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Abstract: 

Accurate crop distribution mapping lays an important scientific basis for crop yield 

prediction, field management, and balancing ecosystem services. Benefiting from the 

rapid progress of remote sensing technology, fine spatial resolution (FSR) remotely 

sensed imagery now offers great opportunities to map crop classes in detail. However, 

the highly dynamic nature of agro-ecosystems in space and time makes crop 

classification using FSR imagery an extremely difficult task. In this research, a novel 
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Scale Sequence Object-based Convolutional Neural Network (SS-OCNN) was 

developed for crop classification from FSR remotely sensed imagery. Different from 

the standard pixel-wise CNN, the SS-OCNN classifies images at the object level by 

taking segmented objects (crop parcels) as basic units of analysis, thus, ensuring that 

the boundaries between crop parcels are delineated precisely. These segmented objects 

were subsequently classified using a CNN model integrated with an automatically 

generated scale sequence of input patch sizes (i.e. a range of input windows for the 

CNN). This scale sequence can fuse effectively the features learned at different scales 

by transforming progressively the information extracted at small scales to larger scales, 

thus, increasing classification accuracy. The effectiveness of the SS-OCNN was 

investigated using two heterogeneous agricultural areas with FSR SAR and optical 

imagery, respectively. Experimental results revealed that the SS-OCNN consistently 

achieved the most accurate classification results over the two sites, increasing the 

overall accuracy by around 9% and 3% in comparison with the pixel-wise CNN and 

single-scale OCNN, respectively. By examining the class-wise accuracies, we found 

that the increase in overall accuracy was contributed mainly by small biomass crop 

classes (such as Hay and Winter wheat) which have a weak remote-sensing signature 

(Li et al., 2019a), relatively high heterogeneity and low signal-noise ratio. The SS-

OCNN, thus, provides a new paradigm for crop classification over heterogeneous areas 

using FSR imagery, and has great potential and a wide application prospect.  
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1. Introduction 

The world's population is predicted to increase to almost 10 billion by 2050 (FAO, 

2018) which, together with economic development, is greatly increasing the demand 

for food. Detailed crop distribution data are of great importance to assess and forecast 

agricultural yield and, thus, further ensure food security both at local and global scales 

(Bastiaanssen et al., 2003; Debats et al., 2016). Moreover, such information is very 

useful for precision agriculture and crop management. For example, accurate 

identification of crop types is crucial for estimation of agricultural water use, and to 

avoid excessive use of water resources (Zheng et al., 2015). In addition, detailed 

information on crop distribution can be valuable for balancing global ecosystem 

services, since over-extensification of agriculture can threaten or damage the functions 

of other landscapes across the world, such as forests, wetlands and river environments 

(Nobre et al., 2016; Yan and Zhang, 2019).  

Remote sensing has become a leading tool for crop monitoring and classification as 

it provides timely and repeated observations over relatively large areas (Wardlow et al., 

2008; Biradar and Xiao, 2011; Dong et al., 2015; Li et al., 2019a; Liu et al., 2020). With 

the rapid progress of remote sensing technology, a very large number of fine spatial 

resolution (FSR) images are now commercially available, offering great opportunities 

for detailed crop mapping and classification (Sidikea et al., 2019; Li et al., 2019a). 



Small farmland parcels mixed in other landscapes can be identified using FSR images 

with rich spatial information, such as RapidEye, Quickbird, Gaofen (GF), and 

Worldview (Persello et al., 2019). However, the highly dynamic nature of agro-

ecosystems in space and time usually leads to high intra-class variance and low inter-

class separability in the FSR imagery (Belgiua and Csillik, 2018; Li et al., 2019b; Hu 

et al., 2019; Dey et al., 2020). This is further complicated by diversified farming 

practices (Azar et al., 2016; Li et al., 2019a). Such complexity of spatial and temporal 

patterns over agricultural fields makes crop mapping from FSR imagery an extremely 

challenging task (Salehi et al., 2017; Li et al., 2020; Zhao et al., 2020). Advanced and 

robust methods are, therefore, needed to mine effectively and extensively the rich 

information hidden in FSR imagery to achieve highly accurate crop mapping and 

classification. 

Over the past four decades, a great number of classification methods have been 

proposed for agricultural land cover classification. These methods can be broadly 

categorised into parametric (e.g. maximum likelihood classifier) and non-parametric 

approaches (e.g. decision trees). Non-parametric methods are generally superior to 

parametric ones due to their greater dependence on the data (Lu and Weng, 2007). 

Amongst non-parametric methods, machine learning (ML) methods (e.g. support vector 

machines, SVM) have become increasingly popular owing to their capacity to solve 

complex, non-linear problems (Duro et al., 2012; Cai et al., 2018). In these ML methods, 

a range of hand-coded features need to be generated and employed as prediction 

variables, such as texture, spectral features and vegetation indices (Wardlow and Egbert, 



2008; Wang et al., 2015; Essa et al., 2017). However, these features are low and/or mid-

level descriptors, which are insufficient to represent the rich and multi-level 

information in the FSR imagery. Besides, the extracted features are essentially hand-

crafted, and they rely heavily on user experience and expertise.  

Recently, deep learning (DL) has received enormous interest, whereby representative 

features can be learnt automatically in an end-to-end manner (LeCun et al., 2015). 

Amongst the DL architectures, deep convolutional neural networks (CNNs) have 

attracted great attention in both the academic and industrial communities in view of its 

great capacity to solve a variety of computer vision tasks, such as image processing 

(Krizhevsky et al., 2012), pattern recognition (He et al., 2016) and object detection 

(Girshick et al., 2016). Thanks to its superiority in high-level feature representation, 

CNNs have achieved impressive and promising results in the remote sensing field 

(Sylvain et al., 2019; Jiang et al., 2020), such as for change detection (Wang et al., 

2019), scene classification (Zheng et al., 2019) and image segmentation (Chai et al., 

2019). The CNN has also seen application in a wide range of remotely sensed image 

classification tasks, in which all pixels within a scene of image are classified into 

several categories. For example, Chen et al. (2016) presented a regularized deep feature 

extraction approach that uses both spectral and spatial features in hyperspectral images 

in classification. Zhang et al. (2018a) proposed a hybrid land cover classification 

method, whereby the patch-based CNN and the pixel-wise MLP (Multilayer Perceptron) 

were combined using a decision fusion strategy. Sidike et al. (2019) provided an 

expanded CNN for land cover classification over heterogeneous areas. These efforts 



demonstrated that CNNs consistently outperformed other benchmark ML algorithms 

(e.g. SVM), thanks to its hierarchical feature extraction capability. Different from 

traditional ML algorithms which can only extract spectral features, a standard CNN 

network learns features via a fix-sized patch using several filters. As such, both spectral 

and spatial features of the raw imagery can be learned at multiple levels, which is 

beneficial for image classification. The patch size of the CNN has a considerable impact 

on the scale of representations, and further on the accuracy of image classification 

(Chen et al., 2019). Previous studies have demonstrated that patch size (scale) is one of 

the most important parameters of a CNN classification model (Zhang et al., 2018b; Lv 

et al., 2018; Chen et al., 2019). Generally, a particular sized ground object needs to be 

characterised by an appropriate observational scale. However, the sizes of ground 

objects in a landscape often vary greatly due to the high complexity and diversity of 

natural and anthropogenic influences on the Earth’s surface, especially over cropland 

areas. As a result, it is very difficult to confirm a certain scale that is suitable for all 

ground objects. Some studies adopted multiple scales in a CNN model to increase the 

accuracy of land cover classifications (Zhang et al., 2018b; Lv et al., 2018). A major 

drawback of such multi-scale CNN approaches is that the combination of multiple 

scales is very difficult to determine, and these scale values may vary greatly across 

regions. Consequently, multi-scale methods can lack generalizability, and hard to 

extend to other study areas.  

To solve this scale issue, by mimicking the hierarchical processing mode of human 

cognition, we very recently proposed a new scale sequence joint deep learning (SS-JDL) 



method, in which the value of each scale as well as the number of total scales can be 

determined automatically (Zhang et al., 2020). Classification results confirmed the 

superiority of the SS-JDL over single- or multiple-scale CNN approaches for land 

cover/use classification. However, the SS-JDL was developed for land cover/use 

classification, where a scale sequence is incorporated into a pixel-wise CNN network. 

Such per-pixel CNN classification often blurs the boundaries between adjacent ground 

objects because patches overlap (Pan et al., 2019), such that some objects are over-

expanded or shrunk. The SS-JDL is, thus, not suitable for image classification over 

agricultural fields, where the boundaries between field parcels need to be identified 

accurately (Li et al., 2019b). Furthermore, the SS-JDL was applied for hierarchical 

classification at different levels of semantic meaning (e.g., land cover and land use), 

which is different to a specific mapping task (e.g. crop classification). 

The aim of this paper was threefold: (1) to develop a novel Scale Sequence Object-

based CNN (SS-OCNN) for land cover classification from FSR imagery, (2) to validate 

the effectiveness of the proposed SS-OCNN in mapping crop categories across 

heterogeneous agricultural landscapes, and (3) to investigate the generalizability of the 

SS-OCNN using both optical and radar FSR remotely sensed imagery. In the SS-OCNN, 

an object-based CNN model with an automatically-generated scale sequence was 

designed to classify ground objects at the object level. By doing so, different-sized 

objects can be identified accurately, with the boundary information delineated precisely. 

To the best of our knowledge, this is the first effort to classify crop categories at the 

object level using an autonomous multi-scale CNN model. The proposed method was 



tested on two heterogeneous agricultural fields with different crop compositions using 

FSR Synthetic Aperture Radar (SAR) and optical imagery, respectively.  

 

2. Method 

2.1 Convolutional Neural Network (CNN) 

The CNN, a biologically inspired multi-layer model, was developed originally to 

process data with multiple arrays. It is, therefore, arguably suitable for handling 

remotely sensed imagery in which pixels are arranged regularly. The CNN is essentially 

a forward neural network involving a cascade of multiple convolutional, pooling and 

fully connected layers (Zhang et al., 2018a). Specifically, a convolutional layer 

convolves across the entire image to capture multi-level feature representations using 

convolutional filters. An activation function, for example, the Rectified Linear Unit 

(ReLU), is employed outside the convolutional layer to gain nonlinear representations 

of the input data (Hinton et al., 2012). A max-pooling layer follows to strengthen the 

generalisation capacity of the CNN by reducing the resolution of the input data. A fully 

connected layer is subsequently added on top of the last max-pooling layer. Finally, the 

weights of the CNN are optimised using a stochastic gradient descent algorithm.  

2.2 Object-based Convolutional Neural Networks (OCNN) 

The object-based CNN is trained with labelled patches like the standard pixel-wise 

CNN. However, unlike the pixel-wise CNN which labels image patches which are 

densely overlapping at the pixel level, the OCNN classifies the image by predicting the 

class of each object obtained from image segmentation. The convolutional window of 



the OCNN is located at the centroid of each segmented object during the process of 

model inference (Zhang et al., 2018b). This strategy can not only maintain the boundary 

of each object, but also significantly increase computational efficiency during the 

model inference process. Once the class of each segmented object is labelled by the 

OCNN, the final thematic classified map is produced. An optimal input window size 

(scale) needs to be determined for the OCNN through trial and error.  

2.3 Scale Sequence Object-based Convolutional Neural Networks (SS-OCNN) 

The proposed Scale Sequence Object-based Convolutional Neural Network (SS-

OCNN) method classifies remotely sensed imagery at the object level using a CNN 

combined with a scale sequence process as follows. The scale sequence consists of a 

set of scales (i.e. convolutional window or patch sizes) which transforms information 

learned from smaller scales to larger scales, so that detailed information about each 

object is convoluted into and represented across a broader context sequentially by 

adopting increasingly larger convolutional windows. The general procedure of the 

presented SS-OCNN methodology is shown in Fig. 1, in which the classification results 

are improved gradually over the scale sequence.   



 

Fig. 1. Workflow of the presented SS-OCNN method 

In the SS-OCNN, a scale sequence 𝐒𝐒 consisting of a set of scales is first formulated 

to characterise segmented objects at different scales. In total, three parameters, 

including the total number of scales (𝑛𝑛), the minimum scale (𝑠𝑠1), and the maximum 

scale (𝑠𝑠𝑛𝑛), are needed to create a scale sequence as follows: 

                       𝐒𝐒 = interpolate(𝑠𝑠1, 𝑠𝑠𝑛𝑛,𝑛𝑛)                      (1) 

where interpolate  denotes the function of interpolation (a linear interpolation 

approach is adopted here). A scale sequence 𝐒𝐒 = (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑖𝑖, … , 𝑠𝑠𝑛𝑛) where 𝑖𝑖 ∈

(1,2, … ,𝑛𝑛)  is, thus, achieved using Eq. (1). The values of 𝑠𝑠1  and 𝑠𝑠𝑛𝑛  can be 

determined according to the geometric sizes of segmented objects (Zhang et al., 2020).  

The segmented objects are classified at each scale. The classification results (X) of 

the current (𝑖𝑖-th) iteration are conditional on the outputs of the previous iteration, which 

formulates a Markov process as follows: 



                   𝑃𝑃�𝐗𝐗(𝑠𝑠𝑖𝑖)𝑖𝑖� = 𝑃𝑃�𝐗𝐗(𝑠𝑠𝑖𝑖)𝑖𝑖�𝐗𝐗(𝑠𝑠𝑖𝑖−1)𝑖𝑖−1�                   (2) 

where 𝑖𝑖 represents the number of iterations within the Markov process, 𝑃𝑃�𝐗𝐗(𝑠𝑠𝑖𝑖)𝑖𝑖� 

are the classification probabilities at the 𝑖𝑖-th iteration, and 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑖𝑖−1 refers to the 

scale values adopted by the OCNN classifier at 𝑖𝑖-th and 𝑖𝑖-1-th iterations, respectively.  

  Suppose 𝐌𝐌 is a scene of remotely sensed imagery with a total number of 𝑚𝑚 classes 

to be classified. Let 𝐎𝐎=(𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑗𝑗 , … , 𝑜𝑜𝑣𝑣) represent the set of segmented objects 

from 𝐌𝐌 , where 𝑜𝑜𝑗𝑗  and 𝑣𝑣  are the 𝑗𝑗 -th object and the total number of objects, 

respectively. Let 𝐓𝐓= (𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑘𝑘, … , 𝑡𝑡𝑢𝑢) denote the set of training samples, where 𝑡𝑡𝑘𝑘 

and 𝑢𝑢 are the 𝑘𝑘-th sample and the total number of samples, respectively. Herein, 𝐓𝐓 is 

employed to train the OCNN model and, thus, estimate class probabilities per object 

within each scale through the iterative process. Fig. 1 gives a general flowchart of the 

developed SS-OCNN and the main steps are described in the following text. 

For the first iteration, the training process of the OCNN classifier with a scale value 

of 𝑠𝑠1 can be represented as: 

                      OCNN1 = OCNN. Train(𝐌𝐌,𝐓𝐓, 𝑠𝑠1)                 (3) 

The trained OCNN model is employed to calculate the classification probabilities 

P(X)1 as follows: 

                   𝑃𝑃(𝐗𝐗)1 = OCNN1. Predict(𝐌𝐌,𝐎𝐎, 𝑠𝑠1)                 (4) 

 From the 𝑖𝑖-th iteration where 𝑖𝑖 ≥ 2, the original image (𝐌𝐌) and the classification 

probabilities at the previous iteration (𝑖𝑖-1) are combined as conditional probabilities for 

the current classification as:  

                     𝐌𝐌con
𝒊𝒊 = Concate(𝐌𝐌,𝑃𝑃(𝐗𝐗)𝑖𝑖−1)                  (5) 



where Concate is a function used to concatenate the original image 𝐌𝐌  with the 

probabilities outputted at the previous iteration. The training process at the 𝑖𝑖 -th 

iteration can, thus, be represented as: 

                  OCNN𝑖𝑖 = OCNN. Train(𝐌𝐌con
𝒊𝒊,𝐓𝐓, 𝑠𝑠𝑖𝑖)                 (6) 

Note that the OCNN model is rebuilt at each iteration and trained from scratch. The 

classification probabilities at the current iteration can be predicted subsequently using 

the trained OCNN model as: 

                 𝑃𝑃(𝐗𝐗)𝑖𝑖 = OCNN𝑖𝑖 . Predict(𝐌𝐌con
𝒊𝒊,𝐎𝐎, 𝑠𝑠𝑖𝑖)                (7) 

Using Eq. (7), the probability of being assigned to each class for each segmented 

object is predicted at each iteration. Note that the space size of 𝑃𝑃(𝐗𝐗)𝑖𝑖 is the same as 

the image 𝐌𝐌, and the number of bands contained in 𝑃𝑃(𝐗𝐗)𝑖𝑖 is equal to the number of 

classes 𝑚𝑚 to be differentiated. 

The final classification result can be achieved according the probabilistic output of 

the last iteration (𝑃𝑃(𝐗𝐗)𝑛𝑛) as: 

                     𝐌𝐌result = arg max(𝑃𝑃(𝐗𝐗)𝑛𝑛)                     (8) 

where arg max is a function assigning the class label with the maximum membership 

to each object of the imagery, and the object-based final classification map can, thus, 

be generated.  

By combining the scale sequence with the OCNN classifier, the proposed SS-OCNN 

methodology for crop classification essentially has three major advantages: 

1. The SS-OCNN can maintain the boundary of crop parcels precisely in the 

classification map using the object-based CNN classifier, whereas the standard pixel-

wise CNN blurs crop boundaries. 



2. The SS-OCNN increases classification accuracy gradually using the scale sequence, 

through which critical information can be transferred from local scales to larger scales.  

3. The SS-OCNN is implemented automatically without conducting laborious trial and 

error experiments to choose the optimal scale, which significantly increases the 

computational efficiency. 

 

3. Experimental results and analysis 

3.1 Study area and materials 

Two agricultural areas, lying in the central region of the Sacramento Valley, 

California, were selected for this research (Fig. 2). California possesses about 15% of 

the national receipts for crops and has long been considered the most varied and 

productive agricultural region across the USA (California Agricultural Statistics, 2011). 

Both study sites are strongly heterogeneous and highly distinctive in crop compositions 

and are, therefore, suitable to test the effectiveness of the developed approach. To 

further investigate the generalisation of the SS-OCNN, fine spatial resolution SAR and 

optical remotely sensed imagery were adopted in S1 and S2, respectively. 

 

Fig. 2. The two study sites located in the agricultural district of California. 



For S1, an L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) 

image composed of three linear polarizations (HH, HV, and VV) was acquired on 29 

Aug, 2011. The UAVSAR data (3474×2250 pixels) were provided in the GRD 

(georeferenced) format with a fine spatial resolution of 5 m. In addition to the linear 

polarizations, three polarimetric parameters (i.e. entropy, anisotropy, and alpha angle 

from the Cloude-Pottier decomposition) which are sensitive to biophysical parameters 

of crops (Li et al., 2019), were also derived from the original dataset and used for crop 

classification. In total 10 dominant crop types were identified in S1 (Table 1). 

For S2, an optical RapidEye image consisting of five bands (Blue, Green, Red, Red-

edge, and Near-infrared) was captured on 10 July 2016. The image (Level 3A Ortho 

product) was delivered with sensor, radiometric and geometric corrections already 

applied. The spatial extent of the image is 3222×2230 pixels, with a fine spatial 

resolution of 5 m. To acquire surface reflectance, the image was further atmospherically 

corrected using atmospheric and topographic correction (ATCOR) method. A total of 

nine crop types were found within S2 (Table 1). 

Cropland Data Layer (CDL) datasets are generated annually by the United States 

Department of Agriculture (USDA, Boryan et al., 2011), and have been adopted widely 

as a reference for crop monitoring and classification owing to its very high accuracy 

(Zheng et al., 2015; Cai et al., 2018; Li et al., 2019a). For example, the overall 

classification accuracy of the CDL is reported to be as high as 88.3% for all crops across 

California in 2016. To collect typical samples, crop parcels in the remotely sensed scene 

with an area larger than 5 ha were targeted and delineated manually according to the 



CDL layer (Li et al., 2019a). These digital polygons were divided subsequently 

randomly into three parts: 40% for model training, 10% for model validation, and the 

remaining 50% for model testing. Training and validation sample points were collected 

within the training and validation polygons, respectively, using a stratified random 

sampling scheme to ensure they come from different crop polygons. The number of 

samples for each crop type was, thus, generally proportional to the total area of each 

crop. For crop classes with relatively small area (e.g. Pepper in S1), the sample sizes 

were increased to make them more comparable with the sample sets of other classes. In 

total, 1415 and 1262 sample points (training and validation) were acquired within S1 

and S2, respectively, as shown in Table 1. To test comprehensively the classification 

accuracy, a wall-to-wall assessment was adopted for each study site (Zhong et al., 2019). 

That is, all pixels falling in the testing polygons were employed for accuracy assessment. 

Table 1 Crop categories over both study areas with sample size for each crop. 

Study area Crop category Training sample Validation sample Total sample 

S1 Walnut 110 30 140 

Almond 110 30 140 

Alfalfa 125 32 157 

Hay 101 25 126 

Clover 110 28 138 

Winter wheat 120 30 150 

Corn 108 27 135 

Sunflower 122 32 154 

Tomato 120 30 150 



Pepper 106 28 134 

S2 Walnut 108 27 135 

Almond 115 30 145 

Fallow 90 22 112 

Alfalfa 124 31 155 

Winter wheat 116 30 146 

Corn 93 24 117 

Sunflower 130 32 162 

Tomato 141 36 177 

Cucumber 93 24 117 

 

3.2 Model architecture and parameter settings 

  The SS-OCNN needs to segment the input image into homogeneous objects (i.e. crop 

parcels). In this research, a multi-resolution segmentation (MRS) algorithm was 

performed using the eCognition Developer software to achieve segmented objects. The 

control parameters of the MRS algorithms were optimised using a systematic trial-and-

error procedure (Duro et al., 2012) until the segmented objects matched well with crop 

boundaries according to visual inspection. The adopted parameter combinations for 

both study areas are listed in Table 2. Note that the value of scale is tuned to be 

relatively small to generate a small amount of over-segmentation and ensure that the 

segmented objects are homogeneous. 

Table 2 Parameters adopted by the multi-resolution segmentation algorithm for the UAVSAR 

and RapidEye imagery. 



Study site Imagery Scale Shape Compactness 
Number of 
objects 

Mean area  
of objects (ha) 

S1 UAVSAR 30 0.2 0.7 3040 6.43 

S2 RapidEye 180 0.3 0.6 3867 4.65 

 

To classify each segmented object into specific crop types, a standard CNN was 

applied by taking the centre point of each object as the convolution location to extract 

both within-object and contextual information (Zhang et al., 2018b; Li et al., 2019b). 

The segmented objects were subsequently labelled using the trained CNN, such that the 

entire image was classified at the object level. The structure of the CNN employed in 

the SS-OCNN method was similar to the AlexNet with six hidden layers (i.e. three pairs 

of convolution and max-pooling layers (Fig. 3). Small filters were designed in the 

convolutional layers (5×5 for the first layer and 3×3 for the others), and the number of 

filters for each layer was set to 64 to learn within-object and contextual information for 

each segmented object. A rectified linear unit (ReLU) was adopted as the activation 

function for all layers. To prevent the CNN from overfitting, a regularization technique 

called “dropout” which randomly drops a number of neurons contained in a layer was 

applied before the fully connected layer (Srivastava et al., 2014). As suggested by 

Zhong et al. (2019), the dropout value was selected from {0.1, 0.2, 0.3, 0.4, 0.5} and 

0.3 was found to be optimal at both sites. The number of epochs was set to 600 to allow 

the deep network to fully converge through backpropagation.  



 

Fig. 3. Model architecture and parameter settings of the deep network employed in the SS-

OCNN method. 

3.3 Benchmark methods and parameter settings 

To further assess the effectiveness of the developed SS-OCNN, four typical methods, 

including the standard pixel-wise CNN (PCNN), object-based image analysis (OBIA), 

the object-based CNN (OCNN), and the multiscale object-based CNN (MOCNN) were 

used as benchmarks. To make a fair comparison, the number of hidden layers for the 

three CNN-based benchmarks (i.e. PCNN, OCNN, and MOCNN) were set as six (the 

same as the network structure of the proposed SS-OCNN) through cross-validation. 

Parameters including dropout and number of iterations of the three benchmarks were 

also set in line with those of the SS-OCNN. Descriptions and parameter settings of these 

benchmarks are detailed as follows: 

  PCNN: the PCNN predicts the labels of all pixels within the entire image using 

densely overlapping patches. The input window size was set as 24×24 for both study 

sites according to previous experience (Li et al., 2019b). The number of filters for each 

layer was optimised as 32. Settings of the other parameters were the same as for the 

OCNN. 



OBIA: The OBIA was implemented based on the segmented objects generated by 

the MRS algorithm. Several hand-crafted features were acquired from each object, 

including spectral features (i.e. mean and standard deviation) and texture variables. 

These hand-crafted features were subsequently fed into a parameterised SVM classifier 

for object-based classification. 

  OCNN: In contrast to the pixel-wise CNN, the OCNN was also applied based on 

segmented objects. Unlike the SS-OCNN which uses a range of scales, the OCNN 

adopts only one input window (i.e. scale) selected from a range of sizes through cross-

validation, including {16×16, 24×24, 32×32, 40×40, 48×48}. The optimal scale was 

found to be 40×40 for both sites.  

MOCNN: The multiscale OCNN (MOCNN) is a variant of the OCNN in which three 

input scales (window sizes) were adopted to enhance the generalisation of the network 

(Lv et al., 2018). As suggested by Lv et al. (2018), three CNN window sizes at 30 × 30, 

40 × 40, and 50 × 50 were employed as the input windows to achieve predictions for 

each segmented object. Those predictions were subsequently fused with a majority 

voting strategy to achieve the final classification results. 

3.4 Classification results and analysis 

3.4.1 The SS-OCNN results 

As described above, the SS-OCNN requires predefined minimum and maximum 

scales. In this research, the two values were respectively set as 8×8 and 48×48 for both 

study sites, which approach the major axis lengths of the minimum and maximum crop 

parcels, respectively. A range of scales were interpolated between the two end-points, 



thus, achieving a sequence of scales (i.e. input window sizes of the CNN). To 

demonstrate how the number of scales influences the classification results, the SS-

OCNN was implemented with different numbers of scales (equivalent to iterations) 

over both sites (Fig. 4). Note that the smallest and second smallest numbers of iterations 

were one and two, indicating the minimum scale only (8×8) and the minimum and 

maximum scales (i.e. 8×8 and 48×48), respectively. Obviously, the accuracies of the 

SS-OCNN increased rapidly and significantly over both sites (from 78.69% to 85.50 

for S1 and 82.91% to 88.43% for S2) as the number of iterations increased from one to 

three. The accuracies then increased gradually with the number of scales and reached a 

maximum at 6 scales for both sites, with up to 87.79% for S1 and 89.46% for S2, 

respectively. The accuracies tended to be stable (or slightly decreased) as the number 

of scales exceeded six (the optimal number of scales).  

 

Fig. 4. Variations in overall accuracy of crop classifications achieved by the SS-OCNN with 

iteration over both sites. The black dash line highlights the highest accuracy acquired at iteration 

6. 



 

Fig. 5. Influence of window size on crop classification accuracies using the OCNN (red solid 

lines) and the proposed SS-OCNN (violet dashed lines) for S1 and S2.  

 The SS-OCNN method classified the remotely sensed imagery using the scale 

sequence and, thus, did not require specification of an optimal scale like the OCNN. 

Fig. 5 demonstrates the influence of these scales (window sizes) on the overall accuracy 

of OCNN, with the scales varying from 8×8 to 56×56 with a step size of 8. As shown 

in the figure, the SS-OCNN (violet dashed line) consistently outperformed the OCNN 

(red solid line) for crop classification (87.79% and 89.46%) for both S1 and S2. For the 

OCNN, the optimal scale was found to be 40×40 for both sites. The greatest accuracies 

of the OCNN using this optimal scale were only 84.24% and 86.43% for S1 and S2, 

respectively; over 3% smaller than those of the SS-OCNN.  

To demonstrate visually how the SS-OCNN increased classification accuracy with 

iteration, the crop classification results are shown against iteration for three subsets of 

S1 (Fig. 6) and S2 (Fig. 7), respectively. The yellow and red circles in the figures 

indicate correct and incorrect classifications, respectively.  



 

Fig. 6. Subset crop classification results in S1 achieved using the SS-OCNN along with iteration, 

respectively. Correct and incorrect classifications are marked using yellow and red circles, 

respectively. 

 In S1, both iterations 1 and 3 failed to identify Sunflower from Pepper, as shown 

by the red circles in Fig. 6 (c). At the same time, parts of Walnut and Tomato were, 

respectively, misclassified as Almond and Sunflower (Fig. 6 (a) and (b)), because of 

the similarity of spectral reflectance between them. These problems were solved 

through iteration by including more scales in the SS-OCNN model. As shown in Fig. 

6, those misclassifications were rectified in the classification map of iteration 5. For 

example, the two Sunflower parcels in the upper part of Fig. 6 (c) were correctly 

identified. However, iteration 5 falsely classified Alfalfa as Sunflower, as shown in Fig. 

6 (c) (red circles). Further, parts of Tomato were misidentified at both iterations 3 and 



5 (Fig. 6 (b)). Fortunately, all of the aforementioned misclassifications were finally 

revised in the classification map of iteration 6. For example, parts of Walnut that were 

misclassified throughout iterations 1 to 3 were distinguished precisely at iteration 6, as 

shown by the yellow circles of Fig. 6 (a). Besides, the classification errors for Tomato 

and Alfalfa at iteration 3 were also resolved, as illustrated in Fig. 6 (b and c). In short, 

the proposed SS-OCNN method achieved a desirable result at iteration 6, where crop 

parcels were classified accurately.  

 

Fig. 7. Subset crop classification results in S2 achieved using the SS-OCNN along with iteration. 

Correct and incorrect classifications are marked using yellow and red circles, respectively. 

Similar to S1, the classification results of S2 also presented obvious increases in 

accuracy with iteration. For example, the linear noise within and between crop parcels 

at iteration 1 (Fig. 7 (a and c)) were eliminated after iteration 1. Another significant 

increase in accuracy gained through iteration was the differentiation between crops with 



similar spectral reflectance (e.g. Sunflower and Tomato). For example, a falsely 

classified Tomato parcel at iterations 1 to 5 was correctly identified at iteration 6, as 

illustrated in Fig. 7 (c). Besides, some misclassified crop parcels were gradually 

classified accurately with iteration. For example, crop parcels misclassified as Almond 

in the upper left corner of Fig. 7 (a) and lower right corner of Fig. 7 (c) were gradually 

rectified to Fallow and Winter wheat, respectively, with iterations increasing from 1 to 

6.  

3.4.2 Benchmark comparison for crop classification 

The proposed SS-OCNN was assessed against a range of comparators, including the 

PCNN, OBIA, OCNN and MOCNN. Tables 3 and 4 illustrate the classification 

accuracy assessment for S1 and S2, respectively, using the overall accuracy (OA), 

Kappa coefficient (𝜅𝜅), and per-class mapping accuracy. As can be seen from the tables, 

the SS-OCNN consistently produced the largest classification accuracies, with the OA 

up to 87.79% for S1 and 89.46% for S2, greater than for the MOCNN (85.85% and 

87.27%), OCNN (84.24% and 86.43%), OBIA (83.72% and 82.81%) and PCNN (79.21% 

and 80.72%). The Kappa coefficient results are consistent with the OA, with the 𝜅𝜅 of 

SS-OCNN reaching 0.86 for S1 and 0.87 for S2, more accurate than those of the 

MOCNN (0.83 and 0.85), OCNN (0.82 and 0.84), OBIA (0.81 and 0.79) and PCNN 

(0.76 and 0.77), respectively. 

The superiority of the proposed method was also demonstrated by per-class 

classification accuracy. As illustrated by Tables 3 and 4, the SS-OCNN achieved the 

most accurate mapping accuracy for half of the crop categories in S1 and most 



categories in S2 (highlighted in bold face). For S1, the most notable accuracy increase 

was seen for Hay with an accuracy of 75.87%, dramatically greater by 17.18%, 20.95%, 

37.76% and 36.31% in comparison with the MOCNN, OCNN, OBIA and PCNN, 

respectively (Table 3). Likewise, an impressive increase was obtained for Winter wheat, 

with an increase of around 10% in accuracy. In addition, a marked accuracy increase 

can be seen in Pepper in comparison to the MOCNN and OCNN classifications, with 

about a 19% increase in accuracy. Besides, Almond, Tomato, and Corn, presented only 

slight increases in accuracy in comparison to the benchmarks. Other crop classes, such 

as Walnut and Sunflower, did not show obvious increases in average accuracy.  

For S2, the proposed SS-OCNN obtained satisfactory classification accuracy for 

most of the crop classes (Table 4), with accuracies of six crop classes (including Walnut, 

Winter wheat, Corn, Sunflower, Tomato, and Cucumber) being larger than 89%. The 

largest accuracy increases were obtained for Fallow, achieving an increase of 20.37%, 

29.47%, 24.35% and 33.42% compared with the MOCNN, OCNN, OBIA and PCNN, 

respectively. The accuracy increases were also significant for Cucumber and Almond, 

with average increases of 11.82% and 9.73%, respectively. For the Alfalfa, Winter 

wheat, and Sunflower classes, a moderate accuracy increase (around 3%-6%) was 

achieved. Other crop classes, including Corn and Tomato, demonstrated a relatively 

small increase (<2%) in average accuracy in comparison to the benchmarks. 

 



Table 3 Crop classification accuracy comparison amongst pixel-wise CNN, OBIA, object-

based CNN, and the presented SS-OCNN on the first study area (S1). The largest accuracies 

are highlighted by bold font. 

 Crop Class (S1) PCNN OBIA OCNN MOCNN SS-OCNN 

Walnut 86.55  92.94  95.32  91.48  91.40  

Almond 91.02  84.53  93.22  94.61  94.69  

Alfalfa 83.75  88.27  89.78  89.42  88.58  

Hay 39.56  38.11  54.92  58.69  75.87  

Clover 62.57  76.33  72.41  74.65  73.28  

Winter wheat 74.05  76.04  77.02  80.76  87.76  

Corn 94.91  87.69  91.47  95.97  93.20  

Sunflower 82.02  84.66  89.88  89.79  87.83  

Tomato 85.72  90.91  88.22  89.21  90.45  

Pepper 54.75  86.28  56.43  55.95  75.20  

OA (%) 79.21 83.72 84.24 85.85 87.79 

Kappa 0.76 0.81 0.82 0.83 0.86 

 

Table 4 Crop classification accuracy comparison amongst pixel-wise CNN, OBIA, object-

based CNN, and the presented SS-OCNN on the first study area (S2). The largest accuracies 

are highlighted by bold font. 

 Crop Class (S2) PCNN OBIA OCNN MOCNN SS-OCNN 

Walnut 75.73  83.10  90.12  89.34  89.37  



Almond 70.65  74.76  78.76  80.55  85.91  

Fallow 48.22  57.29  52.17  61.27  81.64  

Alfalfa 76.46  81.11  84.64  85.50  85.73  

Winter wheat 88.90  89.80  88.79  90.79  94.77  

Corn 93.86  96.58  99.17  99.13  99.02  

Sunflower 85.13  83.18  87.01  86.61  89.71  

Tomato 84.89  85.76  91.60  92.03  89.80  

Cucumber 78.85 75.27  78.86  77.27  89.38  

OA (%) 80.72 82.81 86.43 87.27 89.46 

Kappa 0.77 0.79 0.84 0.85 0.87 

 

The classification maps of the proposed SS-OCNN and the benchmark methods were 

also compared for both S1 (Fig. 8) and S2 (Fig. 9) using three subsets, respectively. It 

is clear that the pixel-wise CNN (PCNN) achieved undesirable results caused by heavy 

salt-and-pepper noise. Besides, pixels near crop parcel boundaries were often 

misclassified, as shown in Fig. 8 (b and c) and Fig. 9 (a and c). In contrast, the OBIA 

method demonstrated more smooth classification results with precise boundary 

information. The classifications of Tomato as well as Alfalfa were improved to some 

extent, as illustrated by Fig. 8 (b) and Fig. 9 (c). However, the OBIA was inferior to the 

object-based CNN (OCNN) in eliminating some linear noise occurring between crop 

parcels, as demonstrated in Fig. 9 (a and b). Besides, the OCNN has certain advantages 

over OBIA in differentiating crop classes with similar spectra. For example, Winter 



wheat and Hay were more accurately distinguished from each other, as demonstrated 

in Fig. 8 (b) and (c). Nevertheless, severe confusion between Corn, Sunflower, and 

Pepper in S1, and between Sunflower and Tomato in S2, still exists in the OCNN 

classifications, as shown in Figs. 8 and 9, respectively. A slight increase in classification 

accuracy was achieved by the MOCNN in comparison with the OCNN, yet most of the 

misclassifications were not resolved. The SS-OCNN, surprisingly, revised all of the 

aforementioned misclassifications while achieving the smoothest results over both S1 

and S2 by incorporating a scale sequence into the OCNN model.   

 

Fig. 8. Representative image subsets of S1 with the crop classification maps achieved 

by PCNN, OBIA, OCNN, and the proposed SS-OCNN, respectively. The incorrect and 

correct classifications are highlighted using red and yellow circles, respectively.  

 



 

Fig. 9. Representative image subsets of S1 with the crop classification maps achieved 

by PCNN, OBIA, OCNN, and the proposed SS-OCNN, respectively. The incorrect and 

correct classifications are highlighted using red and yellow circles, respectively.  

4. Discussion 

Crop classification using FSR remotely sensed image is a challenging task due to 

great spatial and temporal intra-class variation in remote sensing spectra or polarimetric 

signatures (Li et al., 2019a). This research illustrates that pixel-wise classifiers are 

inferior to object-based classifiers (i.e. OBIA and OCNN) in terms of crop classification 

from FSR images. This is because object-based methods classify the entire remotely 

sensed image at the object-level, thus, significantly reducing salt-and-noise effects 

while retaining precise boundary information on crop parcels (Figs. 8 and 9). 

Specifically, the OCNN was generally superior to the OBIA (Tables 3 and 4) since both 

within-object information (low-level features) and between-object information (high-



level features) were employed for crop class discrimination (Zhang et al., 2019). 

Nevertheless, the OCNN did not achieve satisfactory accuracy for some crop parcels 

subjected to only one scale (i.e. input window of CNN) being adopted during the 

classification process.  

Currently, an “optimal” scale (input window size) needs to be determined for CNN 

classifiers through a trial and error procedure. Such a scale selection process is rather 

tedious and labour-intensive, taking a lot of time. Further, even though the so-called 

“optimal” scale is acquired, it is just a compromise by which the deep learning models 

can achieve the relatively (not true) optimal classification accuracy (Zhang et al., 2020). 

In fact, one scale is far from sufficient to effectively and comprehensively capture the 

multi-level (i.e. multi-scale) features of crop parcels in consideration of the often great 

variation in spatial size. In principle, features learned by deep learning models at 

different scales provide unique information on the characteristics of ground objects. For 

example, local features of a certain crop parcel can be captured by deep learning models 

via a smaller scale, while global features can be acquired using a relatively larger scale. 

Such multi-scale information substantially enhances the observational dimension of 

ground objects, which is of great potential benefit for accurate classification amongst 

heterogeneous crop classes. In the SS-OCNN, features at smaller scales are conducted 

and integrated to features at larger scales gradually at the object level using the Markov 

model, thus, achieving multi-scale comprehensive observations on the ground objects. 

In other words, the SS-OCNN authentically and effectively fuses multi-scale features 

provided by the FSR remotely sensed imagery for increased classification accuracy. 



Note that the SS-OCNN is fundamentally different from the MOCNN method, 

though they both adopt multiple scales in the classification process. In essence, the 

MOCNN is a variant of the single-window OCNN classifier as the final classification 

is based on the classification result at the optimal scale (i.e. 40 × 40). The remaining 

two scales (i.e. 30× 30 and 50× 50) generally achieved lower classification probabilities 

for most of crop parcels and they, thus, contribute little to the final classification 

accuracy of the MOCNN with a majority voting strategy. This explains why the 

MOCNN just slightly (0.5% to 1.5%) increased the overall classification accuracy in 

comparison to the OCNN for both sites. Besides, it is unreasonable to compare directly 

the probabilities of the OCNN achieved at different scales since they are not generated 

based on the same condition (scale). Some mislabeled crop parcels at a certain scale 

may have very high classification probability. By using the majority voting strategy, 

these misclassifications will transfer to the final classification map. For example, the 

MOCNN decreased the accuracy of Walnut in comparison to the OCNN. 

Although the SS-OCNN significantly increased the overall classification accuracy 

for both study sites, it demonstrated clear differences in ability to increase the 

classification accuracy of different crop categories. In general, the accuracy increases 

of small biomass crop classes (e.g. forage and grain) were large, while those of the large 

biomass classes (e.g. summer field crops and fruit crops) were small. For example, the 

SS-OCNN surprisingly increased the accuracies of Hay in S1 and Fallow (with mixed 

pasture) in S2 by around 28% compared with those of OCNN, while the accuracies of 

Walnut and Corn were only increased slightly (0-2%) for both sites. A possible reason 



for this is that large biomass crops usually have strong signals in remotely sensed 

imagery and can, thus, be differentiated from each other relatively easily (Li et al., 

2019a). In contrast, small biomass crops may only have relatively weak signals (Li et 

al., 2020) and they are, thus, difficult to classify accurately using a CNN at a specific 

scale. By using the SS-OCNN, multi-level features of small biomass crops were 

extensively learned and integrated for classification. In other words, the crops were 

observed at different scale dimensions which was extremely beneficial to capture their 

unique spectral or structural characteristics and, thereby, increase crop classification 

accuracy. 

In this research, a forward scale sequence (i.e. start small, get larger) was adopted in 

the SS-OCNN for crop classification. Actually, there are a large varieties of sampling 

strategy with respect to orders of scale sequence, for example, the backward scale 

sequence (i.e. start large, get smaller) and random scale sequence (i.e. select a scale 

randomly at each iteration). However, we found that they were inferior to the forward 

scale sequence (not shown here), which is consistent with our previous work (Zhang et 

al., 2020). The reason for the superiority of the forward scale sequence might be that 

such a sampling strategy can allow local features (i.e. small scale features) to be 

effectively transferred and fused with global features (i.e. large scale features). Of 

course, the forward scale sequence can be further optimised, e.g. adopting a non-linear 

interpolation strategy in the process of scale sequence generation, which deserves 

further investigations. 



The proposed SS-OCNN was employed to classify crop classes at the object level as 

an example, and achieved surprisingly accurate results with the help of the scale 

sequence method. In fact, real-world features are usually represented over a series of 

scales (e.g., small-scale house and large-scale park), and spatial scale is considered as 

a core issue in feature representation of remotely sensed imagery (Ming et al., 2015). 

In addition to agriculture, the proposed method should also be effective for image 

classification over a wide range of landscapes. For example, wetlands usually develop 

into parcels of different sizes affected by several factors, such as climate, soil and 

hydrogeological conditions. The parcel sizes of land use categories also vary greatly in 

consideration of functional requirements (Zhang et al., 2018b). As a result, the proposed 

method has great potential and a wide application prospect. 

 

5. Conclusion 

Crop classification using FSR remotely sensed imagery remains a great challenge 

due to the complex spatial and temporal patterns of croplands. Advanced deep 

convolutional neural network (CNN) has markedly increased the accuracy of crop 

classification by adopting an input patch (window) to extract multi-level features from 

raw imagery. Nevertheless, it is extremely difficult to determine an optimal window 

size for CNNs since areas of crop parcels often vary greatly. Besides, the standard pixel-

wise CNN method tends to deform parcel geometry, which impairs the identification of 

crop parcels. In this paper, a novel Scale Sequence Object-based CNN (SS-OCNN) 

approach was proposed for crop classification using FSR remotely sensed imagery. In 



the SS-OCNN, segmented objects (crop parcels) were identified precisely using a CNN 

model combined with a range of automatically generated scales, thus, solving the 

problems associated with application of the standard CNN to FSR image-based crop 

classification. Experimental results on two heterogeneous agricultural fields with FSR 

SAR and optical imagery, respectively, demonstrated that the SS-OCNN achieved the 

most accurate crop classification results, consistently and significantly more accurate 

than the standard pixel-wise CNN, single-scale object-based CNN, and the multi-scale 

object-based CNN. Besides, the SS-OCNN also produced the smoothest results, with 

crop boundary information precisely delimited. Specifically, small biomass crop classes 

(e.g. forage and grain) that were extremely difficult to characterise using the benchmark 

methods were classified accurately. We, thus, conclude that the SS-OCNN is an 

effective method for crop classification from FSR remotely sensed image. Further, the 

SS-OCNN provides a novel and general solution for image classification of 

heterogeneous landscapes and it, therefore, has great potential and a wide application 

prospect. 
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