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Inventory Diagnosis for Flow Improvement – A Design Science Approach 

 

Abstract 

Improving flow is a core Operations Management theme that is set to become even more important following 

contemporary developments in manufacturing, such as smart products and digital encapsulation that enable new 

control concepts such as multi-agent holonic control. But companies often struggle to realize flow improvements in 

practice, both with and without new technologies. While the literature agrees on the importance of flow, a structured 

and independent process that supports managers in identifying the root causes of why flow items wait in inventories 

instead of being processed is missing. Managers often use a single production management concept, such as lean 

production or the theory of constraints, when they seek to understand the reasons for a flow problem, which may lead 

to misdirected and unsuccessful interventions. In response, we use design science to develop a comprehensive 

approach to diagnosing flow problems that is independent from any production management concept. This diagnosis 

process results from successive iterations with five companies and supports the selection of appropriate analytical 

models and flow improvement solutions. It enables an organization to widen the focus of its flow improvement actions 

beyond the scope of a singular production management concept and complements the application of recent advances 

in technology, allowing smart products to quickly interpret what is happening in a location without first simulating and 

analyzing the whole system. Furthermore, the study expands buffer theories by showing that buffers have an internal 

hierarchy and can be absorbed by other buffers, whilst enhancing other theories related to coordination, material flow 

control and lean improvement.  

Keywords: Buffers; inventory; capacity; flow; design science; operations management. 

  



1. Introduction 

This design science study develops an approach to diagnosing why in-process inventories, that indicate the 

presence of a flow problem, exist. The study provides a framework for flow problem diagnosis that extends 

existing inventory classifications, enabling a more granular diagnosis of the relationship between an individual 

inventory item and the variability against which it is buffering. We combine this framework, where all elements 

are compatible with existing literature, with a step-by-step process for diagnosing why an item waits in inventory. 

This diagnosis process is iteratively developed through application of the framework to five companies. Together, 

the framework and diagnosis process systematically guide managers to organize their thinking so that they 

analyze all possible causes of a flow disruption represented by each individual inventory item. 

Our newly developed diagnosis approach reduces the risk that managers ignore any data that does not coincide 

with their preferred production management concept. In this way, it reduces managerial biases, such as 

confirmation bias (Pohl, 2004), that blind decision-makers from considering other flow inhibitors and potentially 

lead to a misdiagnosis of a company’s flow problems. In fact, our design science study was triggered by a 

managerial misdiagnosis in one company, which resulted in a misdirected improvement investment that 

consequently did not yield the expected results. Our diagnosis helps to avoid confirmation bias by starting with 

the individual flow items that exist in inventory and stepwise assessing “why is this flow item waiting in inventory 

rather than being processed?” This engages managers in a systematic search process instead of allowing them to 

jump straight to analyzing only flow improvement actions that are aligned with their preferred production 

management concept. This reframes how we address flow problems and prompts managers to search for the true 

cause. It thus enables an organization to widen the focus of its flow improvement actions beyond the scope of 

singular production management concepts whilst complementing the application of recent advances in 

technology. Indeed, while flow improvement has been a core, enduring theme in Operations Management (OM), 

it may become even more important in the context of Smart Manufacturing technological advancements (Kusiak, 

2018; Olsen & Tomlin, 2020), including smart products and digital encapsulation that enable new forms of 

production control (Meyer et al., 2011; Holmström et al., 2019). Managerial biases are not resolved via the use of 

new technology, rather they can easily be embedded into new technologies, such as digital twins (Grieves & 



Vickers, 2017; Tao et al., 2018) that are being developed to improve our understanding of manufacturing 

processes. 

Our diagnosis approach not only provides a practical tool for managers to develop context-specific solutions 

to variability, its development also enables us to contribute important insights that strengthen the Operations 

Management (OM) literature on flow improvement. First, our paper extends existing buffer theory (e.g. Newman 

et al., 1993; Lovejoy, 1998; Schwarz; 1998; Hopp & Spearman, 2004; Schmidt, 2005; Klassen & Menor, 2007) by 

identifying a form of buffer hierarchy, which explains how some buffers can be absorbed by other buffers meaning 

sources of variability remain hidden. Second, it provides a starting point for the use of simulation and queuing 

models to quantify the effects of current buffering solutions and to suggest alternatives. Third, it provides Smart 

Manufacturing technologies with a foundation by which they can quickly interpret what is occurring in a location 

without simulating and analyzing an entire system. Finally, it helps us to understand how planning and planning 

assumptions affect buffers.  

The remainder of this paper is organized as follows. Section 2 reviews streams of literature that have been 

concerned with flow and buffering. It identifies the building blocks from the prior literature for developing our 

framework for diagnosis. The design science research approach adopted to develop our diagnosis process is then 

outlined in Section 3. In Section 4, the framework for flow problem diagnosis is deductively derived and an initial 

diagnosis process for its application is outlined. This diagnosis process is then iteratively developed through 

application to five cases in Section 5. A discussion of the main managerial and theoretical implications to emerge 

from the applications is presented in Section 6 before our paper concludes in Section 7.  

 

2. Background 

The importance of flow, i.e. the continuous movement of flow items, has been emphasized since the early 

conception of the OM field as Scientific Management (Taylor, 1919). In a fully synchronized process, demand, 

capacity and flow items become available at exactly the same time and a continuous flow is realized. However, in 

practice, variability often prevents full process synchronization meaning a perfect flow cannot be realized and one 



or more of the process inputs is forced to wait. Although all production management concepts focus on process 

synchronization, each has a different approach to managing the material flow cross operations.  

For example, Statistical Inventory Control (SIC) seeks to minimize the number of items in inventory waiting for 

demand using reorder point and order-up-to-level methods. The Toyota Production System’s (e.g. Monden, 1981; 

Ohno, 1988; Shingo, 1989) efforts to propagate one-piece flows and avoid inventories due to batching remain a 

major element of lean production (e.g. Hines et al., 2004; Holweg, 2007; de Treville & Antonakis, 2006; Shah & 

Ward, 2007). The logic underlying traditional Material Requirements Planning (MRP; e.g. Miller & Sprague, 1975; 

Orlicky, 1975) seeks to minimize the number of inventory items waiting for other items to arrive for assembly by 

coordinating the flows of parallel items contained within the bill-of-material. Finally, the Theory of Constraints 

(TOC; e.g. Goldratt & Cox, 1984; Rahman, 1998; Spearman, 1997; Watson et al., 2007) focuses on minimizing the 

buffer of orders waiting for capacity at the bottleneck whilst avoiding congestion at non-bottleneck resources. 

Thus, for arguably the four best-known production management concepts, we can identify a focus on four 

completely different causes of inventory – inventory waiting for demand, waiting for other batching items, waiting 

for other assembly items, and waiting for capacity.  

Table 1 summarizes the above four production management concepts together with the associated flow 

problem diagnosis support that is available. We can observe from Table 1 that the control focus of the concepts 

is targeted towards specific causes of flow problems and that the diagnosis support within each concept is related 

to these specific causes. For a diagnosis to be correct, the manager must already know the cause of the inventory 

before selecting a production management concept to use for diagnosis. In contrast, we argue that an unbiased, 

independent approach to flow problem diagnosis should precede the adoption of any control solution. To provide 

the theoretical background for this new diagnosis approach we first review the literature on buffering against 

variability in Section 2.1, given that variability appears to be a main source of inventory. Section 2.2 then reviews 

existing classifications of inventory to provide the initial building blocks for our new diagnosis approach that 

follows in Section 4.  

 

[Take in Table 1] 

 



2.1 Theoretical Framing: Inventory and Buffering Against Variability 

Multiple frameworks have been developed to explain the relationship between variability and its buffers. For 

example, Lovejoy (1998) and Schwarz (1998) postulated that all firms have an information/control/buffer 

portfolio that managers adjust to meet their competitive needs. Later, Schmidt (2005) used the concept of an OM 

triangle to model the relationship between capacity buffers, inventory buffers, and information, while Klassen & 

Menor (2007) built on Lovejoy’s (1998) work using a process triangle with variability, inventory, and capacity 

utilization to explain how investments in one can substitute for the other(s). In general, the OM literature agrees 

on three broad types of variability buffer – inventory, capacity, and time (e.g. Newman et al., 1993; Hopp & 

Spearman, 2004). If variability exists then it will be buffered by one or a combination of these three variability 

buffers (Hopp & Spearman, 2004).  

Each of the three buffer types relates to one of the three inputs required for an item to flow from one process 

step to another – (1) demand; (2) flow items; and, (3) capacity – as depicted in Figure 1. The flow items or 

transformed resources (Slack & Brandon-Jones, 2018) could be materials, information, or people and the capacity 

resources or transforming resources could be machines, operators, etc. In an ideal situation, the three inputs in 

Figure 1 are fully synchronized and become available simultaneously. Input availability however is often not 

synchronized due to variability. Inputs that are available before the others therefore have to wait, which leads to 

the three buffer types distinguished by Hopp & Spearman (2004).  

 

[Take in Figure 1] 

 

The input that is waiting for the other process inputs is a buffer to manage the lack of input synchronization. 

An inventory buffer implies that flow items are waiting for demand and a time buffer implies that demand is 

waiting for either flow items or capacity. An important distinction is that an inventory item represents a time 

buffer if demand has already been assigned to it. Here, inventory is not the buffering mechanism itself, but rather 

a consequence of time buffering. While this distinction between these two types of inventories is important, it 

has not been fully addressed in the literature. While the TOC literature has introduced the term “time buffering” 

it uses it in a more restricted sense. Time buffering within the Drum-Buffer-Rope approach refers to off-setting 



the release of flow items that have already been assigned to demand in terms of the bottleneck schedule (e.g. 

Watson et al., 2007), which controls the inventory of flow items waiting for capacity at the bottleneck. 

More generally, time buffering results in flow items that are assigned to demand and then wait for either 

capacity or other flow items – these inventories will be referred to as queues. Queues are inventories waiting 

ahead of a process with known demand. In contrast, inventory buffers hold items that are produced in advance 

of demand, so that two process steps are decoupled by the inventory. This allows the first step to produce even 

though demand for the second step is unknown. We will logically refer to this type of inventory as decoupling 

stock. The position in the process where decoupling stock is located is called a decoupling point. This distinction 

between queues and decoupling stock – which was also made by Bertrand et al. (1990) – results in the first two 

of three definitions: 

 

Definition 1:  A queue is the set of flow items between two process steps that is already assigned to demand 

from the downstream step.  

 

Definition 2:  A decoupling stock is the set of flow items between two process steps that is not yet assigned to 

demand from the downstream step. 

 

A particularly important type of decoupling point distinguished in the literature is the point where demand 

from an external customer is first assigned to flow items. This is the point where flow items wait until external 

customer demand for them has been specified. This particular type of decoupling point has been named the 

Customer Order Decoupling Point (CODP: e.g. Hoekstra & Romme, 1992; van Donk, 2001; Calle et al., 2016) or the 

Order Penetration Point (e.g. Sharman, 1984; Olhager, 2003). We adopt the term CODP in this paper, which we 

define as follows: 

 

Definition 3:  The Customer Order Decoupling Point (CODP) is the decoupling point where flow items wait to 

be assigned to customer orders.  

 



The identification of the CODPs consequently has two important implications for the analysis of other 

inventories in an organization since all items downstream are assigned to (customer) demand: 

 

Implication 1:  All inventory downstream of a CODP must be a queue.  

 

Implication 2:  Upstream of the CODP, both decoupling stocks and queues can exist.  

 

The position of the CODP will vary according to the type of product or service offering. For example, in make-

to-order production environments the CODP occurs at the raw material stage while it is at the finished product 

stage in make-to-stock production environments. In assembly environments, where parallel flows exist, there may 

be multiple CODPs. Meanwhile, in procure-to-order production and many service contexts, there may not be a 

CODP at all within the internal processes of the company. The CODP position is highly relevant from a performance 

perspective. After the CODP the performance perspective of flow improvement generally relates to lead time 

reductions for customers, while before the CODP the internal inventory reduction itself might be the focus, which 

in turn relates to waiting time for the internal customer. Figure 2 indicates how different performance objectives 

relate to each other. 

Figure 2 visualizes the difference between decoupling points and queues, and how these result from inventory 

buffering and time buffering, respectively. Cumulative representations over time, such as in Figure 2, have been 

used for many decades as they help to explain industrial dynamics (e.g. Forrester, 1961). The horizontal axis refers 

to time while the vertical axis indicates the cumulative number of flow items that are demanded and produced. 

When all of the depicted fluctuations in demand are handled by capacity buffers, production will follow demand. 

When time buffering is used, cumulative demand exceeds production and flow items assigned to demand wait to 

be produced. The vertical distance between the curves then represents the queue. Meanwhile, the horizontal 

distance indicates waiting time, which is the logical consequence of buffering by time. When inventory buffering 

is applied, cumulative production exceeds cumulative demand and the vertical distance between these two curves 

at any point in time represents the number of flow items in the decoupling stock. The horizontal distance is the 

runout time of the inventory, although it could also be seen as a negative waiting time.  



Note that even if inventory buffering is the planned mechanism, cumulative production could still temporarily 

fall below demand. The vertical distance can then be seen as the backorder position instead of the queue, which 

is then equivalent to a negative inventory level (e.g. Zipkin, 2000). Following Little’s result (Little, 1961) for 

stationary settings, we can thus always express both buffer types – inventory and time buffers – as either 

inventories or flow times. Notice that the other variable in Little’s result, the throughput rate, would be 

represented by the slope of the curves in a stationary setting.  

 

[Take in Figure 2] 

 

 The buffer theory outlined above explains why inventories occur. It represents the theory underlying our 

diagnosis approach. However, it only distinguishes in broad terms between inventories waiting for demand and 

inventories already assigned to demand. This level of granularity is arguably not enough to provide a 

comprehensive and systematic approach to inventory diagnosis. As a result, we next review existing inventory 

classifications in order to identify the building blocks for our more detailed diagnosis approach. 

 

2.2 The Building Blocks: Existing Inventory Classifications 

A rich literature has discussed the evils of inventory (e.g. Monden, 2011), such as hiding the real problems of an 

organization. Yet there has been only limited investigation of why particular in-process inventories occur in an 

organization. With the exception of Hopp et al. (2007), the inventory literature does not provide any structured 

diagnosis processes that allow for further distinctions between inventory types. Hopp et al. (2007) provided a 

systematic diagnosis tree for inventories in the specific context of production lines. This tree shows the type of 

inventory calculations that can be made in a specific branch, but the approach is restricted and only provides an 

overview of the underlying causes. Inventories can be the symptom of a flow problem, but before solving the 

problem we need to fully understand why an item exists in inventory.  

Most textbooks distinguish between only a few basic reasons for inventory, e.g. cycle stocks, safety stocks, and 

anticipation or seasonal stocks (Cachon & Terwiesch, 2019; Slack & Brandon-Jones, 2019), but all of these reasons 

assume inventories are waiting for demand. Only some traditional textbooks (e.g. Bertrand et al., 1990) have 



discussed the essential distinction between whether an item is still waiting for demand (decoupling stock) or has 

already been assigned to demand (queue); but there has been little subsequent scientific investigation. Table 1 

has already identified three reasons other than demand for why a flow item could be waiting in inventory, i.e. 

three causes of queues.  

Based on the three inputs and using deductive reasoning, flow items waiting in queues can be waiting for 

capacity, waiting for similar flow items, or waiting for different flow items. Similar items are distinguished from 

different items because similar items arrive from the same preceding sequence of processing steps but have to 

wait for other items in the batch to enable setup reduction or joint processing (e.g. in an oven). Different items 

arrive through varying sequences of processing steps and have to wait for each other at a common point where 

they are jointly needed, for example, in an assembly or for transportation together to the next step. The three 

causes of queues relate to three waiting time types defined in traditional Dutch textbooks (e.g. Monhemius & 

Durlinger, 1985), i.e. service desk waiting time (or simply congestion), batch waiting time, and tour coach waiting 

time (or simply assembly waiting time). Monhemius & Durlinger (1985) also referred to platform waiting times, 

named after passengers waiting for a train on a railway station platform. Similar to congestion, platform waiting 

times relate to waiting for missing capacity. Here however the capacity is not continuously available, rather it 

comes in batches (e.g. a complete train).  

In general, textbooks classify decoupling stocks as anticipation, safety, and cycle stocks (e.g. Cachon & 

Terwiesch, 2019; Slack & Brandon-Jones, 2019). This classification relates to the form of the variability that 

triggered production in advance of demand. To classify an inventory according to one of these three types relies 

on determining whether the production in advance of demand is due to uncertain fluctuations (safety stock), to 

predicted fluctuations (anticipation or seasonal stock), or to fluctuations caused by batching (cycle stock). These 

three possible forms of variability also apply to the three different queue types. While identifying the form of the 

variability is valuable, prior classifications do not specify whether the source of the variability is demand, supply 

or capacity. Nonetheless, the above has provided us with several ingredients to derive all possible root causes, 

which will be combined into our framework for flow problem diagnosis. The method used to develop this 

framework and the associated diagnosis process will be outlined next. 



 

3. Research Method 

We employ a Design Science Research (DSR) approach – where the goal is utility/effectiveness via description and 

explanation, as well as design and testing – in pursuit of what can be (van Aken et al., 2016). This approach was 

required as neither an exclusively inductive nor deductive logic, for defining a problem and making it traceable, 

were useful (Chandrasekaran et al., 2020). We concluded that the problem of understanding why inventories exist 

could not be solved using existing knowledge alone. Rather, we recognized the need to reframe the problem of 

how flow problems are addressed, adopting an item-level rather than top-down approach that is independent 

from production management concepts. Solving this newly framed problem required us to move from the 

problem to theory and then cycle in an abductive manner between theory, evidence and insight to arrive at a 

solution (Chandrasekaran et al., 2020). As such, DSR allowed us to consider a descriptive/explanatory component 

to cultivate a deeper understanding of the field problem while at the same time designing an artefact (van Aken 

et al., 2016). The artefact we develop consists of two elements: a framework for flow problem diagnosis that is 

developed deductively and robustly from the extensive literature and a diagnosis process that is developed 

inductively and iteratively through field tests.  

The study broadly follows a rigor, relevance, and design cycle (Hevner, 2007) that proceeds through four 

phases of DSR, as suggested by Peffers et al. (2007) and Holmström et al. (2009a) and as is depicted in Figure 3. 

The literature was analyzed for ideas and the framework for flow problem diagnosis was developed as part of the 

rigor cycle (Hevner, 2007) (Phase 1: Solution Incubation in Figure 3). This framework was then ‘translated’ into a 

diagnosis process during the relevance cycle and extended during the design cycle (Phase 2: Solution Refinement 

in Figure 3). Phases 1 and 2 were conducted within an initial case organization (hereafter referred to as C0), where 

the problem was recognized, and Phase 2 was re-iterated in four other case organizations (C1-C4) to refine the 

artefact. Engaging with four additional organizations during the design cycle gave further insights for both the 

rigor and relevance cycles whilst ensuring pragmatic validity. Ultimately, the solution (framework and diagnosis 

process) allows us to provide key explanations of theoretical relevance (Phases 3 and 4: Explanation in Figure 3). 



Overall, our study can be classified as an “improvement” DSR project (Gregor & Hevner, 2013) since it develops a 

new solution to a known problem.  

 

[Take in Figure 3] 

 

 

3.1 Phase 1: Solution Incubation  

Solution incubation consists of identifying the problem, setting objectives for a solution as well as developing and 

designing the rudiments of a potential solution design (Holmström et al., 2009a).  Our design science process was 

problem-centered (Peffers et al., 2007), with its initial motivation coming from the observation that company C0 

misdiagnosed the root causes of its flow problem and implemented an intervention that did not solve this 

problem. Company C0 invested a significant amount of money in increasing the capacity of a key production step 

that it thought created a flow problem, without achieving an improved flow. The capacity intervention was aligned 

with the company’s capacity-oriented planning focus, which in turn aligned with variable capacity requirements 

caused by a highly changeable product mix. Company C0 released orders when bottleneck resources had capacity 

available in order to achieve a smooth flow. When planning could structurally no longer avoid the accumulation 

of work at some bottleneck resources, the logical solution appeared to be an investment in capacity. While this 

logic had worked well for the majority of previous interventions, it did not work for the intervention that triggered 

this research since the root cause of the inventory was that items had to wait for other items to arrive ahead of 

final assembly. Rather than investing in capacity, as suggested by their capacity-oriented planning focus, the 

company should have focused on improving co-ordination, as would have been suggested by a material 

requirements focus. Hence, the initial objective of this research was to develop a flow problem diagnosis approach 

that would be independent of the adopted production management concept and that would enable the company 

to execute a correct diagnosis of why inventories exist, identifying not only inventory points where items wait but 

also the reasons behind why items wait.  

We deductively developed a framework for flow problem diagnosis (Table 3 in Section 4) combining theories 

of buffering mechanisms (Hopp & Spearman, 1996) and the logic of queues and decoupling points (Sharman, 



1984; Hoekstra & Romme, 1992; van Donk, 2001) with dimensions of inventories identified from some common 

classifications. This framework guides the user through an exhaustive list of potential causes that might explain 

why a flow item waits in in-process inventory instead of being processed. As explained by Wagner (1993), a generic 

diagnosis process will require such a list of potential problem causes (or explanations) to support problem-solvers 

in their search process. Following the development of this framework for flow problem diagnosis, an initial 

diagnosis process was designed to facilitate its application (see Section 5.1). The diagnosis process was developed 

inductively and refined through evaluations in five different companies during solution refinement. As such, the 

overall method employed in this paper is abductive and aligned with design science logic. 

 

3.2 Phase 2: Solution Refinement  

During the solution refinement phase, the rudimentary solution design is subjected to empirical testing 

(Akkermans et al., 2019). The initially developed artefact, consisting of the framework for flow problem diagnosis 

and the diagnosis process itself, was applied to C0 by two researchers with input from the CEO of the company 

and the production manager. The production process was first mapped and the different points where inventory 

accumulates were noted. Then, each researcher diagnosed the types of inventory present and the root causes of 

the inventory using the framework for flow problem diagnosis and the diagnosis process (evaluation). In the 

reconciliation of the independent diagnoses it was found that the researchers agreed about the types of inventory 

but that further information about the production process was required. The missing insights were gathered 

during follow-up interviews with the CEO and a process improvement manager. After another round of iteration 

with C0’s management it was possible to derive a final diagnosis of the inventory types in the company. Problems 

encountered during the application of our diagnosis process were directly addressed through ad-hoc solutions to 

ensure the swift execution of the diagnosis process. After the diagnosis, the research team discussed problems 

identified with the approach. This testing and evaluation in C0 led to adjustments to the diagnosis process and as 

such helped to refine the artefact (see also Section 5.1). 

Following the solution refinement in C0, we employed a multiple case study methodology to ensure the 

pragmatic validity of our design by re-iterating the solution refinement process several times (Hevner et al., 2004; 



Peffers et al., 2007; van Aken et al., 2016; Akkermans et al., 2019). Therefore, we chose four additional 

organizations based on theoretical and literal replication drawing on the dimensions of Hayes & Wheelwright’s 

(1979) volume/variety spectrum of production types. We expected the diagnosis process to be most useful in the 

middle of this spectrum. For job shops, the diagnosis was expected to be too complicated due to the variability in 

routings and processing times while it was anticipated that the usefulness of the approach would be diminished 

in continuous flow processes due to the limited opportunities for inventories. Accordingly, we selected two 

organizations (C2 and C3) that were similar to C0 in terms of their process and product structure and two 

organizations (C1 and C4) that had different structures (Seawright & Gerring, 2008). C1 was selected as an example 

of a company with a greater degree of customization and a job shop configuration; and C4 was selected as an 

example of a company with a greater degree of standardization and a line layout. The companies are all positioned 

across the diagonal depicted in Hayes & Wheelwright’s (1979) classification in Figure 4. Together, they cover a 

large proportion of the companies that use conventional manufacturing techniques. None of the companies, 

except for the job shop company C1, use any specific digital approaches to allow high variety at high volume, while 

the positioning of customer-order-decoupling points varied both within and across the companies. The company 

characteristics and their purpose in terms of this research are summarized in Table 2.   

 

[Take in Figure 4 and Table 2] 

  

The researchers made use of existing company contacts to gain access to organizations that met the case 

selection criterion. In all four additional organizations (C1-C4), senior staff (e.g. CEOs, Production Managers, 

Operations Directors) were contacted in 2018 to explain the aim of the study. After confirming their willingness 

to participate and gain insights into their flow problems, the actual diagnosis followed a similar three-step 

approach. First, pre-implementation, where researchers discussed possible design changes to the diagnosis 

process given the company characteristics. For example, in C1 no clear map of the production process could be 

created since crisscross flows through the shop may occur and hundreds of different routings are registered. 

Second, demonstration, referring to the actual application of the diagnosis process. This consisted of a set of 

physical on-site observations. Two researchers independently applied the framework for flow problem diagnosis 



and took extensive notes about important problems or deviations from the planned diagnosis process. Third, 

during the evaluation, notes were compared, the main implications discussed, and conclusions revised if 

necessary. To ensure reliability, every diagnosis was conducted by two researchers. Meanwhile, to ensure 

consistency, one particular researcher was involved in all five applications of the artefact (C0-C4). 

In a final step, and to increase the pragmatic validity of the designed solution, we returned to C0 approximately 

one year after the initial diagnosis with the iteratively refined diagnosis process and asked the production 

manager to reapply it to their production process. Following this diagnosis, three changes were proposed by C0’s 

management to solve the company’s flow problem. This demonstrates that the artefact could be used as part of 

a larger intervention design, as proposed by Oliva (2019). As such, this second diagnosis confirmed the 

applicability and relevance of the artefact for providing a solution to their problem of identifying the right causes 

of why inventories exist.  

 

4. Design and Initial Development 

Our artefact combines a deductively derived diagnosis framework for identifying flow problems with an 

inductively developed diagnosis process to apply this framework. The former is outlined in Section 4.1 while the 

latter is outlined in Section 4.2  

 

4.1 Development of a Framework for Flow Problem Identification: Deriving 28 Causes of Inventory  

The framework for flow problem diagnosis guides managers through an exhaustive list of possible causes of flow 

problems. The framework deduces and classifies all possible reasons for why a flow item exists in inventory by 

using existing definitions and dimensions provided by other classifications in the literature. Creating this 

classification of potential causes is essential to support problem solvers in their search process (Wagner, 1993). 

The overall logic can be captured in three “if … then …” statements: 1) if inventory exists, then there is a missing 

input; 2) if there is a missing input, then there is some source of variability; and, 3) if there is variability, then this 

variability takes one of three forms. The resulting framework is presented in Table 3. Horizontally, and from left 

to right, it shows the four possible missing inputs for which the flow items in the inventory can be waiting, i.e. 



demand, capacity, and flow items (which can be either flow items of a different or similar type). The main vertical 

categories show the possible sources of variability. Independent from the identified missing input, these sources 

can be in each of the three inputs (demand, supplied flow items and capacity) that must be synchronized. Finally, 

within each source we can have the three forms of variability derived from the classical textbook distinction 

between decoupling stocks. Note that the column with “Similar Type Flow Items” as a missing input is not split 

across multiple rows since, in this case, the variability can only relate to batching for the next process. The 

inventory classification in Table 3 thus identifies 28 possible causes of inventory and associated inventory types – 

each of which is individually defined in Appendix 1.  

 

[Take in Table 3] 

 

Wherever possible, we have used existing naming conventions to label the different inventories in Table 3. 

When demand is the missing input, inventory is the key buffering mechanism, and the inventory is referred to as 

a type of stock. The inventories in the other three columns are labelled as waiting times since these inventories 

are identified as queues resulting from time buffering (see Definition 2 in Section 2.1 above). The labelling of the 

variability types follows the common distinction in the literature between safety, anticipation, and cycle stocks 

for uncertainty, predicted fluctuations, and batched movements, respectively. We claim that the framework’s 

granular and systematic classification of the causes of inventory provides a useful basis for understanding why 

inventories exist. Further, we claim that this is important since each of the 28 causes will likely require a different 

management response to improve flow.  

Prior inventory classifications have only included one of the three dimensions (missing input, source of 

variability, form of variability), which limits the search space. For example, decoupling inventory typologies 

(safety, anticipation, cycle stock) only consider the type of variability while queue typologies only look at the 

missing input that hinders the progress of a flow item (capacity or other flow items). If company C0 had used our 

framework during its diagnosis process it would have avoided the more general problem that triggered this study. 

The framework would have challenged the manager to consider that the observed queuing of flow items might 

be due to assembly requirements, i.e. waiting for other flow items to arrive, rather than congestion due to a 



bottleneck. This in turn would have engaged the manager in searching for a solution related to synchronizing the 

incoming flows. Yet, although the framework for flow problem diagnosis provides a first solution for identifying 

the causes of inventory in an organization, on its own this may be too abstract to be applied directly by managers. 

As such, solving flow problems is not just a matter of logical deduction based on the application of generic 

knowledge but requires further design (van Aken & Romme, 2012; Van Aken, 2014). Hence, a diagnosis process 

for applying the framework to organizations is also needed. We consequently continue to follow a design science 

approach (Holmström et al. 2009a; van Aken et al., 2016) to develop a diagnosis process that complements the 

framework and contributes to the overall aim of developing an artefact that supports practicing managers in 

identifying the root causes of inventory. 

 

4.2 First Design of a Diagnosis Process 

Three main requirements have to be fulfilled for the application of the framework developed above:  

1. The diagnosis process should be applied to all points where flow items are delayed in the company’s 

production process. As inventories may occur before and after each operation, a process map should be 

created that covers all operations in the physical flow through the company to identify all possible inventory 

points. This provides a contextual background to each piece of inventory. 

2. A useful starting point should be derived for the diagnosis process. Rather than beginning at the most upstream 

point, Section 2 suggested that the CODPs may provide a more effective starting point. Since all inventory 

downstream of each CODP must be a queue, starting at the CODP simplifies the process of distinguishing other 

decoupling stocks and queues.    

3. The framework should be translated into a diagnosis process. For each item in the inventory point the three 

dimensions of the inventory classification can be translated into three simple questions. By answering these 

questions the user arrives at the correct cell in the framework. A complete diagnosis process however relies 

on going one step further than identifying the right cell. Therefore, once the correct source of variability has 

been traced using the generic framework, the fourth and final question is context-specific, i.e. what causes this 

variability in this specific context? 

 



All three requirements are reflected in the initial design of our diagnosis process, which focusses the user’s 

attention on particular aspects of the production process by first mapping the process, specifying where the 

analysis should start, and what questions should be asked. The initial design was kept as simple as possible to 

ensure it is generic and can be easily applied. It can be summarized as follows. 

1. Map the process to identify all inventory points. 

2. Determine the customer order decoupling points (CODPs) and follow Step 3 for these points. 

3. Ask the following four questions for the flow items in the inventory point: 

I. For which process input (missing input) are the flow items in this inventory waiting? 

II. Which input is the main source of variability that causes missing inputs? 

III. What form does this variability take?  

IV. What causes this variability in this specific context? 

4. Repeat Step 3 for all remaining inventory points. 

 

Step 3 forms the core of the diagnosis approach. It executes the diagnosis for a specific item at an inventory 

point using our framework for flow problem diagnosis. Meanwhile, steps 1 and 2 provide the ‘driving instructions’ 

on how to arrive at these inventory points in the smartest way. They apply a specific perspective to inventory 

diagnosis, which can be qualified as location-based. Each location where inventories occur will have its own 

diagnosis process step 3 (the core diagnosis) for the full set of inventorying items. Another perspective would 

have been to follow each item individually on its journey through the shop floor, which is the perspective of 

tracking and item-centric materials management (Holmström et al., 2009b). The results of item tracking could 

equally be used to identify commonalities between delays across flow items and then to point out the sources of 

variability. However, not all companies are yet able to facilitate item-centric materials management and so 

adopting this perspective would likely restrict the practical applicability of our diagnosis process at present. 

 

 

 



5. Demonstration and Evaluation  

5.1. Demonstrating and Evaluating the Design in Company C0 

This section uses the initial diagnosis process presented above to apply the framework for flow problem diagnosis 

to C0. It begins with process mapping and the identification of CODPs before examining other inventory types 

within the shop. It concludes with an enhanced diagnosis process based on an evaluation of the demonstration in 

C0, which is taken forward into the other four cases. 

 

5.1.1 Demonstrating Diagnosis Steps 1 and 2: Process Mapping and the Identification of CODPs  

The production manager in C0 provided us with a detailed process map of the shop floor and product flows. This 

map was used as the basis to identify known CODPs and outline inventory policies, production planning 

procedures, etc. that may be useful for understanding the occurrence of inventories. The 20 production steps for 

most products are shown in Figure 5, with each production step connected by an arrow (a to w). Rods are 

produced in steps 1-6; rubber belts are produced in a different department in steps 7-9; and the two are 

assembled together by riveting in Step 10 before being coated and dried (Step 11). Some production steps are 

only needed for a subset of products, as indicated by arrows that circumvent a production step in Figure 5. The 

rolls and shafts are machined separately (steps 17 and 18, respectively) and the shaft is inserted into the roll in 

Step 19. Most belt-rod assemblies are delivered together with cogs, processed in steps 12-16, and the rolls are 

delivered with the inserted shafts (Step 19). The parts are then collected and stacked on pallets before being 

packed, which typically involves wrapping them in plastic (Step 20). The stacking and packing process may involve 

several products being grouped together for delivery to the same customer. 

  

[Take in Figure 5] 

 

 The CODPs were identified as the production steps after inventories a, h, p and t, which do not commence 

until a customer order is available. The CODPs are represented by unshaded triangles in Figure 5.  

 

 

 

 



5.1.2 Demonstrating Diagnosis Step 3 and Step 4: Core Diagnosis 

The diagnosis process started at the CODPs. At any CODP, demand, more specifically customer demand, is the 

missing input for which the flow items are waiting. A main source of variability at all four CODPs was also demand, 

and more specifically demand uncertainty. Hence, all four inventories could be qualified as demand safety stock. 

This initial inventory diagnosis at the CODPs already greatly improved overall understanding of the complete flows 

and provided important insights into our design, as will be discussed in Section 5.1.3 below.   

After focusing on the CODPs, the researchers went through the full production process on the shop floor – 

both physically and on paper – together with the production manager. This allowed them to visualize the process 

and observe all inventories in the system. The research team systematically stopped at each step in the process 

to understand the operation and its connections with upstream and downstream stations. We will now briefly 

discuss an example for each of the remaining inventory types not covered above that occurred in the company.  

As customer orders are known, only queues waiting for capacity or other flow items can occur downstream of 

the CODPs (see Implication 1 in Section 3.2). Inventories upstream of a CODP can still be decoupling points, waiting 

for demand in the form of a production order for the next production step. It is important to reemphasize that 

the term demand in the diagnosis process does not necessarily relate to customer demand. The upstream 

inventories at g, l, r and s were waiting to be assigned to a production order when the raw materials arrived. They 

can consequently be classified as decoupling stocks. However, all of these decoupling stock inventories are 

relatively small since production steps 7, 12, 17, and 18 occur soon after the purchased items have arrived. The 

main source of variation is the batched supply, so these raw material inventories at g, l, r and s are classified as 

supply cycle stock.  

The inventory at m and n is a queue, since a single work order is specified for the movement of the flow items 

through drilling (12), splitting (13), and reassembling (14), implying that demand from the downstream steps is 

known at both m and n. It was classified as batched supply induced congestion as the small queues occurring here 

relate to missing capacity due to the execution of the previous production step in small batches by the same 

operator. Batched transformation induced congestion occurs at c, which precedes the pressing step (3) that forms 

a capacity bottleneck, processing the rods in batches due to large set-up times. Inventories at d and e are also 



classified as batched transformation induced congestion, but for a different reason. Here the successive heat 

treatment processes at steps 4 and 5 have more than sufficient capacity. Yet, to avoid wasting energy, they are 

only operational for part of the week thereby causing an irregular batched outflow from inventories d and e.   

The longest waiting times in the entire process occur at the point where rods and belts come together to be 

riveted (10). Rods (j1) and belts (j2) have unsynchronized arrivals, so one waits for the other because the two 

responsible departments optimize their own individual schedules. The inventories are partly classified as batched 

supply induced assembly waiting time (where the rods department purposely creates batches in preceding 

operations) and partly as supply uncertainty induced assembly waiting time (for the unplanned part). After riveting 

(10), the inventories at k are very limited due to a large capacity at coating and drying (11). Some inventory occurs 

before stacking and packing (20) because different parts and even different orders for the same customer may 

need to be combined (yet are not available at the same time). These customer orders will be supplied according 

to a plan, so this inventory is classified as supply anticipation induced assembly waiting time for the assembled 

belts at v1, the cogs at v2 and the rolls at v3 when the shafts are inserted based on customer orders. The inventory 

at f is classified as demand uncertainty induced congestion. It precedes the optional step (6), which is only 

executed for part of the uncertain demand mix. This production step, encasing the steel rods in rubber sleeves, 

prevents bruising to harvested products. It is mainly executed for products delivered to the American market, 

where harvesting machines are used at higher speeds. 

Finally, Table 4 shows the results of the diagnosis for all inventory points marked in the initial process map 

(Figure 5). 

 

[Take in Table 4] 

 

5.1.3 Evaluation: Resulting Design Adaptations to the Diagnosis Process 

Following this first application and demonstration, the diagnosis process was evaluated. We found that the initial 

inventory diagnosis at the CODPs (Step 3) revealed five important lessons. First, it is important not to immediately 

move to the next inventory point when a first source of variability has been found, as there can be multiple causes 

of inventory waiting for demand at a single inventory point. For example, at the CODP labelled h, part of the 



inventory could also be classified as demand anticipation stock. The preceding punching operation (7) operated 

near full capacity, so it could not even respond to predictable fluctuations in demand. As a consequence, during 

periods of low demand it processes items meant for anticipated future demand. Likewise, not all inventory at p 

and t was due to demand variability. Since the raw material for the cogs and rolls were cast in large lots by the 

supplier, part of the inventories should be classified as supply cycle stocks. It was not however possible to quantify 

the parts related to different causes. As soon as inventory is created for one cause, it would also help to buffer 

against other causes that are not fully correlated (buffer pooling). Based on this lesson we refined Question 2 of 

Step 3 in the diagnosis process. 

The second lesson for the diagnosis process came from examining the reasons why inventory existed at point 

t. We observed that point t was not always the CODP for the rolls because shafts were sometimes inserted in 

advance of customer demand. This meant that CODP v3 also existed for some products (see the dashed lines in 

Figure 5). We learned that care has to be taken in distinguishing all possible product-market combinations before 

the diagnosis is finalized. For the diagnosis process this meant that we extended Step 1 and added Step 5.  

The same issue resulted in the third lesson, because v3 was not a CODP for the products processed at the time 

of the diagnosis. More generally, the company indicated that seasonal differences related to the harvesting 

periods could change the causes of inventories. Thus, we learned that it may be important to repeat the diagnosis 

at periodic intervals to account for differences over time. Accordingly, we added Step 6 to the diagnosis process. 

Lessons four and five related to the application of the diagnosis process, rather than affecting its steps. 

The fourth lesson was that flow items could remain at the same inventory point once a missing input became 

available, because they had to wait for another missing input. This occurred at CODP a, where first coils of steel 

were waiting for demand. Once an order was placed that needed a certain type of steel, the coils still waited for 

other orders to be combined so that an entire coil could be used during one production run. At that stage, flow 

items are waiting for flow items of a similar type, so the inventory is due to batch waiting time. This means that 

CODP a can be visualized as a decoupling point followed directly by a queue of material waiting to be batched. 

We realized that it could even have been followed by another queuing stage if the inventory had to wait for 

capacity (batch transformation induced congestion) after the items to be batched were available. This however 



was not the case. The relationship between different inventory types further provides relevant lessons for buffer 

theory as both a hierarchy appears to exist and different inventory types hide each other. 

The fifth important lesson learned was that causes for the position of a decoupling point do not necessarily 

relate to variability. The production manager stated that the CODP inventories were placed to avoid extending 

the customer waiting times due to long supplier lead times. Although not a source of variability, this cause seemed 

highly reasonable, explaining (1) the position of the CODP (see, e.g. van Donk, 2001) and (2) why decoupling 

(inventory buffering) is used instead of time buffering. In contrast, the demand variability during this supplier lead 

time explains the number of flow items waiting at the chosen decoupling points. 

The main lessons learned from our first design cycle and their implications for the diagnosis process are 

summarized in Table 5. This evaluation helped to further develop the diagnosis process as follows, where changes 

to the initial design are highlighted using italics. 

1. Map the process to identify all inventory points for all product-market combinations (PMCs) and start Step 

2 for one of the PMCs. 

2. Determine the customer order decoupling points (CODPs) and start Step 3 for these points. 

3. Ask the following four questions for the flow items in the inventory point: 

(i) For which process input (missing input) are the flow items in this inventory waiting? 

(ii) Which input is a source of variability that causes missing inputs? 

(iii) What form does this variability take?  

(iv) What causes this variability in this specific context? 

In doing so, consider the potential for multiple answers to the previous questions. 

4. Repeat Step 3 for all remaining inventory points. 

5. Repeat steps 2 to 4 for the remaining PMCs. 

6. Periodically repeat steps 1 to 5 to check for changes over time. 

 

[Take in Table 5] 

 

 

 



 

5.2 Demonstrating and Evaluating the Design in Companies C1-C4 

The lessons learned during the first use of the initial design in C0 were embedded before the updated diagnosis 

process was applied to C1 to C4. 

 

5.2.1 Demonstrating Diagnosis Steps 1 and 2: Process Mapping and the Identification of CODPs   

In the second design cycle, companies were selected at the extreme ends of the volume/variety spectrum. This 

changes the perspective that needs to be taken for Step 1 and Step 2 to arrive at the inventory points for the core 

analysis (Step 3). In the high variety job shop company C1, crisscross flows through the shop may occur and 

hundreds of different routings are registered. Different to C0, where we took a product-flow perspective to the 

diagnosis due to its position in the middle of the volume/variety spectrum, we adopted a resource-based 

perspective, i.e. we structured the identification of inventory points around production resources instead of the 

material flow. For each of the functional departments of the company we reviewed the set of flow items waiting 

to be processed, categorized the items based on routing similarity, and for the main routing categories we 

analyzed the reasons for inventory, i.e. why flow items stop before being processed in this department. We 

followed the same resource-based perspective for C2. Although C2’s process and product structure are similar to 

C0, it produces a larger variety of products. At the other end of the volume/variety spectrum, C4 had an extremely 

simple flow; most products were produced on a continuous line without opportunities for inventory within the 

line. Consequently, the main inventories were raw materials and finished goods. However, many differences 

appeared to exist within the spectrum of raw materials and finished goods. Therefore, we followed a product-

based perspective, working through a list of all raw materials and finished goods produced in the company to 

identify sets of inventories as input for our core diagnosis. In C3, theoretically the same product-flow perspective 

could have been adopted as in C0. However, the size of the company (thousands of employees and hundreds of 

machines at the studied site) made it impossible to diagnose all inventories within the company. Instead, we 

decided to analyze one large inventory point between two key departments (mold injection parts and assembly) 

in-depth to determine whether that would lead to new insights for the design.  



In Step 2, in C1 and C2 raw material stocks were usually the CODPs waiting for customer orders. In these 

companies nearly all activities were executed in response to a customer order, so that nearly all of the 

downstream inventories were queues waiting for either capacity or other flow items. In C4, we first identified 

whether the finished goods or raw materials formed the CODP, or whether raw materials were even purchased 

to order, before diagnosing the other inventories. In this company most products had only two inventory points 

(raw material and finished goods inventories).  

 

5.2.2 Demonstrating Diagnosis Step 3 and Step 4: Core Diagnosis 

Similar to the first design cycle in C0, the researchers went through the full production process in C1-C4 on the 

shop floor – both physically and on paper – together with an employee of the company to visualize the process 

and observe all inventories in the system. Across the companies, 22 different inventory types have been identified, 

including all three types of safety stocks, anticipation stocks, and cycle stocks. The two most common forms of 

inventory in the five companies are demand safety stock and supply safety stock, which were both observed in all 

five companies.  

Note that six types of inventory were not found in these five companies. None of the three types of capacity 

induced assembly waiting time could be found since capacity variability at the ‘assembly station’ would in most 

cases affect all of the different flow items that need to be assembled to the same extent. As a consequence, the 

flow items will mostly be waiting together and not for each other. Similar reasons apply for the missing two types 

of demand variability induced assembly waiting time, which would only occur if demand variability affected some 

of the flow items to be assembled. Meanwhile, capacity anticipation induced congestion is most likely to occur 

when planned maintenance takes place; hence, this would only have been identified if maintenance was 

scheduled on the day of the diagnosis. Thus, overall, the five companies have enabled us to identify a broad range 

of inventory types, including all of the most common and some of the less common types. 

 

5.2.3 Evaluation: Resulting Design Adaptations to the Diagnosis Process 

After evaluating the second, third, fourth and fifth demonstration, six key lessons became evident that helped us 

to further refine the diagnosis process. First, the perspective to the diagnosis process needs to be adapted to the 



shop type and its complexity so that it is either resource-based (job shop), product-flow focused (batch process) 

or product-based (continuous flow). After the design cycle in C0, which is positioned in the middle of the 

volume/variety spectrum, the diagnosis assumed the use of a process map as the starting point, to enable the 

user to follow the product flow stepwise through the company. In production processes with medium volume and 

variety, a clear product flow can generally be found, and such a product-flow perspective can be adopted. In other 

environments, however, that was not possible. To be able to map the process (Step 1) in C1 and C2, we had to 

structure our diagnosis around production resources instead of the material flow due to an increased amount of 

product routings. On the opposite side of the volume/variety spectrum, i.e. C4, we applied a product-based 

perspective due to the extremely simple flow where the main inventories were raw materials and finished goods 

in large volumes. Accordingly, we further differentiated Step 1 in the diagnosis process. 

This difference in environment also had implications for the role of the CODPs and led to the second lesson: 

identifying CODPs is crucial for batch processes, but less crucial for job shop or continuous flow environments. In 

C0, and its dominant product flow, it was useful to identify CODPs in the process map to start the diagnosis of 

inventories as they had clear implications for preceding and succeeding inventory points. However, the CODP is 

defined by the product flow. If product flows are undirected and a high variety of different products is produced 

then no clear CODP can be identified and a different perspective for diagnosis needs to be adopted. This indicates 

that Step 2 of the diagnosis process might be skipped for job shop and continuous flow environments (i.e. in C1, 

C2, and C4).  

The third lesson relates to the diagnosis Step 3 where we found the need to also repeat diagnosis Question 3 

(iv): What causes this variability in this specific context? The diagnosis of the large inventory point in C3 revealed 

that a single point contained inventory caused by one type of inventory (supply uncertainty induced congestion) 

but related to two independent sources of variability. For part of the variability the source had to be found 

externally and related to quality problems with supplied materials, while the second source was found in internal 

process yields. Hence, the need to repeat diagnosis Question 3.  

From the same example, we derived the fourth lesson as we found that the level of this particular supply 

uncertainty in C3 appeared to be rather low. To buffer against supply uncertainty the company planned to have 



the material available 24 hours before corresponding assembly capacity was scheduled. This highlighted to us that 

the buffer size may not relate to the real variability but rather to the planned variability. The highly variable 

environments of C1 and C2 had a similar issue. These companies mainly produce to customer orders and quote 

customer order-specific delivery dates that already determine the amount of waiting time that will occur within 

the company. Even if the realized waiting times in production were shorter than planned for in the delivery dates, 

the items to be delivered would generally wait for transportation to the customer in the final stage. Also within 

production, the waiting times would depend on the schedules created internally. These schedules included time 

buffers to allow for certain amounts of uncertainty or batching, which might either be larger or smaller than the 

amount needed. We might even see items waiting without the presence of variability, but rather because it had 

been planned for. As an example, most order routings in C1 started with a laser cutting operation, requiring 

different customer orders to be combined in a nesting at these machines. It was uncertain when the right set of 

orders would be available to avoid needless material spoilage at laser cutting. This prompted the planners to allow 

for a fair amount of supply uncertainty induced congestion in the planned waiting times for downstream machines. 

Since the full capacity was assigned to orders for a long period ahead, the orders would have to wait even though 

the finally realized nesting would lead to a smooth supply of orders from laser cutting. The studies in C1, C2, and 

C3 all confronted us with the role of planning. We consequently extended Question 2 of Step 3 to state ‘Which 

input is a source of planned or actual variability that causes missing inputs?’ 

The supply uncertainty induced congestion diagnosed in company C1 also provides an example of the fifth 

lesson learned, which is important for the application of the diagnosis process: the variability related to the supply 

from the previous operation could have its root cause much further upstream. In C1 we observed the impact of 

nesting at the first operation in the form of supply variability for more than four operations further downstream. 

Similarly, customer demand variability that characterizes the make-to-order environment could also be observed 

as production order related demand variability at far upstream operations. For example, in C2 this relates to both 

demand uncertainty induced congestion and demand uncertainty induced assembly waiting time, which were 

observed even before the first operation in certain production departments. Based on this lesson, we extended 

the considerations for Step 3 in the diagnosis process. 



Waiting times preceding the first operation led to a sixth lesson when this waiting time related to the order 

book instead of physical items. Particularly in C1, a significant part of the waiting times occurred before the first 

operation and before material was assigned to an order. As such, no flow items, but rather just the order, was 

waiting before being released. The planner would not release the order if capacity at some of the operations to 

be executed would not be available in the short term. The waiting time of the order could be qualified as demand 

uncertainty induced congestion as capacity was missing and the unpredictable arrival of customer orders was the 

main source of variability. However, avoiding the waiting time of flow items on the shop floor and replacing it 

with waiting time before release could also be considered positive for the flow of this company. 

The main lessons learned from the additional applications of the framework for flow problem diagnosis to C1-

C4 and the implications for the diagnosis process are summarized in Table 6. These lessons learned allowed us to 

re-evaluate the diagnosis process and develop it further. Changes to the previous design from Section 5.1.3 are 

again marked in italics. 

1. Identify all inventorying items according to the type of shop: 

a. In a batch process (with families of routings), map the process to follow a product through the process 

to identify all inventory points for each of the product-market combinations (PMCs). Start Step 2 for 

one of the PMCs. 

b. In a continuous flow process (with a single short routing), adopt a product-based perspective, creating 

a list of all PMCs to identify their raw material and finished goods inventories. Start Step 2 for one of 

the PMCs. 

c. In a job shop process (with a high variety of routings), adopt a resource-based perspective to map the 

overall shop and identify the items inventorying at each resource.  

2. Determine the customer order decoupling points (CODPs) and start Step 3 for these points. 

3. Ask the following questions for the flow items in the inventory point: 

(i) For which process input (missing input) are the flow items in this inventory waiting? 

(ii) Which input is a source of planned or actual variability that causes missing inputs? 

(iii) What form does this variability take? 



(iv) What causes this variability in this specific context? 

In doing so, consider the potential for multiple answers to the previous questions and root causes for 

supply variability that can be further upstream, for demand further downstream. 

4. In shop types identified as a job shop process in Step 1c, repeat Step 3 for all remaining items at the same 

inventory point. 

5. Repeat steps 3 to 4 for all remaining inventory points. 

6. In shop types identified as a batch process in Step 1a or a continuous flow process in Step 1b, repeat steps 

2 to 5 for the remaining PMCs. 

7. Periodically repeat steps 1 to 5 to check for changes over time. 
 

[Take in Table 6] 

 

5.3 Pragmatic Validity 

To increase pragmatic validity and test our final design, C0 was revisited and the diagnosis repeated by the 

manager using the refined diagnosis process approximately one year after the initial diagnosis. The repeated 

diagnosis provided the same result for nearly all of the 21 positions in the flow where inventories could build up. 

This was to be expected as the product mix and the main approach to production management had not changed. 

Inventories at two points were attributed to a different cause, which appeared to be related to company-specific 

circumstances that had changed over time. Another inventory was attributed to the same root cause, but the 

form of supply variability was now classified as batched instead of predicted fluctuations. This related to the 

inventory points of rods (j1) and belts (j2) preceding the riveting of rods and belts to assemble them. Here belts 

are waiting for rods supplied in batches. The supply had a batched character, i.e. batched supply induced assembly 

waiting time for belts, even though at some point it could be predicted when the batches of rods would become 

available. Originally it was classified as supply anticipation assembly waiting time of belts. This would have 

occurred if, for instance, certain orders had combined a high workload for belt production with a low workload 

for rod production, and belt production had been required to precede rod production to have the last belts 

available at the same time as the last rods. On the one hand, this change in inventory classification demonstrated 



the accidental complexity of determining the right cell in the framework for flow problem diagnosis. On the other 

hand, it showed that the thought process was more important and led to the right context-specific source of 

variability after Question 3 (iv) of the diagnosis process. Based on the second diagnosis, performed by the manager 

himself, management proposed three interventions to improve the flow of the shop. The interventions focused 

particularly on reducing the assembly waiting times of rods and belts prior to riveting since this was the largest 

inventory. In the past, the company had made the mistake of trying to reduce inventories at exactly this point by 

increasing capacity, which formed the trigger for this research. Two of the proposed changes now focused on 

synchronizing the production planning of the two supplying flows. The third intervention was a set-up time 

reduction to facilitate this synchronization by requiring less batching in the rod production steps.  

The first change to synchronize planning was to introduce a signal from the rods department to the belt 

department as soon as the rods department started production for a certain order. This signal was used to trigger 

the production of belts. At the time of the diagnosis, the internal planning department was a black box to other 

departments. This simple rule would at least avoid a needlessly early start to belt production, which normally 

requires less time than the rods. The planning system could not support an integrated planning approach across 

the two departments, which led to this alternative of synchronization via a ‘release signal’. 

The second change to synchronize planning was to reduce the granularity of planned order completion dates. 

Originally planned completion dates were specified in terms of week numbers. The successive planning logic then 

provided each of the supply departments with several orders with the same planned end date. As the departments 

could freely sequence their orders as long as they realized these end dates, the two departments could make 

completely different choices in terms of which orders to schedule in batches during the first part of a week and 

which to schedule towards the end of the week. As a result, some parts could have to wait nearly a week for their 

counterparts from the other department. By issuing more precise end dates, the production sequences of the two 

departments could be better aligned. Aligning the sequences initiated the third intervention, because reducing 

the sequencing possibilities also reduces batching possibilities. This in turn caused the need for a set-up reduction 

project in order to avoid either capacity losses or an increase in inventories upstream. 



The above highlights the usefulness of the developed artefact in addressing the problem of why inventories 

exist. At the same time, it shows that when it comes to the actual realization of flow improvements, a company 

will have to consider the required effort to improve the flow and the ’cost’ of the current buffer within its specific 

setting. This is not an easy task as these costs often go beyond the expense of having these items in inventory. 

Further costs may relate to, for example, reduced responsiveness to customer orders due to long waiting times. 

When analyzing the improvements proposed by C0 we observed that, originally, the company wanted to take 

some relatively inexpensive measures to improve coordination between the flows, based on some simple changes 

to their planning approach. This however in turn triggered the need for set-up time reductions, which required 

much larger efforts in this specific context. This shows how contextual factors also play an important role in the 

realization of flow improvements based on our diagnosis. Tenhiälä (2011) showed that similar contingencies apply 

to capacity management approaches that aim to reduce capacity buffers instead of inventory and time buffers. 

 

6. Discussion 

This study designed a generic diagnosis approach for identifying problems with flow in organizations. It first used 

existing literature to deductively develop a framework that classified flow items based on why they existed. A 

diagnosis process for applying this framework was then iteratively developed in five companies. During the 

iterative design process, several important implications emerged, including the need to refine the existing 

knowledge base of inventories as flow inhibitors and buffers. These will be discussed next. 

 

6.1 Theoretical Embedding of the Artefact  

The developed artefact can be used to inform subsequent analytical modelling work. It should therefore not be 

seen as an alternative but rather as a precursor to more quantitative approaches. Bertrand & Fransoo (2016) 

referred to Mitroff et al.’s (1974) research cycle when positioning the contribution of simulation modelling to the 

field of OM. As shown in Figure 6, this cycle can also demonstrate the utility of our diagnosis approach and how 

it relates to modelling work. Our diagnosis approach answers the question regarding why flow is disrupted and 



inventories build up. This understanding supports the creation of a conceptual model, which in turn guides the 

selection of key inputs to the modeling process.  

Scientific models assume that the system being modelled is known, meaning they are reliant on the right 

abstraction from reality being made in the conceptualization phase (Robinson et al., 2010). If the analytical model 

is not built on the correct underpinning assumptions then the user may arrive at the wrong solution. Our diagnosis 

process translates a problem situation to a conceptual model, exposing the correct sources of variability that 

disrupt flow and cause queues. This provides the right inputs to quantitative models, which is particularly 

important given that the conceptual model organizes thoughts in global, intuitive terms while the modelling 

process typically relies on formal, analytical skills (Sagasti & Mitroff, 1973; Mitroff et al., 1974). Clearly, these two 

elements rely on very different thought processes and skills that need connecting. Following the diagnosis, a 

diagnosis-informed modelling approach is advocated followed by a modelling-informed solution design. After 

implementation, the diagnosis process can be used again to evaluate the chosen solution.  

 

[Take in Figure 6] 

 

 Our framework for flow problem diagnosis also provides an indication on the applicability of particular 

quantitative models (“3. Scientific Model” in Figure 6). For example, it distinguishes between decoupling point 

inventories waiting for demand from the next production step and queues for which the production order has 

already been specified. For decoupling point inventories, a suitable inventory management approach could be 

selected in a successive diagnosis process (de Vries, 2007). The most appropriate quantitative model could then 

be selected from the rich inventory modelling literature after our artefact has specified the right source and type 

of variability to model. For queues, the framework for flow problem diagnosis distinguishes between waiting for 

capacity and waiting for other flow items. Queueing models can in particular provide support when flow items 

have been diagnosed as waiting for capacity, while simulation models can be constructed when, for example, 

items are waiting for other items in complex assembly situations. For queues, the final solutions to improve flow 

(“4. Solution” in Figure 6) may then be found by applying an appropriate material flow control approach (Graves 

et al., 1995). 



A specific form of real-time modelling that has received attention recently is the so-called digital twin (Grieves 

& Vickers, 2017; Tao et al., 2018). The use of digital twins recognizes the need to respond to emerging problems 

quickly. Digital twins however require accurate digital models. These models are typically large-scale system 

models that are updated in real time by sensor data. As a consequence, the digital twin concept has thus far been 

largely applied to industries where an accurate digital model of equipment can be used, for example, to support 

predictive maintenance (Khajavi et al., 2019). In contrast, useful applications that aim to improve the flow of 

individual flow items would rely on rapid interpretations of what is happening at particular locations without the 

development of large-scale models of the entire production system. Indeed, operations and decision-making 

processes that are triggered and controlled by the product itself result in higher quality and greater efficiency 

when compared to standard operations and external control (Kubler et al., 2016).  

Smart products are cognizant of their local context and can negotiate with local manufacturing resources 

(Bussmann & Schild, 2000, Meyer et al., 2011). Meanwhile, digital encapsulation shifts the loci of design and life-

cycle information associated with these products to the level of the individual flow item (Holmström et al. 2019). 

This provides a distributed and localized context in which our diagnosis approach can be used to support smart 

products in quickly self-diagnosing any flow disruptions at the item level without the need for large-scale 

modelling. Holmström et al. (2011) showed how item dwell times can be used to enhance traditional forms of 

flow diagnosis, simply by distinguishing between slow and fast-moving items at a certain location. Our approach 

extends Holmström et al. (2011) by allowing smart products to actually self-diagnose the root causes of large item 

dwell times. Interventions can then be triggered in combination with smart resources and resource agents, such 

as in Bussmann & Schild (2000) and McFarlane & Bussman (2003), or higher-level inventory and material flow 

control agents. Again, the appropriate choice of intervention is guided by our diagnosis.  

 Finally, our diagnosis process is most closely related to the study by Hopp et al. (2007), who focused on 

diagnosing production line performance. But it can also augment value stream mapping (Hines & Rich, 1997) and 

improve the resulting conceptual model. Value stream mapping provides a general understanding of value adding 

and non-value adding operations from the perspective of lean production, whereas our artefact identifies the 

specific source of variability that hinders the flow of items. This extension is important since it provides a link to 



the broader lean literature that has provided solution approaches (“4. Solution” in Figure 6) for different sources 

of variability. In fact, all of the internal lean constructs identified by Shah & Ward (2007) relate to flow 

improvement solutions within production. For example, pull production avoids waiting for missing demand from 

the next production step while set-up time reduction reduces batching-related variability, preventive maintenance 

avoids flow disruptions related to uncertain capacity availability, and statistical process control avoids supply 

availability problems triggered by upstream process steps.  

 

6.2 Insights into Buffer Theory Gained from the Design Process 

Our study elaborates on Hopp & Spearman’s (2004) statement that all variability in a system is somehow buffered 

by inventory, capacity and time, and that if variability exists then it will be buffered by one or a combination of 

these three variability buffers. This interrelatedness of buffers is frequently noted in the literature (e.g. Spearman, 

2014) and was also observed in our study.  

 Our field tests extend existing theory in three ways. First, the field tests established that there is a hierarchical 

structure between multiple causes of inventory that exist at the same point in the flow. When multiple inputs are 

missing, the demand input must arrive first, followed by the arrival of flow items that were missing, finally 

followed by capacity becoming available. A clear example was found in C2, where raw material stock first waited 

for an order and then, after the order was available, for capacity to become available. This means that missing 

flow items and capacity can remain hidden until demand occurs. Meanwhile, missing flow items can hide missing 

capacity, but this does not apply the other way around. This offers a much more granular understanding of the 

relationship between variability, inventory, capacity, and flow time at a process location than is provided by the 

OM triangle literature (e.g. Klassen & Menor, 2007), and it has implications for the execution of the diagnosis by 

either managers or smart objects. Both have to consider the possible answers to the first question of Step 3 – For 

which process input (missing input) are the flow items in this inventory waiting? – in a strict sequence. First, check 

for missing demand, and if demand is available then check for missing other flow items, and if these are all there, 

then capacity must be missing. 



 A second important finding from our field test is that flexibility in one process input can absorb variability in 

another input and hide this variability from management. For example, capacity flexibility can be used to avoid 

congestion caused by variable demand or the variable supply of flow items. Likewise, the flexible supply of flow 

items may avoid assembly waiting times or batch waiting times when either demand, the supply of other items 

or capacity is variable. Similarly, the flexible release of production orders may allow demand from the next 

production step to respond to fluctuations in supply or capacity. Finally, the source of variability can be hidden 

due to variability propagation (Hopp & Spearman, 1996) through several successive stations. For example, in C1 

the source of variability was four stations upstream of the actual inventory occurrence.  

The third important finding from our field tests emerged when we found buffers that existed without a missing 

input; a type of buffer classified as “obvious waste” in Hopp & Spearman (2004). In these cases, there appeared 

to be a discrepancy between the variability perceived and planned for by management and the variability that is 

actually realized. We argue that this inventory should only be classified as obvious waste if the buffer is structurally 

planned to be much larger than required to manage the variability that is realized. Incidentally, buffers will always 

be too high if they relate to uncertainty (safety stock or safety waiting time) since they have been designed to 

account for the worst case scenario that is anticipated. In this sense, they are dependent on the risk perception 

and propensity of management. The difference between realized variability and the variability that has been 

planned for is also important for the improvement phase. If there is a planned source of variability, the first 

question should be 'Is the planned amount necessary, given the real variability'? If not, then it is obvious waste 

and the solution will be relatively simple – to reduce the planned values.  

 

6.3 Implications for Practice 

Our framework discriminates between 28 types of inventory that differ from each other in terms of: 1) the missing 

input; 2) the type of variability creating the missing input; and, 3) the form of variability. These 28 types of 

inventory and their classification were deduced from the existing literature. As shown in Table 7, which provides 

a complete overview of the inventory types that have been diagnosed in the five companies, we identified 22 of 

these 28 inventory types in one or more of the five companies in which the framework was developed. This 



included identifying all three types of safety stocks, anticipation stocks, and cycle stocks. The two most common 

forms of inventory were demand safety stock and supply safety stock, which were both observed in all five 

companies.  

 

[Take in Table 7] 

 

Most importantly, the in-process inventories we identified in each case typically related to causes that the 

company’s existing production management concept did not consider. For example, company C0 had a production 

management concept focused on releasing amounts of work that fitted available capacity, and we did not observe 

any items waiting for capacity, as shown in Table 7.  Meanwhile, company C3 used an MRP-based production 

concept to synchronize its assembly flows. Consequently, the flow items in the inventory at the main assembly 

point were not waiting due to assembly waiting time. Instead, they appeared to be mostly waiting for capacity. 

This highlights the need to look beyond the chosen production management concept to avoid confirmation bias.  

The artefact developed in this study overcomes the confirmation bias introduced by a top-down perspective 

that is informed by a company’s pre-selected production management concept. It not only identifies each possible 

cause of inventory, focusing on the individual flow item level, but also provides a starting point for developing 

generic, widely applicable production management concepts (Thürer et al., 2020) that consider all possible causes 

of inventory to realize the best possible level of flow in an organization. For example, MRP, which focuses on 

synchronization, is often combined with Kanban (see, e.g. Graves et al., 1995; Lage Junior & Godinho Filho, 2010) 

or POLCA (Paired-cell Overlapping Loops of Cards with Authorization; see e.g. Suri, 1998; 2018; Riezebos, 2010) 

systems to avoid congestion. Similarly, the Theory of Constraints could be adapted to expand its suitability to 

assembly environments by extending the set of constraints considered to include those related to 

synchronization. Meanwhile, our diagnosis also provides an important means of assessing criticality, as used to 

determine which items to buffer in Demand-Driven MRP systems (e.g. Ptak & Smith, 2016). 

Finally, all of the companies made exclusive use of traditional manufacturing techniques except for C1, which 

also made use of some of the opportunities provided by digitalization. Customers could upload drawings for their 

unique products before automatically receiving a planned delivery date. Meanwhile, the drawing could be directly 



translated into code for nesting and laser cutting. While the influence of digitalization on the diagnosis process 

was found to be limited in this company, it is inevitable that digital manufacturing developments will greatly affect 

the future of OM (Holmström et al. 2019). This in turn may affect the occurrence of certain inventories in the 

presented framework for flow problem diagnosis. For example, model-based kitting (Khajavi et al., 2018) may 

reduce the occurrence of supply variability induced assembly waiting times. Meanwhile, the increased application 

of additive manufacturing may affect the positioning of the CODP (Hedenstierna et al., 2019), decrease the need 

for batching induced variability, and reduce the number of successive operations (and therefore the number of 

in-between inventories) required to produce one part. More generally, uncertainty related variability may 

decrease. Yet producing a variety of products on a production line would still require buffers to synchronize 

supply, capacity availability, and demand even if variability is more predictable with digitalization. 

 

6.4 Insights from the Design Science Approach 

Our research has followed a design science research approach where each research step links into the design 

science phases proposed by Peffers et al. (2007) and Holmström et al. (2009a). However, while conventional DSR 

typically starts with a context-specific design, which then becomes more generic through iterative solution 

refinements, we started with a generic design that was then applied to different contexts for refinement. This is 

motivated by the existence of prior knowledge, which allowed for deductively deriving our framework for flow 

problem diagnosis. The refinement of our artefact, consisting of this framework for flow problem diagnosis and 

an inductively derived diagnosis process, then focused on ensuring that the artefact will work after 

contextualization in different process and product settings along Hayes & Wheelwright’s (1979) volume/variety 

spectrum of production types. This highlights that the use of DSR does not have to be limited to the generalization 

of context-specific solutions; it also applies to the contextualization of generic solutions.  

 

7. Conclusions 

Problems with flow manifest themselves in the form of inventory, which is symptomatic of variability and a lack 

of synchronization between the availability of capacity, demand, and flow items. In practice, flow issues are 



ubiquitous in all types of OM settings and are a predominant concern of many OM theories. Improving flow has 

consequently been a core OM theme, and one that is set to become even more important following contemporary 

developments in manufacturing, such as smart products and digital encapsulation that enable new control 

concepts such as multi-agent holonic control. Yet, despite the importance of flow, the literature has lacked a 

structured and independent approach to diagnosing the root causes of inventories based on the underlying buffer 

mechanisms and forms of variability. Rather, much diagnosis of flow problems is strongly influenced by a 

manager’s a priori choice of production management concept. This confirmation bias may lead to a misguided 

intervention, as in our initial case company. Therefore, and to widen the focus of flow improvement actions 

beyond the scope of a singular concept, a comprehensive approach to diagnosing flow problems from the item 

level that is independent from any production management concept was needed. This study has used a DSR 

approach to address this shortcoming. 

First, this study used the concept of variability buffers to develop a framework for flow problem diagnosis that 

distinguishes between 28 different inventory types. The framework is embedded in the dimensions of traditional 

inventory classifications. To facilitate the application of this framework for flow problem diagnosis we then 

developed a diagnosis process. The generic design of this diagnosis process can be used to identify the root causes 

of inventories across a broad set of traditional production environments. It builds on systematically answering a 

sequence of four key questions: For which process input (missing input) are the flow items in this inventory 

waiting? Which input is a source of variability that causes missing inputs? What form does this variability take? 

And, what causes this variability in this specific context? This generic design was used in five cases to determine 

its usability and validity across a broad set of traditional production environments. 

This paper contributes to OM theory in multiple ways. Our designed artefact supports conceptual modelling 

by providing a base from which to choose appropriate analytical models to quantify the impact of potential 

solutions. It guides the choice of appropriate quantitative models and provides the foundations for extending the 

use of digital twins for rapid localized diagnosis without the need for large-scale modelling. The diagnosis process 

can, for example, be encapsulated into smart products that use digitally encapsulated information for self-

diagnosis. Meanwhile, the artefact also provides a basis for the development of generic production management 



systems that combine the foci of multiple existing systems. Finally, the artefact’s application in five companies 

provided a detailed understanding of buffering, which significantly extends existing theory on buffering 

mechanisms while providing a missing ingredient for flow improvement practices.  

 

7.1 Limitations and Future Research 

Our study has presented a new generic design for diagnosing the root causes of inventories and flow problems in 

organizations, which should be broadly applicable to a wide range of industry sectors. However, we remained 

entrenched in conventional manufacturing contexts. Future research could study the implications of digitalization 

in manufacturing and extend the framework to service contexts, including healthcare where Johnson et al. (2020) 

recently conducted a more solutions oriented DSR study. In most services, flow items are the customers 

themselves, so flow items that wait for demand will not occur. But all other missing inputs, variability sources, 

and causes presented in our framework would still apply. Nonetheless, a different emphasis might be needed. For 

example, in emergency departments, delays are more likely to be caused by waiting for multiple parallel capacity 

resources to arrive (e.g. doctors, nurses, etc.) rather than waiting for multiple flow items. The current framework 

does not consider parallel capacity resources. Our process could also be used to diagnose flow problems at a 

broader supply chain level. However, a supply chain represents a larger and more complex system. For example, 

this study assumed inventory falls under the ownership of a single company. In a more complex supply chain, 

ownership may change from supplier to buyer while inventory may accumulate in transit. Although we believe 

our diagnosis process can be applied to these contexts, future research is required to identify necessary 

refinements to the current design.  

Another limitation is our sole focus on the process of diagnosis. While this is an important step, future research 

could focus on connecting it with other parts of Figure 6, including the design of solutions. For example, each cell 

in our framework for flow problem diagnosis refers to a specific cause of inventory. The high granularity of our 

framework, compared to previous classifications, could enable the development of a generic design for the 

construction of solutions drawing, for example, on those provided in the lean and material flow control literature.  



Meanwhile, our categories for the form of variability appeared to be sufficient. However, given the importance 

of planning, a greater degree of granularity might be useful. For example, in the field of healthcare, Litvak & Long 

(2000) distinguished between artificial variability and natural variability. Artificial variability is defined as 

variability due to dysfunctional management, i.e. caused by controllable human actions, while natural variability 

is further subdivided into clinical, flow, and professional variability according to three categories of uncontrollable 

causes in care environments. Similar variability types could be developed for production environments to further 

guide the diagnosis of root causes of inventory and more precisely indicate solutions for flow improvement. 

Finally, our study has focused on improving flow, but it is important to acknowledge that flow may not be the 

only priority for an organization, and it may be necessary to trade-off flow against other considerations, such as 

quality. Thus, future research could investigate how the design can be elaborated to interact with other system 

priorities. 

 

References 

Akkermans, H., Oppen, W. Van, Wynstra, F., & Voss, C. (2019). Contracting outsourced services with collaborative key 

performance indicators. Journal of Operations Management, 65, 22–47. 

Bertrand, J. W. M., & Fransoo, J. C. (2016). Modelling and simulation. In Research methods for operations management 

(pp. 306-346); Karlsson, C. (ed), Routledge. 

Bertrand, J. W. M., Wortmann, J. C., & Wijngaard, J. (1990). Production control: A structural and design oriented 

approach. Elsevier Science Inc. 

Bussmann, S., & Schild, K. (2000). Self-organizing manufacturing control: An industrial application of agent technology. 

In Proceedings Fourth International Conference on Multi Agent Systems (pp. 87-94). IEEE. 

Cachon, G., & Terwiesch, C. (2019). Matching supply with demand: An introduction to operations management, 

McGraw-Hill, 4th edition. 

Calle, M., González-R, P. L., Leon, J. M., Pierreval, H., & Canca, D. (2016). Integrated management of inventory and 

production systems based on floating decoupling point and real-time information: A simulation based analysis. 

International Journal of Production Economics, 181, 48-57. 



Chandrasekaran, A., de Treville, S., & Browning, T. (2020). Intervention‐based research (IBR)—What, where, and how 

to use it in operations management. Journal of Operations Management, in print 

de Treville, S., and Antonakis, J. (2006). Could lean production job design be intrinsically motivating? Contextual, 

configurational, and levels-of-analysis issues. Journal of Operations Management, 24, 99-123. 

de Vries, J. (2007). Diagnosing inventory management systems: An empirical evaluation of a conceptual approach. 

International Journal of Production Economics, 108(1-2), 63-73. 

Forrester, J.W. (1961). Industrial Dynamics, MIT Press, Cambridge MA. 

Graves, R.J., Konopka, J.M., & Milne, R.J. (1995). Literature review of material flow control mechanisms. Production 

Planning and Control, 6(5), 395-403. 

Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum impact. MIS 

Quarterly, 37(2), 337-355. 

Grieves M., & Vickers J. (2017). Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex 

Systems. In: Kahlen FJ., Flumerfelt S., Alves A. (eds) Transdisciplinary Perspectives on Complex Systems. Springer. 

Goldratt, E. M., & Cox, J. (1984). The goal: Excellence in manufacturing. Great Barrington, MA: North River Press. 

Hayes, R.H., & Wheelwright, S.C. (1979). Link manufacturing process and product life cycle. Harvard Business Review, 

57(1), 133-140. 

Hedenstierna, C. P. T., Disney, S. M., Eyers, D. R., Holmström, J., Syntetos, A. A., & Wang, X. (2019). Economies of 

collaboration in build‐to‐model operations. Journal of Operations Management, 65(8), 753-773. 

Hevner, A.R. (2007). A Three Cycle View of Design Science Research. Scandinavian Journal of Information Systems, 

19(2), 87–92. 

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information system research. MIS Quarterly, 

28(1), 75–105. 

Hines, P., & Rich, N. (1997). The seven value stream mapping tools. International journal of operations & production 

management, 17( 1), 46‐64. 

Hines, P., Holweg, M., & Rich, N. (2004). Learning to evolve: a review of contemporary lean thinking. International 

Journal of Operations and Production Management, 24(10), 994-1011. 



Hoekstra, S., & Romme, J. (1992). Integral logistic structures: developing customer-oriented goods flow. Industrial Press 

Inc. 

Holmström, J., Ketokivi, M., & Hameri, A. P. (2009a). Bridging practice and theory: A design science approach. Decision 

Sciences, 40(1), 65-87. 

Holmström, J., Kajosaari, R., Främling, K., & Langius, E. (2009b). Roadmap to tracking based business and intelligent 

products. Computers in Industry, 60(3), 229-233. 

Holmström, J., Tenhiälä, A., & Kärkkäinen, M. (2011). Item dwell time in project inventories: a field 

experiment. Computers in Industry, 62(1) 99-106. 

Holmström, J., Holweg, M., Lawson, B., Pil, F. K., & Wagner, S. M. (2019). The digitalization of operations and supply 

chain management: Theoretical and methodological implications. Journal of Operations Management, 65(8), 728-

734. 

Holweg, M. (2007). The genealogy of lean production. Journal of Operations Management, 25(2), 420-437. 

Hopp, W., & Spearman, M. (1996). Factory physics: foundations of factory management. Chicago: Irwin. 

Hopp, W. J., & Spearman, M. L. (2004). To pull or not to pull: what is the question? Manufacturing and Service 

Operations Management, 6(2), 133-148. 

Hopp, W. J., Iravani, S. M. R. and Shou, B. (2007). A Diagnostic Tree for Improving Production Line Performance. 

Production and Operations Management, 16, 77–92.  

Johnson, M., Burgess, N., & Sethi, S. (2020). Temporal pacing of outcomes for improving patient flow: Design science 

research in a National Health Service hospital. Journal of Operations Management, 66(1-2), 35-53. 

Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., & Holmström, J. (2019). Digital twin: vision, benefits, 

boundaries, and creation for buildings. IEEE Access, 7, 147406-147419.  

Khajavi, S. H., Baumers, M., Holmström, J., Özcan, E., Atkin, J., Jackson, W., & Li, W. (2018). To kit or not to kit: Analysing 

the value of model-based kitting for additive manufacturing. Computers in Industry, 98, 100-117. 

Klassen, R. D., & Menor, L. J. (2007). The process management triangle: An empirical investigation of process trade-

offs. Journal of Operations Management, 25(5), 1015-1034. 

Kubler, S., Holmström, J., Främling, K., & Turkama, P. (2016). Technological theory of cloud manufacturing. In Service 

orientation in holonic and multi-agent manufacturing (pp. 267-276). Springer, Cham.  



Kusiak, A., (2018). Smart manufacturing. International Journal of Production Research, 56(1-2), 508-517. 

Lage Junior, M., M. Godinho Filho. (2010). Variations of the kanban system: Literature review and classification. 

International Journal of Production Economics, 125, 13-21. 

Little, J.D.C. (1961), A proof for the queuing formula: L= λ W, Operations Research, 9(3), 383-387. 

Litvak, E., & Long, M. C. (2000). Cost and quality under managed care: Irreconcilable differences. The American Journal 

of Managed Care, 6(3), 305-12. 

Lovejoy, W.S. (1998). Integrated operations: A proposal for operations management teaching and research. Production 

and Operations Management, 7(2), 106-124. 

McFarlane, D. C., & Bussmann, S. (2003). Holonic manufacturing control: rationales, developments and open issues. 

In Agent-based manufacturing (pp. 303-326). Springer, Berlin, Heidelberg. 

Meyer, G. G., Wortmann, J. C., & Szirbik, N. B. (2011). Production monitoring and control with intelligent 

products. International Journal of Production Research, 49(5), 1303-1317.  

Miller, J. G., & Sprague, L. G. (1975). Behind growth in material requirements planning. Harvard Business Review, 53(5), 

83-91. 

Mitroff, I. I., Betz, F., Pondy, L. R., & Sagasti, F. (1974). On managing science in the systems age: two schemas for the 

study of science as a whole systems phenomenon. Interfaces, 4(3), 46-58. 

Monden, Y. (1981). What makes the Toyota production system really tick. Industrial Engineering, 13(1), 36-46. 

Monden, Y. (2011). Toyota production system: an integrated approach to just-in-time. CRC Press. 

Monhemius, W.V., & Durlinger, P. P. (1985). Logistiek management. Kluwer, The Netherlands (In Dutch). 

Newman, W. R., Hanna, M., & Maffei, M. J. (1993). Dealing with the uncertainties of manufacturing: flexibility, buffers 

and integration. International Journal of Operations and Production Management, 13, 19-19. 

Ohno, T. (1988). Toyota Production System: Beyond Large-Scale Production, 1st Ed., Productivity Press. 

Olhager, J. (2003). Strategic positioning of the order penetration point. International Journal of Production Economics, 

85(3), 319-329. 

Oliva, R. (2019). Intervention as a research strategy. Journal of Operations Management, 65(7), 710-724. 

Olsen, T.L. & Tomlin, B., (2020). Industry 4.0: opportunities and challenges for operations management. Manufacturing 

& Service Operations Management, 22(1), 113-122. 



Orlicky, J. (1975). MRP: Material Requirements Planning. In The New Way of Life in Production and Inventory 

Management. McGraw Hill. 

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for 

information systems research. Journal of Management Information Systems, 24(3), 45-77. 

Pohl, R. ed. (2004). Cognitive illusions: A handbook on fallacies and biases in thinking, judgement and memory. 

Psychology Press. 

Ptak, C., & Smith, C., (2016). Demand Driven Material Requirements Planning (DDMRP). Norwalk, CT: Industrial Press. 

Rahman, S. U. (1998). Theory of constraints: a review of the philosophy and its applications. International Journal of 

Operations and Production Management, 18(4), 336-355. 

Riezebos, J. (2010). Design of POLCA material control systems. International Journal of Production Research, 48(5), 

1455-1477.  

Robinson, S., Brooks, R., Kotiadis, K., & Van Der Zee, D. J. (Eds.). (2010). Conceptual modeling for discrete-event 

simulation. CRC Press. 

Sagasti, F. R., & Mitroff, I. I. (1973). Operations research from the viewpoint of general systems theory. Omega, 1(6), 

695-709.  

Schmidt, G.M. (2005) The OM Triangle.  Operations Management Education Review, 1(1), 87-104. 

Schwarz, L.B. (1998). A new teaching paradigm: The information/control/buffer portfolio. Production and Operations 

Management, 7(2), 125-131.  

Seawright, J. & Gerring, J. (2008). Case Selection Techniques in Case Study Research: A Menu of Qualitative and 

Quantitative Options. Political Research Quarterly, 61(2), 294-308. 

Shah, R., & Ward, P. T. (2007). Defining and developing measures of lean production. Journal of Operations 

Management, 25(4), 785-805. 

Sharman, G. (1984). The rediscovery of logistics. Harvard Business Review, 62(5), 71-79. 

Shingo, S. (1989). A Study of the Toyota Production System from an Industrial Engineering Viewpoint, Cambridge, MA: 

Productivity Press. 

Slack, N., & Brandon-Jones, A. (2019). Operations management, Prentice Hall, 9th Edition. 



Spearman, M. L. (1997). On the theory of constraints and the goal system. Production and Operations Management, 

6(1), 28-33. 

Spearman, M. (2014). Of physics and factory physics. Production and Operations Management, 23(11), 1875-1885. 

Suri, R. (1998). Quick Response Manufacturing: A Companywide Approach to Reducing Lead Times, Productivity Press, 

Portland, OR. 

Suri, R. (2018). The Practitioner's Guide to POLCA The Production Control System for High-Mix, Low-Volume and Custom 

Products, Routledge Productivity Press, Boca Raton, FL. 

Tao, F., Zhang, H., Liu, A. & Nee, A.Y. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial 

Informatics, 15(4), 2405-2415. 

Taylor, F. W. (1919). The principles of scientific management. Harper & brothers. 

Tenhiälä, A. (2011). Contingency theory of capacity planning: The link between process types and planning methods. 

Journal of Operations Management, 29(1-2), 65-77. 

Thürer, M., Fernandes, N.O., and Stevenson, M. (2020). Production Planning and Control in Multi-Stage Assembly 

Systems: An Assessment of Kanban, MRP, OPT (DBR) and DDMRP by Simulation. International Journal of Production 

Research, (in print). 

van Aken, J. (2014). Two Hurdles to Take for Maximum Impact of Design Science Research in the IS-Field, in Helfert, M., 

Donnellan, B. and Kenneally, J. (Eds.), Design Science: Perspectives from Europe, Springer International Publishing, 

pp. 28–40. 

van Aken, J.E. & Romme, G. (2012). A Design Science Approach to Evidence-Based Management, in Rousseau, D.M. 

(Ed.), The Oxford Handbook of Evidence-Based Management, Oxford University Press. 

van Aken, J., Chandrasekaran, A., Halman, J., & Ketokivi, M. (2016). Conducting and publishing design science research 

Inaugural essay of the design science department of the Journal of Operations Management. Journal of Operations 

Management, 47–48, 1–8.  

van Donk, D. P. (2001). Make to stock or make to order: The decoupling point in the food processing industries. 

International Journal of Production Economics, 69(3), 297-306. 

Voss, C.A. (2007). Learning from the first Operations Management textbook. Journal of Operations Management, 25(2), 

239-247.  



Wagner, C. (1993). Problem solving and diagnosis. Omega, 21(6), 645-656. 

Watson, K. J., Blackstone, J. H., & Gardiner, S. C. (2007). The evolution of a management philosophy: The theory of 

constraints. Journal of Operations Management, 25(2), 387-402. 

Zipkin, P. H. (2000). Foundations of inventory management (Vol. 2). McGraw-Hill. 

  



Appendix 1: Definitions of the Types of Inventory and Associated Route Cause from Table 3 

 

Demand Safety Stock 

Flow items have been produced in advance because of unplanned fluctuations in demand. 

 

Demand Anticipation Stock (also Seasonal Stock) 

Flow items have been produced in advance because of planned fluctuations in demand. 

 

Demand Cycle Stock 

Flow items have been produced in advance because demand (for the next step) arrives in batches. 

 

Supply Safety Stock 

Flow items have been produced in advance because of unplanned fluctuations in the supply of flow items. 

 

Supply Anticipation Stock  

Flow items have been produced in advance because of planned fluctuations in the supply of flow items. 

 

Supply Cycle Stock 

Flow items have been produced in advance because of batching at the preceding step. 

 

Capacity Safety Stock 

Flow items have been produced in advance because of unplanned fluctuations in available capacity. 

 

Capacity Anticipation Stock 

Flow items have been produced in advance because of planned fluctuations in available capacity.  

 

Capacity Cycle Stock 

Flow items have been produced in advance because they are produced in batches at the next step. 

 

Demand Uncertainty Induced Congestion  

Flow items wait as capacity is not sufficient to handle the unplanned peaks in demand. 



 

Demand Anticipation Induced Congestion 

Flow items wait as capacity is not sufficient to handle the planned peaks in demand. 

 

Batched Demand Induced Congestion 

Flow items wait as capacity is not sufficient to handle batched demand. 

 

Supply Uncertainty Induced Congestion  

Flow items wait for capacity because of unplanned fluctuations in their supply. 

 

Supply Anticipation Induced Congestion 

Flow items wait for capacity to become available because of planned fluctuations in their supply. 

 

Batched Supply Induced Congestion 

Flow items wait for capacity because they became available as a batch. 

 

Capacity Uncertainty Induced Congestion  

Flow items wait because of unplanned fluctuations in available capacity. 

 

Capacity Anticipation Induced Congestion 

Flow items wait because of planned fluctuations in available capacity. 

 

Batch Transformation Induced Congestion 

Flow items wait for the next ‘event’ of capacity becoming available. 

 

Demand Uncertainty Induced Assembly Waiting Time 

Flow items wait to be assembled with other items, as their supply follows unplanned demand fluctuations more 

closely.  

 

Demand Anticipation Assembly Waiting Time 



Flow items wait to be assembled with other items, as their supply follows planned demand fluctuations more 

closely. 

 

Batched Demand Induced Assembly Waiting Time  

Flow items wait to be assembled with other items, as their supply follows batched demand more closely.  

 

Supply Uncertainty Induced Assembly Waiting Time 

Flow items wait to be assembled with other items, because of uncertainty in supply. 

 

Supply Anticipation Assembly Waiting Time 

Flow items wait to be assembled with other items, because of planned differences in the timing of their supply. 

 

Batched Supply Induced Assembly Waiting Time 

Flow items wait to be assembled with other items, because some items are supplied in batches. 

 

Capacity Uncertainty Induced Assembly Waiting Time 

Flow items wait to be assembled with other items, as their supply follows unplanned capacity fluctuations more 

closely.  

 

Capacity Anticipation Assembly Waiting Time 

Flow items wait to be assembled with other items, as their supply follows planned capacity fluctuations more 

closely. 

 

Batched Transformation Induced Assembly Waiting Time  

Flow items wait to be assembled with other items, as their supply follows the batched processing in the next step 

more closely.  

 

Batch Waiting Time 

Flow items wait for each other because the demand from the next step takes place in batches. 

 



Table 1: Summary of Production Management Concepts: Control Focus, Targeted Flow Problems, and Diagnosis 
Support 

 

Traditional 
Concept 

Control Focus 
Causes of Flow 

Problems Targeted by 
This Focus 

Diagnosis Support Gap 

Statistical  
Inventory 
Control (SIC) 

Determining 
stocks to cover 
future demand 

Decoupling stocks  
(flow items waiting for 
demand) 

Inventory models to 
determine optimized 
parameter settings 

Concepts focus 
on a limited 
group of 
inventory 
causes and do 
not identify the 
root causes 
determining 
why each 
individual flow 
item waits in 
inventory 

Lean 
Production 

Realizing one-
piece flow 

Batch waiting times 
(flow items waiting for 
other flow items of the 
same type) 

Value stream 
mapping to identify 
inventory points and 
sizes 

Material 
Requirements 
Planning 
(MRP) 

Synchronizing 
the availability 
of parts to 
assemble 

Assembly waiting times 
(flow items waiting for 
other flow items of a 
different type)  

Input/output models 
to monitor lead time 
offsets 

Theory of 
Constraints 
(TOC) 

Exploiting 
bottlenecks 
with minimal 
buffers 

Congestion  
(flow items waiting for 
capacity) 

Buffer management 
to indicate 
appropriate buffer 
sizes   

 



Table 2: Summary of Organizations C0 to C4 and their Role in the Study 

 

 Company 

 C0 C1 C2 C3 C4 

Attributes 

Company Size 
$14m turnover, 80 
employees 

$14m turnover, 60 
employees 

$15m turnover; 100 
employees 

$2.85bn; 90,000 
employees 

$5.4m; 30 
employees 

Shop Type Batch Job shop Batch Assembly line Continuous flow 

Dominant Operation Mode(s) Make-to-order Make-to-order 
Make-to-order & 
assemble-to-order 

Assemble-to-order 
& make-to-stock 

Make-to-stock & 
make-to-order 

Products 
Conveyor belts for 
harvesting 
equipment 

Customer-specified 
parts produced 
from sheet metal 

Outdoor play 
equipment (e.g. 
swings and climbing 
frames) 

Air Conditioners 
Bags for bag-in-box 
systems (e.g. dairy 
and wine bags) 

Key informant 
Production 
Manager 

Supply Chain 
Manager 

Technical & 
Operations Director 

Director of 
Industrial 
Engineering 

Plant Manager 

Location The Netherlands The Netherlands UK China U.S.A. 
 

Purpose 

Initial motivation for the research X     

Test the initial diagnosis process  X     

Validate the framework for flow problem diagnosis X X X X X 

Implement context-specific improvements  X     

Further develop the diagnosis process  X X X X 

 

 



 Table 3: Framework for Flow Problem Diagnosis 

 

 

 

 

  Missing Input 

Main 
Source of 
Variability 

Form of 
Variability 

Demand 
 

Capacity 
 

[Service Desk or Platform 
Waiting Time] 

Flow Items 

Different Type 
 

[Assembly  
Waiting Time] 

Similar Type 
 

[Batch  
Waiting Time] 

 

Demand 

Uncertainty Demand Safety 
Stock 

Demand Uncertainty 
Induced Congestion 

Demand Uncertainty 
Induced Assembly 
Waiting Time  

Batch Waiting 
Time 

 

Predicted 
Fluctuation 

Demand 
Anticipation 
Stock 

Demand Anticipation 
Induced Congestion 

Demand Anticipation 
Induced Assembly 
Waiting Time  

Batched Demand Cycle 
Stock 

Batched Demand 
Induced Congestion 

Batched Demand 
Induced Assembly 
Waiting Time 

  

Supply of 
Flow 
items 

Uncertainty 
Supply Safety 
Stock 

Supply Uncertainty 
Induced Congestion 

Supply Uncertainty 
Induced Assembly 
Waiting Time 

Predicted 
Fluctuation 

Supply 
Anticipation 
Stock 

Supply Anticipation 
Induced Congestion 

Supply Anticipation 
Induced Assembly 
Waiting Time  

Batched 
Supply Cycle 
Stock 

Batched Supply 
Induced Congestion 

Batched Supply 
Induced Assembly 
Waiting Time 

  

 
Capacity 

Uncertainty Capacity Safety 
Stock 

Capacity Uncertainty 
Induced Congestion 

Capacity Uncertainty 
Induced Assembly 
Waiting Time 

Predicted 
Fluctuation 

Capacity 
Anticipation 
Stock 

Capacity Anticipation 
Induced Congestion 

Capacity Anticipation 
Induced Assembly 
Waiting Time  

Batched Capacity Cycle 
Stock 

Batch Transformation 
Induced Congestion 

Batch Transformation 
Induced Assembly 
Waiting Time 

Decoupling stocks Queues Decoupling stocks Queues 



Table 4: Summary of Inventory Points and Inventory Types in C0 

  Inventory Type 

  

D
em

an
d

 S
af

et
y 

St
o

ck
 

D
em

an
d

 
A

n
ti

ci
p

at
io

n
 

St
o

ck
 

Su
p

p
ly

 C
yc

le
 

St
o

ck
 

 

D
em

an
d

 
U

n
ce

rt
ai

n
ty

 
In

d
u

ce
d

 
C

o
n

ge
st

io
n 

B
at

ch
 S

u
p

p
ly

 
In

d
u

ce
d

 
C

o
n

ge
st

io
n 

B
at

ch
 

Tr
an

sf
o

rm
at

io
n

 In
d

u
ce

d
 

C
o

n
ge

st
io

n 

 

Su
p

p
ly

 
U

n
ce

rt
ai

n
ty

 
In

d
u

ce
d

 
A

ss
em

b
ly

 
W

ai
ti

n
g 

Ti
m

e 

Su
p

p
ly

 
A

n
ti

ci
p

at
io

n
 

In
d

u
ce

d
 

A
ss

em
b

ly
 

W
ai

ti
n

g 
Ti

m
e 

B
at

ch
 W

ai
ti

n
g 

Ti
m

e 

 Missing Input Demand Demand Demand Capacity Capacity Capacity Flow Items Flow Items Flow Items 

 Source of 
Variability 

Demand Demand Flow Items Demand Flow Items Capacity Flow Items Flow Items Flow Items 

 Appearance of 
Variability 

Uncertainty 
Predicted 

Fluctuation 
Batch Uncertainty Batch Batch Uncertainty 

Predicted 
Fluctuation 

Batch 

In
ve

n
to

ry
 P

o
in

t 

a x        x 

b     x     

c      x    

d      x    

e    x  x    

f    x      

g   X       

h x x        

i     x     

j1       x x  

j2       x x  

k          

l   X       

m     x     

n     x     

p x  X       

q     x     

r   X       

s   X       
t x  X       

v1        x x 

v2        x x 

v3 x  X     x x 

W      x    



Table 5: Summary of Evaluation from the Design Cycle in C0 

Step where 
Learning 
Occurred 

Lesson Learned 
Consequences for the Diagnosis 

Process  

Diagnosis 
Step 3 

Lesson 1: It is important not to automatically move to 
the next inventory point when a source of variability has 
been found as there can be multiple causes of inventory 
waiting for demand at a single inventory point. 

Added a note to the end of Step 
3 to allow for multiple answers 
to each question. 

Lesson 2: Care has to be taken in distinguishing all 
possible product-market combinations before the 
diagnosis is finalized. 

Extended Step 1 and added a 5th 
(repeat) step to the diagnosis 
process. 

Lesson 3: It is important to repeat the diagnosis to 
account for seasonal and non-seasonal differences over 
time. 

Added a 6th (periodic repeat) 
step to the diagnosis process. 

Lesson 4: Flow items can remain at a given inventory 
point even after a missing input has become available 
because they have to wait for another missing input (i.e. 
multiple inputs were missing). 

Requires careful treatment of 
findings:  one inventory type 
may hide another. 

Lesson 5: The causes for the position of a decoupling 
point do not necessarily relate to variability. 

Requires careful treatment of 
information, as causes of the 
existence of inventory should be 
distinguished from causes of the 
position of inventory. 

 

 

  



Table 6: Summary of Evaluations from the Design Cycles in C1 to C4 

Step where 
Learning 
Occurred 

Lesson Learned 
Consequences for the 

Diagnosis Process  

Diagnosis 
Step 1  

Lesson 1: The approach taken when identifying inventory 
points for subsequent diagnosis needs to be adapted to 
the shop type and its complexity so that it is either 
resource-based (job shop), product-flow focused (batch 
process), or product-based (continuous flow). 

Differentiated Step 1. 

Diagnosis 
Step 2 

Lesson 2: Identifying CODPs is crucial for batch processes, 
but less so for job shop or continuous flow environments.  

Step 2 can be skipped for job 
shop and continuous flow 
environments. 

Diagnosis 
Step 3 

Lesson 3: One type of variability at a single inventory point 
may relate to two different sources. 

The context-specific Question 3 
(iv) should allow for multiple 
answers. 

Lesson 4: An observed buffer may not relate to the real 
variability but to the planned variability. 

Extension to Question 2: 
‘Which input is a source of 
planned or actual variability 
that causes missing inputs?’ 

Lesson 5: Variability can have its root causes at operations 
that are further upstream or downstream. 

Extension to the note at the 
end of Step 3 to look further 
upstream and downstream. 

Lesson 6: A significant part of the waiting times may occur 
as part of the order book before the first operation and 
before material is assigned to an order. 

Requires careful treatment of 
findings because waiting as 
part of the order book can be 
positive. 

 

 

  



Table 7: A Summary of the Inventory Types Identified in C0 to C4 

 

 

  

  Missing Input 

Main 
Source of 
Variability 

Form of 
Variability 

Demand 
 

Capacity 
 

[Service Desk or Platform 
Waiting Time] 

Flow Items 

Different Type 
 

[Assembly  
Waiting Time] 

Similar Type 
 

[Batch  
Waiting Time] 

 

Demand 

Uncertainty C0, C1, C2, C3, 
C4 

C1, C2, C4 C2 

C0, C1, C2, C4 
 

Predicted 
Fluctuation C0, C4 C4  

Batched C0, C2 C2, C3, C4  
 

Supply of 
Flow 
items 

Uncertainty C1, C2, C4 C1, C2, C3, C4 C0, C1, C2 

Predicted 
Fluctuation 

C1, C2 C1 C2 

Batched 
C0, C1, C2, C3, 
C4 

C1, C2, C4 C0 
 

 
Capacity 

Uncertainty C0, C1 C2, C4  

Predicted 
Fluctuation C0   

Batched C0, C1 C1, C2, C4  

Decoupling stocks Queues 



 

 

Figure 1: The Three Inputs to a Process – Flow Items, Capacity, and Demand 

 

 

 

 

 

 

Figure 2: Inventory Buffering and Time Buffering Resulting in Decoupling Stocks and Queues 
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Figure 3: Applied Design Science Process, drawing on Peffers et al. (2007) and Holmström et al. (2009)
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Figure 4: Positioning C0 to C4 on Hayes & Wheelwright’s (1979) Classification 



 

 

 

Figure 5: Process Map of the Field Test in C0 
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Figure 6: Positioning the Contribution of the Diagnosis Process (adapted from Mitroff et al., 1974) 

 

 

 


