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Definition: Additive manufacturing (AM) is the name given to a family of manufacturing processes
where materials are joined to make parts from 3D modelling data, generally in a layer-upon-layer
manner. AM is rapidly increasing in industrial adoption for the manufacture of end-use parts, which
is therefore pushing for the maturation of design, process, and production techniques. Machine
learning (ML) is a branch of artificial intelligence concerned with training programs to self-improve
and has applications in a wide range of areas, such as computer vision, prediction, and information
retrieval. Many of the problems facing AM can be categorised into one or more of these applica-
tion areas. Studies have shown ML techniques to be effective in improving AM design, process,
and production but there are limited industrial case studies to support further development of
these techniques.

Keywords: machine learning; supervised learning; unsupervised learning; reinforcement learning;
additive manufacturing; design for additive manufacturing; additive manufacturing process; additive
manufacturing monitoring

1. Introduction

Additive manufacturing (AM) is the name given to a family of manufacturing pro-
cesses where materials are directly joined to make parts from 3D modelling data [1]. This
is generally done in discrete planar layers, but non-planar processes also exist [2]. AM
enables various advantages, particularly when compared with traditional manufacturing
techniques, the enablement of mass part customisation and greater part complexity on the
macro-, meso-, and micro-scales [3]. Other advantages include not requiring any hard tool-
ing and enablement of on-demand manufacturing [4]. Despite these benefits, drawbacks
include a lack of inherent repeatability [5] which has led to difficulty in gaining certification
in some sectors [3]. Another drawback is the lack of widespread design knowledge and
tools tailored specifically for AM and the above-mentioned benefits that are enabled [3].

While, to some extent, applicable to all major industries, AM development has been
largely driven by the aerospace, automotive and medical sectors [4]. The major driver in
the aerospace and automotive sectors is to reduce component mass whilst not hindering
performance [4]. A wider range of motivations is seen for medical applications of AM,
although patient customisation, improved biocompatibility and performance is a common
theme [4]. AM is also often used in consumer products, with mass customisation and
light-weighting both being common motivations [4]. Machine learning (ML) is a branch
of artificial intelligence concerned with training programs to automatically improve their
performance. With this broad definition in mind, there are different types of ML which may
be classified as supervised, unsupervised, semi-supervised, or reinforcement learning [6].
Shinde and Shah identified five key application domains for ML [7]:

1. Computer vision.
2. Prediction.
3. Semantic analysis.
4. Natural language processing.
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5. Information retrieval.

Of these five domains, computer vision, prediction, and information retrieval have
applications in AM. More varied exploration into these areas has been enabled by recent
advances in graphics hardware which have allowed for faster optimisation of ML algo-
rithms on large training sets [7]. These advances have allowed for the implementation of
ML solutions within AM environments.

Across design, production, and process, improvements to current practices in AM
require significant expertise in operators and designers [8]. To leverage the benefits of AM,
the design, process, and production become significantly more complex [8]. In design, mass
customisation requires deep knowledge of the links between the variables being changed
as well as the requirements of the part. Similarly, increasing part complexity, either to
lighten the weight or deliver improved performance, greatly increases the difficulty in
designing suitable part topologies. As a result, these goals often come with large time
and/or computation trade-offs.

There is little orthogonalisation in AM parameters: for example, in material extrusion,
increasing extrusion temperature may improve layer adhesion but may also increase
stringing. As a result, optimising process parameters for specific parts or new materials can
be a time consuming and costly procedure [9]. Furthermore, part consistency is essential in
sectors where AM adoption is most likely, such as aerospace, but variation in part quality
both between and within machines and builds presents a barrier to more widespread
adoption. Variations can include inconsistent part geometries, porosity, and functional
performance. These issues encompass the management and interpretation of large amounts
of data and knowledge. Such problems may be eased through the proper application of
ML methods by reducing the amount of human or computational effort required to deliver
satisfactory results.

2. Additive Manufacturing

This section details the various AM processes and use cases to provide an understand-
ing of the current position of AM and the barriers limiting adoption. This understanding
will be further discussed in Section 4. There are a number of different AM processes
currently available—ASTM categorises these into seven types [1]:

1. Binder jetting: a liquid bonding agent or adhesive is selectively deposited to join
powdered materials together.

2. Directed energy deposition (DED): focused thermal energy (e.g., laser, electron beam,
plasma arc) is used to fuse materials by melting as they are deposited.

3. Material extrusion: material is selectively dispensed through a nozzle or orifice onto
a substrate.

4. Material jetting: droplets of build material are selectively deposited.
5. Powder bed fusion (PBF): thermal energy selectively fuses regions of a powder bed.
6. Sheet lamination: sheets of material are bonded layer-upon-layer to form a part.
7. Vat photopolymerisation: a vat of liquid photopolymer is selectively cured by light-

activated polymerisation.

There are three primary reasons for the adoption of AM techniques, including produc-
tion of more complex geometries (than are achievable with conventional manufacturing
approaches) without increasing cost, mass customisation of components, and supply
chain disintermediation.

2.1. Complex Geometries

AM’s layer-by-layer approach to manufacturing means that it can produce geometries
that would be impossible for traditionally recognised manufacturing techniques. This has
three main applications: light-weighting, performance optimisation and part consolidation.

Light-weighting may be achieved through topology optimisation (TO) or latticisation.
In TO, a part is analysed based on an objective function, such as stiffness, and material
is removed from the design that contributes least towards this function. This produces
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a more topologically complex part that can more precisely, and with less mass, meet
its specification. Latticisation involves permeating a unit cell throughout the internal
volume of a part. This can be done to remove mass but may also be leveraged to produce
custom material properties or improve biofunctionality, such as with the design of auxetic
structures for implants [10].

Fundamentally altering a part with a design for the additive manufacturing (DfAM)
approach can enable further performance optimisation that would be impossible if AM
was not used as the manufacturing technology of choice. Using hydraulic manifolds as
an example, traditional designs may use drilled out through holes and plugs to create the
required internal channels. This creates undesirable energy and pressure losses whilst
resulting in parts with unnecessarily large masses [11]. By redesigning the manifolds for
AM, without the constraints of straight, orthogonally intersecting channels, pressure losses
have been found to reduce by up to 29.6% [11] and part mass has been reduced by as much
as 91% [12]. Despite this, recognising which features require redesign as well as how to go
about said redesign is very often dependent on the expertise of the designer.

Many large assemblies are designed in that way due to limitations in the ability of the
manufacturing process to produce complex geometries (e.g., tool paths and undercuts).
Reducing the number of parts in an assembly can reduce maintenance requirements,
lead-time, weight, and production and non-recurring costs. A case study for AM part-
consolidation is presented in Table 1. While the benefits of part consolidation are tangible,
it may be difficult for designers, especially those inexperienced in AM, to select appropriate
candidate parts.

Table 1. Profitability analysis of the effects of AM-enabled part consolidation of a high-bandwidth,
direction tracking antenna array carried out by Optisys LLC [13].

Item Improvement

Part count 100 pieces down to a 1-piece integrated assembly
Lead time 11 months down to 2 months

Weight 95% savings
Production costs 20–25% reduction

Non-recurring costs 75% reduction

2.2. Mass Customisation

AM’s lack of reliance on tooling combined with its expensive materials and low
production speeds (relative to feedstocks for more conventional manufacturing processes)
make it best suited for high-value parts with low production volumes. This feature of AM
is most beneficial when the part under consideration is bespoke, thus enabling cost effective
production of parts customised for an individual consumer’s needs or wants. The three
sectors where this is most commonly used are medical/dental, packaging, and consumer
products [3]. A selection of examples from each industry is summarised in Table 2.

Table 2. Prominent case studies of mass customization across its three primary application areas.

Sector Case Study Source(s)

Medical Bespoke hearing aids [14]
Hard and soft tissue biomedical implants [3]

Custom casts, splints, orthotics, and prostheses [3,15]

Packaging Custom-fit ‘direct digital packaging’ [3]

Consumer products Custom-fit running shoes and insoles [16,17]

While scanning allows for conformal shapes to be easily designed into a part [14],
sophisticated design of the part’s mesostructure is dependent on designer experience and
computationally expensive tools, providing a hurdle for mass customised parts due to the
lack of tools for this task.
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2.3. Supply Chain Disintermediation

Due to its ability to manufacture parts on-site, AM allows for lean and agile manufac-
turing. This is particularly of note for requirements such as spare parts, where the demand
is highly variable. Liu et al. [18] concluded that AM has the ability to increase supply chain
efficiency for spare parts in aerospace [18] while Hernandez et al. [19] concluded that AM
has the ability to significantly reduce supply chain disruption for the United States Navy.
These benefits may be further leveraged should the production of AM parts be made more
repeatable through greater part consistency and geometrical accuracy.

3. Machine Learning

This section details the different types of ML and outlines common use cases relevant
to AM to highlight the potential of the field when applied to AM limitations.

Supervised learning algorithms fit hypotheses to labelled training datasets, those
where there is a known output. The trained algorithm may then be applied to unlabelled
cases to predict the corresponding label. Supervised learning is itself split into two cate-
gories: classification and regression. Classification problems have qualitative labels, i.e.,
classes such as whether an image is that of a cat or not, whereas regression problems have
quantitative labels, such as estimating the age of a cat based on an image [20].

Neural networks (NNs) are popular tools for supervised learning, especially with large
datasets. These algorithms seek to emulate a brain by implementing layers of connected
neurons, as shown in Figure 1. NNs map an input space onto an output space, which is
usually of different dimensions. The implementation of NNs allows for non-linear decision
boundaries to be inferred in a computationally efficient manner. More specialised NNs also
exist for specific application areas. For example, convolutional neural networks (CNNs)
utilise convolutional layers to identify features that may be present throughout the input
space. CNNs are most often used in computer vision tasks, where similar features, for
example vertical lines, may occur anywhere in the input space.
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Figure 1. A fully connected NN with one input layer, two hidden layers, and one output layer.
Circles represent neurons, which apply activation functions to the total sum of the products of the
previous layer’s activation and weight pairs.

Support vector machines (SVMs) are used in supervised learning tasks: traditionally
classification but they are capable of regression. They calculate relationships between data
in a higher dimensional space using a kernel function and placing a hyperplane decision
boundary between classes to maximise the margins [20]. In regression tasks, the hyperplane
is selected to best fit the data [20]. SVMs perform well for high-dimensional data but when
there are far more features than training examples, they are prone to overfitting the training
data. However, this can often be overcome through careful selection of an appropriate
kernel function or through regularisation.
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Unsupervised learning problems attempt to infer patterns from unlabelled data. Since
these problems do not have a label to compare against, they are often more difficult to
evaluate. There are various types of unsupervised learning algorithms, with the two
most common types being clustering and association rules. Clustering, also called data
segmentation, algorithms group data into clusters. The data within each cluster are such
that they are more closely related to each other than any data in a different cluster [20].
Association rule analysis, often called market basket analysis, seeks to identify prototype
values for a feature set such that the probability density at those values is relatively
large [20].

Reinforcement learning considers the optimisation of an agent’s interaction with its
environment through a reward signal [6]. While supervised learning extrapolates its output
from a set of known scenarios, reinforcement learning operates without known training
scenarios for the reward signal [6]. Despite this, reinforcement learning is disparate from
unsupervised learning in that it is not attempting to discern hidden structure within the
data but optimises said reward signal [6].

4. Machine Learning for Additive Manufacturing

This section presents prominent research and findings of ML applications in AM.
Applications have been grouped by their area of application with AM, in accordance with
Wang et al. [8].

4.1. Machine Learning for Design for Additive Manufacturing

Multiple studies, notably by Sosnovik and Oseledets [21], have utilised ML tools to
accelerate the TO process. This was enabled through the implementation of CNNs whereby:

1. The input volume was the result of the topology optimisation after just a few iterations
of the Solid Isotropic Material with Penalisation (SIMP) algorithm.

2. The output volume was a prediction of the part topology after 100 iterations of the
SIMP algorithm.

Whilst not removing the need for the SIMP algorithm, the method presented by Sos-
novik and Oseledets [21], demonstrated that ML can be effective in drastically reducing the
computational workload required to run TO. Results ranged from 92% intersection over
union accuracy for input volumes of just five SIMP iterations, to 99.2% after 80 [21]. This
work has been extended in further studies by Banga et al. [22] and later by Harish et al. [23],
which looked at 3D implementations for cantilevered beams, with Banga et al. [22] ob-
taining a binary accuracy of 96%. The implications of these studies show that effective
implementation of ML into the TO workflow may allow for:

1. A reduction in the time taken to carry out TO with a similar quality of output.
2. Higher resolution TO being efficiently used in practice thus enabling superior qual-

ity outputs.
3. Greater complexity in constraints applied, such as those specific to AM (e.g., support-

less structures).

Biomimetic designs are enabled by AM but it is a major challenge to generate metama-
terial structures with desired properties. Gu et al. effectively utilised CNNs to be able to
generate structures with predictable strength and toughness [24]. This study built up three
unit-cell “building blocks” from two jetted materials: one hard and one soft. These three
building blocks were then randomly assigned to each of the 64 cells in an 8 × 8 array and
then simulated to create a training example. In total, 80,000 training examples, or 10−8%
of the possible combinations, were created to train the CNN which was able to predict
material properties. The model had a normalised root mean square deviation from the
simulated results of 0.4926 on the test set. AM specimens were then produced to validate
these findings. Here, the use of ML allowed the researcher to accurately screen the whole
design space in hours compared to years for conventional simulation-only approaches [24].
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Recent works have also leveraged NNs to generate lattice structures based on required
mechanical properties. Jiang et al. developed a methodology for designing an ML im-
plementation to determine optimal design geometries to produce desired properties, for
example, stress–strain curves [25]. The methodology was implemented through the design
of an ankle brace with three zones, each with its own distinct mechanical requirements:
maximum torque, range of motion, as well as stress and strain in two orientations. An
NN was developed to define the design parameters for a pre-determined unit cell that
would meet these requirements. To train said network, simulations of random sets of the
design parameters within acceptable ranges were carried out to determine their stress–
strain response under the given maximum torque. This was then used as training data for
their model. The resulting regression model, with the same amount of data available, was
capable of generating structures with comparable errors to conventional methods, but with
improved computational efficiency [25]. Due to the nature of the NN architecture used,
however, performance could likely be further improved through gathering additional data.

An additional problem faced in DfAM is in knowledge dissemination: helping design-
ers learn how to best design their parts for fabrication using AM technologies [3]. With
the number of AM-specific design features growing, tools for designers are increasingly
required [26]: ML has successfully been implemented in creating such tools. Yao et al. de-
veloped a flexible hybrid ML tool to recommend design features to inexperienced designers
based on three designer-coded categories: loadings, objectives, and properties [26]. The
tool produced a dendrogram for the designer’s part and compared it against a hierarchi-
cally clustered database of existing design features [26]. An SVM was then used to target
features based on their similarity to the designer’s coding for the part [26]. Despite only
considering functionality-specific features, after testing it with inexperienced designers,
the tool was found to effectively enable the exploration of AM design freedoms [26].

4.2. Machine Learning for Additive Manufacturing Process

Within the domain of AM processes, ML is applied in two main areas: parameter
optimisation and process monitoring [8]. This section will outline the current states of
these areas.

4.2.1. Parameter Optimisation

Process parameter optimisation is often a manual and time-consuming process, mak-
ing it costly. Similarly, manual process monitoring/control also creates additional costs.
Since manual parameter optimisation requires the production of large numbers of samples,
there is readily available data for the production of ML tools. Said tools, which make up
a plurality of the research on ML for AM [27], largely take the route of optimising key
parameters for a particular quality indicator or set of indicators [8]. PBF and material
extrusion are the most common AM technologies to have had this type of tool developed.

Many studies have been carried out to optimise parameters for powder bed fusion
processes. A summary of the parameters studied as well as respective quality indicators
are shown in Figure 2, with porosity and fatigue life identified as having the largest variety
of process parameters linked to them. In addition, porosity is the leading quality indicator
in the research, with at least five studies implementing machine learning algorithms to
optimise process parameters [28–32]. Liu et al. [32] built on previous efforts to develop
a “physics-informed” model rather than a conventional “setting” model. The two model
types, along with a third combined model, were found to provide similar performance to
one another (within error margin). In addition, the novel “physics-informed” model was
identified as being more easily generalised to other machines, although this was not tested.
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implementations. Adapted from Wang et al. [8].

Many studies have also been carried out to predict and/or optimise quality indicators
for the material extrusion process. Figure 3 shows a summary of which process param-
eters have been linked to which quality indicators. Comparing Figure 2 to Figure 3, it
can be seen that a much greater number of parameters are considered for each quality
indicator in material extrusion over PBF. This may be attributed to lower part costs in
material extrusion over PBF, thus allowing for more training samples and potentially more
complex ML implementations. NNs can capture non-linearities more easily than simpler
regression models, making them the prevailing algorithm for material extrusion process
parameter studies.

A key area for optimisation in material extrusion is component surface roughness [4].
Li et al. [33] built a predictive model for surface roughness based on build plate and
extruder temperature, build plate and extruder vibration, and melt pool temperature.
The model used AdaBoost, a learning algorithm that is an ensemble of various weaker
algorithms, and was able to predict surface roughness with a root mean square error of
0.7 µm [33].

DED processes have also had parameters optimised as discussed in the literature.
The bulk of these works focus on controlling aspects of the melt pool and resulting tracks,
including: track width and height [34–36], melt pool geometry [37], and thermal history
of the melt pool [38]. More recent works have studied the properties of the final part:
Narayana et al. [39] built a NN to predict built part height and density from laser power,
scan speed, powder feed rate, and layer thickness. It was found that these parameters
were all of significant importance for density whereas scan speed and feed rate had the
largest effect on build height. These findings were reinforced by the model’s prediction
accuracy of 99%. Similar to material extrusion, DED produces parts with poor surface
roughness [40]. Xia et al. [40], used an NN to model and predict surface roughness based
on overlap ratio, welding speed, and wire feed speed with a root mean square error of
6.94%. A small training set was identified as a major limiter on the model’s accuracy [40].
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ML for process parameter optimisation in binder jetting has a lesser volume of lit-
erature associated with these aspects: Chen and Zhao [41] developed an NN powered
software tool to recommend layer thickness, printing saturation, heater power ratio and
drying time based on user defined preference for surface roughness as well as dimensional
accuracy along the Y and Z axes. Their software also predicted surface roughness as well
as Y and Z shrinkage. The error in these predictions was found to be 1.98%, 5.38%, and
16.58%, respectively. It was suggested that improvements could be made through use of a
larger training set or by reducing the model’s independence by implementing an element
of physical modelling [41].

4.2.2. Process Monitoring

While parameter optimization may help to improve process predictability, it cannot
eliminate failures entirely [42]. With print failures contributing significantly to the cost of
AM parts [43], process monitoring techniques able to detect build failures and defects are
necessary. Various ML implementations have sought to solve this problem and fall into
two categories depending on their input data type: optical and acoustic [8].

Optical monitoring solutions are the most widely used, with the data often coming
from digital, high speed, or infrared cameras [8]. In PBF processes, where the bulk of
monitoring research is currently concentrated, the most common target of these computer
vision tasks is the melt pool. From thermal data of the melt pool, Kwon et al. [42] trained a
CNN-based program to differentiate between high, medium, and low quality builds with a
failure rate of under 1.1% [42], allowing for potential time and cost savings. Other works
have used optical data from laser melting plumes [44–46] for similar quality classification
tasks, with Zhang et al. [45,46] finding that the best results are achieved when melt pool,
plume, and spatter data are used together to classify part quality. The most recent work
found a type of NN called a long–short term memory network, to be most effective in
prediction, with a root mean squared error of 13.9% [46].

Optical monitoring has also been implemented for other AM processes, including
binder jetting and material extrusion. Gunther et al. [47] used optical monitoring to detect
faults in binder jet parts based on the frequency and density of brightly coloured pixels.
The algorithms employed here were not provided, nor was there discussion of the accuracy
of the employed model. In material extrusion, optical monitoring has been implemented
for in situ defect detection [48]. Wu et al. [48] used a classification algorithm to identify the
presence of infill print defects in material extrusion, allowing for greater confidence in final
part’s quality. The study achieved an accuracy of over 95% but did not consider other vital
quality indicators such as precision and recall. Li et al. [49] used in situ optical monitoring
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of a material extrusion process to determine dimensional deviation with zero mean error
and a standard deviation of 0.02mm.

Acoustic monitoring is a newer and less widely adopted method of monitoring a
build mid-print. These techniques rely on characteristic acoustic signals that relate to
part porosity [50] and melt states [51] in PBF processes as well as process failures in
material extrusion [52]. Advantages of acoustic monitoring solutions include the lower cost
sensors compared to optical monitoring techniques [50]. ML algorithms applied also vary
from supervised CNNs to clustering solutions. Researchers in these fields have achieved
confidence of up to 89% for porosity classification [50] and 94% for melt-pool related
defects [51], showing acoustic monitoring to be an effective method for flagging problem
builds with less need for post-print examination and testing [51]. Acoustic monitoring has
also been applied to material extrusion processes. Wu et al. [53] used acoustic monitoring
and an SVM classifier to determine if the extruder was successfully pushing out material
with an accuracy of 100%. The SVM was also able to identify extruder blockages (normal,
semi-blocked, or blocked) with a 92% accuracy.

4.3. Machine Learning for Additive Manufacturing Production

In AM production, as well as implementing strategies discussed in Sections 4.1 and 4.2,
additional tools have been developed to aid in general production planning using NNs, and
manufacturability through a variety of methods. In addition, research has been conducted
on ML implementations to replicate CAD geometry from acoustic signals produced during
manufacturing, creating concerns around data security [54,55].

Printability and Dimensional Deviation Management

Models have been developed to aid in the identification of printability of components
in material extrusion [56] and PBF processes [57] utilising CNNs and SVMs, respectively.
The use of NNs has also been shown to aid in reducing print time estimation error for PBF
processes from 20–35% to 2–15% [58], enabling improved management of these machines.

There are three sources of dimensional deviation in AM parts [59]: the material
(shrinkage and warpage), the machine, and the file preparation (e.g., resolution reduction
due to conversion from CAD model to STL file format). ML has been used to correct these
in PBF [60], where NNs were implemented to first optimise part orientation, reducing
deviation due to the machine, then modify CAD geometry to account for thermal effects
on the material.

Khanzedah et al. [61] implemented an unsupervised learning algorithm, a self-organising
map, to analyse and assess point-cloud data for the dimensional deviation of parts made
with material extrusion processes. Their implementation was able to sort the part’s devia-
tions into discrete clusters based on the severity of the deviations present, which allowed
sub-optimal process conditions to be identified. Noriega et al. [62] used NNs to compen-
sate for dimensional deviation by modifying the part’s scale for material extrusion. Their
two NN implementations were used to reduce deviation by 50% for external dimensions
and 30% for internal dimensions. In a more robust study using the AM of a T4 spinal
vertebrae as a case study, Charalampous et al. [63] were able to achieve a 25% reduction in
dimensional deviation at a 1:1 scale and 33% at a 3:1 scale.

Other studies have looked to correct dimensional deviation in binder jetting and DED
processes. Shen et al. [64] presented a study using CNNs to predict dimensional deviation
and compensate for it via translation, scaling, and rotation of dental crown CAD geometry
to be manufactured by binder jetting processes. The CNN used a voxel-based approach
where, in the analysis of the implementation, each voxel was deemed to be correct or
incorrect. This was then used to generate F1 scores: a single-value metric used to evaluate
the model’s recall and precision. The predictive model and compensatory model both
averaged 94% for their F1 scores. Despite this, no physical samples were manufactured so
these findings are unverified.
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In DED, the dominant method of dimensional deviation correction is to optimise the
geometry of individual tracks through the optimisation of process parameters [33,35,36,64].
This partially corrects material and machine errors but not those associated with the file
preparation process. Caiazzo and Caggiano [37] developed one such model to tune laser
power, scanning speed, and powder feed rate to achieve a specified track geometry with
mean absolute errors of 2.0%, 5.8%, and 5.5%, respectively. An alternative approach was
presented by Choi who built a predictive NN for multi-track height based on laser power,
powder feed rate, and coaxial gas flow rate with an accuracy of 96.63%. Choi [65] queried
their model for optimal results: 300 W, 3.7 g/min, and 6 l/min, respectively.

The vulnerability of material extrusion machines to intellectual property theft was
identified by Al Faruque et al. [54] and Hojjati et al. [55]. Al Faruque et al. [54] showed that
the noise emitted by stepper motors during printing can be recorded and processed to infer
features of the print process:

1. Axis of motion.
2. Direction of motion.
3. Speed of hot-end motion
4. Distance travelled in each axis.
5. Extrusion amount.

This information was used in a physical-to-cyber attack to reconstruct the CAD
geometry being fabricated. Both studies utilised non-descript supervised classification and
regression models to determine the features and feature values, respectively. Geometry
was successfully reconstructed with an average axis prediction accuracy of 78% and an
average length prediction error of 18% [54]. Unlike most applications discussed, IP theft is
an aspect of AM that is harmed by ML. This must be resolved if AM, particularly material
extrusion, is to be made viable for security-sensitive applications.

5. Conclusions and Prospects

In research, ML has been shown to be effective in furthering AM design, process, and
production. In AM design, ML has been used to accelerate tools, explore new materials,
enable the identification of property–structure relationships, and aid novice designers. TO
acceleration and material exploration have limited scope in their current states and need
further development to work with larger design spaces or with finer spatial resolutions.
Property–structure relationships have the potential to be useful in functional lattice design,
but current implementations have inadequate transitional regions and accuracies that may
be too low for some industries. There are also insufficient case studies to support further
adoption of these techniques. Design feature recommenders in their current forms are quite
robust but require curation to remain relevant and, like functional lattice design systems,
need further case studies to be developed to support their adoption. In AM process,
most work focuses on process parameter optimisation. These are effective in optimising
process parameters for one or multiple quality indicators. Despite this, these optimisers
are machine specific, and no studies have been identified that attempt to produce more
general models. Without such developments, many samples will have to be produced
whether the final process used for optimisation is manual or through ML. ML has been
successfully used to improve the predictability of AM production techniques but has also
been shown to be able to exploit AM processes and enable IP theft. While there have been
no real-world reports of this sort of theft taking place, it remains a hurdle to be solved to
make AM, particularly material extrusion, a secure process.

Overall, ML has had a positive impact on the prospects of furthering AM adoption
and improving its value proposition. That said, most ML applications for AM are not
robust or trusted enough to be adopted in industry. As a result, research efforts should
focus on further developing these tools for real-world use and reporting industry case
studies to build confidence in their efficacy.
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