
Failure Diagnosis for Cluster Systems using Partial Correlations

Edward Chuah‡‡, Arshad Jhumka‖, Samantha Alt††, R. Todd Evans¶, Neeraj Suri‡‡
‡‡Lancaster University, Bailrigg, Lancaster LA1 4YW, UK. Email: {e.t.chuah, neeraj.suri}@lancaster.ac.uk

∗The University of Warwick, Coventry CV4 7AL, UK. Email: H.A.Jhumka@warwick.ac.uk
††Intel Corporation. Email: samantha.alt@intel.com

¶Texas Advanced Computing Center, Texas 78758 USA. Email: rtevans@tacc.utexas.edu

Abstract—Failures have expensive implications in HPC (High-
Performance Computing) systems. Consequently, effective diagno-
sis of system failures is desired to help improve system reliability
from both a remedial and preventive perspective. As HPC systems
conduct extensive logging of resource usage and system events,
parsing this data is an oft advocated basis for failure diagnosis.
However, the high levels of concurrency that exist in HPC systems
cause system events to frequently interleave in time and, as such,
certain interactions appear or become indirect. which will be
missed by current failure diagnostics techniques. To help uncover
such indirect interactions, in this paper, we develop a novel
approach that leverages the concept of partial correlation. The
novel failure diagnostics workflow - called IFADE - extracts partial
correlation of resource use counters and partial correlation of
system errors. As part of our contributions, we (a) compare our
diagnostics approach with current ones, (b) identify two previously
unknown causes of system failures, validated by system designers
and (c) provide insights into Lustre I/O and segmentation faults.
IFADE has been put on the public domain to support system
administrators in failure diagnosis.

Index Terms—HPC systems; Failure Diagnosis; Feature extrac-
tion; Partial correlation; Resource use data and system logs

I. INTRODUCTION

Compute-intensive applications such as scientific applications
and machine learning are typically executed on resource-rich
platforms such as HPC systems and data centers. However, due
to the size and complexity of these systems, they encounter
failures on a regular basis [1], [2]. The trend towards exascale
computing is only going to exacerbate the failure rate of these
systems, which can lead to a significant reduction in system
availability, as reported in recent large-scale studies of HPC
system failures [2]–[5] and data center hardware failures [6].

These systems record operations and resource use data [7], [8]
in relevant logs. However, these logs suffer from several limita-
tions [8]: (a) the data is often unstructured, (b) they often miss
or do not contain sufficient information to enable a complete
causal trace to system failures and (c) often contain redundant
information about an event. These system and resource logs may
represent the only source of information pertaining to the state
of the system execution. Partly due to these reasons, approaches
for error detection or failure diagnosis are unsupervised in
nature, i.e., these techniques are not based on accurate labelling
of system execution.

In the absence of detailed fault models viable for HPC
systems, failure diagnosis, e.g., [9], represents a reasonable
first step towards achieving this, by linking errors and failures.
However, the scale of concurrency in such systems and the
nature of the logs make it challenging to obtain a correct causal
trace to system failures. As such, it becomes as important to
capture indirect relationships between system components, as
it is for direct relationships. However, state-of-the-art failure

diagnostics approaches typically do direct correlation of errors
to system failures [9]–[11]. For example, the diagnostics work-
flow developed in [11] may return a diagnosis of the form: “The
filesystem was executing I/O and the CPU was waiting on the
filesystem I/O to complete which led to a node crash”. However,
given the two events (i.e., variables) “filesystem I/O” and “CPU
wait”, it is important to understand the role of any third event
such as “data write in memory” in the relation between the first
two events.

As such, we leverage the power of partial correlation, which
is a statistical technique that captures the strength of a rela-
tionship between two variables while controlling for the effect
of one or more other variables, to develop IFADE (In-depth
FAilure Diagnosis framEwork), a novel approach that identifies
partial correlations between system components or events to
provide detailed diagnosis of system failures (i.e., node crash
or OS hang-up). IFADE makes use of the system logs [12], [13]
and resource use data [14] for its analysis.

Our main contributions reported in this paper are as follows:
• We describe and implement IFADE, a novel diagnostics

workflow that executes a number of unsupervised learning
techniques such as feature extraction on unstructured log
data of HPC systems to ascertain partial correlations for
failure diagnosis.

• We diagnose system failures without prior knowledge of a
fault model. IFADE automatically extracts the important
resource use counters and system events. Then, it uses
them to identify partial correlation between resource use
counters and partial correlation between system errors.

• We compare IFADE with current failure diagnostics tech-
niques on actual system problem cases. IFADE identified:
(i) a previously unknown memory data update cause of
Lustre I/O which led to compute node soft lockups, (ii)
a previously unknown corrupted memory index cause of
segmentation faults which led to compute node soft lockup.

• To yield accurate diagnosis, we show that applying sta-
tistical significance tests results in a low probability of
identifying a false cause of the system failure.

Paper outline: Section II presents the system and issue of fault
models. The insight behind IFADE and details of its process are
described in Section III. We evaluate IFADE on a series of cases
in Section IV followed by the lessons learned in Section V. We
analyze the related work in Section VI and conclude with a
summary and future work in Section VII.

II. SYSTEM & FAULT MODELS

IFADE is based on a generic HPC cluster model [15]. The
model is comprised of jobs, nodes, a job scheduler and software
components such as a filesystem and an operating system. The

job scheduler assigns jobs to nodes. The filesystem may transfer
data to and from the nodes. The jobs, nodes and job scheduler
may produce system event data such as: (a) resource use logs
that contain the job number, node number and time-stamps, (b)
system logs that contain the job number, node number and time-
stamps. This system model covers the spread of open-source
Linux clusters and vendor-specific systems, e.g., IBM and Cray.

Fault Model: It is unrealistic to associate a single fault
model to a HPC computing environment. This transpires as
there are various discrete fault models one may consider. For
example, one may consider faults occurring at node level (e.g.,
node crash), at component level (e.g., network state) or at
an aggregate cluster level (e.g., interaction between different
nodes). When a fault occurs in a component, the resulting
error can propagate beyond the component’s interface and affect
multiple system components. These can occur at any level in
the system, for example memory, operating system or the job.
When these errors lead to the unavailability of resources to jobs,
a failure occurs.

Consequently, the system events leading to a failure (e.g.,
OS hang, node crash) are interleaved among thousands of other
system events, and further the process of extracting the sequence
of events is largely ad-hoc and manual. As such, it is very
difficult to determine the exact cause of the failure, which may
be exacerbated due to potentially multiple and different fault
models associated with various components.

III. THE IFADE APPROACH

We present a motivating example to illustrate the insight
behind the IFADE approach. For a HPC system, consider
the values for three resource use counters (CPU 0 iowait,
llite /work ioctl, mem 0 Writeback) as depicted in Fig. 1.

Fig. 1. Values of memory writeback (mem 0 Writeback), CPU I/O wait (CPU
0 iowait) and Lustre I/O control (llite /work ioctl) resource use counters.

From Fig. 1, we observed that the values for CPU I/O wait
and Lustre I/O control counters are the same from hour 1 to
hour 12. Then, their values increased on hour 13. On hour
14, their values decreased. Since the values for the CPU I/O
wait and Lustre I/O control counters increased and decreased
together, a strong positive correlation between CPU I/O wait and
Lustre I/O control counters is possible. We also observed that
the value for the memory writeback counter increased on hours
23 and 24. Since the value for the memory writeback counter
did not increase with the CPU I/O wait and Lustre I/O control
counters, it is very unlikely that a strong positive correlation of
the memory writeback counter to the CPU I/O wait and Lustre
I/O control counters will be observed. Due to a perceived delay

in a similar behaviour change for the memory writeback, it is
important to ensure that any potential impact of the memory
writeback operation on CPU wait and Lustre I/O operations
be accounted for. One important technique that can help with
controlling the effect of a “third party” variable while studying
the strength of a relationship between two random variables is
partial correlation.

Thus, our goal is to identify which resource use counters and
message types which are partially correlated to other counters
and message types respectively. In this paper, we seek to identify
patterns of counters and message types for failure diagnosis. The
problem we address is described as follows: Given (a) resource
use data and system logs, (b) lists of counters and message
types, (c) lists of correlated counters and correlated message
types, and (d) number of dates:
Q1 Can we identify the “significant” groups of resource use

counters and message types?
Q2 Can we identify the resource use counters that are strongly

partially correlated to other counters?
Q3 Can we identify the message types that are strongly par-

tially correlated to other message types.
By “significant”, we mean the counters and message types

that are assigned the highest scores by the feature extractors and
these are the counters and message types that are important. By
focusing on the significant items, we attempt to identify those
items which are deemed more impactful.

Thus, the IFADE workflow, as depicted in Fig. 2, is a
progression of three phases where the log data needs to be
structured or clustered into “significant” groups. We term this
the phase of Data Preprocessing [Q1]. The identification of the
resource counters [Q2] is the next phase of Feature Extraction
that utilizes unsupervised learning to parse the [Q1] data. This
phase is analogous to “extracting” the fault model from the log
data. These phases consequently lead to conducting the phase
of Partial Correlation [Q3] to results in the diagnosis. In a data
matrix, each row represents a counter or message type, each
column represents a time window and each cell contains the
count of a counter or message type. On this background, we
now detail each of IFADE phases.

msgt1
msgt2
msgt3

10 10 10
245 0 40
28 12 0
7 89 0

Message logs,
list of dates

Data Pre−
processor

10 10 10
ruc1
ruc2
ruc3

3856 3902 3905
289 289 294

7571 7580 7594

Examples of data matrices

List of partial

counters
correlated

List of partial
correlated
message types

extractor
Resource use
data, list of
dates

Features

matrix, list of counters list of important counters

Message types data
matrix, list of
message types

Message types data
matrix, list of important
message types

Resource use data matrix,Resource use data

Selector Validator

correlator
Partial

R−Extractor

M−Extractor

Fig. 2. The IFADE workflow. It is comprised of three modules: (a) Data
preprocessor, (b) Features extractor and (c) Partial correlator.

A. Data Preprocessor

The objective of data preprocessing is to present the resource
use data and system logs in a standardized form on which
analysis algorithms can be applied. To achieve this, we need to
address three aspects: (a) the structure of a system log on two

2

HPC systems are different, (b) the resource use data and system
logs are monitored by multiple tools, (c) the time granularities
in the resource use data and system logs are different.

The resource use data contains all values of all the counters
which are aggregated at a default time interval of 10 minutes.
The TACC Stats resource usage monitor [14] performs the
monitoring online and the value for the counters is set to zero
only when a node is reset. A resource use log is given below:
20665 Aug 16 15:20:01 i151-312 eth0 rx_bytes
424689 tx_bytes 25178

The resource use log contains the following fields: job
(20665), time-stamp (Aug 16 15:20:01), node (i151-312),
device group (eth0) and pairs of counter and its value
(rx_bytes 424689, tx_bytes 25178). The resource use data
contains 410 counters that are divided into 9 resource use
counter groups. In [16], it was reported that a longer diagnostics
window results in a higher probability of observing a failure or
recovery event. Thus, we group the counters into time-bins of
10, 30 and 60 minutes. A time-bin is a window of one fixed time
interval. Next, we describe the process to generate a resource
use data matrix as follows: (a) group the resource use logs into
10, 30 and 60 minute time-bins, (b) extract the counters in the
resource use logs, remove all repeated counters and store the
unique counters in a list, (c) obtain the difference in the value
for a counter between two consecutive resource use logs and
add the difference to the preceeding value by 10, 30 and 60
minute bins. We implemented the process in the R-Extractor.

A system log typically contains a date and time, node number
and message. Some system logs do not contain a job number.
Furthermore, the format of a system log on one system may
be different from the system log on another system. Having
said that, most system logs contain three basic fields: (a) date
and time, (b) node number, and (c) message. Therefore, we
implement a system log-reformator to convert system logs that
contain the three basic fields into a standard form. If a system
log does not contain a field in the standard formatted log, then
we use a default placeholder. The standard formatted system
log has the following fields:
job number, month, day, time-stamp (hour:minute
:second), node number, software name, message.

The system logs contain log-entries which are generated
by the operating system, filesystem and systems software. An
example of a system log-entry is given below:
2018634 Jul 5 09:08:28 i117-406 kernel X $<$0$>$
%s. ECC error ECC error K8

A system log contains a job number (2018634), time-
stamp (Jul 5 09:08:28), node number (i117-406),
software name (kernel) and unstructured message part
(<0>\%s. ECC error ECC error K8). The message part is
comprised of a sequence of English-only words and alpha-
numerical words. To obtain the Constants in the message part,
we extract the English-only words. One month’s worth of
system logs contains 1,676 unique message types on average.

As was done with the resource use logs, we group the system
logs into 10, 30 and 60 minute time-bins. Next, we describe
the process to generate a message types data matrix: (a) group
the system logs into time-bins of 10, 30 and 60 minutes, (b)
extract the constants, remove all the repeated ones and store the
unique constants termed a message type in a list and (c) count

the occurrence of the message types by 10, 30 and 60 minute
bins. We implemented the process in the M-Extractor.

B. Features Extractor

We need to identify which resource use counters or message
types are important. There are hundreds of resource use counters
and thousands of message types in the data matrices (see Section
III-A), and further these are unlabeled. Thus, this is a challeng-
ing task. To address the challenge, we apply feature extraction
methods to identify the important resource use counters and
message types without the need for labeled data.

Feature extraction methods: Feature extraction methods such
as Principal Component Analysis (PCA) belong to a class
of unsupervised dimensionality reduction techniques. They are
used to reduce the number of redundant counters and system
events for analysis. Feature extraction methods are showed to
be effective in detecting anomalous nodes in HPC systems [17],
[18] and detecting anomalies in cloud computing systems [19].
Feature extraction methods do not require a priori knowledge
of the data labels. Thus, they are suitable for unlabeled datasets.

Mechanism for extracting features: PCA is a widely used
feature extraction technique. However, it can miss important
system events and produce a low coverage as reported in
[20]. Other feature extraction techniques such as Independent
Component Analysis (ICA) was shown to perform better [17].
Both PCA and ICA extract features that are linearly uncorrelated
which limits them to linear components. On the other hand, non-
linear feature extractors such as non-linear PCA generalized
the principal components and showed superior performance
[21]. Thus, to meet our composite needs of feature extractions
while maximizing variance, minimizing noise and data cleaning,
our Feature Extractor uses multiple feature extraction methods
as: (a) robust Principal Component Analysis (PCA) [22], (b)
fast Independent Component Analysis (ICA) [23], (c) a neural
network-based autoencoder (NLPCA) [24], (d) kernel Principal
Component Analysis (KPCA) [25]. PCA reduces the set of
redundant features by maximizing the variances. If a dataset
containing outliers is input into PCA, it can produce a biased
result. To solve this problem, we conducted data cleaning in the
following manner: (a) transpose the data matrix, (b) normalize
the values for all the counters to range between 0 to 10 and
(c) adjust the columns in the data matrix to have zero-mean.
We input the normalized zero-mean transposed data matrix into
PCA and NLPCA as they require that the feature vectors are
represented by columns. Differently to PCA, ICA reduces the
set of redundant features by first removing noise in the data.
Then, a whitening process is applied to remove any correlations
in the data. ICA and KPCA requires that the feature vectors
in the data matrix are represented by rows. We input the
normalized data matrices into ICA and KPCA as they require
that the feature vectors are represented by rows. We apply
multiple feature extractors due to multiple fault models and
each fault model is different. It was reported in [17] that the
first principal component contains the largest variance. Hence,
we extract the scores of the supplied data on the first principal
component. To select the important counters and message types,
we apply a feature selection process that filters out features with
high absolute values at very low computational cost [26]. We
implemented the process in the Selector.

3

C. Partial Correlator

We now need to identify which resource use counter or
message type has an indirect relationship to other counters
or message types. To achieve this, we need to determine the
strength of the relationship between an important variable and
other variables in the data. To address this issue, we apply partial
correlation to obtain the strength of the relationship between an
important variable and other variables.

Partial correlation method: Partial correlation obtains the
correlation coefficient of two variables after controlling for
one or more variables. Partial correlation can uncover spuri-
ous relationships and identify indirect relationships. Bivariate
correlation is used to check if two variables are related to one
another. It measures how the two variables change together at
the same time and obtain the correlation coefficients. In contrast,
partial correlation obtains the correlation coefficients of two
variables after controlling for a third variable. Partial correlation
was showed to be effective in identifying indirect interactions
between system components [27].

Mechanism for identifying partial correlations: The partial
correlation coefficient is defined as follows [28]:

ρxy.z =
ρxy − ρxz.ρyz√

1− ρ2xz ×
√

1− ρ2yz
(1)

where z is one mediating variable, ρxy, ρxz and ρyz are the
Pearson or Spearman-Rank correlation coefficients between x
and y, x and z, y and z. The Pearson correlation coefficient, r
is defined as the mean of the products of the standard scores
[29]: r = 1

n−1

∑n
i=1

(
xi−x̄
sx

)(
yi−ȳ
sy

)
, where

(
xi−x̄
sx

)
is the

standard score of x,
(

yi−ȳ
sy

)
is the standard score of y, x and

y are two datasets containing n values of a pair of counters
or a pair of message types, sx =

√
1

n−1

∑n
i=1(xi − x̄)2 is the

sample standard deviation of x, sy =
√

1
n−1

∑n
i=1(yi − ȳ)2 is

the sample standard deviation of y, x̄ and ȳ is the sample mean
of x and y. The Spearman-Rank correlation coefficient ρ is
defined as the Pearson correlation coefficient between the ranks
of a pair of variables [29]. There are other methods available
but these methods assume that the variables in the dataset are
independent and identically distributed. Thus, partial correlation
is a suitable method for achieving our objective.

To obtain the partial correlation coefficients, we implemented
the following process: Given three counters or message types x,
y and z: (a) obtain the Pearson or Spearman-Rank correlation
coefficients ρxy, ρxz and ρyz, (b) input ρxy, ρxz and ρyz
into equation (1). ρxy, ρxz and ρyz requires the pair of
counters or message types to contain the same number of data
points on the x-axis. However, the timestamps for the resource
use data and system logs may be different. Resource usage
are generated at regular fixed time intervals. System logs are
generated at irregular time intervals. Thus, we do not correlate
resource use counters with message types. After the partial
correlation coefficients are obtained, we generate the lists of
partial correlated counters and partial correlated message types.
To interpret the strength of the partial correlation coefficient,
we apply the following rules [29]: (a) 0.8 to 1: strong positive
partial correlation, (b) 0.3 to 0.79: moderate positive partial
correlation, (c) 0.1 to 0.29: weak positive partial correlation.

Significance testing: After the partial correlation coefficients
are obtained, we need to test the significance of the correlation
coefficient. Fisher’s z-transform is a standard technique for
testing the significance of a correlation coefficient [29]. We
use the following terminology to define the null and alternate
hypotheses [30]. The null hypotheses are: (a) an important
counter is weakly positive partial correlated to a pair of corre-
lated counters, (b) an important message type is weakly positive
partial correlated to a pair of correlated message types. The
alternate hypotheses are: (a) an important counter is strongly
positive partial correlated to a pair of correlated counters, (b) an
important message type is strongly positive partial correlated to
a pair of correlated message types. Then, we obtain the z-scores
for all partial correlation coefficients. When the absolute value
of z is large, e.g., z = 2.64 at 99% confidence level, we will
reject the null hypothesis in favour of the alternate hypothesis.
Handling false positives: When multiple hypotheses are tested,
the probability that there is at least one false positive due to
chance increases. For example, if we have 26 hypotheses and
obtained a P -value of 0.01 for each test, the false positive rate
is 1− (1− 0.01)26 = 1− 0.9926 = 0.22 or 22%. To solve the
problem, we apply a standard technique called the Bonferroni
correction [31]. It obtains an adjusted P -value by multiplying
the unadjusted P -value by the number of tests. We implemented
the Bonferroni correction in the Partial Correlation module. The
process is as follows: (a) we map all z-scores to P -values using
a Z-table, (b) given d number of dates we multiply all the
unadjusted P -values by d and obtained the adjusted P -values.
We implemented the Z-table in the Validator.

IV. EVALUATION ON HPC SYSTEMS

We conducted diagnosis on two widely deployed HPC sys-
tems termed System X and System Y. System X has 4,048 nodes
that provide batch job processing and data storage services.
System Y has 1,888 nodes that provide batch job processing and
data storage services. Many data centers operate large numbers
of compute nodes and they also provide services such as batch
job processing and data storage.

The resource usage of HPC jobs, along with system logs, are
monitored on most HPC systems [32]. For IFADE’s validation,
we obtained: (a) two years worth of system logs and six months
worth of resource use data on System X and (b) one year
worth of system logs and two months worth of resource use
data on System Y. However, we do not know which dates
contain the compute node soft lockup events. Therefore, we
randomly selected a range of dates on System X and System
Y. A summary of log-data analyzed is given in Table I.

TABLE I
SUMMARY OF LOG-DATA ANALYZED ON SYSTEM X AND SYSTEM Y.

System Resource use data System logs
Days Size Qty. lines Size Qty. messages

System X 26 124.1 GB 637,860,203 9.6 GB 64,822,682
System Y 31 46.6 GB 207,068,692 1.3 GB 12,267,629

It was reported in [12] that compute node soft lockups is one
of the most common problems for the HPC systems adminis-
trator. To identify the dates of compute node soft lockups, we
implemented a function in IFADE to scan the system logs for
messages containing the keywords soft lockup and extract the

4

dates of soft lockup messages. When Linux hang, it generates
a soft lockup message. We identified: (a) 12 soft lockup dates
on System X and (b) 7 soft lockup dates on System Y.

The Lustre filesystem is commonly used to provide high-
speed data I/O on many HPC systems. However, I/O problems
on Lustre has been widely reported [33]. To identify the dates
when Lustre experienced I/O problem, we obtain the lists of
partial correlated counters and partial correlated messages and
identified cases of I/O problems on Lustre. We found other
system problems though we focus on a subset of these cases
as: (a) Lustre I/O and (b) segmentation faults.

A. Problem Case 1: Lustre Filesystem I/O
When Lustre is performing I/O, the CPU waits on the I/O

operations to complete. When the CPU is waiting, data in the
memory is updated. In most cases, the memory data update
is completed successfully. However, on a rare occasion, the
memory data update may fail leading to a compute node lockup.

1) Phase 1: Identify Time-bins of Important Resource Use
Counter Groups: In the first phase of IFADE, we identify
the time-bins associated with the largest number of important
resource use counter groups on all the dates.

Fig. 3. Number of important resource use counter groups identified on multiple
granularities of time-bins on System X.

Fig. 3 shows the number of groups of important counters
identified on 10, 30 and 60 minute time-bins in System X
resource use data. We observed that the largest number of
counter groups were identified on multiple granularities of time-
bins. The largest number of groups of counters were identified:
(i) on 30 or 60 minute time-bins on 24 out of 26 dates and (ii)
on 10 minute time-bins on 2 out of 26 dates. It took 7 minutes
to generate the reports.

Fig. 4. Number of important resource use counter groups identified on multiple
granularities of time-bins on System Y.

As was done with System X counters groups described in
Fig. 3, we obtained the number of counter groups on 10, 30
and 60 minute time-bins on System Y. Fig. 4 shows the number

of important counters groups on System Y. We observed that
the largest number of important counters groups were identified
on multiple granularities of time-bins. The largest number of
groups of counters were identified: (i) on time-bins of 30 or 60
minutes on 23 out of 31 dates and (ii) on 10 minute time-bins
on 8 out of 31 dates. It took 5 minutes to generate the reports.

The largest number of resource use counter groups were
obtained on 10, 30 and 60 minute time-bins, indicating
the importance of using both short and long time-bins.

2) Phase 2: Extract the Important Resource Use Counters:
The first phase of IFADE is characterized by the identification
of the time-bins for identifying the largest number of important
resource use counter groups. However, the objective of feature
extraction is to extract the important counters to analyze. To
achieve this, we need to determine which feature extractor
extracted the largest number of counters.

Thus, in the second phase of our study we obtained the num-
ber of counters extracted by the Features Extraction module.
Fig. 5 shows the number of important resource use counters
identified on System X. From Fig. 5(a), Fig. 5(b) and Fig. 5(c),
we observed that NLPCA extracted the largest number of
counters on 10, 30 and 60 minute time-bins for all the 26 dates.
PCA and ICA took 2 seconds to execute. NLPCA and KPCA
took 78 seconds to execute. The important counters represent
6% of all the counters on average.

As was done with System X resource use counters, we
obtained the number of important counters on System Y. Fig. 6
shows the number of important counters on System Y. From
Fig. 6(a), Fig. 6(b) and Fig. 6(c), we observed that NLPCA
extracted the largest number of counters on 10, 30 and 60
minute time-bins for all the 31 dates. PCA and ICA took 1.2
seconds and NLPCA and KPCA took 53 seconds to execute.
The important counters represent 6% of all counters on average.

The non-linear PCA extractor extracted the largest num-
ber of important counters on all 26 dates on System X
and all 31 dates on System Y. This confirms that PCA
provided a low coverage as reported in [20].

3) Phase 3: Identify Partial Correlation of Resource Use
Counters: The second phase of IFADE is characterized by
extracting the largest number of important counters. However,
our goal is to identify partial correlation of multiple groups of
counters. Therefore, we need to identify a relationship between
an important counter and other counters.

Thus, we scan the lists of important counters on System X.
We identified many important counters. However, we focused
on the memory writeback counter which form the majority
of important counters. The counter llite /work ioctl is in-
cremented when Lustre performs I/O operations. We scan the
lists of partial correlated counters and obtained the partial
correlation score of memory writeback to CPU I/O wait and
Lustre I/O control counters. It took 3 seconds to generate the
partial correlation reports. The partial correlation score is shown
in Fig. 7. We observed that the memory writeback counter
is strongly positive partial correlated to CPU I/O wait and
Lustre I/O control counters with a partial correlation score

5

(a) 10 minute time-bins. (b) 30 minute time-bins. (c) 60 minute time-bins.

Fig. 5. Number of important resource use counters extracted by PCA, ICA, NLPCA and KPCA on System X.

(a) 10 minute time-bins. (b) 30 minute time-bins. (c) 60 minute time-bins.

Fig. 6. Number of important resource use counters extracted by PCA, ICA, NLPCA and KPCA on System Y.

ranging from 0.8 to 0.99 on 7 dates. To determine if those
dates coincide with the dates of compute node soft lockups,
we manually scanned the message logs to identify soft lockup
events. We identified 3 dates that coincided with the dates
of the strongly positive partial correlated counters. We also
observed that the memory writeback counter is not strongly
positive partial correlated to CPU I/O wait and Lustre I/O
control counters on 5 dates, indicating that memory data update
is not a cause of compute node soft lockups. Therefore, there
is another cause of compute node soft lockups.

Fig. 7. Partial correlation of mem Writeback (z), cpu iowait (x) and llite /work
ioctl (y) resource use counters on System X.

As was done with System X counters, we scan the lists of
important counters on System Y. We identified many impor-
tant counters. However, we focused on the memory writeback
counter which form the majority of important counters. We scan
the lists of partial correlated counters and obtained the partial
correlation score of memory writeback to CPU I/O wait and
Lustre I/O control counters. It took 2 seconds to generate the
partial correlation reports. The partial correlation score is shown
in Fig. 8. We observed that the memory writeback counter is
strongly positive partial correlated to CPU I/O wait and Lustre
I/O control counters with a partial correlation score ranging
from 0.88 to 1 on 19 dates. To determine if those dates coincide
with the dates of compute node soft lockups, we manually
scanned the message logs to identify soft lockup events. We
identified 4 dates that coincided with the dates of the strongly
positive partial correlated counters.

Failure diagnostics approaches such as those presented in [9]–

Fig. 8. Partial correlation of mem Writeback (z), cpu iowait (x) and llite /work
ioctl (y) resource use counters on System Y.

[11] have adopted Pearson correlation [9], [10] and Spearman-
Rank correlation algorithms [11]. We implemented these di-
agnostics techniques based on our objective to identify partial
correlation of resource use counters and applied the diagnostics
techniques on the memory writeback, CPU I/O wait and Lustre
I/O control counters on System X and System Y. The correlation
scores are given in Tables II and III. From Table II, we observed
that memory writeback counter is strongly positive correlated
to CPU I/O wait and Lustre I/O counters for 1 out of 7 dates on
System X and 1 out of 19 dates on System Y. From Table III,
we observed that memory writeback counter is strongly positive
correlated to CPU I/O wait and Lustre I/O counters for 1 out of
7 dates on System X. Correlation of memory data update and
Lustre I/O were identified on a small number of dates only.

While bivariate correlation-based failure diagnostics
techniques can identify the dates of soft lockups which
are caused by memory data updates, they also missed
other dates. IFADE identified the soft lockups which are
indirectly caused by memory data updates on 2 more
dates on System X and 3 more dates on System Y.

Detailed diagnosis: On System X, data in the memory was
updated when the Lustre filesystem is performing I/O and
compute node soft lockups occurred on 2 dates, showing that
memory data update indirectly caused the soft lockups on
the 2 dates. On System Y, data in the memory was updated

6

TABLE II
CORRELATION SCORE OF [9], [10] ON MEM WRITEBACK, CPU IOWAIT AND

LLITE IOCTL COUNTERS ON SYSTEMS X AND Y.

System X Dates
Counter Counter 5 11 14 17 19 22 29

mem Lustre -0.07 -0.4 -0.59 0.8 0.39 0.4 -0.45
Writeback ioctl

CPU Lustre 0.99 0.91 0.92 0.99 0.97 0.83 0.99
iowait ioctl
mem CPU -0.08 -0.34 -0.31 0.8 0.4 0.38 -0.4

Writeback iowait
System Y Dates

Counter Counter 1 3 4 5 6 12 16
mem Lustre -0.28 -0.13 -0.24 -0.32 -0.18 0.97 -0.48

Writeback ioctl
CPU Lustre 0.93 1 1 1 1 1 1

iowait ioctl
mem CPU -0.27 -0.13 -0.24 -0.32 -0.18 0.97 -0.48

Writeback iowait
17 18 19 20 21 24 26

mem Lustre 0.08 0.08 -0.09 -0.26 -0.5 -0.17 -0.18
Writeback ioctl

CPU Lustre 0.89 0.88 1 0.89 1 0.88 0.82
iowait ioctl
mem CPU -0.02 0.06 -0.09 -0.1 -0.5 -0.12 -0.01

Writeback iowait
27 28 29 30 31

mem Lustre -0.42 -0.38 -0.23 -0.17 0.17
Writeback ioctl

CPU Lustre 1 0.95 0.95 0.9 0.94
iowait ioctl
mem CPU -0.42 -0.35 -0.18 -0.2 0.15

Writeback iowait

TABLE III
CORRELATION SCORE OF [11] ON MEM WRITEBACK, CPU IOWAIT AND

LLITE IOCTL COUNTERS ON SYSTEMS X AND Y.

System X Dates
Counter Counter 5 11 14 17 19 22 29

mem Lustre -0.39 -0.34 -0.57 0.79 0.44 0.37 -0.41
Writeback ioctl

CPU Lustre 0.83 0.91 0.96 0.99 0.97 0.83 0.99
iowait ioctl
mem CPU -0.31 -0.4 -0.57 0.79 0.44 0.4 -0.45

Writeback iowait
System Y Dates

Counter Counter 1 3 4 5 6 12 16
mem Lustre -0.48 -0.14 -0.24 -0.34 0.1 0.13 -0.56

Writeback ioctl
CPU Lustre 0.99 0.99 0.99 0.99 0.99 0.35 0.99

iowait ioctl
mem CPU -0.48 -0.14 -0.23 -0.34 0.1 0.35 -0.56

Writeback iowait
17 18 19 20 21 24 26

mem Lustre -0.32 -0.2 -0.02 -0.37 -0.44 -0.43 -0.11
Writeback ioctl

CPU Lustre 0.99 0.99 0.99 0.99 0.99 0.99 0.99
iowait ioctl
mem CPU -0.32 -0.2 -0.02 -0.37 -0.44 -0.43 -0.11

Writeback iowait
27 28 29 30 31

mem Lustre -0.48 -0.49 -0.28 -0.14 0.08
Writeback ioctl

CPU Lustre 0.99 0.99 0.99 0.99 0.99
iowait ioctl
mem CPU -0.48 -0.48 -0.28 -0.14 0.08

Writeback iowait

when Lustre is performing I/O and compute node soft lockups
occurred on 3 dates, showing that memory data update indirectly
caused the soft lockups on the 3 dates.

Significance test: We test all the partial correlation coeffi-
cients against the null hypothesis and obtained the z-scores
for all the partial correlation coefficients. On System X, the
z-scores range from 3.58 to 12.13. At 99% confidence level,
under the null hypothesis z0pr = 2.64. Hence, we reject the

null hypothesis in favour of the alternate hypothesis. On System
Y, the z-scores range from 4.85 to 12.13. At 99% confidence
level, under the null hypothesis z0pr = 2.64. Hence, we reject
the null hypothesis in favour of the alternate hypothesis.

False positives: Next, we determine the probability of re-
jecting the null hypothesis when it is true. We apply a one-
sided test and use the significance level, α = 0.01 for all given
hypothesis tests to obtain a P-value on System X and System
Y. On System X, the lowest z-score is 3.58. Since this is a one-
sided test, the P -value is 0.00017. We obtained the adjusted
P -value 0.00017 × 26 = 0.00442 where 26 is the number of
dates. The adjusted P -value is less than 0.01, indicating it is
highly unlikely this result would be observed under the null
hypothesis. The z-score for all the partial correlation coefficients
are greater than or equal to 3.58 and the adjusted P -values are
less than 0.01, indicating it is highly unlikely these results would
be observed under the null hypothesis.

As was done with System X z-scores, we obtained the z-
scores on System Y. The lowest z-score is 4.85. Since this is a
one-sided test, the P -value is 0.00001. We obtained the adjusted
P -value 0.00001 × 31 = 0.00031 where 31 is the number of
dates. The adjusted P -value is less than 0.01, indicating it is
highly unlikely this result would be observed under the null
hypothesis. The z-score for all the partial correlation coefficients
are greater than or equal to 4.85 and the adjusted P -values are
less than 0.01, indicating it is highly unlikely these results would
be observed under the null hypothesis.

B. Problem Case 2: Segmentation Faults
When data in memory is corrupted, the ECC memory at-

tempts to correct the error. In most cases, the corrupted data
is resolved successfully. However, if the ECC memory fails to
correct the data corruption, then the data value is changed. When
the data value is a memory index and a program uses the index
to locate data in memory, a memory access violation occurs.

1) Phase 1: Identify Time-bins of Important Message Types:
In the first phase, we identify the time-bins associated with the
largest number of important message types on all the dates.

Fig. 9. Number of important message types identified on multiple granularities
of time-bins on System X.

Fig. 9 shows the number of important message types identi-
fied on 10, 30 and 60 minute time-bins in System X system logs.
We observed that the largest number of important message types
were identified on multiple granularities of time-bins. These
message types were identified: (i) on 30 or 60 minute time-bins
on 22 out of 26 dates and (ii) on 10 minute time-bins on 4 out
of 26 dates. The reports were generated in 4 minutes.

As was done with System X system logs described in Fig. 9,
we obtained the important message types on System Y. Fig. 10

7

Fig. 10. Number of important message types identified on multiple granularities
of time-bins on System Y.

shows the number of important message types. We observed that
the largest number of important message types were identified
on multiple granularities of time-bins. The largest number of
important message types were identified: (i) on 30 or 60 minute
time-bins on 18 out of 31 dates and (ii) on 10 minute time-bins
on 13 out of 31 dates. The reports were generated in 3 minutes.

The largest number of important message types were ob-
tained on time-bins of 10, 30 and 60 minutes, indicating
the importance of using both short and long time-bins.

2) Phase 2: Extract the Important Message Types: The
first phase of IFADE is characterized by the identification of
the time-bins for identifying the largest number of important
message types. However, the objective of feature extraction is
to extract the important message types to analyze. Therefore, we
need to determine which feature extractor extracted the largest
number of important message types.

Thus, in the second phase of our study, we obtained the
number of important message types extracted by the Features
Extraction module. Fig. 11 shows the number of important mes-
sage types extracted on System X. From Fig. 11(a), Fig. 11(b)
and Fig. 11(c), we observed that NLPCA extracted the largest
number of important message types on all the 26 dates. PCA and
ICA took 3 seconds and NLPCA and KPCA took 78 seconds
to execute. The important message types represent 23% of all
the message types on average.

As was done with System X message types, we obtained
the number of important message types on System Y. Fig. 12
shows the number of important message types. From Fig. 12(a),
Fig. 12(b) and Fig. 12(c), we observed that NLPCA extracted
the largest number of important message types on all the
31 dates. PCA and ICA took 1.5 seconds and NLPCA and
KPCA took 51 seconds to execute. The important message types
represent 18% of all the message types on average.

The non-linear PCA extractor extracted the largest num-
ber of important message types on all 26 dates on
System X and all 31 dates on System Y. This confirms
that PCA provided a low coverage as reported in [20].

3) Phase 3: Identify Partial Correlation of Message Types:
IFADE’s second phase is characterized by extracting the largest
number of important events. However, our goal is to identify
partial correlation of system errors. Thus, we need to identify
a relationship between an important event and other events.

Thus, we scan the lists of important message types on System
X. We identified many important message types. However, ECC
(Error Correcting Code) events forms the majority of important
message types in the list. Therefore, we focused on the ECC
error message on System X. We also scanned the lists of
important message types on System Y. There were no ECC
error messages in the list of important message types on System
Y. When a program tries to access data in an invalid memory
location, a segfault message is generated. We obtained the
partial correlation score of ECC error, segfault and program
error messages. It took 1.2 seconds to generate the reports.
From Fig. 13(a), we observed that ECC error is strongly positive
partial correlated to segmentation fault and general protection
fault (GPE) with a partial correlation score ranging from 0.81
to 1 on 4 dates. To determine if those dates coincide with the
dates of compute node soft lockups, we manually scanned the
message logs to identify soft lockup events. We identified 4
dates of soft lockups that coincided with the strongly positive
partial correlated events. From Fig. 13(b), we observed that ECC
error is strongly positive partial correlated to segfault and Lustre
communication errors with a partial correlation score ranging
from 0.87 to 1 on 3 dates. To determine if those dates coincide
with the dates of compute node soft lockups, we manually
scanned the message logs to identify soft lockup events. We
identified 3 soft lockup dates that coincided with the strongly
positive partial correlated events.

Next, we apply the diagnostics techniques in [9]–[11] to
identify correlations of ECC errors, segfault, GPE and Lustre
communication errors. The correlation scores are given in
Tables IV and V. From Table IV, we observed that ECC error is
weakly correlated to GPE, segfault and Lustre communication
error. From Table V, we observed that ECC error is weakly
correlated to GPE, segfault and Lustre errors. Correlation of
ECC errors and segfault were not identified on all 7 dates.

TABLE IV
CORRELATION SCORE OF [9], [10] ON ECC ERROR, SEGFAULT, GPE AND

LUSTRE COMMUNICATION ERROR MESSAGES ON SYSTEM X.

Error Error 5 6 11 19 24 26 27
ECC GPE 0.1 0.14 -0.12 – – 0.15 –

segfault GPE 0.81 0.99 0.98 – – 0.99 –
ECC segfault 0.03 0.14 -0.14 0.01 -0.17 0.15 0.03
ECC Lustre – – — 0.1 0.17 – -0.07

segfault Lustre – – – 0.99 0.82 – 0.99

TABLE V
CORRELATION SCORE OF [11] ON ECC ERROR, SEGFAULT, GPE AND

LUSTRE COMMUNICATION ERROR MESSAGES ON SYSTEM X.

Error Error 5 6 11 19 24 26 27
ECC GPE 0.1 0.23 -0.14 – – 0.15 –

segfault GPE 0.6 0.99 0.71 – – 0.99 –
ECC segfault 0.03 0.23 -0.2 0.11 0.11 0.15 0.11
ECC Lustre – – — 0.11 0.17 – -0.16

segfault Lustre – – – 0.99 0.24 – 0.43

IFADE identified: (i) a strong positive partial correla-
tion of ECC error, segfault and GPE on 4 dates (see
Fig. 13(a)) and (ii) a strong positive partial correlation
of ECC error, segfault and Lustre communication error
on 3 dates (see Fig. 13(b)).

8

(a) 10 minute time-bins. (b) 30 minute time-bins. (c) 60 minute time-bins.

Fig. 11. Number of important message types extracted by PCA, ICA, NLPCA and KPCA on System X.

(a) 10 minute time-bins. (b) 30 minute time-bins. (c) 60 minute time-bins.

Fig. 12. Number of important message types extracted by PCA, ICA, NLPCA and KPCA on System Y.

(a) ECC error (z), segfault (x)
and general protection fault (y)

(b) ECC error (z), segfault (x)
and Lustre comms error (y)

Fig. 13. Partial correlation of ECC error to segfault, general protection fault
and Lustre communication error on System X.

Correlation with failures: The correlation score of ECC error,
segfault, GPE and Lustre communication error to soft lockup
events are given in Table VI. We observed that: (i) segfault and
GPE are strongly positive correlated to soft lockup on date 6,
(ii) ECC error is weakly correlated to soft lockup on all 7 dates.

TABLE VI
BIVARIATE CORRELATION SCORES OF ECC ERROR, SEGFAULT, GPE AND

LUSTRE COMMUNICATION ERROR TO SOFT LOCKUP MESSAGES.

Error Message 5 6 11 19 24 26 27
ECC soft lockup 0.29 0.14 0.09 -0.04 0.3 -0.15 -0.1

segfault soft lockup -0.03 1 -0.03 -0.02 -0.02 -0.04 -0.02
GPE soft lockup 0.05 1 -0.03 – – -0.04 –

Comms soft lockup – – – -0.02 0.07 – -0.01

Detailed diagnosis: The ECC mechanism detected corrupted
data in memory on 7 dates. On one date, the ECC mechanism
failed to correct the data corruption. A program tried to use
the corrupted data value to access data in the memory which
caused a segmentation fault and led to a compute node soft
lockup. IFADE identified the date when a compute node soft
lockup was indirectly caused by an ECC error.

Significance test: We test all the partial correlation coeffi-
cients against the null hypothesis and obtained z-scores ranging
from 3.71 to 10.68. At 99% confidence level, under the null

hypothesis z0pr = 2.64. Hence, we reject the null hypothesis in
favour of the alternate hypothesis.

False positives: Next, we determine the probability of re-
jecting the null hypothesis when it is true. We apply a one-
sided test and use the significance level, α = 0.01 for all
given hypothesis tests to obtain a P-value. The lowest z-score
is 3.71. Since this is a one-sided test, the P -value is 0.000104.
We obtained the adjusted P -value 0.000104 × 26 = 0.0027
where 26 is the number of dates. The adjusted P -value is less
than 0.01, indicating it is highly unlikely this result would be
observed under the null hypothesis. The z-score for all the
partial correlation coefficients are greater than or equal to 3.71
and the adjusted P -values are less than 0.01; it is highly unlikely
these results would be observed under the null hypothesis.

V. LESSONS LEARNED

In this section, we reflect on the four activities we under-
took: (i) data preprocessing, (ii) features extraction, (iii) partial
correlation and (iv) diagnosing system failures without prior
knowledge of a fault model.

A. Data preprocessing

The objective of data preprocessing is to generate resource
use counters and message types data matrices into time-bins
of multiple granularities. We showed that, irrespective of the
format of the resource use data and system logs, we organized
the counters and message types into data matrices of 10,
30 and 60 minute bins. This has enabled us to identify the
largest number of important counters groups and largest number
of important system events. IFADE does not do actual error
recovery because there are no checkpoint messages in the
system logs. IFADE is dependant on HPC system logs only
because we know how to parse the data. That said, IFADE is
extensible to data processing frameworks that parse distributed
system logs, e.g., in [34]. Currently, we are developing time and
space analysis approaches to relate other resource use counters
and errors to new system failures.

B. Features extraction

The objective of feature extraction is to identify the important
counters and message types from the redundant ones. We

9

showed that non-linear PCA extracted the largest number of
important counters and message types. In [35], it is reported
that the features extracted on multiple time-bins resulted in a
higher accuracy for predicting compute node soft lockups. Thus,
IFADE can be integrated with failure prediction frameworks,
e.g., in [35].

C. Partial correlation

The objective of partial correlation is to identify indirect
relationships between the counters or system events. Partial
correlation can help identify the counters or system events
which are: (a) partially correlated and (b) both directly and
partially correlated. In our evaluation, we showed that: (a)
Lustre I/O control and CPU I/O wait counters are partially
correlated via the memory data update counter and also directly
correlated, (b) segfault and general protection fault are partially
correlated via ECC error and also directly correlated and (c)
segfault and Lustre communication error are partially correlated
via ECC error and also directly correlated.

D. Diagnosing system failures

The goal in this paper is to diagnose system failures without
prior knowledge of a fault model. We showed that IFADE
can identify two previously unknown causes of Lustre I/O and
segmentation faults (see Section IV). Thus, we can automate the
diagnosis process by implementing the steps in the workflow
(see Fig. 2). IFADE is specific to Lustre I/O problems and seg-
mentation faults only because we know how to diagnose these
problems. IFADE is available at https://tinyurl.com/36zuz4fv to
support system administrators in diagnosis of system failures.

VI. RELATED WORK

In [36], the authors integrated PCA, Kullback-Leibler di-
vergence and Pearson correlation to identify influences among
interacting system components. In their method, the width
of the time-bin is selected automatically. While IFADE also
applied a three-phase approach, there are differences: (i) it
organized the counters and system events into time-bins of
multiple granularities, (ii) it applied linear and non-linear feature
extractors and (iii) it applied partial correlation.

In [17], the authors compared a PCA-based and an ICA-
based anomaly detection methods to identify faulty nodes on a
large cluster system. They showed that the ICA-based method is
more effective than the PCA-based method. In [19], the authors
presented an adaptive anomaly detector to identify anomalies
in cloud computing systems. Their approach was based on
integrating PCA with a machine learning technique to find the
most relevant principal component for each type of possible
failures. In [15], the authors evaluated PCA, ICA and Maha-
lanobis distance to identify anomalous nodes using resource
usage data. They showed that the PCA-instance identified all the
nodes that matched all the dates of compute node soft lockups
in a large HPC system. In [9], the authors applied PCA and
ICA to identify faulty nodes in two HPC systems. Differently
to these works, IFADE applied linear and non-linear feature
extractors to extract the largest number of important resource
use counters and system events.

In [37], the authors presented a novel approach that modeled
normal and faulty system behaviour by applying an Event Signal

Log Analyzer on event logs. In [38], the authors developed
a novel relational operator for system diagnosis. In [39], the
authors proposed a novel scheme that used the spatial locality
of failures to provide better application and system performance.
In [40], the authors developed a thorough understanding of
interconnect errors and job characteristics on an enterprise
class supercomputer. Network traffic and access patterns were
identified by Google’s Network Telemetry [41]. In [42], the
authors used correlation to predict optical transceiver failure
patterns in Facebook data centers. In [43], the authors provided
a detailed statistical analysis of system and application failures
using IBM BlueGene/L event logs, and developed Baler [44] – a
log-clustering tool that analyzed root-causes of system failures.
In [27], the authors presented a principled approach to obtain
new insight into failure prediction using log-data on the Com-
puter Failure Data Repository. In [45], the authors integrated
probabilistic analysis with an optimized K-means algorithm to
detect error propagation across the nodes in a HPC system. In
[46], the authors presented a big-data analytics framework that
mines event patterns and provides user application and system
event correlations. In [47], the authors presented a scalable,
intuitive HPC data analysis framework. These frameworks are
working on HPC systems and IFADE complements them by
identifying partial correlation of resource use counters and
partial correlation of system errors for failure diagnosis.

In [48], the authors applied Pearson and Spearman-Rank
correlation methods on the resource use data and system logs
to identify errors that lead to failure or recovery on HPC
systems. In [49], the authors integrated feature extraction and
correlation methods to identify rare error propagation cases. The
diagnostics frameworks in [48], [49] targeted error propagation
or recovery in HPC systems. Differently to these works, IFADE
targets system failure diagnosis and applied feature extraction
and partial correlation algorithms. We compared IFADE with
current failure diagnostics approaches [9]–[11]. We showed
that IFADE identified: (a) a previously unknown memory data
update cause of Lustre I/O which led to compute node soft
lockups and (b) a previously unknown corrupted memory index
cause of segmentation fault which led to a soft lockup.

VII. CONCLUSION AND FUTURE WORK

The novel IFADE diagnostics workflow was developed to
uncover hidden relationships so as to support detailed diagnosis
of HPC system failures. IFADE generated resource use counters
and message types data matrices of multiple granularities of
time-bins, and applied feature extraction and partial correlation
algorithms. We compared IFADE with three system failure
diagnostics approaches and showed that IFADE identified two
previously unknown causes of system failures. We applied
statistical significance tests and ensured accurate diagnosis of
the system failure.

For our future work, we plan to analyze other causes of sys-
tem failures to deal with problems other than Lustre filesystem
I/O and segmentation faults.

ACKNOWLEDGEMENTS

This research is supported by the European Union’s Horizon
2020 Research and Innovation program under Grant Agreement
No. 830927 and the National Science Foundation under OCI

10

awards #0622780 and #1203604 to Texas Advanced Computing
Center (TACC) at The University of Texas at Austin, USA. We
thank Bill Barth at TACC for providing the cluster log-data and
Joshua Fryman at Intel for granting access to his engineers.

REFERENCES

[1] A. Avizienis, J.-C. Lapire, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[2] A. Das, F. Müller, and B. Rountree, “Systemic assessment of node failures
in HPC production platforms,” in Proceedings of IEEE IPDPS, 2021.

[3] R. Kumar, S. Jha, A. Mahgoub, R. Kalyanam, S. Harrell, X. C. Song,
Z. Kalbarczyk, W. Kramer, R. Iyer, and S. Bagchi, “The mystery of
the failing jobs: Insights from operational data from two university-wide
computing systems,” in Proceedings of IEEE/IFIP DSN, 2020.

[4] S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello, “Characterizing and
understanding hpc job failures over the 2k-day life of ibm bluegene/q
system,” in Proceedings of IEEE/IFIP DSN, 2019.

[5] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: Long-term measurement, analysis, and implications,” in
Proceedings of IEEE/ACM Supercomputing (SC), 2017, pp. 44:1–44:12.

[6] G. Wang, L. Zhang, and W. Xu, “What can we learn from four years of
data center hardware failures?” in Proceedings of IEEE/IFIP DSN, 2017.

[7] B. Schroeder and G. Gibson, “The computer failure data repository (cfdr):
Collecting, sharing and analyzing failure data,” in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, no. 154, 2006.

[8] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Proceedings of IEEE/IFIP DSN, June 2007.

[9] E. Chuah, A. Jhumka, J. C. Browne, B. Barth, and S. Narasimharmuthy,
“Insights into the diagnosis of system failures from cluster log data,” in
Proceedings of EDCC, 2015, pp. 1–8.

[10] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-dimensional root cause diagnosis
via co-analysis,” in Proceedings of ACM ICAC, 2012, pp. 181–190.

[11] E. Chuah, A. Jhumka, J. C. Browne, N. Gurumdimma, S. Narasimhar-
muthy, and B. Barth, “Using message logs and resource use data for
cluster failure diagnosis,” in Proceedings of IEEE HiPC, 2016.

[12] J. L. Hammond, T. Minyard, and J. Browne, “End-to-end framework for
fault management for open source clusters: Ranger,” in Proceedings of
ACM TeraGrid Conference, no. 9, 2010.

[13] IEEE, IEEE Std 1003.1-2001 Standard for Information Technology —
Portable Operating System Interface (POSIX) Base Definitions, Issue 6.
IEEE Standards, 2001.

[14] R. T. Evans, J. C. Browne, and W. L. Barth, “Understanding application
and system performance through system-wide monitoring,” in Proceedings
of IEEE IPDPS Workshops, 2016, pp. 1702–1710.

[15] E. Chuah, A. Jhumka, S. Narasimharmuthy, J. Hammond, J. C. Browne,
and B. Barth, “Linking resource usage anomalies with system failures
from cluster log data,” in Proceedings of IEEE SRDS, 2013, pp. 111–120.

[16] M. Serafini, A. Bondavalli, and N. Suri, “Online diagnosis and recovery:
On the choice and impact of tuning parameters,” IEEE Transactions on
Dependable and Secure Computing, vol. 4, no. 4, pp. 295–312, 2007.

[17] Z. Lan, Z. Zheng, and Y. Li, “Toward automated anomaly identification
in large-scale systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 21, no. 2, pp. 174–187, 2010.

[18] Q. Guan, D. Smith, and S. Fu, “Anomaly detection in large-scale coalition
clusters for dependability assurance,” in Proceedings of IEEE HiPC, 2010.

[19] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring metric
subspace in cloud computing infrastructures,” in Proceedings of IEEE
SRDS, 2013.

[20] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in Proceedings of IEEE ISSRE, 2016,
pp. 207–218.

[21] M. Scholz, “Validation of nonlinear PCA,” Neural Processing Letters,
vol. 36, pp. 21–30, 2012.

[22] C. Croux, P. Filzmoser, and M. R. Oliveira, “Algorithms for projection-
pursuit robust principal component analysis,” Chemometrics and Intelli-
gent Laboratory Systems, vol. 87, no. 2, pp. 218–225, 2007.

[23] A. Hyvarinen and E. Oja, “Independent component analysis: Algorithms
and applications,” Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[24] M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear
PCA: a missing data approach,” Bioinformatics, vol. 21, no. 20, 2005.

[25] H. Hoffmann, “Kernel PCA for novelty detection,” Pattern Recognition,
vol. 40, no. 3, pp. 863 – 874, 2007.

[26] F. Song, Z. Guo, and D. Mei, “Feature selection using principal component
analysis,” in Proceedings of IEEE International Conference on System
Science, Engineering Design and Manufacturing Informatization, 2010.

[27] A. Goudarzi, D. Arnold, D. Stefanovic, K. B. Ferreira, and G. Feldman,
“A principled approach to HPC event monitoring,” in 5th Workshop on
Fault Tolerance for HPC at eXtreme Scale, 2015, pp. 3–10.

[28] K. Baba, R. Shibata, and M. Sibuya, “Partial correlation and conditional
correlation as measures of conditional independence,” Australian & New
Zealand Journal of Statistics, vol. 46, no. 4, pp. 657–664.

[29] A. Agresti and C. Franklin, Statistics: The Art and Science of Learning
From Data. Prentice Hall International, 2009.

[30] R. E. Walpole, R. H. Myers, and S. L. Myers, Probability and Statistics
for Engineers and Scientists. Prentice Hall International, 1998.

[31] J. J. Goeman and A. Solari, “Multiple hypothesis testing in genomics,”
Statistics in Medicine, vol. 33, no. 11, pp. 1946–1978, 2014.

[32] J. T. Palmer, S. M. Gallo, T. R. Furlani, M. D. Jones, R. L. DeLeon,
J. P. White, N. Simakov, A. K. Patra, J. Sperhac, T. Yearke, R. Rathsam,
M. Innus, C. D. Cornelius, J. C. Browne, W. L. Barth, and R. T. Evans,
“Open XDMoD: A tool for the comprehensive management of high-
performance computing resources,” Computing in Science Engineering,
vol. 17, no. 4, pp. 52–62, July 2015.

[33] J. C. Browne, R. L. DeLeon, C. D. Lu, M. D. Jones, S. M. Gallo,
A. Ghadersohi, A. K. Patra, W. L. Barth, J. Hammond, T. R. Furlani, and
R. T. McLay, “Enabling comprehensive data-driven system management
for large computational facilities,” in Proceedings of ACM Supercomputing
(SC), Nov 2013, pp. 1–11.

[34] M. Astekin, H. Zengin, and H. Sözer, “DILAF: A framework for
distributed analysis of large-scale system logs for anomaly detection,”
Software: Practice and Experience, vol. 49, no. 2, pp. 153–170, 2019.

[35] A. Pelaez, A. Quiroz, J. C. Browne, E. Chuah, and M. Parashar, “Online
failure prediction for HPC resources using decentralized clustering,” in
Proceedings of IEEE HiPC, 2014, pp. 1–9.

[36] A. J. Oliner, A. V. Kulkarni, and A. Aiken, “Using correlated surprise to
infer shared influence,” in Proceedings of IEEE/IFIP DSN, 2010.

[37] A. Gainaru, F. Cappello, and W. Kramer, “Taming of the shrew: Mod-
eling the normal and faulty behaviour of large-scale HPC systems,” in
Proceedings of IEEE IPDPS, 2012, pp. 1168–1179.

[38] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in Proceedings of ACM SIGOPS,
2015, pp. 378–393.

[39] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understanding
and exploiting spatial properties of system failures on extreme-scale HPC
systems,” in Proceedings of IEEE/IFIP DSN, 2015, pp. 37–44.

[40] M. Kumar, S. Gupta, T. Patel, M. Wilder, W. Shi, S. Fu, C. Engelmann, and
D. Tiwari, “Understanding and analyzing interconnect errors and network
congestion on a large scale HPC system,” in Proceedings of IEEE/IFIP
DSN, 2018, pp. 107–114.

[41] G. N. Telemetry, https://cloud.google.com/network-telemetry/, 2017.
[42] A. Chakravarty and V. Zeng, “Failure prediction mechanism for pluggable

optical interconnect at Facebook data centers,” in OpenCompute Project,
US Summit, 2018.

[43] N. Taerat, N. Naksinehaboon, C. Chandler, J. Elliott, C. Box, L. , G. Os-
trouchov, and S. L Scott, “Using log information to perform statistical
analysis on failures encountered by large-scale HPC deployments,” 2009.

[44] N. Taerat, J. Brandt, A. Gentile, M. Wong, and C. Leangsuksun, “Baler:
Deterministic, lossless log message clustering tool,” Comput. Sci., vol. 26,
no. 3-4, pp. 285–295, 2011.

[45] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello, “Logaider: A tool
for mining potential correlations of HPC log events,” in Proceedings of
IEEE CCGRID, May 2017, pp. 442–451.

[46] B. H. Park, Y. Hui, S. Boehm, R. A. Ashraf, C. Layton, and C. Engelmann,
“A big data analytics framework for HPC log data: Three case studies
using the Titan supercomputer log,” in Proceedings of IEEE Cluster
Computing, Sept. 2018.

[47] A. Giménez, T. Gamblin, A. Bhatele, C. Wood, K. Shoga, A. Marathe,
P.-T. Bremer, B. Hamann, and M. Schulz, “Scrubjay: Deriving knowledge
from the disarray of HPC performance data,” in Proceedings of IEEE/ACM
Supercomputing (SC), 2017.

[48] E. Chuah, A. Jhumka, S. Alt, D. Balouek-Thomert, J. C. Browne, and
M. Parashar, “Towards comprehensive dependability-driven resource use
and message log-analysis for HPC systems diagnosis,” Journal of Parallel
and Distributed Computing, vol. 132, pp. 95–112, 2019.

[49] E. Chuah, A. Jhumka, S. Alt, J. Villalobos, J. B. Fryman, W. L. Barth, and
M. Parashar, “Using resource use data and system logs for HPC system
error propagation and recovery diagnosis,” in Proceedings of IEEE ISPA,
2019, pp. 1–10.

11

