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Abstract: Delta channel networks (DCNs) are highly complex and dynamic systems that are 9 

governed by natural and anthropogenic perturbations. Challenges remain in quickly quantifying 10 

the length, width, migration, and pattern changes of deltaic channels accurately and with a high 11 

frequency. Here, we develop a quantitative framework, which introduces a water occurrence 12 

algorithm based on Landsat time-series data and spatial morphological delineation methods, in 13 

order to measure DCN structures and associated changes. In examining the Pearl River Delta 14 

(PRD) and Irrawaddy River Delta (IRD) as case studies, we analyze their conditions and trends 15 

between 1986–2018 at ten-year intervals. Both study areas have undergone various human 16 

interventions, including dam construction, sand mining, and land use change driven by 17 

urbanization. Our results show the following: (1) the use of a 0.5 water occurrence extraction 18 

based on Landsat time-series data, morphological delineation, and spatial change analysis 19 

methods can quantify the morphodynamics of DCNs effectively with a root-mean-square error 20 

of 15.1 m; (2) there was no evident channel migration in either PRD or IRD with average 21 
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channel widths of 387.6 and 300.9 m, respectively. Most channels in the PRD underwent 22 

remarkable shrinkage, with average rates of 0.4–6.4 m/year, while there were only slight 23 

changes in the IRD, which is consistent with observed trends in sediment load variation. The 24 

results of this research have the potential to contribute to sustainable river management in terms 25 

of flood prevention, riparian tideland reclamation, and water and sediment regulation. 26 

Moreover, the proposed framework can be used to develop a new global river width dataset and 27 

can be generalized to remotely sensed water discharge and river depth estimation. 28 
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1. Introduction 31 

Delta channel networks (DCNs) are the backbone of river deltas and form essential 32 

pathways for water, sediment, organic matter, and nutrient fluxes from continents to oceans. 33 

The structure of DCNs and spatial changes in their channel width, depth, length, and sinuosity 34 

have a significant impact on hydrodynamics and sediment transport processes (Syvitski et al., 35 

2005). Variations in water and sediment discharge, riparian vegetation, rate of sea-level rise, 36 

waves, and tides can all alter both channel locations and widths through lateral migration. They 37 

can even initiate new bifurcations and reorganize structural network patterns (Abed-Elmdoust 38 

et al., 2016; Gugliotta and Saito, 2019; Syvitski et al., 2009; Willett et al., 2014). 39 

Global-scale accelerations in sea-level rise rates and increased frequencies of extreme 40 

events (e.g., storm surges and extreme precipitation) have become a global concern due to 41 

heightened coastal flood risk and accompanied damage to coastal infrastructure and populations 42 
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(Kulp and Strauss, 2019; Rahmstorf, 2017). To better protect densely populated low-lying 43 

coastal areas from flooding, an increasing number of the world’s deltaic channels have been 44 

fixed by constructing dikes, embankments, and sluice gates. For example, more than 4600 km 45 

of levees and floodwalls have been built along the Mississippi River system (Remo et al., 2018). 46 

The river channels in the Pearl River Delta (PRD) have been significantly altered by levee 47 

construction since the 1980s (Zhang et al., 2009). These forms of hard infrastructure 48 

significantly influence both channel morphology and depositional environments, which can 49 

result in increased channel incision and deepening especially under conditions of reduced 50 

sediment load in the upstream portions of the delta (Lu et al., 2007; Mei et al., 2018). They can 51 

also cause increased sediment deposition and riverbed rise near the delta mouth due to the 52 

presence of backwater and the top-lifted effect of sea-level rise (Remo et al., 2018; Syvitski et 53 

al., 2009; Wang and Xu, 2018). Moreover, due to both increasing human activities (especially 54 

upstream dam construction, which can result in a rapid decline of water flow and sediment 55 

discharge) and natural factors (e.g., sea-level rise due to global climate change), DCNs are 56 

changing more rapidly at the multi-decade timescale within most of the world’s deltas (Liu et 57 

al., 2019; Syvitski et al., 2009). Therefore, an efficient method to quantitatively measure the 58 

conditions and trends of DCNs is crucial in understanding the role of human activity and climate 59 

change on DCN adaptations and to assess sustainable delta development. 60 

The effectiveness of inferring channel delineation from digital terrain maps utilizing 61 

topographic signatures (e.g., slope) from synthetic aperture radar (SAR) imagery and from 62 

multispectral/hyperspectral remotely sensed imagery has been widely demonstrated in previous 63 



4 
 

studies (Klemenjak et al., 2012; Passalacqua et al., 2010). Yamazaki et al. (2014) constructed 64 

a global database for the width of large rivers with a 300-m spatial resolution based on the 65 

SRTM Water Body Data and the HydroSHEDS flow direction maps. Database quality strongly 66 

depends on the availability of global surface water body data and cannot be efficiently applied 67 

to the study of channel morphology changes. Obida et al. (2019) utilized multi-temporal 68 

Sentinel-1 SAR data for raster- and vector-based river network delineation using unsupervised 69 

classification techniques and thinning algorithms. However, this river network delineation 70 

approach introduces increased uncertainty in estuarine areas where the SAR backscattering 71 

coefficients are generally similar because of the comparable surface roughness of flat banks 72 

and adjacent water bodies (Lee et al., 2011). 73 

The spectral characteristics of surface water with a low absorption in the green band and 74 

high absorption in the near and shortwave infrared bands are helpful to differentiate water from 75 

other land cover classes. Therefore, optical remote sensing images have been widely utilized 76 

for river network extraction using automatic (Isikdogan et al., 2017; Monegaglia et al., 2018; 77 

Pavelsky and Smith, 2008; Schwenk et al., 2017) or semi-automatic approaches (Chen et al., 78 

2020b; Gong et al., 2020; Rowland et al., 2016). The common strategy behind these optical 79 

methods was to first enhance the contrast between the water bodies and other forms of land 80 

cover using water indexes, such as the Normalized Difference Water Index (NDWI) (McFeeters, 81 

1996), the Modified Normalized Difference Water Index (MNDWI) (Xu, 2006), and the 82 

Automated Water Extraction Index (AWEI) (Feyisa et al., 2014). From there, morphological 83 

algorithms (Gong et al., 2020; Isikdogan et al., 2015; Jarriel et al., 2019; Yang et al., 2015) or 84 
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machine learning classification algorithms (Li et al., 2019; Yang et al., 2014) were used to 85 

extract the rivers. The RivaMap software developed by Isikdogan et al. (2017) facilitates the 86 

delineation of rivers by applying a singularity index in a fully automated manner; however, this 87 

algorithm interrupts the connectivity of river boundaries. A method proposed recently by Chen 88 

et al. (2020b) partly addressed this limitation by using a path tracking technique to delineate 89 

connected river networks, however, such a method may fail to delineate meandering rivers 90 

because the cost of a path through nearby linear rivers is less than that of a path through the 91 

meandering river. Several previous studies have specifically addressed the issue of the 92 

extraction and analysis of extremely dynamic meandering rivers (Monegaglia et al., 2018; 93 

Rowland et al., 2016; Shahrood et al., 2020).  94 

These existing studies mentioned above, however, require adjustments when applied in 95 

delineating deltaic channel networks due to the effects of time-varying water discharge and 96 

tides, as such, they could not provide a set of consistent criteria for extracting and quantifying 97 

DCNs. This has limited their real-world application in the study of deltaic system evolution. To 98 

address this gap, this study aims to develop a quantitative methodological framework to 99 

delineate and explore the spatial and temporal changes of DCNs from Landsat time-series data. 100 

Our methodology is innovative in making use of a specific water occurrence (i.e., 0.5) derived 101 

from Landsat time-series images as a measure of deltaic channel dynamics over a given time 102 

period. This method was applied to two tropical river deltas: the PRD in China and Irrawaddy 103 

River Delta (IRD) in Myanmar; each with different levels of human activity relative to their 104 

changing deltaic patterns from 1986 to 2018.  105 
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2. Study areas 106 

We selected the PRD (Fig. 1a) in China and the IRD (Fig. 1b) in Myanmar as reference 107 

cases because both deltas are densely populated and characterized by intricate channel networks, 108 

which experience different anthropogenic stresses throughout their river basins. The Pearl River 109 

basin is located in both tropical and sub-tropical climate zones, with annual mean temperatures 110 

ranging from 14 °C to 22 °C and an annual average precipitation of 1525.1 mm (Zhang et al., 111 

2012). The PRD has a catchment area of 425,000 km2 with three major tributaries: the West 112 

River, the North River, and the East River. Annually, approximately 88 million tons (Mt) of 113 

sediment and 330 km3 of water are discharged into the South China Sea through eight river 114 

outlets. The mean tidal range in the Pearl River estuary is 1.0–1.7 m. In addition, the PRD hosts 115 

a population of 24 million and ranks amongst the fastest growing deltas with respect to 116 

economic growth and urbanization in the world. More than 14,000 dams and reservoirs have 117 

been built on the Pearl River basin since 1980 and fixed levees have been constructed along 118 

most of its channels (Wu et al., 2018). 119 

 The Irrawaddy River basin has a tropical monsoon climate with an average annual 120 

temperature ranging from 19 to 31 °C and a mean annual precipitation of between ∼500 mm 121 

and ∼4000 mm (Sirisena et al., 2018). The Irrawaddy River is the most important river for 122 

commercial navigation in Myanmar and it enters into the Andaman Sea through twelve river 123 

outlets, forming one of the largest deltaic systems in Southeast Asia. Over the period from 124 

1966–1996, the annual water discharge and sediment load at Pyay station were estimated to be 125 

332–379 km3 and 268–382 Mt respectively (Furuichi et al., 2009). The IRD has a catchment 126 
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area of 404,100 km2, a population of 11 million, and a mean tidal range of approximately 2.7 127 

m in its estuary. Fourteen dams are in operation and several embankments have been built along 128 

the Irrawaddy River. Green forest and crop cultivation cover more than 60% of the basin area. 129 

Therefore, compared with the PRD, the IRD can be considered as a nearly natural system with 130 

only limited human activity (Garzanti et al., 2016). 131 

3. Data and methods 132 

The methodological framework used in this paper involves four main steps (Fig. 2): (1) 133 

the development of an automatic water extraction and water occurrence algorithm to generate 134 

a water body mask (Section 3.2); (2) the delineation of raster and vector DCNs through the 135 

application of morphological algorithms (Section 3.3); (3) the calculation of channel widths 136 

and the quantification of their variations and migration based on the Digital Shoreline Analysis 137 

System (Section 3.4); (4) an assessment of the mapping accuracy and analysis of the uncertainty 138 

of our methodological framework (Section 3.5). 139 

3.1. Data collection 140 

3.1.1 Satellite data 141 

With a 30-m resolution and 16-day repeat cycle, Landsat archives, including the Landsat 142 

5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic Mapper-plus (ETM+), and the 143 

Landsat 8 Operational Land Imager (OLI), provide a spatially and temporally consistent 144 

resolution at the global scale (Claverie et al., 2015; Irons et al., 2012). In this study, we created 145 

three-year temporal-scale water occurrence composite imagery for both deltas from Landsat 146 

data covering four periods, including 1986-1988, 1996-1998, 2006-2008, and 2016-2018. We 147 
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did so in order to minimize the effects of cloud cover and hydrological extremes. Our analysis 148 

used a total of 2,307 Landsat surface reflectance images georeferenced with high accuracy 149 

(<0.4 pixels; Table 1). The Quality Assessment (QA) band of each Landsat image was 150 

generated by the CFMask algorithm, which identified pixels that exhibited adverse 151 

instrumentational, atmospheric, or surface conditions, and which subsequently removed poor-152 

quality observations (e.g., cloud, cloud shadows, etc.) (Foga et al., 2017). All the Landsat 153 

images were collected and computed on the cloud-based Google Earth Engine (GEE) platform 154 

(Gorelick et al., 2017). In addition, we collected five high-resolution images (i.e., Pleiades-1A 155 

and WorldView-2; Table 2) from the period between 2016-2018 with 0.5-m spatial resolution 156 

as reference data for accuracy assessment.  157 

3.1.2 Gauging station data 158 

We collected the annual water discharge and sediment load at gauging stations (i.e., the 159 

Boluo, Gaoyao and Shijiao stations) in the upper basin of the Pearl River from 1954 to 2018. 160 

The annual water level data at four gauging stations (the Hengmen, Baijiao, Huangjin and 161 

Hengshan stations) near the river outlets from 1986 to 2017 was also captured. These datasets 162 

originate from the Hydrologic Yearbooks issued by the Ministry of Water Resources of China. 163 

Because of the difficulty of obtaining reliable hydrological data in the Irrawaddy River basin, 164 

we were only able to access annual water and sediment discharge data from the Pyay station 165 

between 1966–1996 and the Magway station between 1990–2010 from previously published 166 

research (Furuichi et al., 2009; Lazarus et al., 2019). The locations of these gauging stations are 167 

shown in Figs.1a-b. 168 
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3.2. Water occurrence algorithm with Landsat time series 169 

A series of spectral and water indices, such as the NDWI, MNDWI, and AWEI, have been 170 

used for water classification and extraction (Alsdorf et al., 2007; Mueller et al., 2016). The 171 

MNDWI can achieve more than 98% accuracy in identifying water pixels based on the Landsat 172 

archive of images from the TM, ETM+, and OLI sensors (Feyisa et al., 2014; Fisher et al., 173 

2016). We calculated the MNDWI using surface reflectance data from the green and first 174 

shortwave infrared (SWIR1) bands of every Landsat image in the image collection after 175 

applying the cloud mask. The MNDWI at time 𝑡𝑡 is defined by the equation: 176 

MNDWI𝑡𝑡 = (𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝑡𝑡−𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑡𝑡)/(𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝑡𝑡 + 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑡𝑡) (1) 

where 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝑡𝑡  is the surface reflectance of the green band at time 𝑡𝑡 and 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡  is the 177 

surface reflectance of the SWIR1 band at time 𝑡𝑡. Otsu's (1979) thresholding method was then 178 

adopted to automatically distinguish between water and non-water pixels from all MNDWI 179 

values for each scene. Due to water runoff, tidal effects, and rainfall in river deltas, fluctuations 180 

in water levels occur continually in DCNs. For each pixel, the water occurrence frequency can 181 

be defined as the ratio between the number of measurements that classify a pixel as water and 182 

the total number of measurements in a time-series MNDWI stacking. This is expressed as: 183 

𝑃𝑃𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺 = 𝑛𝑛𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺/𝑁𝑁 (2) 

where 𝑃𝑃𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺  is the relative frequency of water occurrence, 𝑛𝑛𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺  is the number of 184 

measurements that are classified as water at the pixel location, and 𝑁𝑁 is the total number of 185 

measurements at the pixel location. The water body mask was determined using the given 186 
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𝑃𝑃𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺 threshold. High 𝑃𝑃𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺 values represent permanent water bodies, and the low 𝑃𝑃𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺 187 

values show temporary water bodies (i.e., paddy fields, inundation areas and tidal wetlands), as 188 

well as potential regions that are affected by extreme water level fluctuations (Fig. 3b, light 189 

blue areas). The 𝑃𝑃𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺 threshold was determined as 0.5 in order to mitigate these uncertain 190 

effects. That is, a pixel was classified as water if its 𝑃𝑃𝑤𝑤𝑤𝑤𝑡𝑡𝐺𝐺𝐺𝐺 value was greater than or equal to 191 

0.5; otherwise, the pixel was classified as non-water (Fig. 3c). 192 

3.3. Spatial morphological delineation of channel networks 193 

In order to accurately delineate the centerlines and banklines of the channel network, we 194 

removed small channel bars or river islands with areas less than 1 km2 (about the size of 1100 195 

pixels in the Landsat imagery) and bodies of water that were not connected with a channel 196 

network (such as reservoirs, aquaculture ponds, and wetlands). Doing so also allowed us to 197 

avoid spatial shifts or displacements of the centerline position for the main channel. The gaps 198 

caused by bridges over channels were filled manually to ensure complete connectivity of the 199 

channel network. The “Clump” morphological operation was used to group adjacent water 200 

pixels to regions and the “Sieve” operation was performed to remove regions with areas smaller 201 

than a user-specified size (Fig. 3c). The centerlines and banklines of the channels were 202 

delineated from binary images using two morphological vectorization methods, “centerline” 203 

and “outline,” which were implemented in ArcScan, an extension tool in ArcGIS 10.5. The 204 

centerline vectorization method can generate vector features along the center of the raster linear 205 

elements and was used to build the centerline elements for the channels. The centerlines were 206 

split up into multiple elements when bifurcations occurred. The outline vectorization method 207 
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generates vector features at the border of raster linear elements and was used to delineate the 208 

channel banklines (Fig. 3d). 209 

3.4. Change analysis of DCNs 210 

In order to quantify changes in DCNs, the Digital Shoreline Analysis System (DSAS) 211 

(Himmelstoss et al., 2018), which was developed by the USGS to compute rate-of-change 212 

statistics for time series shoreline vector data, was employed to calculate the channel width 213 

throughout the 1986–2018 period at 10-year intervals. We constructed the baseline series for 214 

four periods based on the DCN centerlines and cast transect lines perpendicular to the baseline 215 

at 100 m intervals. All of the transects intersected with multi-temporal banklines were used to 216 

establish measurement points for the rate calculations. The channel width was calculated as the 217 

sum of the distances from the measurement points to the baseline, and the channel migration 218 

was calculated as the displacement among the centerlines (Fig. 3e-f). Three rate-of-change 219 

statistical methods in DSAS were used to assess changes in the channel. These are: the Net 220 

Shoreline Movement (NSM), which is calculated as the distance between the oldest and most 221 

recent banklines for each transect; the End Point Rate (EPR), which is calculated by dividing 222 

the shoreline movement by the time elapsed between the oldest and the most recent banklines; 223 

and the Linear Regression Rate (LRR), which is calculated by fitting a least-squares regression 224 

line to all shoreline points for a transect. 225 

3.5. Accuracy assessment and sensitivity analysis 226 

The uncertainty of our methodological framework may have resulted from water 227 

extraction based on single images using Otsu’s thresholding and the determination of the 228 
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boundaries of rivers from time-series MNDWI images using the water occurrence algorithm. 229 

The “Clump” and “Sieve” morphological operations were not expected to introduce additional 230 

uncertainties as they only acted on surface waters disconnected to channel networks. To assess 231 

the uncertainty resulting from Otsu’s thresholding method, we manually digitized river 232 

polygons based on a Pleiades-1A satellite image captured on November 23, 2018 and compared 233 

those with the river polygons derived from one Landsat image at the closest time acquired on 234 

November 24, 2018. We then performed a pixel-by-pixel assessment of water extraction 235 

accuracy based on the following three metrics: the overall accuracy (OA), the user’s accuracy 236 

(UA), and producer’s accuracy (PA). Considering the water level fluctuations caused by 237 

seasonal precipitation variations between wet and dry seasons, we also manually digitized the 238 

“true” boundaries of validated rivers from four reference images acquired in the wet and dry 239 

seasons. The channel width error was calculated as the difference between the extracted channel 240 

widths derived from 0.5 water occurrence and the validated channel widths calculated 241 

according to the reference boundaries. The root-mean-square error (RMSE) was also computed 242 

to assess the accuracy of our measurements. Furthermore, to evaluate the sensitivity of our 243 

determination based on the 0.5 water occurrence threshold, we also calculated and compared 244 

channel widths using a wide range of thresholds (0.1, 0.3, 0.7, and 0.9) for water occurrence.  245 

4. Results 246 

4.1. Channel width and its variations 247 

The results in Fig. 4a and 4b were derived from 1986–2018 Landsat time series and show 248 

that the average channel widths of the PRD and IRD are 387.6 m and 300.9 m respectively, and 249 
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the maximum channel widths are 4261 m and 7723 m, respectively. The associated total river 250 

mouth widths for the PRD and IRD are 13.2 km (eight river outlets) and 36.84 km (twelve river 251 

outlets), respectively. Fig. 4a shows that the eight outlets of the PRD have mean channel widths 252 

ranging from 335–2054 m. In performing a Kruskal-Wallis one-way analysis of variance by 253 

ranks at the confidence level of 95%, we found that seven of these outlets have undergone 254 

significant shrinkage over the past 33 years, with average shrinkage rates varying from 1.0–5.4 255 

m/year. By contrast, Fig. 4b shows that the mean outlet widths of the IRD, ranging from 295–256 

4784 m, have remained largely stable. Only one outlet (No. 8) has undergone significant 257 

shrinkage, with average shrinkage rates of 1.9 m/year. Two of the outlets (No. 11 and 12) have 258 

expanded, with average expansion rates of 1.2–2.5 m/year, these changes, however, not 259 

statistically significant. The other outlets in the IRD display no significant change, with average 260 

change rates varying from −0.5 to 0.6 m/year. The PRD and IRD have different change patterns 261 

in their estuarine systems. Most of outlets in the PRD have shrunk with average rates of 0.4–262 

6.4 m/year, while most of the IRD outlets have remained stable. 263 

We analyzed in detail the width variations in the three main distributary channels of the 264 

PRD (West River, North River, and East River) (Fig. 1a, Fig. 5a–c) and the six main distributary 265 

channels of the IRD (Pathein River, Ywe River, Pyamalaw River, Irrawaddy River, Toe River, 266 

and Yangon River) (Fig. 1b, Fig. 5d–i) over 33 years (1986–2018). The results attained for the 267 

PRD, illustrated in Fig. 5, show obvious channel shrinkages in the estuarine sections of the East 268 

River and North River (within 30 km distance from the mouth), but only minor changes in the 269 

West River. In the IRD, six of the main distributary channels display a similar pattern in which 270 
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changes in the channel width were more significant in the estuarine regions than in the upstream 271 

regions. The Pyamalaw River, Irrawaddy River, Toe River, and Yangon River exhibit evident 272 

expansion in their estuarine regions, while slight channel shrinkage can be seen in some sections 273 

of the Pathein River and Yway River. 274 

4.2. Channel migration 275 

There are evident spatial differences in channel migrations for both deltas and, specifically, 276 

channels shifted more rapidly in the IRD than they did in the PRD. Major channel migrations 277 

were observed in the upper sections of both deltas, though there was very little channel 278 

migration visible in either the Pearl River or Irrawaddy River estuarine areas (within 30 km 279 

distance from the mouth). However, due to geomorphological evolution (i.e., the erosion or 280 

accumulation of mid-channel bars), some channel segments in the estuarine areas of the PRD 281 

and IRD also experienced slight migrations, with migration rates of 0.1-0.4 m/year and 0.5-1.1 282 

m/year, respectively. In the upper section of the North River (~100 km distance from the mouth) 283 

in the PRD, the channel migrated with a mean migration rate of 1.2 m/year. Large-scale channel 284 

migrations (~15 m/year) were observed in the upper section of the Irrawaddy River (~130 km 285 

distance from the mouth). A closer investigation of channel migration patterns over time 286 

revealed that two patterns of channel migration could be identified: regular and random (Fig. 287 

6). Regular migration is defined as a channel gradually shifting in the same direction, and this 288 

form of migration can be quantified, simulated, and predicted. Random migration is defined as 289 

a varying migratory direction over time induced by the combined geomorphological evolution 290 

of channel bars and banks, which is potentially more difficult to predict through modeling. 291 

javascript:;
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4.3. Validation 292 

To quantify the accuracy of our channel extraction method, we focused on Otsu’s method 293 

and the influence of the chosen 0.5 water occurrence threshold. Otsu’s thresholding method for 294 

classifying water pixels resulted in 98.8% overall accuracy (OA), 98.1% producer’s accuracy 295 

(PA) and 98.6% user’s accuracy (UA). Errors of commission and omission mainly occurred at 296 

the river boundaries, where bodies of water consisted of mixed pixels, which was evident when 297 

the binary classifications were visually compared to the river boundaries delineated from the 298 

high-resolution reference images (Fig. 7a-b). These errors may have led to either the 299 

overestimation or underestimation of channel widths. In order to assess the overall accuracy of 300 

channel width estimation, a total of 892 records of channel widths were calculated. Fig. 7c 301 

shows a histogram and the cumulative probability distribution of channel width errors, where 302 

more than 94% of width errors were within a single Landsat pixel (i.e., 30 m), with a RMSE of 303 

15.1 m. Analysis of the relationship between channel widths calculated from 0.5 water 304 

occurrence images and extracted from reference images acquired during both dry and wet 305 

seasons gave an R2 of 0.98. This demonstrates that our approach maintains a high degree of 306 

accuracy in both the dry and wet seasons, and in comparison with the channel widths derived 307 

from other water occurrence images (Fig. 8). Lower water occurrence (i.e., 0.1, Fig. 8b) may 308 

result in the overestimation of channel widths while higher water occurrence (i.e., 0.9, Fig. 8f) 309 

may lead to their underestimation. Therefore, channel widths derived from the 0.5 water 310 

occurrence can better represent temporal variability in river widths (e.g., seasonal precipitation 311 

variations) and they are more suitable for tracking the deltaic channel dynamics. 312 
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5. Discussion 313 

5.1. Drivers of channel evolution 314 

Previous studies have suggested that the evolution of the DCNs to be mainly driven by 315 

alterations in water discharge and sediment load in the basin, which has resulted from climate 316 

change, reservoir/dam constructions, and land use change (Lu et al., 2007; Nelson et al., 2015; 317 

Syvitski et al., 2005). Relationships between water discharge and precipitation may be an 318 

indication that annual water discharge has been strongly influenced by climate change (Wu et 319 

al., 2012). However, the assessment of the climatic impact on sediment load is challenging due 320 

to other potential anthropogenic factors. In the PRD, more than 90 dams and reservoirs (>0.1 321 

km3 storage capacity) have been constructed in the Pearl River basin since the 1980s with a 322 

total reservoir storage capacity totaling 65 km3. Fig. 9a shows that, prior to widespread dam 323 

construction, the annual sediment and water discharges from the Pearl River were 324 

approximately 80–85 Mt and 280–285 km3, respectively. Since 1994, the annual sediment 325 

discharge declined from about 129 Mt to a minimum of 15 Mt in 2007. Since 2007, due to the 326 

closure of the Longtan Dam (second in size only to the Three Gorges Dam), the annual sediment 327 

and water discharges have averaged around 23 Mt and 275 km3, respectively, with standard 328 

deviations of ±10 Mt and ±55 km3, respectively. These river dams are capable of changing the 329 

flow patterns especially on a seasonal scale and they reduce the sediment load of the rivers, 330 

which alters the sediment transport capacity and geomorphological development of the channel 331 

network system. The full geomorphic impacts of hydropower projects can take years or even 332 

decades to unfold, mostly due to the large volumes of sediment stored in the downstream river 333 
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channels that can buffer their impacts for extended periods (Yang et al., 2011). Our analysis, 334 

which considers both human and natural factors, shows that the channel width has shrunk since 335 

1986 and that this trend has been significantly enhanced by human disturbance. 336 

In contrast with the Pearl River basin, dam construction in the Irrawaddy River basin is 337 

relatively low with only 14 hydropower stations being built, with 3 under construction, 29 338 

having been proposed, and 2 having been suspended (Lazarus et al., 2018). We collected the 339 

available annual water and sediment discharge data from Pyay station between 1966–1996 and 340 

the Magway station between 1990–2010. As seen in Fig. 9b, the hydrological conditions 341 

remained relatively stable over these periods with a higher discharge compared to the Pearl 342 

River. Much of the DCNs in the IRD are prone to channel changes and migration as the river 343 

is unconstrained and has relatively low slopes with high sediment loads. Runoff with high flow 344 

velocities accelerates erosion on one side of the channel and deposits sediment on the other, 345 

which gradually leads to regular channel migration (as seen in Fig. 6a). Therefore, the potential 346 

impacts of dam construction on the channel network system in the IRD should be monitored in 347 

the future. 348 

The evaluation of the impacts of other forms of human activity and the measurement of 349 

their influence on channel changes is difficult, since it requires more long-term integrated 350 

observations and high-accuracy process-based modeling (Nahon et al., 2012; Wei and Wu, 351 

2014). It is known that vegetation degradation and terrestrial mining generally increase the 352 

sediment inputs into river systems and alter rainwater runoff. The IRD has rich mineral 353 

resources, especially gold and jade, and mining activities would likely result in larger sediment 354 
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particle input into its rivers. This could influence the transport of suspended and bedload 355 

sediment in the river system. An additional anthropogenic impact on channel evolution in the 356 

PRD and IRD is from in-channel sand mining. It has been estimated that approximately 60–69 357 

Mt/year of riverbed sediment is extracted from the Pearl River (Wu et al., 2014), and 358 

approximately 20 Mt/year of sediment, or 10% of the total sediment load, is excavated from 359 

the Irrawaddy River (Chen et al., 2020a). This has likely caused different levels of bank erosion 360 

than shown by our results due to the reduced friction and increased water velocity after sand 361 

removal. In addition, riparian tideland reclamation for urban development in the Pearl River 362 

estuarine regions also accounts for the major shrinkage of channels.  363 

5.2. Implications for river management 364 

Large rivers and their floodplains support huge populations globally and provide diverse 365 

ecosystems. However, these rivers have changed in morphology through time due to a 366 

combination of anthropogenic interventions and climate change (Best, 2018) The maintenance 367 

of bank stability and channel capacity are crucially important for flooding prevention and 368 

navigation safety. Therefore, many local or regional policies, such as the Lancang-Mekong 369 

Cooperation Mechanism (LMC) (Feng et al., 2019), were established to create and manage 370 

sustainable development goals within river ecosystems. In this study, our results indicate that 371 

channel width changes and channel migrations have huge spatial variations. Based on the 372 

results provided by our study, it would be possible to identify highly dynamic segments of 373 

rivers and delta channels and to establish a link between changes in delta network patterns and 374 

sediment delivery. This information would be crucial for the creation of goal-oriented 375 
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management plans, such as in defining thresholds for sediment and discharge levels in order to 376 

maintain network states at certain distances from the mouth. Rapid channel narrowing in the 377 

estuarine areas of the PRD (within 30 km distance from the mouth) was largely caused by 378 

riparian tideland reclamation, which has the effect of decreasing the cross-sectional flow area 379 

and increasing the potential for flooding in urban areas in the context of rising sea levels (Fig. 380 

10). This has the potential to aggravate the threat of urban waterlogging and saline water 381 

intrusion in the future. Consequently, the ground covers for wetlands on the fringes of DCNs 382 

should be preserved in order to create a sufficient buffer for peak river discharge levels and also 383 

to preserve valuable ecosystem, which are essential for maintaining economic resources such 384 

as fisheries. Furthermore, our methodological framework for quantifying channel changes can 385 

support decision-making processes for local and global river management activities in the 386 

future. 387 

5.3. Limitations 388 

Our methodological framework is hindered by the uncertainty of the delineation of river 389 

networks stemming from the limited spatial resolution of Landsat images (30 m per pixel), 390 

which inevitably leads to ambiguities in the determination of river boundaries. The presence of 391 

mixed pixels at channel boundaries may result in either the overestimation or underestimation 392 

of channel widths. Compared with previous approaches (Chen et al., 2020b; Isikdogan et al., 393 

2017; Monegaglia et al., 2018), our method performs better for small channels. Channels with 394 

a width close to or narrower than the resolution of the input images can be delineated with an 395 

improved accuracy. This is due to the fact that the extraction of such small channels from single 396 
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image could lead to ambiguous results (Fig. 11a). The analysis of these kinds of small channels, 397 

however, can be enhanced by time-series observations (Fig. 11b-c). As images generated by 398 

sensors with finer spatial resolution have begun to become freely available in recent years, for 399 

example, the Sentinel-1 and Sentinel-2 missions (10 m per pixel and six-day revisit), it will be 400 

possible to quantify changes in DCNs at a fine spatial resolution and high temporal frequency 401 

in the future (Fig. 11d). In addition, previous studies have attempted to increase the mapping 402 

accuracy of Landsat images to subpixel levels using spectral unmixing (Sun et al., 2017; Xie et 403 

al., 2016) and subpixel localization algorithms (Bishop-Taylor et al., 2019; Song et al., 2019). 404 

While these techniques perform generally well in certain situations, challenges remain in terms 405 

of endmember sample selection, consistency of subpixel localization accuracy, and large-scale 406 

automation for generalization, making the production of seamless and consistent datasets 407 

through time and across complex and dynamic heterogeneous environments arduous (Bishop-408 

Taylor et al., 2019). 409 

Another limitation is the lack of depth measurements in terms of the characterization of 410 

channel geomorphology using time-series of Landsat remote sensing images. We used the 411 

centerline changes to indicate channel migrations—an approach that only documents the 412 

horizontal (i.e., platform) dimension. However, changes in channel depth, such as movement 413 

of the thalweg, might be more representative for the response of river systems to various 414 

disturbances (Liu et al., 2019). Even so, there are some obstacles to obtaining in-situ 415 

bathymetric data, such as the high cost and the amount of time required to collect such data at 416 

local scales. Satellite-derived river bathymetry algorithms have been developed in the recent 417 
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research, those using including spectrally-based methods (Legleiter and Harrison, 2019; 418 

Niroumand-Jadidi et al., 2020) and hydraulic relationships-based models (Breda et al., 419 

2019; Moramarco et al., 2019). These spectrally-based techniques have been demonstrated 420 

to be effective in clear and shallow water bodies where the spectral signal is dominated by 421 

bottom reflected radiation (Kasvi et al., 2019; Niroumand-Jadidi et al., 2018). The direct 422 

retrieval of bathymetry, however, is quite challenging under conditions of high turbidity in 423 

DCNs as the result of the flow of upstream sediment, organic matter, and other materials. The 424 

hydraulic relationships-based models commonly need precise channel width as their input 425 

(Schaperow et al., 2019). Thus, the channel widths calculated from our method can provide 426 

an accurate and robust channel width dataset in order to enhance river depth estimation based 427 

on the hydraulic relationships. These are the programme of research we would like to pursue in 428 

the future.  429 

6. Conclusion 430 

This study proposes a quantitative framework to map and analyze the long-term evolution 431 

of DCNs. After applying our framework to two case studies, we found that most of the channels 432 

in the PRD underwent significant shrinkage, whereas only slight changes were observed in the 433 

IRD. These results indicate that human interventions have greatly altered deltaic channel 434 

morphology by impacting sediment load in the river basin. In terms of channel mobility, 435 

significant channel migrations occurred in the meandering regions of the IRD, while other 436 

channel shifts were not as obvious. Very little migration was observed in the channel network 437 

of the PRD. These stepwise adjustments in the DCNs may lead to the redistribution of water 438 
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and sediment discharges, which can affect the patterns of the deltaic system evolution. This is 439 

an important issue for river deltas and should be addressed in future work. The methodological 440 

framework proposed in this study provides a practical and effective way to monitor deltaic 441 

channel evolution and could be used to develop a new global hydrological product, as well as 442 

improving the study of hydrological processes and the future sustainable management of global 443 

river ecosystems. 444 
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Tables: 675 

Table 1. Summary of Landsat data used in this study. 676 

Study area 
Period of 

acquisition 

Number of Landsat images 
Total 

Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLI 

PRD 

1986-1988 109 0 0 109 

1996-1998 187 0 0 187 

2006-2008 199 202 0 401 

2016-2018 0 195 260 455 

    1152 

IRD 

1986-1988 48 0 0 48 

1996-1998 211 0 0 211 

2006-2008 172 176 0 348 

2016-2018 0 256 292 548 

    1155 

 677 

Table 2. Summary of reference images from Google Earth used in this study. 678 

Satellite Resolution (m) Acquisition date Dry/wet season  Description   

Pleiades-1A 0.5 2017.12.29 Dry  Overlapping spatial 

coverage in the PRD WorldView-2 0.46 2017.08.20 Wet 

WorldView-2 0.46 2017.04.03 Dry Overlapping spatial 

coverage in the PRD WorldView-2 0.46 2017.08.20 Wet 

Pleiades-1A 0.5 2018.11.23 Dry In the IRD 

 679 

  680 
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Figures: 681 

Fig. 1. Location of study areas: (a) Pearl River Delta (PRD) with its eight outlets; (b) Irrawaddy 682 

River Delta (IRD) with its twelve outlets. Insets show the respective catchment areas of the two 683 

rivers. 684 

Fig. 2. Flow chart for quantifying delta channel network changes with Landsat time-series 685 

data. 686 

Fig. 3. Illustration of our method for mapping delta channels and calculating their widths and 687 

migrations: (a) false color composite of Landsat 8 in the IRD; (b) water occurrence frequency 688 

derived from Landsat time series from 2016-2018; (c) channel map at water occurrence 689 

threshold of 0.5; (d) channel map after removing channel bars and water bodies unconnected 690 

with channel networks, and delineation of centerlines and banklines of channel network; (e) 691 

channel width measurement at orthogonal transects; (f) Calculation of delta channel migration 692 

from centerline of 2016-2018. 693 

Fig. 4. Channel maps derived from 1986–2018 Landsat image collection and their outlet widths 694 

during the four periods; a) the PRD; b) the IRD. The box plots show the interquartile range of 695 

channel width (box edges), the maximum and minimum channel width (whiskers), and mean 696 

channel width (shown with a dot). The Kruskal-Wallis test results are shown as *p<0.05; 697 

**p<0.01; ***p<0.001; ****p<0.0001 at the confidence level of 95%. 698 

Fig. 5. Raw (gray) and smoothed (black) width changes over thirty-three years (1986-2018). 699 

Fig. 6. The pattern of channel migrations in the IRD, a) regular migration; b) random migration. 700 
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Fig. 7. Position displacements between extracted and digitized river borders: (a) overestimation 701 

of water areas caused by Otsu’s threshold; (b) underestimation of water areas caused by Otsu’s 702 

threshold and (c) the histogram and the cumulative probability distribution of channel width 703 

errors. 704 

Fig. 8. Comparisons of channel widths derived from digitized images from dry/wet seasons and 705 

those derived from different water occurrence. (a) Extracted banklines at different water 706 

occurrence; (b) values compared with channel widths at 0.1 water occurrence; (c) values 707 

compared with channel widths at 0.3 water occurrence; (d) values compared with channel 708 

widths at 0.5 water occurrence; (e) values compared with channel widths at 0.7 water 709 

occurrence; and (f) values compared with channel widths at 0.9 water occurrence. 710 

Fig. 9. Annual water and sediment discharge trends in the PRD and IRD: (a) the Pearl River, 711 

calculated as the sum from the Boluo, Shijiao, and Gaoyao stations; (b) the Irrawaddy River at 712 

Pyay station (1966–1996) and Magway station (1990–2010). 713 

Fig. 10. Riparian tideland reclamation and water level rise from 1986 to 2018 in four Pearl 714 

River estuaries: (a) Hengmen; (b) Modaomen; (c) Jitimen; and (d) Hutiaomen. 715 

Fig. 11. Narrow channel extraction from (a) single image using Otsu’s thresholding method; 716 

(b) water occurrence composite image; (c) 0.5 water occurrence frequency derived from 717 

Landsat time-series image and (d) 0.5 water occurrence frequency derived from Sentinel-2 718 

time-series images.  719 
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