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Abstract 

Galvanized steel has been widely used in automotive body-in-white (BIW) frames 

due to its good corrosion resistance. The porosity problem of zero-gap welding is one 

of the bottlenecks for its application in the automotive industry. The remote spiral laser 

beam was utilized to zero-gap lap welding of galvanized steel. The relationship between 

pores (porosity, the total number of pores, and the number of pores with a diameter 

greater than 0.5 mm) in the weld zone and process parameters, which include keyhole 

velocity and spiral pitch, were investigated. It was found that the combination of a high 

keyhole velocity and a small spiral pitch, as well as a value of the spiral pitch smaller 

than the focal length of the laser beam, was essential to eliminate porosity in the welding 

area. The larger the keyhole speed and the smaller the spiral pitch, the more effective 

the suppression of pores. The experimental results show that when keyhole velocity is 

greater than 7m/min and spiral pitch is equal to 0.3mm, the pores will be completely 

suppressed, and the corresponding tensile shear strength has also been significantly 

improved. Furthermore, the spiral welding path delays the solidification of the liquid 

metal by heat conduction, allowing sufficient time for bubbles in the molten pool to 

escape. A welding model that combines keyhole engulfment of bubbles and heat 

conduction to increase the bubble escape time was proposed to explain the porosity 

elimination mechanism. 

Keyword: Laser spiral welding; Galvanized steel; Porosity; Spiral pitch; Zero-gap. 

Introduction 

(Fujita and Mizuno 2007) reported that in the automotive industry, galvanized steel 



 

 

was widely used in automotive body-in-white(BIW) manufacturing because of its 

superior corrosion resistance. (Chao 2003) pointed out that the number of spot welds in 

a single-vehicle ranges from 2000 to 5000, which indicated the importance of spot 

welding in automotive assembly. 

Resistance spot welding of galvanized steel sheets incur high electrode 

maintenance costs due to high current, long welding time, and the tendency of the zinc 

coating to adhere to the electrode. An experimental study by (Zhang, Chen et al. 2008) 

showed that the electrode surface diameter expansion, whether axially or radially, was 

much faster for welding galvanized DP600 than for ungalvanized steel. After 1200 

welds on 0.8 mm thick DP600 steel, the electrode diameter expanded by 1.9 mm, while 

after 1500 welds on steel without zinc coating, the electrode diameter expanded by only 

0.52 mm. 

Therefore, there has been a great deal of research in searching better performing 

alternative connection methods. According to (Dutta Majumdar and Manna 2013), 

remote laser welding (RLW) has become an attractive research technology in the field 

of welding due to its faster welding speed, lower heat input, and higher manufacturing 

flexibility. (Hong and Shin 2017) noted out that changing the resistance spot welding 

structure to the corresponding laser welding structure could significantly reduce the 

weight of the body-in-white structure by 12.2 kg. (Um and Stroud 2016) reported that 

remote laser welding (RLW) can maximize structure integrity by performing custom-

shaped welds, which can not only reflect the original intent of the assembly designer 

but also improve production efficiency. However, due to the excessive difference 



 

 

between the evaporation temperature of zinc of 906°C compared to the melting 

temperature of steel of 1538°C, highly pressurized zinc vapor tends to be generated at 

the melt interface. Therefore, successful laser welding of galvanized steel in a zero-gap 

lap joint structure is extremely challenging. A substantial amount of research efforts 

have been carried out to solve the above issues and several solutions have been 

proposed. To allow the high-pressure zinc vapor to escape readily, the usual solution is 

to create an appropriate gap between the lap surfaces of the galvanized steel sheets. To 

create a gap, (Chen, Mei et al. 2013) suggests placing shims between the top and bottom 

sheets, or stamping the upper sheet to form a projection to create an interfacial gap. (Gu 

2010) proposed using a pulsed laser to generate a hump in the base plate to create a gap. 

The above methods put forward ideas to solve problems related to the evaporation of 

the zinc coating during the welding process, but when these solutions were used in 

actual production, new problems arose. 

(Yang and Tao 2017) showed that maintaining the gap between the base materials 

conflicted with the waterproof performance required by the product design. In addition, 

even in a laboratory environment, it is difficult to maintain consistent tolerance levels 

between parts. 

To achieve welded joints under zero-gap conditions, (Ma, Kong et al. 2013) 

proposed a double-pass laser pre-scanning and welding process. The process uses a 

defocused laser beam with a wider beam diameter and reduced intensity during the 

preheating process. The experimental results showed that the zinc layer was melted or 

part of the zinc was vaporized off during the preheating process. Although the method 



 

 

of removing the zinc coating gives the steel sheets better weldability, at the same time, 

it also increases the susceptibility to corrosion. 

Therefore, in order to solve the porosity problem in the lap joint process of 

galvanized steel sheet, this article adopts a new type of laser spot welding method-

remote laser spiral spot welding for zero gap lap joint of galvanized steel sheet. 

(Kumagai, Kuwahara et al. 2016) reported that the spiral scanning form is conducive to 

the escape of gas and reduces the defects caused by the unsatisfactory escape of zinc 

vapor. Compared with traditional laser spot welding, the diameter of the fusion surface 

formed by spiral laser spot welding is larger, and the upper and lower dimensions of the 

nugget are more consistent. This paper studies the mechanism of the new laser spiral 

spot welding method to suppress the porosity, and analyzes the weld joint formation 

and mechanical properties under different spiral parameters, thereby forming a good 

and excellent lap joint process window. 

 



 

 

2. Materials and methods 

 

Fig. 1. Schematic diagram of the remote laser spiral welding experimental set-up. (a) Laser scanning 

path; (b) Scanning the weld head; (c) Microstructure and EDS analysis of the zinc coatings. Purple line: 

Zn; green line: C; blue line: Fe; (d) The size of the specimen for tensile shear test. 

The welding system used for remote laser spiral spot welding was equipped with 

a Blackbird intelliWELD II FT galvanometer scanner, an IPG YLS-5000 fiber laser, 

and an ABB IRB 4600 robot in ambient air at room temperature. Fig. 1a is a schematic 

diagram of a spiral scanning path used to generate spot welding. The scan path has an 

outer diameter of 7 mm and consists of an Archimedean spiral and a circle with a radius 

r of 3.5 mm. The laser beam wavelength is 1060 nm and the fiber diameter is 200 μm. 

The scanner includes a collimating lens with a focal length of 450 mm and an f-θ 

focusing objective with a focal length of 150 mm. The focal diameter R of the laser 

beam is 0.6 mm, as shown in Fig. 1b. 



 

 

The base material 1 mm thick galvanized steels with a plating thickness of about 

10 μm were used for all experiments, as shown in Fig. 1c. Steel plates were cut into 

120 (length) × 40 (width) × 1 (thickness) mm specimens and then added to a lap 

configuration with an overlap of 20 mm. The focusing plane of the laser beam was set 

on the upper surface of the top sheet. The appropriate welding power and scanning 

speed were selected to ensure sufficient nugget dimensions at both upper and lower 

surfaces. Process parameters are shown in Table 1. For the optimization of formation 

and poor porosity, the parameters were optimized. To investigate the reason that the 

remote laser spiral welding had good porosity suppression capability, high-speed video 

observation of the welding process was carried out. The high-speed charge-coupled 

device (CCD) camera used was a Phantom VEO 640 with a resolution of 1280 × 600 

and a frame rate of 5000 fps. 

Before welding, the surface of the steel plate was ultrasonically cleaned in acetone 

for 15 minutes to remove the contaminants adhering to the surface and then dried in a 

drying oven at 150°C for 2 hours. Each metallographic specimen was ground, polished, 

and etched with 4 ml of HNO3 and 96 ml of CH3CH2OH solution. The microstructure 

and fracture morphology of the joints were analyzed by optical microscopy, scanning 

electron microscopy (SEM), and energy spectroscopy (EDS). The uniaxial shear tensile 

test was performed on an AG-25TA Electromechanical universal tensile tester at a 

constant strain rate of 2 mm/min at room temperature. The tensile specimens, as shown 

in Fig. 1d. 

Table 1 Welding parameters used in this study. 



 

 

Laser beam scanning 

Speed, v (m/min) 

Laser power, P  

(W) 

Spiral pitch, 

D (mm) 

3 2000 0.3 

3 2000 0.5 

3 2000 0.7 

5 2500 0.3 

5 2500 0.5 

5 2500 0.7 

7 3000 0.3 

7 3000 0.5 

7 3000 0.7 

9 3500 0.3 

9 3500 0.5 

9 3500 0.7 

 

  



 

 

3. Results and discussion 

3.1 Reduction and suppression of porosity in the weld area 

Fig. 2 shows the top view of the spiral spot weld with different process parameters. 

It can be observed from Fig. 2, as the keyhole speed v increases, the number, and 

diameter of pores on the weld surface show a decreasing trend. However, when the 

spiral pitch D=0.7 mm, although the keyhole speed increases, the change of pore 

diameter and number of pores on the weld surface was not obvious, as shown in Fig. 

2a, Fig. 2b, Fig. 2c, and Fig. 2d. Therefore, when the spiral pitch D is large, simply 

increasing the scanning speed is unable to obtain a weld with a porosity-free surface. 

With the same other welding parameters, a decrease in the spiral pitch D shows a rapid 

decrease in the number and diameter of pores on the weld surface, which is better than 

the results obtained by increasing the keyhole velocity. Fig. 2g shows that the pore 

diameter of the weld surface pore reduces to 0.5 mm or less when v=7 m/min and D=0.5 

mm. As shown in Fig. 2k, when v=7 m/min and D=0.3 mm, the weld surface porosity 

is completely eliminated. Decreasing the spiral pitch D, both the number and diameter 

of the pores were reduced, and at the same time, the weld surface morphology was 

improved, the spiral line traces faded, and the weld surface was smoother as shown in 

Fig. 2d, Fig. 2h, and Fig. 2l. 

X-ray non-destructive tester was used to further determine the porosity of the 

sample welds in Fig. 2, and the results are shown in Fig. 3. In the defective samples, 

except for the sample with spiral pitch D=0.7 mm where pores existed in the middle of 

the weld, the pores of other samples were almost all located at the edge of the weld, and 



 

 

most of the pores were irregular in shape and chain-like in distribution, which was 

typical of the pores caused by unstable keyhole. The Keyhole interrupted by flowing 

molten metal evolve into porosity because there was no time to overflow the molten 

pool. 

 

Fig. 2 Top surface morphology of spiral spot welding under different process parameters. 

 

Fig. 3 The results of X-ray nondestructive testing under different process parameters. 



 

 

In Fig. 3, it can be seen that the porosity of the weld shows a decreasing trend with 

the improvement of the welding parameters. When the spiral pitch D is set smaller and 

the keyhole velocity v is set larger, the porosity decreases further. Fig. 3j shows that the 

pores were almost eliminated in the weld for the spiral pitch of 0.3 mm and v=5 m/min. 

With the further decrease in spiral pitch and the further increase in v, the porosity of the 

weld zone remains at a low level, and the grayscale of X-ray non-destructive testing is 

more consistent. Therefore, it means that the weld surface is smoother and the upper 

and lower dimensions of the nugget are more consistent. 

Samples with different parameters were selected for further precise pore 

localization analysis. Metallographic specimens along the lap center section and 

transverse section were used to analyze the distribution of porosity in the depth 

direction and horizontal direction of the weld, as shown in Fig. 4. As shown in Fig. 4a 

and Fig. 4b, the horizontal direction pores of the weld were concentrated on the 

outermost part of the circular weld, and the depth direction pores were distributed in 

the upper half of the weld. Based on the principle of pore suppression by laser-induced 

absorption of bubbles by keyhole, this result could be explained as follows. The 

outermost side is the last stage of welding, adjacent to the unmelted plate, the molten 

pool heat dissipation rate is very fast, liquid metal exists for a short time and solidify 

quickly, so the bubbles were no time to escape from the molten pool. During the 

welding process, the molten metal fluid moves to the lower part of the keyhole due to 

gravity, forcing the bubbles to move upward, but the bubbles fail escape due to the 

solidification of the liquid metal, so pores are formed in the upper sheet. Although it is 



 

 

difficult to suppress the porosity on the outside of the weld, it could be suppressed 

within a certain range by reducing the spiral pitch D and increasing the welding speed 

v, as shown in Fig. 4c and Fig. 4d. 

 

Fig. 4 Metallographic specimens of horizontal section and cross section under different welding 



 

 

parameters; (a) P=3.5 Kw, v=9 m/min, D=0.7 mm; (b) P=2 kW, v=3m/min, D=0.5mm; (c) P=2.5 kW, 

v=5 m/min, D=0.3 mm; (d) P=3 kw, v=7 m/min, D=0.3 mm. 

The porosity, the total number of pores, and the number of pores with a diameter 

greater than 0.5 mm were counted for X-ray non-destructive testing with different laser 

parameters in Fig. 3. The specific method was as follows: microscopy software was 

used to count the number of pores and calculate the diameter and area of each pore and 

the area of the weld zone. Then, the sum of all porosity areas was divided by the area 

of the weld area to obtain the percentage of porosity of the weld. The porosity can be 

expressed by Eq (1): 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
∑ 𝑃𝑜𝑟𝑒 𝑎𝑟𝑒𝑎

𝑊𝑒𝑙𝑑 𝑎𝑟𝑒𝑎
× 100%                                                             (1) 

The relationship between the pores and the spiral pitch D was shown in Fig. 5. Fig. 

5a shows that the effect of spiral pitch D on porosity. The porosity decreases rapidly 

from about 20% to 0%, As the spiral pitch D decreases. When the spiral spacing D=0.3 

mm, the porosity reaches an acceptable quality level of less than 1%. Since micron-

level pores are difficult to be detected by ordinary resolution X-ray non-destructive 

testing, the weld that detects 0% porosity may be distributed in the blue zone of the 

figure. Fig. 5b and Fig. 5c show the effect of spiral spacing on the number of pores and 

pore diameter, respectively, both of which show a decreasing trend as the spiral spacing 

reduces. The number and diameter of the holes are significantly reduced when the spiral 

pitch decreases from 0.7 mm to 0.5 mm. With the further reduction of the spiral pitch 

to 0.3 mm, the pores were almost eliminated. The spiral pitch of 0.3 mm is a very 

important parameter. These results indicate that the spiral pitch plays a key role in 



 

 

suppressing the pores. 

 

Fig. 5 The relationship between spiral pitch and pore size for different keyhole velocities. (a) effect of 

spiral pitch on porosity; (b) effect of spiral pitch on the number of pores; (c) the effect of spiral pitch on 

the number of holes larger than 0.5 mm. 

Fig. 6 shows the effect of keyhole velocity v on the pore. the porosity tends to 

decrease as the keyhole velocity increases. But just increasing the scanning speed is no 

way to completely eliminate the pores. As shown in Fig. 6a, Fig. 6b, and Fig. 6c, at the 

spiral pitch of 0.7 mm, even if the scanning speed was increased to the maximum value 

of 9m/min, the porosity remained above 14% and the number and diameter of pores 

were maintained at a high level. However, the pores were significantly suppressed when 

the spiral spacing was reduced to 0.5 mm. The results show that reducing the spiral 



 

 

spacing has a greater effect on pore suppression than increasing the keyhole velocity. 

 

Fig. 6 The relationship between keyhole velocity and pore size for different spiral pitches. (a) effect of 

keyhole velocity on porosity; (b) effect of keyhole velocity on the number of pores; (c) the effect of 

keyhole velocity on the number of holes larger than 0.5 mm. 

3.2 Mechanism to suppress porosity 

From the research above, it was found that when the spiral pitch D is smaller than 

the laser beam focus diameter, using the spiral pitch together with a faster welding speed 

can significantly suppress the formation of porosity in the weld area. The porosity was 

eliminated when the welding speed v is greater than 7 m/min and the spiral pitch D of 

0.3 mm. To determine the welding mode of the spiral laser beam, the literature on deep 

penetration laser welding were presented below. (Zou, He et al. 2015) stated that P/d is 



 

 

a more appropriate threshold for evaluating keyhole mode laser welding than power 

density, where P is the laser power and d is the spot diameter of the laser beam on the 

upper surface of the plate. The threshold requirement of steel is 1.33 Kw/mm. In our 

research, the minimum value of P/d is 2.8 kW/mm. According to the results of the 

above literature, the parameters used in this paper were all-sufficient to generate 

keyholes in the laser welding process. (Katayama, Kawahito et al. 2010) confirmed by 

X-ray transmission observation results that low welding speed is prone to the formation 

of porosity, as shown in Fig. 7. It identified the faster welding speed (6 m/min) as a key 

factor in eliminating porosity in laser welding. The porosity eliminating mechanism 

was that the faster welding speed created a specific melt flow to stabilize the keyhole. 

A stable keyhole means that it is difficult to create pores. The keyhole velocity of low 

porosity in this study is about 9 m/min, which is higher than the result of Katayama. 

 

Fig. 7 Schematic of plume behavior, keyhole behavior, melt flow, and bubble generation in the melt 

pool leading to the formation of pores according to the respective keyhole velocity. 

To confirm the porosity reduction and elimination mechanism, the progress of the 

weld pool and keyhole development should be investigated. High-speed camera 

equipment was used to photograph the welding process. Fig. 8 shows the high-speed 



 

 

photographic images of the welding process with different parameters. All samples 

scanned at a speed of 5 m/min showed different degrees of spattering, as shown in Fig. 

8a3, Fig. 8b4, and Fig. 8c3. This indicates that at low welding speeds the keyhole  

 

Fig. 8 High-speed photographic photographs of the welding process with different parameters (a1)~(a6) 

v=5 m/min, D=0.7 mm, P=2.5 kW; (b1)~(b6) v=5 m/min, D=0.5 mm, P=2.5 kW; (c1)~(c6) v=5 m/min, 

D=0.3 mm, P=2.5 kW; (d1)~(d6) v=9 m/min, D=0.3 mm, P=3.5 kW. 

is unstable the keyhole is interrupted by the flow of molten metal. With the keyhole 

closed, there is no channel for zinc vapor to escape and these vapors will cause 

spattering and porosity. The reason for this result can be explained as follows: the low 

keyhole velocity leads to the laser in a restricted area continuous heating the 

overlapping zinc layers, resulting in rapid evaporation of zinc in this area and the 

formation of highly pressurized zinc vapor, which produces explosive escape and 

increases the instability of the melt pool. Then, the laser beam irradiates the ruptured 



 

 

keyhole liquid wall that due to the recoil pressure of evaporation from the ruptured wall, 

causes the melt to flow downward. This phenomenon may cause large bubbles to form 

larger pores. When the keyhole speed is further increased to 9 m/min, the whole spiral 

welding process is very stable and the keyhole is always open. After forming a 

stabilized keyhole from top to bottom, the zinc vapor escapes from the melt pool 

through the keyhole, thus no obvious sputtering is generated. 

In addition, reducing the spiral pitch reduces the area of overlapping areas that are 

directly laser heated by the laser beam. Therefore, the evaporated zinc vapor will have 

a temperature that is close to the melting temperature of steel (1809 K) rather than the 

boiling temperature (3133 K). (Kim, Oh et al. 2016) reported that the critical point 

temperature of zinc is about 2930 K, close to the boiling point temperature of steel, and 

the critical point pressure of zinc is about 2460 bar. this pressure is about 49 times 

higher than at 1800 K. At this very high pressure, the keyhole will be extremely unstable 

and splash and porosity will inevitably form. This indicates that avoiding prolonged 

heating of the zinc coating in the overlapping areas by the laser beam and reducing the 

area directly heated by the laser beam are important factors in maintaining the stability 

of the keyhole. 

The difference between the special spiral welding trajectory and traditional laser 

spot welding is another key factor in eliminating porosity. For conventional laser spot 

welding, the keyhole is always in the center, which makes it difficult for the edge zinc 

vapor to escape through the keyhole, resulting in spatter and holes. At the end of 

conventional laser spot welding, the keyhole disappears, and once the molten pool 



 

 

solidifies, the pores will not have a second chance to escape and become pores. 

However, this is not the case with spiral spot welding, where the weld pools created by 

adjacent spiral paths merge with each other due to heat transfer around the keyhole. 

Furthermore, heat conduction can increase the liquid melt pool existence time and slow 

down the solidification rate of the liquid metal to allow sufficient time for the generated 

bubbles to escape, as shown in Fig. 8a5, a6, and b6. The whole process is shown 

schematically in Fig. 9. 

 

Fig. 9 The spiral welding melt pool evolution and bubble escape diagram. 



 

 

During the spiral welding process, the pores also change considerably when the 

value of the spiral pitch D changes. Assuming that the laser is transferred from any 

position in the spiral to a position adjacent to the next spiral, the formation of the weld 

cross-sectional shape can be illustrated in Fig. 10. The keyhole of the previous spiral is 

A, and the keyhole of the next spiral is B. When the spiral pitch is 0.7 mm, there will 

be no overlap between position A and position B because the pitch is too large. When 

the laser beam reaches the B position, the vortex caused by the keyhole cannot affect 

the bubble created in the A position, and then the melt pool solidifies and forms a hole, 

as shown in Figure 10a. This indicates that the keyhole engulfment bubble does not 

work at this gap. When the spiral spacing is reduced to 0.5 mm less than the laser spot 

diameter, the upper part of the melt pool at position A and position B will overlap. 

Therefore, the bubbles generated in the upper part of position A will be caught in the 

vortex caused by the keyhole in position B. According to the research of (Fetzer, 

Sommer et al. 2018). the vortex caused by the keyhole drives the bubble to move with 

itself. If the bubbles do not escape from this vortex, they will inevitably encounter the 

keyhole and will be absorbed, and the whole process is shown in Fig. 11. As the spiral 

spacing is further  



 

 

 

Fig. 10 Schematic diagram of the formation of pore bubbles under different spiral spacing conditions 

and the principle of reducing the spiral spacing to suppress the pores; (a) D=0.7 mm, v=5 m/min; (b) 

D=0.5 mm, v=5 m/min; (c) D=0.3 mm, v=5 m/min; the parameter of high-speed photography is D=0.3 

mm, v=5 m/min. 

 

Fig. 11 Schematic diagram of the vortex caused by the melt pool and melt flow driving the bubbles to 



 

 

move together. 

reduced to 0.3 mm, it is obvious that the melt pools in position A and B will overlap 

from top to bottom, and any bubbles generated in any part of position A will be captured 

by the vortex in position B and swallowed by the keyhole. The strong stirring effect 

ensures that bubbles do not escape. Therefore, the stronger stirring effect enhances the 

interaction between the bubbles and the keyhole, thereby enhancing the pore 

suppression effect. Then the stirring effect can be evaluated by the stirring Reynolds 

number Re expressed in Eq. (2): 

𝑅𝑒 =
𝜌𝑑2𝑛

𝜇
                                                                               (2) 

where d is the diameter of the stirring device; μ is the density of the melt; ρ is the 

viscosity of the melt, and n is the stirring speed. In the spiral welding process, the 

keyhole caused by the laser is equivalent to the stirring device. However, as shown in 

Fig. 12, in the scanning welding process, not all the keyholes are in the molten pool. 

Thus, only the part of the laser beam in the melt pool can act as an agitation. The width 

of the keyhole part overlapping with the melt pool is called the equivalent agitation 

diameter dk. d and n can be converted to dk (equivalent stirring diameter) and v (keyhole 

velocity). Bringing the converted dk and v into Eq. (2), it is converted to Eq. (3): 

𝑅𝑒 =
𝜌𝑑𝑘

2𝑣

𝜇
                                                                               (3) 

where dk is related to the spiral spacing D as in Eq. (4): 

𝑑𝑘 = 2𝑅 − 𝐷                                                                             (4) 

where R is the laser beam speckle radius; D is the spiral pitch. Eq. (4) is brought into 

Eq. (3) to obtain the relationship between the stirring Reynolds number Re and the 



 

 

spiral pitch D. as shown in Eq. (5): 

𝑅𝑒 =
𝜌(2𝑅 − 𝐷)2𝑣

𝜇
                                                                 (5) 

 

Fig. 12 Schematic diagram of the influence of the spiral pitch D on the equivalent stirring diameter dk. 

Figure 13 shows that the calculated Re using the spiral pitch parameter. Re 

decreases with increasing spiral spacing, which indicates that a smaller spiral pitch can 

cause a greater stirring effect. 

 

Fig. 13 The keyhole speed v=9 m/min, the relationship between the Reynolds number and the spiral 

pitch. 



 

 

3.3 Effect of the spiral beam on mechanical properties 

Tensile shear tests were performed on samples without significant macroscopic 

porosity on the weld surface to assess the impact. All load-displacement curves are put 

together for comparison, as shown in Fig. 14. Obviously, the spiral pitch and the 

keyhole speed had a significant effect on the tensile shear performance. When the 

scanning speed increased from 3m/min to 9m/min, the peak load gradually increased. 

In which, the peak load and the corresponding tensile displacement of the sample with 

v=9 m/min and D=0.3 mm are the largest. Considering the effect of porosity in Fig. 5 

and Fig. 6, there is a correlation between the tensile shear properties of the joint and the 

porosity in the weld zone. Apparently, the lower the porosity, the lower the number of 

pores, the smaller the pore size, the better the tensile  

 

Fig. 14 The relationship between load and displacement. 



 

 

 

Fig. 15 Peak tensile shear load of samples with different parameters. 

shear performance. To visualize the above correlations, a statistical analysis of all peak 

loads on each tensile curve was summarized using a standard bar graph, as shown in 

Fig. 15. When the spiral pitch D=0.3 mm is constant, the distribution of the peak load 

value also shows two levels, which are scanning speed less than 6 m/min and scanning 

speed more than 6 m/min. When the scanning speed is less than 6 m/min, the peak load 

is less than 8000 N and the maximum is 7814.9 N. At scanning speed greater than 6 

m/min, the peak load is above 8500 N, with a maximum value of 8819.8 N. 14.5% 

improvement in tensile shear performance compared to joints with scanning speed less 

than 6 m/min. When the keyhole speed is 3 m/min, the spiral spacing is reduced from 

0.5 mm to 0.3 mm, the peak load is increased from 5104.3 N to 7699.7 N, the tensile 

shear performance is improved by 50.8%, and the corresponding porosity is 7.1%, and 



 

 

0.65% respectively. The results show that the pores are suppressed by simultaneously 

increasing the keyhole velocity and decreasing the spiral pitch, which can significantly 

improve the shear resistance of the joint. 

Fig. 16 shows the SEM images of the fracture location and the morphology of the 

tensile fracture surface of the tensile samples. From the figure, it can be observed that 

a considerable amount of pores can be observed on the fracture surface with large spiral 

spacing at low scanning speed, while the fracture surface with high scanning speed and 

small spiral spacing has no obvious pore defects. The results confirmed that the pores 

in the weld reduced the load area and only needed a small tensile and shear force to 

make it invalid. Under tensile shear, the welds with porosity failed in partial-thickness 

- partial-pullout (PT-PP) mode, where the cracks extend from the interface to the fusion 

zone, and part of the weld-thickness is removed during the separation process 

(Pouranvari and Marashi 2013). The dissimilarity is that welds without porosity fail in 

a pull-out failure (PF) mode, in which failure occurs by pulling the fusion core out of 

the sheet. Generally, the PF mode has a larger fracture displacement and more energy 

absorption, exhibiting the most satisfactory mechanical properties, making it a more 

desirable form of fracture in practical applications. There are more dimples on the two 

types of fractures. Obviously, the dimples size of the weld with porosity is larger than 

the dimples size without porosity, as shown in Fig. 16a3 and Fig. 16b3. Only large 

plastic deformation and large shear stress can make small dimples. The lower porosity 

caused by optimized spiral laser beam improved the tensile shear strength of the spiral 

weld. 



 

 

 

Fig. 16 Shear fracture characteristics for (a1)~(a3) P=2 kW, v=3 m/min, D=0.5 mm and (b1)~(b3) 

P=3.5 kW, v=9 m/min, D=0.3 mm. 

4. Conclusion 

In this study, the remote laser spiral welding process was used to zero-gap lap 

welding of galvanized steel. A laser spot welding method was developed to eliminate 

welding porosity in zero-gap lap joints of galvanized steel. The main conclusions can 

be summarized as follows: 

(1) A mechanism for eliminating pores in zero-gap laps of galvanized steel using 

a spiral laser beam was investigated. The high keyhole velocity and small 

spiral pitch stabilize the keyhole and suppress the porosity. The corresponding 

porosity, number of pores, and pore size are also smaller. 

(2) In the case of other welding parameters are the same, decreasing the spiral 

pitch on the inhibition of pores is greater than increasing the keyhole velocity. 



 

 

(3) The spiral welding path increases the time of the liquid pool by heat conduction 

so that the bubbles in the pool have enough time to escape. 

(4) The reduced spiral pitch increases the equivalent stirring diameter dk leading 

to an enhanced keyhole stirring effect. Meanwhile, the reduced spiral pitch 

reduces the zinc vapor pressure, which is conducive to keyhole stability. Both 

together inhibit the formation of pores. 

(5) The peak shear strength of the spiral weld without porosity was 8819.8 N and 

the peak shear strength of the spiral weld with porosity was 5104.3 N. The 

tensile shear performance was improved by 72.8%. The low porosity caused 

by the spiral laser beam improved the tensile shear strength of the oscillating 

welds. 
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