix the parking duration to 1800s and EV density to 330 EVs to

observe the influence of charging power. In this paper, we use DC charging (fast charging technology)

to supplement EV energy. Fast charging reduces the charging time of EVs, which is more convenient for

drivers to travel. In Fig.7(a), the proposed scheme achieves the highest number of EVs get fully charged.

Especially when the charging power is at 38kW, the proposed scheme has an obvious advantage over the

other CS-Selection schemes. This is because the proposed scheme allows preempted charging and sends

reservations to the GA, which benefits overall EVs charging allocation. The result in Fig.7(a) also shows

that, with the increase of charging power, more EVs get fully charged in all three schemes. The proposed

scheme achieves the least number of EVs not fully charged in Fig.7(b). Because the proposed scheme

considers the charging urgency of EVs, it prevents EVs from waiting at one CS without charging before

its departure. When the charging power increases by 74kW, EV’s charging time is shortened at all CSs,

and all the three schemes decrease the number of EVs not fully charged.

The UFCWR scheme suffers from the longest average waiting time in Fig.7(c), this is because the

UFCWR scheme does not ask EVs to send their reservations. Thus estimation of CSs charging status are
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uncertain, and it causes CS hotpots. Both the proposed scheme and the reservation scheme achieve shorter

average waiting time comparing with the UFCWR scheme, however the proposed scheme allows more

EVs get fully charged (Fig.7(a)) and thus it proves the importance of considering charging urgency. In

Fig.7(d), the average trip duration decreases when the charging power increases. Here, the result shows that

if charging power at CSs is increased, EVs would adequately avoid charging congestion, thereby reducing

the overall trip duration. Among the three CS-Selection schemes, the proposed scheme considers the

influence of the trip time in Algorithm 4, and thus achieves the shortest average trip duration.

VI. CONCLUSION

In this paper, we proposed a UFC charging scheduling policy that orders EVs charging priority by their

charging urgency (jointly considering their charging demand and parking duration). Based on the UFC

scheduling policy, we further proposed a reservation-based CS-Selection scheme to minimize the EVs’

trip duration, which also guarantees more EVs to get fully charged within the parking duration. Results

show the proposed CS-Selection scheme achieves a shorter EVs’ trip duration through an intermediate

charging, higher number of EVs get fully charged as well as a shorter average waiting time.
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