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1 Introduction

Private firms are increasingly held accountable for their environmental impacts and their

efforts to promote sustainable growth.1 As a result, investors are becoming conscious of the

need for firms to be more ethical and environment-friendly in their business and production

operations. For example, the C.E.O. of BlackRock, Larry Fink, said that BlackRock

would exit certain investments that “present a high sustainability-related risk” and move

more aggressively to vote against management teams that are not making progress on

sustainability (Sorkin, 2020).2

In this paper, we examine how firms internalize this increasing pressure and the role of

directors’ network formation in shaping a firm’s environmental strategy. Directors are ac-

countable to the firm’s shareholders and their main roles include taking the firm’s strategic

and operational decisions. By serving on the board of multiple firms, directors can agglom-

erate useful information from various sources, identify new business practices, and advise

senior management regarding a firm’s environmental strategy. Board directors’ networks

can, therefore, constitute a key element to improve a firm’s environmental performance.

This question has two dimensions.

First, we investigate whether a candidate’s environmental performance is a factor that

firms take into account when they appoint their decision-making board members. A

positive answer implies that, besides other performance measures, firms also value envi-

ronmental performance when determining the suitability of a director for the board. This

leads to our next question: how a firm’s board of directors influences its environmental

performance. To the best of our knowledge, this is the first paper to study whether a

firm considers a candidate’s past environmental record when hiring a board member. By

modelling directors’ network formation (through the appointment process), we endogenize

the effect of directors’ environmental experience when examining their network influence

over firms’ environmental performance.

To complete our analysis, we compile one of the most comprehensive director-firm

level data files ever assembled on environmental performance and board characteristics

and networks. We combine data from BoardEx data for North America, the United States

(US) Environmental Protection Agency’s (EPA) Toxic Release Inventory (TRI) Program,

1A striking example of this increasing pressure on companies is the judgment from a district court in
The Hague (Netherlands) that ordered Royal Dutch Shell to reduce its CO2 emissions by 45% from 2019
levels, in line with global climate goals (May 2021). This was the first time a court ruled that a large
polluting company must comply with the Paris Climate Agreement.

2Another example of this trend is the recent removal of two directors from ExxonMobil following
pressure from an activist investor, Engine No. 1, regarding ExxonMobil’s climate strategy (CNN, 2021).
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and the US Census between 2000 and 2017. We build a dynamic firm-director network

for North America using information provided by BoardEx, a global data company that

compiles public information on board directors and senior management of publicly listed

and large private companies.

To obtain measures of firms’ and directors’ environmental performance, we match

BoardEx data with the TRI. The TRI is a national database, established by law, which

requires private and government facilities to report annually their pollution prevention

activities and how much of certain chemicals they emit into the air or water or send

to landfills. The TRI Program currently covers 770 individual chemicals that typically

have significant adverse human health and environmental effects. In this study, a firm’s

environmental performance is measured by its facilities’ polluting probabilities and the

total sum of pollutants released (measured in toxic pounds). We define a board member’s

environmental performance by calculating the proportion of their connections to polluting

facilities within a firm relative to all connected facilities among firms in the network

during the previous period. By using a quantitative measure of pollution, i.e. firms’ toxic

chemical releases, we take into account directors actual actions or impacts in all the firms

he is serving as a board member.

We start our analysis by examining the directors’ network formation, using a Bayesian

model approach similar to Christakis et al. (2020) and De Silva et al. (2020). Our results

indicate that firms tend to appoint directors who share more similarities (captured by

pollution-related homophily measures) with existing board members or to the firm itself.

Candidates who have greater network influence have a significantly higher chance of being

appointed, while candidates with poorer environmental performances are less welcome even

if they are influential. This could be due to consideration about the firms’ reputation and

regulation risk. If an influential director with a ‘toxic’ environmental record is appointed

to a firm, the firm can face criticism from the public and draw the attention of regulators,

which can indirectly affect profits. We also find that firms with higher network influence

tend to appoint more directors to their boards and directors with long market exposures

are more likely to be appointed.

We, then, turn to the second dimension of our problem, i.e., the influence of directors

on their firm’s environmental performance. As firms very often own more than one facil-

ity in the US, we examine facility-level outcomes and exploit the panel structure of our

data. We estimate the board’s influence on a facility’s polluting probability by adopting a

probit model and on the total toxic release by using simple linear and censored regression
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techniques. The influence of board members over their firm is measured by the average

of all existing board directors’ environmental performance. We also control for location-

specific demographic (and geographic) characteristics to control for factors that can affect

a facility’s location and pollution decisions using US Census data. Our findings suggest

that a facility’s or firm’s environmental performance is significantly affected by its board

directors’ previous experience. When a boardroom has a higher ratio of directors with

poor pollution records, the facilities controlled by this board tend to have more polluting

incidents. Further, our analysis shows that a facility controlled by a more diverse board

in terms of environmental performance tends to pollute less.

Combining the results from the two analyses, our study shows that the board of di-

rectors has a role to play in the move towards more sustainable growth. As firms are

under increasing pressure (from consumers or regulatory agencies) to be environmentally

responsible, we show that the board of directors and its network is a key determinant

in improving a firm’s environmental performance through their involvement in a firm’s

strategic decisions and values definition. Despite the likelihood that firms will appoint

directors who are similar to their existing board directors, they also tend to appoint envi-

ronmentally conscious and influential directors to their boards. This move can improve a

firm’s overall environmental performance.

There exists an extensive literature on the role of the board of directors. Studies

suggest that directors should use their own information, experience, and other resources to

proactively help decision-making (Chen et al., 2009; Kroll et al., 2008). Given the strategic

nature of environmental sustainability, directors have a clear role to play in this area and

a growing literature connects board directors’ characteristics and firms’ environmental

performance. Previous research has focused on directors’ legal expertise (De Villiers et al.

2011; McKendall et al. 1999), specific environmental expertise based on their roles or their

presence in environmental sub-committees in other boards (Homroy and Slechten 2019),

or political and academic experience (Zhuang et al. 2018). Similarly, the existence of a

corporate social responsibility (CSR)-focused committee significantly improves a firm’s

environmental performance (Berrone and Gomez-Mejia, 2009; Dixon-Fowler et al., 2017;

Garćıa Mart́ın and Herrero, 2020). We add to this literature by considering a measure

of directors’ environmental performance, based on their actual past actions or impacts.

Board diversity is another key factor improving board effectiveness and its importance

has been recognized by the European Commission (Commission, 2012). The existing

literature shows a positive relationship between a board’s gender diversity and its firm’s
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environmental performance (Post et al., 2011; Lu and Herremans, 2019). Age/generational

diversity improves a firm’s information richness, experience, and knowledge in a team,

thereby improving its CSR performance (Ferrero-Ferrero et al., 2015). In this paper, we

create a measure of board diversity in terms of environmental performance and show that

it positively affects the firm’s environmental performance.

Our paper also contributes to the literature examining the effects of board connections.

Pfeffer and Salancik (2003) argue that directors can facilitate the firms’ access to external

resources and information. There is evidence of an association between board connections

and firm value (Fracassi and Tate 2012; Zona et al. 2018). Studies also indicate that

board connections affect M&A transactions (Cai and Sevilir 2012) or innovation (Chuluun

et al. 2017). In the same spirit, board directors’ networks can constitute a key element

to improve a firm’s environmental performance. Ortiz-de Mandojana et al. (2012) find

that having a well-connected board tends to increase the probability of adopting proactive

environmental strategies. Homroy and Slechten (2019) study the role of shared directorship

in firms’ pollutant releases in the United Kingdom and find that directors with specific

environmental experience leverage their network connections on environmental issues. A

key distinction of our paper is the fact that we do not take the director network as given,

but empirically model the director appointment process. Additionally, we are not only

studying how well connected a director is, but also how ‘toxic’ their connections are.

Finally, the network we use for our analysis consists of all firms, regardless of their size,

in North America (and not only publicly listed ones as in Homroy and Slechten 2019 or

large firms as in Walls et al. 2012).

Networks are widely used in the Finance literature to represent the interdependencies

between organizations in the finance sector (Jackson and Pernoud, 2019, 2020). Lux (2015)

provides a dynamic model of interbank credit connections and demonstrates that network

formations are random at first but develop preferential relationships due to a learning

mechanism. Our paper adds to this literature by considering the role of environmental

performance in director network formation.

This paper is organized as follows. In the next section, we describe our conceptual

framework. We present the datasets and explain how we combine them to perform our

analysis in Section 3. Section 4 lays out the empirical models for both network formation

and network influence studies. In the final section, we conclude and discuss the implica-

tions of our findings.
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2 Conceptual framework

Firms interact with many stakeholders (consumers, employees, shareholders, regulators,

etc.) who may be endowed with social, environmental, or ethical preferences. Profit-

maximizing firms cannot ignore such preferences as they directly affect the demand for

their product, the supply of labor, and/or future social/environmental regulations (Casadesus-

Masanell et al., 2009; Turban and Greening, 1997; Eichholtz et al., 2010; Maxwell et al.,

2000). Achieving a good environmental performance can become part of a firm’s profit

maximization strategy.

The board of directors is a key component in corporate governance. The board repre-

sents the interests of the shareholders and is primarily tasked with monitoring and advising

senior management.3 With respect to the advisory role, board directors create firm value

by using their own information, experience, and other resources to proactively help strate-

gic and operational decision making and determining the values to be promoted throughout

the company (Kroll et al., 2008). Resource and information provision is crucial in the con-

text of environmental sustainability as improving environmental performance may require

the adoption of new business practices or large investments new environmentally efficient

technologie with uncertain long-term returns.

As pointed out by resource dependence theory (Pfeffer and Salancik, 2003), board

directors’ networking with the external environment is a key element in their ability to

increase firm value. Directors’ social capital emerges from their relations with other firms’

directors and outside individuals (Walls et al., 2012) and provides channels of communica-

tion and information that help in acquiring outside resources (Hillman and Dalziel, 2003).

By sharing directorship in different companies, directors are exposed to various environ-

mental strategies or investment opportunities and can exchange ideas and information

related to good environmental practices. This might give them a comparative advantage

in their advisory role.

To examine the role of directors’ network formation in shaping a firm’s environmental

strategy, we consider a network where directors and firms are nodes. A link between a

director and a firm implies that this director is serving on the board of the firm. Figure

1 provides an example of a network where we focus on two directors (red nodes). The

3Under state corporate law, shareholders generally have the right to elect directors at the annual
shareholder meeting (sections 211 and 216 of the Delaware General Corporation Law, for example). The
board generally nominates director candidates. Companies also adopt bye-laws authorizing the board to
elect directors to fill board vacancies and newly created directorships. However, this eliminates a key
shareholder power to ensure that directors act in their best interests.
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brown and green nodes represent firms, while the blue nodes represent the other directors

serving on the boards of those firms. Firms are characterized by their environmental per-

formance. In the example, the green (respectively brown) nodes represent firms with good

(respectively poor) environmental performance. In our setting, a director’s environmental

performance will be a function of the past environmental performance of the firms they are

connected to. In Figure 1, both directors have two ‘pollution links’ as they are connected

to two firms with poor environmental performance. However, one director is serving on

the board of three firms, while the other director is connected to seven firms. The director

with seven connections will, therefore, be considered as having a better environmental

performance.

In our analysis, we first investigate the directors’ network formation. The appointment

of a board member represents the formation of a link between a director and a firm. In

each period t, a firm will determine the suitability of a director for the board. A firm can

appoint more than one director to its board and hiring decisions are independent of each

other. Applicants are eligible to apply for and hold multiple positions simultaneously. If

achieving good environmental performance is part of the firm’s objective, we can make

the following testable hypothesis:

Testable hypothesis 1: Appointing a new candidate director or continuing with an existing

candidate in period t depends on the candidate’s past environmental performance (in period

t− 1).

Westphal and Zajac (2013) note that existing directors tend to favor colleagues who

have more similarities (homophily) on major demographic characteristics. The same rea-

soning can be applied to environmental performance:

Testable hypothesis 2: Firms tend to appoint directors sharing more similarities in terms

of their environmental performance with existing board members.

In addition, board directors with more social capital are able to gain greater influence

within their boards. They will also have more opportunities to leverage their network to

provide information and resources to advise senior management.

Testable hypothesis 3: We expect that firms will be willing to hire directors who are better

connected.

Once directors are appointed, they will shape the firm’s environmental strategy based

on their own past environmental experience and the information they can leverage from
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their networks. This leads to our next question: How does a firm’s board of directors

influence its environmental performance. Directors make collective decisions for their

firms. These decisions will affect all its facilities’ environmental performance.

Testable hypothesis 4: A facility environmental performance will reflect the average envi-

ronmental performance of the directors on its board.

The literature following the seminal paper by Lazear (1998) also suggests that diver-

sity in skills and education may generate knowledge spillover among the employees within

a firm, which positively affects firm performance. The same argument could apply to

board diversity in terms of environmental performance. Differences in environmental per-

formance reflect different experience or exposure to different environmental issues, which

might generate some information spillovers within the board.

Testable hypothesis 5: Board diversity (in terms of environmental performance) will im-

prove a facility environmental performance.

3 Data

The data used in this analysis combine three main sources for the period between 2000

and 2017. Facility-level pollution data are taken from the Toxic Release Inventory (TRI)

Program. The director-firm-level data for all reporting US (United States) companies are

gathered from BoardEx. Census tract-level data are collected from the US Census Bureau.

Note that, while TRI and Census data are publicly available, BoardEx data are not

publicly available. We are able to access BoardEx data under the terms of a non-disclosure

agreement and interested researchers can access or purchase these data from BoardEx.4

3.1 TRI data

TRI data provide information regarding a facility’s environmental performance. The TRI

Program, administrated by the EPA, is a resource for learning about toxic chemical releases

and pollution prevention activities reported by private and federal facilities. The origins of

the TRI Program date back to the Union Carbide chemical plant disaster in Bhopal, India

on December 4, 1984 and a similar serious chemical release at another Union Carbide plant

in West Virginia in 1985. As a response to these disasters, the US Congress passed the

Emergency Planning and Community Right-to-Know Act (EPCRA) in 1986.5 The goal

4https://corp.BoardEx.com/client-segments/academics-and-non-profit
5see, https://www.epa.gov/epcra
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of the EPCRA was to support and promote emergency planning and to provide the public

with information about pollution prevention activities and releases of toxic chemicals in

their community. Section 313 of the EPCRA established the TRI. One of the objectives of

TRI data is to support informed decision-making by communities, government agencies,

companies, and others.

To be included in the TRI Program, a facility needs to meet three criteria. First,

the facility should belong to an industry sector that is covered by the TRI Program.

Second, it should employ 10 or more full-time equivalent employees. Third, the plant

should manufacture, process, or otherwise use a TRI-listed chemical in the quantities

above the threshold levels each year. Note that the facility must prepare and submit a

TRI reporting form for each chemical for which the reporting requirement is triggered.

The TRI Program currently covers 770 individual chemicals that typically have significant

adverse human health and environmental effects.

In our analysis, we include all mandatory TRI reporting plants in the US. Note that

TRI reporters are not necessarily polluters, i.e. they are not necessarily reporting toxic

chemical releases. The TRI Program specifies that a facility has to report a release when

this facility exceeds the minimum chemical release reporting requirements. This require-

ment is expressed in toxicity levels. Hence, a facility reports all chemical releases by total

toxicity levels and not by the amount of chemical released. Further, TRI data provide in-

formation about a facility’s geo-coded address, parent firm (if applicable), and the industry

sector.

In Tables A.1 and A.2, we report the summary statics for TRI data. In Table A.1,

we observe 42, 212 unique facilities from 19, 915 firms in 30 industry sectors from 2000 to

2017. In our analysis, we use the sum of all pollutants’ toxicity per facility given by the

EPA. The average amount of toxicity released by a facility is 124, 680 pounds. Further,

approximately 80% of the facilities released pollutants at least once over our sample period.

The yearly breakdown of the unique number of facilities, firms, and average toxicity release

is shown in Table A.2. On average, there are about 35, 000 facilities per year (Table A.2).

3.1.1 Facility- and firm-level environmental performance

To conduct our analysis, we construct measures of environmental performance at facility-

and firm-level using TRI data. One advantage of using TRI data is that they constitute a

quantitative and comparable measure of environmental performance as opposed to score-

based measures like ESG (Environmental, Social, and Corporate Governance) standards.
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Additionally, these score-based measures are typically available for listed firms only, while

TRI reports are filled by all facilities meeting reporting requirements. This implies that

we can study and compare the environmental performance of listed and non-listed firms

and firms with or without a board. It is also important to mention that the information

about firms’ toxic releases and waste management practices are made publicly available

by the EPA and is subject to comprehensive coverage in the media and by the regulators.

Studies show that investors are paying attention to the information from the TRI. There

is evidence that companies incurred negative stock returns following the disclosure of the

TRI and following media coverage of their toxic releases (Hamilton, 1995; Khanna et al.,

1998).

We create measures of environmental performance at the facility- and firm-level. The

first facility-level measure is a dummy variable, pollute, which takes the value 1 in a given

year if the facility reports a release of toxic chemicals above the reporting threshold to the

TRI, and zero otherwise. Our measure of environmental performance at the firm-level,

polluting ratio, is defined as the proportion of facilities whose releases are above the TRI

reporting threshold relative to all its facilities in a given year. Secondly, we use the facility’s

total toxic releases in a given year. Further, summing up all facilities’ toxic releases by

industry, we construct an industry-level total release per year (for the industries identified

in the TRI data). This will allow us to control for industrial heterogeneity in our analysis.

In Table A.1, we can see that the average probability that a facility pollutes (i.e.

reports a toxic release) is about 53%. At the firm-level, the average proportion of facilities

reporting a release within a firm is about 43%. In Table A.3, we present summary statistics

by industry sector. The metal mining industry is the most polluting sector while the

publishing industry is the cleanest sector among the industry sectors based on average

toxicity releases per facility.

3.2 BoardEx

To create a director-firm-level network, we use information provided by BoardEx, a global

data management firm that specializes in relationship mapping and intelligence. BoardEx

data contain more than 2 million profiles of public, private, and not-for-profit organizations

and more than 1.5 million people around the globe. Director and firm profiles available in

BoardEx include high-level details about the company board structure along with current,

upcoming, and historic executives. Other details include important adviser information

and a list of other key senior management. These in-depth profiles show the relationships
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between and among individuals as well as firms. Each person in the database is individually

researched by BoardEx because they are connected at a senior level with a major company.

Further, BoardEx firm-level data contain the information on firms’ directors, directors’

start dates and end dates, firm types, and industry sectors. BoardEx updates the data

within 24 hours of the point of disclosure.6

In our study, we use the BoardEx dataset for North America. The North America

BoardEx data provide the US director network but also capture part of the international

director network as well. This is due to the fact that some multinational firms con-

duct business activities in North America. Note that we focus only on directors who are

decision-making board members because our objective is to evaluate how the board of

directors can influence a firm’s environmental strategy.

In Tables A.4 and A.5, we provide summary statistics for the firms reported in the

North American BoardEx data. Between 2000 and 2017, we observe 119, 607 unique

directors in 157, 997 firms. On average, a firm has about 2.5 directors. On average,

directors’ market exposure is about 10.6 years while their term in a firm is about 5.6

years. Their probability of being associated with a polluting firm (i.e., a firm that has at

least one facility reporting a toxic release to the TRI Program) is about 4.9%. With these

data, we create a firm-director network for the whole US that we will use in the empirical

analysis.

In Table A.5, we report the unique number of firms and directors by year. Despite the

increase in the number of firms, the average number of directors per firm decreases over

the years. This suggests that these directors are serving on more boards and that firms

are likely to become better connected.

3.3 The US Census Tracts

Next, we collect US census tract information published by the United States Census Bu-

reau to control for plant locations’ demographic characteristics. Census tracts are rela-

tively small and permanent statistical subdivisions of a county during census years. The

minimum population of a tract is 1, 200 and the maximum is 8, 000. Given that our data

span two census periods, we consider 2010 locations as fixed geographic locations. From

the census data, we gather information regarding tract-level population density, minority

ratio (i.e. proportion of non-wite population), proportion of individuals with higher edu-

cation (college degree), and median household income for all available years. Our dataset

6see, https://www.boardex.com/. Further, note that BoardEx is a subscription-based service.
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includes all tracts in the US (73, 082 tracts), including tracts with military installations

that do not report demographic information. We denote these tracts as special tracts.

Note that, prior to 2007, census data did not report estimates by year. As in De Silva

et al. (2016) and De Silva et al. (2021), we linearly impute and estimate the missing data

to estimate the population density, minority ratio, proportion of individuals with a college

degree, and median household income from 2000 to 2008.7

We report these summary statistics for all tracts in Table A.6. On average, a tract

has a population of 4,133 and a population density of 5,165 per square mile. Each tract

has about 1,040 households and the median household income is about $64,000. For a

given tract, on average, the minority ratio is about 24% while the college-educated ratio

is about 26%. Additionally, we identify tracts that are located along the Canadian and

Mexican borders and tracts that are located in a Metropolitan Statistical Area (MSA),

urban counties, rural counties, and coastal counties.

3.4 Matching TRI, BoardEx, and Census data

To conduct our analysis, we match the TRI and BoardEx datasets. This matching is not

a trivial task because the two datasets are created separately and firms can be recorded

under different names. We start by directly matching the TRI facilities (for which we

have the name of the parent company) with the BoardEx firms by firm name. This

method can only match parts of the two datasets. We, therefore, take advantage of the

additional information provided by BoardEX to increase the accuracy and the proportion

of matched facilities (previous company names, firms’ addresses, contact details, websites,

board structure).

This approach allows us to tackle three major challenges. First, firms can change

name. For example, 3M Co. was Minnesota Mining & Manufacturing co. prior to 2002.

BoardEx also has public listing information including IPO dates and/or delisting dates.

Advanced Disposal Services Inc. was listed in 2016 and its name was changed from Ads

Waste Holdings Inc prior to its public listing. Second, using the merging and acquisition

information provided by BoardEx, we were able to match TRI facilities to their correct

firm in BoardEx. This is particularly useful as some TRI facilities fail to update their

parent companies due to changes in ownership. For example, Forest River Inc. was

acquired by Berkshire Hathaway in 2005 and some of its facilities were still reporting their

7Before imputation, the average population size is 4, 275, the average white population is 3, 257, the
average population with a college degree is 664, and the average median household income is $67, 834.22.
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parent company as Forest River Inc. after 2005 instead of Berkshire Hathaway. Finally,

the information available in BoardEx enables us to match subsidiaries with their parent

firms. For example, Volkswagen AG and Volkswagen Group of America are recorded in

the TRI dataset as two different parent companies, but Volkswagen Group of America is

controlled by Volkswagen AG. Therefore, in our analysis, we consider the facilities from

Volkswagen Group of America as being part of Volkswagen AG.

It might be the case that, for a given year, a firm appears in one dataset but not in

the other.8 The next step consists in filling in the missing years based on a firm’s (or

director’s) first and last appearance in both datasets. This step is based on the rationale

that, if a firm exists in one dataset for a given year, this firm should also exist in the other

for that same year. Once the TRI facilities are matched with their parent firms’ board

information gathered from the BoardEx data, we use the facilities’ geo codes to find their

location in a tract and obtain their local demographic information. Using this method, we

are able to match 2, 895 TRI-reporting firms with at least one board director recorded in

BoardEx from 2000 to 2017. These firms are responsible for the daily operations of 19,099

different TRI-reporting facilities.

In Table 1 we provide summary statistics for observations used in the facility-level

environmental performance analysis. In this analysis, we use environmental performance

data between 2001 and 2017 and all explanatory variables are lagged, which implies that

we lose all facilities that are observed only once during the sample period. Hence, in our

analysis sample, we have 2,873 TRI-reporting firms with at least one board director. These

firms account for about 46% of all TRI-reporting facilities and each firm has about 6.5

facilities. We also observe 16,162 firms without a board member that have 22,063 facilities.

These non-board member firms have about 1.4 facilities per firm. This indicates that firms

with board members are large firms with five times more facilities per firm compared to

non-board member TRI-reporting firms. Note that these TRI-reporting firms are located

in 18,183 tracts out of the 73,082 tracts defined by 2010 US Census data.

8For example, private firms in the BoardEx data do not have to continuously report board information
as private firms do not require to disclose their board structures. Missing data are also common in BoardEx
data in early years where they report only the board members’ start and end years. Submitting a TRI
report is a federal requirement for firms meeting the reporting criteria. However, it might be the case
that for some period of time a firm does not meet all these requirements and does not need to report (for
example, if it has less than 10 full-time employees).
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3.5 Director network and environmental performance

Using the information from BoardEx (see Tables A 4 and A.5 for summary statistics), we

build a network in which directors and firms are nodes and the appointment of a board

member represents the formation of a link between this director and the firm. Figures

1 and 2 present a sub-network of the two most influential directors (determined by their

eigenvector centrality measures) among all directors who are connected to at least one firm

in the TRI dataset (green and brown nodes) in 2017. The blue nodes represent the other

directors in the network. Firms in the network are characterized by their environmental

performance based on the information from the TRI dataset. Brown nodes represent firms

that have at least one toxic release, while green nodes represent firms without any toxic

releases. Figure 1 only shows nodes which are no further than two edges from the most

influential directors (red nodes). When allowing more distanced nodes in the graph, the

size increases exponentially. Figure 2 includes all nodes that are within a distance of four

from any of the two most influential directors. The number of nodes increases by 1,316,

and the number of edges increases by 1,815 compared to Figure 1.

3.5.1 Director-level environmental performance

To capture a director’s environmental performance, we use two different measures that

depend on the past environmental performance of all the firms a director is connected

to, whether they are reporting toxic releases to the TRI or not. First, the director-level

polluting ratio is constructed as the ratio of the total number of polluting facilities relative

to the total number of plants of which they are a board member in the previous year. Next,

we use degree centrality (i.e., the number of direct links) to create a measure of directors’

environmental performance. Note that, as mentioned earlier, we use the full network

(based on BoardEx data) to compute the centrality measures and not only the network

of directors and firms matched with the TRI data. Instead of using the degree centrality

measure directly, we calculate the proportion of ‘pollution links’ relative to their total links,

denoted as relative pollution degree centrality. We define ‘pollution links’ as the number of

connections that a director has to firms that had at least one toxic releasing facility in the

previous year. This measure provides a director’s overall environmental performance and

captures a director’s involvement in the polluting firms relative to their involvement in all

companies. In Figure 1, the top two directors have degree centrality measures of seven

and three. Both directors have two ‘pollution links’ as they are connected to two firms
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with at least one toxic releasing facility in the previous year. However, the director with a

degree centrality of seven will be considered as having a better environmental performance

as relative pollution degree centrality is two out of seven, compared to two out of three

for the other director.

3.5.2 Network influence

To capture director- and firm-level network influence, we use eigenvector centrality. Eigen-

vector is a centrality measure that captures a node’s influence based on the pattern of the

entire network. A value of one for the eigenvector centrality measure represents the most

influential director (or firm) in the entire network at a given time. Those directors and

firms with scores of zero are isolated nodes–not connected to any other firm or director. A

director’s eigenvector centrality is based on the centrality of their first-degree connections.

In other words, a director will be influential (i.e., have a high score for the eigenvector

centrality) if they are connected to well-connected directors.

3.5.3 Director-firm level homophily measures

To test our prediction that firms will appoint directors sharing more similarities with

existing board members, we identify three homophily measures: 1) the difference in a

director’s relative pollution degree centrality with respect to board members’ average

relative pollution degree centrality, 2) the difference in a director’s pollution ratio with

respect to the firm’s pollution ratio, and 3) the difference in a director’s influence and the

firm’s influence.

3.5.4 Board Diversity

The last prediction in our conceptual framework, was that once appointed, board di-

versity in terms of environmental record might positively affect a firm’s environmental

performance. Based on the director-level relative pollution degree centrality, we create a

measure to capture a board’s diversity in terms of environmental performance. The board

range is defined as the difference between the maximum and the minimum of the directors’

relative pollution degree centrality.
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4 Empirical analysis

Our empirical analysis is divided into two parts. We first examine how firms appoint their

board directors. In particular, we investigate whether firms value directors’ past environ-

mental performance when determining their suitability for the board. Second, we show,

once appointed, how these board directors influence firms’ environmental performance.

4.1 Director appointments

In the first part of our analysis, we study directors’ network formation through the board

appointment process. The appointment of a board member represents the formation of a

link between a board member (d) and a firm (j). Hence, our dependent variable is equal to

1 if a firm, in time period (year) t, forms a link with a director and 0 otherwise. To study

whether directors’ environmental performance is a key determinant of a firm’s board ap-

pointment decisions, we model the probability, Pr(ld,j,t|Rd,t−1, Nd,j,t−1, g(Nt−1), Dd,t−1; θt),

of a link ld,j,t established by firm j to director d at time t as a function of an unknown vec-

tor of parameters denoted by θt. A director’s past environmental performance is denoted

by R. We use the observed data of the structure of the network N (e.g. director’s and

firm’s influence). We also control for the homophily measures between potential directors

and firms (g(Nd,j,t−1)). We consider director market exposure D, which is a proxy for

director experience and is computed as the number of years since a director’s first appear-

ance in the BoardEx data at a given time. We postulate a prior distribution for θ. Then,

we derive the posterior distribution for θt and calculate the probability of link formation

for different values of Rd,t−1, Nd,j,t−1, g(Nd,j,t−1), and Dd,t−1.

The probability of forming a link between firm j and director d at time t is modeled

as:

ln

(
Pr(ld,j,t|Rd,t−1, Nd,j,t−1, g(Nd,j,t−1), Dd,t−1; θt)

1− Pr(ld,j,t|Rd,t−1, Nd,j,t−1, g(Nd,j,t−1), Dd,t−1; θt)

)
= γ+ρRd,t−1 +N

′
t−1β+(g(Nd,t−1−Nj,t−1)

′Ψ(g(Nd,t−1−Nj,t−1)))+ δDd,t−1 + τt + εd,j,t

(1)

where the term (g(Nd,t−1−Nj,t−1)
′Ψ(g(Nd,t−1−Nj,t−1))) is the disutility (cost) of having

a difference in homophily between potential director candidates which relates to firm j

in period t − 1 (see Christakis et al. (2020) for a similar measure of homophily). Ψ is

a diagonal matrix. The function g is a measure of homophily that is expressed as the
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absolute value of the difference in environmental performance between director candidates

and/or firms. We assume that the εd,j,t are independent across all j and d at a given time,

t, and that they follow a logistic distribution.

If the links are independent of each other, then this would be a standard logistic

regression. However, the purpose of exploring a network structure is to account for in-

terdependencies among directors and firms. Therefore, in the link formation analysis,

following Jackson (2010) and Christakis et al. (2020), we exploit the latest developments

in Markov-Chain-Monte-Carlo (MCMC) methods to generate different network-related

posterior distributions for any given specification of parameter based on prior information

on link-formation choices. Specifically, we use a Bayesian MCMC technique based on a

hybrid Metropolis-Hastings algorithm with Gibbs sampling updates to estimate our pos-

terior mean and posterior standard deviations. In this way, one can search over the set of

parameter estimates to find one that leads to the highest likelihood of getting a network

distribution that looks similar to the observed network-related distribution.9

Further, the Bayesian approach offers several advantages. First, it continuously up-

dates posterior estimates given prior information on link formation and network character-

istics. Second, the MCMC gives us the finite-sample properties of the resulting estimates

rather than asymptotic approximations. Additionally, incorporating a non-parametric as-

sumption on the posterior distribution makes the specification of the model more flexible

and, hence, the results are more robust (Li and Zheng, 2009).

Based on the predictions of our conceptual framework, we expect that directors with

cleaner environmental records and influential directors are highly sought out by firms.

Also, directors with similar environmental performances are more likely to connect with

each other. Further, more experienced directors are expected to be more likely to form a

link.

4.1.1 Pool of candidates for the director network formation

In any given period, the firm makes a decision to appoint new directors or renew directors

from its preferred pool of ‘applicants’ (directors). Applicants are eligible to apply for and

hold multiple positions simultaneously. A firm can appoint more than one director to its

board and hiring decisions are independent of each other. Firms make final decisions on

their candidates and hire them simultaneously for a given year.

Potential candidates have to be in the reach of this firm, which is determined by their

9Gelman (2004) provides a detailed description of the Bayesian method used in this paper.
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positioning in the network. Moreover, as in any job opening, firms will make an initial

selection of potential candidates based on homophily measures. To identify these potential

pools of candidates, we take the following steps. First, for each firm, we construct the

maximum difference in the relative pollution degree centrality (with respect to other board

members’ average relative pollution degree centrality) a director has had from 2000 to 2017

with its board. Similarly, we measure the maximum difference between all the appointed

directors’ polluting ratio and the firm’s polluting ratio during the sample period. Then, we

consider all candidates that fall within either of these two maximum values as a potential

candidate for a given board. Based on these cut-offs, we identify a possible 8,487,170

director-firm pairs for all TRI-reporting firms with directors for all years. On average,

this corresponds to about 300 potential candidates per firm in a given year. We use this

sample in our network formation analysis.

One potential concern with our measures of environmental performance and homophily

is that they could capture industry expertise. For example, directors currently serving on

the board of chemical companies will have a greater exposure to polluting facilities and

poorer environmental performance than directors in less polluting sectors. Other firms in

the chemical industry might want to hire those directors for their expertise, rather than

their similarities in terms of environmental performance. To address this issue, for all the

directors matched with at least one TRI firm, we compute the number of TRI-reporting

firms and the number of non-TRI-reporting firms a director serves as a board member. On

average a director is connected to 3 TRI-reporting firms and 3 non-TRI-reporting firms.

Moreover, looking more closely at the TRI sectors (3-digit NAICS code) only, a director

is on average connected to TRI-reporting firms from 4 different sectors. Note that a firm

can be in more than one sector.

4.1.2 Network formation analysis

For empirical link-formation analysis, as mentioned, we used a Bayesian hybrid Metropolis-

Hastings algorithm with Gibbs sampling updates to obtain posterior values for each net-

work parameter based on prior information on link-formation choices. This is similar to

Christakis et al. (2020) and De Silva et al. (2020). Further, we take advantage of the full

dataset instead of taking random draws from the samples.10

Our analysis of link formation focuses on one side of the market (the director market).

10Note that this is computationally demanding. We use Lancaster University’s High Performance Com-
puter to estimate these Bayesian models.
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Firms decide to appoint directors to their boardrooms. As a result, directors are considered

passive actors in our setting, exerting no decision power with respect to the link formation.

We use uniform priors for the regression coefficients and an inverse-gamma prior with

shape and scale parameters of 0.1 and 0.1 for the error variance. In all our Bayesian

estimates, we use 10,000 iterations and omit the first 2,500 to mitigate possible start-up

effects. However, one must verify the convergence of MCMC before making any inferential

conclusions about the obtained results. In our exercise, we observe that the posterior

distribution looks normal. Further, the kernel density estimates based on the first and

second halves of the sample are very similar to each other and are close to the overall

density estimate.

Table 2 shows the summary statistics of the variables used in the Bayesian estimation.

Column 1 presents summary statistics for all 2,873 firms with directors, while Column

2 provides information for 661 listed firms with directors. Listed companies with shares

traded on an official stock exchange might be more responsive to the increasing pressure

to become environmentally responsible. The data are for all potential directors matched

with a given firm in a given year. On average, the unconditional probability of a director

and a firm forming a direct link is 1.9%. On average, a director’s past pollution ratio

is 0.446. Considering homophily measures, the absolute difference in a director’s relative

pollution degree centrality with respect to other board members’ average relative pollution

degree centrality is 0.324. Similar inferences could be made for other homophily measures

as well. Further, a director’s average exposure in BoardEx is about 5.5 years.

Table 3 presents the means and credible intervals of the posterior distributions of

our model parameters for all the firms in our sample (Column 1) and for listed firms

only (Column 2).11 In Columns 1 and 2, the mean of the posterior distribution is about

0.1 and the 95% credible interval for the director’s influence lies strictly in a positive

range of values. This result indicates that firms tend to connect with influential directors.

However, on average, if an influential director has a poor environmental performance, firms

would tend to refrain from connecting with him or her. This observation is consistent

with our testable hypotheses 1 and 3 and can be derived from the fact that, in both

specifications, the mean of the posterior distribution of a director’s past pollution ratio

interacted with the director’s influence is strictly negative. Finally, influential firms tend

11Note that we do not include a listed dummy (and its interactions with all other variables) in our
director-firm level estimations because this dummy variable would be highly correlated with a firm’s eigen-
vector centrality. Listed firms are usually large and, as a result, have larger boards (with more connections)
and higher eigenvector centrality.
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to connect with more directors as they tend to have more board members. The mean

of the posterior distribution for a director’s past pollution ratio is negative, but it lies

strictly in the negative range only for the listed companies. This is in line with previous

research analyzing investor reactions to public disclosure of TRI. Khanna et al. (1998)

show that listed firms in the chemical industry incurred statistically significant negative

stock market returns following the publication of TRI data, and that these losses had a

significant impact on their subsequent toxic releases. It illustrates that listed companies

might be more responsive to the increasing pressure to become environmentally responsible

by hiring directors with a good environmental record.

Considering homophily measures, our results are in line with our second testable hy-

pothesis and indicate that an increase in the differences in a director’s relative pollution

degree centrality with respect to that of other existing board members decreases the prob-

ability of their being appointed as a board member. This probability is also lower when

the differences in a director’s pollution ratio and influence with respect to the firm in-

crease. As expected, exposure in the market increases the probability of being appointed

as a director.12

4.2 Network influence on environmental performances

Having discussed the determinants of network formation, we empirically investigate how

the features of a network and a firm’s boardroom characteristics affect pollution probabil-

ities and toxic releases. The posterior estimates for all firms in our sample from Table 3

(Column 1) will be used to calculate director-firm-level network formation probabilities.

This will allow us to address endogeneity concerns related to the use of the actual number

of direct director-firm links in the firm-level environmental performance analysis.

4.2.1 Facility-level probability of pollution

Our dependent variable, pollutef,i,j,l,t, takes the value 1 if facility f , belonging to firm

j in sector i and located in tract l, releases any pollutants at time t; otherwise, it is 0.

Our main variable of interest is the board’s past environmental performance (denoted by

B) which is measured using the board’s past average pollution ratio and the range of

the board’s relative pollution degree centrality. Recall that pollution ratio captures the

board’s past environmental performance while the range of the board’s relative pollution

12Considering the goodness of fit of the Bayesian estimates, the trace plot of the constant demonstrates
good mixing. The posterior distribution of the constant is normal, as is expected for the specified likelihood
and prior distributions. These figures are available upon request.
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degree centrality captures the diversity of the board. We also control for firm size proxied

by the number of plants it owns in a given year, and a firm’s influence in the market

using the firm’s eigenvector centrality. Following Khanna et al. (1998), we include a listed

firm dummy to capture the fact that publicly traded companies might behave differently

regarding environmental pressure.13 In the same spirit, we consider a BoardEx dummy,

which is equal to 1 if the facility belongs to a firm present in the BoardEx data (i.e., a

firm with a board of directors). Note that a firm in BoardEx can be listed or not. C

contains all firm-level variables, F controls for facility-level information. We include total

industrial toxicity (M) to capture industrial heterogeneity.

A facility’s probability to pollute depends on the demographic and geographic char-

acteristics of the area in which it is located. We, therefore, include a set of tract-level

variables (L). The demographic characteristics include median household income, minor-

ity ratio, college-education ratio, population density, and an indicator for facilities siting

in a special tract. Regarding the geographical characteristics, we control for tracts that

are part of an MSA, urban county, rural county, and coastal county, in addition to counties

located along the border with Canada and Mexico.

We estimate a facility’s probability of polluting using a simple probit model, which

takes the following form:

pollutef,j,i,l,t = B
′
j,t−1ω + C ′j,t−1ζ + F

′
f,t−1γ + χMi,t + L

′
l,tν + αf + τt + µf,j,i,l,t (2)

where facility f belongs to firm j from industry i, in location l at time t.

It is possible that the board’s past environmental characteristics are endogenous.

Hence, we first calculate the probability of each member being on the board in the current

year using estimates from Table 3 (Column 1) in the network formation analysis. Next,

we weigh each director’s pollution ratio by their calculated probability of being a member

of the board in a given firm at a given time. The expected board’s average pollution ratio

is obtained by computing the average of these ratios. We follow similar steps and create

a firm-level expected range of the board’s relative pollution degree centrality.

Table 4 presents the marginal effects associated with the probit estimation of equation

(2). Our results for all facilities in Columns 1 and 2 indicate that, if a board has a

poor past pollution record, then it leads to a significantly higher probability of future

13In our facility- and board-level regressions, it is possible to use a listed dummy because observations
are not at the director level, but collapsed at the firm or board level.
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polluting incidents (testable hypothesis 4 ). By contrast, having a diverse board leads to

a lower probability of pollution incidents (testable hypothesis 5 ). Even though firms will

try to hire directors who share characteristics with their existing board members, this

last result shows that, once appointed, board diversity in terms of environmental records

has a positive impact on a firm’s environmental performance. If the facility belongs to an

industry reporting large amounts of toxic releases, then the facility has a higher probability

of release in any given year. Listed firms or firms in BoardEx have a lower probability of

polluting compared to non-listed/non-BoardEx firms. This is in line with our conjecture

that, because listed firms are accountable to their shareholders, they will be more conscious

about their environmental impacts. In Column 2, we re-estimate these results when we

endogenize the board’s past environmental characteristics. Our qualitative results hold.

In Columns 3 and 4, we report the results for BoardEx facilities only. Our main findings

are very similar. In Table 5, we estimate these models with facility-level random effects.

While the magnitude of the estimated marginal effects has decreased, the qualitative

findings have not changed.

4.2.2 Facility-level toxic releases

We now turn to the analysis of facility-level toxic releases. Here, our dependent variable

is the log of toxicity released and we estimate a linear regression model to evaluate the

effect of a board’s environmental performance on facilities’ toxic releases.

lnReleasef,j,i,l,t = B
′
j,t−1λ+ C ′j,t−1φ+ F

′
f,t−1ϑ+ ξMi,t + L

′
l,tϕ+ αf + τt + ηf,j,i,l,t (3)

Tables 6 and 7 report the estimated results for all facilities and facilities that belong to a

firm in BoardEx, respectively. In Columns 1 and 3, we include firm-level fixed effects while,

in Columns 2 and 4, we control for facility-level unobservable heterogeneity by including

facility-level fixed effects. Further, Columns 3 and 4 are estimated with expected values

of the board’s past environmental performance. Note that, while we cannot include the

BoardEx dummy because it does not vary through time, we can use the listed dummy.

This variable is not necessarily constant for an individual firm. Indeed, our sample covers

17 years and firms can be listed or delisted over time.

Given that a board’s average pollution probability and the range of the board’s relative

pollution degree centrality takes the values between 0 and 1, it is intuitive to interpret
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these variables considering their marginal effects at the means. Hence, in Table 8, we

report the marginal effects at the means for all facilities (Panel A) and BoardEx facilities

(Panel B). We observe that a board with a poor average pollution ratio (or its expected

value) increases the amount of releases significantly (testable hypothesis 4 ). As it was the

case for the probability of polluting, a diverse board reduces the amount of a toxic release.

Similarly, listed firms tend to release less toxic chemicals than non-listed firms (testable

hypothesis 5 ).

In our dataset, many firms are not reporting any toxic release in a given year. As a

robustness check, we have left-censored the data for toxic releases per firm per year and

estimated our empirical models using censored regression techniques. We present these

results in Table A.7. As a reference point, in Columns 1 and 4, we report linear regression

results with industry controls. In Columns 2 and 5, we report results from censored

regression results similar to the ones estimated via linear regression. In Columns 3 and

6, we present censored regression results with facility-level random effects controlling for

facility-level unobservable heterogeneity. We report the results for all facilities in Panel A

and for BoardEx firms in Panel B. Our qualitative results hold.

5 Conclusion

This paper is the first study to analyze director network formation in firms reporting toxic

releases to the TRI Program. Studying director appointments allows us to endogenize the

effect of directors’ environmental performance when analyzing their impact on facility-level

pollution probability and toxic releases. We build a comprehensive dataset on director-firm

network and toxic releases in North America between 2000 and 2017.

Our analysis provides some important insights on the role of corporate governance

structure in internalizing increasing environmental pressures and affecting firms’ environ-

mental behavior. We show that firms are more likely to appoint candidates who are

similar to their existing board directors. These similarities include environmental perfor-

mance and influence. Firms are also more willing to appoint more experienced directors.

Interestingly, when a director becomes influential, poor environmental performance will

reduce their probability of being appointed. This implies that a director’s previous envi-

ronmental performance is a key factor that firms take into account when they appoint a

new director.

Additionally, our study shows that directors’ previous environmental performance af-
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fects their current facilities’ environmental performances. Appointing directors with good

environmental performance will help improve a firm’s environmental performance in terms

of lowering polluting probability and the amount of toxic chemicals released. This last

result suggests that the market could exert pressure on the influential directors to be

“greener,” which will have a spillover effect as influential directors spread their environ-

mental performance via their networks. The range of the board’s relative environmental

performance implies that a more diverse board can also help improve a firm’s environmen-

tal performance.

23



References

Berrone, P. and Gomez-Mejia, L. R. (2009). Environmental performance and executive

compensation: An integrated agency-institutional perspective. Academy of Management

Journal, 52(1):103–126.

Cai, Y. and Sevilir, M. (2012). Board connections and M&A transactions. Journal of

Financial Economics, 103(2):327–349.

Casadesus-Masanell, R., Crooke, M., Reinhardt, F., and Vasishth, V. (2009). Households’

willingness to pay for “green” goods: evidence from Patagonia’s introduction of organic

cotton sportswear. Journal of Economics & Management Strategy, 18(1):203–233.

Chen, R., Dyball, M. C., and Wright, S. (2009). The link between board composition

and corporate diversification in Australian corporations. Corporate Governance: An

International Review, 17(2):208–223.

Christakis, N., Fowler, J., Imbens, G. W., and Kalyanaraman, K. (2020). An empirical

model for strategic network formation. In Graham, B. and Áureo de Paula, editors, The
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Figure 1: Directors’ sub-network with a distance of 2

This graph shows a sub-network focusing on two directors among all directors who are connected to at

least one TRI firm for the year 2017. Red nodes represent the two directors. The brown nodes represent

polluting firms, and the green nodes represent clean firms. Blue nodes represent the other directors. A

distance of two means that we are representing all the nodes that are at a distance of at most two (two

edges) of the two directors (red nodes). Clean firms are defined as firms with no facilities releasing toxic

chemicals above the TRI threshold for a given year. This sub-network includes nine firms–three polluting

firms and six clean firms–with 69 directors. In our setting, directors’ environmental performance will be

a function of the past environmental performance of the firms they are connected. In this example, both

directors have two ‘pollution links’ as they are connected to two polluting firms. However, one director

serves on the board of three firms, while the other is connected to seven firms. The director serving on the

board of seven firms will be considered as having a better environmental performance.
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Figure 2: Directors’ sub-network with a distance of 4

Figure 2 presents the sub-network of the two most influential directors (same directors as in Figure 1)

among all TRI-related directors (represented by the red nodes) for the year 2017. Nodes’ color notations

are the same as in Figure 1. Compared to Figure 1, we expand the sub-network to include all the nodes at a

distance of at most four from the two most influential directors. With this increase in distance, the number

of nodes increases by 1,316, and the number of edges increases by 1,815. The comparison of Figures 1 and

2 provides some insight into the complexity and size of the network.
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Table 1: Matched summary statistics for regression sample: 2001-2017

Column 1 reports summary statistics for all the facilities used in the analysis. Column 2 and Column 3

show the information on facilities belonging to a firm with and without directors, respectively. All tracts are

based on 2010 US Census data. A ‘special tract’ is defined as a tract that does not have any demographic

information disclosed by the US Census. All the director’s network measures in Column 3 are equal to zero

because we don’t have board information recorded in BoardEx for those facilities. The Board’s average

pollution ratio is the average of the director’s pollution ratio. The expected board’s average pollution ratio

is obtained by weighing each director’s pollution ratio by their calculated probability of being a director

in a given firm at a given time and computing the average of these ratios. Using the same approach,

we create a firm-level expected range of the board’s relative pollution degree centrality that captures the

board diversity in terms of environmental performance.

Variable Mean or count

Facilities

All With directors Without directors

Total number of observations (facility level) 582,722 288,277 294,445

Number of unique firms 19,035 2,873 16,162

Number of unique facilities 40,990 18,927 22,063

Unique number of directors 17,224 17,224 0

Number of unique tracts (locations) 18,183 8,420 9,763

Probability of polluting 0.532 0.530 0.534

(0.499) (0.499) (0.499)

Total toxicity released by facility (in thousands of pounds) 121,538.2 151,601.5 92,104.72

(4,214,303) (2,212,775) (5,509,371)

Board’s average pollution ratio 0.178 0.359 0

(0.273) (0.293)

The range of the board’s relative pollution degree centrality 0.215 0.435 0

(0.355) (0.399)

E[Board’s average pollution ratio] 0.091 0.182 0

(0.139) (0.149)

E[The range of the board’s relative pollution degree centrality] 0.110 0.221 0

(0.181) (0.203)

Firm’s influence (10−4) 0.057 0.114 0

(4.793) (6.813)

Number of plants per firm 27.692 51.082 4.791

(58.822) 76.018 11.390

Median household income 56,484.18 56,559.55 56,410.39

(23,104.16) (23,293.22) (22,917.36)

Minority ratio 0.231 0.232 0.229

(0.238) (0.237) (0.239)

College ratio 0.194 0.195 0.192

(0.172) (0.175) (0.168)

Population density 1,422.282 1,225.626 1,614.818

(2,538.237) (2,156.295) (2,850.125)

Facility belong to a firm with directors (BoardEx firm) 0.495 1 0

(0.500)

Facility belong to a listed firm 0.183 0.370 0

(0.387) (0.483)

Probability of locating in a special tract 0.014 0.016 0.012

(0.117) (0.127) (0.107)

The probability of a plant located in an MSA County 0.760 0.751 0.769

(0.427) (0.432) (0.421)

The probability of a plant located in an urban County 0.222 0.231 0.214

(0.416) (0.421) (0.410)

The probability of a plant located in a costal County 0.173 0.175 0.171

(0.378) (0.380) (0.376)

The probability of being located in a Mexico border County 0.010 0.010 0.009

(0.096) (0.099) (0.093)

The probability of being located in a Canada border County 0.042 0.038 0.046

(0.200) (0.191) (0.209)

Standard deviations are in parentheses.
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Table 2: Summary statistics of variables used in the network formation analysis

This table reports summary statistics for the variables used in the network formation analysis. We create

a pool of candidates based on homophily measures and identify a possible 8,487,170 director-firm pairs for

all TRI-reporting firms with directors for all years. On average, this corresponds to about 300 potential

candidates per firm in a given. Column 1 presents summary statistics for all firms, while Column 2 provides

summary statistics for listed firms.

Variable Mean

All firms Listed firms

(1) (2)

Probability of creating a link 0.019 0.026

(0.137) (0.160)

Director’s past pollution ratio 0.446 (0.488)

(0.386) (0.368)

Director’s influence 0.0002 0.0002

(0.014) (0.014)

Director’s past pollution ratio × director’s influence 0.0001 0.0001

(0.009) (0.010)

Firm’s influence 0.0001 0.00003

(0.0021) (0.0014)

Difference in director’s relative pollution degree centrality respect to 0.324 0.338

other board members average relative pollution degree centralitya (0.299) (0.249)

Difference in director’s pollution ratio respect to firm’s 0.322 0.323

pollution ratioa (0.312) (0.280)

Difference in director’s influence and firms’s influencea 0.0003 0.0003

(0.014) (1.015)

Market exposure in years (number of years in BoardEx) 5.545 5.935

(4.506) (4.578)
a The homophily measures are given in absolute values. Standard deviations are in parentheses.
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Table 3: Bayesian estimates of network formation parameters

The table displays the means of the posterior distributions for each network parameter affecting the

probability of forming a link between directors and firms at time t. The dependent variable is equal to 1 if

a director, in year t, becomes a member of the board. The independent variables used are lagged by one

year. The model was estimated using Bayesian MCMC technique based on a hybrid Metropolis-Hastings

algorithm with Gibbs sampling based on Equation (1). We use uniform priors for the regression coefficients

and an inverse gamma prior with shape and scale parameters of 0.1 and 0.1 for the error variance. In all our

Bayesian estimates, we use 10,000 iterations and omit the first 2,500 to mitigate possible start-up effects.

Column 1 reports the regression results for all firms in our sample, and Column 2 reports the regression

results for listed firms only. Influence is measured by eigenvector centrality measure. A candidate’s relative

pollution degree centrality is calculated as the proportion of pollution links relative to their total number

of links.

Parameter Variable Mean of the posterior distribution

All firms Listed firms

(1) (2)

ρ1 Director’s past pollution ratiot−1 -0.0002 -0.0139

[-0.0004, 0.0001] [-0.0144, -0.0134]

β1 Director’s influencet−1 0.0999 0.0997

[0.0994, 0.1003] [0.0917, 0.1078]

β2 Director’s past pollution ratiot−1× director’s influencet−1 -0.0529 -0.0627

[-0.0549, -0.0500] [-0.0692, -0.0555]

β3 Firm’s influencet−1 0.1200 0.4062

[0.1081, 0.1284] [0.3849, 0.4275]

ψ1 Difference in director’s relative pollution degree centrality respect to -0.0295 -0.0454

other board members average relative pollution degree centralityat−1 [-0.0298, -0.0291] [-0.0461, -0.0447]

ψ2 Difference in director’s pollution ratio respect to firm’s -0.0475 -0.0763

pollution ratio a
t−1 [-0.0478, -0.0475] [-0.0769, -0.0757]

ψ3 Difference in director’s influence and firm’s influencet−1 -0.0703 -0.0707

[-0.0717, -0.0687] [-0.0771, -0.0646]

δ1 Log(Market exposure in years) 0.0025 0.0033

[0.0024, 0.0026] [0.0030, 0.0035]

γ1 Trend Yes Yes

Number of observations 8,487,170 3,173,029

Log marginal likelihood 4,921,367 1,352,932

a The homophily measures are given in absolute values. 95% Credible intervals are in parentheses.
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Table 4: Pollution probabilities

This table presents the marginal effects associated with the probit estimation of Equation (2). All regres-

sions include log number of plants per firm, log of median household income, minority ratio, college ratio,

log of population density, and indicator for facilities siting in a special tract. Columns 1 and 2 report

results for all facilities, and Columns 3 and 4 report the results for BoardEx facilities only. In Columns 2

and 4, we re-estimate these results when we endogenize the board’s past environmental performance. We

weigh each director’s pollution ratio by their calculated probability of being a board member in a given

firm at a given time from Column 1 of Table 3. The expected board’s average pollution ratio is obtained

by computing the average of these ratios. Using a similar technique, we create a firm-level expected range

of the board’s relative pollution degree centrality.

Variable Probability of pollutingjt

All facilities BoardEx facilities

(1) (2) (3) (4)

Board’s average pollution ratioj,t−1 0.480*** 0.483***

(0.004) (0.004)

The range of the board’s relative pollution -0.206*** -0.178***

degree centralityj,t−1 (0.003) (0.003)

E[Board’s average pollution ratio]j,t 0.943*** 0.950***

(0.008) (0.008)

E[The range of the board’s relative pollution -0.406*** -0.350***

degree centrality]j,t−1 (0.006) (0.007)

Firm’s influencej,t−1 0.129 0.123 -1.036 -1.042

(1.501) (1.501) (1.477) (1.476)

Log of total industrial toxicityi,t 0.099*** 0.099*** 0.103*** 0.103***

(0.004) (0.004) (0.005) (0.005)

Facility belongs to a BoardEx firmi,t -0.112*** -0.112***

(0.002) (0.002)

Facility belongs to a listed firmi,t -0.036*** -0.036*** -0.032*** -0.032***

(0.002) (0.002) (0.002) (0.002)

Located in a special tract Yes Yes Yes Yes

MSA, Urban, and Costal County effects Yes Yes Yes Yes

Located in a county that border Mexico or Canada Yes Yes Yes Yes

Industry effects Yes Yes Yes Yes

Time effects Yes Yes Yes Yes

Observations 582,722 582,722 288,277 288,277

Wald χ2 35,848 35,868 27,770 27,796

Log likelihood -382,584 -382,571 -183,699 -183,684

Robust standard errors are in parentheses. Marginal effects are reported. *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Pollution probabilities – with facility level random effects

This table presents the marginal effects associated with the probit estimation of Equation (2). All regres-

sions include log number of plants per firm, log of median household income, minority ratio, college ratio,

log of population density, and indicator for facilities siting in a special tract. Columns 1 and 2 report

results for all facilities, and Columns 3 and 4 report the results for BoardEx facilities only. In Columns 2

and 4, we re-estimate these results when we endogenize the board’s past environmental performance. We

weigh each director’s pollution ratio by their calculated probability of being a board member in a given

firm at a given time from Column 1 of Table 3. The expected board’s average pollution ratio is obtained

by computing the average of these ratios. Using a similar technique, we create a firm-level expected range

of the board’s relative pollution degree centrality.

Variable Probability of pollutingjt

All facilities BoardEx facilities

(1) (2) (3) (4)

Board’s average pollution ratioj,t−1 0.287*** 0.286***

(0.004) (0.004)

The range of the board’s relative pollution -0.054*** -0.041***

degree centralityj,t−1 (0.003) (0.003)

E[Board’s average pollution ratio]j,t 0.565*** 0.562***

(0.008) (0.008)

E[The range of the board’s relative pollution -0.106*** -0.080***

degree centrality]j,t−1 (0.007) (0.007)

Firm’s influencej,t−1 0.911 0.903 0.812 0.804

(1.604) (1.604) (1.547) (1.547)

Log of total industrial toxicityi,t 0.102*** 0.102*** 0.095*** 0.095***

(0.002) (0.002) (0.003) (0.003)

Facility belongs to a BoardEx firmi,t -0.098*** -0.098***

(0.005) (0.005)

Facility belongs to a listed firmi,t -0.035*** -0.035*** -0.033*** -0.033***

(0.004) (0.004) (0.004) (0.004)

Facility level random effects Yes Yes Yes Yes

MSA, Urban, and Costal County effects Yes Yes Yes Yes

Located in a county that border Mexico or Canada Yes Yes Yes Yes

Industry effects Yes Yes Yes Yes

Time effects Yes Yes Yes Yes

Observations 582,722 582,722 288,277 288,277

Wald χ2 11,936 11,948 8,753 8,768

Log likelihood -246,373 -246,365 -114,886 -114,877

Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Regression results for total release - all facilities

This table reports the OLS regression results for all facilities. The dependent variable is the log of total

toxic material released by a facility in a given year. All regressions include log number of plants per firm,

log of median household income, minority ratio, college ratio, log of population density, and indicator

for facilities siting in a special tract. In Columns 1 and 3, we include firm-level fixed effects; while, in

Columns 2 and 4, we control for facility-level unobservable heterogeneities by including facility-level fixed

effects. Further, Columns 3 and 4 are estimated with expected values of the board’s past environmental

performance.

Variable Log of toxicity releasedjt

(1) (2) (3) (4)

Board’s average pollution ratioj,t−1 1.326*** 1.575***

(0.139) (0.124)

The range of the board’s relative pollution -0.197** -0.166**

degree centralityj,t−1 (0.086) (0.082)

E[Board’s average pollution ratio]j,t−1 2.609*** 3.098***

(0.274) (0.244)

E[The range of the board’s relative pollution -0.382** -0.321**

degree centrality]j,t−1 (0.170) (0.163)

Firm’s influencej,t−1 25.410 24.806 25.366 24.753

(33.238) (33.650) (33.240) (33.653)

Log of total industrial toxicityi,t 0.351*** 0.269*** 0.351*** 0.269***

(0.028) (0.019) (0.028) (0.019)

Facility belongs to a listed firmi,t -0.240* -0.234* -0.240* -0.234*

(0.128) (0.128) (0.128) (0.128)

Firm effects Yes Yes

Facility effects Yes Yes

Located in a special tract Yes Yes Yes Yes

MSA, Urban, and Costal County effects Yes Yes Yes Yes

Located in a county that border Mexico or Canada Yes Yes Yes Yes

Time effects Yes Yes Yes Yes

Observations 582,722 582,722 582,722 582,722

R2 0.462 0.725 0.462 0.725

Robust standard errors clustered by firms are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Regression results for total release - BoardEx facilities

This table reports the OLS regression results for facilities that belong to a firm in BoardEx. The dependent

variable is the log of total toxins released by a facility in a given year. All regressions include log number

of plants per firm, log of median household income, minority ratio, college ratio, log of population density,

and indicator for facilities siting in a special tract. In Columns 1 and 3, we include firm-level fixed effects;

while, in Columns 2 and 4, we control for facility-level unobservable heterogeneities by including facility-

level fixed effects. Further, Columns 3 and 4 are estimated with expected values of the board’s past

environmental performance.

Variable Log of toxicity releasedjt

(1) (2) (3) (4)

Board’s average pollution ratioj,t−1 1.504*** 1.742***

(0.136) (0.125)

The range of the board’s relative pollution -0.107 -0.088

degree centralityj,t−1 (0.082) (0.079)

E[Board’s average pollution ratio]j,t−1 2.959*** 3.425***

(0.268) (0.246)

E[The range of the board’s relative pollution -0.204 -0.167

degree centrality]j,t−1 (0.163) (0.156)

Firm’s influencej,t−1 25.211 24.859 25.160 24.801

(33.289) (34.123) (33.293) (34.128)

Log of total industrial toxicityi,t 0.384*** 0.270*** 0.384*** 0.270***

(0.036) (0.032) (0.036) (0.032)

Facility belongs to a listed firmi,t -0.272** -0.278** -0.272** -0.278**

(0.133) (0.134) (0.133) (0.135)

Firm effects Yes Yes

Facility effects Yes Yes

Located in a special tract Yes Yes Yes Yes

MSA, Urban, and Costal County effects Yes Yes Yes Yes

Located in a county that border Mexico or Canada Yes Yes Yes Yes

Time effects Yes Yes Yes Yes

Observations 288,277 288,277 288,277 288,277

R2 0.361 0.762 0.361 0.762

Robust standard errors clustered by firms are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 8: Regression results for total release - marginal effects at the mean

This table reports the marginal effects at the means for all facilities in Panel A and BoardEx facilities

in Panel B. For all facilities, the mean of the board’s average pollution ratio is 0.178, the mean of the

range of the board’s relative pollution degree centrality is 0.215, the mean of the expected board’s average

pollution ratio is 0.091, the mean of the expected range of the board’s relative pollution degree centrality

is 0.110, and the mean of firm’s influence is 6.667× (10−6). For BoardEx facilities, the mean of the board’s

average pollution ratio is 0.360, the mean of the range of the board’s relative pollution degree centrality is

0.435, the mean of the expected board’s average pollution ratio is 0.183, the mean of the expected range of

the board’s relative pollution degree centrality is 0.221, and the mean of firm’s influence is 1.14 × (10−5).

To calculate the marginal effect of a variable, we multiply the coefficient from the OLS regressions on a

facility’s total release (shown in Tables 6 and 7) of each variable by its corresponding mean.

Variable Log of toxicity releasedjt

(1) (2) (3) (4)

Panel A: All facilities

Board’s average pollution ratioj,t−1 0.236*** 0.280***

(0.025) (0.022)

The range of the board’s relative pollution -0.042** -0.036**

degree centralityj,t−1 (0.018) (0.018)

E[Board’s average pollution ratio]j,t−1 0.236*** 0.280***

(0.025) (0.022)

E[The range of the board’s relative pollution -0.042** -0.035*

degree centrality]j,t−1 (0.019) (0.018)

Firm’s influencej,t−1 0.0001 0.0001 0.0001 0.0001

(0.0002) (0.0002) (0.0002) (0.0002)

Panel B: BoardEx facilities

Board’s average pollution ratioj,t−1 0.540*** 0.626***

(0.049) (0.045)

The range of the board’s relative pollution -0.047 -0.039

degree centralityj,t−1 (0.036) (0.034)

E[Board’s average pollution ratio]j,t−1 0.541*** 0.626***

(0.049) (0.045)

E[The range of the board’s relative pollution -0.045 -0.036

degree centrality]j,t−1 (0.036) (0.035)

Firm’s influencej,t−1 0.0003 0.0003 0.0003 0.0003

(0.0004) (0.0004) (0.0004) (0.0004)

Robust standard errors clustered by firms are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.1: TRI facility level summary statistics

This table reports summary statistics at the facility level for the TRI

dataset. The data are obtained from the US EPA’s TRI program between

2000 and 2017. This paper includes all mandatory TRI reporting facilities

in the US. Not all facilities in the TRI dataset are necessarily releasing

toxic chemicals.

Variable Mean or count

Number of unique firms 19,915
Number of unique facilities 42,212
Average number of plants per firm 2.242

(7.575)
Average toxicity per facility (in thousands of pounds) 124.680

(4,200.330)
Average polluting ratio by firm 0.434

(0.301)
Average polluting ratio by facility 0.532

(0.499)

Standard deviations are in parentheses.

39



Table A.2: TRI data summary statistics

This table summarizes the TRI data for each year from 2000 to

2017. The data are obtained from the US EPA’s TRI program.

This study includes all mandatory TRI reporting facilities in the

US. Not all facilities in the TRI dataset are necessarily releasing

toxic chemicals.

Year Unique number of Toxicity
Facilities Firms per facilitya

2000 36,486 16,987 186.224
2001 36,209 16,739 158.446
2002 35,653 16,240 137.118
2003 35,405 15,969 129.340
2004 35,131 15,793 123.292
2005 35,019 15,591 127.551
2006 34,848 15,441 127.876
2007 34,647 15,286 122.698
2008 34,394 15,108 115.639
2009 33,853 14,905 101.518
2010 33,939 14,994 113.424
2011 33,808 14,952 122.743
2012 33,916 14,934 108.545
2013 33,908 14,944 123.510
2014 33,926 14,979 117.881
2015 33,958 14,953 102.088
2016 34,067 15,079 103.128
2017 34,394 15,194 115.684
a In thousands of pounds.
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Table A.3: TRI industry sector data summary statistics

This table reports summary statistics about toxic releases for different industrial

sectors in the TRI dataset. The data are obtained from the US EPA’s TRI pro-

gram between 2000 and 2017. This study includes all mandatory TRI reporting

facilities in the US. We use the industrial sectors defined by the TRI program.

Industry Sector Unique number of Toxicity
Facilities Firms per facilitya

Apparel 16 21 2,231.71
Beverages 76 164 46,502.84
Chemical Wholesalers 259 812 1,858.80
Chemicals 3,002 5,925 98,599.44
Coal Mining 95 179 86,867.46
Computers and Electronic Products 1,360 2,191 4,362.11
Electric Utilities 329 888 1,008,985.10
Electrical Equipment 519 1,149 9,116.14
Fabricated Metals 3,326 5,515 18,232.35
Food 885 2,741 54,218.04
Furniture 384 646 17,865.09
Hazardous Waste 88 360 662,878.39
Leather 73 90 18,458.95
Machinery 1,028 2,119 5,422.72
Metal Mining 66 128 13,383,882.00
Miscellaneous Manufacturing 533 836 15,244.63
Nonmetallic Mineral Product 871 3,840 15,163.07
Other 376 1,237 58,112.79
Paper 345 755 396,704.74
Petroleum 376 1,161 137,381.63
Petroleum Bulk Terminals 318 1,024 3,436.34
Plastics and Rubber 1,598 2,627 29,018.49
Primary Metals 1,472 2,612 355,596.27
Printing 210 378 42,681.02
Publishing 15 18 373.39
Textile Product 58 112 3,332.00
Textiles 209 324 11,068.16
Tobacco 19 53 92,041.75
Transportation Equipment 1,271 2,647 31,907.57
Wood Products 610 1,352 17,537.35
a In thousands of pounds.
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Table A.4: BoardEx firm level summary statistics

This table reports summary statistics for the BoardEx dataset. BoardEx is a global data

management firm specializing in relationship mapping and intelligence. This study uses

the BoardEx dataset for North America. A polluting firm is defined as a firm with at least

one facility releasing toxic material above the EPA’s threshold in a given year.

Variable Mean or count

Number of unique firms 157,997
Number of unique directors 119,607
Average number of directors per firm 2.518

(3.012)
Director’s’ average existing period in BoardEx 10.624

(5.684)
Average term of a director in a firm 5.560

(4.668)
Director’s probability of being a board member in a polluting firm 0.049

(0.217)

Standard deviations are in parentheses.
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Table A.5: BoardEx data summary statistics

This table reports summary statistics for the BoardEx data from

2000 to 2017. BoardEx is a global data management firm specializing

in relationship mapping and intelligence. This study only uses the

BoardEx dataset for North America.

Year Number of unique firms Number of unique directors

2000 46,239 52,367
2001 47,375 55,567
2002 47,894 57,855
2003 48,939 60,594
2004 50,881 63,765
2005 53,005 66,266
2006 54,905 68,805
2007 57,184 70,961
2008 58,180 72,171
2009 59,135 72,740
2010 60,921 73,799
2011 61,992 74,990
2012 63,259 76,454
2013 64,395 78,193
2014 65,146 79,719
2015 65,356 80,759
2016 64,503 80,969
2017 88,851 84,686
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Table A.6: U. S. Census tract level summary statistics

This table reports summary statistics for the US Census data set provided by the

United States Census Bureau. We also obtain population density information

created by the Agency for Toxic Substances and Disease Registry. Given that

our data spans two census periods, we use 2010 locations as fixed geographic

locations. As in De Silva et al. (2016, 2021), we linearly impute and estimate the

missing data to estimate the population density, minority ratio, the proportion

of individuals with a college degree, and median household income from 2000 to

2008.

Variable Mean or count

Number of unique tracts (based on 2010 Census data) 73,082
Total population 4,133.523

(1,878.227)
Population density (per square mile) 5,165.112

(11,482.190)
Number of households 1,039.065

(507.029)
Median household income 64,271.900

(29,285.710)
College ratio 0.256

(0.215)
Minority ratio 0.244

(0.249)
Number of special tracts 961

Tract is located in a Mexico border County 1,521

Tract is located in a Canada border County 2,933

Tract is located in an MSA County 60,909

Tract is located in an urban County 10,569

Tract is located in a rural County 1,604

Tract is located in a costal County 20,628

Standard deviations are in parentheses.
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Table A.7: Censored linear regression results for total release

This table reports censored linear regression results for total releases. We have left-censored the data for

toxic releases per firm per year and estimated our empirical models using censored regression techniques.

Columns 1 and 4 are the reference points that report linear regression results with industry effects. Columns

2 and 5 report results from censored regression similar to the ones estimated via linear regression. Columns

3 and 6 report censored regression results with facility-level random effects controlling for facility-level

unobservable heterogeneity. We report the results for all facilities in Panel A and for BoardEx firms in

Panel B. All regressions include log number of plants per firm, log of median household income, minority

ratio, college ratio, and log of population density in addition to indicators for facilities siting in a special

tract, MSA, Urban, and Costal Counties, located in a county that border Mexico or Canada, industry

effects, and time effects.

Variable Log of toxicity releasedjt

All facilities

OLS Censored OLS Censored

(1) (2) (3) (4) (5) (6)

Panel A: All facilities

Board’s average pollution ratioj,t−1 3.604*** 3.875*** 3.128***

(0.211) (0.033) (0.049)

The range of the board’s relative pollution -1.365*** -1.598*** -0.403***

degree centralityj,t−1 (0.228) (0.028) (0.048)

E[Board’s average pollution ratio]j,t−1 7.084*** 7.614*** 6.148***

(0.414) (0.064) (0.096)

E[The range of the board’s relative pollution -2.688*** -3.143*** -0.779***

degree centrality]j,t−1 (0.450) (0.055) (0.095)

Firm’s influencej,t−1 -22.758 -12.857 28.525 -22.770 -12.881 28.412

(23.492) (12.105) (21.297) (23.482) (12.105) (21.297)

Log of total industrial toxicityi,t 0.241*** 1.059*** 2.442*** 0.241*** 1.059*** 2.441***

(0.030) (0.033) (0.029) (0.030) (0.033) (0.029)

Facility belongs to a BoardEx firmi,t -0.659*** -0.869*** -0.807*** -0.659*** -0.869*** -0.808***

(0.151) (0.019) (0.094) (0.151) (0.019) (0.094)

Facility belongs to a listed firmi,t -0.143 -0.210*** -0.388*** -0.141 -0.208*** -0.389***

(0.149) (0.021) (0.054) (0.149) (0.021) (0.054)

Facility level random effects Yes Yes

Observations 582,722 582,722 582,722 582,722

R2 0.128 0.128

Log likelihood -1.252e+06 -994,300 -1.252e+06 -994,295

Uncensored observations 310,227 310,227 310,227 310,227

Panel B: BoardEx facilities

Board’s average pollution ratioj,t−1 3.540*** 3.834*** 3.150***

(0.205) (0.033) (0.048)

The range of the board’s relative pollution -1.146*** -1.358*** -0.293***

degree centralityj,t−1 (0.223) (0.029) (0.047)

E[Board’s average pollution ratio]j,t−1 6.957*** 7.535*** 6.191***

(0.402) (0.066) (0.093)

E[The range of the board’s relative pollution -2.254*** -2.670*** -0.562***

degree centrality]j,t−1 (0.440) (0.057) (0.093)

Firm’s influencej,t−1 -30.907 -21.736* 28.036 -30.924 -21.766* 27.915

(22.519) (12.205) (20.641) (22.507) (12.205) (20.640)

Log of total industrial toxicityi,t 0.264*** 1.071*** 2.304*** 0.264*** 1.070*** 2.303***

(0.033) (0.045) (0.040) (0.033) (0.045) (0.040)

Facility belongs to a listed firmi,t -0.114 -0.172*** -0.404*** -0.112 -0.171*** -0.405***

(0.140) (0.021) (0.054) (0.140) (0.021) (0.054)

Facility level random effects Yes Yes

Observations 288,277 288,277 288,277 288,277 288,277 288,277

R2 0.168 0.168

Log likelihood -616,971 -478,887 -616,963 -590,056

Uncensored observations 152,861 152,861 152,861 152,861 152,861 152,861

Robust standard errors clustered by firms are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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