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Abstract—Compared with traditional internal combustion en-
gine vehicles, Electric Vehicles (EVs) have the advantage of elimi-
nating harmful gases in the environment, with great development
potential in recent years. However, because the battery capacity
of EVs is limited at the current stage, where to charge (to
select charging station) and when/whether to charge (order the
charging priority of EVs) still limit the large-scale popularity
of EVs. In this paper, we develop an Urgency First Charging
(UFC) charging scheduling policy, which takes the remaining
parking time and charging time of EVs as the standard of
charging priority. With this, the CS benefits to the shortest
trip duration (summation of travelling time through CS, and
charging service time at CS) is selected as optimal solution. We
have conducted simulations through Helsinki’s traffic scenarios.
The results have shown that our proposed CS-Selection scheme
effectively improves the charging comfort (in terms of waiting
time and trip time) and charging efficiency (in terms of not-fully
charged service due to limited parking duration).

I. INTRODUCTION

Electric Vehicles (EVs) have significant benefits for environ-
mental protection, compared with traditional internal combus-
tion engine vehicles, as they do not produce harmful gas and
exhaust pollution during driving [1]. Despite these benefits,
the low sustainability of EV’s battery stands in the way of
the broad utilization of EVs. Meanwhile, EVs require long
charging time, thus optimizing the charging service to prolong
the range anxiety of EVs becomes a significant problem.

Previous works [2] investigate charging scheduling
(when/whether to charge), for EVs already parked at
Charging Stations (CSs). When multiple EVs park at the
single CS simultaneously, the CS needs to order charging
priority of EVs. At the same time, the other large amount of
EVs are on-the-move and need decision on where to charge
(charging recommendation). Due to complex EVs motion and
charging status at different CSs, navigating EVs towards a
CS without a global view of all CSs’ status (congestion at
CS and excessive waiting time) is important.

Charging recommendation represents CS-Selection decision
made for EV with charging demand. Due to the long charging
time required for EV charging [3], there would be a high
probability that a large number of EVs queuing at CS to
wait for a charging slot, this thereby creates charging service
congestion [4]. To avoid congestion, the CS-Selection scheme
needs to consider both EVs’ charging demand and local

charging status of CSs, where an optimal solution would
distribute EVs uniformly across all CSs.

The development and application of information commu-
nication technology has provided the equipment foundation
for intelligent transportation systems [5], which allows in-
formation exchange among CSs and EVs [6]. A centralized
manner deploys a Global Controller (GC) to aggregate CSs
and EVs status for CS-Selection, which is mostly applied in
the previous works [7].

In reality, EVs are not possible to stay at a fixed CS for
an extremely long time, as EVs would have their independent
travel plan. Previous work [7] propose deadline-driven CS-
Selection that considers the parking time of EVs. Here, specific
parking deadline for each EV is used to simulate the specific
time limitation that EVs would stay in a CS.

However, previous works are mainly based on First In
First Serve (FIFS) that the EVs arrive earlier would charge
earlier, and they do not consider the heterogeneity of the
EVs’ charging energy demand. Since EVs are supposed to
get charging service before their parking deadline, those with
more urgent charging demand are supposed to be scheduled
with a higher priority than those not with that urgency.

In this paper, we focus on optimizing the CS-Selection
scheme by jointly considering the EVs’ parking duration and
estimated charging scheduling when the incoming EV arrives
at CSs, which would significantly reduce the possibility that
EV could not get fully charged service. Instead of making
FIFS as underlying charging scheduling policy, we develop an
Urgency First Charging (UFC) policy, which allows incoming
EV to preempt charging depending on their charging urgency
(difference that energy demand minus remaining parking
time). The fundamental change of this would gear an evolution
design on CS-selection decision making.

II. RELATED WORK

Due to the substantial increase in the utilization of EVs,
the CS-Selection problem has become prevalent recently. The
work [8] provide a solution to select CS with a minimum
estimated waiting time to avoid excessive EVs waiting at
single CS. the work [9] selects CS by jointly considering the
number of EVs and remaining charging time of EVs at a CS.
The work [8] proves that finding the closest CS is not optimal



selection as waiting time at CS is not considered to identify
the congestion status of CS.

The other important aspect is charging scheduling when
the incoming EVs arrives at CS. Nevertheless, previous works
apply the FIFS policy to order charging priority of EVs. This
is impractical as EV drivers may have limited time to stay at a
CS. The work [10] proposes two scheduling policies: Earliest
Start Time (EST) and Earliest Finish Time (EFT). In EST, the
order of charging depends on the time order of EV arrival.
In EFT, the order of charging depends on how early the EV
could finish its charging. However, based on the limitation of
parking duration that charging scheduling needs to be further
considered. The work [11] proposes the CS-Selection scheme
considers heterogeneous EVs. The EV with higher priority (in
terms of vehicle type) is able to preempt charging service.

III. SYSTEM MODEL

A. Urgency First Charge

UFC calculates the “charging urgency” of different EVs that
parked at one CS. Charging urgency represents the negative
value of the difference between charging time estimation of
the EV and EV’s remaining parking time.

As illustrated in Figure 1, we assume EV2 arrives later
than EV1. If an charging slot becomes available at t1, because
the parking duration of each EV is set same, then EV2 has
longer remaining parking time than EV1. Also, EV2 demands
much charging energy (calculated by EV’s energy difference
between its full energy and its current energy) and thus larger
charging time required than EV1. Here, charging urgency is
calculated by remaining parking time minus charging time es-
timation. Then EV2 is arranged with higher charging urgency
and is able to charge earlier comparing with EV1.

This policy would decrease the possibility that EV with
higher charging demand and less remaining parking time
could not get charging service, and would enhance the overall
charging results as reducing the number of EVs miss charging.
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Fig. 1. Urgency First Charge

B. Assumption

In this paper, we consider a city scenario deploys a GA
and several CSs. CSs are fixedly located in various parts of
the city and equipped with several charging slots that allow to

charge EVs in parallel. Each EV has been set a threshold SOC.
The GA would globally aggregate EVs charging requests and
local status of CSs, to make CS-Selection decision for EVs
with charging demand.

When EV’s SOC is below a threshold, EV would send its
charging request to the GA, including its location, charging
time. Considering each EV would only stay a limited time at
CS, each EV is addressed with a parking duration. The EVs
charging scheduling is based on the UFC policy.

By jointly knowing information about CSs and parking
duration, GA would be able to predict the available time to
charge at each separate CS. GA would recommend CS to EV
on-the-move considering the earliest available charge time at
CSs, trip time from the EV’s current location to CSs and trip
time from CSs to the destination of EV.

IV. SYSTEM DESIGN

EVs need to consider the current charging status at CSs,
and need to consider whether there are possibly preempted
comparing with EVs already parked at CS (Nw) where UFC
policy would be applied. Current status at CSs would help
GA to calculated estimation available charging time at the
CSs. GA would make CS-Selection decision by knowing esti-
mated available charging time together with trip time between
incoming EV (EVr) to CSs and CSs to EVr’s destination.

A. Definition of Charging Urgency

We proposed this CS-Selection scheme on the basis of
underlying scheduling policy and need to know the charging
scheduling of the EVs when the EV with charging demand
arrives at the CS. UFC policy would be applied to reorder
the charging priority of EVs. If an incoming EV has a higher
value of charging urgency than parked EVs, the UFC policy
allows this EV to preempt charging, before those EVs been
parked. The charging urgency is given by:

Vev = −(Tarrev +Dev − T staev − T chaev ) (1)

Here, T arrev reflects the EV’s arrival time, Dev reflects the
parking duration EVs parked at one CS, T staev reflects the
time EV has spent at the CS after its arrival. T chaev reflects
EV’s charging time, which would be detailed in the following
section.

B. Estimation of Available Charging Time at CS

The time to finish charging of those EVs currently charging
simultaneously on each charging slot, is defined as estimated
available time to charge (EATCcs). Each CS has δ charging
slots giving parallel charging services.

In Algorithm 1, we detail the implementation of the esti-
mation available time to charge at each CS. Current time Tcur
represents the time in the network. The operations between
lines 1 and 3 denote no EV is under charging at the CS, the
arrival time of the EVr (the on-the-move EV needs to charge),
T arrev(r)

, would be returned as the available time to charge at this
CS. Here, T arrev(r)

reflects the time that the EVr reaches at the
CS, which is calculated by adding travel time towards the CS



Algorithm 1 Estimation Earliest Available Time for Charging
1: if (no EV is under charging) then
2: return Tarrev(r)

)

3: end if
4: for (i = 1; i ≤ Nc; i++) do

5: LIST.ADD
(
Emax

ev(i)
−Ecur

ev(i)

β
+ Tcur

)
6: end for
7: if (Nc < δ) then
8: add Tcur into LIST with (δ −Nc) times
9: end if

10: sort LIST with ascending order
11: if (Nw = 0) then
12: if (LIST.GET(0) < Tarrev(r)

) then
13: return Tarrev(r)
14: else
15: return LIST.GET(0)
16: end if
17: else
18: sort Nw according to UFC scheduling order
19: for (j = 1; j < Nw; j ++) do
20: if (LIST.GET(0) > Tarrev(r)

) ∩ (Vev(r) > Vev(j) ) then
21: return LIST.GET(0)
22: else
23: if ((T chaev(j)

+ LIST.GET(0)) < (Dev(j) + Tarrev(j)
)) then

24: T finev(j) = T chaev(j)
+ LIST.GET(0)

25: else
26: T finev(j) = Dev(j) + Tarrev(j)
27: end if
28: replace LIST.GET(0) with T finev(j)
29: sort LIST with ascending order
30: end if
31: end for
32: return LIST.GET(0)
33: end if

from the EVr’s current location to the current time slot of the
simulation environment:

Tarrev(r)
= Tcur + T traev(r)

(2)

Furthermore, LIST is set to reflect available time to charge
at each slot (EVs finish current charging). Line 5 implies
Emax

ev(i)
−Ecur

ev(i)

β + Tcur to reflect the finish time that EVi in Nc
full recharged its battery. The fully recharging time and Tcur
would be summed as the available time to charge at charging
slot that EVi is currently charging. The following lines 7 to 9
add Tcur into LIST with (δ −NC) times, which denotes that
number of (δ −NC) slots at this CS are available to provide
charging service from Tcur as they are not occupied. Line
10 sorts LIST as ascending order so that the first available
charging slot would be at the top of LIST.

It needs to consider the scheduling situation when EVr
arrives at CS in the process of CS-Selection. If there is no
EV parked at CS waiting for charging (the condition between
lines 11 and 16). EVr would get charging service without
charging urgency comparison with Nw when it arrives at the
CS. Line 12 considers the condition EVr arrives later than
LIST.GET(0), where LIST.GET(0) indicates the first available
charging slot at the CS, it would return T arrev(r)

as available
time to charge at this CS because CS would have a charging
slot available upon arrival. Or EVr needs to wait until the first

charging slot available, which would return LIST.GET(0) as
the available charging time at this CS (lines 14 to 15).

Line 17 considers the other condition different from line 11
that there are EVs waiting at the CS. Line 18 sorts Nw firstly
according to the UFC scheduling policy. A loop operation
for EVj (waiting EVs in the queue of Nw) is given between
lines 19 and 31. The UFC policy would take into account the
possibility of preemption. Line 20 is designed to determine
the charging order between the parked EVs and EVr:

• Line 20 denotes EVr arrives earlier than LIST.GET(0)
and has a higher charging urgency than EVj , then EVr
is allowed to preempt charging before the parked EVs.
As EVr and EVj has different identities of charging en-
ergy demands. Their T chaev would be calculated separately.
As EVj has been parked, its T chaev is given by:

T chaev(j)
=
Emaxev(j)

− Ecurev(j)

β
(3)

As EVr is currently travelling, extra energy would be
consumed that EVr moving from its current location to
the selected CS, which would be calculated as (Sev ×
T traev(r)

× α). So its T chaev is given by:

T chaev(r)
=
Emaxev(r)

− Ecurev(r)
+ (Sev × T traev(r)

× α)

β
(4)

• Apart from the condition at line 20, Algorithm 1 consid-
ers the other condition. From lines 22 to 30, it considers
that EVr has not arrived at the CS when the first charging
slot available (LIST.GET(0) < T arrev(r)

), or the charging
urgency of EVr is lower than the charging urgency of
EVj . EVj would charge its battery when the first charging
slot is available. Lines 24 and 26 calculate the charging
finish time T finev(j)

of EVj under different condition.
If EVj has enough remaining parking time (condition
under line 23), T finev(j)

would be calculated by summing
the first available charging time LIST.GET(0) with T chaev(j)
as EVj would be fully charged. Line 26 considers that
EVj could not be fully charged before it departure.
LIST.GET(0) would then be replaced by T finev(j)

as current
available charging time at this charging slot (line 28).
LIST would be sorted later according to ascending order,
so that LIST.GET(0) would be updated and be the first
available charging slot for further calculation.

After the above loop operation finishes and every EVj is
sorted. Line 32 returns LIST.GET(0) as the earliest available
time to charge.

C. CS-Selection Decision Making

With Algorithm 1, we are able to obtain estimated available
time to charge at each CS (EATCcs). In order to shorten
overall trip time of EV drivers, the following aspects need
to be considered as influence factors when selecting CS:

• The traveling time from the EVr’s current location to the
selected CS, which is denoted as T traev(r)

.
• The estimation duration time staying at the selected CS

would be constrained by Dev(r) .



• The estimated travelling time from the selected CS to
EVr’s destination Tmincs,d .

T cs,dev(r)
is defined by summing the above inputs and is given

by:
T cs,dev(r)

= T traev(r)
+ EATCcs + T chaev(r)

+ Tmincs,d (5)

However, if (T chaev(r)
+ EATCcs) is larger than Dev(r) , then

EVr is not able to fully recharge before its parking duration
deadline, and T cs,dev(r)

would be given by:

T cs,dev(r)
= T traev(r)

+Dev(r) + Tmincs,d (6)

By generating T cs,dev(r)
of each CS, the GA would select the CS

with minimum T cs,dev(r)
to EVr as to shorten the overall trip time

of EV and improve degree of charging QoE.

V. PERFORMANCE EVALUATION
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Fig. 2. Simulation Scenario of Helsinki City

A. Simulation Setting

We set up a scenario in Opportunistic Network Environment
(ONE) [12] to simulation the entire EV charging system.
In Figure 2, We used Helsinki, Finland for urban environ-
ment simulation, the entire city scenario is with an area of
4500×3400 m2. During the simulation, we set a random
destination for each EV to avoid EVs from clustering at a
specific location. The paths of the EVs to their destinations
are calculated via Dijkstra algorithm. At the same time, each
EV is also set with SOC, which are used as the flag to
start sending the charging request. EVs with [30 ∼ 50]
km/h variable moving speed are initialized in the network.
The configuration of EVs follows the charging specification:
Electricity Capacity, Max Travelling Distance, SOC threshold.
We configure the EVs using Coda Automotive [13] {33.8
kWh, 193 km} average energy consumption 0.1751 kWh/km
with three different SOC: 30%, 35% and 50%.

Three CS-Selection scheme would be compared: Proposed:
The GA applies UFC policy in scheduling prediction of CSs
and selects the CS with minimum trip duration which is
detailed in section IV; Minimum Waiting Time (MWT): The
GA applies FIFS policy in scheduling. CS would let parked

EVs charging earlier when the incoming EV arrives. The
GA selects the CS with minimum waiting time in scheduling
prediction; Minimum Distance (MD): the GA selects the CS
with minimum distance to the incoming EV, that is selecting
the CS that is closest to the incoming EV.

A 12 hours’ duration scenario is simulated with a 0.1s
resolution. EVs’ positions and energies are updated in each
resolution, no matter EVs are under charging or travelling.
We deployed 6 CSs in the city, each of them is with large
enough electric energy and is equipped with 5 charging slots
that provide 62 kW charging power.

We set three evaluation metrics: Number of Times EVs
Could Not Fully Charged is evaluated as the performance
metric, which counts the times of EVs arrive at CSs but leave
before it get fully charged due to parking duration limitation.
Average Charging Waiting Time measures the average time
spends between the time EVs arrives at CSs and the time
EVs charges. Average Trip Duration reflects the entire time
period spends from the incoming EV’s original location to its
destination, which contains its charging time and trip time.

B. Performance Analysis

We deploy 150 EVs to observe the influence of parking
duration changes in Figure 3. The proposed scheme achieves
the lower times that EVs could not fully charged than MWT
and MD in Figure 3(a), as the underlying UFC policy in pro-
posed scheme considers charging urgency of different EVs and
allows EV with higher charging urgency preempt charging.
Meanwhile, the proposed scheme achieves the shortest average
waiting time in all three CS-Selection schemes as illustrated
in Figure 3(b), because the proposed scheme predicts the
scheduling that the incoming EV arrives at each CS, which
distributes charging service of each CS more balanced, and it
is beneficial to reduce average waiting time of EVs. Figure 3(c)
demonstrates the performance of three CS-Selection schemes
on trip duration, it could be found that with the parking
duration increases, the proposed scheme has a shorter average
trip duration than MWT and MD. This is because as the
parking duration increases, more charging preempt might
occur.

We set a same parking duration 1500s to observe the
performance of three different CS-Selection schemes when the
total number of EVs changes in Figure 4. When the proportion
of EVs and CSs is small, the proposed scheme has less number
of times that EVs could not fully charged over MWT and MD.
As the proportion of EVs-CSs increases, CSs are more likely
to have a large amount of charging congestion. At this time,
the proposed scheme performs much better as illustrated in
Figure 4(a). In Figure 4(b), the proposed scheme achieves a
shortest average waiting time. It is worth mentioning that when
there are 240 EVs in the network, the average waiting time
of all three schemes decreases. This is because the congestion
is more severe than it in 150 EVs and 180 EVs scenario, the
overall times of charging service CSs provided is decreased. So
the average waiting time to complete charging also decreased.
In 240 EVs scenario, it shows the proposed scheme has a
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Fig. 3. Simulation Result Changing Parking Duration
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Fig. 4. Simulation Result Changing Number of EVs

shorter average charging time when congestion occurs. The
proposed scheme also has the shortest trip duration among
the all three CS-Selection scheme in Figure 4(c). As the total
number of EVs increases, more preempt charging might occur,
and the proposed performance even better than MWT and MD.

VI. CONCLUSION

In this paper, we propose a CS-Selection scheme consid-
ering charging urgency of EVs. The selection computation
predicts the charging scheduling when the incoming EV ar-
rives at the CS using UFC policy, which is different from
FIFS policy that considers EVs’ individual energy demand
and parking duration. The EV with higher energy demand and
shorter remaining parking time is allowed to preempt charging
comparing with parked EVs. The evaluation under the Helsinki
city scenario confirmed the performance of our proposed
CS-Selection scheme, which could significantly decrease the
possibility the incoming EVs could not get fully charged. Our
proposed CS-Selection scheme helps to improve the QoE of
EV drivers, it also provides an EVs charging urgency-driven
idea for further CS-Selection scheme.
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