
Wayfinder: Towards Automatically Deriving Optimal
OS Configurations

Alexander Jung

Lancaster University

Lancaster, UK

Hugo Lefeuvre

The University of

Manchester

Manchester, UK

Charalampos Rotsos

Lancaster University

Lancaster, UK

Pierre Olivier

The University of

Manchester

Manchester, UK

Daniel Oñoro-Rubio

NEC Laboratories

Europe GmbH

Heidelberg, Germany

Mathias Niepert

NEC Laboratories

Europe GmbH

Heidelberg, Germany

Felipe Huici

NEC Laboratories

Europe GmbH

Heidelberg, Germany

Abstract

Tuning operating systems configuration in order to obtain

the maximum application performance is a hard problem.

This is due to the extremely large size of the configuration

space offered by modern OSes, and to the fact that it is gen-

erally explored manually. To address that issue, we propose

to bring automation to the OS configuration space explo-

ration process, in order to derive effortlessly and as quickly

as possible optimal OS configurations for a given use case.

We present Wayfinder, a generic OS performance evalu-

ation platform. Wayfinder is fully automated and ensures

both the accuracy and reproducibility of results, all the while

speeding up how fast tests are run on a system. Wayfinder

is easily extensible and offers convenient APIs to (1) imple-

ment custom configuration space exploration techniques, (2)

add new benchmarks and (3) support additional OS projects.

We demonstrate Wayfinder’s capacity to automatically and

efficiently explore a LibOS’ networking configuration space;

as well as its ability to efficiently isolate parallel experiments

to avoid noisy neighbors.

ACM Reference Format:

Alexander Jung, Hugo Lefeuvre, Charalampos Rotsos, Pierre Olivier,

Daniel Oñoro-Rubio, Mathias Niepert, and Felipe Huici. 2021.

Wayfinder: Towards Automatically Deriving Optimal OS Config-

urations. In 12th ACM SIGOPS Asia-Pacific Workshop on Systems
(APSys’21), August 24–25, 2021, Hong Kong, China. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3476886.3477506

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

APSys’21, August 24–25, 2021, Hong Kong, China
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8698-2/21/08.

https://doi.org/10.1145/3476886.3477506

1 Introduction

Tuning operating systems via configuration options is funda-

mental to squeezing the best performance out of applications,

whether in terms of throughput, delay or memory consump-

tion, to name a few metrics. However, achieving such per-

formance remains a bit of a dark art: countless articles and

blogs regularly appear explaining how to performance-tune

the underlying OS such that a particular application (e.g.,
NGINX, Redis, MySQL, etc. [3, 22, 23]) can perform at its

best. Such writings are the result of endless hours of trial-

and-error and (often manual) measurements to understand

which OS and application configuration options matter most,

and what their values should be. This is particularly true as

the popularity of the LibOS [5, 30] increases: a model advo-

cating for a deep specialization of the kernel for a particular

application or use case.

This status quo does not only mean that a select few can

tackle the difficult issue of attaining the best application per-

formance, but that even these experts may miss optimization

opportunities because the configuration option exploration

space is extremely large. In this paper we ask two fundamen-

tal questions:

• Is it possible to automatically and intelligently derive
optimal OS configurations for particular applications?
Ideally we would like users to simply select a target ap-

plication and then let the system run a battery of exper-

iments to sort and discover, hopefully in the shortest

time possible, an optimal set of configuration options.

• Is it possible to automatically gain insights into which
options matter most? Through trial-and-error experi-

mentation and common sense we know that certain

configuration options really matter in terms of per-

formance (e.g., disabling access logging in NGINX or

enabling batching in the network stack), but would it

be possible for an automated system to return a list of

such options, or combination of options, such that we

could learn about what influences performance?

https://doi.org/10.1145/3476886.3477506
https://doi.org/10.1145/3476886.3477506

APSys’21, August 24–25, 2021, Hong Kong, China Jung, et al.

Towards exploring these high level goals we introduce

Wayfinder, a system which can automatically and efficiently

explore a relatively large set of configuration options, and

for each, measure the performance of the specific target ap-

plication. While the ultimate target is general-purpose OSes

such as Linux, our current prototype focuses on LibOSes be-

cause (1) their configuration option space is of small/medium

size and (2) the build times are considerably smaller, thus

allowing us to explore a larger space in a smaller amount of

time. Wayfinder is at its core an automated benchmarking

infrastructure. It supports several OSes including OSv [14],

HermiTux [24], Unikraft [15] and Lupine [17], and adding

support for more is effortless. The configuration search space

for a given application can easily be described in configura-

tion files and the system supports speeding up experiments

by running them in parallel while enforcing the required

isolation for each run to avoid noisy neighbor effects.

An important question in Wayfinder is: given a large con-
figuration space how should it choose which configuration op-
tions to explore for each performance experiment? A naive and

non-scalable approach would be to perform a grid search,

successively trying all possible parameter configurations.

Since exploring all configurations is too costly for all but a

small number of applications, one typically has to limit the

number of evaluations. Given such a fixed budget on the

number of configurations, a random parameter search would

likely miss good configurations. Due to the similarity of the

problem to tuning (hyper-)parameters for complex machine

learning models, Bayesian optimization and related methods

developed for this purpose might achieve a good trade-off

between finding a high performance configuration and doing

so in a relatively short amount of time. Ultimately however,

we envision using machine learning algorithms, and in par-

ticular neural network (NN) models. Recent advances in NN

show promising results in reinforcement learning[21, 33],

explainable ML[27, 28, 31], generative models[2, 8, 12, 13],

and transfer learning[6, 7, 26]. We can exploit their capa-

bilities in fitting complex distributions and their ability to

transfer the learned knowledge to related problems allowing

us to predict the best configurations for multiple applications

and hardware setups. Furthermore, we can take advantage

of explainable ML methods to highlight the importance of

input features, and to detect possible input configurations

that cause bottlenecks.

Towards this high level goal, in this early work we make

the following research contributions:

• We introduce Wayfinder, a novel, generic and modu-

lar benchmark platform capable to automatically set

configuration options, build operating systems and the

target application, and test the latter’s performance

while recording system performance statistics (e.g.,
memory consumption, CPU counters, etc.).

• A modular sub-system that allows for plugging dif-

ferent algorithms for deciding which configuration

options to explore at each turn; in our prototype we

evaluate this using grid, random and Bayesian opti-

mization algorithms.

• A use case based on NGINX using Wayfinder to au-

tomatically find a performance optimum (in terms of

requests per second), and to graphically show which

parameters mattered the most in order to achieve such

performance (i.e., insights).
Wayfinder, as well as all configuration files used in this paper,

are open-source and can be found at:

https://github.com/lancs-net/wayfinder.

2 Design Principles and Implementation

Wayfinder’s main goal is to let users automatically and ef-

ficiently explore the wide design space offered by modern

OSes. As such, we envision it to be beneficial in a range of

use cases including searching for performance optimums,

identifying configuration parameters having a strong im-

pact on performance, and in general helping OS users and

their designers to fairly compare several OS models over

several metrics and in various scenarios. With this in mind,

the design goals of Wayfinder are:

(1) To provide reproducible benchmarking environments

for LibOS experimentation and to allow for full au-

tomation of the performance measurement process.

(2) To provide automated methods to efficiently explore

the vast design space offered by modern LibOSes.

(3) To efficiently leverage the parallelism inherent inmulti-

core hosts to speed up the tests while avoiding noisy

neighbor effects arising from co-locating sensitive per-

formance measurements on compute units sharing

hardware resources (e.g., caches).
(4) A modular architecture which enables the extensibil-

ity of various components, in particular 1) new user-

defined exploration strategies; 2) new benchmarks;

and 3) new LibOSes.

At a high level, Wayfinder addresses these requirements

by 1) automating the entire evaluation process and uniquely

describing each experiment through configuration files, thus

making them reproducible; 2) offering 3 automated design

space exploration strategies (grid and random search, Bayesian

optimization); 3) allowing users to specify the required de-

gree of isolation for each test and automatically inferring

the possible parallelism between tests; and 4) offering con-

venient APIs so users can customize the parameterization

process and extend Wayfinder’s support for new exploration

strategies, new benchmarks and OSes.

We begin the description of Wayfinder’s architecture by

noting that many OSes configuration parameters are set

statically at build time – in particular in LibOSes which is

https://github.com/lancs-net/wayfinder

Wayfinder: Towards Automatically Deriving Optimal OS Configurations APSys’21, August 24–25, 2021, Hong Kong, China

Scheduler

T22 T12 T21 T11 B2 B1
C

F

Configuration
Generation Engine

B

Permutation
Configuration API

D

G

Job queue

Wayfinder
config file

(YAML)

User
(optional)

Jobs
execute
on host

cores

Host
Configurator

A

E
Performance results feedback

H

C1 C2 C3 C4 … Cn

t
T22T12

T21T11

B2B1

Figure 1: Overview of Wayfinder’s architecture. An id

i corresponds to a fixed set of values for all parame-

ters, Bi corresponds to the build job for i, andT j
i corre-

sponds to the test job of iteration number j for i.C1-CN
represent the host cores.

the model we target for our proof-of concept. As a result, an

experiment run using Wayfinder will not only include test
jobs but also build jobs (see Figure 1).

The user describes the experimental environment in a con-

figuration file – point A in the figure. Among other things,

the file contains the list of OS configuration parameters to be

varied and how they should be varied during the experiment.

This is fed to the configuration generation engine B , which

produces a queue C of OS build jobs and experiment run

jobs according to the configuration file.

The generator can simply iterate over the entire explo-

ration space by varying each parameter step by step, but can

also be tuned by the user through a special API D which

uses feedback from the performance measurement results E

in order to intelligently search for performance optima in the

exploration space without having to enumerate all possible

parameter combinations.

Finally, a scheduler F dispatches and executes jobs on the

host cores G based on job requirements in terms of physical

resources and isolation levels (more on levels later). Various

host global parameters, for example power management

governors or the enabling/disabling of technologies such as

Hyper-Threading or Turbo Boost, can be set according to

user preferences H .

In the rest of this section we give more details about some

of Wayfinder’s key features and describe how they address

our design principles.

Experiment Setup: Configuration File. Experiments are pro-

vided to Wayfinder in YAML format. The YAML file includes

the path to two important scripts: the build script that will be
used to run build jobs, in other words, the configuring and

building of the OS; and the test script, used to run the OS and

measure performance metrics. The YAML configuration file

also contains the list of OS configuration parameters which

should be varied during the experiment as well as how they

should be varied (e.g., on/off switches or ranges of values

with a variation step). Finally, the configuration file includes

various runtime fields, including: the number of iterations

for each executed test; the number of cores required for the

build and test jobs; timeouts for a particular run or whether

the experiment should abort/stop; isolation requirements

for test jobs; and, host-level configuration parameters (e.g.,

Hyper-Threading or CPU core pinning).

Build Jobs Parameterization. A central part of an experiment

in Wayfinder is the list of OS configuration parameters to

vary and how they should be varied. For example, the fol-

lowing YAML configuration snippet describes the variation

of Unikraft’s [35] TCP/IP stack (lwIP [4]) sender buffer size

from 1MB to 100MB by increments of 1MB:

1 params:
2 - name: LWIP_SND_BUF # TCP sender buffer size
3 min: 1048576 # vary from 1MB
4 max: 104857600 # to 100MB
5 step: 1048576 # by steps of 1MB
6 - name: LWIP_RCV_BUF # Next parameter
7 # ...

This information is passed to the configuration generation

engine, which will produce combinations of fixed values for

each parameter. Each such combination will trigger the gen-

eration of a build job and one or several test jobs, according

to the number of iterations chosen by the user. The build

job executes the build script indicated in the YAML file after

having generated a build configuration file such as config.h

or set particular environment variables according to the OS

model considered. The test jobs are generated and run simi-

larly. For instance, in the example given above, Wayfinder

will set LWIP_SND_BUF with the value of this parameter for

the current iteration (starting at 1048576) before calling the

build script which will read that value and construct the OS

accordingly.

We assume that the build scripts include version checks

for the sources of both the OS and the benchmark code

(e.g., force a git checkout before the build). Given that, an

experiment in Wayfinder can be uniquely described by the

YAML configuration file and the build/test scripts: it is thus

reproducible.

Configuration Generation Engine and Exploration Strategies.
The default behavior of the configuration generation engine

is to naively generate a job for each possible combination

of parameters. However, this does not scale well to the very

large configuration space offered by modern OSes [16, 17].

To improve scalability, the configuration generation engine

provides a customization API which allows users to imple-

ment custom parameter exploration logic and generate new

APSys’21, August 24–25, 2021, Hong Kong, China Jung, et al.

configuration parameters combinations based on several in-

puts, including, in particular, past parameters combinations

and their corresponding performance results. These are fed

back to the generation engine by Wayfinder (recall step E in

the architecture diagram). This opens up the possibility of in-

telligently searching for performance optima or identifying

the parameters having the largest impact on performance

using user-defined techniques or heuristics.

We implemented on top of the API three of such design

space exploration strategies: grid search, going over the en-
tire search space incrementally by setting each parameter’s

value from a predefined grid; random search, iterating over
the space by setting parameters randomly; and Bayesian op-
timization, using Bayes’ theorem to converge quickly on an

optimal configuration point.

Parallelism vs. Performance Isolation. Given the large explo-

ration space, on modern machines Wayfinder is faced with

the conflicting goals of 1) leveraging parallelism on multiple

cores to run as many jobs as possible simultaneously in order

to minimize the experiment run time; and, 2) avoiding the

noisy neighbor effects which occur when co-locating jobs on

compute units sharing resources, for example Hyper Threads

from the same core or cores sharing caches. While some jobs

such as memory-intensive benchmarks would negatively

affect each others when co-located, others such as build jobs

or memory usage measurements would not.

To maximize parallelism while maintaining performance

isolation for the jobswhich require it, the user can declare, for

each test job, the level of isolation required for its execution.

We define 5 levels of isolation:

(1) No isolation: jobs in the level can be co-located, i.e.
run on Hyper Threads of the same core;

(2) Core: two jobs in this level will not run on two Hyper

Threads of the same core;

(3) Cache: jobs can not run on cores sharing a cache;

(4) Socket: jobs can not be co-located on the same socket;

(5) Full isolation: no other job can run in parallel.

Wayfinder automatically analyzes the hardware configu-

ration of the host to determine its topology. The scheduler

uses this information, along with job requirements to make

informed decisions regarding test and build job placement G .

Build jobs are automatically set to the “no isolation” level.

In addition, on recent CPUs, Wayfinder takes care of tun-

ing the performance isolation vs. parallelism trade-off in

a fine-grained fashion by leveraging Intel’s Cache Alloca-

tion Technology [9] and Memory Bandwidth Allocator [10]

mechanisms.

Further, in order to achieve OS-level isolation and consis-

tency between jobs,Wayfinder leverages Linux’s namespaces

and control groups on the host. A privileged container envi-

ronment, initialized using libcontainer [25], is used to build

Table 1: New benchmarks/OSes porting effort.

Experiment LibOS

Lines of Code

YAML Build test Patch

Boot time

& memory

footprint

HermitTux 2 0 10 2

Lupine 2 16 23 0

OSv 2 9 33 9

Rumprun 2 15 13 8

Unikraft 2 10 74 7

TCP/IP Unikraft 34 8 8 0

the OS and run the experiment with the correct environment

variables values and build configuration files. This approach

enables a fine level of resource control, including CPUs, RAM,

network bandwidth, etc. Note that jobs are always pinned to

compute units (Hyper Threads or CPU cores) and we do not

schedule more than jobs in a Hyper Thread per core.

Adding New Benchmarks and OSes. Adding new benchmarks

or OSes to Wayfinder is straightforward. Introducing a new

benchmark is as simple as writing 1) a script to build an

OS for the new benchmark (build script); and 2) a script to

execute the OS in question (run script).
Porting a newOS toWayfindermostly consists of updating

the configuration generation engine by specifying whether

the build is configured through environment variables or

generated headers, such as config.h.

As we focus on LibOSes, Wayfinder includes built-in met-

ric monitors that are critical in this OS model, i.e., boot time

and memory footprint. These require slight updates to the

LibOS and to the hypervisor if the OS in question is vir-

tualized. The LibOS update is negligible and only involves

adding a single line of inline assembly code at the end of

the boot process to mark a timestamp helping in measuring

the boot time. For virtualized LibOSes, the hypervisor/tool-

stack also needs to be slightly modified for precise boot time

measurement, but once again this represents a very small ef-

fort. Note that Wayfinder ships with patches to include these

modifications to several popular hypervisors (QEMU/KVM,

Firecracker [1], ukvm/Solo5 [32, 36], and uHyve [18, 24]) and

LibOSes (HermiTux, Unikraft, OSv, Rumprun, and Lupine

Linux). As an example, adding HermiTux to Wayfinder took

less than one hour of work. Table 1 reports the amount of

LoC written to port new benchmarks (boot time, memory

usage, and NGINX performance measurement) and to port

several LibOSes (patch).

Implementation. Wayfinder consists of about 2K lines of Go-

lang code. The current version includes numerous configura-

tion files: build and test scripts for the aforementioned OSes,

files for several benchmarks including networking perfor-

mance measurements with NGINX, and files to define boot

time and memory usage measurements.

Wayfinder: Towards Automatically Deriving Optimal OS Configurations APSys’21, August 24–25, 2021, Hong Kong, China

3 Evaluation

Wayfinder allows to explore automatically and efficiently

a potentially large configuration space. To evaluate this,

we leverage our system to perform a comprehensive per-

formance exploration of network configuration options in

Unikraft [35] running the NGINX web server. We then show

how Wayfinder can be used to efficiently find the best con-

figuration in a minimum amount of steps. Finally, we study

Wayfinder’s capacity to isolate benchmarks running in par-

allel in order to avoid disturbances.

We ran all experiments on a server (2xIntel Xeon E5-2640)

with Linux 4.19.0 and configured for maximum performance

(isolcpus on core 0-1, HT and ASLR disabled, performance

CPU governor). Unless otherwise stated, build jobs run with

no isolation and experiment jobs run with full isolation.

TCP/IP Configuration Space Exploration. In order to demon-

strate the ability of Wayfinder to automate configuration

space exploration, we use a web server LibOS based on

Unikraft and its NGINX port. The resulting project exposes

275 configuration options across multiple libraries, includ-

ing the network stack, the scheduler and the NGINX appli-

cation. As the exploration space is prohibitively large and

several parameters are numeric, we focus our analysis on a

small set of key network and application parameters. Specif-

ically, from the lwIP library we vary the memory manage-

ment model (malloc’ed — MEMP_MEM_MALLOC – vs. pool-based -

MEMP_MEM_MALLOC), the virtio driver mode (poll vs. interrupt),

and the size of the statically-allocated memory for TCP lis-

teners (LWIP_NUM_TCPLISTENERS) as well as connected sockets

(LWIP_NUM_TCPCON) from 4 to 64 by increments of 2
N
. In paral-

lel, we explore the performance impact of the access logging,

caching and Keep-Alive options in NGINX.

Based on these parameters, Wayfinder automatically gen-

erates 512 unique LibOS images, reflecting all possible con-

figuration permutations. Using the wrk HTTP performance

tool, we generate a steady stream of HTTP requests for a

static page of 612 bytes and measure the average server re-

sponse rate. In each experiment we configure wrk to use 30

persistent HTTP connections, each running on a separate

thread.

Our results (see Figure 2) demonstrate the significant im-

pact that LibOS configuration options can have on perfor-

mance: different configurations can result in a large range

of performance results, from 239 reqs/sec (L,K,H,T=64,N=64)

to 103470 reqs/sec (K,P,T=32,N=32,O,C) – a three orders of

magnitude increase – even though we modify, in these two

cases, the same application configuration options. From the

results, we also highlight the low performance of configura-

tions than enable logging and the positive impact of a high

number of pre-allocated TCP buffers and HTTP Keep-Alive

on performance.

In addition, we note that Unikraft’s default configuration,

shown by a red line in the figure, yields rather poor perfor-

mance, only 33% of the throughput of the best configuration.

This highlights the fact that defaults tend to be sub-optimal,

and that a framework such as Wayfinder can help practition-

ers find performance optima much more quickly.

Design Space Exploration Strategies. Even if the configuration
space of the previous experiment is relatively small (512

configurations), it takes nine hours to complete. Wayfinder

implements exploration strategies whose goal is to find in

a vast configuration space an optimum in as few steps as

possible.

We evaluated the capacity of our 3 exploration strategies

(grid and random search, Bayesian optimization) to find an

optimal configuration in the Unikraft Nginx search space

presented earlier (see Figure 2). For each strategy we vary the

number of configurations that can be tested before ending

the search and reporting the tested configuration giving the

best performance. This number is set to be 10, 40, and 100.

Figure 3 reports the maximum NGINX throughput found

as an average and stdev of 10 runs of each strategy for each

number of iterations. For grid search, the starting point is

randomized for each run. Even with a large number of itera-

tions, the naive grid search rarely finds a configuration close

to the maximum throughput possible. The relatively good

performance of the random search are due to the small size

of the design space: given a larger space, random search is

unlikely to yield good results when the number of iterations

is but a small fraction of the entire space. Unsurprisingly, the

Bayesian Optimization gives the best performance, consis-

tently finding the best configuration (or a close contender)

even with small numbers of iterations (40 being 8% of the 512

configurations constituting the design space). This demon-

strates the capacity of Wayfinder to quickly find an optimum

in the vast configuration space offered by today’s OSes.

Experimental Isolation The ability of Wayfinder to parallelize

experiments introduces a trade-off between measurement

precision and experiment run times, which can be controlled

via a job isolation policy. To analyze the impact of paral-

lelization, we use the best NGINX/Unikraft configuration

(K,P,T=32,N=32,O,C) and explore the impact of different NU-

MA/core scheduling policy. Each experiment requires 3 ded-

icated cores (VM, QEMU VMM, wrk) and our server allows

up to 6 parallel experiment executions. We explore four job

isolation policies; pinning all instances on cores on the same

NUMA node and pinning one instance on a core on a sep-

arate NUMA node from the other two instances. Flexible

isolation policies can reduce resource fragmentation and in-

crease experiment parallelization, but can decrease measured

performance.

APSys’21, August 24–25, 2021, Hong Kong, China Jung, et al.

 100
 1000

 10000
 100000

L

K

H

T
=
8

N
=
6
4

O

L

K

H

T
=
8

N
=
8

L

K

H

T
=
8

N
=
3
2

L

H

T
=
3
2

N
=
8

C

L

H

T
=
8

N
=
1
6

L

H

T
=
8

N
=
8

L

H

T
=
6
4

N
=
8

L

P

T
=
6
4

N
=
6
4

O

L

H

T
=
8

N
=
6
4

O

C

L

H

T
=
6
4

N
=
3
2

O

C

L

P

T
=
8

N
=
1
6

L

H

T
=
6
4

N
=
3
2

O

L

H

T
=
3
2

N
=
3
2

O

C

L

P

T
=
6
4

N
=
1
6

L

H

T
=
6
4

N
=
6
4

O

L

H

T
=
3
2

N
=
1
6

C

L

P

T
=
6
4

N
=
8

C

L

H

T
=
6
4

N
=
8

O

L

P

T
=
8

N
=
6
4

O

C

L

H

T
=
1
6

N
=
6
4

L

H

T
=
1
6

N
=
1
6

O

L

P

T
=
1
6

N
=
8

L

H

T
=
6
4

N
=
6
4

O

C

L

P

T
=
6
4

N
=
8

O

L

P

T
=
3
2

N
=
3
2

O

C

L

K

P

T
=
8

N
=
3
2

L

K

H

T
=
6
4

N
=
1
6

C

L

K

H

T
=
1
6

N
=
1
6

C

L

K

P

T
=
3
2

N
=
3
2

L

K

H

T
=
3
2

N
=
1
6

O

C

L

K

P

T
=
1
6

N
=
3
2

O

L

K

P

T
=
6
4

N
=
8

L

K

H

T
=
1
6

N
=
8

L

K

H

T
=
1
6

N
=
1
6

O

C

L

K

P

T
=
8

N
=
1
6

O

C

L

K

H

T
=
6
4

N
=
3
2

C

L

K

P

T
=
3
2

N
=
3
2

C

L

K

H

T
=
6
4

N
=
6
4

O

L

K

H

T
=
6
4

N
=
1
6

O

C

L

K

H

T
=
1
6

N
=
6
4

O

C

L

K

H

T
=
3
2

N
=
1
6

O

L

K

H

T
=
6
4

N
=
3
2

O

C

H

T
=
8

N
=
8

O

C

K

H

T
=
8

N
=
1
6

O

C

H

T
=
3
2

N
=
8

O

C

H

T
=
6
4

N
=
6
4

O

H

T
=
1
6

N
=
8

O

C

H

T
=
8

N
=
3
2

O

H

T
=
8

N
=
3
2

O

C

H

T
=
1
6

N
=
1
6

H

T
=
6
4

N
=
1
6

H

T
=
8

N
=
8

C

H

T
=
8

N
=
1
6

C

H

T
=
3
2

N
=
6
4

H

T
=
1
6

N
=
8

K

H

T
=
8

N
=
1
6

C

K

H

T
=
1
6

N
=
1
6

O

K

H

T
=
1
6

N
=
6
4

K

P

T
=
8

N
=
1
6

C

P

T
=
8

N
=
1
6

P

T
=
8

N
=
6
4

P

T
=
3
2

N
=
3
2

P

T
=
1
6

N
=
1
6

P

T
=
6
4

N
=
3
2

P

T
=
1
6

N
=
8

C

P

T
=
6
4

N
=
3
2

C

P

T
=
3
2

N
=
8

C

P

T
=
1
6

N
=
6
4

O

C

P

T
=
1
6

N
=
1
6

O

C

P

T
=
6
4

N
=
6
4

O

C

K

H

T
=
3
2

N
=
3
2

K

P

T
=
1
6

N
=
3
2

C

K

P

T
=
1
6

N
=
8

K

H

T
=
3
2

N
=
8

K

H

T
=
3
2

N
=
3
2

C

K

H

T
=
6
4

N
=
3
2

C

K

H

T
=
3
2

N
=
8

O

C

K

P

T
=
6
4

N
=
3
2

K

H

T
=
3
2

N
=
6
4

O

K

H

T
=
6
4

N
=
8

O

K

H

T
=
6
4

N
=
1
6

O

K

P

T
=
6
4

N
=
6
4

O

K

P

T
=
3
2

N
=
3
2

O

K

P

T
=
6
4

N
=
6
4

C

K

P

T
=
6
4

N
=
8

O

C

 0

 128
Default Configuration

Re
qu

es
ts/

s

of

 p
re

-a
llo

ca
te

d
TC

P
PC

B
en

tri
es

Figure 2: Performance of an NGINX/Unikraft LibOS for different configuration options (log scale). NGINX param-

eters: HTTP Keep-Alive (K), Caching (C), Access logging (L). lwIP parameters: Number of pre-allocated TCP PCB

entries (T), Pool-based memory management (P), Heap-based memory allocation (H), Poll-based virtio driver (O).

Grid

Search

Random

Search

Bayesian

Optimization

0

20 K

40K

60K

80K

100K

120K

M
a
x
N
G
I
N
X

T
h
r
o
u
g
h
p
u
t
(
r
e
q
/
s
)

10 40 100 iterations

Figure 3: Maximum NGINX throughput found (aver-

age/stdev of 10 runs) using various exploration strate-

gies with different iteration numbers.

Figure 4 presents the rate (req/sec) and total remote mem-

ory accesses (Intel PMU counter) measured across six parallel

experiments, using the different job isolation policies. Our

experiments show that maintaining NUMA node affinity

between instances yields the highest average performance.

Experimenters can achieve relatively high performance re-

sults with a flexible isolation policy, as long as the VMM and

the wrk instances are on the same NUMA node. Scheduling

them on separate sockets results in a 20% reduction in per-

formance, due to the increased number of remote memory

accesses. Network buffer allocation and NIC offloadings are

implemented by the QEMU VMM, thus maintaining mem-

ory locality can greatly reduce access latency. It is worth

highlighting that these observations are workload-specific

and experimenters must perform an initial analysis of the

precision and parallelization trade-offs.

4 Related Work

Benchmarking frameworks such as Wayfinder aim to auto-

mate the performance evaluation process not only to speed it

up, but also to reduce human error and ensure that results are

accurate and reproducible. In the domain of systems software,

0 20 K 40K 60K 80K 100K 120K

Q V W

W V Q

Q W V

W

Q V

N1 N2

73,355.7

73,392.7

97,921.1

98,004

Average Requests per Second

0 20M 40M 60M 80M 100M 120M 140M 160M 180M 200M

Q V W

W V Q

Q W V

W

Q V

N1 N2

1.56 · 108

1.39 · 108

2.11 · 107

1.2 · 107

Average Number of Remote DRAM Accesses

Figure 4: Average performance and total remote mem-

ory access count of six NGINX/Unikraft LibOS in-

stances for different job isolation policies. Nn repre-

sents the physical socket, NUMA node and the place-

ment strategy for the QEMU VMM Q , wrk W and the

VM V .

Auto-Pilot [37] is a generic framework easing and automat-

ing the process of running tests, measurements, and analysis

tools. Shivam et al. [29] describe a similar set of automation

techniques for server benchmarking, introducing, in particu-

lar, a component that takes as input the measurements from

past experiments to decide how to define future tests. Pi-

lot [20] is a framework for systems software benchmarking

whose notable features include real-time result analysis and

auto-detection of warm-up/tear-down phases, among others.

All these projects expect to run within a POSIX-like envi-

ronment, something that is not supported by all OSes. For

example, many LibOSes [24] are not POSIX-compatible. Ex-

isting frameworks require significant effort to enable support

for new OSes, including configuration/build process integra-

tion, execution environment setup, and implementation of

Wayfinder: Towards Automatically Deriving Optimal OS Configurations APSys’21, August 24–25, 2021, Hong Kong, China

monitoring for critical metrics (i.e., boot time, memory us-

age); this justifies our choice of starting from scratch with

Wayfinder.

Several research efforts have explored the topic of auto-

mated configuration analysis. Tartler et al. [34] developed

the first parameter analysis study of the Linux kernel, and

identified several compile-time parameter configurations

that result in invalid builds. LearnConf [19] is a static code

analysis framework for JAVA applications that can predict

performance-critical configuration parameters. Violet [11], is

a configuration space analysis tool for large software projects

using symbolic execution to construct all possible execution

paths for a given set of configuration parameters. The system

uses function latency estimations, measured using execution

tracing, to predict the performance of each path. ATR [11]

is an optimization framework for Redis deployments that

uses ensemble learning to predict an optimal configuration.

Wayfinder provides a novel approach to the problem of con-

figuration space exploration, allowing to explore a wider

configuration space by incorporating in experiment parame-

ters across system layers and allowing precise performance

estimation.

5 Conclusion

Tuning OS parameters to obtain optimal performance is a dif-

ficult problem. This stems from the wide configuration space

of modern OSes, and the fact that it is generally explored

manually. We introduced Wayfinder, a novel platform for

automatic testing of OS performance across a set of different

projects. Wayfinder streamlines the design space exploration

process in order to quickly and intelligently derive optimal

OS configurations for given use cases. It ships with support

for several OSes, applications, and exploration strategies. It

is also easily extensible to support more of each.

Wayfinder opens the door for the application of more

advanced machine learning methods to the problem of find-

ing optimal system configurations. The problem of optimiz-

ing parameters for OSes could benefit from novel machine

learning methods that have shown promising performance

in predicting and modeling the behavior of complex sys-

tems. Moreover, recent developments in transfer learning

could be adopted to predict the performance of optimal con-

figurations even for unseen systems and new applications.

Wayfinder can contribute to this emerging research area in

three ways: (1) providing an environment for automatically

and efficiently collecting data, (2) establishing a standard

method for computing metrics, and (3) performance mea-

sures for ML models applied to the problem of optimizing

OS configurations.

6 Acknowledgements

This work has been partially funded by EU H2020 grant

agreements 825377 (UNICORE), 871793 (ACCORDION) and

the Next Generation Converged Digital Infrastructure (NG-

CDI) Prosperity Partnership project funded by UK’s EPSRC

and British Telecom PLC under grant EP/R004935/1.

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.

Firecracker: Lightweight Virtualization for Serverless Applications.

In Proceedings of the 17th USENIX Symposium on Networked Systems
Design and Implementation. USENIX Association, 419–434.

[2] Martin Arjovsky, Soumith Chintala, and L’eon Bottou. 2017. Wasser-

stein Generative Adversarial Networks. In International Conference on
Machine Learning.

[3] Abhishek Dubey. 2019. Redis Best Practices and Performance Tuning.

https://bit.ly/3hMqMvu.

[4] Adam Dunkels. 2001. Design and Implementation of the lwIP TCP/IP

Stack. Swedish Institute of Computer Science 2 (2001), 77.
[5] Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. 1995.

Exokernel: An operating system architecture for application-level

resource management. ACM SIGOPS Operating Systems Review 29, 5

(1995), 251–266.

[6] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised Domain

Adaptation by Backpropagation. In International Conference on Inter-
national Conference on Machine Learning.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014.

Rich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation. In Conference on Computer Vision and Pattern Recogni-
tion.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.

Generative Adversarial Nets. In Advances in Neural Information Pro-
cessing Systems.

[9] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,

and R. Iyer. 2016. Cache QoS: From concept to reality in the Intel®

Xeon® processor E5-2600 v3 product family. In Proceedings of the
22nd IEEE International Symposium on High Performance Computer
Architecture. 657–668. https://doi.org/10.1109/HPCA.2016.7446102

[10] Herdrich, Andrew J. and Cornu, Marcel David and Abbasi,

Khawar Munir. 2019. Introduction to Memory Bandwidth Alloca-
tion. https://software.intel.com/content/www/us/en/develop/articles/

introduction-to-memory-bandwidth-allocation.html

[11] Yigong Hu, Gongqi Huang, and Peng Huang. 2020. Automated Reason-

ing and Detection of Specious Configuration in Large Systems with

Symbolic Execution. In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’20). USENIX
Association, 719–734. https://www.usenix.org/conference/osdi20/

presentation/hu

[12] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical

Reparametrization with Gumbel-Softmax. In Proceedings International
Conference on Learning Representations.

[13] Diederik P. Kingma andMaxWelling. 2014. Auto-Encoding Variational

Bayes. In International Conference on Learning Representations.
[14] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El,

Don Marti, and Vlad Zolotarov. 2014. OSv: Optimizing the Operating

System for Virtual Machines. In Proceedings of the 22nd USENIX Annual
Technical Conference (USENIX ATC'14). USENIX, 61–72. http://dl.acm.

org/citation.cfm?id=2643634.2643642

[15] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan San-

thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,

Ştefan Teodorescu, Costi Răducanu, Cristian Banu, Laurent Mathy,

https://bit.ly/3hMqMvu
https://doi.org/10.1109/HPCA.2016.7446102
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-memory-bandwidth-allocation.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-memory-bandwidth-allocation.html
https://www.usenix.org/conference/osdi20/presentation/hu
https://www.usenix.org/conference/osdi20/presentation/hu
http://dl.acm.org/citation.cfm?id=2643634.2643642
http://dl.acm.org/citation.cfm?id=2643634.2643642

APSys’21, August 24–25, 2021, Hong Kong, China Jung, et al.

Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft:

Fast, Specialized Unikernels the Easy Way. In Proceedings of the 16th
European Conference on Computer Systems (Online Event, United King-
dom) (EuroSys ’21). Association for Computing Machinery, New York,

NY, USA, 376–394. https://doi.org/10.1145/3447786.3456248

[16] Simon Kuenzer, Sharan Santhanam, Yuri Volchkov, Florian Schmidt,

Felipe Huici, Joel Nider, Mike Rapoport, and Costin Lupu. 2019. Un-

leashing the power of unikernels with unikraft. In Proceedings of the
12th ACM International Conference on Systems and Storage. ACM, 195–

195.

[17] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020.

A Linux in Unikernel Clothing. In Proceedings of the 15th European
Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for Computing Machinery, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3342195.3387526

[18] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore: A

Unikernel for Extreme Scale Computing. In Proceedings of the 6th ACM
International Workshop on Runtime and Operating Systems for Super-
computers (ROSS'16). ACM. https://doi.org/10.1145/2931088.2931093

[19] Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically

Inferring Performance Properties of Software Configurations. In Pro-
ceedings of the 15th European Conference on Computer Systems (Her-
aklion, Greece) (EuroSys ’20). Association for Computing Machinery,

New York, NY, USA, Article 10, 16 pages. https://doi.org/10.1145/

3342195.3387520

[20] Yan Li, Yash Gupta, Ethan L Miller, and Darrell DE Long. 2016. Pilot:

A framework that understands how to do performance benchmarks

the right way. In 2016 IEEE 24th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 169–178.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing

Atari with Deep Reinforcement Learning. In NIPS Deep Learning Work-
shop.

[22] MYSQL. 2021. MySQL Performance Tuning and Optimization Re-

sources. https://www.mysql.com/why-mysql/performance/.

[23] Rick Nelson. 2014. Tuning NGINX for Performance. https://www.

nginx.com/blog/tuning-nginx/.

[24] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy

Ravindran. 2019. A Binary-Compatible Unikernel. In Proceedings of
the 15th ACM SIGPLAN/SIGOPSInternational Conference on Virtual
Execution Environments (VEE) (VEE'19). ACM, 59–73.

[25] Open Container Initiative. 2021. The runC CLI tool for spawning and
running containers. https://github.com/opencontainers/runc

[26] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning.

IEEE Transactions on Knowledge and Data Engineering 22 (2010), 1345–

1359.

[27] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why

Should I Trust You?": Explaining the Predictions of Any Classifier. In

International Conference on Knowledge Discovery and Data Mining.
[28] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-

ishna Vedantam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM:

Visual Explanations From Deep Networks via Gradient-Based Local-

ization. In International Conference on Computer Vision.
[29] Piyush Shivam, Varun Marupadi, Jeffrey S Chase, Thileepan Subrama-

niam, and Shivnath Babu. 2008. Cutting Corners: Workbench Automa-

tion for Server Benchmarking.. In USENIX Annual Technical Conference.
241–254.

[30] Mark Silberstein. 2017. Leave your OS at home: the rise of library

operating systems. https://www.sigarch.org/leave-your-os-at-home-

the-rise-of-library-operating-systems/.

[31] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep

Inside Convolutional Networks: Visualising Image Classification Mod-

els and Saliency Maps. CoRR (2013).

[32] Solo5. 2021. The Solo5 sandboxed execution environment for unikernels.
https://github.com/Solo5/solo5

[33] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning:
An Introduction (second ed.). The MIT Press. http://incompleteideas.

net/book/the-book-2nd.html

[34] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang

Schroder-Preikschat. 2011. Feature Consistency in Compile-Time-

Configurable System Software: Facing the Linux 10,000 Feature Prob-

lem. In Proceedings of the 6th Conference on Computer Systems (Salzburg,
Austria) (EuroSys ’11). Association for Computing Machinery, New

York, NY, USA, 47–60. https://doi.org/10.1145/1966445.1966451

[35] unikraft.org [n.d.]. Unikraft - Extreme Specialization for Security and
Performance.

[36] Dan Williams and Ricardo Koller. 2016. Unikernel Monitors: Ex-

tending Minimalism Outside of the Box. In Proceedings of the 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud'16).
USENIX. https://www.usenix.org/conference/hotcloud16/workshop-

program/presentation/williams

[37] Charles PWright, Nikolai Joukov, Devaki Kulkarni, YevgeniyMiretskiy,

and Erez Zadok. 2005. Auto-pilot: A Platform for System Software

Benchmarking.. In USENIX Annual Technical Conference, FREENIX
Track. 175–188.

https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/3342195.3387520
https://doi.org/10.1145/3342195.3387520
https://www.mysql.com/why-mysql/performance/
https://www.nginx.com/blog/tuning-nginx/
https://www.nginx.com/blog/tuning-nginx/
https://github.com/opencontainers/runc
https://www.sigarch.org/leave-your-os-at-home-the-rise-of-library-operating-systems/
https://www.sigarch.org/leave-your-os-at-home-the-rise-of-library-operating-systems/
https://github.com/Solo5/solo5
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1145/1966445.1966451
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams

	Abstract
	1 Introduction
	2 Design Principles and Implementation
	3 Evaluation
	4 Related Work
	5 Conclusion
	6 Acknowledgements
	References

