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Abstract

In 2013, Buchheim and Wiegele introduced a quadratic optimisa-
tion problem, in which the domain of each variable is a closed subset
of the reals. This problem includes several other important problems
as special cases. We study some convex sets and polyhedra associ-
ated with the problem, and derive several families of strong valid in-
equalities. We also present some encouraging computational results,
obtained by applying our inequalities to (a) integer quadratic pro-
grams with box constraints and (b) portfolio optimisation problems
with semi-continuous variables.

Keywords: mixed-integer nonlinear programming, cutting planes,
global optimisation

1 Introduction

Many important problems in operational research, statistics and finance can
be formulated as mixed-integer quadratic programs or MIQPs [3, 4, 31, 36].
An MIQP with n variables and m constraints takes the form

min
{
xTQx+ cTx : Ax ≤ b, x ∈ Rn

+, xi ∈ Z (i ∈ I)
}
, (1)

where Q ∈ Qn×n, c ∈ Qn, A ∈ Qm×n, b ∈ Qm and I ⊆ {1, . . . , n}.
When Q is positive semidefinite (psd), the objective function is convex.

Convex MIQPs are strongly NP-hard, but they can sometimes be solved
reasonably quickly in practice [5, 14, 24]. The non-convex case, however, is
still a formidable challenge [10–12,34].
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In 2013, Buchheim and Wiegele [8] introduced an intriguing quadratic
optimisation problem. Their problem takes the form

min
{
xTQx+ cTx : xi ∈ Di (i = 1, . . . , n)

}
, (2)

where, for all i, the domain Di is a closed subset of the reals. They point
out that this problem is of interest for at least three reasons:

• When Di = {0, 1} for all i, the problem reduces to quadratic uncon-
strained Boolean optimisation (QUBO), which has a wealth of appli-
cations in operational research, mathematics and physics [16].

• When Di = [0, 1] for all i, we obtain quadratic programming with box
constraints (QPB), which is a classic problem in global optimisation
[9, 15,37].

• By setting Di to {0}∪
[
`i, ui

]
for some ui > `i > 0, we can model semi-

continuous variables, which have applications in finance and statis-
tics [3, 31,36].

We will call the problem (2) quadratic programming with domain con-
straints or QPDC. We remark that there are at least three other reasons
why QPDC is of interest:

• The closest vector problem, a key problem in cryptography and the
geometry of numbers, is equivalent to the special case of QPDC in
which Di = Z for all i [11].

• To check if a symmetric matrix M ∈ Qn×n is co-positive, it suffices to
minimise xTMx and set Di to R+ for all i.

• Valid inequalities for QPDC can be applied to general MIQPs, espe-
cially when lower and/or upper bounds have been imposed on variables
during a branch-and-bound process.

In this paper, we study some convex sets associated with QPDC. Follow-
ing [19,27], we add extra variables, representing products of pairs of original
variables. We then study the closure of the convex hull of feasible solutions
in this extended space. After establishing some basic properties of this con-
vex set (extreme points, dimension and so on), we derive several families of
strong valid linear inequalities. We also present some encouraging computa-
tional results, obtained by applying our inequalities to (a) integer quadratic
programs with box constraints and (b) portfolio optimisation problems with
semi-continuous variables.

We remark that our work consolidates and extends results in several
papers: [6, 30], which were concerned with QUBO, [2, 9, 37], which dealt
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with QPB, and [11], which covered the cases in which Di ∈ {R,Z} and
Di ∈ {R+,Z+}.

The paper has the following structure. Section 2 reviews the literature.
Section 3 defines the convex sets and establishes their basic properties. Sec-
tion 4 deals with valid inequalities, and Section 5 contains the computational
results. Finally, Section 6 gives some concluding remarks.

Throughout the paper, we let N denote {1, . . . , n}. We assume without
loss of generality (w.l.o.g.) that Q is symmetric and that |Di| ≥ 2 for i ∈ N .
Given a vector v ∈ Rd, we let |v|1 and |v|2 denote

∑d
i=1 |vi| and

∑d
i=1 v

2
i ,

respectively. We write “LP” for “linear program”, “QP” for “quadratic
program”, “conv” for “convex hull” and “cl” for “closure”. We also let Sn+
denote the cone of real psd matrices of order n.

We assume that the reader is familiar with the basics of polyhedral theory
(see [28]). We will also use some concepts from convex analysis (see [22]).
Let S ⊂ Rq be a closed convex set. A vector r ∈ Rq is a ray of S if, given
any point p ∈ S and any positive scalar s, the point p + sr is also in S. A
point in S (or ray of S) is extreme if it is not a convex combination of two
other points in S (or rays of S). The normal cone of S at an extreme point
p is defined as: {

α ∈ Rq : αT z ≤ αT p (z ∈ S)
}
.

We call an extreme point a vertex if its normal cone is full-dimensional. A
valid linear inequality for S is called non-dominated if it is not implied by
two or more stronger valid linear inequalities. A valid inequality αT z ≤ β
is non-dominated if and only if there exists an extreme point p such that
α is an extreme ray of the normal cone at p. (If S is a full-dimensional
polyhedron, then the non-dominated valid inequalities are those that define
facets.)

2 Literature Review

In this section, we review the relevant literature. Due to space restrictions,
we mention only papers of direct relevance.

2.1 0-1 quadratic programs

Glover & Woolsey [19] proposed to convert 0-1 QPs into 0-1 LPs, as follows.
For 1 ≤ i < j ≤ n, replace the quadratic term xixj with a new binary
variable, say yij , and add the constraints

yij ≥ 0, yij ≤ xi, yij ≤ xj , yij ≥ xi + xj − 1. (3)

Adams & Sherali [1] found a simple way to generate valid inequalities
in the (x, y)-space. Take any two valid linear inequalities in the x-space,
say αTx − β ≥ 0 and γTx − δ ≥ 0, and form the quadratic inequality
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(
αTx − β

)(
γTx − δ

)
≥ 0. Then linearise the quadratic inequality using

the y variables. This method has come to be known as the Reformulation-
Linearization Technique or RLT [35].

Padberg [30] studied the following polytope, which he called the Boolean
quadric polytope:

conv
{

(x, y) ∈ {0, 1}n+(n2) : yij = xixj (1 ≤ i < j ≤ n)
}
.

He showed that the constraints (3) define facets, and found some other
facet-inducing inequalities, such as the following triangle inequalities:

xi + xj + xk ≤ yij + yik + yjk + 1
(
{i, j, k} ⊆ N

)
(4)

yij + yik ≤ xi + yjk
(
i ∈ N, {j, k} ⊆ N \ {i}

)
. (5)

(Note that i, j and k are assumed to be distinct.)
We will let BQPn denote the Boolean quadric polytope of order n. Many

more valid inequalities have been derived for BQPn [16]. Among them, we
mention the following inequalities, due to Boros & Hammer [6]:

2
∑

1≤i<j≤n
vivjyij ≥

∑
i∈N

vi(2s+ 1− vi)xi − s(s+ 1)
(
v ∈ Zn, s ∈ Z

)
. (6)

We will call these BH inequalities. Following [16], we call a BH inequality
pure if v ∈ {0,±1}n. The pure BH inequalities include all of Glover, Woolsey
and Padberg’s inequalities, and define facets under mild conditions [16].

It is also possible to derive semidefinite programming (SDP) relaxations
of 0-1 QPs (e.g., [23, 32]). Define the matrix Y = xxT , along with the
augmented matrix

Ŷ =

(
1

x

)(
1

x

)T

=

(
1 xT

x Y

)
.

Since Ŷ is psd, it satisfies bT Ŷ b ≥ 0 for all b ∈ Rn+1. This implies the
following valid inequalities for BQPn:

2
∑

1≤i<j≤n
vivjyij ≥

∑
i∈N

vi(2s− vi)xi − s2
(
v ∈ Rn, s ∈ R

)
.

These inequalities are weaker than the BH inequalities, but the associated
separation problem can be solved efficiently [16].

2.2 Non-convex quadratic programs

McCormick [27] considered non-convex QPs in which explicit bounds 0 ≤
x ≤ u are given. He proposed to construct an LP relaxation as follows. For
1 ≤ i < j ≤ n, replace xixj with a new continuous variable, say yij , and add
the linear inequalities

yij ≥ 0, yij ≤ ujxi, yij ≤ uixj , yij ≥ ujxi + uixj − uiuj . (7)
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Similarly, for i ∈ N , replace x2i with yii, and add

yii ≥ 0, yii ≤ uixi, yii ≥ 2uixi − u2i . (8)

Ramana [33] applied SDP to non-convex QPs. He used the same matrix
Ŷ that we mentioned in the previous subsection. The resulting inequalities
in (x, y)-space are:∑

i∈N
v2i yii + 2

∑
1≤i<j≤n

vivjyij ≥ (2s)vTx− s2
(
v ∈ Rn, s ∈ R

)
. (9)

We will follow [9,18] in calling (9) psd inequalities.
Yajima & Fujie [37] studied the following convex set, associated with

QPB:

conv
{

(x, y) ∈ [0, 1]n+(n+1
2 ) : yij = xixj (1 ≤ i ≤ j ≤ n)

}
.

They showed that some of the BH inequalities (6) are valid for it.
Burer & Letchford [9] studied Yajima & Fujie’s set in more detail. They

called it “QPBn”. They showed that, in fact, any inequality valid for BQPn

is valid also for QPBn. They also gave conditions for psd and BH inequalities
to define maximal faces of QPBn.

2.3 More general quadratic problems

Burer & Letchford [11] considered the special case of QPDC in which Di ∈{
R,R+,Z,Z+

}
for all i ∈ N . They showed that the following inequalities are

valid for all s ∈ Z and all v ∈ Zn such that vi = 0 whenever Di ∈
{
R,R+

}
:∑

i∈N
v2i yii + 2

∑
1≤i<j≤n

vivjyij ≥ (2s+ 1)vTx− s(s+ 1). (10)

They call these split inequalities. Note that they reduce to the BH inequal-
ities (6) when all variables are binary.

In 2011, Galli et al. [18] considered MIQPs of the form (1). They showed
the following. Let v ∈ Rn and s, t ∈ R, with s < t, be such that every feasible
solution satisfies the disjunction

(
vTx ≤ s

)
∨
(
vTx ≥ t

)
. The following gap

inequality is valid:∑
i∈N

v2i yii + 2
∑

1≤i<j≤n
vivjyij ≥ (s+ t)vTx− st. (11)

The gap inequalities are a generalisation of some inequalities that were found
earlier for the so-called cut polytope [26]. Note that the gap inequalities
reduce to split inequalities when v ∈ Zn, s ∈ Z and t = s+ 1.

Finally, we mention that there are several other works concerned with
strengthening McCormick relaxations of bounded MIQPs (e.g., [10, 12, 34,
35]). We omit details for brevity.
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Figure 1: Convex set C when n = 1 and D1 = {0} ∪ [1, 2].

3 The Convex Sets

In this section, we define the convex sets and derive some of their properties.

3.1 Preliminaries

For 1 ≤ i ≤ j ≤ n, we let yij denote the product xixj . We also identify yij
and yji when convenient. We then define the sets

Sx =
{
x ∈ Rn : xi ∈ Di (i ∈ N)

}
Sxy =

{
(x, y) ∈ Rn+(n+1

2 ) : x ∈ Sx, yij = xixj (1 ≤ i ≤ j ≤ n)
}
.

The convex set of interest in this paper is then

C = cl conv
{
Sxy
}
.

(Of course, if the Di are bounded, the closure operator is unnecessary.)
Figure 1 shows C for the case n = 1 and D1 = {0} ∪ [1, 2]. Note that,

even in this simple case, C is not polyhedral, since the lower convex envelope
of C, over the interval [1, 2], is defined by the nonlinear inequality y11 ≥ x21.
Yet, C has two facets, defined by the (McCormick) inequality y11 ≤ 2x1 and
the (gap) inequality y11 ≥ x1.

Figure 1 is instructive for another reason. Observe that the (psd) in-
equality y11 ≥ 2x1 − 1 is non-dominated, but it does not define a facet of
C. In fact, it does not even define a maximal face. So, when C is non-
polyhedral, linear inequalities that do not define maximal faces can still be
of interest.

We will find the following lemma useful.
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Lemma 1 For i ∈ N , let si, ti be scalars with si 6= 0. Given any pair
(x, y) ∈ Sxy, let x′ ∈ Rn be the vector obtained from x by setting x′i to

sixi + ti for i ∈ N , and let y′ ∈ R(n+1
2 ) be the vector obtained by setting y′ij

to x′ix
′
j for 1 ≤ i ≤ j ≤ n. Finally, let C ′ be the closure of the convex hull

of all possible pairs (x′, y′). Then C and C ′ are affinely congruent.

Proof. By definition, we have

y′ij =
(
sisj

)
yij +

(
sitj
)
xi +

(
tisj
)
xj + titj (1 ≤ i ≤ j ≤ n).

The map from (x, y) to (x′, y′) is clearly affine and invertible. �

An immediate consequence of this lemma is that a complete linear de-
scription of C ′ yields a complete linear description of C. Accordingly, we
make the following assumptions w.l.o.g. in the remainder of the paper.

• 0 ∈ Di for all i ∈ N (i.e., the origin belongs to Sx);

• For each i ∈ N , exactly one of the following holds: (a) xi is neither
lower-bounded nor upper-bounded (i.e., Di has no minimum or max-
imum element), (b) xi is lower-bounded but not upper-bounded (i.e.,
Di has 0 as its minimum element but does not have a maximum), or
(c) xi is both lower- and upper-bounded (i.e., Di has 0 as its minimum
element and some positive constant ui as its maximum).

Note that these assumptions imply that |Di| = 2 if and only if Di =
{

0, ui
}

.

3.2 Polyhedrality

The following lemma gives a necessary and sufficient condition for C to be
polyhedral:

Lemma 2 C is polyhedral if and only if |Di| is finite for all i.

Proof. Sufficiency is obvious. Now suppose that Di contains a closed
interval. Let C ′ be the projection of C into a two-dimensional subspace,
having xi and yii as axes. As shown in Figure 1, the lower convex envelope
of C ′, over the given interval, is defined by the nonlinear inequality yii ≥ x2i .

Suppose instead that Di consists of an infinite but countable number
of points. Figure 2, taken from [11], shows C ′ for the case Di = Z+. It
is apparent that C ′ has an infinite number of facets, and therefore is not
polyhedral. �
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Figure 2: Projection C ′ when Di = Z+.

3.3 Extreme points, rays and vertices

Next, we look at the extreme points, extreme rays, and vertices of C. The
extreme points are easy:

Lemma 3 A pair (x, y) is an extreme point of C if and only if (x, y) ∈ Sxy.

Proof. Similar to Lemma 2 in [9]. �

The rays are more complicated. We will need the following definition.

Definition 1 We say that a non-zero vector v ∈ Rn is “approachable” if
there exists an infinite sequence of vectors x1, x2, . . . in Sx and an infinite
sequence of positive scalars s1, s2, . . . such that both sk and

∣∣v− skxk∣∣1 tend
to zero as k goes to infinity.

For example, if n = 2 and D1 = D2 = Z+, then the vector
(
1,
√

2
)

is

approachable, because we can set xk to
(
k,
⌊√

2k
⌋)

and sk to 1/k.

Proposition 1 Suppose that the non-zero vector v ∈ Rn is approachable.

Define the vector v̂ ∈ R(n+1
2 ) by setting v̂ij to vivj for all i and j. Then(

0, v̂
)

is an extreme ray of C, and all extreme rays of C are of this type.

Proof. Let
(
x0, y0

)
be the origin in Rn+(n+1

2 ), and let x1, x2, . . . and
s1, s2, . . . be the infinite sequence associated with v. Also let

(
xk, yk

)
be

the point in Sxy that corresponds to xk. Now consider the following point,
which is a convex combination of

(
x0, y0

)
and

(
xk, yk

)
:(

1− s2k
)(
x0, y0

)
+ s2k

(
xk, yk

)
= s2k

(
xk, yk

)
.
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This tends to
(
0, v̂
)

as k goes to infinity. This establishes that
(
0, v̂
)

is a
ray. The fact that the ray is extreme follows easily from the fact that every
matrix of the form xxT for some x ∈ Rn is an extreme point of Sn+ [21].

Now, let M be a large positive real. If any point (x, y) ∈ Sxy satisfies
|xi| ≥ M for some i ∈ N , then it also satisfies yii ≥ M2. Thus, in any
extreme ray, at least one of the variables yii must take a positive value. In
particular, y cannot be the zero vector. So we can assume that any extreme
ray

(
x̄, ȳ
)

has been scaled so that |ȳ| = 1.
Assume that we have such a ray. Let k be a positive integer, and let ε

be a small positive constant. From the definition of C and the definition of
extreme rays, we can find a point

(
xk, yk

)
∈ Sxy with norm at least 2k such

that ∣∣∣∣∣(x̄, ȳ)−
(
xk, yk

)∣∣(xk, yk)∣∣
∣∣∣∣∣ ≤ ε.

Now observe that
∣∣xk∣∣ =

√∣∣yk∣∣, and therefore
∣∣xk∣∣/∣∣(xk, yk)∣∣ ≤ 2−k/2. Since

k can be made arbitrarily large and ε arbitrarily small, x̄ must be the zero
vector.

Finally, define a vector v ∈ Rn by setting vi to
√
ȳii for all i ∈ N . As k

tends to infinity and ε tends to 0, ykii/
∣∣(xk, yk)∣∣ approaches v2i . This implies

that xk/
∣∣(xk, yk)∣∣ approaches v. Thus, v is approachable and ȳ = v̂. �

Finally, to characterise the vertices, we will need the following definition.

Definition 2 For a given i ∈ N , we say that a given s ∈ Di is a “low-point”
if there exists some ε > 0 such that [s− ε, s] ∩Di = {s}. Similarly, we call
it a “high-point” if there exists some ε > 0 such that [s, s + ε] ∩Di = {s}.
A point that is a high-point or a low-point will be called a “boundary point”.
A point that is both a high-point and a low-point will be called “isolated”.

For example, if Di = R+, then 0 is both a low-point and a boundary point.
If Di ⊆ Z, then every point in Di is an isolated boundary point.

Theorem 1 A point
(
x∗, y∗

)
∈ Sxy is a vertex of C if and only if x∗i is a

boundary point for all i ∈ N .

Proof. Suppose the stated condition on x∗ holds. From Lemma 1, we can
assume w.l.o.g. that (a) x∗ is the origin and (b) 0 is a low-point for all i ∈ N .
Observe that, for all i ∈ N , the inequality xi ≥ 0 is valid and satisfied at
equality by

(
x∗, y∗

)
. Also, for 1 ≤ i ≤ j ≤ n, the inequality yii ≥ 0 is

satisfied at equality by
(
x∗, y∗

)
. This gives n +

(
n
2

)
tight inequalities in

total, and they are linearly independent. Thus, the normal cone at
(
x∗, y∗

)
is full-dimensional. This proves sufficiency.

The proof of necessity is similar to that of Theorem 1 in [9]. �
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3.4 Dimension and affine hull

The next thing to settle is the dimension and affine hull of C.

Lemma 4 If |Di| = 2 for some i ∈ N , then all points in Sxy and C satisfy
the equation

yii = uixi. (12)

Proof. Trivial. �

Proposition 2 If |Di| > 2 for all i ∈ N , then C is full-dimensional. Oth-
erwise, a complete and non-redundant description of the affine hull of C is
given by the equation (12) for all i ∈ N with |Di| = 2.

Proof. Suppose that |Di| > 2 for all i ∈ N . For each i ∈ N , let ai and
bi be distinct members of Di \ {0}. We construct a point in Sx, which we
call x0, by setting xi to 0 for all i. For i ∈ N , we construct another point
in Sx by taking x0 and changing xi to ai. Next, for any pair {i, j} with
1 ≤ i < j ≤ n, we construct another point in Sx by taking x0 and changing
xi and xj to ai and aj , respectively. Finally, for i ∈ N , we construct still
another point in Sx, which we call xi, by taking x0 and changing xi to bi.
This gives a total of 1 + n +

(
n+1
2

)
points in Sx. One can check that the

corresponding points in Sxy are affinely independent.
Now suppose that |Di| = 2 for some i ∈ N . We can set ai to ui, but then

bi does not exist. As a result, we can construct all of the above-mentioned
points in Sx, apart from xi. Thus, the dimension of C drops by one for each
such index i. �

4 Valid Inequalities and Facets

In this section, we consider various valid inequalities for C. Subsections 4.1
to 4.3 deal with McCormick, psd and gap inequalities, respectively. Subsec-
tions 4.4 and 4.5 give two different procedures for converting valid inequal-
ities for the Boolean quadric polytope into valid inequalities for C.

4.1 McCormick Inequalities

First, we consider the McCormick inequalities (7), (8). The results in this
subsection generalise the results in Subsection 4.1 of [9].

The following three propositions deal with the inequalities (7).

Proposition 3 Suppose that xi and xj are lower-bounded, so that the Mc-
Cormick inequality yij ≥ 0 is valid for C. This inequality defines a facet.
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Proof. Let F be the face of C defined by the inequality. Observe that a
point (x, y) ∈ Sxy lies in F if and only if at least one of xi and xj is 0. One
can check that all but one of the members of Sxy in the proof of Proposition
2 meet this condition. �

Proposition 4 Suppose that xi is lower-bounded and xj is upper-bounded,
so that the McCormick inequality yij ≤ ujxi is valid for C. This inequality
defines a facet.

Proof. We apply Lemma 1, setting x′j to uj − xj , and setting x′k to xk for
k ∈ N \ {j}. Note that y′ij = xi(uj − xj) = ujxi − yij . Thus, the inequality
yij ≤ ujxi, which is valid for C, maps to the inequality y′ij ≥ 0, which is
valid for C ′. The result then follows from Proposition 3. �

Proposition 5 Suppose that xi and xj are both upper-bounded, so that the
McCormick inequality yij ≥ ujxi+uixj−uiuj is valid for C. This inequality
defines a facet.

Proof. We apply Lemma 1, setting x′i to ui−xi, x′j to uj−xj , and x′k to xk
for k ∈ N \{i, j}. Note that y′ij =

(
ui−xi

)(
uj−xj

)
= yij−ujxi−uixj+uiuj .

Thus, the inequality yij ≥ ujxi + uixj − uiuj , which is valid for C, maps to
the inequality y′ij ≥ 0, which is valid for C ′. The result then again follows
from Proposition 3. �

Next, we consider one of the inequalities in (8).

Proposition 6 Suppose that xi is upper-bounded, so that the McCormick
inequality yii ≤ uixi is valid for C. If |Di| > 2, the inequality defines a facet
of C. If |Di| = 2, it does not define a proper face.

Proof. The proof that the inequality defines a facet when |Di| > 2 is
similar to the proof of Proposition 2, the main difference being that we use
ui in place of ai when constructing the members of Sx. If |Di| = 2, then all
points in C satisfy the McCormick inequality at equality (as already shown
in Lemma 4). �

The remaining McCormick inequalities (i.e., those of the form yii ≥ 0
and yii ≥ 2uixi − u2i ) are dealt with in the next subsection. To end the
current subsection, we mention one more result.

Proposition 7 Suppose that xi is lower-bounded, so that the inequality xi ≥
0 is valid for C. If xj is upper-bounded for some j ∈ N \ {i}, the inequality
is dominated by McCormick inequalities. The same is true if |Di| > 2 and
xi is upper-bounded. In all other cases, the inequality defines a facet.
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Proof. If xj is upper-bounded for some j ∈ N \ {i}, then the inequality
is dominated by the McCormick inequalities yij ≥ 0 and yij ≤ ujxi. If
|Di| > 2 and xi is upper-bounded, then the inequality is dominated by the
McCormick inequalities yii ≥ 0 and yii ≤ uixi.

Now suppose that none of the x variables are upper-bounded. Let F be
the face of C defined by the inequality xi ≥ 0. Most of the points in Sxy
mentioned in the proof of Proposition 2 lie on F , but there are n+ 1 points
that do not. So we have dim(C) − n affinely independent points on F . To
complete the proof, we need n additional points or rays. By Proposition
1, we can obtain a ray for each j ∈ N , by setting all variables to zero,
apart from yij , which is set to 1. One can check that these n rays, plus the
dim(C)− n points already mentioned, are affinely independent.

A similar proof works when |Di| = 2 and xj is not upper-bounded for
all j ∈ N \{i}. The only difference is that the dimension of C drops by one,
and we therefore do not need to use a ray with yii = 1. �

4.2 Psd inequalities

Next, we consider Ramana’s psd inequalities (9). The results in this subsec-
tion generalise some of the results in Subsection 4.2 of [9].

We start with a simple observation.

Lemma 5 The McCormick inequalities yii ≥ 0 and yii ≥ 2uixi−u2i are psd
inequalities.

Proof. The first is obtained by setting vi to 1, s to 0, and vj to 0 for all
j ∈ N \ {i}. The second is obtained by changing s to ui. �

Next, we show that psd inequalities almost never define facets.

Proposition 8 If n > 1 or |D1| > 2, then none of the psd inequalities
(9) define facets of C. If n = 1 and |D1| = 2, then the only facet-defining
inequalities are the ones mentioned in Lemma 5 (with i set to 1).

Proof. Let F be the face of C defined by a given psd inequality. Note
that the psd inequality can be derived by linearising the quadratic inequality(
vTx − s

)2 ≥ 0. Thus, all points in F satisfy the equation vTx = s. This
implies that all points in F also satisfy the (quadratic) equation

(
vTx −

s
)
xi = 0 for all i ∈ N . Linearising these quadratic equations (as in the

RLT) yields n additional linear equations that are all satisfied by F . This
immediately shows that F cannot be a facet when C is full-dimensional.

Now suppose that C is not full-dimensional, but n > 1. At least one of
the n RLT equations involves a variable yij with i 6= j. Such an equation is
not a linear combination of the equations (12). Thus, F cannot be a facet
in this case either. The case n = 1 and |D1| = 2 is trivial. �
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To make further progress, we need to define some more convex sets.
Recall the definition of Ŷ from Subsection 2.1, and let Ŷ00 denote the top-
left entry in Ŷ . Define:

Ŝ = conv
{
Ŷ ∈ Sn+1

+ : Ŷ00 = 1
}

Ĉ = cl conv

{
Ŷ ∈ Sn+1

+ : Ŷ =

(
1

x

)(
1

x

)T

for some x ∈ Sx

}
.

Note that Ŝ has dimension
(
n+1
2

)
+n. Moreover, each psd inequality is non-

dominated and defines a maximal face of Ŝ of dimension
(
n+1
2

)
− 1. (These

facts follow from analogous results on the psd cone; see, e.g., [21].) As for Ĉ,
it is clearly affinely congruent to C, since yij = Ŷij = Ŷji for 1 ≤ i ≤ j ≤ n.
Moreover, Ĉ ⊆ Ŝ, and therefore its dimension is at most

(
n+1
2

)
+ n.

We can now present another result concerned with psd inequalities.

Proposition 9 Suppose that C is full-dimensional (and therefore |Di| > 2
for all i.) Let v ∈ Rn and s ∈ R be given. Let N̂ =

{
i ∈ N : vi 6= 0

}
.

Suppose there exists a point x∗ ∈ Sx and constants ti, t
′
i for all i ∈ N̂ such

that (a) vTx∗ = s, (b) ti < x∗i < t′i for all i ∈ N̂ , and (c)
[
ti, t
′
i

]
⊆ Di for

all i ∈ N̂ . Then the psd inequality (9) is non-dominated, and it defines a
maximal face of C. The dimension of this face is

(
n+1
2

)
− 1.

Proof. Assume w.l.o.g. that N̂ = {1, . . . , k}. Let F be the face of C
defined by the psd inequality, and let

(
x∗, y∗

)
be the member of Sxy that

corresponds to x∗. Condition (a) ensures that
(
x∗, y∗

)
∈ F . Conditions

(b) and (c) ensure that the intersection of the hyperplane vTx = s with
Sx has dimension at least k − 1. In particular, there exist k − 1 linearly
independent vectors, say x1, . . . , xk−1, such that, for h = 1, . . . , k − 1, we
have (i) vTxh = 0 and (ii) xhi = 0 for all i ∈ N \ N̂ .

Now observe that there exists a small quantity ε > 0 such that the point
x∗ + ε

(
xh + xh

′)
lies in Sx for 1 ≤ h ≤ h′ ≤ k. This implies of course that

x∗+ εxh also lies in Sx for all h. In this way, we obtain an additional k+
(
k
2

)
affinely independent points in Sxy that lie on F .

Next, for h = 1, . . . , k and i = k + 1, . . . , n, we create another point in
Sx by taking x∗ + εxh and changing the value of xi to another value in Di.
This gives another k(n−k) affinely independent points in Sxy that lie on F .

Next, using the same approach as in the proof of Proposition 2, we can
create (n− k) +

(
n−k+1

2

)
additional affinely independent points in Sxy that

lie on F , by adjusting the values of xk+1, . . . , xn. This gives
(
n+1
2

)
points in

total, which shows that the dimension of F is at least
(
n+1
2

)
− 1.

Now, F is contained in the face of Ŝ defined by the psd inequality. This
latter face is maximal and has dimension

(
n+1
2

)
− 1. Thus, F must also
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be maximal and have the same dimension. Finally, to show that F is non-
dominated, it suffices to show that the normal cone of C at (x∗, y∗) has the
same dimension as the normal cone of Ŝ at the corresponding point Y ∗. We
omit details for brevity. �

Together with Lemma 5, this yields the following corollaries.

Corollary 1 Suppose that C is full-dimensional. The McCormick inequal-
ity yii ≥ 0 defines a maximal face of C if and only if 0 is not a boundary
point of Di. It is non-dominated if and only if 0 is not isolated in Di.

Proof. The fact that the inequality defines a maximal face when 0 is not
a boundary point follows from Proposition 9. The same proposition shows
that the inequality is non-dominated when 0 is not a boundary point.

Now suppose that 0 is a high-point, and let ε be the smallest positive
member of Di. The inequality yii ≥ εxi is valid for C, and it defines a
face that strictly contains the face defined by the McCormick inequality. A
similar argument applies if 0 is a low-point.

Next, suppose that 0 is isolated. Let ε1 be the smallest positive member
of Di, and let ε2 be the largest negative member. The (gap) inequalities
yii ≥ ε1xi and yii ≥ −ε2xi are valid for C, and they dominate the McCormick
inequality.

To complete the proof, one must show that the McCormick inequality is
non-dominated when 0 is a non-isolated boundary point. This too can be
shown via a consideration of normal cones. We omit details, for brevity. �

Corollary 2 Suppose that C is full-dimensional. The McCormick inequal-
ity yii ≥ 2uixi − u2i never defines a maximal face of C. It is non-dominated
if and only if ui is not isolated in Di.

Proof. Similar to the previous proof. �

We leave as an open question the problem of finding a necessary and
sufficient condition for a psd inequality to define a maximal face of C. We
do the same with the problem of finding a necessary and sufficient condition
for a psd inequality to be non-dominated. (Recall from Subsection 3.1 that a
psd inequality can be non-dominated even when it does not define a maximal
face of C.)

We end this subsection by mentioning that the separation problem for
the psd inequalities can be solved in polynomial time. This follows from the
fact that membership of the psd cone can be checked in polynomial time [20].

4.3 Gap inequalities

Next, we briefly turn our attention to the gap inequalities (11). A difficulty
with gap inequalities is that, even when Di = {0, 1} for all i, it is NP-hard
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to check whether a given gap inequality is valid [25]. Moreover, nobody has
yet found a necessary and sufficient condition for a gap inequality (or even
a BH inequality) to define a facet of BQPn [16, 26].

For these reasons, we content ourselves with presenting and analysing
a very simple family of gap inequalities. Let us say that the open interval
(s, t) ⊂ R is an “i-gap” if (a) s is a high-point, (b) t is a low-point, and (c)
[s, t] ∩Di = {s, t}. We have the following proposition.

Proposition 10 If |Di| > 2 and (s, t) is an i-gap, then the “simple” gap
inequality

yii ≥ (s+ t)xi − st (13)

defines a facet of C.

Proof. To see that (13) is indeed a gap inequality, just note that the
disjunction

(
xi ≤ s

)
∨
(
xi ≥ t

)
is valid. The facet proof is similar to the

proof of Proposition 2, the main difference being that we use s and t in place
of 0 and ai, respectively, when constructing the members of Sx. �

It turns out that the separation problem for the simple gap inequalities
can be solved efficiently, under a very mild assumption on the domains Di.
A more precise statement is given in the following definition and proposition.

Definition 3 The domain Di is said to be “well-behaved” if there exists
a polynomial-time algorithm for the following problem: given some r ∈ R,
check whether r ∈ Di and, if not, output an i-gap that contains r.

Proposition 11 For a given i ∈ N , let C ′i denote the projection of C into a
two-dimensional subspace, having xi and yii as axes. If Di is well-behaved,
then the separation problem for C ′i can be solved in polynomial time.

Proof. Let (x∗, y∗) be the point to be separated. If xi is lower-bounded
and x∗i < 0, the trivial inequality xi ≥ 0 is violated. Similarly, if xi is upper-
bounded and x∗i > ui, the trivial inequality xi ≤ ui is violated. If xi is
both lower- and upper-bounded, and y∗ii > uix

∗
i , the McCormick inequality

yii ≤ uixi is violated.
Now suppose that none of the above cases apply. We run the algorithm

to find out whether x∗i ∈ Di. If it is, we check the psd inequality yii ≥
(2x∗i )xi − (x∗i )

2 for violation. If not, x∗i must lie in an i-gap (s, t). In that
case, we check the simple gap inequality (13) for violation. �

4.4 Stretched BQP Inequalities

In this subsection, we present a simple procedure for converting valid in-
equalities for BQPn into valid inequalities for C. The starting point is the
following lemma.
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Lemma 6 Let M ⊆ N be the set of indices of variables that are both lower-
and upper-bounded, and suppose that m = |M | ≥ 2. If the inequality∑

i∈M
αixi +

∑
{i,j}⊆M

βijyij ≥ γ (14)

is valid for BQPm, then the “stretched” inequality∑
i∈M

αi

ui
xi +

∑
{i,j}⊆M

βij
uiuj

yij ≥ γ (15)

is valid for C.

Proof. By assumption, we have Di ⊆ [0, ui] for all i ∈ M . In other
words, xi/ui ∈ [0, 1] for all i ∈ M . Thus, the projection of C into the
subspace defined by the indices in M is contained in an affine image of
QPBm. Moreover, it was shown in [9] that any inequality that is valid for
BQPm is valid also for QPBm. �

Although the above lemma may appear trivial, it yields a huge new class
of facet-defining inequalities for C.

Proposition 12 Let M and m be as in Lemma 6. If (14) is a pure BH
inequality that defines a facet of BQPm, then the inequality (15) defines a
facet of C.

Proof. Let F , F ′ and F ′′ be the faces of BQPm, QPBm and C, respectively,
defined by the pure BH inequality. If F is a facet of BQPm, then it contains(
m+1
2

)
affinely independent points. Each of these points can be converted

into a point in F ′ simply by setting yii to xi for all i ∈M , or converted into
a point in F ′′ by setting xi to some value in Di for all i ∈ N \M .

Now, it is shown in Subsection 5.2 of [9] that, for each i ∈M , at least one
of the given points in F ′ has the property that, if we change the value of xi
to an arbitrary fractional value, we obtain an additional affinely independent
point in F ′. Thus, if |Di| ≥ 3 for any i ∈ M , we can create an additional
affinely independent point in F ′′. �

We remark that the Glover–Woolsey inequalities (3) are pure BH inequal-
ities, and an application of Proposition 12 to them yields the McCormick
inequalities (7). As a more interesting example, consider a QPDC instance
with Di = Dj = Dk = {0, 1, 2} for some {i, j, k} ⊆ N . Taking Padberg’s
triangle inequality (4) and applying Proposition 12 shows that the following
“stretched triangle” inequality defines a facet of C:

(x1 + x2 + x3)/2 ≤
(
yij + yik + yjk

)
/4 + 1.

One can check that this inequality is not a McCormick, psd or gap inequality.
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4.5 Internal BQP inequalities

Perhaps surprisingly, there exists a completely different way to convert valid
inequalities for BQPn into valid inequalities for C. We call the resulting
inequalities “internal”, because they involve a consideration of the “interior”
of the Di (unlike the inequalities in the previous subsection, which looked at
the Di from the “exterior”.) The results in this subsection generalise some
of the results in Subsection 5.3 of [11].

Our starting point is the following proposition.

Proposition 13 Let M be a subset of N , with m = |M | ≥ 2. Suppose that
the following hold for each i ∈ M : (a) the interval (0, 1) is an i-gap, and
(b) |Di| is finite. Suppose also that the inequality∑

i∈M
αixi +

∑
{i,j}⊆M

βijyij ≥ γ (16)

defines a facet of BQPm. Then there exists at least one vector δ ∈ Rm
+ such

that the inequality∑
i∈M

αixi +
∑

{i,j}⊆M

βijyij +
∑
i∈M

δi
(
yii − xi

)
≥ γ (17)

defines a facet of C.

Proof. Since (0, 1) is an i-gap for all i ∈ M , the simple gap inequality
yii ≥ xi is valid for each i ∈ M . Let F be the face of C defined by these
simple gap inequalities, and note that a pair (x, y) ∈ Sxy lies on F if and
only if xi ∈ {0, 1} for all i ∈M .

Now, let F ′ be the facet of BQPm defined by (16). Given that F ′ is
a facet, it must have

(
m+1
2

)
affinely independent extreme points. Each of

these points can be converted into an extreme point of F simply by setting
xi to an arbitrary value in Di, for i ∈ N \M , and determining the values
of the y variables accordingly. Then, using the same argument as in the
proof of Proposition 2, one can easily construct enough additional affinely
independent extreme points of F to show that the inequality (17) defines a
facet of F .

Finally, since F is a face of C, and |Di| is finite for all i ∈M , there exists
some δ ∈ Rm

+ such that the inequality (17) is valid for C. To ensure that
(17) defines a facet, it suffices to compute δ via sequential lifting [29]. �

To make this proposition more clear, we give an example.

Example 1: Suppose that Di = Dj = {0, 1, . . . , u}, where u > 1 is an
integer. The Glover–Woolsey inequality xi − yij ≥ 0 defines a facet of
BQP2, but it is not valid for C. If we set δi and δj to 1/2, we obtain

xi − yij +
1

2

(
yii − xi

)
+

1

2

(
yjj − xj

)
≥ 0,
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or, equivalently,
yii + yjj − 2yij ≥ −xi + xj .

This is a special case of the split inequality (10), obtained when vi = 1,
vj = −1 and s = −1. It therefore defines a facet of C.

If we set δi to 0 and δj to u/2 instead, we obtain:

xi − yij +
u

2

(
yjj − xj

)
≥ 0.

One can check that this inequality also defines a facet of C. �

If |Di| is not finite for all i ∈ M , the inequalities (17), may or may not
define facets of C. This is shown in the following example.

Example 2: Suppose that Di = {0} ∪ [1, ui] for all i ∈ M , where ui > 1.
The Glover–Woolsey inequality xi − yij ≥ 0 is not valid for C. If we set δi
to 0 and δj to ui, we obtain:

xi − yij + uiyjj − uixj ≥ 0. (18)

One can check that this inequality is both valid for C and non-dominated.
However, it does not define a facet, because all points in Sxy satisfying it at
equality also satisfy the equation yjj = xj .

The Glover-Woolsey inequality yij − xi − xj ≥ −1 is not valid for C
either. If we set δi and δj to 1, we obtain:

yii + yjj + yij − 2xi − 2xj ≥ −1. (19)

One can check that this inequality is also valid and non-dominated. It does
not define a facet of C either, because all points in Sxy satisfying it at
equality also satisfy the equations yii = xi and yjj = xj .

Finally, the Glover–Woolsey inequality yij ≥ 0 is already valid for C, so
we can set δi and δj to 0. We already showed that the inequality is facet-
defining (Proposition 3). �

Observe that Proposition 13 applies only when (0, 1) is an i-gap for all
i ∈ M . This is rather restrictive. Fortunately, one can use Lemma 1 to
obtain a much more general result. Suppose that

(
si, ti

)
is an i-gap. Let

us define a new variable, say x′i, using the identity x′i = (xi − si)/(ti − si).
The interval (0, 1) is an i-gap for x′i. Doing this for all i ∈ M , we can map
each i-gap to (0, 1). We can then generate “internal” BQP inequalities in
the (x′, y′)-space, and use Lemma 1 to convert them into valid inequalities
for C. Instead of going into details, we give an example.

Example 1 (cont.): Let us define x′i = xi − s, where s is an integer
with 1 ≤ s < u. Also let x′j = xj and y′ij = x′ix

′
j . The domain of x′i is
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{−s, . . . , u − s}. The Glover–Woolsey inequality y′ij ≥ 0 is not valid for C.
If we set δi and δj to 1/2, we obtain the inequality

y′ij +
1

2

(
y′ii − x′i

)
+

1

2

(
y′jj − x′j

)
≥ 0,

or, equivalently,
y′ii + y′jj + 2y′ij ≥ x′i + x′j .

This is a split inequality in the (x′, y′)-space. Mapping it back to (x, y)-space
using Lemma 1, we obtain the following valid inequality for C:

yii + yjj + 2yij ≥ (2s+ 1)(xi + xj)− s(s+ 1). (20)

This is also a split inequality. It defines a facet of C for s = 1, . . . , u− 1.
If we set δi to u/2 and δj to 0 instead, we obtain the following valid

inequality in (x′, y′)-space:

y′ij + (u/2)
(
y′ii − x′i

)
≥ 0.

Mapping it back to (x, y)-space, we obtain the following valid inequality for
C:

uyii + 2yij ≥ u(2s+ 1)xi + 2sxj − us(s+ 1). (21)

One can check that it defines a facet of C for s = 1, . . . , u− 1. �

5 Computational Experiments

In this section, we present the results of some computational experiments.
Subsection 5.1 deals with integer quadratic programs with box constraints
(IQPB), whereas 5.2 deals with portfolio optimisation problems with semi-
continuous variables.

The experiments were conducted on a 1.80 GHz Intel Core i7-8550U with
16Gb RAM, under a 64 bit Linux operating system (Ubuntu 18.04 LTS).
We used CPLEX (v. 12.10) to solve all LPs and MIQPs.

5.1 IQPB

First, we consider IQPBs of the form

min
{
cTx+ xTQx : x ∈ {0, . . . , u}n

}
,

where u is a positive integer. We remark that this problem is strongly NP-
hard even when u = 1 (since it is equivalent to the max-cut problem in that
case).

For the objective function, we consider three different cases: convex,
concave and indefinite. To generate the convex instances, we pick a ran-
dom point x∗ ∈ (0, u)n and a random matrix M ∈ Zn×n with entries in
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{−10, . . . , 10}. We then minimise ||M(x − x∗)||22. This corresponds to set-
ting Q to MTM and c to −2Qx∗. The concave instances are similar, except
that we replace Q with −Q and c with −c. The indefinite instances are
obtained by picking two random points x1, x2 and two random matrices
M1,M2, and minimising ||M1(x− x1)||22 − ||M2(x− x2)||22.

For each of the three cases, and for u ∈ {1, . . . , 7}, we created five random
instances. This makes 3 × 7 × 5 = 105 instances in total. We set n to
a relatively small value of 25, to ensure that we could compute optimal
solutions for all instances.

We began by solving the instances to proven optimality, using the MIQP
solver of CPLEX. This solver is based on branch-and-reduce. After that,
we solved the classical LP relaxation of each instance, which consists of
minimising

cTx+
∑
i∈N

qiiyii + 2
∑

1≤i<j≤n
qijyij

subject to the McCormick constraints (7) and (8). We used the dual simplex
solver of CPLEX for this purpose. We then recorded the optimal value and
LP lower bound for each instance.

After that, we experimented with adding the following four families of
inequalities, either alone or in combination:

• The “stretched” version of the triangle inequalities (4) and (5). They
can be written as u(xi +xj +xk) ≤ yij + yik + yjk +u2 and yij + yik ≤
uxi + yjk, respectively.

• Simple gap inequalities, which take the form yii ≥ (2s+1)xi−s(s+1)
for i ∈ N and s = 0, . . . , u− 1. (These are also split inequalities.)

• “Two-index split” inequalities, which come in two types. The first is
of the form (20) for 1 ≤ i < j ≤ n and s = 0, . . . , 2u− 1. The second
is of the form

yii + yjj − 2yij ≥ (2s+ 1)(xi − xj)− s(s+ 1)

for 1 ≤ i < j ≤ n and s ∈ {−u, . . . , u− 1}.

• “Lifted internal Glover-Woolsey” inequalities, which also come in two
types. The first is of the form (21) and the second is of the form

uyii − 2yij ≥ u(2s− 1)xi − 2sxj − us(s− 1).

Both types are valid for all i ∈ N , j ∈ N \ {i} and s = 1, . . . , u− 1.

We remark that the instances under consideration were small enough to
make it possible to insert all of the inequalities into the LP. Thus, there was
no need for any separation algorithms.
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Case u ST SG 2IS LI All

1 54.0 43.7 43.7 — 87.6
2 55.3 22.4 44.8 36.3 81.2
3 55.5 25.0 44.9 31.1 79.6

conv 4 55.6 22.5 45.0 30.7 79.9
5 55.6 23.4 45.0 28.0 79.8
6 55.6 22.5 45.1 27.7 79.6
7 55.7 23.0 45.1 26.4 79.7

1 100 0.00 0.00 — 100
2 100 0.00 0.00 0.00 100
3 100 0.00 0.00 0.00 100

conc 4 100 0.00 0.00 0.00 100
5 100 0.00 0.00 0.00 100
6 100 0.00 0.00 0.00 100
7 100 0.00 0.00 0.00 100

1 79.4 5.56 5.56 — 80.0
2 79.5 2.78 5.57 5.28 80.0
3 79.5 3.10 5.58 4.14 80.0

indef 4 79.5 2.79 5.57 3.99 80.0
5 79.5 2.90 5.58 3.62 80.0
6 79.5 2.79 5.57 3.55 80.0
7 79.5 2.85 5.58 3.37 80.0

Table 1: IQPB: average percentage gap closed by various inequalities.

For each instance and each family of valid inequalities, we computed the
percentage of the integrality gap that is closed by the given inequalities.
Table 1 shows the results. Here, “conv”, “conc” and “indef” stand for
convex, concave and indefinite, respectively. Also, “ST”, “SG”, “2IS” and
“LI” stand for stretched triangle, simple gap, two-index split and lifted
internal inequalities, respectively. Each figure is the average over five random
instances. All results are shown to 3 significant figures. The dashed lines in
the LI column appear because our lifted internal inequalities are not defined
when u = 1.)

We were surprised to find that, for the concave instances, the stretched
triangle inequalities close the gap completely. Moreover, the same inequali-
ties are very useful also in the convex and indefinite cases. The simple gap,
2-index split inequalities and lifted internal inequalities, on the other hand,
are useful only in the convex case. Indeed, in the convex case, the four
families of inequalities appear to work very well in combination.
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5.2 Portfolio optimisation

Although our approach is intended mainly for non-convex problems, we also
applied it to a convex problem, for interest. We chose a portfolio optimi-
sation problem with semi-continuous variables (see, e.g., [13, 17, 31]). The
problem takes the form

min xTQx

s.t.
∑n

i xi = 1 (22)

µTx ≥ ρ (23)

xi ∈ {0} ∪ [`i, ui] (1 ≤ i ≤ n),

where µ ∈ Qn is the vector of expected returns, ρ ∈ Q+ is the minimum
desired expected return, Q ∈ Sn+ is the matrix of covariances of returns, and
`i and ui are minimum and maximum buy-in thresholds, respectively.

We use the instances in Frangioni and Gentile [17]. There are 10 random
instances with n = 200 and 10 with n = 300.

The most natural initial LP relaxation consists of minimising∑
i∈N

qiiyii + 2
∑

1≤i<j≤n
qijyij

subject to the constraints (22) and (23), together with the McCormick con-
straints.

Some simple valid equations and inequalities can be derived using the
RLT. In particular, multiplying (22) by each variable in turn, we obtain∑

i∈N yik = xk for k ∈ N . Also, multiplying (23) by xk and 1 − xk, we
obtain: ∑

i∈N µiyik ≥ ρxk (k ∈ N)

µTx−
∑

i∈N µiyik ≥ ρ(1− xk) (k ∈ N).

We then considered the following five additional families of inequalities:

• The “stretched” version of the triangle inequalities (4) and (5), as
before.

• The simple gap inequalities yii ≥ `ixi for i ∈ N .

• The psd inequalities yii ≥ 2`ixi − `2i for i ∈ N .

• Inequalities obtained by “stretching” the lifted internal inequalities
(18) and (19). The first take the form

yij −
(
ui
`j

)
yjj ≤ `jxi − uixj .
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n RLT ST SG psd LI1 LI2 All

200 0.515 0.00 91.7 0.00 76.3 0.00 96.1
300 0.370 0.00 93.3 0.00 72.7 0.00 97.2

Table 2: Portfolio optimisation: average percentage gap closed by various
inequalities.

The second take the form(
`j
`i

)
yii +

(
`i
`j

)
yjj + yij ≥ 2`jxi + 2`ixj − `i`j .

We call these “LI1” and “LI2”, respectively.

Table 2 shows the results. Each figure is the average over the ten in-
stances of the given size. We were very surprised to see that the RLT
constraints close only a tiny fraction of the gap. Also, the stretched trian-
gle, psd and “LI2” constraints close no gap at all. On the other hand, the
simple gap and “LI1” inequalities perform extremely well, both alone and
in combination.

6 Conclusion

We believe that Buchheim and Wiegele [8] have introduced an important and
interesting family of non-convex quadratic optimisation problems, which we
have called QPDC. In this paper, we have studied the associated convex sets,
deriving several families of strong valid linear inequalities, and presented
some encouraging computational results. As mentioned in the introduction,
our work consolidates and extends results in [2, 6, 9, 11,30,37].

There are several interesting possible topics for future research. The first
is to devise effective (exact or heuristic) separation algorithms for various
families of inequalities (see [7] for the separation of split inequalities). A
second is to incorporate our inequalities into an exact algorithm for QPDCs,
or even general MIQPs (using the fact that variable domains are restricted
when branching takes place). A third is to find ways to exploit sparsity in
the quadratic cost matrix Q. Indeed, if Qij = 0, then we can in principle
omit the variable yij from the formulation, which may enable instances to be
solved more quickly. However, omitting variables corresponds to projecting
the convex sets into a subspace, and this is unlikely to be easy in general.
(Of course, we can use the inequalities in this paper whenever the y variables
with a non-zero coefficient are present.)
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