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Abstract 13 

The agricultural landscape can be interpreted at different semantic levels, such as fine 14 

low-level crop (LLC) classes (e.g., Wheat, Almond, and Alfalfa) and broad high-level 15 

crop (HLC) classes (e.g., Winter crops, Tree crops, and Forage). The LLC and HLC are 16 

hierarchically correlated with each other, but such intrinsically hierarchical relationships 17 

have been overlooked in previous crop classification studies in remote sensing. In this 18 

research, a novel Iterative Deep Learning (IDL) framework was proposed for the 19 

classification of complex agricultural landscapes using remotely sensed imagery. The 20 

IDL adopts an object-based convolutional neural network (OCNN) as the basic classifier 21 

for both the LLC and HLC classifications, which has the advantage of maintaining precise 22 

crop parcel boundaries. In IDL, the HLC classification implemented by the OCNN is 23 
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conditional upon the LLC classification probabilities, whereas the HLC probabilities 24 

combined with the original imagery are, in turn, re-used as inputs to the OCNN to enhance 25 

the LLC classification. Such an iterative updating procedure forms a Markov process, 26 

where both the LLC and HLC classifications are refined and evolve collaboratively. The 27 

effectiveness of the IDL was tested on two heterogeneous agricultural fields using fine 28 

spatial resolution (FSR) SAR and optical imagery. The experimental results demonstrate 29 

that the iterative process of IDL helps to resolve contradictions within the class 30 

hierarchies. The new proposed IDL consistently increased the accuracies of both the LLC 31 

and HLC classifications with iteration, and achieved the highest accuracies for each at 32 

four iterations. The average overall accuracies were 88.4% for LLC and 91.2% for HLC, 33 

for both study sites, far greater than the accuracies of the state-of-the-art benchmarks, 34 

including the pixel-wise CNN (81.7% and 85.9%), object-based image analysis (OBIA) 35 

(84.0% and 85.8%), and OCNN (84.0% and 88.4%). To the best of our knowledge, the 36 

proposed model is the first to identify and use the relationship between the class levels in 37 

an ontological hierarchy in a remote sensing classification process. It is applied here to 38 

increase progressively the accuracy of classification at two levels for a complex 39 

agricultural landscape. As such IDL represents an entirely new paradigm for remote 40 

sensing image classification. Moreover, the promising results demonstrate the great 41 

potential of the proposed IDL with wide application prospect. 42 
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 48 

1. Introduction 49 

 50 

Food demand is projected to increase by about 50% between 2012 and 2050 in response 51 

to global population growth and this poses a great challenge for food production 52 

(Alexandratos and Bruinsma, 2012). To cope with such a challenge, a wide range of 53 

information on agricultural practices and variables needs to be provided at national-to-54 

global scales, and in a timely manner. Information on crop types, including their spatial 55 

distribution, is key to supporting decision-making to reduce local and national food 56 

insecurity and to promote agricultural economic development. For example, crop 57 

mapping data are required as a base input to support forecasting of agricultural production, 58 

which is commonly needed to forecast the potential for and, ultimately avoid, famine 59 

(Mkhabela et al., 2011). Data on crop type and their spatial distribution are essential to 60 

forecast crop prices and, thus, develop reasonable agricultural subsidy policies (e.g., food 61 

aid) (Zhao et al., 2020). In addition, such crop type data are vitally important for a variety 62 

of environmental research. For example, crop type is a fundamental input to greenhouse 63 

gas (GHG) emission models in view of the great differences in soil carbon flux between 64 

crop types (Pena-Barragan et al., 2011). 65 

Remote sensing is an efficient tool for crop classification and mapping due to its 66 

synoptic and timely repeat coverage, and cost-effective methodology relative to ground 67 

survey. While a number of studies have explored the available medium spatial resolution 68 

remote sensing images (such as MODIS, Landsat, CBERS) for crop mapping at a 69 

relatively large scale (e.g., Wardlow and Egbert, 2008; Dong et al., 2016; Zhong et al., 70 

2019), parcel-scale detailed maps of crop distributions that are essential for precision 71 
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agriculture are needed (e.g., fertilization, irrigation, and management) (Zhang et al., 2012). 72 

With technological advances, a very large number of fine spatial resolution (FSR) images 73 

(e.g., RapidEye, Quickbird, and Gaofen) is now available, providing excellent 74 

opportunities to characterise crop type in great detail (Duro et al., 2012; Li et al., 2019a). 75 

However, with an increase in spatial resolution, the spectral and spatial variance for a 76 

single crop type tends to increase markedly (Li et al., 2019a). The large variances may be 77 

further exaggerated by diversified farming practices (Azar et al., 2016), which makes crop 78 

type mapping from FSR imagery a very challenging task. 79 

During the last few decades, a number of crop classification methods have been 80 

developed for FSR remotely sensed imagery. These approaches can be generalised into 81 

two broad categories according to the underlying processing unit: pixel-based and object-82 

based. Pixel-based methods classify crop types based on spectral (or polarimetric) 83 

signatures purely without considering the rich spatial information in FSR imagery, and 84 

they often achieve limited classification accuracy because of “salt and pepper” noise 85 

(Duro et al., 2012; Li et al., 2019b). To overcome these issues, object-based image 86 

analysis (OBIA) methods have been developed based on segmented objects (c.f. pixels) 87 

(Blaschke, 2010), and are now adopted extensively for crop mapping and classification 88 

(Castillejo-Gonzalez et al., 2009; Peña-Barragán et al., 2011; Jiao et al., 2014). These 89 

object-based methods utilise not only the within-object information (e.g., spectra and 90 

texture), but also contextual information between objects (e.g., the relationship between 91 

adjacent objects), thereby achieving increased classification accuracy (Castillejo-92 

Gonzalez et al., 2009; Li et al., 2019b). However, the features employed in OBIA methods 93 

are essentially hand-crafted, and their quality depends heavily on individual user expertise 94 
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and experience (Zhang et al., 2020b). OBIA methods are also challenged by selecting key 95 

variables from huge number of object features (Duro et al., 2012).  96 

A major challenge with traditional methods (both pixel-based and object-based) is that 97 

they are unable to extract deep-level features from remotely sensed imagery automatically 98 

and effectively. Recently, deep learning, which can learn discriminative features in an 99 

end-to-end manner, has attracted considerable interest in a variety of research fields 100 

(LeCun et al., 2015). Deep convolutional neural networks (CNN), one of the most popular 101 

and successful deep learning methods, have demonstrated significant advantages for 102 

image processing and analysis (Krizhevsky et al., 2017). Owing to their excellent 103 

capability to learn higher-level feature representations, CNNs have achieved impressive 104 

results beyond the state-of-the-art in a variety of research fields, such as speech detection 105 

(Hinton et al., 2012), image denoising (Zhang et al., 2017) and handwriting recognition 106 

(LeCun et al., 2015). Meanwhile, CNNs have also achieved success in remote sensing, 107 

such as for object detection (Cheng et al., 2016), panchromatic image sharpening (Scarpa 108 

et al., 2018) and remote sensing image classification (Zhang et al., 2018). CNNs have 109 

demonstrated huge potential for classifying agricultural landscapes that are spatially and 110 

temporally heterogeneous using FSR imagery. Yao et al. (2017) presented a CNN-based 111 

approach for crop classification with FSR remote sensing images. Sidike et al. (2019) 112 

developed a novel deep progressively expanded network (dPEN) to map crop types and 113 

crop residues from FSR WorldView-3 imagery. Li et al. (2020) applied a CNN-114 

transformer approach to perform crop classification using multi-temporal images. Zhang 115 

et al. (2020a) recently designed a modified pyramid scene parsing network (MPSPNet) 116 

to identify crop areas from FSR images. These pioneering methods, however, only 117 

classify the cropland using remotely sensed images, and they overlook the close 118 
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relationship between crop hierarchies which has proven to be very beneficial to crop 119 

classification.  120 

Some previous studies have attempted to incorporate the domain knowledge via a 121 

hierarchy of classes into crop mapping. La Rosa et al. (2019) presented the Most Likely 122 

Class Sequence (MLCS) post-processing algorithm to incorporate prior knowledge about 123 

crop dynamics into crop mapping using a binary transition probability matrix. Martinez 124 

et al. (2021) recently adopted the MLCS to enforce prior knowledge about crops’ 125 

dynamics to the crop classification results of convolutional recurrent networks. Similarly, 126 

Giordano et al. (2020) refined crop classification results with crop rotation rules acquired 127 

based on previous classification maps. However, these approaches only exploit prior crop 128 

rotation knowledge that is local experience-dependent (via temporal hierarchy of classes) 129 

for crop mapping, and they are, thus, hard to generalise to other regions. Currently, very 130 

few studies have focused on the exploitation of hierarchical ontologies knowledge (via 131 

compositional hierarchy of crop classes). In fact, the agricultural landscape can be 132 

interpreted at multiple semantic levels (Wardlow and Egbert, 2008). For example, an 133 

agricultural landscape might be categorised as summer crops and winter crops at a high-134 

level (i.e., coarse, broad-level), and divided further into corn, sunflower, wheat and oats 135 

at a low-level (i.e., fine, detailed-level) (Peña-Barragán et al., 2011). The low-level crop 136 

(LLC) and high-level crop (HLC) classes have the same spatial extent and are nested 137 

within each other hierarchically. Thus, there is a close, hierarchical relationship between 138 

these classes. However, it is still not yet clear whether the relationship between 139 

compositional hierarchies can be used to enhance crop classification accuracies. 140 

To fill this knowledge gap, a novel Iterative Deep Learning (IDL) approach that is 141 

capable of learning discriminative features and utilising the relationship between different 142 
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crop class levels, was proposed in this paper to solve progressively the problem of 143 

classifying complex agricultural landscapes. In IDL, the agricultural landscape is 144 

interpreted at two semantic levels, namely fine low-level crop (LLC) classes and broad 145 

high-level crop (HLC) classes. The LLC and HLC are classified using an object-based 146 

CNN (OCNN) to maintain the boundary of the crop parcels. A Markov process is 147 

formulated in the IDL to progressively and iteratively model the joint distribution 148 

between the predicted LLC and HLC variables. During the iterative progress, the LLC 149 

and HLC classifications interact with and complement each other, thus, increasing their 150 

accuracies. To the best of our knowledge, this is the first attempt to classify automatically 151 

a complex agricultural landscape using deep learning by considering hierarchical 152 

ontologies in relation to the crop system. The proposed IDL method was tested over two 153 

heterogeneous agricultural fields, respectively, using FSR Synthetic Aperture Radar 154 

(SAR) and optical imagery. 155 

 156 

2. Methods 157 

 158 

2.1 Convolutional neural network (CNN) 159 

A CNN is intrinsically a deep neural network consisting of several pairs of 160 

convolutional and pooling layers (i.e., hidden layers). The convolutional layer is adopted 161 

to extract multi-level feature representations through convolutional filters, followed by 162 

an activation function to enhance non-linearity. The max-pooling layer is employed to 163 

strengthen the generalisation ability of the network. The parameters of the CNN network 164 

(i.e., weights and biases) are learnt using a stochastic gradient descent algorithm. Finally, 165 
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one or more fully connected layers is employed on top of the last max-pooling layer, with 166 

a softmax function being included to predict the final classification results. 167 

2.2 Object-based convolutional neural network (OCNN) 168 

The OCNN was developed by Zhang et al. (2018) to allow application of the CNN to 169 

FSR imagery for land use classification, while maintaining the geometric integrity of 170 

ground objects and enhancing computational efficiency. The OCNN places an image 171 

patch at the centroid of each object to extract multi-level feature representations for 172 

prediction (Li et al., 2019b). While employing the same training process as the standard 173 

pixel-wise CNN using labelled image patches, the prediction of the OCNN model is 174 

assigned to each segmented object acquired from remotely sensed imagery.  175 

2.3 Iterative Deep Learning (IDL) model 176 

An agricultural landscape can be interpreted as comprising low-level crop (LLC) and 177 

high-level crop (HLC) classes arranged in a hierarchical ontological structure, as 178 

mentioned above. The basic assumption of the proposed IDL is that the LLC and HLC 179 

classifications are intrinsically correlated and complementary to each other. The general 180 

workflow of the proposed classification model is illustrated by Fig. 1, where LLC and 181 

HLC classifications are achieved jointly at each iteration, and they refine each other 182 

iteratively.  183 

 184 
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 185 

Fig. 1. General workflow of the proposed Iterative Deep Learning method for LLC and 186 

HLC classifications. 187 

 188 

In the IDL model, the HLC classification probabilities are conditional upon the LLC 189 

classification probabilities within each iteration, and the joint probability distribution 190 

between LLC and HLC of the current iteration ( 𝑖𝑖 ) is impacted by the probability 191 

distribution of the previous iteration. Such a hierarchical classification framework can be 192 

formulated as a Markov process as follows: 193 

                        𝑃𝑃�LLC𝑖𝑖 , HLC𝑖𝑖� = 𝑃𝑃�LLC𝑖𝑖 , HLC𝑖𝑖�LLC𝑖𝑖−1, HLC𝑖𝑖−1�                               (1) 194 

where 𝑖𝑖 represents the number of iterations within the Markov process, and LLC𝑖𝑖  and 195 

HLC𝑖𝑖 denote the LLC and HLC classifications at the 𝑖𝑖-th iteration, respectively. The LLC 196 

and HLC classifications were achieved by using two submodels of IDL (denoted as LLC-197 

submodel and HLC-submodel) with the OCNN classifier.  198 

Let 𝐌𝐌 represent a scene of remote sensing imagery, with 𝑚𝑚 and 𝑛𝑛 denoting the number 199 

of classes for LLC and HLC, respectively. Let 𝐎𝐎=(𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑗𝑗 , … , 𝑜𝑜𝑢𝑢) represent the set 200 

of segmented objects from 𝐌𝐌, where 𝑜𝑜𝑗𝑗 and 𝑢𝑢 are the 𝑗𝑗-th object and the total number of 201 

objects, respectively. Let 𝐓𝐓LLC = ( 𝑡𝑡LLC1, 𝑡𝑡LLC2, … , 𝑡𝑡LLC𝑘𝑘, … , 𝑡𝑡LLC𝑣𝑣 ) and 𝐓𝐓HLC = 202 
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(𝑡𝑡HLC1, 𝑡𝑡HLC2, … , 𝑡𝑡HLC𝑘𝑘, … , 𝑡𝑡HLC𝑣𝑣) represent the set of training samples of LLC and HLC, 203 

respectively, where 𝑡𝑡LLC𝑘𝑘  and 𝑡𝑡HLC𝑘𝑘  are the 𝑘𝑘 -th samples of the LLC and HLC, 204 

respectively, and 𝑣𝑣 is the total number of samples. The 𝐓𝐓LLC and 𝐓𝐓HLC were employed to 205 

train the OCNN models to achieve the LLC and HLC classifications, respectively. Note 206 

that the samples contained in 𝐓𝐓LLC and 𝐓𝐓HLC are the same and the samples of a specific 207 

HLC class are constituted by samples of one or more LLC classes (e.g., HLC Forage 208 

samples may consist of LLC Alfalfa and Hay samples).  209 

Suppose the hierarchical relationship between LLC and HLC can be expressed via a 210 

function 𝑓𝑓, and the classification probabilities of the LLC and HLC classifications can be 211 

represented as: 212 

                       𝑃𝑃�LLC𝑖𝑖 , HLC𝑖𝑖� = 𝑓𝑓(LLC𝑖𝑖−1, HLC𝑖𝑖−1,𝐌𝐌,𝐎𝐎,𝐓𝐓LLC,𝐓𝐓HLC)                      (2) 213 

where LLC𝑖𝑖−1  and HLC𝑖𝑖−1  denote the LLC and HLC classification outputs of the 214 

previous (i.e., (𝑖𝑖-1)-th) iteration, respectively; 𝐌𝐌 and 𝐎𝐎 are the original remotely sensed 215 

image and the set of object-based segmentations, respectively; 𝐓𝐓LLC  and 𝐓𝐓HLC  are the 216 

LLC and HLC samples in which the locations in the image and the corresponding class 217 

labels are recorded. These elements serve as the inputs of the IDL model, with the joint 218 

probability distribution between LLC and HLC as the output of the model.  219 

The input to the LLC-submodel is remotely sensed imagery combined with the 220 

probabilities of the HLC classification from the previous iteration, whereas the HLC-221 

submodel takes only the probabilities of LLC classification as the input evidence. The 222 

LLC and HLC classification probabilities and their output maps are elaborated in detail 223 

as follows: 224 

(1) LLC classification probabilities 225 
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The original imagery 𝐌𝐌  and the HLC classification probabilities output from the 226 

previous iteration 𝑃𝑃�HLC𝑖𝑖−1� are combined for LLC classification as: 227 

                                𝐌𝐌LLC
𝒊𝒊 = Concate(𝐌𝐌,𝑃𝑃�HLC𝑖𝑖−1�)                                       (3) 228 

where Concate denotes a function to concatenate the imagery 𝐌𝐌 with the HLC classification 229 

probabilities  𝑃𝑃�HLC𝑖𝑖−1� . In other words, the function combines spatially the bands 230 

contained in 𝑃𝑃(𝐗𝐗)𝑖𝑖−1 with those in 𝐌𝐌 as the input for the next iteration. For the case of 231 

𝑖𝑖 = 1, the 𝑃𝑃�HLC𝑖𝑖−1� are empty (NULL) and 𝐌𝐌LLC
𝒊𝒊 is, thus, equivalent to the original 232 

imagery 𝐌𝐌. 233 

   The OCNN model for LLC classification is trained using the LLC training samples 234 

(𝐓𝐓LLC) as follows: 235 

                                     OCNNLLC
𝑖𝑖 = OCNN. Train(𝐌𝐌LLC

𝒊𝒊,𝐓𝐓LLC)                                (4) 236 

  The LLC classification probabilities 𝑃𝑃(LLC𝑖𝑖) at the 𝑖𝑖-th iteration can be predicted using 237 

the trained OCNN model as follows: 238 

                                    𝑃𝑃(LLC𝑖𝑖) = OCNNLLC
𝑖𝑖 . Predict(𝐌𝐌LLC

𝒊𝒊,𝐎𝐎)                              (5) 239 

Note that the 𝑃𝑃(LLC𝑖𝑖) has the same spatial size as the imagery 𝐌𝐌, and the dimensions 240 

of 𝑃𝑃(LLC𝑖𝑖) are equal to the number of LLC classes, with each band of the 𝑃𝑃(LLC𝑖𝑖) 241 

corresponding to probabilities of a specific LLC class. 242 

(2) HLC classification probabilities 243 

  Different from the LLC-IDL, the HLC-submodel uses only the LLC classification 244 

probabilities as the inputs. The training of the HLC classifier is represented as follows: 245 

                                  OCNNHLC
𝑖𝑖 = OCNN. Train(𝑃𝑃(LLC𝑖𝑖),𝐓𝐓HLC)                             (6) 246 

  The HLC classification probabilities are predicted using the trained OCNN model as 247 

follows: 248 
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                               𝑃𝑃(HLC𝑖𝑖) = OCNNHLC
𝑖𝑖 . Predict(𝑃𝑃(LLC𝑖𝑖),𝐎𝐎)                              (7) 249 

By using Eq. (5), the probability of being assigned to each HLC class for each 250 

segmented object is achieved within each iteration. Like the 𝑃𝑃(LLC𝑖𝑖), the spatial size of 251 

𝑃𝑃(HLC𝑖𝑖) is the same as the extent of the original imagery 𝐌𝐌. The dimension of 𝑃𝑃(HLC𝑖𝑖)  252 

is equal to the number of HLC classes, and each dimension corresponds to the 253 

probabilities of a specific HLC class.  254 

  The probabilities of LLC (𝑃𝑃(LLC𝑖𝑖)) and HLC (𝑃𝑃(HLC𝑖𝑖)) are updated at each iteration. 255 

The final LLC (𝐌𝐌LLCresult) and HLC (𝐌𝐌HLCresult) classification maps are achieved based 256 

on the probabilities output at the last iteration as follows: 257 

                                𝐌𝐌LLCresult = arg max (𝑃𝑃(LLC𝑁𝑁))                                         (8) 258 

                                𝐌𝐌HLCresult = arg max (𝑃𝑃(HLC𝑁𝑁))                                        (9) 259 

where arg max is a function classifying each object of the imagery as the class with the 260 

maximum membership, and 𝑁𝑁 is the maximum number of iterations for the IDL model.  261 

  The proposed Iterative Deep Learning model has three major advantages as follows: 262 

1. Hierarchical classifications of LLC and HLC are achieved in an automatic way. 263 

2. Both the LLC and HLC classifiers evolve collaboratively and classification accuracy 264 

is increased progressively. 265 

3. The training samples applied for both of the submodels of IDL are essentially the same, 266 

without extra substantial sampling workload. 267 

 268 

3. Experimental results and analysis 269 

 270 

3.1 Study area and materials 271 
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In this research, two agricultural regions (S1 and S2) located in the centre of the 272 

Sacramento Valley, California were chosen as the study areas (Fig. 2). The agricultural 273 

systems of the Sacramento Valley are highly complex and heterogeneous in crop 274 

composition and, thereby, are ideal for evaluating the effectiveness of the proposed IDL 275 

method. The first study site (S1) is in Solano county, with ten dominant low-level 276 

(detailed-level) crop categories identified, namely Almond, Walnut, Alfalfa, Hay, Clover, 277 

Winter wheat (denoted as Wheat hereafter), Corn, Sunflower, Tomato and Pepper. The 278 

second study site (S2) is situated in Yolo county, consisting of nine low-level crop 279 

categories, including Almond, Walnut, Grass, Alfalfa, Wheat, Corn, Sunflower, Tomato 280 

and Cucumber. These low-level categories for both S1 and S2 can be aggregated into five 281 

high-level (broad-level) categories, namely Tree crops, Forage, Winter crops, Summer 282 

crops, and Vegetables and Fruits (denoted as Vegetables hereafter), as illustrated by Table 283 

1.  284 

 285 

Table 1  286 

The high-level crop (HLC) classes with descriptions and the corresponding low-level 287 

crop (LLC) components. 288 

HLC Study site Description LLC  

Tree crops S1, S2 
Permanent crops, woody structures, growing season: 
spring to fall. 

Walnut, 
Almond 

Forage S1, S2 
Permanent crops, herbaceous structures, growing season: 
spring to fall with several rounds of cuttings. 

Alfalfa, Hay, 
Clover, Grass 

Winter crops S1, S2 
Non-permanent crops, herbaceous structures, growing 
season: mid-fall to late-spring of the next year. 

Winter wheat 

Summer 
crops 

S1, S2 
Non-permanent crops, herbaceous structures, growing 
season: mid-spring to early-autumn. 

Corn, Soybean, 
Sunflower 
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Vegetables S1, S2 
Non-permanent crops, herbaceous structures, growing 
season: mid-spring to late-summer. 

Tomato, Pepper, 
Cucumber 

 289 

 290 

Fig. 2. Geographical locations of the two study areas with the corresponding remotely 291 

sensed images. 292 

In S1, a scene of an Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) 293 

image, an airborne L-band polarimetric radar system (Fore et al., 2015), was acquired on 294 

29 Aug, 2011. The UAVSAR datasets employed were in the GRD format (calibrated and 295 

ground range projected) with a fine spatial resolution of 5 m and a spatial extent of 296 

3474×2250 pixels. Three linear polarizations (i.e., HH, HV, and VV) as well as three 297 

polarimetric parameters (entropy, anisotropy and alpha angle) generated by the Cloude-298 

Pottier decomposition were used as input variables to the classifiers.  299 

In S2, a cloud-free RapidEye image with five spectral bands (blue, green, red, red edge, 300 

and near infrared), was captured on 10 July, 2016. The image employed in this research 301 

is a Level 3A Ortho product (i.e., sensor, radiometric and geometric correction already 302 

implemented) with a fine spatial resolution of 5 m and a spatial extent of 3222×2230 303 

pixels. The atmospheric and topographic correction method was applied to the image to 304 

acquire surface reflectance for input to the image classifiers. 305 
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The Cropland Data Layer (CDL) of the United States Department of Agriculture 306 

(USDA) was employed as the ground sampling reference. The CDL is generated annually 307 

using medium spatial resolution images and a large number of ground samples (Boryan 308 

et al., 2011). Due to its very high quality, the CDL has been used widely as the ground 309 

reference in a variety of applications (e.g., Whelen and Siqueira, 2017; Cai et al., 2018; 310 

Li et al., 2019a). The crop parcels of both study sites were identified and delineated 311 

manually according to the CDL datasets. To acquire representative samples, crop parcels 312 

with an area below 5 ha were not considered (Li et al., 2019a). Training and validation 313 

sample points were collected within the separated training and validation polygons, 314 

respectively, using a stratified random sampling scheme to ensure they come from 315 

different crop polygons. A stratified random sampling procedure was adopted for 316 

sampling (training and validation), with the number of samples for a specific crop type 317 

being proportional to its total area. A total of 1415 and 1262 sample points were collected 318 

within S1 and S2, respectively, with an average of about 120 samples for each class. To 319 

evaluate comprehensively the classifications, wall-to-wall assessment was adopted for 320 

both sites. That is, all pixels within the testing polygons were used for accuracy 321 

assessment. 322 

To further investigate the applicability of the presented IDL method, another scene of 323 

RapidEye image (Level 3A Ortho product) covering the first study site (denoted as S1’) 324 

was collected on 14 Aug, 2014 for image classification. In S1’, the county-level land use 325 

survey data in year 2014 by California Department of Water Resources (CDWR) were 326 

employed as ground reference to collect samples. Each land parcel within S1’ was visited 327 

by staff in regional offices of CDWR, and the land use attributes (including specific crop 328 

type) were recorded during the visits (Zhong et al., 2019). The crop categories identified 329 
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in S1’ were exactly the same as S1, with a total of 1223 sample being collected for model 330 

training.   331 

3.2 IDL model architecture and parameters 332 

3.2.1 Image segmentation 333 

The image segmentation procedure is the basis for the IDL since the LLC and HLC 334 

classifications are implemented on the segmented objects. A multi-resolution 335 

segmentation (MRS) algorithm (Baatz and Schaepe, 2000) was applied using the 336 

eCognition 9.0 software to acquire the segmented objects. Followed by the suggestions 337 

of Duro et al. (2012), the “scale” parameter was optimised first, and then the other two 338 

parameters (shape and compactness) were tuned successively, until the segmented objects 339 

matched well with crop boundaries based on visual inspection. The scale parameter of the 340 

MRS was tuned through cross-validation as 30 and 180 for S1 and S2, respectively, with slightly 341 

over-segmented results being achieved (i.e., the segmented objects are homogeneous). The Shape 342 

and Compactness parameters were optimised as 0.2 and 0.7 for S1, and 0.3 and 0.6 for S2. In 343 

total, 3040 and 3867 objects were generated for S1 and S2, respectively.  344 

3.2.2 Model structure and parameters 345 

In the proposed IDL model, a standard CNN classifier is applied to classify each 346 

segmented object (OCNN) at both the LLC and HLC classification levels, with the 347 

centroid of each object taken as the convolutional point (i.e., the centre of image patch) 348 

of the CNN (Zhang et al., 2018; Li et al., 2019b). The CNN within the IDL method needs 349 

to predefine hyperparameters to achieve the optimal classification results. Herein, the 350 

CNN was parameterised in S1 and directly generalized in S2, as detailed below.  351 

The structure of the CNN employed in the IDL (denoted as CNN-IDL, hereafter) was 352 

similar to AlexNet with six hidden layers and small convolutional filter sizes (5×5 for the 353 



Iterative Deep Learning (IDL) for agricultural landscape classification 

 17 

first convolutional layer and 3×3 for the remaining layers) (Fig. 3). The number of filters 354 

was tuned as 64 to extract multi-level feature representations for each segmented object. 355 

The input window size was optimised to 32×32. To alleviate the possibility for over-356 

fitting problem, dropout regularization was applied with an optimised dropout value of 357 

0.25. The maximum number of epochs was set to 500 to allow the network to converge 358 

through backpropagation. As the predicted CNN scores (i.e., probabilities) are often over-359 

confident (Guo et al., 2017), the CNN-IDL model was calibrated during model training 360 

process with a label smoothing factor of 0.05 on validation set (Muller et al., 2019).  361 

 362 

Fig. 3. Model architecture of the CNN network employed in the IDL model.  363 

3.3 Benchmarks and parameter settings 364 

To test comprehensively the effectiveness of the proposed IDL model, traditional 365 

object-based image analysis (OBIA), standard pixel-wise CNN (PCNN), and object-366 

based CNN (OCNN) were applied as benchmarks. To provide a fair comparison, the 367 

structure of the two CNN-based benchmarks (i.e., PCNN and OCNN) was the same as 368 

that in the CNN-IDL network (i.e., three pairs of convolutional and max-pooling layers). 369 

Parameters including filter size, dropout value and epoch were also identical to those of 370 

the CNN-IDL. The three benchmarks are described briefly as follows: 371 

OBIA: The OBIA was implemented based on the segmentation results achieved in 372 

Section 3.2.1. A range of hand-coded features were obtained from each segmented object, 373 
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including spectral features, texture, and geometry. These hand-crafted feature 374 

representations were used as the input variables of a parameterised SVM classifier. 375 

PCNN: The standard pixel-wise CNN classifies all pixels of the imagery using densely 376 

overlapping patches. The input window size of the PCNN was tuned as 24×24 through 377 

cross-validation for both study sites. The number of filters for each hidden layer was 32. 378 

The other control parameters were the same as for the CNN-IDL. 379 

OCNN: Unlike the PCNN, the OCNN takes the segmented objects (Section 3.2.1) as 380 

the functional unit (Zhang et al., 2018b; Li et al., 2019b). A standard CNN was trained in 381 

the OCNN to predict the label of each object. Settings of the parameters were identical to 382 

those of the CNN-IDL.  383 

 384 

3.4 Classification analysis and results 385 

3.4.1 IDL classification accuracies 386 

The presented IDL method was implemented 10 times (with 10 iterations in each 387 

implementation) for each study site to evaluate its accuracy and robustness. Fig. 4 plots 388 

the average overall accuracy (OA) of the IDL against iteration from iteration 1 to 10. It 389 

can be observed that the OAs of the LLC and HLC classifications in S1 started from 82.25% 390 

and 90.05%, respectively, then increased rapidly from iteration 2 to 3, and reached the 391 

greatest OAs of 87.94% and 91.83% at iteration 4 (Fig. 4(a)). The accuracies of both LLC 392 

and HLC tend to be stable (around 88% and 92%) after iteration 4 (i.e., from iteration 5 393 

to 10), with the OA of HLC being higher than that of the LLC by about 4%. A similar 394 

trend of increasing accuracy with iteration was found for the second study site (S2) (Fig. 395 

4(b)). Specifically, the OAs of the LLC and HLC classifications (from 84.90% and 396 

88.66%, respectively) increased gradually with iteration until iteration 4, where the 397 
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greatest OAs of 88.46% and 90.37% were achieved for LLC and HLC, respectively. The 398 

OAs of both LLC and HLC stabilised from iteration 5 to 10. The difference in accuracy 399 

between the LLC and HLC classifications in S2 was about 2%. 400 

 401 

Fig. 4. Plots of overall accuracy achieved by the proposed IDL against iteration for both 402 

S1 and S2. The optimal accuracies of both LLC and HLC classifications are obtained by 403 

iteration 4 as indicated by the gray dashed line. 404 

3.4.2 IDL classification results 405 

 406 
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Fig. 5. Two typical image subsets of the LLC and HLC classifications in S1 achieved 407 

using the LLC-submodel and HLC-submodel, respectively. Note that the red and yellow 408 

circles highlight incorrect and correct classifications, respectively. 409 

To provide a visualization of how the two submodels of the IDL complement each 410 

other iteratively, typical subsets of the LLC and HLC classifications produced by the 411 

LLC-submodel (IDL-LLC) and HLC-submodel (IDL-HLC) are presented from iteration 412 

1 to 4 for S1 and S2 in Figs. 5 and 6, respectively. Two typical subsets are illustrated for 413 

each of the study sites. For the first subset of S1, two adjacent parcels of Sunflower were 414 

misclassified as Pepper at iterations 1 to 3 by the IDL-LLC, as illustrated by the red circles 415 

in Fig. 5 (a), but they were correctly classified as Summer crops by the IDL-HLC (see the 416 

yellow circles in Fig. 5 (b)). With the valuable information provided by the IDL-HLC at 417 

iteration 3, Sunflower were accurately classified from Pepper at iteration 4. Besides this, 418 

the misclassifications between Sunflower and Tomato were rectified progressively with 419 

the help of IDL-HLC, and they were completely discriminated from each other at iteration 420 

4 (Fig. 5 (a)). In turn, the IDL-LLC modified the classification errors of IDL-HLC during 421 

the iterative process. For example, a misclassified parcel of Winter crops produced by the 422 

IDL-HLC at iteration 1 was rectified at iteration 2 (Fig. 5 (b)) with the correct information 423 

about crop class (i.e., Winter wheat) provided by the IDL-LLC at iteration 2 (Fig. 5 (a)). 424 

Similar to subset 1, the IDL-LLC and IDL-HLC rectified each other iteratively in the 425 

second subset (Fig. 5 (c and d)). Clearly, Tomato and Pepper were misclassified as each 426 

other by the IDL-LLC at iterations 1 and 2 (Fig. 5 (c)). Fortunately, they were correctly 427 

labelled as Vegetable by the IDL-HLC at iteration 2 (Fig. 5 (d)), which helped the IDL-428 

LLC discriminate Tomato from Pepper accurately at iteration 3 (Fig. 5 (c)).  429 
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 430 

Fig. 6. Two typical image subsets of the LLC and HLC classifications in S2 achieved 431 

using the LLC-submodel and HLC-submodel, respectively. Note that the red and yellow 432 

circles highlight incorrect and correct classifications, respectively. 433 

Regarding S2, a Sunflower parcel was erroneously mapped as Almond by the IDL-434 

LLC initially (i.e., iterations 1 and 2) in the first subset, as shown by the red circle in Fig. 435 

6 (a). The parcel was correctly identified by the IDL-HLC at iteration 2 (Fig. 6 (b)), which 436 

helped IDL-LLC classify the parcel at iteration 3. In turn, the IDL-LLC helped IDL-HLC 437 

differentiate Forage and Winter crops at iteration 3, as shown in Fig. 6 (a and b). Like the 438 

first subset of S2, the LLC and HLC classification accuracies were increased 439 

progressively with iteration in the second subset. For example, a Walnut parcel falsely 440 

identified by the IDL-LLC at iterations 1 and 2 (Fig. 6 (c)) was distinguished at iteration 441 

3 with the support of IDL-HLC, in which the high-level class of the parcel was labelled 442 

correctly (i.e., Tree crops, Fig. 6 (d)). At the same time, a Tomato parcel mislabelled by 443 
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IDL-LLC at iteration 1-3 was correctly identified at iteration 4 (Fig. 6 (c)), thanks to the 444 

correct classification information (i.e., Vegetables) achieved by the IDL-HLC (Fig. 6 (c)).  445 

3.4.4 Benchmark comparison for the LLC and HLC classifications 446 

Classification results: To further test the effectiveness of the IDL, a range of 447 

benchmarks, including pixel-wise CNN (PCNN), object-based image analysis (OBIA), 448 

and object-based CNN (OCNN), were compared with the IDL for both the LLC and HLC 449 

classifications in S1 and S2, respectively.   450 

The low-level crop classification maps of S1 and S2 are presented in Fig. 7 (a-b) and 451 

(c-d), respectively. As illustrated by the figures, classifications of the proposed IDL-LLC 452 

were consistently more accurate compared to those of the benchmarks over both study 453 

sites. For the PCNN classification, severe salt-and-pepper noise and linear artifacts were 454 

observed in Fig. 7 (a-d); Sunflower, Tomato and Pepper were frequently confused with 455 

each other (Fig. 7 (a and b)). For the OBIA and OCNN, smooth LLC classification results 456 

were obtained while keeping the precise boundaries of the crop parcels; the classification 457 

accuracies of Tomato and Pepper were increased. However, both OBIA and OCNN failed 458 

to differentiate Sunflower and Pepper, as well as Walnut and Grass (Fig. 7 (a and d)). 459 

Besides, parts of Grass and Cucumber were misclassified as other LLC classes, as shown 460 

in Fig. 7 (c). The above issues were resolved by the proposed IDL (i.e., IDL-LLC), which 461 

produced clearly the smoothest and most accurate results. 462 
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 463 

Fig. 7. Image subset comparison amongst PCNN, OBIA, OCNN, and IDL-LLC in both 464 

S1 and S2.  465 

 466 

In terms of high-level crop classification, the most accurate results were achieved by 467 

the proposed method (IDL-HLC) in S1 (Fig. 8 (a-b)) and S2 (Fig. 8 (c-d)). In contrast, 468 

the PCNN classification maps produced much undesirable salt-and-pepper noise, 469 

especially in the Vegetables and Winter crops parcels (Fig. 8 (a and d)). A large number 470 

of pixels near the boundary of crop parcels were classified incorrectly (Fig. 8 (a and d)). 471 

By using the segmented objects, the OBIA and OCNN reduced significantly the salt-and-472 

pepper noise, and increased the classification accuracy, accordingly. However, they did 473 

not perform well in discriminating HLC classes with similar spectral characteristics. For 474 

example, the OBIA often misclassified Summer crops and Vegetables, as well as Tree 475 

crops and Forage with each other (Fig. 8 (a and c)), and the OCNN was unable to 476 
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distinguish between Winter crops, Summer crops, and Vegetables (Fig. 8 (a and d)). 477 

These issues were resolved by the proposed IDL-HLC. 478 

 479 

Fig. 8. Image subset comparison amongst PCNN, OBIA, OCNN, and IDL-HLC in both 480 

S1 and S2.  481 

 482 

Accuracy assessment: To provide a quantitative assessment of classification accuracy, 483 

the proposed IDL method was compared with benchmarks using the overall accuracy 484 

(OA), Kappa coefficient (𝜅𝜅) and per-class mapping accuracy. The accuracy of LLC 485 

classification is summarised in Tables 2 and 3 for S1 and S2, respectively. The IDL-LLC 486 

consistently obtained the greatest overall accuracy of 87.89% and 88.94% (𝜅𝜅=0.86 and 487 

0.87) for S1 and S2, respectively, better than for the OCNN at 82.97% and 84.95% 488 

(𝜅𝜅=0.80 and 0.82), the OBIA at 85.95% and 82.01% (𝜅𝜅=0.84 and 0.78), and the PCNN 489 

at 81.00% and 82.04% (𝜅𝜅=0.78 and 0.79). For the HLC, the accuracy assessment is 490 
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presented in Tables 4 and 5 for S1 and S2, respectively. The tables show that the IDL-491 

HLC is consistently more accurate (OA=91.74% and 90.72%, and 𝜅𝜅=0.89 and 0.88 for 492 

S1 and S2) than the benchmarks.   493 

The class-wise mapping accuracy assessment results for the LLC (Tables 2 and 3) and 494 

HLC (Tables 4 and 5) classifications in S1 and S2 also demonstrate the superiority of the 495 

proposed IDL method. For the LLC classification, the IDL-LLC obtained the greatest 496 

accuracy for most of the LLC classes in S1 and nearly all LLC classes (except Walnut) 497 

in S2. The largest increases in accuracy were seen for the most challenging Clover class 498 

in S1 and Grass class in S2, with accuracies of 83.20% and 80.34%, respectively, for IDL-499 

LLC; markedly greater than for the OCNN (73.89% and 58.68%), OBIA (78.25% and 500 

48.58%), and PCNN (63.38% and 50.94%). The IDL-LLC also produced a large increase 501 

in accuracy for Hay, Wheat, and Sunflower in S1 (58.40%, 84.41% and 93.74%), and 502 

Almond, Alfalfa, and Cucumber in S2 (86.39%, 82.18% and 82.18%), increasing by 503 

around 5%-10% compared to the benchmarks. Moderate increases in accuracy were 504 

obtained for Alfalfa in S1 and Wheat and Sunflower in S2, with an average increase of 505 

about 3%-5%. For the other LLC classes, only a slight average increase in accuracy were 506 

achieved in comparison with the benchmarks.  507 

For the HLC classification (Tables 4 and 5), the IDL-HLC consistently produced the 508 

greatest accuracy for nearly all crop classes in S1 and S2, as shown by the bold font in 509 

the tables. The most remarkable accuracy increase achieved by the IDL-HLC was 510 

achieved for the Winter crops in S1 and Forage in S2 (84.67% and 90.20), much higher 511 

than for the OCNN (76.29% and 84.01%), OBIA (78.55% and 75.05%), and PCNN 512 

(76.12% and 77.12%). Moderately increased accuracies were produced for Forage and 513 

Summer crops in both sites and Tree crops and Vegetables in S2, with an average increase 514 
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of around 3%-6% compared with the benchmark methods. The IDL-HLC resulted in no 515 

significant increase in accuracy for Tree crops in S1, with a slight increase in accuracy in 516 

comparison with the benchmarks. 517 

The effectiveness of the proposed IDL method was further demonstrated in comparison 518 

with benchmarks using an additional Rapideye satellite imagery. The OA and 𝜅𝜅 are in 519 

accordance with the classification results of S1 and S2. As shown in Table 6, the IDL 520 

approach achieved the highest OA of 78.49% for LLC classification and 83.76% for HLC 521 

classification, consistently higher than the OCNN (74.23% and 77.62%), the OBIA 522 

(72.96% and 73.59%), and the PCNN (71.26% and 77.00%). Such coherency of 523 

classification accuracy further confirms the wide applicability of the proposed IDL 524 

method. 525 

 526 

Table 2 LLC classification accuracy comparison amongst PCNN, OBIA, OCNN and the 527 

proposed IDL applied to the first study area (S1). The largest accuracies are highlighted in bold 528 

font. 529 

Low-level class (S1) PCNN OBIA OCNN IDL-LLC 

Walnut 89.17  97.11  94.14  93.32  

Almond 94.16  89.60  96.05  92.44  

Alfalfa 82.71  88.47  91.20  91.23  

Hay 47.76  48.11  54.99  58.40  

Clover 63.38  78.25  73.89  83.20  

Wheat 76.35  83.78  78.56  84.41  

Corn 92.44  86.47  91.80  93.10  

Sunflower 84.94  82.28  83.39  93.74  

Tomato 88.63  92.83  85.44  90.75  

Pepper 58.29  79.79  44.84  69.19  

OA (%) 81.00 85.95 82.97 87.89 

Kappa 0.78 0.84 0.80 0.86 
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 530 

Table 3 LLC classification accuracy comparison amongst PCNN, OBIA, OCNN and the 531 

presented IDL applied to the second study area (S2). The largest accuracies are highlighted in 532 

bold font. 533 

Low-level class (S2) PCNN OBIA OCNN IDL-LLC 

Walnut 83.27  79.49  88.31  87.28  

Almond 76.24  74.79  79.97  86.39  

Grass 50.94  48.58  58.68  80.34  

Alfalfa 78.49  77.88  85.99  89.98  

Wheat 85.16  88.56  92.31  94.64  

Corn 97.18  96.74  96.48  98.99  

Sunflower 85.51  84.38  82.94  89.00  

Tomato 86.95  86.63  86.42  88.50  

Cucumber 71.20  71.73  78.30  82.18  

OA (%) 82.40 82.01 84.95 88.94 

Kappa 0.79 0.78 0.82 0.87 

 534 

Table 4 HLC classification accuracy comparison amongst PCNN, OBIA, OCNN and the 535 

presented IDL applied to the first study area (S1). The largest accuracies are highlighted in bold 536 

font. 537 

High-level class (S1) PCNN OBIA OCNN IDL-HLC 

Tree crops 94.93  93.59  95.19  94.85  

Forage 88.61  90.27  89.63  92.65  

Winter crops 76.12  78.55  76.29  84.67  

Summer crops 90.34  88.42  90.81  94.96  

Vegetables 91.23  91.43  91.59  93.08  

OA (%) 87.91 88.48 88.49 91.74 
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Kappa 0.84 0.85 0.85 0.89 

 538 

Table 5 HLC classification accuracy comparison amongst PCNN, OBIA, OCNN and the 539 

presented IDL applied to the second study area (S2). The largest accuracies are highlighted in 540 

bold font. 541 

High-level class (S2) PCNN OBIA OCNN IDL-HLC 

Tree crops 82.75  85.80  87.29  90.58  

Forage 77.12  75.05  84.01  90.20  

Winter crops 86.37  88.55  90.23  94.01  

Summer crops 86.23  85.79  87.73  90.41  

Vegetables 84.81  81.59  90.45  90.03  

OA (%) 83.80 83.20 88.29 90.72 

Kappa 0.79 0.78 0.85 0.88 

 542 

Table 6 Classification accuracy comparison amongst PCNN, OBIA, OCNN and the presented 543 

IDL for the S1’ from the Rapideye satellite image. The largest accuracies are highlighted in bold 544 

font. 545 

 Accuracy PCNN OBIA OCNN IDL 

LLC classification OA(%) 71.26 72.96 74.23 78.49 

 Kappa 0.67 0.69 0.70 0.75 

HLC classification OA(%) 77.00 73.59 77.62 83.76 

 Kappa 0.70 0.65 0.71 0.79 

 546 

4. Discussion 547 

 548 

Agro-ecosystems can be considered as highly complex and heterogeneous dynamical 549 

systems influenced by both human-related and natural environmental conditions (e.g., 550 
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climate and soil conditions). Due to their highly complex and dynamic nature, identifying 551 

crop types from FSR images remains a great challenge, even for deep learning-based 552 

algorithms (e.g., Sidike et al., 2019; Li et al., 2019b). Solving such a difficult task 553 

normally requires a very deep network with a large number of samples and huge 554 

computing resource (Sidike et al., 2019), which may not be achievable or affordable. 555 

Seeking conceptually sound solutions to resolve such complex tasks is, therefore, of great 556 

value. An agricultural landscape can be conceptualized as comprising a set of crop types 557 

represented at different ontological levels in a hierarchical structure. For example, the 558 

high-level crop class (HLC) Forage consists of the low-level crops (LLC) Alfalfa, Hay 559 

and Clover in S1. The paper proposes to exploit the hierarchical relationship between the 560 

LLC and HLC classes to increase the accuracies of classifying both levels to address the 561 

challenging problem of classifying complex agricultural landscapes using FSR remotely 562 

sensed imagery. 563 

A novel Iterative Deep Learning (IDL) framework was proposed which progressively 564 

models the relationship between the LLC and HLC levels through a Markov Process. The 565 

two sub-models (LLC-submodel and HLC-submodel) complement each other through 566 

information transformation and interaction. Spectral similarities exist amongst LLCs 567 

from different HLCs (Li et al., 2019), such that the CNNs often misclassify one LLC as 568 

the other. For example, Sunflower and Walnut were misclassified as other LLC classes 569 

at the beginning of the iterative process (i.e., without HLC classification information) 570 

(Fig. 5(a) and Fig. 6(c)). Fortunately, the corresponding crop parcels were classified 571 

accurately (i.e., Summer crops and Tree crops) at the HLC level (Fig. 5(b) and Fig. 6(d)); 572 

this may be due to the unique structural characteristics of Summer crops and Tree crops 573 

(Li et al., 2019). Similarly, the differentiation of LLCs within a given HLC can also be 574 
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enhanced with more accurately identified HLC classes, as shown in Fig. 5 (c), where the 575 

complex classification issue between Tomato and Pepper was solved from iteration 3. In 576 

short, the more accurate HLC classification can feedback unique and valuable 577 

information to increase the accuracy of LLC classification. In turn, with the improved 578 

prediction of the LLCs, the HLCs can be distinguished more accurately since HLCs are 579 

essentially constituted perfectly by averaging the LLCs. For example, the classification 580 

of LLC at iteration 3 helped to identify Winter crops for the HLC classification (Fig. 6 (a 581 

and b)). The positive feedback process in the IDL between the LLC and HLC levels 582 

refines, updates and reinforces the two classifications in a complementary way through 583 

iteration.  584 

It should be noted that the CNN predicted scores (i.e., CNN predicted probabilities) are 585 

usually poorly calibrated, often tend to be over-confident (Guo et al., 2017). For example, 586 

a prediction score of 0.9 for a crop parcel does not necessarily mean it can be correctly 587 

identified with 90% probability. As such, it is very essential and useful to calibrate deep 588 

learning. In the proposed IDL model, CNN prediction scores were calibrated to 589 

classification probabilities via Label Smoothing (Müller et al., 2019). Such calibration 590 

not only improves the iteration efficiency for IDL, reaching the highest accuracy with 591 

only four iterations, but also increases the accuracy of predictions, rising from ~84% to 592 

~88%.  593 

As mentioned above, previous studies improved crop classifications with prior crop 594 

rotation knowledge acquired via temporal hierarchy of classes. Their central idea is to 595 

explicitly define a transition probability matrix of which classes can follow others in a 596 

crop rotation use-case (La Rosa et al., 2019; Giordano et al., 2020). The major 597 

shortcoming of such methods is that they rely on a huge amount of knowledge (past 598 
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datasets or experts’ experience) about local practices on crop rotations to generate a 599 

transition probability matrix, which makes them more rigid and brittle for other use-cases. 600 

Being subject to scattered human knowledge, these methods are, thus, hard to generalise 601 

to other regions. In contrast, no prior crop rotation knowledge is required for the Iterative 602 

Deep Learning approach proposed in this work. Through an integration of compositional 603 

hierarchies (well-accepted knowledge) in an end-to-end manner, the proposed approach 604 

is more generalisable and applicable in practice, as demonstrated by the promising results 605 

over both study sites.  606 

In this research, the HLC was defined according to our semantic knowledge serving as 607 

extra input information to the OCNN classifier. Care and attention should be taken in 608 

defining the HLC classes so that the LLCs within the same HLC share similar 609 

characteristics (such as spectra, structure and texture). In the proposed IDL framework, 610 

we designed and classified two crop hierarchies (i.e., LLC and HLC) which can be further 611 

extended to many more hierarchies based on demand in practice. For example, according 612 

to the time of reproductive development (e.g., early, mid, and late), certain Summer crops 613 

(e.g., Corn and Soybean) may consist of several sub-classes (Sidik et al., 2019), leading 614 

to the possibility to formulate a new deeper crop hierarchy. In addition, the proposed IDL 615 

was implemented at a single “optimal” scale (i.e., input window size of OCNN). To 616 

address the challenges of the diversity and complexity of cropland parcels in terms of size 617 

and shape a Scale Sequence OCNN (SS-OCNN), which integrates continuously 618 

increasing spatial scales into the classification process, can be employed by the IDL to 619 

further improve the classification of crop type. 620 
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Along with the development of remote sensing applications, FSR remote sensing image 621 

classification is increasingly demanded. Given its great potential to change the paradigm 622 

of remote sensing classification, the proposed IDL, thus, has a wide application prospect. 623 

 624 

5. Conclusion 625 

 626 

In this research, a novel Iterative Deep Learning (IDL) method was proposed for 627 

complex agricultural landscape classification through iterative interaction between low-628 

level crop (LLC) and high-level crop (HLC) classifications. The hierarchical relationship 629 

between LLC and HLC was specified using a Markov process, which allows the LLC and 630 

HLC predictions to refine each other gradually. Experiments in two heterogeneous crop 631 

areas using two types of FSR remotely sensed imagery illustrated that the IDL was 632 

consistently more accurate than state-of-the-art benchmarks for both LLC and HLC 633 

classification. In particular, small biomass crop classes with indistinct remote-sensing 634 

spectra (e.g., Clover and Grass), which were very difficult to discriminate, were classified 635 

accurately. We, therefore, conclude that the proposed IDL is an effective method for crop 636 

classification using FSR remotely sensed imagery. Meanwhile, the IDL is readily 637 

generalisable to other ecosystems (or landscapes) with hierarchical relationships. It, thus, 638 

represents a potentially useful tool for a wide range of classification tasks in remote 639 

sensing.  640 
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