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Abstract. We introduce a notion of left homotopy for Maurer–Cartan elements in
L∞-algebras and A∞-algebras, and show that it corresponds to gauge equivalence in
the differential graded case. From this we deduce a short formula for gauge equivalence,
and provide an entirely homotopical proof to Schlessinger–Stasheff’s theorem. As an
application, we answer a question of T. Voronov, proving a non-abelian Poincaré lemma
for differential forms taking values in an L∞-algebra.

1. Introduction

A Maurer–Cartan element in a differential graded Lie algebra (dgla) V is a degree 1
element ξ ∈ V satisfying dξ + 1

2 [ξ, ξ] = 0. It is important to understand homotopies between
Maurer–Cartan elements; for example, deformation problems are governed by Maurer–Cartan
elements up to an appropriate notion of homotopy [SS, Man99]. Thus many different notions
of homotopy have been studied for Maurer–Cartan elements in dglas and, more generally, in
L∞-algebras; see [DP16] for an up-to-date and extensive survey.

The Schlessinger–Stasheff theorem [SS] states that two Maurer–Cartan elements in a
pronilpotent dgla are Sullivan homotopic (called Quillen homotopic in [DP16]) if and only if
they are gauge equivalent. One goal of this paper is to provide an entirely homotopical proof
of this result, and to extend to it to L∞-algebras and A∞-algebras under certain completeness
conditions. To do this, we introduce a new homotopy relation for Maurer–Cartan elements
in complete L∞-algebras and A∞-algebras. Maurer–Cartan elements are interpreted as
morphisms of commutative differential graded algebras (cdgas); this is reviewed in Section 2
along with other relevant background on L∞-algebras and A∞-algebras. Two Maurer–Cartan
elements are then defined to be left homotopic if they are left homotopic between morphisms
in the category of cdgas, equipped with the model category structure of [Hin97].

As motivation for our definition, in Section 3 we show that there is a model structure on
the category of complete dglas, namely that of [LM15], in which gauge equivalence coincides
with left homotopy, a result also obtained by [RN18]. The results in this section should be
considered Koszul dual to the approach taken in the rest of the paper, where we choose to
work in the setting of cdgas in order for results to immediately generalise to the setting of
L∞-algebras. There are also close parallels between the approach in Section 3 and the recent
papers [BM13b, BFMT18], in which it is shown that gauge equivalence coincides with left
homotopy for a larger class of dglas with a different model structure. However, their result
only holds in the generality of dglas, and the method used does not seem to easily generalise
to L∞-algebras.

The rest of the paper is organised as follows. In Section 4, we define left homotopy of
Maurer–Cartan elements and use it to deduce a new short formula for gauge equivalence
in Theorem 4.3 and Theorem 4.7. In Section 5, we prove combinatorial formulae for left
homotopy in terms of rooted trees and give a direct proof that left homotopy coincides with
gauge equivalence. As an application, in Section 6, we answer a question posed by Voronov
in [Vor12], and prove a version of the Poincaré lemma for differential forms taking values in
an L∞-algebra.
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1.1. Notation and conventions. Throughout the paper, k denotes a field of characteristic
zero. All unadorned tensor products will be over k, and all vector spaces will be over k
and cohomologically Z-graded. The suspension ΣV of a graded vector space V is graded by
(ΣV )i = V i+1.

We will often refer to pseudocompact vector spaces – these are projective limits of finite-
dimensional vector spaces, equipped with the inverse limit topology. In particular, the k-linear
dual V ∗ of a discrete vector space V is pseudocompact. The dual of a pseudocompact vector
space is defined to be its topological dual; hence V ∼= V ∗∗ is always true, and the natural
map x 7→ evx is evx(v∗) = (−1)|v

∗||x|v∗(x) by the Koszul sign rule. For two pseudocompact
vector spaces V and W , the space of morphisms Hom(V,W ) is assumed to mean the space
of continuous linear maps, and the tensor product V ⊗W is assumed to mean the completed
tensor product. If V = lim←−−i Vi is pseudocompact and W is discrete, then their tensor product
is defined to be V ⊗W = lim←−−i Vi ⊗W ; note that in general this is neither discrete nor
pseudocompact.

We abbreviate a differential graded (Lie) algebra or unital commutative differential graded
algebra by dg(l)a or cdga. The completed tensor and symmetric algebras are respectively
T̂ V :=

∏∞
i=0 T

i(V ) and ŜV :=
∏∞
i=0 S

i(V ). We will be mostly working in the context of
complete L∞-algebras (as defined in Section 2), so the completion is usually unnecessary.

Acknowledgements. The author thanks Chris Braun and Andrey Lazarev for numerous
helpful discussions during the writing of this paper, and for their comments and corrections
on earlier drafts. Thanks are also given to an anonymous referee for their careful reading
and thoughtful comments and corrections.

2. Preliminaries on L∞- and A∞-algebras

We start by recalling basic facts on L∞- and A∞-algebras, Maurer–Cartan elements,
Sullivan homotopy, and gauge equivalence for the differential graded case. All definitions
given in this section are standard and agree with those commonly found in the literature,
except for the notion of completeness: in particular, the definition given here agrees with
[LM15] but not with [BFMT18].

Definition 2.1 (following [HL09]). Let V be a graded vector space.

(1) An L∞-structure on V is a continuous degree 1 derivation m of the complete cdga
ŜΣ−1V ∗, such that m2 = 0 and m has no constant term. The pair (V,m) is called
an L∞-algebra, and (ŜΣ−1V ∗,m) is called its representing complete cdga.

Given two L∞-algebras (U,mU ) and (V,mV ), an L∞-morphism U → V is a
continuous cdga map (ŜΣ−1V ∗,mV )→ (ŜΣ−1U∗,mU ).

(2) An A∞-structure on V is a continuous degree 1 derivation m of the complete dga
T̂Σ−1V ∗, such that m2 = 0 and m has no constant term. The pair (V,m) is called
an A∞-algebra, and (T̂Σ−1V ∗,m) is called its representing complete dga.

Given two A∞-algebras (U,mU ) and (V,mV ), an A∞-morphism U → V is a
continuous dga map (T̂Σ−1V ∗,mV )→ (T̂Σ−1U∗,mU ).

One recovers the standard definition of an L∞-structure as a sequence of graded maps
as follows: By definition, the derivation m is determined by its components mi : Σ−1V ∗ →
SiΣ−1V ∗, i ≥ 1. Dualise the components mi and apply the canonical identification of
Sn-invariants and Sn-coinvariants, to get graded symmetric maps `i : SiΣV → ΣV of degree
1, with mi = 1

i!`
∗
i . The condition m2 = 0 then translates into higher Jacobi identities.

Under the identification SiΣV ∼=
∧
iV , an L∞-structure on V is equivalently a sequence of

graded antisymmetric brackets [−, . . . ,−]i :
∧
iV → V of degree 2− i. For later convenience,
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we adopt the convention that the graded symmetric and graded antisymmetric operations
are related by `i = Σ [−, . . . ,−]i (Σ−1)⊗i, so that by the Koszul sign rule,

`i(x1, . . ., xi) = (−1)
∑i−1
j=1(i−j)|xj | Σ [Σ−1x1, . . . ,Σ

−1xi].

Analogously, an A∞-structure is equivalent to a sequence of graded maps T iV → V , i ≥ 1,
of degree 2− i, satisfying higher associativity identities. Note that factorials do not appear
in the A∞-algebra case, because there is no need to identify invariants and coinvariants.

For our purposes, V will often be a pseudocompact vector space instead of discrete. In this
case, an L∞-structure, A∞-structure, etc., on V is defined by replacing the complete cdga
ŜΣ−1V ∗ in Definition 2.1 with the cdga SΣ−1V ∗, and replacing the complete dga T̂Σ−1V ∗

with the dga TΣ−1V ∗.
Throughout this paper we will use the language of Quillen’s closed model categories [Qui69];

see [DS95] for a review. We will consider the categories of cdgas and dgas with the model
category structures of [Hin97], in which the weak equivalences are quasi-isomorphisms and
the fibrations are degreewise surjections. All objects are fibrant, and the cofibrant objects
are described as below.

Definition 2.2. A Sullivan cdga (resp. Sullivan dga) is defined to be a cdga of the form
SV (resp. dga of the form TV ) such that V is a graded vector space admitting a filtration

0 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ V, V =
⋃
i≥0

Vi,

that is compatible with the differential d, i.e. d(Vi) ⊆ SVi−1 (resp. d(Vi) ⊆ TVi−1) for all i.

The cofibrant objects in the model categories of (c)dgas are precisely retracts of Sullivan
(c)dgas. A proof appears in, for example, [Pos11, Theorem 9.1] for dgas; the same proof also
works for cdgas.

Definition 2.3. An L∞-algebra (resp. A∞-algebra) V is complete if V is pseudocompact
and its representing cdga (resp. dga) is cofibrant in the model category of cdgas (resp. dgas).

Definition 2.4.
(1) Let (V,m) be a complete L∞-algebra and A be a cdga. An element ξ ∈ V ⊗ A is

Maurer–Cartan if it has degree 1 and satisfies the Maurer–Cartan equation

(id⊗ dA)(ξ) +
∑
i≥1

1

i!
[ξ, . . . , ξ]Ai = 0,

where [−, . . . ,−]Ai is the A-linear extension of [−, . . . ,−]i.
(2) Let (V,m) be a complete A∞-algebra and A be a cdga. An element ξ ∈ V ⊗ A is

Maurer–Cartan if it has degree 1 and satisfies the Maurer–Cartan equation

(id⊗ dA)(ξ) +
∑
i≥1

mA
i (ξ, . . . , ξ) = 0,

where mA
i is the A-linear extension of mi.

The set of all Maurer–Cartan elements in V ⊗ A is denoted MC(V,A). In the case where
A = k, we write MC(V, k) simply as MC(V ).

Remark 2.5. The completeness condition on the L∞- and A∞-algebra ensures that the
infinite sums converge in Definition 2.4.

Given any cdga A and complete L∞-algebra V , a Maurer–Cartan element in the L∞-
algebra V ⊗ A is represented by a cdga map SΣ−1V ∗ → A. Similarly, given any dga A, a
Maurer–Cartan element in the A∞-algebra V ⊗A is represented by a dga map TΣ−1V ∗ → A.
For details see, for example, Proposition 2.2 and Remark 2.3 in [CL11].
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Next we consider a notion of homotopy for Maurer–Cartan elements. Let V be an L∞-
algebra or A∞-algebra. Consider the L∞-algebra or A∞-algebra V [t, dt] := V ⊗k[t, dt], where
k[t, dt] denotes the free cdga generated by a degree 0 symbol t and a degree 1 symbol dt.
Then there are two natural cdga maps f0, f1 : k[t, dt]→ k, defined by sending t to 0 and 1
respectively, and sending dt to 0.

Definition 2.6. Let (V,m) be a complete L∞-algebra or A∞-algebra, and A be a cdga. Two
elements ξ, η ∈ MC(V,A) are Sullivan homotopic if there exists an element h ∈ MC(V,A[t, dt])

such that (id⊗ f0)(h) = ξ and (id⊗ f1)(h) = η.

We recall the notions of a good path object and a right homotopy in the sense of Quillen’s
model categories. For an object X in a model category C, a path object for X is an object
XI in C with a factorization

X XI X ×X,i
∼

∆X

p

with i a weak equivalence, where ∆X is the diagonal map (idX , idX). The path object XI is
called good if additionally, p is a fibration.

The following result is well-known; see for example [Laz13].

Proposition 2.7. Let (V,m) be a complete L∞-algebra or A∞-algebra, and let A be a cdga.
Two Maurer–Cartan elements ξ, η ∈ MC(V,A) are Sullivan homotopic if and only if their
representing (c)dga maps are right homotopic in the model category of (c)dgas.

Proof. This is immediate from regarding h ∈ MC(V ⊗ A[t, dt]) as a cdga map SΣ−1V ∗ →
A[t, dt] or a dga map TΣ−1V ∗ → A[t, dt]. Then

A A[t, dt] Ai
f0

f1

is a good path object for A in the model category of (c)dgas; here i denotes the natural
inclusion. �

Now consider the case where V is a complete dgla, with differential d and bracket [−,−].
In this case, (V ⊗ A)0 is a Lie algebra and the gauge group G of V ⊗ A is defined by
exponentiating (V ⊗A)0. That is, G consists of formal symbols {ex : x ∈ (V ⊗A)0}, with
multiplication exey = ex∗y given by the Baker–Campbell–Hausdorff (BCH) formula.

Definition 2.8. The gauge action of G on MC(V,A) is defined by

ex · ξ = ξ +

∞∑
n=1

(adx)n−1

n!
(adx ξ − dx). (1)

Two Maurer–Cartan elements ξ, η ∈ V ⊗A are said to be gauge equivalent if they lie in the
same orbit of the gauge action. We write MC (V,A) for the quotient of MC(V,A) by the
gauge action.

If V is a complete dga, we say that two Maurer–Cartan elements in V ⊗ A are gauge
equivalent if they are gauge equivalent in the corresponding dgla, taken with the commutator
bracket.

Remark 2.9. Completeness of V implies that V is pronilpotent; thus the infinite series in
the BCH formula and the above gauge action (1) converge. Indeed, the ascending filtration
on SΣ−1V ∗ corresponds to a descending filtration on V , and the Sullivan condition on the
differential of SΣ−1V ∗ corresponds to pronilpotence of V ∗ with respect to this filtration.

More generally, for a (not necessarily complete) dga V , the following definition of gauge
equivalence can be found in, for example, [CHL21].
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Definition 2.10. Let V be a dga. The gauge action of the invertible elements of V 0 on
MC(V,A) is defined by

a · ξ = aξa−1 − da · a−1. (2)

This definition is equivalent to Definition 2.8 in the case where V is complete.
Our aim is to establish gauge equivalence as a left homotopy in the model category of

cdgas. In particular, left and right homotopy coincide when the domain is cofibrant and
the codomain is fibrant, so this would prove that Sullivan homotopy and gauge equivalence
coincide in the case of dglas. We will see how this interpretation extends to Maurer–Cartan
elements in L∞-algebras.

3. Gauge equivalence as a left homotopy of DGLAs

In this section, we show that gauge equivalence for complete dglas coincides with left
homotopy between complete dgla morphisms, with respect to the model category structure
of [LM15]. An analogous result is proved in [BM13b, BFMT18] for a different model structure.
The key to this construction lies in an alternative characterization of Maurer–Cartan elements
in V , when V is a dgla, as follows. Let L(x) be the free complete dgla generated by one
element x of degree 1, with differential dx = − 1

2 [x, x]. Then there is a correspondence
between the set MC(V ) and the set of dgla morphisms L(x)→ V . Thus, to describe a left
homotopy in a model category of complete dglas we require a cylinder object for L(x); such
a cylinder is given by the Lawrence–Sullivan interval introduced in [LS14].

The Lawrence–Sullivan interval L is the free complete dgla on three generators a, b, z,
where |a| = |b| = 1, |z| = 0, with differential

da+
1

2
[a, a] = 0, db+

1

2
[b, b] = 0,

dz = adz(b) +
adz

eadz − id
(b− a).

That is, the differential d is defined such that a and b are Maurer–Cartan elements in L, and
are gauge equivalent by a = ez · b.

Proposition 3.1. Let i0, i1 : L(x) → L be the natural inclusions and p : L → L(x) be the
natural projection, that is, i0(x) = a, i1(x) = b and p(a) = p(b) = x, p(z) = 0. Then

L(x) L L(x)
i0

i1

p

is a good cylinder object for L(x) in the category of complete dglas, equipped with a model
structure in which a morphism f : (V, d)→ (V ′, d′) is

(1) a weak equivalence if SΣ−1(V ′)∗ → SΣ−1V ∗ is a weak equivalence in the category
of cdgas.

(2) a fibration if it is surjective.

Proof. See [BFMT18] Corollary 5.3 and Theorem 7.6. �

It is then straightforward to show that gauge equivalence corresponds to the notion of a
left homotopy in the category of complete dglas.

Proposition 3.2. Let V be a complete dgla. Two Maurer–Cartan elements ξ, η ∈ V are
gauge equivalent if and only if there exists a dgla morphism h : L → V such that h(a) = ξ

and h(b) = η.

Proof. Consider the element h(z) ∈ V . If h is a dgla morphism, then h(z) has degree 0, and
d(h(z)) = h(dz), from which a direct computation shows ξ = eh(z) · η. Conversely, if ξ and η
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are gauge equivalent by ξ = ex · η, then define h(a) = ξ, h(b) = η and h(z) = x. The same
computation shows that h is a dgla morphism. �

It is natural to ask how this result can be generalized to a notion of homotopy when V
is an L∞-algebra. In [BM13a], two Maurer–Cartan elements ξ, η ∈ V are called cylinder
homotopic (terminology following [DP16]) if there exists an L∞-morphism L→ V such that
h(a) = ξ and h(b) = η. Then by [BM13a, Proposition 4.5], two Maurer–Cartan elements are
cylinder homotopic if and only if they are Sullivan homotopic. The resulting generalization,
however, is no longer a left homotopy of complete dglas.

4. Left homotopy of Maurer–Cartan elements

A different approach will be taken in this section: loosely, we will work in the Koszul dual
picture, and consider Maurer–Cartan elements in L∞-algebras and A∞-algebras by their
representing (c)dga maps. We define the following notion of homotopy for Maurer–Cartan
elements.

Definition 4.1.
(1) Let V be a complete L∞-algebra and A be a cdga. Two Maurer–Cartan elements

ξ, η ∈ V ⊗ A are left homotopic if their representing cdga maps SΣ−1V ∗ → A are
left homotopic in the model category of cdgas.

(2) Let V be a complete A∞-algebra and A be a cdga. Two Maurer–Cartan elements
ξ, η ∈ V ⊗A are left homotopic if their representing dga maps TΣ−1V ∗ → A are left
homotopic in the model category of dgas.

4.1. The cylinder object for (c)dgas. We recall a cylinder object for cdgas constructed
in [FOT08, Section 2.2]. Given a cofibrant cdga of the form (SV, d), its cylinder C(SV ) is
defined to be the cdga (S(V ⊕ V̄ ⊕ V̂ ), D), where V̄ ∼= ΣV and V̂ ∼= V , and the differential
D is defined by

D(v) = dv, D(v̄) = v̂, D(v̂) = 0.

We also define a degree −1 derivation s on C(SV ) by

s(v) = v̄, s(v̄) = s(v̂) = 0.

Then θ := [s,D] = sD+Ds is a derivation of degree 0, so eθ =
∑∞
n=0 θ

n/n! is an automorphism
of C(SV ). Explicitly,

θ(v) = sdv + v̂, θ(v̄) = θ(v̂) = 0,

and inductively, θn(v) = (sD)n(v) for n ≥ 2 as s2 = 0. Since SV is a Sullivan cdga, θN (v) = 0

for some N , and hence we have a convergent series

eθ(v) = v + v̂ +

∞∑
n=1

(sD)n(v)

n!
, eθ(v̄) = v̄, eθ(v̂) = v̂. (3)

Analogously, given a cofibrant dga of the form (TV, d), its cylinder C(TV ) is defined to
be the dga (T (V ⊕ V̄ ⊕ V̂ ), D), with D and eθ defined as above. This is a different cylinder
to the one constructed by [BL77].

Proposition 4.2. Let (SV, d) be a cofibrant cdga. Let i : SV → C(SV ) be the natural
inclusion and p : C(SV ) → SV be the natural projection, that is, i(v) = v and p(v) = v,
p(v̄) = p(v̂) = 0. Then

SV C(SV ) SV
i

eθ◦ i

p

is a good cylinder object for (SV, d) in the model category of cdgas. Analogously, if (TV, d) is
a cofibrant dga, then
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TV C(TV ) = (T (V ⊕ V̄ ⊕ V̂ ), D) TV
i

eθ◦ i

p

is a good cylinder object for (TV, d) in the model category of dgas.

Since C(SV ) and C(TV ) are good cylinder objects, ξ and η are left homotopic if and only
if there exists a cdga morphism H : C(SV )→ k or dga morphism H : C(TV )→ k that is a
left homotopy between their representing (c)dga maps.

4.2. Left homotopy in (c)dgas. From now on, let V be a complete L∞-algebra; everything
we say will have an obvious analogue for complete A∞-algebras. Consider the vector space
V ⊕ V̄ ⊕ V̂ , where V̄ ∼= Σ−1V and V̂ ∼= V . This is a complete L∞-algebra with differential

d(ξ) = dξ, d(ξ̄) = 0, d(ξ̂ ) = ξ̄,

and all brackets defined as 0 on the second and third components. Then the representing
cdga of V ⊕ V̄ ⊕ V̂ is isomorphic to C(SU), where U = Σ−1V ∗, Ū = Σ−1V̄ ∗ ∼= ΣU and
Û ∼= U , with differential D as in Section 4.1.

Note that for any cdga A, an element in (V ⊕ V̄ ⊕ V̂ )⊗A is Maurer–Cartan if and only if
it is of the form ξ + x+ 0 for some ξ ∈ MC(V ⊗A) and x ∈ (V ⊗A)0. By abuse of notation,
we denote also by ξ its representing cdga map (SU, d)→ A, and by x its equivalent degree 0
linear map Ū → A. Hence x and ξ together determine a cdga map Hξ,x : C(SU)→ A that
is a left homotopy between ξ and x ∗ ξ := Hξ,x ◦ eθ ◦ i, by

Hξ,x(u) = ξ(u), Hξ,x(ū) = x(ū), Hξ,x(û) = 0.

Our next result gives a compact formula for left homotopy of Maurer–Cartan elements.
In the next section, we will show that the formula specialises to gauge equivalence in the
case where V is a dg(l)a.

Theorem 4.3.

(1) Let V be a complete L∞-algebra. Two Maurer–Cartan elements ξ, η ∈ V are left
homotopic if and only if their representing cdga maps ξ, η : SΣ−1V ∗ → k satisfy

η = ξ ◦ e[x̃,d],

where x̃ is the constant degree −1 derivation of SΣ−1V ∗ induced by the left homotopy.
(2) Let V be a complete A∞-algebra. Two Maurer–Cartan elements ξ, η ∈ V are left

homotopic if and only if their representing dga maps ξ, η : TΣ−1V ∗ → k satisfy

η = ξ ◦ e[x̃,d],

where x̃ is the constant degree −1 derivation of TΣ−1V ∗ induced by the left homotopy.

Proof. Consider first the L∞-case. We lift the homotopy Hξ,x between ξ and x ∗ ξ to SU in
the following sense: Let f be the cdga map Hid,x ◦ eθ ◦ i : SU → SU . Then x ∗ ξ = ξ ◦ f and
the identity map of SU is left homotopic to f via Hid,x : C(SU)→ SU , defined by

Hid,x(u) = u, Hid,x(ū) = x(ū), Hid,x(û) = 0.

We now show that f = e[x̃,d], where x̃ is the constant derivation of SU corresponding
to x. First we convert the homotopy Hid,x into a Sullivan homotopy between the identity
morphism of SU and f . Consider the map

ezθ + sezθdz : C(SU)→ C(SU)[z, dz], (4)

which is well-defined as any element u + ū + ũ ∈ C(SU) satisfies θN (u + ū + ũ) = 0

for sufficiently large N (see Section 4.1), so ezθ is indeed a polynomial in z. By [BL05,
Theorem 3.4], equation (4) defines a Sullivan homotopy between the identity morphism
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and the automorphism eθ = e[s,D] of C(SU). Then defining F,G : SU → SU [z] to be the
compositions

F = Hid,x ◦ ezθ ◦ i, G = Hid,x ◦ sezθ ◦ i,
we obtain that F + Gdz : SU → SU [z, dz] is a Sullivan homotopy from id to f . Since the
constant term of F is always the identity on SU , the map F is formally invertible and the
integral formula from [BL05] gives

f = exp

[ ∫ 1

0

GF−1 dz, d

]
.

Finally we show that G = x̃F , from which it follows immediately that the integral converges
and evaluates to x̃, concluding the proof of the theorem. Indeed, Hid,xs and x̃Hid,x are both
Hid,x-derivations S(U ⊕ Ū ⊕ Û)→ SU , and they agree on U ⊕ Ū ⊕ Û :

Hid,xs(u) = Hid,x(ū) = x(ū), Hid,xs(ū) = Hid,x(û) = 0, Hid,xs(û) = 0,

and

x̃Hid,x(u) = x̃(u) = x(ū), x̃Hid,x(ū) = x̃x(ū) = 0, x̃Hid,x(û) = 0.

Hence Hid,xs = x̃Hid,x, which gives G = x̃F as required.
Now suppose ξ is a Maurer–Cartan element in an A∞-algebra. In the A∞-case, the integral

formula no longer applies due to the lack of graded commutativity. However, we can reduce
to the L∞-case as follows. Since k is commutative, its representing dga map ξ : TU → k

factors as ξ = ξ′ ◦ p, where p : TU → SU is the canonical projection and ξ′ : SU → k is a
cdga map. Similarly there are factorizations x ∗ ξ = (x ∗ ξ)′ ◦ p and H = H ′ ◦ p. Then ξ′ and
(x ∗ ξ)′ are Maurer–Cartan elements in the L∞-algebra represented by SU , and the cdga
map H ′ defines a left homotopy between them. By definition (x ∗ ξ)′ = x ∗ ξ′, hence by the
L∞-case,

x ∗ ξ = (x ∗ ξ′) ◦ p = ξ′ ◦ e[x̃,dSU ] ◦ p = ξ′ ◦ p ◦ e[x̃,dTU ] = ξ ◦ e[x̃,dTU ].

This proves the A∞-case. �

We would like to extend Theorem 4.3 to Maurer–Cartan elements in L∞-algebras and
A∞-algebras of the form V ⊗ A, that are not necessarily complete. However, given two
left-homotopic Maurer–Cartan elements ξ, η ∈ V ⊗A, it is not true that their representing
cdga maps ξ, η : SΣ−1V ∗ → A satisfy η = ξ ◦ e[x̃,d] for some degree −1 derivation x̃ of
SΣ−1V ∗, as the following counterexample shows.

Example 4.4. Take V to be a dg vector space, so that it has a linear differential and a
decomposition V = H(V )⊕ΣB⊕B, and take A = SΣ−1V ∗. Let ξ be the identity map, and
η be the map induced by the projection of V onto its homology H(V ). Then ξ and η are left
homotopic, but η is not an automorphism, so cannot be of the form id ◦ e[x̃,d]. Indeed, if x̃ is
the constant derivation corresponding to the homotopy, then the exponential e[x̃,d] diverges.

To obtain an analogue of Theorem 4.3 for Maurer–Cartan elements in V ⊗ A requires
introducing a semi-completed symmetric algebra and a semi-completed tensor algebra: for a
pseudocompact vector space V , define

S′V =
⊕
i≥0

SiV and T ′V =
⊕
i≥0

T iV.

Since V is pseudocompact, Si(V ) and T i(V ) are still assumed to mean completed tensor
powers. However, S′V and T ′V differ from ŜV and T̂ V by taking the direct sum of tensor
powers instead of the direct product. Thus S′V and T ′V are not pseudocompact, but do
have some non-discrete topology. They have the following property.
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Lemma 4.5. Let V be a pseudocompact vector space.
(1) Let B be a pseudocompact (c)dga. Any continuous linear map V → B extends

uniquely to a continuous cdga map S′V → B or a continuous dga map T ′V → B.
(2) Any continuous linear map V → S′V extends uniquely to a continuous derivation

of S′V , and any continuous linear map V → T ′V extends uniquely to a continuous
derivation of T ′V .

Proof.
(1) Since elements of S′V and T ′V are finite sums of tensor powers, it suffices to prove

that a linear map f : V = lim←−−i Vi → B extends to continuous maps V ⊗̂n → B for all
n ≥ 2. Since f is determined by Vi → B, we define f⊗n : Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vin → B,
and take the inverse limit to obtain a map on V ⊗̂n.

(2) This follows the same argument as above, but instead we extend f to Vi1⊗Vi2⊗· · ·⊗Vin
by
∑n−1
j=0 1j ⊗ f ⊗ 1n−1−j . �

This allows us to give an alternative characterization of Maurer–Cartan elements as
continuous (c)dga maps.

Lemma 4.6. Let V be a finite-dimensional complete L∞-algebra, and let A be a cdga. There
is a correspondence

MC(V ⊗A) ∼= Hom(S′Σ−1(V ⊗A)∗, k).

Let V be a finite-dimensional complete A∞-algebra. There is a correspondence

MC(V ⊗A) ∼= Hom(T ′Σ−1(V ⊗A)∗, k).

We recover the usual representing (c)dga maps if V is finite-dimensional and A = k.

Proof. First note that the object S′Σ−1(V ⊗ A)∗ makes sense: V is finite-dimensional, so
V ⊗A is discrete and its dual is pseudocompact. Recall that V ⊗A ∼= ((V ⊗A)∗)∗. So there is
a correspondence between (Σ(V ⊗A))0 and continuous degree 0 linear maps Σ−1(V ⊗A)∗ → k,
which correspond to continuous degree 0 algebra maps S′Σ−1(V⊗A)∗ → k by Lemma 4.5. The
Maurer–Cartan condition corresponds to the correct axioms for differentials on S′Σ−1(V ⊗A)∗

by the same argument as the usual (non-continuous) cdga case. �

Theorem 4.7.
(1) Let V be a finite-dimensional complete L∞-algebra and A be a cdga. Two Maurer–

Cartan elements ξ, η ∈ V ⊗ A are left homotopic if and only if their representing
continuous cdga maps ξ′, η′ : S′Σ−1(V ⊗A)∗ → k satisfy

η′ = ξ′ ◦ e[x̃′,d′],

where x̃′ is the constant degree −1 derivation of S′Σ−1(V ⊗A)∗ induced by the left
homotopy.

(2) Let V be a finite-dimensional complete A∞-algebra and A be a cdga. Two Maurer–
Cartan elements ξ, η ∈ V ⊗ A are left homotopic if and only if their representing
continuous dga maps ξ′, η′ : T ′Σ−1(V ⊗A)∗ → k satisfy

η′ = ξ′ ◦ e[x̃′,d′],

where x̃′ is the constant degree −1 derivation of T ′Σ−1(V ⊗A)∗ induced by the left
homotopy.

Proof. We prove the L∞-case; the A∞-case can be reduced to the L∞-case as before. For
U = Σ−1(V ⊗A)∗, consider

C(S′U) := (S′(U ⊕ Ū ⊕ Û), D),
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where Ū ∼= ΣU and Û ∼= U , and D are defined as in C(SU). As before, we can also define
an automorphism eθ =

∑∞
n=0 θ

n/n! of C(S′U); note that the Sullivan condition still holds
on the differential D of S′U , so the series still converges.

While C(S′U) is not a cylinder object, we can treat it as if it were one: by Lemma 4.5
and Lemma 4.6, ξ and η are left homotopic if and only if there is a cdga map H ′ such that
the diagram commutes:

S′U k

C(S′U)

eθ◦ ii

ξ′

η′

H′

The rest of the proof is the same as Theorem 4.3, replacing C(SU) with C(S′U) everywhere.
The Sullivan condition still holds on the differential d′ of S′U , so the exponential e[x̃′,d′]

converges as before. �

5. Left homotopy and gauge equivalence

In this section, Theorem 4.3 and Theorem 4.7 are used to obtain combinatorial formulae
for the Maurer–Cartan element x ∗ ξ = Hξ,x ◦ eθ ◦ i, in terms of rooted trees. The formulae
will show that Theorem 4.3 and Theorem 4.7 specialise to gauge equivalence in the case of a
dgla or dga. We will use this to deduce the following theorem at the end of the section.

Theorem 5.1. Let V be a complete dgla and A be a cdga. For any two Maurer–Cartan
elements ξ and η in V ⊗A, the following are equivalent:

(1) ξ and η are gauge equivalent;
(2) ξ and η are left homotopic;
(3) ξ and η are Sullivan homotopic.

A proof that 1 and 3 coincide already appears in the literature; see for example [SS]
and [CL10, Theorem 4.4]. The originality of Theorem 5.1 lies in directly establishing the
equivalence of 1 and 2. The proof that 2 and 3 coincide is purely model category theoretic,
so this theorem also provides a new proof that gauge equivalence and Sullivan homotopy
coincide.

The terminology and conventions we use for trees below follows those of [GK94]. We will
allow the empty tree, that is, a tree with no vertices. Additionally, given a rooted tree T and
a natural number k, we say that the maximal height k sub-tree of T is the rooted sub-tree of
T consisting of all vertices with a path to the root with length at most k, together with their
internal edges and leaves.

Theorem 5.2. Let V be a complete L∞-algebra, and let x ∈ V 0, ξ ∈ MC(V ). Then

x ∗ ξ =
∑
T

(−1)nr

n!j1! . . . jn!
T (x, ξ),

where the sum is taken over all rooted trees T such that every vertex has at least one leaf,
and for each rooted tree T ,

(1) n is the number of vertices of T ;
(2) r is the number of orderings of the vertices of T such that each vertex is greater than

its parent;
(3) T (x, ξ) is the unique word associated to T given by labelling exactly one leaf on each

vertex by x and all remaining leaves by ξ, and associating to each degree i vertex
with inputs η1, . . . , ηi−1, x the operation [η1, . . . , ηi−1, x];

(4) j1, . . . , jn are the numbers of ξ attached to each of the n vertices.
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Proof. As before, we write U = Σ−1V ∗. Using that x̃2 = 0 (as the square of a constant odd
derivation is 0), the same calculation as for the series eθ in equation (3) gives

e[x̃,d](u) = u+

∞∑
n=1

(x̃d)n(u)

n!

for u ∈ U . From Theorem 4.3 and Theorem 4.7, the Maurer–Cartan element x ∗ ξ is
represented by the cdga map ξ ◦ e[x̃,d] : SU → k, so the restriction of ξ ◦ e[x̃,d] to U is evx∗ξ.
Applying ξ ◦e[x̃,d] to an element u : ΣV → k in U is equivalent to forming a tree by successive
compositions. Since x̃ and d are derivations, each (x̃d)n(u) is a sum of words determined by
sequences di1 , di2 , . . . , din , for any i1, . . . , in ≥ 1. Hence at each step:

(1) Applying di to u ∈ U gives the composition 1
i!u ◦ `i. Applying id⊗j−1 ⊗ di ⊗ id⊗k−j

to an element of U⊗k therefore corresponds to composition with an i-star along j.
(2) Applying x̃ to u ∈ U is the evaluation evx(u). Applying id⊗j−1 ⊗ x̃⊗ id⊗k−j to an

element of U⊗k therefore corresponds labelling the jth leaf with x.
(3) Applying ξ to u ∈ U is the evaluation evξ(u). Since ξ extends to a cgda map, this

corresponds to labelling all remaining leaves with ξ.

Every sequence di1 , di2 , . . . , din gives words of the form (−1)nT (x, ξ)/i1! . . . in!. Indeed,
regard ξ and x as elements in ΣV , so that ξ and x have degrees 0 and −1 respectively. Then
by graded symmetry of the `i, there must be exactly one x on each vertex, and every term
can be written as `i(η1, . . . , ηi−1, x), which equals [η1, . . . , ηi−1, x] by our grading convention.
Finally, each x̃d introduces a sign −1, as both `i and x both have odd degree.

To determine the coefficient, it remains to count how many ways compositions give rise to
the same word. By graded commutativity, we can form the trees such that each composition
or labelling by x always fills the last unlabelled leaf on each vertex. With this restriction, the
number of ways a tree can be built is r, the number of monotone orderings of its vertices. �

When V is a dgla, the above formula only allows rooted trees with vertices of valence 1 or
2, and the coefficients r, j1, . . . , jn equal 1 for every tree. This recovers the formula (1) for
gauge equivalence in dglas, and recovers the formula of [Get09, Proposition 5.9] in the case
of L∞-algebras.

Similarly we can use Theorem 4.3 and Theorem 4.7 to obtain the following analogous
formula for the A∞-case.

Theorem 5.3. Let A be a complete A∞-algebra, and let x ∈ A0, ξ ∈ MC(A). Then

x ∗ ξ =
∑
T

∑
λ

(−1)n

n!
Tλ(x, ξ),

where the sum is taken over all planar rooted trees T , and for each rooted tree T ,

(1) n is the number of vertices of T ;
(2) λ ranges over labellings of T that label n leaves by x and all remaining leaves by ξ,

such that for any 1 ≤ k ≤ n, the maximal height k sub-tree of T has k leaves labelled
by x;

(3) Tλ(x, ξ) is the word given by the labelling λ and associating to each degree i vertex
the operation mi : T

iΣA→ ΣA.

Proof. The calculation is similar to the L∞-case in Theorem 5.2, except the lack of graded
commutativity means that each mi can take more than one x. Each sequence di1 , di2 , . . . ,
din gives words of the form (−1)nTλ(x, ξ). �

Proof of Theorem 5.1. First note that the equivalence of (2) and (3) is immediate by com-
pleteness of V . Also, if V is finite-dimensional, then the equivalence of (1) and (2) is
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immediate by Theorem 4.7 and Theorem 5.2. Finally in the infinite dimensional case, by
completeness of V we have V = lim←−−Vi where Vi are all finite-dimensional complete dglas.
Hence (1) and (2) are equivalent for V , as they are equivalent for each Vi. �

Remark 5.4. In the case where V ⊗A is complete (in particular, when A = k), we can simplify
the above proof, as the result is just a direct consequence of Theorem 4.3 and Theorem 5.2.

6. A strong homotopy Poincaré lemma

The Poincaré lemma states that on a contractible manifold, every closed differential form
of positive degree is exact. The following non-abelian analogue to the Poincaré lemma is
proved in [Vor12, Theorem 3.1].

Theorem 6.1 (Non-abelian Poincaré lemma). Let M be a contractible manifold and let g be
a dgla. Let ξ be a g-valued differential form on M such that ξ is a Maurer–Cartan element
in g⊗ Ω(M). Then ξ is gauge equivalent to a constant.

It was suggested by Voronov that Theorem 6.1 may be extended to L∞-algebras. Here,
we prove such a statement as an application of the results from the previous sections.

Theorem 6.2 (Strong homotopy Poincaré lemma). Let M be a contractible manifold and let
g be a complete L∞-algebra. If ξ is a g-valued differential form on M that is Maurer–Cartan,
then ξ is gauge equivalent to a constant.

Proof. By Theorem 5.1, two Maurer–Cartan elements in g ⊗ Ω(M) are gauge equivalent
if and only if their representing cdga maps are left homotopic. But M is contractible, so
Ω(M) is weakly equivalent to R. By nilpotence of g, homotopy classes of maps Sg→ Ω(M)

correspond to homotopy classes of maps Sg→ R. Hence MC (g,Ω(M)) ∼= MC (g). �

References

[BFMT18] U. Buijs, Y. Félix, A. Murillo, and D. Tanré. Homotopy theory of complete Lie algebras and Lie
models of simplicial sets. Journal of Topology, 11(3):799–825, 2018.

[BL77] H. J. Baues and J.-M. Lemaire. Minimal models in homotopy theory. Mathematische Annalen,
225(3):219–242, 1977.

[BL05] J. Block and A. Lazarev. André–Quillen cohomology and rational homotopy of function spaces.
Advances in Mathematics, 193(1):18–39, 2005.

[BM13a] U. Buijs and A. Murillo. Algebraic models of non-connected spaces and homotopy theory of L∞
algebras. Advances in Mathematics, 236:60–91, 2013.

[BM13b] U. Buijs and A. Murillo. The Lawrence–Sullivan construction is the right model for I+. Algebraic
& Geometric Topology, 13(1):577–588, 2013.

[CHL21] J. Chuang, J. Holstein, and A. Lazarev. Maurer-Cartan moduli and theorems of Riemann-Hilbert
type. Applied Categorical Structures, 2021.

[CL10] J. Chuang and A. Lazarev. Feynman diagrams and minimal models for operadic algebras. Journal
of the London Mathematical Society, 81(2):317–337, 2010.

[CL11] J. Chuang and A. Lazarev. L-infinity maps and twistings. Homology, Homotopy and Applications,
13(2):175–195, 2011.

[DP16] V. Dotsenko and N. Poncin. A tale of three homotopies. Applied Categorical Structures, 24(6):845–
873, 2016.

[DS95] W. G. Dwyer and J. Spaliński. Homotopy theories and model categories. In Handbook of algebraic
topology, pages 73–126. North-Holland, Amsterdam, 1995.

[FOT08] Y. Félix, J. Oprea, and D. Tanré. Algebraic Models in Geometry, volume 17 of Oxford graduate
texts in mathematics. Oxford University Press, 2008.

[Get09] E. Getzler. Lie theory for nilpotent L∞-algebras. Annals of Mathematics, 170(1):271–301, 2009.
[GK94] V. Ginzburg and M. Kapranov. Koszul duality for operads. Duke Mathematical Journal, 76(1):203–

272, 1994.
[Hin97] V. Hinich. Homological algebra of homotopy algebras. Communications in Algebra, 25(10):3291–

3323, 1997.



GAUGE EQUIVALENCE FOR COMPLETE L∞-ALGEBRAS 13

[HL09] A. Hamilton and A. Lazarev. Cohomology theories for homotopy algebras and noncommutative
geometry. Algebraic & Geometric Topology, 9:1503–1583, 2009.

[Laz13] A. Lazarev. Maurer–Cartan moduli and models for function spaces. Advances in Mathematics,
235:296–320, 2013.

[LM15] A. Lazarev and M. Markl. Disconnected rational homotopy theory. Advances in Mathematics,
283:303–361, 2015.

[LS14] R. Lawrence and D. Sullivan. A formula for topology/deformations and its significance. Funda-
menta Mathematicae, 225(1):229–242, 2014.

[Man99] M. Manetti. Deformation theory via differential graded Lie algebras. In Seminari di Geometria
Algebrica (1998–99 ), pages 21–48. Scuola Normale Superiore, Pisa, 1999.

[Pos11] L. Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule
correspondence. Memoirs of the American Mathematical Society, 212(996), 2011.

[Qui69] D. Quillen. Rational homotopy theory. Annals of Mathematics, 90(2):205–295, 1969.
[RN18] D. Robert-Nicoud. A model structure for the Goldman–Millson theorem. Graduate Journal of

Mathematics, 3(1):15–30, 2018.
[SS] M. Schlessinger and J. Stasheff. Deformation theory and rational homotopy type. arXiv:1211.

1647.
[Vor12] T. T. Voronov. On a non-Abelian Poincaré lemma. Proceedings of the American Mathematical

Society, 140(8):2855–2872, 2012.

Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK
Email address: a.guan@lancaster.ac.uk

http://arxiv.org/abs/1211.1647
http://arxiv.org/abs/1211.1647

	1. Introduction
	1.1. Notation and conventions
	Acknowledgements

	2. Preliminaries on L- and A-algebras
	3. Gauge equivalence as a left homotopy of DGLAs
	4. Left homotopy of Maurer–Cartan elements
	4.1. The cylinder object for (c)dgas
	4.2. Left homotopy in (c)dgas

	5. Left homotopy and gauge equivalence
	6. A strong homotopy Poincaré lemma
	References

