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Abstract 

Foraging behaviour forms the basis for how species interact with one another, affecting not only 

their own survival, but the overall structure of ecological communities. In this thesis I illustrate 

the variety of changes in foraging behaviour that are predicted in response to changes in food 

availability (i.e., bottom-up effects) and evaluate their predictability via optimal foraging theory. 

I also show the effects of behavioural change and behavioural variation on community structure 

and ecosystem functional health.  

Chapter 2 explores the consistency of predicted optimal foraging responses under decreased food 

availability. Two evaluated factors showed weak moderating effects on predicted responses: 

predator taxonomy (mammals are more likely to increase their space-use when food decreases) 

and prey seasonality (predators with seasonally fluctuating food sources are less likely to increase 

their space-use). 

Then, I evaluate the species-level and community-level outcomes of bottom-up effects, using 

coral-feeding butterflyfishes and bleaching-induced coral mortality as a model system. In Chapter 

3, I show how bottom-up effects can scale up, from changes in individual behaviour to changes in 

the structure of interaction networks. In response to substantial coral mortality, coral-feeding fish 

became consumed increasingly broad diets, weakening their prey preferences. This resulted in 

significant changes in resource overlap, and substantial rewiring of the consumer-resource 

interaction network. Chapter 4 focuses on how specialist and generalist butterflyfishes differ in 

their foraging behaviour (e.g., patch residence time, bite rate) within low-coral areas, and how 

these differences might affect their survival.  

Lastly in Chapter 5, I explored inter- and intraspecific variation in foraging behaviour within coral 

reef herbivores. I determined that there is significant variation in foraging movement within and 

across functional groups, highlighting potential complementarity in the scale of their functional 

delivery. This means together these species may contribute more strongly to grazing than either 

could alone. 

Keywords: bottom-up effects, optimal foraging theory, dietary preferences, interaction 

networks, movement 
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1. General Introduction 
 

1.1 Rapid Environmental Change in the Anthropocene 

Earth’s history has entered a new era dominated by human influence, known now as the 

Anthropocene (Corlett 2015). Anthropogenic disturbance has rapidly altered natural ecosystems, 

modifying habitats and altering species compositions (Vitousek et al. 1997, Barnosky et al. 2012). 

Recent attention has focused on ways for species to respond to cases of human-induced rapid 

environmental change, through either evolutionary or behavioural means (Sih et al. 2011, 

Tuomainen and Candolin 2011).  

1.2 Behavioural Plasticity 

Behavioural responses to anthropogenic disturbance reflect the ability of species to alter their 

behaviour in varying habitat contexts (i.e., behavioural plasticity). While definitions vary by field, 

behavioural plasticity generally describes the alteration of behaviour in response to prior 

experiences or external stimuli (Stamps 2016).  In contrast to developmental plasticity, which 

refers to the expression of different phenotypes as a result of learning (Snell-Rood 2013), the 

plasticity of foraging behaviour in response to changing conditions is a form of contextual 

plasticity, wherein external stimuli provide an immediate behavioural response which is typically 

reversible. This is also commonly referred to as activational plasticity or flexibility (Snell -Rood 

2013, van Schaick 2013). 

1.3 Bottom-up Effects 

Human disturbance can alter numerous aspects of ecological systems, each of which could require 

a plastic response in foraging behaviour for survival (Sih et al. 2011, Tuomainen and Candolin 



   Chapter 1 – General Introduction 

 

2 

 

2011). For a given species, disturbance may result in changes in its population size, the population 

size of its predators (top-down effects), the availability of its food resources (bottom-up effects), 

or changes in its physical habitat (Wilson et al. 2020). In particular, bottom-up effects are likely to 

result in wider ecosystem change, because resulting changes in foraging behaviour or diet can alter 

consumer-resource interactions, ultimately affecting the structure of food webs (Wong and 

Candolin 2015). Human disturbance can result in sharp decreases in food availability, which often 

stem from habitat destruction (e.g., deforestation for frugivorous primates [Pangau-Adam 2015], 

coral reef bleaching for corallivorous fishes [Wilson et al. 2014]). Human influence can also 

increase the abundance of food items, such as through anthropogenic food subsidies (Quinn and 

Whisson et al. 2005, Merkle et al. 2013), or through increases in the vulnerability of food items as 

a result of human activity (Ramsay et al. 1998, Devereaux et al. 2006). 

1.4 Optimal Foraging Theory 

Many examples of activational plasticity in foraging behaviour parallel predictions established 

decades prior within optimal foraging theory. Optimality models have set the basis for our 

expectations of how foraging species interact with their environment (Stephens and Krebs 1986). 

These predict optimal foraging patterns by setting a currency (typically long-term net energy gain) 

and mathematically determining the foraging patterns which maximize it (Houston and McNamara 

2014).  Specifically, in the context of this thesis, three important optimality models predict changes 

in foraging behaviour that could result from changes in food availability. 

First, models of optimal territory size determine a territory which provides a maximum net energy 

benefit, considering the costs and benefits of territory defense (Brown 1964). Benefits are typically 

determined as a function of the distribution of food items, and their rate of replenishment, whereas 
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costs are influenced by the energetic expense involved in territory defense from intruders (Adams 

2001). These models predict that when food availability decreases, foragers should expand their 

territory in search of food (see Chapter 2, Dill 1978, Hixon 1980, Ford 1983).  

Second, the optimal diet model (Emlen 1966) seeks to identify a diet which maximizes long-term 

energy gain, assessing the energetic benefit of each potential food item, based on its energy value, 

abundance within the environment and necessary handling time (Charnov 1976a). It considers 

each encounter with a food item sequentially, so the forager has a binary choice between 

consuming the food item in question or moving on in search of another. In this way, the food item 

will be consumed if it’s energetic benefit is greater than those it is likely to find otherwise. Because 

of this, the model predicts a strict diet, where each food item is either always consumed when 

encountered, or always ignored (i.e., the “zero-one rule”, Pulliam 1974). However, partial prey 

preferences are common in natural systems as food items may contain different nutrients a forager 

must consume or may produce toxins that can cause harm in large amounts (Pulliam 1975, 

Hirakawa 1995). When food availability is low, the optimal diet model predicts that foragers will 

expand their diets in response (see Chapter 3, Emlen 1966).  

Lastly, the marginal value theorem (also known as the Patch Model), defines the conditions for 

optimal patch occupancy, attempting to maximize long term energy gain (Charnov 1976b). It too, 

considers each patch sequentially, comparing the energetic benefit of remaining in a given patch 

against the opportunity cost of moving to a new one. A forager will remain in a patch as long as 

the instantaneous energy gain within that patch is greater than the average rate of energy gain 

within the nearby environment. Because of this, the marginal value theorem predicts that residence 

times within a given patch type will be longer when surrounded by low-quality habitat than when 
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surrounded by high-quality habitat (Krebs et al. 1974). It can then be predicted that when food 

availability decreases, foragers should have longer patch residence times (see Chapter 4). 

However, tests of optimal foraging theory have had mixed results (Sih and Christensen 2001), and 

behavioural responses to changing food availability can vary from system to system, dependent on 

a variety of context-dependent factors (Caro 2007, Gordon 2011). As such, a better understanding 

of these factors and constraints on theoretical responses is needed. 

1.5 Coral Reef Ecosystems 

Coral reefs are incredibly diverse ecosystems, owing much of this diversity to their structural 

complexity and wide variety of microhabitats (Reaka-Kudla 1997, Graham and Nash 2013).  

Tropical reefs cover less than 1% of the ocean floor (Spalding et al. 2001), but are estimated to 

contain one-quarter to one-third of marine species (Plaisance et al. 2011). However, estimates of 

species richness vary substantially, as much of this diversity is within understudied groups (i.e., 

invertebrates, Reaka-Kudla 1997, Fisher et al. 2015, Hoeksema 2017), or organisms that are 

cryptic in nature (Brandl et al. 2018), evading detection within popular visual sampling protocols 

(Rogers et al. 1983, English et al. 1997). The wide variety of organisms that make their homes 

within coral reefs owe their survival to the symbiotic relationship between corals and 

photosynthetic algae that live inside their tissues (Symbiodinium among others, Muscatine 1967, 

Muscatine and Cernichiari 1969). In exchange for protection inside coral tissues, the 

photosynthetic products of these algae can provide up to 100% of a coral’s daily energy demands 

(Muscatine et al. 1981, Grottoli et al. 2006). This energy source fuels their reproduction and 

supports the continued buildup of reef structure through growth and calcification. 
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1.5.1 Coral reef bleaching  

Coral reefs also face extreme threats under anthropogenic change from a number of stressors 

including fishing, eutrophication, and disease (Hughes et al. 2017, Ban et al. 2014, Harborne et al. 

2017). Of these, one of the most notable threats to reef health is climate change and the devastating 

effects of thermal bleaching events. Under extreme thermal stress, corals will bleach, shedding 

their symbiotic algae and risking starvation (Brown 1997, Lesser 2010). Bleaching events can 

result in widescale coral mortality and, in combination with other stressors, result in phase shifts 

to algal dominated states (Bruno et al. 2009, Norström et al. 2009). Bleaching-induced mortality 

can cause rapid population declines and extirpations among reef fishes, particularly among those 

species which rely on coral for food or shelter (Wilson et al. 2014). This unequal turnover of 

species can reshape fish communities, leading to biotic and functional homogenization 

(Richardson et al. 2018). 

As a result of ocean warming, coral bleaching events are now five times as common as they were 

in the early 1980s (Hughes et al. 2018). While reefs can recover from bleaching, this can be a 

lengthy process, requiring 7-29 years without additional disturbance (Gouezo et al. 2019, Robinson 

et al. 2019). However, as a result of their increasing frequency, the average window for a given 

reef to recover between bleaching events has shortened to just six years (Hughes et al. 2018). With 

continued increases in global ocean temperature, the future of coral reefs will be defined by the 

relative ability of their component species to persist through bleaching events. For fish populations, 

this will depend on their behavioural response to bleaching events, which may or may not be 

adaptive (Coppock et al. 2015, Boström-Einarsson et al. 2018).  Because of this, bleaching-induced 

coral mortality events provide a valuable opportunity to evaluate bottom-up effects on foraging 

behaviour, through their effects on coral-feeding fishes. 
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1.5.2 Coral reef ecosystem functioning 

The condition of coral habitats is guided by a set of eight core functional processes, working in 

complementary pairs (Brandl et al. 2019). Calcium carbonate production (1) by corals determines 

the accretion of reef structure and is countered with bioerosion (2). Primary production (3) by 

photosynthetic algae and cyanobacteria is countered with herbivory (4). Secondary production (5) 

of fish and invertebrate biomass is countered with predation (6). Lastly, nutrient release (7) is 

countered with nutrient uptake (8). Effective management of coral reefs requires maintenance and 

balance of these processes, to ensure reefs do not transition into undesirable states (Bruno et al. 

2009, Norström et al. 2009). And doing so requires a full understanding of the populations that 

contribute to these essential functions, the complementarity of their actions, and their future within 

disturbed reefs (Nyström 2006, Burkepile and Hay 2011, Brandl et al. 2019). Most notably, 

management efforts have focused particularly on maintaining sufficient herbivory to counter algal 

growth and prevent phase shifts to algal dominated states (Green and Bellwood 2009). 

1.5.3 Corallivores, corallivory, and its functional role 

Corallivory is the direct consumption of live coral, and some corallivores can contribute to the 

essential function of bioerosion (Rice et al. 2019).  However, the mechanics of coral consumption 

(and their effects on coral growth and survival) are varied and complex (Rotjan and Lewis 2008, 

Konow et al. 2017). Some species scrape or excavate corals to consume both coral tissue and the 

underlying coral skeleton (e.g., parrotfishes, Bellwood and Choat 1990), whereas others focus on 

direct removal of coral tissue (i.e., browsers, Hiatt & Strasburg 1960) or coral mucus. In particular, 

this thesis will focus on the feeding behaviour of coral-feeding butterflyfishes (Genus: Chaetodon), 

which (though some species occasionally consume coral skeleton, Motta 1988) are primarily 

browsers, and feed directly on coral polyps.  
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Due to their reliance on large quantities of healthy coral, coral-feeding butterflyfishes serve as a 

valuable “indicator” of healthy reef condition (Hourigan et al. 1988), with species expected to alter 

their behaviour and abundance in response to poor reef health (Crosby and Reese 1996, 2005). and 

are often among the first and most-strongly affected by coral reef disturbances, frequently 

declining in population following coral mortality (Wilson et al. 2014). They also can face a variety 

of sublethal effects, showing reduced body condition when coral cover is low (Pratchett et al. 

2004). Following examples from other groups (dameselfishes), it’s possible that poor body 

condition could affect their growth, reproduction, or behaviour (Jones 1986, Kerrigan 1997). 

Given the clear link between coral abundance and the health of coral-feeding butterflyfishes, and 

the rapid nature of their population declines following bleaching, they serve as a valuable model 

system for the study of bottom-up effects.  

While originally thought to have limited impacts on coral communities (Harmelin-Vivien and 

Bouchon-Navaro 1983, Hixon 1997), the combined consumption of butterflyfishes can add up. 

Over the course of a year, butterflyfishes can consume 9-14% of the live tissue on a reef, posing a 

substantial energetic strain (Cole et al. 2011, Cole et al. 2012), and their continued feeding has 

major implications for coral recovery after bleaching. Additionally, recent research efforts have 

connected coral consumption by butterflyfishes with both the reuptake of coral symbionts 

(Grupstra et al. 2021), and the spread of coral disease (Aeby and Santavy 2006, Chong-Seng et al. 

2011, Noonan and Childress 2020), and both of these processes could play a major role in reef 

health.  

1.5.4 Herbivores, herbivory, and its functional role 

Herbivory is an essential function that protects corals against overgrowth by algae and is 

traditionally broken down into four functional groupings (Bellwood et al. 2004, Nyström 2006, 
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Green and Bellwood 2009). Browsers (1) consume macroalgae, preventing it from overshading 

live corals. Grazers (2) consume epilithic algal turf, limiting the establishment of macroalgal 

patches. Scrapers and bioeroders (3 + 4), consume algal turf as well, but also take with it a varying 

portion of the reef substratum, scraping the top layer, or substantially excavating live and dead 

corals, respectively. However, these broad groupings can mask a variety of important differences 

between species that may serve as sources of complementarity in their functional roles, such as 

differences in microhabitat use (Fox and Bellwood 2013, Brandl and Bellwood 2014, Adam et al. 

2018, Puk et al. 2020). 

Without sufficient herbivory, and without redundancy within important herbivore groups, reefs 

can shift to undesirable algal dominated states (Bruno et al. 2009, Norström et al. 2009). For 

example, due to historical overfishing in the Caribbean, the sea urchin Diadema antillarum served 

as the keystone grazer on Caribbean reefs (Hughes 1994). However, after a disease outbreak 

among urchins drove down their populations (Hughes et al. 1985, Lessios 2003), the lack of 

grazing pressure (in addition to the stresses of bleaching and hurricane damage) led to phase shift 

to a macroalgal state.  

In recent years, management efforts have focused on maintaining herbivore populations to prevent 

algal overgrowth (Green and Bellwood 2009), with efforts focused on maintaining a diverse 

herbivore community that is resilient to individual species losses (Adam et al. 2015a,b).  This 

means ensuring that the different functional groupings of herbivores are maintained with sufficient 

redundancy, and with sufficient coverage of the complementary roles and behavioural patterns that 

exist within them. 
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1.6 Thesis Outline and Objectives 

In this thesis, I aim to evaluate the variety of behavioural responses that can be predicted from 

bottom-up habitat disturbance, as well as their predictability via optimal foraging theory. I also 

seek to better understand the effects of behavioural change and behavioural variation on 

community structure and ecosystem functional health. This thesis addresses the following 

questions: 

1) How consistently do natural populations follow predictions of optimal foraging theory 

in response to changes in food availability? Are there any context-specific factors 

which decrease the likelihood of the predicted response? 

2) How do changes in food availability affect dietary breadth and the strength of dietary 

preferences, and how can this scale up to affect species interaction networks? 

3) How do changes in food availability affect foraging traits (patch residence, bite rate, 

etc.), and how does this vary between specialists and generalists? 

4) How does foraging movement behaviour vary among coral reef herbivores? Is there 

substantial complementarity in foraging behaviour within traditional functional 

groups?  

First, I conduct a meta-analysis of published research articles detailing foraging responses to 

changing food availability (Chapter 2). Then, I evaluate a mass coral bleaching event which 

occurred in Iriomote, Japan and its effects on the behaviour of coral-feeding butterflyfishes 

(Genus: Chaetodon). I determine individual behavioural change in dietary breadth and the strength 

of dietary preferences and evaluate how this scales-up to produce structural change within fish 

networks (Chapter 3). Following this, I further evaluate individual effects of the bleaching event 
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on foraging behaviour, with particular attention to changes in physical foraging traits (bite rate, 

patch residence time, etc.) among specialist and generalist coral-feeders (Chapter 4). I also 

evaluate behavioural diversity among reef herbivores (Genera: Scarus and Siganus) on the Great 

Barrier Reef, Australia (Chapter 5). 

Each data chapter within this thesis (Chapters 2-5) was written for publication. Chapter 2 is in 

preparation for submission to Biological Reviews. Chapter 3 is in preparation for submission to 

Journal of Animal Ecology. Chapter 4 is also in preparation for submission to Journal of Animal 

Ecology. Lastly, Chapter 5 is published in Ecology & Evolution.  
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2.1 Abstract 
 

Anthropogenic influences can alter foraging behaviour in a number of ways. One of the most 

striking of these is a change in behaviour as a result of altered food availability (i.e., bottom-up 

effects). Predicting bottom-up effects is an appealing prospect for management purposes, but 

behavioural responses to disturbance are known to be highly context-dependent, and relatively 

little is known about potential constraints on changes to foraging behaviour. Optimal foraging 

theory predicts a number of responses when animals face a decrease in food availability, 

including changes in 1) home range, 2) feeding distance, and 3) aggressive behaviour. Through a 

systematic review of published field studies, we evaluated the degree to which forager 

populations display predicted theoretical responses and investigate possible factors which may 

result in a response inconsistent with predictions. We did so through direct calculation of effect 

sizes for changes in food availability and changes in behaviour within the study populations. 

Overall, we found that populations consistently showed a negative association between changes 

in food availability and changes in feeding distance, but responses were less consistent for 

changes in home range. We found weak moderating effects for predator taxonomy and prey 

seasonality, with predicted responses most likely to occur for mammals and for predators 

targeting non-seasonal food sources.  

Keywords: food availability, optimal foraging theory, conservation-behaviour, space-use, 

aggression 
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2.2 Introduction 

 

Anthropogenic disturbance events have rapidly altered the habitats of species globally (Vitousek 

et al. 1997, Wong and Candolin 2015). As a result, a variety of behavioural responses have been 

observed, which may be adaptive, promoting survival, or maladaptive, leading to potential declines 

and extirpations (Sih et al. 2011, Tuomainen and Candolin 2011). How species respond to 

disturbance will not only affect their ability to withstand these events, but also the degree to which 

interventions and management strategies are effective in protecting them (Berger-Tal et al. 2011). 

Therefore, building the knowledge necessary to predict, or effectively manage for, behavioural 

responses to disturbance is an appealing prospect. However, the field of conservation behaviour is 

still in its infancy, and expectations of consistent responses are poorly defined (Caro 2007, 

Angeloni et al. 2008, Tuomainen and Candolin 2011, Berger-Tal and Saltz 2016).  

One framework that has provided valuable insight into forager responses over the past seven 

decades is optimal foraging theory (MacArthur and Pianka 1966, Stephens and Krebs 1986). In 

this time, these models have evolved in a variety of ways, tackling issues such as incomplete 

information / learning (e.g. Stephens 1987, Dall et al. 2005, Dunlap and Stephens 2012), variable 

handling times (e.g Sih 1980, Anderson 1984), and multiple currencies (e.g Simpson and 

Raubenheimer 1993, Simpson et al. 2004).  Additionally, a variety of potential caveats and 

constraints have been posed as to why systems may not seem to follow optimal foraging 

predictions. One such example is the optimal diet model (Emlen 1966), which predicts an energy-

maximizing diet considering each food item’s energetic value, availability within the environment, 

and necessary handling time. This model has been observed to be less effective at predicting diets 

in studies where foragers target mobile prey (Sih and Christensen 2001). This is expected to be a 

result of variations in prey vulnerability, which are difficult to account for, and will have critical 
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effects on encounter and capture rates. Similarly, dietary expansion events predicted under the 

optimal diet model may not be realized if disturbance also reduces the diversity of food items 

available to foragers (e.g. Haley et al. 2011, Folks et al. 2014). Nonetheless, these theoretical bases 

remain tractable in a variety of circumstances and have continued to predict recent natural 

phenomena where they can be applied appropriately (e.g. Watanabe et al. 2014).  

One important pathway for behavioural change in disturbed communities is the effect disturbances 

can have on the amount of food available to foraging animals (bottom-up effects, Wilson et al. 

2020). Examples of anthropogenic disturbance causing a reduction in food availability are 

numerous, ranging from deforestation and its effects on frugivorous primates (Heiduck 2002, 

Pangau-Adam 2015) to coral reef bleaching and its effects on coral-feeding fishes (Wilson et al. 

2014, Keith et al. 2018, See Chapters 3+4). Similarly, anthropogenic disturbance can provide 

sudden increases in food supply, such as anthropogenic food subsidies in urban environments 

(Beckmann and Berger 2003, Prange et al. 2004, Quinn and Whisson et al. 2005, Merkle et al. 

2013), or temporary increases in vulnerability of food items due to human activity (Garthe et al. 

1996, Ramsay et al. 1998, Vickery et al. 2001, Devereaux et al. 2006).  

Predicting bottom-up effects on animal behaviour is complex, and to do so reliably, we need a 

better understanding of the constraints that may prevent particular populations from following 

optimal foraging predictions. Meta-analysis and systematic review methods serve as an important 

tool to sort through context-specific behavioural outcomes to better understand their causes or 

predictors (Koricheva and Gurevitch 2014, Berger-Tal et al. 2019). Prior reviews have tested the 

predictive quality of a variety of optimal foraging models (Stephens and Krebs 1986, Sih and 

Christensen 2001). And while results have been mixed, common factors tested against predictive 

quality include study type (lab vs. field), taxonomy (endothermic vertebrates vs. ectothermic 
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vertebrates vs. invertebrates) and prey mobility. Other factors tested specifically against optimal 

home range responses include body mass, sex, and latitude (Gompper and Gittleman 1991, 

McLoughlin and Ferguson 2000, Ofstad et al. 2016).  

In addition to these direct tests, there are a variety of other field studies on individual populations 

responding to either natural variations, or experimental manipulation of food availability (e.g., 

Marshall and Cooper 2004, Loveridge et al. 2009, Chandler et al. 2016). Though these studies are 

often not planned as tests of optimal foraging theory, and may not hold the same assumptions, 

together they could hold valuable information on context-specific outcomes, and constraints to 

optimal foraging behaviour. To our knowledge there is one review to date which collects these 

types of studies to explicitly test the effects of food availability on any one of these responses 

(home range size, Adams 2001), though these were only assessed qualitatively, and no potential 

constraints were directly tested. In the time since this publication there has been an abundance of 

new studies on these relationships, and in addition, data extraction tools have come into greater 

popularity in evidence synthesis to extract relevant information directly from study figures, where 

it is not reported in the text (Tummers 2006, Flower et. 2016, Lajeunesse 2016). This provides a 

unique opportunity to use published field research to test the consistency of predicted optimal 

foraging responses, and quantitatively assess the strength of any potential constraints on foraging 

behaviour. 

In response to changes in food availability, optimal foraging theory predicts foraging animals 

should change three important foraging traits (in addition to dietary changes mentioned above): 

home range, feeding distance, and aggression. When food availability decreases, so will the 

potential food intake within a given home range. In response, foragers should expand their home 

ranges in search of food (Dill 1978, Hixon 1980, Ford 1983). Similarly, foragers are predicted to 
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travel further distances between feeding events, or further distances from a central place (Brown 

and Orians 1970, Covich 1976), hereafter referred to as “feeding distance”. Aggressive behaviour, 

on the other hand, provides an optimal energetic benefit to a forager at intermediate levels of food 

availability (Peiman and Robinson 2010), and may be wasteful when there is more food than 

needed, or when food resources are too limited to be particularly valuable to defend (Brown 1964, 

Enquist and Leimar 1987). Because of this (and in contrast to the directional relationships for home 

range / feeding distance), foragers may either increase or decrease aggression in response to food 

reduction. 

Additionally, a number of factors evaluated in the reviews above could act as constraints, 

modulating the effects of the predicted optimal foraging responses. Predator taxon could 

influence responses, as large taxonomic groups can differ in sensory and neural complexity 

(vertebrates vs. invertebrates) or energy demands (endotherms vs. ectotherms) impacting their 

ability to make informed or energy-maximizing foraging decisions (Sih and Christensen 2001). 

Just as the stochastic attack and capture probabilities of mobile prey can influence dietary 

responses, these could affect other responses to food availability, by altering the ability of a 

predator to assess habitat quality (Sih and Christensen 2001). Foragers that experience seasonal 

fluctuations in food availability could have evolved alternate adaptive behaviour such as 

hibernation, preventing predicted responses (Geiser 1998, Humphries et al. 2003). Social foragers 

may have increasingly complex decision-making processes (Fernandez-Juricic et al. 2004), with 

multiple individuals tracking resource quality and sharing that information among the group (Barta 

and Szep 1992, Day et al. 2001, Dechaume-Moncharmont et al. 2005). Additionally, a variety of 

disturbances to food availability may be patchy in nature, the scale of which may affect a solitary 

forager differently than a group with a larger shared territory. Lastly, individuals with larger body 
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sizes may be more likely to make informed or energy-maximizing foraging decisions due to their 

generally larger brains (Font et al. 2019) or greater energy demands. If any of these factors are 

identified as constraints, they could negatively impact the ability to apply these predictions broadly 

across systems.  

Here, we test the degree to which natural responses of foraging animals follow predictions from 

optimal foraging theory using a meta-analysis approach. We used quantitative data from 49 field 

studies, contained within 38 published articles across a variety of systems. We directly compare 

effect sizes of change in food availability against effect sizes of change in one of three related 

traits: home range size, feeding distance, and aggressive behaviour. We also sought to determine 

the extent to which each of the three optimal foraging responses have been studied, and how evenly 

studies are spread across different taxonomic groups. Specifically, we tested whether there was a 

consistent negative association between changes in food availability, and changes in home range / 

feeding distance, as predicted by optimal foraging theory. In addition, we expected a mixed 

association between changes in food availability, and changes in aggressive behaviour (a mixture 

of positive and negative responses). We also seek to explore potential constraints that may limit 

the degree to which systems follow the predictions of foraging theory. Specifically, weaker space-

use responses (changes in home range / feeding distance) may be seen among ectothermic 

predators, predators targeting mobile prey, predators targeting seasonal prey, social foragers, or 

small-bodied predators.   
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2.3 Methods 

2.3.1 Data collation 

We performed a search of the ISI Web of Science for relevant studies. Our evidence search 

followed a PICO (Population / Intervention / Control / Outcome) framework with the 

overarching study question: how do foraging animals (P) alter their behaviour in response to 

differences in food availability (I/C); specifically, how do differences in food availability affect 

their home range, feeding distances, and aggressive behaviour (O) (Booth 2004, Higgins and 

Green 2011, Bayliss and Beyer 2015)? This framework guided the development of search terms, 

generating a set of terms focusing on each of the three research questions (feeding distance [1], 

home range [2], aggression [3]) and a set that focused on the intervention/control (food 

availability [4]) (Heneghan and Badenoch 2002). Search terms utilized are listed in Table 2.1. 

To identify papers which draw a connection between food availability and behaviour, each search 

for a specific behaviour (1-3) was combined with the search for all terms related to resource 

availability (4) to limit solely to papers that included both a behaviour term and a term of resource 

availability. To ensure broad coverage of the various terms that could be used to describe the 

desired behaviours across multiple fields, we scanned the table of contents of related journals for 

comparable terms that may have been missed. Tables of contents for all 2017 issues of the journals 

American Naturalist, Journal of Ethology, and Behavioral Ecology were scanned. Terms added to 

the searches as a result included: (3) “territorial defense”, “resource defense”, “agonism”, (4) 

“resource depletion”, “resource deterioration”. 

We extracted all necessary article info (title, abstract, year, journal) to find appropriate data 

sources. Titles, abstracts, and full texts were read for relevance in three stages, according to the  
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Table 2.1 Search terms used to identify studies connecting one of the three desired behaviours to 

the level of food availability, as well as the number of papers which resulted from each search. 

The search for the given behaviour (1-3) was combined with the search for food availability (4) to 

limit to papers mentioning both (A-C).  

 

following criteria (see PRISMA flow diagram, Fig. 2.1). In the first level of refinement, articles 

were eliminated if their title did not refer to the ecology of a foraging animal or animals.  At the 

second stage, articles were selected if the abstract mentioned a relationship between the given 

foraging trait (home range, feeding distance, aggression) and resource availability, or both were  

Response 

Variable 

Search Resulting 

Papers 

1) Feeding 

Distance 

TS=(forag* NEAR/2 distance* OR feed* 

NEAR/2 distance* OR interforay OR 

intraforay) 

1,504 

2) Home Range TS=(foraging NEAR/1 area* OR foraging 

NEAR/1 range* OR feeding NEAR/1 area* 

OR feeding NEAR/1 range* OR "home 

range") 

15,458 / 

10,909  

3) Aggression TS=(territoriality OR territorial NEAR/1 

behavior OR aggressive NEAR/1 behavior 

OR aggression OR agonism OR territorial 

NEAR/1 defen?e* OR resource* NEAR/1 

defen?e* OR aggressive NEAR/1 

interaction*) 

80,722 

4) Resource 

Availability 

TS=(resource* NEAR/1 availa* OR food* 

NEAR/1 availa* OR habitat* NEAR/1 

condition* OR resource* NEAR/1 condition* 

OR resource* NEAR/1 variab* OR habitat* 

NEAR/1 quality OR resource* NEAR/1 

deplet* OR resource* NEAR/1 deterior* OR 

prey NEAR/1 availa* OR resource* NEAR/1 

unavaila* OR prey NEAR/1 condition*) 

69,334 

A) Feeding 

Distance + 

Resource 

Availability 

#1 AND #4 126 

B) Home 

Range + 

Resource 

Availability 

#2 AND #4 
1,355 (300 

Scanned) 

C) Aggression 

+ Resource 

Availability 

#3 AND #4 
753 (300 

Scanned) 
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Figure 2.1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

flow diagram of systematic review search methods. 

 

mentioned in some way. Due to the large number of papers resulting from some of the Boolean 

searches (1,355 in the case of home range), we randomly shuffled the order of the papers and 

then selected the first 300 abstracts for each of three traits. At the final stage, full texts for 

remaining articles were scanned and articles were selected for quantitative analysis if they 

recorded both a quantitative measure of one of the above behaviours, and a measure of resource 

availability, at multiple points in time or in multiple locations. Articles were then categorized as 



   Chapter 2 – Constraints to foraging responses 

 

26 

 

to whether the authors observed a positive relationship, a negative one, observed no relationship, 

or the relationship was untested.  

2.3.2 Extracting behavioural response data 

Desired quantitative measurements for response behaviours included: (1) mean distance between 

feeding events (m), distance travelled from a central place (m), (2) home range (Ha), and (3) 

aggressive interactions per minute. Quantitative measurements for resource availability included: 

% cover of food resource, density of food resource (# m-2). Measurements were extracted from the 

full text for use in quantitative analyses. Designations were also made between studies measuring 

behaviours before and after a change in resources, and studies measuring behaviours in varying 

habitats. However, both were included in the quantitative analysis here if metrics used were 

comparable. For those articles which directly reported a mean and variance for both the food 

availability and the behaviour, these were extracted from the text and used to calculate effect sizes 

(Cohen’s d). Cohen’s d values were then converted to standardized correlation values (r) for ease 

of interpretation and model fitting. For some articles, means and variances were not given directly 

but were estimated from plots and error bars using the program Datathief III, which reliably 

extracts data for meta-analysis purposes (Tummers 2006, Flower et al. 2016). For articles which 

gave scatterplots of the given behaviour against food availability, values were pulled out with 

Datathief III, points were split evenly into “Low Food” and “High Food” sets and their means and 

variances were calculated manually.  

This analysis focused specifically on field studies for two reasons. Firstly, though both field and 

laboratory studies have been relatively equivalent in following predictions from optimal foraging 

theory, field studies should better reflect the natural conditions which can pose difficulty in 

predicting behavioural response (Stephens and Krebs 1986, Sih and Christensen 2001). Secondly, 
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the nature of most laboratory-based food availability experiments did not lend itself to this specific 

quantitative analysis, as exact quantities of food were portioned to subjects, preventing us from 

calculating an effect size for these differences.  

2.3.3 Extracting explanatory variables 

For all studies with extractable data we also determined a set of criteria related to these systemic 

factors which could in some way influence the behavioural response seen: 

1) Predator Type: Due to the paucity of useable studies on invertebrates, we were 

unable to directly compare between vertebrates and invertebrates. Instead we compared 

ectotherms (vertebrate and invertebrate) against two populous categories of endotherms 

(mammals, and birds) 

2) Prey Mobility: We divide prey mobility into three categories, particularly because a 

variety of foragers consume both mobile and immobile prey: mobile, immobile, and 

mixed / partially mobile.  

3) Prey Seasonality: For each study we assessed whether the density of food items for 

the forager in question did, or did not follow a strong seasonal fluctuation, for example 

the difference between wet and dry seasons for a folivore or frugivore.  

4) Predator Social Organization: We divided social organization into three categories: 

solitary foragers, group foragers, and those with mixed strategies / transient foraging 

groups.  

5) Body Size: Lastly, we assessed body size of the forager in question quantitatively, 

extracting the mean body mass (in kg) of an adult from relevant sources.  
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2.3.4 Overview of studies 

To better understand what is known and evaluate potential knowledge gaps, we first investigated 

the overall coverage of studies investigating these patterns. For each of the three traits, we 

determined the number of studies which made a connection between this trait with food 

availability. We also determined the number of studies which reported data that could be extracted 

for our purposes. However, as only a subset of the search results for some traits (Area + 

Aggression) were scanned, exact comparisons of numbers of studies cannot be made between 

traits. We also investigated the spread of these studies across broad taxonomic categories (e.g. , 

birds, mammals, fish), as well as the accumulation of these studies over time. 

2.3.5 Consistency of optimal foraging responses 

A secondary goal was to evaluate the consistency of predicted optimal foraging responses. 

Following a vote-counting approach, we pulled out each study with extractable data and 

categorized whether these data represented a positive or negative relationship between the given 

trait and food availability. We then calculated the mean behavioural response for each trait, as well 

as the standard effect size of these values from zero. 

2.3.6 Evaluating potential constraints 

Lastly, we wished to determine which, if any, of the factors mentioned above had an effect on the 

likelihood that foragers followed the predicted response.  We did so through meta-analysis, directly 

comparing effect sizes of the selected studies. Given the nature of this study and the limited data 

which could be extracted, natural model averaging was the preferred approach to quantify the 

strength of the potential explanatory variables. While other studies have employed a sum of 

weights method to compare predictor strength, this has been shown to produce variable results and 
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can be an unreliable approach, especially with smaller datasets (Galipaud 2014, Galipaud et al. 

2017). Instead, a more reliable approach is comparing model averaged parameter estimates. 

Specifically, natural model averaging involves generating an averaged parameter estimate for each 

predictor, based only on the candidate models which included that estimate. It is preferred when 

seeking to quantify the absolute effect size of each parameter (Galipaud et al. 2017). The 

alternative, full model averaging, is preferred in cases where the goal is to select an ideal set of 

predictors for a parsimonious model. For our purposes natural averaging was preferred — given 

the limited number of studies with fully applicable data and the great degree of variety in 

experimental setups, even a weak effect for these factors could prove informative.  

All models utilized were gamma GLMMs (generalized linear mixed models) with log link 

functions. While the response variable, scaling from 0 to 1 would seem to be well-suited to a beta 

model, fitting such a model led to substantial overdispersion (disp index = ~6). As some papers 

ran multiple studies on separate species, or multiple studies within different populations / social 

groups of the same species, there was dependency among studies within the same paper. To 

account for this dependency, we used the identity of each paper as a random intercept effect . Model 

averaging was performed via the dredge function in package “MuMIn” (Barton 2009) in R (R Core 

Team, 2019). This was performed on a subset of the extracted data, including only studies on 

changes in feeding distance and home range size. As aggressive behaviour was predicted to show 

a variable response with changing food availability, rather than a consistent negative relationship, 

it could not reliably be included in the same model as the other two traits. Natural model averaging 

was performed on a subset of models within 3 ΔAICc of the best model, as these should function 

essentially as well (Richards 2005, Symonds and Moussali 2011). 

 



   Chapter 2 – Constraints to foraging responses 

 

30 

 

2.4 Results 

2.4.1 Overview of studies 

Initial Boolean searches resulted in 126 papers for feeding distance, 1355 for home range, and 726 

for aggression. Resulting papers showed interesting taxonomic divides, with mammals and birds 

together making up the majority (Fig. 2.2), however, this varied between the three traits evaluated. 

Specifically, we report these divides among abstracts which drew a potential connection between 

food availability and the given trait, whether or not they found this to be true in their system. There 

has been a steady accumulation of studies fitting these criteria over time (Fig. 2.3). Abstracts which 

drew a connection between food availability and home range were heavily dominated by mammals 

(73.0%), with most others focused on birds (20.0%) (Fig. 2.2). Abstracts that connected food 

availability to feeding distances were primarily focused on birds (48.4%), with most other studies 

assessing either insects (22.6%) or mammals (19.4%). Abstracts that connected food availability 

to aggression were primarily on mammals (47.4%) with most others assessing birds (26.3%) or 

insects (14.0%). While there are numerous papers which connect or attribute behavioural change 

to changes in food availability, the strict data requirements of this study led to only a few studies 

which could be fully used in the meta-analysis. From the 126 abstracts which were read for feeding 

distance, eight studies were selected for data extraction. From the 300 which were read for home 

range, 35 studies were selected. And from the 300 which were read for aggression, six were 

selected (see PRISMA flow diagram, Fig. 2.1). A full listing of all papers used in quantitative 

analyses is listed in Table S2.1. 
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Figure 2.2 Papers which connected one of the given traits with food availability, compared by 

taxa and by whether each did (light grey) or did not have usable data (dark grey). 

 

2.4.2 Consistency of optimal foraging responses 

As predicted, foragers did not show a consistently negative or positive relationship between 

changes in food availability and changes in aggression (Aggression Response = 0.03, SE = 0.18, 

Standardized Effect Size (SES) = 0.07, Fig. 2.4). In three studies foragers increased their 

aggressive behaviour in response to increasing food availability, and in three studies they  
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Figure 2.3 Cumulative number of papers which connected one of the given traits with food 

availability over time, broken down by taxonomy. 

 

decreased their aggression. For home range, foragers were more likely to show a negative 

relationship with food availability than a positive one, but this was not a strong effect (Home Range 

Response = -0.27, SE = 0.07 SES = -0.63). In 25 studies foragers shrank their home ranges in 

response to increasing food availability, and in 10 studies they expanded them. Lastly, foragers  

A) Aggression 

B) Area 

C) Distance 
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Figure 2.4 Consistency of behavioural effects within extracted papers. (A-C) Studies of the three 

given traits (broken down by taxa) and whether they showed a positive or negative relationship 

with food availability. (D-F) Box plot of effect sizes (r) for each of the given traits. 

 

consistently showed a negative relationship between changes food availability and changes in 

feeding distance (Feeding Distance Response = -0.46, SE = 0.05, SES = -3.50). In all eight studies 
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with extractable data, foragers decreased their feeding distances in response to increased food 

availability. 

Consistent with the vote-counting approach, studies in the meta-analysis assessing feeding 

distances were more likely to show a negative response with food availability than studies of home 

range size, but not significantly so, due to high variability among studies (SES = -0.34, p = 0.18, 

Fig. 2.5). Study trait (distance vs. area) was one of the most consistently informative predictors, 

included in six of the 13 best performing models. Additionally, larger increases in food availability 

were associated with larger negative responses in the two behaviours, although not significantly 

so (Mean = -1.11 
𝑡𝑟𝑎𝑖𝑡 𝑟

𝑓𝑜𝑜𝑑  𝑟
 , 95% CI = -2.59 – 0.37, p = 0.14). The size of the change in food 

availability was also a consistently informative predictor, included in six of the 13 models. 

2.4.3 Evaluating potential constraints 

1) Predator Type: Mammals were significantly more likely to show a negative response than 

endotherms / invertebrates (Fig. 2.5, SES = -0.60, p = 0.02). Birds were not significantly more 

likely to show this response (SES = -0.09, p = 0.73). However, predator taxonomy was only 

infrequently informative and was only included in two of the 13 models. 

2) Prey Mobility: Mobility was the least informative predictor in this analysis and was not 

included in any of the best performing models. 

3) Prey Seasonality: A seasonally fluctuating food source appeared to decrease the likelihood of 

a negative response to food availability, though this was not a significant effect (SES = 0.36, p = 

0.16). Seasonality was one of the most consistently informative traits and was included in six of 

the 13 models. 
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Figure 2.5 Model averaged parameter effect sizes from meta-analysis. For each factor, one level 

is set at 0 as a reference for comparison (white boxes), whiskers are 95% confidence intervals 

around the mean. Meta-analysis only included studies on home range or feeding distance. 

 

4) Predator Social Organization: Social organization did not have a large effect on the response 

seen. While solitary foragers were slightly less likely to show a negative effect than those with 

mixed social organization (SES = 0.10, p = 0.68), and group foragers were slightly more likely to 
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show a negative effect, both of these effects were non-significant (SES = -0.22, p = 0.39). Social 

organization was also only infrequently informative and was only included in two of the 13 models. 

5) Predator Body Mass: Body mass also did not have a large effect on the response seen. Foragers 

with higher body mass were slightly more likely to show a negative response with food availability, 

although not significantly so (Mean = -0.48 
𝑡𝑟𝑎𝑖𝑡  𝑟

𝑡𝑜𝑛𝑛𝑒
 , 95% CI = -2.13 – 1.17, p = 0.57). Body mass 

was infrequently informative and was only included in one of the models. 

2.5 Discussion 

Predicting the behavioural responses of foraging animals to disturbance events can prove difficult. 

Optimal foraging responses form an important theoretical basis for understanding behavioural 

change, but a host of different constraints and factors can result in varying context-specific 

behavioural outcomes. However, there may be some populations for which the predicted optimal 

foraging responses are most likely to be followed. Specifically, regarding predictions of increased 

forager space-use with decreased food availability, these may be most likely to be followed for 

mammals, and for foragers with seasonally stable food sources. While prey mobility has been seen 

to act as an important constraint on dietary responses to changing food availability (Sih and 

Christensen 2001), it does not appear to have such an effect on the space-use decisions of foraging 

animals. In response to reduced food availability, mammals were significantly more likely to 

expand their home range or lengthen their feeding distances than ectotherms / invertebrates 

(though this was not broadly included across potential models). In contrast, foragers targeting 

seasonally variable prey were less likely to expand their home range or lengthen their feeding 

distances (though this was a nonsignificant effect, despite consistently being broadly included). 

While a variety of other factors showed small, occasionally informative effects (social organization 
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and body mass), we do not expect these to significantly inform predictions of animals’ responses 

to disturbance. 

Prey mobility is believed to affect the degree to which foragers follow the optimal diet model 

because the model predicts optimal active predator choice (i.e., attack probability, Sih and 

Christensen 2001). Prey mobility can affect encounter rates and catchability, resulting in 

differences between active choice and the realized diet (Werner and Arnholt 1993). Because of 

this, responses should more clearly match optimal diet predictions if dietary studies measured 

attack probabilities, rather than diets themselves, but this is rarely the case. We predicted that 

similar issues of predictability might cause prey mobility to affect space-use responses as well. 

Changing space-use can be costly, so foraging animals should only do so if it would increase the 

energy benefit of the territory (Adams 2001). However, it can be difficult for animals to tell in 

advance what the benefit of a territory will be (Bollman et al. 1997), especially for foragers who 

cannot assess their food availability directly (Riechert 1981). Tracking patch quality can be more 

difficult when prey items are less predictable in space, and foragers that make less frequent contact 

with prey items are less frequently updating their perceptions of quality (Green 1984, Stephens 

1987). This could make it harder or more time-consuming for foragers targeting mobile prey to 

assess the benefit of territory expansion than those targeting more spatially predictable sessile prey. 

However, prey mobility was the least informative factor in our analysis and does not appear to 

have affected the likelihood of territory expansion here. 

Instead the most important factors affecting spacing responses appear to be prey seasonality and 

predator taxonomy. The spacing responses of foragers with seasonally varying prey may be less 

predictable. In some part, this may be due to alternate energy strategies employed by foragers 

facing seasonal declines in energy availability (i.e., hibernation / torpor, Geiser 1998, Humphries 
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et al. 2003). On the other hand, the spacing responses of mammals may be more predictable. This 

could be in part due to the developed nervous system of vertebrates, or the energetic demands of 

an endothermic lifestyle (Sih and Christensen 2001). It is also notable that the spread of studies 

among taxa reinforces this difference. While studies on home range had weaker behavioural effects 

than those of feeding distance, a greater proportion of studies on home range were based on 

mammals. 

Body size did not have a large effect on the strength of spacing responses and there are a couple 

potential explanations for this. First, while body size correlates with brain size, a broader suite of 

papers point to metrics of relative brain size (e.g., encephalization quotient, residual methods, 

among others, Deaner et al. 2000, Sol et al. 2005), or the size of specific brain structures (Healy 

and Rowe 2006), as better reflections of cognitive ability, making comparisons based on overall 

body size less useful. Additionally, while larger bodied animals typically have higher energy 

demands, they also tend to have higher energy intake rates, corresponding with allometric 

consumptive traits (ex. gape width (Dunic and Baum 2017, Mihalitsis and Bellwood 2017) and 

digestive capacity (Demment and Van Soest 1985, Van Soest 1996).  

One clear pattern is that the foraging response literature is dominated by studies on mammals and 

birds. This makes sense as conservation, behaviour, and biodiversity research as a whole are biased 

towards vertebrate species, particularly mammals and birds (Bonnet et al. 2002, Clark and May 

2002, Rosenthal et al. 2017, Titley et al. 2017). These biases in attention apply not only to research, 

but conservation efforts as well (Seddon et al. 2005, Mammides 2019). Even among mammals 

there is a bias in conservation research towards species with higher body mass (dos Santos et al. 

2020), consistent with the paradigm that conservation effort is preferentially inspired by and 

directed toward charismatic megafauna (Leader-Williams 2000, Ducarme et al. 2013, Thompson 
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and Rog 2019). However, these biases in study taxon raise important concerns about theoretical 

predictions, namely the extent to which they are generalizable when they have been primarily 

supported by field studies on specific taxa. Given that mammals were seen to be more likely to 

follow optimal foraging theory predictions here, this is a heightened concern. 

Differences in study spread between mammals and birds among the three traits likely draw from 

the different methods used to measure space-use and their relative ease of use with different taxa. 

For example, radio and satellite telemetry devices are an exceedingly common method to 

determine animal home ranges. However, they can be cumbersome and may not be easily carried 

by smaller animals, or may increase movement costs, particularly among flying and swimming 

animals (Cooke et al. 2004, Barron et al. 2010). To reduce transmitter drag among birds, Hill and 

Robertson suggest a transmitter mass no more than 5% of the mass of the animal (Hill and 

Robertson 1987). While recent advances in technology have allowed for exceedingly small tags 

(Bridge et al. 2011), tag size has limited telemetry studies on some of the smallest birds. As a result  

of these issues, radio and satellite telemetry are overrepresented in studies of large mammals  

compared to birds or smaller mammals. 

We sought to directly calculate effect sizes for changes in food availability and three important 

foraging traits. Doing so allowed the inclusion of studies which reported both food availability and 

one of the traits but did not explicitly test the effects of one on the other. However, it is now clear 

that while there are several articles containing some information on both food availability and 

foraging behaviour, many did not report this data in a manner sufficient to be included in this 

quantitative analysis. Additionally, attempts to maintain consistency between the three traits (by 

developing a shared set of food availability search terms) resulted in vastly different numbers of 

search results between them. This highlighted a wealth of studies which could potentially inform 
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these relationships but could not be explored due to time constraints. As a result, further study of 

these relationships might better focus search on a single behaviour, to ensure results aren’t overly 

broad, and to employ a mixed approach, exploring the effect of potential constraints on continuous 

data where it is available and binary data where it is not. 
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3.1 Abstract 

The direct and indirect effects of climate change can affect, and are mediated by, changes in 

animal behaviour. However, we lack sufficient empirical data to assess how large-scale 

disturbances affect the behaviour of individuals, which in turn scales up to influence 

communities. Here we investigate this response pathway by focusing on the foraging behaviour 

of coral-feeding fishes before and after a mass coral bleaching event. In response to substantial 

coral mortality, coral-feeding fish consumed increasingly broad diets, weakening their prey 

preferences. This simultaneous dietary expansion of multiple species occurred in such a way that 

all species reduced their consumption of bleaching-sensitive Acropora, instead consuming a 

variety of other coral genera. This resulted in decreased resource overlap, as well as substantial 

rewiring of the consumer-resource interaction network. Our work shows that behavioural 

responses to disturbance can have significant effects on community structure. The work 

illustrates an existing response pathway, whereby a reduction in food availability affects the 

structure of interaction networks through changes in dietary specificity and overlap. This 

pathway may prove informative to disturbances within other similarly structured communities, 

such as plant-pollinator networks. The adaptive community response seen here also raises 

significant questions about the continued fate of species within this community, considering 

coral mortality has substantially reduced populations of coral-feeders elsewhere. 

 

Keywords: behavioural plasticity, consumer-resource interactions, climate change, interaction 

rewiring, coral bleaching, resource partitioning 
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3.2 Introduction  

Disturbances, including those that result from climate change, can alter the behaviour of 

individuals and reshape the dynamics of populations and communities (Sih et al. 2011, Van 

Buskirk 2012). An increasingly prevalent severe climatic disturbance is thermal bleaching and 

subsequent mortality of tropical coral reefs (Glynn 1993). Coral bleaching events are now five 

times as frequent as they were in the early 1980s (Hughes et al. 2018) and cause extensive mortality 

within a very diverse, yet sensitive ecosystem over a very large spatial scale (Hughes et  al. 2017). 

Coral bleaching affects behaviour of reef-associated fishes (Keith et al. 2018). For example, the 

alteration of visual or olfactory cues following bleaching affects behaviour of juvenile fish at 

settlement and when seeking shelter from predators (Coppock et al. 2015, Boström-Einarsson et 

al. 2018). In many cases, it is unclear whether these behavioural shifts are adaptive (Tuomainen 

and Candolin 2011). However, while it is clear that bleaching affects fish behaviour, it is unclear 

how this behavioural change might propagate through coral reef communities to impact the 

structure of ecological networks. 

Disturbance can affect behaviour by altering food availability (bottom up effects, Wilson et al. 

2020), prompting changes in food use by foragers. In coral reefs, bleaching events often result in 

substantial coral mortality, which in turn reduces the food availability for coral-feeding fish such 

as butterflyfishes (Family: Chaetodontidae) (Keith et al. 2018). Butterflyfishes are a diverse group 

of closely related species that exhibit considerable variation in dietary specialization (Cole and 

Pratchett 2014). For a number of butterflyfish species (particularly Chaetodon spp.), their survival 

critically depends on the abundance of coral prey, and their populations have declined as a result 

of bleaching-induced coral mortality (Wilson et al. 2013). Additionally, for many butterflyfishes, 

reductions in coral cover cause a decline in body condition (Pratchett et al. 2004) . In other fish 
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species, reduced body condition has caused negative effects on growth and reproductive output 

(Jones 1986, Kerrigan 1997), though this has not been directly tested for butterflyfishes (see 

Berumen and Pratchett 2008). 

Optimal foraging theory posits that unnecessary expenditures of energy should be selected against, 

as should behaviours that place unnecessary restrictions on energy intake (MacArthur and Pianka 

1966). As such, when food availability is low, the optimal diet model predicts that foragers will 

expand their diets in response (Emlen 1966). While the ability of foragers to expand their diets 

may be limited by disturbances that reduce the diversity of available food items (e.g., Haley et al. 

2011, Folks et al. 2014), predictions of dietary expansion have been confirmed in a variety of 

systems (e.g., Owen-Smith 1994, Rödel et al. 2004). Additionally, a review of 134 studies which 

tested the assumptions of optimal diet theory found that the factor most likely to coincide with a 

system failing to follow the optimal diet model was prey mobility (Sih and Christensen 2001). 

Therefore, in response to mortality of their immobile coral prey, coral-feeding butterflyfishes 

should expand their diet breadth, weakening their dietary preferences. 

Many butterflyfishes have altered their diets after coral mortality, decreasing the proportion of 

bites taken from bleaching-sensitive Acropora corals (Pratchett et al. 2004, Keith et al. 2018, 

Zambre and Arthur 2018). However, increases in dietary breath may not necessarily stem from 

weakening dietary preferences, but could instead be a direct response to changes in prey abundance 

and composition (i.e., prey switching) (Murdoch 1969, Cornell 1976). Rather than involving a 

weakening of prey preferences, this pattern of prey switching, appearing typically in populations 

of generalists, shows species shifting their preferences towards the most abundant species. 

Distinguishing between these two scenarios will require us to quantify how the strength of dietary 

preferences responds under reduced food availability.  
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One important consideration of dietary shifts is their potential to affect resource overlap. Because 

many of these species focus a large portion of their attention on Acropora, dietary expansion by 

them could lead to reduced resource overlap. If resource overlap among butterflyfishes decreases, 

this would signal an adaptive community response, with species spreading their efforts toward 

different groups in light of Acropora mortality. On the other hand, resource overlap could increase 

instead, particularly if species shift their focus onto a specific, second-most preferred genus. 

Increased resource overlap could increase the likelihood of competitive exclusion within the 

system, as greater partitioning tends to allow for more stable coexistence (Chesson 2000). From 

prior studies it is clear that coral bleaching events cause species turnover which is spread unequally 

across assemblages, leading to biotic and functional homogenization of fish communities 

(Richardson et al. 2018). By quantifying the link between dietary shifts and resource overlap, we 

can further explore potential pathways for species turnover, and better understand the effects of 

coral bleaching and subsequent mortality on butterflyfish communities. 

The effect of dietary change on consumer-resource interactions offers a unifying thread between 

individual behaviour and ecosystem structure. Consumer-resource interactions are the individual 

links that together create community structure (Elton 1927, Hutchinson 1959). When dietary 

preferences weaken, species are expected to develop new interactions with previously 

unconsidered food items. As a result, the consumer-resource interaction network can experience 

“topological rewiring”, with new connections being made in place of those that were lost (Burkle 

and Alarcon 2011, Poisot et al. 2012). “Interaction strength rewiring”, in contrast, occurs when 

species shift their relative use of different habitats or resources (Bartley et al. 2019). Significant 

cases of topological rewiring have been observed following non-native species invasion (Montero‐

Castaño and Vilà 2016), variable phenology in plant-pollinator networks (CaraDonna et al. 2017), 
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and experimental species removals in seed dispersal networks (Costa et al. 2018). In a sense, 

dietary changes among foragers should cause networks to rewire, whether topologically (foragers 

change food items in their diet) or through interaction strength (foragers alter the frequency of 

food items in their diet). If dietary preferences weaken following bleaching as predicted, 

butterflyfish-coral networks should experience topological rewiring.  

Similarly, if dietary preferences weaken as predicted, then interaction networks should also 

become more even, particularly due to their unique pre-bleaching structure. Coral assemblages are 

typically dominated numerically by bleaching-sensitive Acropora species (Renema et al. 2016), 

which provide the majority of coral tissue consumed by butterflyfishes (Keith et al. 2018). As they 

are more susceptible to bleaching, these Acropora corals often face the greatest degree of mortality 

(Marshall and Baird 2000, Loya et al. 2001). Because of this, the post-mortality coral assemblage 

is expected to be substantially more even. This combination of increasingly even coral 

assemblages, with broader fish diets would cause consumer interactions to become dispersed more 

evenly among potential linkages as well. These two concepts, rewiring and increasing interaction 

evenness, are closely related. In fact, increasing dietary evenness is itself a type of rewiring 

(interaction strength rewiring, defined above). Exploring the connection between behavioural 

change and consumer-resource interactions should yield important insights, but time series data 

on consumer-resource interactions, particularly following severe disturbance, is scarce.  

Here, we determine how dietary preferences, niche partitioning, and consumer-resource 

interactions are affected by a coral-bleaching event with extensive coral mortality. We use a dataset 

spanning three years, 14 butterflyfish (consumer) species, 131 coral (resource) species, and three 

locations. We quantify the extent to which foraging behaviour of coral-feeding fishes has changed 

in response to a large decrease in food availability following coral bleaching. Specifically, we test 
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the hypothesis that (i) when food availability decreases, fish weaken their dietary preferences, and 

that (ii) weakened preferences leads to less dietary overlap (i.e., increased niche partitioning) 

among competing species. Finally, we (iii) test whether behaviourally-mediated diet shifts 

restructure interactions via rewiring and explore the implications for corallivorous fish 

communities. Specifically, we focus on topological rewiring of interaction networks. 

3.3 Methods 

3.3.1 Study system 

Our study was conducted on the reef flats and crests (1 – 3 m depth) at three sites on the 

north/northwest coastline of Iriomote, Japan; Nata (24.43 N, 123.79 E), Sonai (24.38 N, 123.75 

E), and Unarizaki (24.43 N, 123.76 E) (Fig. S3.1). Data were collected for three years: 27 May to 

11 June 2016, 13 July to 17 July 2017, and 12 July to 18 July 2018. In May and June 2016, there 

was a mild, but notable thermal anomaly around Iriomote, elevating sea surface temperatures 1.0–

1.5 °C above the 30 year mean. Combined with unusually calm conditions, this resulted in 

widespread coral bleaching, with the first signs noticeable to observers on the final day (June 11) 

of sampling in 2016. At the time of completion of the 2016 surveys there had been no coral 

mortality; however, one year later, we observed coral mortality of ~65% (Baird et al. 2018, Keith 

et al. 2018). These temperature differences alone are unlikely to have a substantial effect on 

behaviour; behavioural changes in laboratory experiments of adult reef fish have only been 

documented at temperature increases to of 3°C or higher above ambient conditions (e.g., Allan et 

al. 2015). We compared coral cover and butterflyfish diets before and after this mass mortality 

event, investigating changes in coral cover as a predictor of dietary change. As our focus is 

specifically on the effect of coral mortality, rather than bleaching itself, we are confident in  
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Species 
Obligate vs 

Facultative 

% Acropora in 

Diet Before 

Mortality 

% Acropora in 

Diet After 

Mortality 

Included in Tests of… 

Dietary 

Change 

Resource 

Overlap 

Network 

Rewiring 

Chaetodon 

argentatus 
Facultative 

52% 

71 of 136 bites 

0% 

0 of 70 bites 
  ✓ 

Chaetodon 

baronessa 
Obligate 

50% 

67 of 133 bites 

4% 

8 of 171 bites 
  ✓ 

Chaetodon 

bennetti 
Obligate 

9% 

6 of 65 bites 
No Data   ✓ 

Chaetodon 

citrinellus 
Facultative 

52% 

699 of 1335 

bites 

14% 

143 of 1034 

bites 
✓ ✓ ✓ 

Chaetodon 

kleinii 
Facultative 

13% 

11 of 84 bites 
No Data   ✓ 

Chaetodon 

lunulatus 
Obligate 

51% 

1033 of 2010 

bites 

19% 

490 of 2569 

bites 
✓ ✓ ✓ 

Chaetodon 

melannotus 
Obligate 

0% 

0 of 7 bites 

0% 

0 of 9 bites 
  ✓ 

Chaetodon 

ornatissimus 
Obligate 

53% 

36 of 68 bites 

35% 

28 of 81 bites 
  ✓ 

Chaetodon 

plebeius 
Obligate 

12% 

34 of 282 bites 

3% 

8 of 307 bites 
✓ ✓ ✓ 

Chaetodon 

rafflesii 
Facultative 

4% 

4 of 97 bites 

1% 

4 of 279 bites 
 ✓ ✓ 

Chaetodon 

reticulatus 
Obligate 

71% 

49 of 69 bites 
No Data   ✓ 

Chaetodon 

speculum 
Facultative 

3% 

2 of 77 bites 

0% 

0 of 31 bites 
  ✓ 

Chaetodon 

trifascialis 
Obligate 

94% 

2273 of 2430 

bites 

64% 

1185 of 1857 

bites 
✓ ✓ ✓ 

Chaetodon 

unimaculatus 
Obligate 

0% 

0 of 21 bites 

0% 

0 of 29 bites 
  ✓ 

 

Table 3.1 List of all species included in the study. Use of species in certain portions of the analysis 

was limited by the amount of replicate observations. Four species, colored in dark gray, were 

numerically abundant over multiple locations and time-periods, allowing their inclusion in all steps 

of the analysis. Coral-feeding designations taken from Cole and Pratchett 2014. Percentages of 

Acropora in diets calculated based on the number of bites, summed across all individuals of a 

species. 

 

establishing the 2016 surveys as “pre-mortality”. Table 3.1 lists all 14 Chaetodon species included 

in this study and in which sections of the analysis they were included. 
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3.3.2 Sampling of butterflyfish and coral assemblages 

We estimated butterflyfish abundances using 50 m belt transects (English et al. 1997). We counted 

and recorded the species identity of every butterflyfish within 2.5 m on either side of the transect 

tape. We ran six separate transects at each site per year. As transect positioning was constrained 

by the size and shape of the site, they were very consistent across the years. Transects were placed 

at approximately 1 m depth parallel to the reef crest, this placement focused attention on the areas 

of the reef most heavily used by coral-feeding butterflyfishes and in the same area of the reef where 

our feeding observations were conducted. We estimated coral cover using 50 m point intercept 

transects (Rogers et al. 1983). We recorded the benthic substrate every 0.5 m along the transect, 

including the species identity of hard (scleractinian) corals. Transect placement was consistent 

with butterflyfish assemblage sampling, and butterflyfish counts were completed first, prior to 

coral sampling, to limit any effects of diver presence. 

3.3.3 Butterflyfish-coral interaction sampling 

To measure butterflyfish diets, we followed a focal fish on either snorkel or SCUBA for three 

minutes and recorded every bite they took on the substrate, along with the species identity of 

scleractinian corals that were bitten (following Pratchett 2005). Butterflyfish are appropriate for 

on-site behavioural analysis as they are typically undisturbed by diver presence (Kulbicki 1998). 

During the observation, the observer maintained a distance greater than the fish’s perceived flight 

initiation distance (FID, Ydenberg and Dill 1986), generally 2-4 m and the observer minimized 

their movement. Many butterflyfish species are pair-forming so to avoid dependence in our 

observations, only one of the two fish in each pair was observed. To avoid repeat sampling of the 

same fish, the observer travelled along the reef in a U-shape search pattern (Chidlow et al. 2005), 

which prevents observers from moving back through areas already sampled. The width of the U-
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shape was approximately twice the width of the average foraging territory (varied between species) 

(e.g., 60-170 m2 (18-30 m width) for C. lunulatus, Berumen and Pratchett 2006). All feeding 

observations were performed by AHB, and the following contextual variables were recorded for 

each observation: date, time, and weather. All sampling occurred between 08:00 and 16:00, with 

daily observation times limited by tide height (> 1 m). In over 800 hours in the field, we did not 

observe a single predation event on butterflyfishes, consistent with the known scarcity of these 

occurrences (Ehrlich 1975). As such we do not expect predation to pose a major factor in 

butterflyfish behaviour during these observations.  

3.3.4 Data analysis 

There are two primary elements to the dietary breadth of a species: (i) the strength of its dietary 

preferences, and (ii) the actual, realized diet, which may be more or less evenly distributed as a 

result of these preferences. To investigate whether both dietary elements changed in response to 

reductions in prey, we used two related analyses. First, to evaluate change in the strength of dietary 

preferences, we quantified the consistency in dietary preferences of individuals within each given 

species. Second, to evaluate whether there has been a significant change in the evenness of realized 

diets, we test whether they fit a null expectation of change based on shifts in the evenness of coral 

assemblages. These methods are explained below. 

3.3.5 Quantifying changes to interspecific consistency in preferences  

A species was categorized as having strong dietary preferences if all individuals of the species 

consistently preferred the same coral genera. We used dietary data from the individual 

observations to calculate the selectivity of each individual fish for each of the seven most abundant 

coral genera in the dataset (Acropora, Favites, Galaxea, Goniastrea, Montipora, Pocillopora and 

Porites) using Ivlev’s Electivity Index (Ivlev 1961). This metric compares the amount of bites on 
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each food type against its abundance within the habitat. It indicates how much a forager 

preferentially seeks out particular food items and scales from complete avoidance (-1) to exclusive 

selection (1) (Ivlev 1961). These seven coral genera account fo > 90% of all bites on hard coral. 

All other genera were consumed too infrequently to generate reliable selectivity values. This 

analysis included the four most commonly observed fish species, (Chaetodon citrinellus, C. 

lunulatus, C. plebeius, and C. trifascialis), which comprised ~ 80% of all foraging observations. 

All other species were excluded from the analysis due to limited observations.  

Dietary selectivity values for each individual fish on each of the coral genera were then compared 

pairwise to all other fish of the same species at that same year and location. Selectivity values were 

compared using Spearman rank-order correlations so that consistency in ranking could be 

evaluated. Resulting Spearman correlation coefficients were rescaled to ensure that all values were 

positive, and that they matched the beta distribution, which is well suited to response variables 

bounded in both directions (Ospina and Ferrari 2010). The rescaling performed was: (y1 = (y0 + 1) 

/ 2), such that our coefficients scaled from 0 to 1. The coefficient for two individuals with the 

opposite order of food preferences is zero; while the coefficient for two individuals with the same 

order of preferences is 1 (Fig. 3.1). In this way, a mean coefficient close to 1 indicates strong 

adherence to a consistent ranking of dietary preferences, and a mean coefficient close to 0.5 

indicates no consistent ranking. These values are hereafter referred to as “preference coefficients” 

and reflect the strength of dietary preferences. It should be noted that these values only reflect 

dietary selection on hard corals, to focus on changes in hard coral consumption after the coral 

mortality event, and therefore do not include consumption of other prey, such as non-coral 

invertebrates.  
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Figure 3.1 Schematic of dietary preference comparisons. Food items (coral genera, lettered A-D) 

were ranked from most to least preferred based on Ivlev’s Electivity Index. Preference rankings of 

a given fish were compared against all others of the same species in the same time and location. 

They were compared with Spearman’s rank correlation, rescaled where ρ = 1 reflects the exact 

same order of preferences, and ρ = -1 reflects the exact opposite order of preferences. 

 

We used a generalized additive mixed model with a beta distribution (Beta GAMM) to model the 

strength of dietary preferences as a function of coral cover. Specifically, we used a one-inflated 

beta distribution for the model. This model structure is well suited to fit data when the response 

value is bounded, 0 < Y ≤ 1 (Ospina and Ferrari 2010). Our model assesses the strength of dietary 

preferences as a function of hard coral cover at the site-level, with a fixed covariate for forager 

species. As each observation is a pairwise comparison between two fish, there was dependency 

among observations that shared the same fish individual. To account for this dependency, we used 

the identity of each of the two fish in the comparison as two separate random intercept effects. The 

optimal model was determined by backward model selection using Aikaike’s Information 

Criterion (AIC), sequentially dropping terms from an initial full-model (following Zuur et al. 
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2007), which also included fixed covariates, Site, Year, and Pielou’s evenness of the coral genera 

subset (Pielou 1966, calculated in package ‘vegan’, Oksanen 2019). All models were run in R 3.6.1 

(R Core Team, 2019) using the package ‘gamlss’ (Rigby and Stasinopoulos 2005). Details on 

model selection are listed in Table S3.1. We predicted the strength of preferences for each species 

within the range of coral cover values for which is was observed. We generated 95% confidence 

intervals around these predictions using jackknife resampling, whereby we randomly subset the 

dataset to 80% of the observations, re-fitted the model and generated predictions on this subset, 

and repeated the process for 100 replicates (McIntosh 2016). These 100 jackknife predictions were 

ordered, and confidence intervals taken as the 5th and 95th values. Predictions were made 

specifically on one level of the random intercept effect. To test if relationships varied among 

species depending on their initial strength of preferences, we also fit an alternate model, which 

was structured the same way, but also included an interaction between hard coral cover and 

butterflyfish species, and compared via AIC. 

3.3.6 Evenness of fish diets given altered coral assemblages 

If the evenness of fish diets increased but was matched with an equivalent increase in the evenness 

of coral assemblages, then resource abundance, rather than weakening dietary preference, is likely 

to be driving observed diet shifts (i.e., prey switching). However, a large increase in the evenness 

of fish diets, with little change in the evenness of coral assemblages can be attributed to a 

weakening of preferences. We evaluate whether diets increased substantially in evenness, 

exceeding an expected level of change based on changes to coral assemblages. 

We compare the evenness of coral assemblages and fish diets over time (i.e., in years before and 

after disturbance), with Hurlbert’s Probability of Interspecific Encounter (PIE) (Hurlbert 1971). 

When randomly selecting an individual from a community, PIE represents the probability of 
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selecting the same species twice in a row, and thereby is an intuitive measure of community 

evenness. PIE was calculated at the species level for both the coral assemblage and for fish diets. 

For the coral assemblage, PIE was calculated for each transect individually, to use each transect 

as an independent replicate of coral assemblage structure. For fish diets, individual observations 

of a particular fish species from each of the three sites were summed together, as each individual 

observation contained too few prey species to calculate reliable PIE values. From these summed 

diets, we calculated an overall dietary evenness value for each species at each site and year. This 

analysis included the four most commonly observed fish species (as above). 

3.3.7 Influence of disturbance on niche partitioning among coral-feeding fishes 

To test the effect of disturbance on resource partitioning we compared matrices of overall resource 

use before (2016) and after (2017 + 2018) coral mortality. For both this, and the following network 

tests, it was important to maintain matrices and networks comparable in dimension and interaction 

richness. For this reason, and because of decreased butterflyfish abundance following coral 

mortality, in both efforts, values for the two years after disturbance were combined into a single 

matrix/network, to represent the post-mortality state overall.  

Resource use matrices were then compared against null models (following Gotelli and Ellison 

2013). For each condition, we generated a set of 1,000 simulated matrices for comparison with the 

observed matrix, to determine the likelihood of an equivalent degree of resource partitioning being 

observed by chance. Simulated matrices were generated such that dietary breadth (number of 

resources) consumed by each fish species was maintained, but specific resources consumed were 

randomly reshuffled. Resource-use matrices were computed at the genus level for the food 

resource (i.e., corals) and included all forager species that were observed frequently both before 

and after disturbance. Matrices included the same seven coral genera as above.  
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Observed resource use was compared with the null expectation via the Pianka niche overlap index 

(Gotelli and Ellison 2013). For any two species, the Pianka niche overlap index represents the 

proportion of resources used by either species that are shared by the two; values range from 0 (no 

shared resources) to 1 (all resources shared; Pianka 1973). For these resource-use matrices, Pianka 

niche overlap is the average pairwise niche overlap between all fish species. We also compute the 

Standardized Effect Size (SES) for the difference between the observed level of partitioning and 

the null expectation (Gotelli and McCabe 2002). While the proportional comparisons involved in 

this method do not require equivalent sampling, the fewer observations there are for any species, 

the greater likelihood of error around the proportional allocations of bites. For this reason, we 

included only those Chaetodon species which were observed at least eight times (≥24 min of 

feeding) in both time periods. This included the same four fish species as above, with the addition 

of C. rafflesi. 

3.3.8 Change in forager networks following disturbance 

Overall change in the structure of interaction networks was compared via a Komogorov-Smirnov 

test (Conover 1971) of the interaction probability distribution. Interaction matrices for each 

condition (before [2016] and after [2017 + 2018] coral mortality) were each converted into one 

long vector for this comparison. Interaction networks used for each analysis included all 14 species 

of butterflyfish and all 131 coral species. Matrices for all network analyses were rescaled based on 

the observed abundances of each butterflyfish species in each condition. 

To evaluate interaction changes after disturbance, we also computed five network metrics that 

describe important aspects of network structure: connectance, Alatalo interaction evenness, 

Shannon diversity, nestedness, and network-level interaction specialisation (H2’). Connectance 

refers to the proportion of possible links between consumer and resource species which are present 
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within the network. An increase in connectance is likely if butterflyfish are forming new 

connections with corals previously unconsidered (interaction rewiring). Diversity and evenness of 

the interaction network refer to the diversity and spread of individual interactions (i.e. bites) among 

these possible links (Alatalo 1981). These are also expected to increase as fish species with weaker 

preferences will have a greater spread of their interactions among corals. Nestedness is a complex 

measure of network structure, and generally defines a system where there is a core group of 

generalists, and a set of specialists which primarily interact with generalists  (Nielsen and 

Bascompte 2007). Interaction evenness, Shannon diversity, and nestedness of the networks before 

and after disturbance were compared against those of null models to determine significance of 

changes. Null models were generated such that the observed number of interactions within the 

network is maintained (i.e., observed connectance), but interactions are randomized in proportion 

to their observed frequency between consumer I  and resource j (following Vázquez et al. 2007). 

All network metrics were calculated using the ‘bipartite’ package in R (Dormann et al. 2009).  

Lastly, we assessed temporal change in interaction networks (temporal β-diversity) and partitioned 

β into its inherent components using package ‘Betalink’, following Poisot et al. (2012). Changes 

in interaction network structure (βint) can be separated into the contribution of this change due to 

species turnover (βst- interactions gained or lost due to species gains or losses) and the contribution 

due to topological interaction rewiring (βrw-interactions gained or lost among species present in 

both years). Betalink quantifies these three elements (βint, βst, βrw,) as well as the amount of species 

turnover (βs) between networks. Specifically, we wished to understand the degree of change in 

network structure following bleaching induced mortality (2016 vs 2017), and whether networks 

continued to change two years after bleaching (2017 vs 2018). It’s for this reason that the two 

years post-mortality are treated separately for this piece of the analysis. To evaluate interaction 
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rewiring in this system, we specifically wished to understand whether there was substantial chan 

first consider whether there was substantial change in network structure before and after coral 

mortality (2016 vs 2017 vs 2018) (i.e., large values of βint), then whether a large portion of this 

change was due to rewiring (i.e., βrw > βst). 

3.4 Results 

We recorded the diets of 537 individual fish from 14 different species based on observations of 

12,618 bites on hard coral tissue (11,406 on the select seven coral genera specified previously). 

We recorded a total of 107 unique hard coral species on benthic transects; 60 in 2016, 48 in 2017, 

and 55 in 2018. The number of coral species per transect was not significantly different among 

years (ANOVA: f = 3.696, p = 0.060). 

There was a significant difference in total butterflyfish abundance among the three years sampled, 

with abundance decreasing in 2018 (Table S3.2, Kruskal-Wallis: df = 2, X2 = 17.05, p < 0.001). 

Total butterflyfish abundance was 175 in 2016 (avg = 11.7 per transect), 223 in 2017 (12.4 per 

transect) and 102 in 2018 (5.7 per transect). In some sense, having lower abundances in 2018 

allowed for pre- and post-mortality networks that were more comparable in size than would be 

otherwise if abundance remained the same. The pre-mortality network had 14 fish species and 104 

coral species (interaction richness = 238) and the post-mortality network contained 11 fish species 

and 108 coral species (interaction richness = 293). Changes in total abundance occurred without 

substantial change in the rank-order of fish species. Rank-orders were strongly correlated between 

2016 and 2017 (S = 89.06, p-value < 0.001, ρ = 0.80), and between 2017 and 2018 (S = 109.4, p-

value = 0.002, ρ = 0.76). 
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Figure 3.2 A) Loss of hard coral cover (%) due to coral bleaching. Transects were set on shallow 

(1m) reef crests. B) Reaction norm plot of dietary plasticity with disturbance, under the additive 

model. Solid lines are GAMM predictions of preference coefficient for each species across the 

range of observed coral cover, with 95% confidence intervals generated from jackknife 

resampling of 80% of the entire dataset. Dashed lines indicate the interquartile range of hard 

coral cover in the pre- (blue) or post-coral-mortality (orange) condition, matching panel A. 

 

3.4.1 Quantifying changes in consistency in preferences 

Coral cover decreased sharply after bleaching in 2016 (Fig. 3.2A). Notably, cover of bleaching-

sensitive Acropora corals decreased from an average of 35% in 2016 to an average of 2% in 2018. 
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As a result, coral-feeding fishes consumed broader diets (i.e., took bites from more coral species). 

Specifically, as coral cover decreased, so did the strength of fishes’ dietary preferences (Fig. 3.2B., 

GAMM coral covariate: t = 14.24, p < 0.001). Fish species also differed significantly in their 

overall strength of dietary preferences (df = 3, Likelihood Ratio Test = 338.95, p < 0.001). Both 

at low and high levels of food availability, Chaetodon plebeius had the weakest preferences 

(Preference Coefficient estimate: 0.492) with the other fish species exhibiting sequentially stronger 

coral preferences (C. lunulatus: 0.533, C. citrinellus: 0.598, C. trifascialis: 0.704). These values 

specifically reflect the strength of preferences among coral prey. The alternate GAMM, with the 

addition of an interaction between coral cover and species was not preferred via AIC (∆AIC = 

2.78). 

3.4.2 Evenness of fish diets given altered coral assemblages 

Fish diets also became more even after bleaching (Figure S3.2, Kruskal-Wallis: df = 2, X2 = 11.30, 

p = 0.004), despite no substantial change in the evenness of coral assemblages (Kruskal-Wallis: df 

= 2, X2 = 2.62, p = 0.270). On average, fish diets increased in evenness by 10%. PIE (probability 

of interspecific encounter) differed between 2016 and both post-disturbance years (2017–- Dunn: 

z = -3.14, p < 0.001, 2018 – Dunn: z = -2.63, p = 0.004) but PIE did not differ between 2017 and 

2018 (Dunn: z = 0.452, p = 0.326). 

3.4.3 Influence of disturbance on niche partitioning among coral-feeding fishes  

More generalized diets among foragers were associated with a decrease in resource overlap, with 

all species decreasing their focus on Acropora and instead consuming other genera. Prior to coral 

bleaching, resource use was significantly more overlapping than random (Fig. 3.3, SES = 2.20, p 

= 0.041). However, after bleaching (i.e., in 2017 and 2018) resource use no longer differed from a 

null expectation of random resource use (Fig. 3.3, SES = 1.37, p = 0.097). 
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Figure 3.3 Null model analysis of resource partitioning with EcoSim before (blue, 2016) and 

after (orange, 2017 + 2018) coral mortality. Null matrices were generated with algorithm “RA3”. 

Solid vertical lines represent the Pianka overlap index measured before and after disturbance, 

histograms represent the null expectation for each disturbance condition, and dashed vertical 

lines represent the 95% CI for the null expectation. 

 

3.4.4 Change in forager networks following disturbance 

Disturbance led to structural changes in interaction networks (Fig. 3.4). Specifically, networks 

were 11% more connected, 29% more even and 17% less specialized after the disturbance (Table 

S3.3). Probability distributions of interaction networks were significantly different before and after  

disturbance (KS: D = 0.081, p = 0.006). Shannon diversity (16%) and nestedness of networks (5%) 

increased as well. Prior to bleaching (2016), evenness of interactions was significantly greater than 

the null expectation (Fig. S3.3A, SES = 3.14, p = 0.001). Evenness continued to be higher than 

expected after disturbance, though the effect was marginally non-significant (2017 + 2018, SES = 

1.29, p = 0.097). Diversity of interactions was significantly less than the null expectation in 2016  
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Figure 3.4 Visualization of foraging network structure before (blue, 2016) and after (orange, 2017 

+ 2018) coral mortality. The width of right bars represents the number of bites observed for each 

fish species; the width of left bars represents the number of bites taken on each coral species. The 

width of each connection represents the number of bites taken by a given fish species, on a given 

coral species. Both coral and fish species are arranged by the total number of bites observed. Coral 

species shown with red bars are of the genus Acropora, which is highly susceptible to bleaching 

and is also a highly sought-after food resource for many butterflyfish. All other coral genera are 

colored in black. 

 

(Fig. S3.3B, SES = -5.09, p < 0.001), however no longer differed from a null expectation after 

disturbance (2017 + 2018, SES = -0.98, p = 0.163). 

These structural changes were accompanied with considerable change in the composition of 

interactions. A year after bleaching (2016 vs 2017), there was a notable change in interactions  
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Figure 3.5 Interannual comparisons of network structure (temporal Beta diversity) for forager 

interactions. A) βs represents the difference in species presence (turnover) between years. B) βrw 

is the degree of difference in network structure due to interaction “re-wiring”, whereas βst is the 

degree of difference in networks structure due to species turnover. Comparisons from left to right: 

2016 vs 2017, 2017 vs 2018, and 2016 vs 2018. Please note that the bars on the left and the right 

are comparisons of before and after the coral mortality event whereas the middle bar compares 

between the two years after mortality. 

 

(Fig. 3.5B, βint = 0.519) with a large majority of this change due to interaction rewiring (73.3%, 

βrw = 0.381). In the subsequent year (2017 vs 2018) the degree of species turnover remained as 

high as observed immediately after disturbance (Fig. 3.5A, βs = 0.265 and 0.228, respectively); 
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additionally, interaction networks continued to change, however to a lesser degree (β int = 0.424) 

and with a lower proportion of this change due to rewiring (67.4%, βrw = 0.286).  

3.5 Discussion 

Our observations over three years of butterflyfish feeding show that bleaching-induced coral 

mortality is associated with behavioural changes in individuals that alter resource use among 

species and substantially restructure butterflyfish-coral interaction networks. After a coral 

bleaching event, coral cover decreased by 65%, resulting in butterflyfish altering the frequency of 

coral food items in their diet and weakening their dietary preferences, as predicted by ecological 

theory. For example, Chaetodon trifascialis previously took 37% of its bites from its preferred 

food source, Acropora hyacinthus—after bleaching, these corals only comprised 16% of its diet, 

with fish now consuming additional Acropora (38%) and Montipora (39%) species. Weakened 

dietary preferences resulted in less resource overlap at the genera level, with nearly all species 

lessening their consumption of bleaching-sensitive Acropora corals and increasing their 

consumption of other genera. The weakening of prey preferences seen here indicates that this is 

not simply a case of prey switching, and instead closely follows the niche expansion prediction 

within the optimal diet theory (Emlen 1966). Under a case of prey switching, species would shift 

their preferences onto those resources which have become most abundant, rather than weakening 

their ordered preferences altogether (Murdoch 1969, Cornell 1976). This does not appear to be the 

case here, with a breakdown of consistent hierarchies after the mortality event.  Changing dietary 

preferences led to substantial changes in the structure of the consumer-resource interaction 

network, with much of this change due to interaction rewiring. Butterflyfish began to form new 

interactions, exploiting resources previously not considered, even among resources previously 

available (topological rewiring). They also altered the frequency of food items in their diet, 
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increasing their overall dietary evenness (interaction strength rewiring). Two years after 

disturbance, interaction networks have not returned to their initial configuration and continue to 

experience interaction rewiring.  

All four species showed a weakening of preferences and, though they differed in their initial 

preference strength, degree of specialization, the magnitude with which their preferences 

weakened was similar. This pattern suggests that these species might have a similar capacity for 

plastic behaviour, which is intuitive given their shared environment and evolutionary history but 

comes at odds with some expectations regarding the evolution of generalist strategies and 

phenotypic plasticity. Both phenotypic plasticity and generalist strategies tend to evolve under 

exposure to heterogenous conditions (Kassen 2002, Stearns 1989). While previously thought to be 

homogenous environments, recent research has shown considerable variability in assemblage 

structure on coral reefs at and below the regional scale (Williams et al. 2015, Pawlik and Loh 

2016). This, in addition to the substantial structural complexity of pristine reefs prior to human 

influence (Alvarez-Filip et al. 2009, Graham and Nash 2013), appears to support the evolution of 

both generalist strategies, and behavioural plasticity in this system. However, because the 

evolution of generalist strategies tends to coincide with the evolution of phenotypic plasticity (van 

Tienderen 1997), there is some expectation that generalists could have a greater degree of innate 

plasticity. Another possibility in this system, however, is that specialist species might have to alter 

their diet to a greater extent, as the corals that specialist butterflyfishes fed upon are also some of 

the most susceptible to bleaching-induced mortality (Marshall and Baird 2000, Loya et al. 2001). 

In this case, neither expectation was clearly met as generalist butterflyfishes did not show a 

different degree of behavioural change than their specialist counterparts.  
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In addition to reflecting the flexibility of these fish, their ability to form new connections with 

other coral species undoubtedly also reflects functional similarities among remaining coral species 

(Schleuning et al. 2020). The likelihood of any pair of species to interact depends on a series of 

matching traits, which may be morphological, physiological or chemical (Bartomeus et al. 2016). 

Proposed efforts to predict interaction changes based on functional traits appear promising. In this 

case, the likelihood of forming new interactions could be limited by the shape of coral growth 

forms (Hughes 1987, Madin et al. 2016), the gape width of butterflyfish species (Konow and Ferry 

2014), inducible defense traits like nematocyst density (Gochfeld 2004), or by the production of 

essential nutrients by corals (Brooker et al. 2013). 

The shifting of foraging efforts off of Acropora onto different genera led to a reduction in resource 

overlap among species at the genera level. This reduction of overlap indicates that while dietary 

preferences became weak, species still partitioned the remaining resources to a greater degree than 

they did before mortality, coinciding with previously documented reductions in inter-specific 

aggression (Keith et al. 2018) This raises interesting questions for the future of this system, and 

the long-term effects of coral mortality on butterflyfish abundance and survival. Our results show 

butterflyfish are surprisingly flexible in their diet selection in the short term, however bleaching-

induced coral mortality has a profound and long-lasting effect on food availability in this system.  

Estimates of recovery time for a bleached reef range from 7-29 years without disturbance (Gouezo 

et al. 2019, Robinson et al. 2019). In contrast, bleaching events have become a frequent occurrence, 

with the average bleaching recovery window shortening from 27 years in the early 1980s to six 

years in 2016 (Hughes et al. 2018). Will this partitioning persist in the long term, even if  coral 

populations don’t recover? And in light of this partitioning, how will populations respond? 

Butterflyfish population sizes have been seen to decline substantially following coral mortality, 
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particularly among obligate coral-feeders (Wilson et al. 2013), and fish that do persist may still 

face sublethal effects of reduced body condition (Pratchett et al. 2004, see Chapter 4 for more 

details on their the possible causes and consequences). However, while populations are expected 

to decline, the broad flexibility developed by these fish may play an important factor in species 

persistence in the long term. Understanding dietary changes among butterflyfish species is an 

important step in determining their relative competitive ability, which will aid in predictions of 

species persistence under continued change. Continued monitoring of butterflyfish feeding and 

population sizes will be performed at these sites and should help to shed light on how their resource 

use and competitive abilities will evolve.  

Continued changes in consumer-resource interactions at these sites raise questions about the 

temporal variation of interaction network structure. Namely, how closely is network structure tied 

to habitat condition? Two years after this disturbance event, consumer-resource interactions have 

not returned to their initial condition and have continued to experience year to year variation on a 

similar scale. If reefs are able to return to their initial coral cover, will interactions also return to 

their pre-disturbance configurations? And if so, what is the lag between reef recovery and 

behavioural responses? Conversely, it is possible that interaction structure will return to a 

condition similar to its initial state, without complete recovery of the habitat. This would be 

possible if another coral increases in relative abundance and consumption, replacing Acropora as 

the dominant food resource. 

One important factor in the future and persistence of these altered interaction networks is their 

robustness to species extinctions. The robustness of ecological networks is an emergent 

phenomenon seen to coincide with certain aspects of network topology, such as high connectance 

and nestedness (Dunne et al. 2002) and is typically measured by simulating the response of 
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networks to random extinctions (Borvall et al. 2000). Here, both connectance and nestedness of 

consumer-resource networks increased following disturbance. These offer some hint that these 

networks could have increased in robustness following disturbance. While this would indicate that 

these networks may be more stable in this post-mortality state, it does not preclude the possibility 

of further change in this system, particularly given the substantial flexibility shown by these fish.  

In conclusion, behavioural responses to anthropogenic disturbances can have wide-reaching 

impacts on species interactions and overall community structure. Coral mortality following 

bleaching is one of many human-induced disturbances that can bring about drastic shifts in 

foraging behaviour (Samways 2005, Keith et al. 2018, Thompson et al. 2019). This work illustrates 

highlights an existing response pathway for community change, whereby a reduction in food 

availability affects the structure of interaction networks through changes in dietary specificity and 

overlap. For corallivores, coral mortality caused a major decrease in food supply and weakened 

dietary preferences. This simultaneous dietary expansion of multiple species occurred in such a 

way that all species reduced their consumption of bleaching-sensitive Acropora, instead 

consuming a variety of other coral genera, and resulting in decreased resource overlap. Changing 

dietary preferences also led to substantial rewiring of the consumer-resource interaction network. 

This set of responses could prove particularly informative for disturbances in other systems 

structured by bipartite interaction networks, such as plant-pollinator systems. To better understand 

and manage the effects of disturbance events, we must consider how the influence on animal 

behaviour, which can have a profound influence on species interactions and restructure ecological 

communities. 
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4.1 Abstract 

 

Anthropogenic disturbance of food availability can alter a variety of aspects of animal behaviour 

(i.e., bottom-up effects), including foraging behaviour. How species forage in low-food 

environments can provide important insight into their potential response to food disturbance, and 

responses to low-food conditions may be expected to differ between specialists and generalists. 

We investigated how the foraging behaviour of coral-feeding butterflyfishes varies across a 

gradient of habitat conditions, whether variations follow predicted responses from optimal 

foraging theory, and whether there are notable differences between specialist and generalists. We 

found that species vary multiple aspects of their foraging behaviour in low-coral environments. 

The most notable of these differences was for the specialist, C. trifascialis, which normally 

displays territorial behaviour, but instead showed roaming behaviour in low-coral environments, 

with lower patch residence times in these areas. This response was not shared by the other 

generalist species. Despite this variation in behaviour, however, the species had lower overall bite 

rates in low-coral areas. This, in addition to the lower nutritional quality of non-preferred food 

sources may drive observed population declines after coral bleaching events. This indicates that 

specialist species may be capable of shifts in foraging behaviour in the short-term, whilst 

remaining vulnerable to the largest population declines in the longer-term. 

 

Keywords: resource availability, optimal foraging, specialization, patch-residence, bite rate 
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4.2 Introduction 

Anthropogenic disturbance causes substantial change to ecosystems across the globe, including 

modifying habitats, and altering species compositions (Vitousek et al. 1997, Barnosky et al. 2012). 

These changes can profoundly affect animal behaviour (Wilson et al. 2020). One of the most 

common ways disturbance alters animal behaviour is through changes in food availability (i.e., 

bottom-up effects, Wilson et al. 2020). Habitat degradation, for example deforestation or coral reef 

bleaching, can drastically reduce food supply (Heiduck 2002, Pangau-Adam 2015, Wilson et al. 

2014, Keith et al. 2018), which can lead to changes in the foraging behaviour of consumers 

(Tuomainen and Candolin 2011).  

Foraging behaviour is the product of countless decisions that are made by individuals to optimize 

energetic gain (Schoener 1971). Optimal foraging decisions reflect the habitat conditions in which 

those decisions are made and, as such, foragers may make different foraging decisions in response 

to changing habitat conditions (Snell-Rood 2013). Likewise, average foraging traits (e.g., average 

patch residence time, bite rate) reflect the baseline propensity to make certain decisions and should 

vary in response to habitat conditions. For instance, average patch residence time, bite rate, and 

movement duration can change as food availability changes (Krebs et al. 1974, Charnov 1976), 

and the extent of these changes might be expected to differ between specialists and generalists. 

While specialist species face greater risk of local extinction from disturbance (McKinney 1997, 

Devictor et al. 2008), less is known about how specialists and generalists forage in low-food 

conditions and how differences in foraging behaviour in low-food conditions might inform their 

relative degree of behavioural response to disturbance.  

Here, we test the extent to which the foraging behaviour of coral-feeding butterflyfishes varies 

spatially over fine scales, with varying levels of food availability. We also evaluate how closely 
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these behavioural differences follow predicted responses from optimal foraging theory. 

Specifically, we quantify how four foraging traits (patch residence time, bites per foray, bites per 

patch, movement duration) vary across habitats along a gradient of food availability, and whether 

behavioural differences with varying food availability are consistent among both specialist and 

generalist species. We do this through direct observations of foraging behaviour on reefs with 

different levels of coral cover. Specifically, we test the hypothesis that fish in low-coral territories 

compensate for lower food availability with a higher instantaneous bite rate (Penning 1986), 

increased patch residence time, and more bites per patch. Fish with longer patch residence times 

will also tend to make longer foraging movements, consistent with the marginal value theorem 

(Charnov 1976). Lastly, we also explore how differences in these foraging behaviours affect the 

overall bite rate, and whether fishes in low-coral territories maintain a similar overall bite rate to 

individuals in high-coral territories. We ask to what extent: 1) coral cover or variation in coral 

cover predict the four foraging trait values, 2) the relationship between coral properties and 

foraging traits can be predicted by individual species identity, focusing on differences between the 

specialist C. trifascialis and three other species, and 3) coral cover / variation in coral cover can 

predict the overall bite rate of these species. 

4.3 Methods 

4.3.1 Data collection  

We collected data on four butterflyfish foraging traits through observations of coral cover and fish 

behaviour at four reefs in the Ryukyus Islands, Japan in July 2018. We sampled three reefs off the 

island of Iriomote (14-19th  July 2018), in the southern Ryukyus (Fig. 4.1): Nata (24.43 N, 123.79  
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Figure 4.1 Map of the Ryukyus Islands, Japan, with insets of A) Sesoko (above) and B) Iriomote 

(below). The white dots indicate the four reefs locations where foraging behaviour was recorded. 

 

E), Sonai (24.38 N, 123.75 E), and Unarizaki (24.43 N, 123.76 E), and one reef off the island of 

Okinawa (July 21-22nd 2018) in the central Ryukyus (Sesoko Point, 26.63 N, 127.86 E). In May 

and June of 2016, the three reefs off Iriomote experienced substantial bleaching and mortality as 

a result of the 2016 global coral bleaching event–- within a year of the bleaching event, the three 

Iriomote reefs had experienced an average coral mortality of 65% (Baird et al. 2018, Keith et al. 

2018). In contrast, Sesoko Point experienced only minor bleaching among a specific subset of 

Acropora corals (<10% of digitate Acropora colonies) with no change in the overall coral mortality 

rate from pre-bleaching levels(Singh et al. 2019). By the time of behavioural sampling, Iriomote 

reefs averaged 24% hard coral cover (±S.D. 10%), whereas Sesoko Point averaged 68% coral 

cover (±S.D. 9%).  
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4.3.2 Foraging behaviour 

We observed four butterflyfish species, which reflected a broad spectrum of feeding strategies and 

degrees of reliance on hard coral: Chaetodon trifascialis is a highly specialized obligate corallivore 

which, prior to bleaching in Iriomote, took 93% of its bites from Acropora corals, with 59% 

specifically from large tabular Acropora spp. (see Chapter 3);  Chaetodon lunulatus is also an 

obligate coral-feeder but is more generalist in its coral consumption, taking 51% of its bites from 

Acropora and 22% specifically from tabular Acropora spp. (see Chapter 3); and C. ephippium 

and C. vagabundus are occasional coral-feeders (i.e., facultative corallivore and invertivore, 

respectively, Cole and Pratchett 2014), neither of which specializes on particular corals. These 

four species were also abundant on all four reefs (account for 62% of butterflyfish sightings), 

allowing us to gain sufficient sample sizes for each despite the relatively low abundance of 

butterflyfish in general on degraded reefs. 

To record foraging traits, we followed focal fish on snorkel and video recorded their foraging for 

five minutes each with an underwater camera at 30 frames per second (3 used: 1) Canon PowerShot 

G7 X Mark II at 1080p, 2), Canon PowerShot D30 at 480p, 3) Olympus TG-5 at 720p). 

Butterflyfish are typically undisturbed by diver presence (Kulbicki 1998) and we also minimized 

effects of the observer by preceding each five-minute observation with a separate one-minute 

acclimation period to ensure the fish was responding naturally (i.e., feeding). During the 

observation, the observer maintained a distance greater than the fish’s perceived flight initia tion 

distance (FID; 2-4 m) and minimized movement. If the fish moved out of frame (e.g., underneath 

a coral colony) for longer than 30 sec, the observer extended the observation to record five minutes 

of fish activity within frame. On rare occasions a full five minutes could not be completed if the 

fish moved out of frame and could not be relocated. These observations were only used if they 



  Chapter 4 – Divergent foraging behaviour 

 

85 

 

were at least four minutes in length. This accounted for four of the 95 observations in the analysis 

and average time in frame for these observations was similar to those recorded for a full five 

minutes. Many butterflyfish species are pair-forming so to avoid dependence in our observations, 

only one member of a given pair was observed. To avoid repeat sampling of the same fish, the 

observer found each subsequent focal fish by travelling along the reef flat and crest in a U-shape 

search pattern (Chidlow et al. 2006). Contextual variables of date, time, and wave conditions were 

recorded for each observation. 

4.3.3 Coral cover 

We quantified territory-level coral cover directly from foraging videos. Territory-level coral cover 

was preferred over other site-level measures because this better reflected the local habitat 

information used to make foraging decisions and captured the variability in territory-level coral 

cover within sites. A single observer (RFS), paused videos within VLC Media Player at specific 

time intervals and estimated the percentage of hard coral cover within the frame to the nearest 5%. 

Direct corals ID’s were not made. Visual estimates of coral cover and habitat complexity tend to 

perform very similarly to transect based methods (Wilson et al. 2007). Five assessments were made 

for each video (at 30 s, 1 min 30 s, 2 min 30 s, 3 min 30 s, 4 min 30 s). If the frame these intervals 

selected was not sufficiently clear (e.g., due to diver movement following the fish) the observer 

moved forward frame by frame until the next clear view. In cases where the foraging observation 

was cut short, or lasted longer than 5 min, assessment intervals were shifted to be evenly spaced 

within the feeding observation. 
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4.3.4 Extracting traits from foraging videos 

To extract relevant behavioural data from foraging videos we used the program BORIS (Friard 

and Gamba 2016) following a similar methodology to Zambre et al. (2018). Videos were uploaded 

and a single observer (RFS) watched each at slow (0.6x) speed, marking when the fish 

started/stopped feeding, moving, or engaged in aggressive behaviour, as well as any time the fish 

was out of frame. Forays, or individual foraging bouts, were defined by a head-down orientation, 

and ended when the fish elevated its head from the substrate by greater than 45° (Nash et al. 2012). 

Multiple consecutive forays often occurred in the same location. Forays within  1 m of each other 

were designated to be in the same patch. Accordingly, forays within the same patch occurred back 

to back, whereas forays in differing patches were separated by a bout of movement. The same 

observer then watched through the same video at higher (0.8x) speed, recording every bite the fish 

took on the benthic substrate. It should be noted that bites on the benthic substrate will not be 

limited to consumption of corals, as this distinction cannot be made without more invasive methods 

Each video was then watched by the same observer a third and final time for quality control to 

confirm, and if necessary, adjust the data.  

Video output files were imported into R and we calculated:  

1. Patch Residence Time, or the time spent feeding in a given patch, which captured 

the time between the start and end of each set of consecutive forays 

2. Movement Duration which was the time between the start and end of each 

movement bout 

3. Bites per Patch which was the number of bites taken within each set of 

consecutive forays 
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4. Bites per Foray which was the number of bites taken within each head-down 

foraging bout 

For each of these traits, we recorded multiple values for each individual. Additionally, to illustrate 

how varying these four behaviours might influence the total number of bites taken, we also 

calculated an overall feeding rate for each individual, using the total number of bites per unit time 

the individual was in frame. However, it should be noted that, as we do not have nutritional 

information for the corals consumed, this will not be representative of overall energy intake. 

4.3.5 Data analysis 

To answer our questions, we used a common set of a priori candidate models with an information 

criterion (IC) approach. We use one set of these models to predict each of the four foraging traits, 

and an additional set to predict the overall feeding rate. In these models, coral cover and variation 

in coral cover are discrete predictors, and fish species is a categorical predictor. All models were 

run with package “lme4” (Bates et al. 2015). If two models differed by 2 or less in AIC, then the 

simpler model was preferred (Richards 2005). The general structure for the candidate models is as 

follows: 

Model 1: Trait ~ Coral Cover + Variation in Coral Cover + Fish Species 

Model 2: Trait ~ Coral Cover + Fish Species 

Model 3: Trait ~ Coral Cover * Fish Species 

Model 4: Trait ~ Fish Species 
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Model 5: Trait ~ Intercept Only 

 

4.3.6 Effects of resource availability on four foraging traits 

For each of the four foraging traits we used a set of generalized linear mixed effect models 

(GLMMs). As there are multiple observations of each foraging trait for a given individual (e.g. , 

multiple forays or movement bouts), there was dependency among these observations. To account 

for this dependency, we used fish identity as a random effect, with a fixed slope and a varying 

intercept. It was hoped that both coral cover and variation in coral cover might be uniquely 

informative, however, during model fitting it was determined that the two were significantly 

collinear (cor = 0.421, t = 4.57, p < 0.01).   

The model type used for each trait depended on the properties of the predicted values (discrete vs  

continuous etc.) and the optimal model type was determined via dispersion values closest to 1. For 

patch residence time and movement duration we used Gamma GLMMs, for bites per patch we 

used negative binomial GLMMs, for bites per foray we used Poisson GLMMs. For question 1 of 

our analysis, our hypothesis was supported for any of the four foraging traits if the optimal model 

selected for that trait included coral cover or variation in coral cover. For question 2, our hypothesis 

was supported for any of the traits if the optimal model included an interaction between coral cover 

and fish species. For all GLMMs, we predicted the given trait along the range of observed coral 

cover for each species. We generated 95% confidence intervals around these predictions using 

jackknife resampling, whereby we randomly subset the dataset to 80% of the observations, re-

fitted the model and generated predictions on this subset, and repeated the process for 100 

replicates (McIntosh 2016). These 100 jackknife predictions were ordered, and confidence 



  Chapter 4 – Divergent foraging behaviour 

 

89 

 

intervals taken as the 5th and 95th values. Predictions were made specifically on one level of the 

random intercept effect.  

Lastly, one concern in this approach is that comparisons of varying food availability are made both 

within and across sites. To ensure that site-level properties don’t influence these results, we also 

employ an alternate set of models (detailed in Supplemental Info) which focused solely on the 

variance in foraging traits within sites. These were not used for the formal analysis because the 

inclusion of multiple random effects led to overfitting concerns and difficulties with model 

convergence, however they provide important insight into potential mechanisms for behavioural 

variation and illustrate that site effects should be minimal.  

4.3.7 Overall bite rate 

To answer question 3 of our analysis, we compare the same set of candidate models above, for the 

overall feeding rate. As there was only a single overall feeding rate for each individual fish, no 

random effects were included in these models. As before, model type was chosen based on a 

dispersion closest to 1. For overall feeding rates, we used gamma GLMs. For question 3, our 

hypothesis was supported if the optimal model for the overall bite rate included coral cover or 

variation in coral cover. For this GLM we predicted the overall bite rate along the range of 

observed coral cover for each species, calculating variance around these estimates within 2 

standard errors.   

4.4 Results 

We recorded foraging behaviour for a total of 99 individuals, and for a total duration of 373 

minutes in frame (Table 4.1). Results of model fitting are listed in Table 4.2. 
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Species 
n 

(Total) 
n 

(Sonai) 
n 

(Nata) 
n 

(Unarizaki) 
n 

(Sesoko) 
Dietary 

Category 

Specialized 
on 

Acropora 

Chaetodon 
ephippium 

18 6 8 4 0 Facultative 
Corallivore 

No 

Chaetodon 
lunulatus 

29 7 6 9 5 Obligate 
Corallivore 

No 

Chaetodon 
trifascialis 

23 6 7 3 7 Obligate 
Corallivore 

Yes 

Chaetodon 
vagabundus 

29 8 7 7 5 Invertivore No 

 

Table 4.1 Butterflyfish species included in this analysis, and the total number of each video 

recorded. Dietary designations taken from Cole and Pratchett 2014. 

 

4.4.1 Effects of resource availability on four foraging traits 

Patch residence time varied 1.5-fold among species (LR Test: X2 = 13.25, p = 0.004), and there 

was an interaction between species identity and coral cover (Fig. 4.2A, LR Test: X2 = 10.81, p = 

0.013). Chaetodon ephippium and C. vagabundus in low-coral territories spent more time in a 

given patch (est = -0.68 sec per 10% coral cover and -0.33 sec per 10% coral cover, respectively), 

whereas C. trifascialis, the specialist coral-feeder, showed the opposite effect, spending less time 

in a given patch in lower coral cover territories (est = 0.53 sec per 10% coral cover). Overall, C. 

ephippium had the longest patch residence time on average (Fig. 4.3A, model estimate = 7.07 sec, 

95% CI: 5.96 – 8.19 sec), spending more time in a given patch than C. vagabundus (5.36 sec, p = 

0.011, 95% CI: 4.63 – 6.09 sec) and C. trifascialis (4.72 sec, p < 0.001 95% CI: 3.88 – 5.56 sec). 

Chaetodon ephippium did not spend significantly more time in a given patch than C. lunulatus 

(6.17 sec, p = 0.107, 5.44 – 6.91 sec). 

Bites per foray decreased by 0.05 per 10% coral cover (Fig. 4.2B, 95% confidence intervals (C.I.): 

-0.10 to -0.01), meaning fish in lower coral cover territories took a greater number of bites during  
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Trait Candidate Model AIC 

Residence Time 
 

Time ~ Coral + Variation in Coral + Species 8853.8 

Time ~ Coral + Species 8853.9 

Time ~ Coral * Species 8849.1 

Time ~ Species 8855.1 

Time ~ Intercept Only 8860.2 

Movement 
Duration 

 

Time ~ Coral + Variation in Coral + Species 12134.0 

Time ~ Coral + Species 12132.9 

Time ~ Coral * Species 12130.5 

Time ~ Species 12131.2 

Time ~ Intercept Only 12142.1 

Bites Per Foray 

 

Bites ~ Coral + Variation in Coral + Species 8720.1 

Bites ~ Coral + Species 8721.0 

Bites ~ Coral * Species 8722.5 

Bites ~ Species 8725.7 

Bites ~ Intercept Only 8852.0 

Bites Per Patch Bites ~ Coral + Variation in Coral + Species 6644.5 

Bites ~ Coral + Species 6644.6 

Bites ~ Coral * Species 6640.3 

Bites ~ Species 6644.7 

Bites ~ Intercept Only 6736.2 

Overall Bite Rate 

 

Rate ~ Coral + Variation in Coral + Species -214.0 

Rate ~ Coral + Species -210.7 

Rate ~ Coral * Species -220.6 

Rate ~ Species -212.5 

Rate ~ Intercept Only -173.8 

 

Table 4.2 Candidate models posed for each question. Traits highlighted in gray indicate the null 

hypothesis for the given question was rejected. Bolded AIC values indicate the most appropriate 

model for each comparison. If two models differed by 2 or less in AIC, then the simpler model 

was preferred. Traits highlighted in light gray varied significantly with coral cover. Traits 

highlighted in dark gray showed an interaction between coral cover and fish species. 

 

each “head-down” feeding bout. Bites per foray varied nearly threefold among species (Fig. 4.3B, 

LR Test: X2 = 134.77, p < 0.001), but there was no interaction between coral cover and species 

identity (LR Test: X2 = 4.55, p = 0.207). Chaetodon ephippium took the most bites per foray 

(model estimate = 2.50 bites, 95% CI: 2.24 – 2.79 bites, C. lunulatus: 2.14 bites, p = 0.028, 95% 

CI: 1.97 – 2.33 bites, C. trifascialis: 1.17 bites, p < 0.001, 95% CI: 1.04 – 1.30 bites, C. 

vagabundus: 0.85 bites, p < 0.001, 95% CI: 0.76 – 0.95 bites). 
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Figure 4.2 Linear models of foraging traits which responded to varying coral cover. Confidence 

intervals around predictions were made using jackknife resampling of 80% of the entire dataset. 

Predictions are made specifically on one level of the random effect (Subject = EPH001).  A) Effect 

of hard coral cover on patch residence time. B) Effect of hard coral cover on the number of bites 

per foray. C) Effect of hard coral cover on the number of bites per patch. 

 

Bites per patch varied more than threefold among species (LR Test: X2 = 97.56, p < 0.001) and 

there was an interaction between coral cover and species (Fig. 4.2C, LR Test: X2 = 10.30, p = 

0.016). Chaetodon ephippium, C. lunulatus, and C. vagabundus in low-coral territories took a 

greater number of bites per patch (est = -0.14 bites per 10% coral cover, and -0.13 bites per 10% 

coral cover, and -0.04 bites per 10% coral cover, respectively), whereas the specialist, C.  
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Figure 4.3 Boxplots of foraging traits which varied with fish species. Error bars were generated 

using jackknife resampling of 80% of the entire dataset. Predictions are made specifically on one 

level of the random effect (Subject = EPH001). A) Effect of species on patch residence time, B) 

Effect of species on movement duration. C) Effect of species on the number of bites taken per 

foray. D) Effect of species on the number of bites taken within a patch. 

 

trifascialis, showed the opposite effect, taking fewer bites per patch in low-coral territories (est = 

0.12 bites per 10% coral cover). Chaetodon ephippium took the most bites per patch (Fig. 4.3C, 

model estimate = 3.37 bites, 95% CI: 2.81 – 4.04 bites), taking significantly more than C. 

trifascialis (1.55 bites, p < 0.001, 95% CI: 1.33 – 1.81 bites) or C. vagabundus (1.02 bites, p <  



  Chapter 4 – Divergent foraging behaviour 

 

94 

 

 

 

Figure 4.4 Effects of hard coral cover and fish species on overall feeding rate. Confidence intervals 

around predictions are two standard errors from the model mean. A) Effect of hard coral cover on 

overall bite rate. B) Effect of fish species on overall bite rate. 

 

0.001, 95% CI: 0.88 – 1.17 bites). Bites per patch for C. ephippium did not differ significantly 

from C. lunulatus (est = 3.03 bites, p = 0.269, 95% CI: 2.65 – 3.36 bites). 

For movement duration, coral cover was not included in the optimal model. Movement duration 

did, however, vary 1.5-fold among species (Fig. 4.3D, LR Test: X2 = 16.93, p > 0.001). Chaetodon 

ephippium had the longest movement durations (model estimate = 8.47 sec, 95% CI: 7.25 – 9.70 

sec), with each other species making significantly shorter movements on average (C. lunulatus: 

6.27 sec, p = 0.004, 95% CI: 5.36 – 7.17 sec, C. vagabundus: 5.55 sec, p < 0.001 , 95% CI: 4.66 – 

6.44 sec, C. trifascialis: 5.48 sec, p < 0.001, 95% CI: 4.53 – 6.43 sec). 
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4.4.2 Overall bite rate 

Overall feeding rates varied over 2.5-fold among species (LR Test: X2 = 29.06, p > 0.001), and 

there was an interaction between coral cover and species (Fig. 4.4A, LR Test: X2 = 21.22, p > 

0.001). Chaetodon lunulatus and C. vagabundus in low-coral territories had a higher overall bite 

rate (est = -1.54 bites/min per 10% coral cover, and -0.90 bites/min per 10% coral cover, 

respectively), whereas the specialist, C. trifascialis, showed the opposite effect, taking 

substantially fewer bites in low-coral territories (est = 0.94 bites/min per 10% coral cover).  For 

C. ephippium there was virtually no difference in overall bite rate with varying coral cover (0.02 

bites/min per 10% coral). Chaetodon lunulatus had the greatest feeding rate (Fig. 4.4B, est = 14.40 

min-1) taking significantly more bites per minute than C. vagabundus (est = 5.25 min-1). The 

overall bite rate of C. lunulatus did not differ significantly from C. ephippium (est = 12.91 min-1) 

or C. trifascialis (est = 10.16 min-1). 

4.5 Discussion 

Under reduced food availability, both specialist and generalist species differed in foraging 

behaviour. In territories with low food availability, all species had higher instantaneous bite rates, 

consistent with predictions based on terrestrial grazer populations (Penning 1986, Iason et al. 

1999). For traits specifically related to patch usage, behaviour varied substantially with territory-

level coral cover, but with specialist C. trifascialis showing an opposite relationship from the three 

more generalist species. In low-coral cover areas, the infrequent or facultative coral-feeders had 

longer patch residence times and took more bites per patch, whereas C. trifascialis had 

substantially shorter patch residence times and took fewer bites per patch. These differences reflect 

the fact they also show alternate foraging patterns on healthy reefs.  
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Under normal conditions, C. trifascialis will establish small territories around its preferred prey 

(Acropora table corals), defending them from intruders (Pratchett 2005)–- a strategy often 

resulting in longer patch occupancy times (Stamps 1994, Adams 2001). In low-coral habitats 

however, these table corals are notably scarce, particularly following coral bleaching events. 

Before bleaching in 2016, average cover of Acropora corals in Iriomote was 35% across the three 

sites, whereas by 2018 average cover of Acropora was 2% (see Chapter 3). It is plausible that as 

a result of their low Acropora coral abundance, there is a lack of territoriality in low-coral habitats. 

Instead, C. trifascialis individuals in these territories display roaming behaviour, only occupying 

patches for a short period of time before moving on. C. trifascialis also had higher instantaneous 

bite rates within these areas, feeding faster on coral colonies when located. However, as a result 

of their shorter patch occupancy, the overall number of bites taken in a given patch is lower. 

Chaetodon lunulatus is also an obligate corallivore but is more generalist in its coral consumption 

than C. trifascialis, consuming a wider variety of coral species (Pratchett 2004, Pratchett et al. 

2005), many of which are not as strongly affected by bleaching as Acropora spp. are. Contrary to 

predictions, patch residence times for C. lunulatus were the same in low and high-coral territories. 

This may be because the species can feed on a large proportion of the species found in low-coral 

territories. However, while C. lunulatus didn’t spend more time in a given patch in low-coral 

territories, it did take more bites from a given patch, as it increased its instantaneous rate in low-

coral areas. 

Chaetodon ephippium and C. vagabundus are infrequent coral-feeders, using corals to supplement 

their consumption of other benthic invertebrates (Pratchett 2005). Because corals form only a small 

portion of their diet, these two species were expected to show the least variation in behaviour along 

the gradient of coral cover. However, the two differ in some behaviours, with longer patch 
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residence times, and (like all other species) higher instantaneous bite rates in low-coral territories. 

One possible explanation is that these two have another option when faced with poor-quality coral 

patches so might target only coral patches with a guaranteed energy gain. In low-coral territories 

these preferred patches are likely scarce, prompting long patch residence times and high bite rates 

when they are located. Additionally, one confounding factor is the density of small benthic 

invertebrates consumed by these species. If there are fewer preferred benthic invertebrates in low-

coral territories, then these two species may show differences in behaviour that reflect the 

abundance of their primary food rather than the corals themselves. 

Three key mechanisms offer plausible explanations for the behavioural differences we have 

observed. First, these differences may reflect activational plasticity of foraging behaviour (Snell -

Rood 2013), with individual butterflyfish adjusting their foraging behaviour to better suit a given 

territory (Sih et al. 2011, Tuomainen and Candolin 2011). The variation in behaviour we observed 

follow predictions of optimal patch usage (Krebs et al. 1974, Charnov 1976) or compensatory 

grazing behaviour (Penning 1986, Iason et al. 1999), which can be achieved through short-term 

behavioural adjustment (i.e., activational plasticity), adding support to this idea. However, without 

repeated sampling of individuals across multiple territories, plasticity cannot be confirmed 

directly. Secondly, it is possible that site-level differences in foraging behaviour between the 

bleached and unbleached reefs could be driven by evolutionary effects. Differences between sites 

could result from allopatric divergence in foraging behaviour (Palumbi 1994), rather than resulting 

directly from differences in habitat composition. Additionally, there could be other site-level 

habitat differences which are not captured by overall coral cover (ex. structural complexity, species 

assemblages), which might explain some of the site-level behavioural differences. However, 

alternate models focused on within-site variation (Table S4.1) confirm that both patch residence 
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times and bites per patch are well predicted by coral cover within sites. For both of these traits, 

model predictions along the gradient of coral cover were virtually identical to those that included 

between-site variability. Therefore, it appears that behavioural differences cannot be attributed to 

latent site-specific factors alone. Third, behavioural differences between low and high-coral 

territories could result from environmental filtering of behavioural types. Individuals within a 

given species may vary consistently in their foraging behaviour, having a specific behavioural type 

(personality/behavioural syndrome; Sih et al. 2004, Sih and Bell 2008). As a result of habitat 

filtering (Kraft et al. 2014), individuals are only able to settle in habitats where their behaviour is 

appropriate (e.g., Brodin et al. 2013, 2019). If, for example, low-coral territories are unsuitable for 

individuals with a more territorial behavioural type (high aggression, long patch-residence), then 

individuals of this type will be unable to settle in these zones, producing a trend in behaviour like 

that seen here. It is unclear which of these mechanisms is dominant in driving these variations in 

behaviour and the extent to which these factors could interact. 

The effect of food disturbance on bite rate seen here follows predictions of compensatory feeding 

from optimal foraging theory but can also be understood through the lens of functional response 

relationships. It has long been understood that for grazing species, food intake rate increases with 

the density of food available (Holling 1965, Gross et al. 1993), typically estimated in terrestrial 

systems as sward height or leaf area index. In this framework, food intake rate is a product of the 

individual’s daily foraging time, bite size, and bite rate (Allden and Whittaker 1970, Hodgson 

1985). Numerous studies have attributed the increases in food intake with increased leaf area index 

/ sward height to an increase in bite size (e.g., Gong et al. 1996, Lang and Black 2001). However, 

as larger bites take longer to process, these are also typically associated with a slower bite rate 

(Hodgson 1985). It is also important to consider how changes in biting may allow grazers to 
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compensate for limitations on their potential food intake. For example, grazers whose foraging 

time becomes limited may compensate for this by increasing their bite size (Iason et al. 1999) or 

bite rate (Chen et al. 2013). Whether considered as a product of a functional response to high food 

availability, or a compensatory reaction to low food availability, bite rates and food availability 

appear to clearly be inversely related. 

Coral cover alone better predicted patch residence times than when combined with variation in 

coral cover. Following the marginal value theorem, the decision to exit a given patch reflects the 

potential net energy gain (or gain in another currency) from continuing to forage in the patch, 

compared to moving to and exploiting another patch (Charnov 1976). In this way framework, a 

forager will remain in the patch as long as the instantaneous net energy gain within the patch is 

greater than the average rate of net energy gain within the nearby environment. For example, 

among chickadees, residence times within a given patch type were longer when surrounded by 

low-quality habitat than when surrounded by high-quality habitat (Krebs et al. 1974). It can then 

be predicted that average patch residence time should reflect whether or not individuals frequently 

find themselves surrounded by viable food sources, a condition influenced by both the availability 

and patchiness of food resources within their habitat. It was expected that each might be uniquely 

informative, however this was based on the assumption that the two factors would vary 

independently. Instead, variation in coral cover was significantly collinear with coral cover. 

Foraging areas with higher average coral cover were patchier, containing both intact coral colonies, 

as well as dead colonies or those that have become overgrown with algae, whereas foraging areas 

with lower average coral cover more consistently contained dead or overgrown sections. While 

both food availability and food patchiness are likely important in shaping conditions for patch exit 
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(McNair 1982), collinearity between these variables here prevents us from determining which may 

be a better predictor for patch residency. 

Contrary to predictions, average movement duration was unaffected by coral cover. Following the 

marginal value theorem (Charnov 1976, Stephens and Krebs 1986), there is an association between 

the travel time to a given patch and the rate-maximizing patch residence time within that patch. In 

other words, foragers must compensate for the energy spent on a longer movement  bout by 

adjusting their feeding effort within the patch, once it is reached. Given the changes in average 

patch occupancy seen here, it was predicted that average movement duration might follow similar 

patterns. However, this relationship may not be reciprocal. An increase in average movement may 

result in an increase in average patch residence time, however the reverse may not necessarily be 

true. Additionally, as average movement duration here is a summation of several feeding and 

movement decisions within the same feeding area, these effects may be obscured.  

Despite uncertainty in the causes of variation in behaviour, the differences we see here fit 

conceptually with a variety of behavioural changes observed in butterflyfish populations after coral 

bleaching. Weakened territoriality is a common theme for coral feeding butterflyfishes after coral 

bleaching, or within low-coral zones, particularly among specialists. For example, immediately 

following bleaching in the Seychelles, Samways (2005) observed a breakdown of feeding 

territories for Chaetodon trifascialis and C. trifasciatus, with fish instead displaying roaming 

behaviour like that seen in low-coral territories here. Likewise, butterflyfishes on Iriomote have 

also reduced their aggressive behaviour following bleaching-induced mortality (Keith et al. 2018), 

as this behaviour becomes economically unviable when coral is scarce. Similarly, compared to 

high coral exposed areas, in low coral back reef zones the specialist, C. baronessa, has shown 

larger, less-aggressively defended territories (Berumen and Pratchett 2006). No difference was 
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observed in territory size or aggression for C. lunulatus. Additionally, pair-forming behaviour has 

also been observed to decline in butterflyfishes following coral mortality (Thompson et al. 2019), 

either due to the costs of sociality when coral is limited, or due to disruption of pairs via mortality. 

A variety of studies have observed changes in butterflyfish diet after coral mortality (Pratchett et 

al. 2014, Keith et al. 2018, Zambre and Arthur 2018), which might stem from a weakening of 

dietary preferences across species (including both C. trifascialis and C. lunulatus; see Chapter 3). 

This body of work suggests that not only does the specialist, C. trifascialis, have a broader diet in 

low-coral conditions, individuals in these areas show unique foraging behaviour, incongruent with 

a specialist diet or territoriality.  

Despite potential changes in foraging behaviour, however, coral-feeding butterflyfish populations 

consistently decline following coral mortality (Wilson et al. 2014). Population surveys on Iriomote 

have shown significant declines in overall butterflyfish abundance two years following coral 

bleaching (see Chapter 3). In general, the degree to which mortality is experienced after bleaching 

directly relates to the level of reliance on hard coral for a given species, with obligate corallivores 

experiencing some of the most substantial losses (Wilson et al. 2014). Even if species can maintain 

an equivalent volume of food intake in low-coral conditions, species may still face population 

declines because of the nutritional quality, or assimilation efficiency of non-preferred food 

sources. Efforts to quantify nutritional quality of coral genera have been limited in scope, 

evaluating either C:N ratio (Graham 2007) or percentage protein content (Masterman 2012), with 

differing results. Namely, C:N ratio estimates were highest (lowest food quality) for Pocillopora, 

whereas Pocillopora were the highest quality when considering relative protein content. 

Differential value among nutrient categories should come as little surprise, and in reality, these 

fish will need to balance prey items with a variety of nutrient densities to produce a healthy diet 
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(Simpson and Raubenheimer 1993, Simpson et al. 2004). However, in spite of mixed results 

regarding nutritional quality, one apparent trend is that butterflyfish species show diminished body 

condition when consuming non-preferred corals (Pratchett et al. 2004, Berumen et al. 2005). In 

other fish species, reduced body condition often leads to negative effects on growth or reproduction 

(Jones 1986, Kerrigan 1997), though this has not been directly tested for butterflyfishes (see 

Berumen and Pratchett 2008). It is also possible this loss of nutritious corals may serve as a driving 

force behind some of the behavioural changes seen in this population. For example, declines in 

aggressive behaviour seen on Iriomote may stem from a lack of energy to initiate these behaviours 

(Keith et al. 2018). It remains to be seen the extent to which observed differences in foraging 

behaviour (as well as other changes mentioned above) might benefit growth or reproduction in 

low-coral habitats, and this (as well as in-depth nutritional analyses) are an important avenue for 

future research. 

The most notable differences in foraging traits across coral availability we observed were for the 

specialist, Chaetodon trifascialis. Specialist foragers generally operate within a narrow range of 

habitat conditions (Van Tienderen 1991, “Grinnellian Specialization” Devictor et al. 2010). 

Generalists on the other hand can succeed over a large range of conditions (But see Remold 2012). 

Due to these differences, specialist species are often at the greatest risk of extirpation from 

anthropogenic disturbance events (McKinney 1997, Kassen 2002, Devictor et al. 2008). 

Particularly among coral-feeding butterflyfishes, C. trifascialis are predicted to be most vulnerable 

to disturbance, due to their disproportionate consumption of tabular Acropora corals such as 

Acropora hyacinthus (Lawton and Pratchett 2012, Lawton et al. 2012). For example, among reef-

dwelling gobies, all species suffer substantial population declines after  coral mortality, with the 

greatest of these experienced by specialists (Munday 2004). In the case of corallivorous 
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butterflyfishes, the long patch residence times and territorial behaviour of the specialist, C. 

trifascialis, are expected to be adapted for high fitness within high-coral conditions, but the species 

may not be as successful in low-coral conditions, even if their behaviour differs in these 

environments. Despite having a wider diet in low-coral conditions (see Chapter 3), the overall 

bite rate of C. trifascialis in these areas was substantially lower. Though reliable predictions of 

their survival will rely on the energetics and nutritional value of alternate food sources, our findings 

provide early indication that the species could face substantial losses as a result of bleaching, 

supported by population estimates two years after bleaching (see Chapter 3). While the exact 

mechanism underlying these behavioural changes is unresolved, our results suggest that when 

preferred food sources are lost, specialist species alter multiple foraging traits, which could further 

mediate ecological changes at the population and community level. More broadly, specialist 

foragers might show strong buffering to habitat change by altering foraging behaviour in the short-

term, whilst also being vulnerable to the largest population declines in the longer-term. 

4.6 Contribution of Authors 
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5.1 Abstract 

Efforts to understand and protect ecosystem functioning have put considerable emphasis on 

classifying species according to the functions they perform. However, coarse classifications based 

on diet or feeding mode often oversimplify species’ contributions to ecological processes. 

Behavioural variation among superficially similar species is easily missed but could indicate 

important differences in competitive interactions and the spatial scale at which species deliver their 

functions. To test the extent to which behaviour can vary within existing functional classifications, 

we investigate the diversity of foraging movements in three herbivorous coral reef fishes across 

two functional groups. We find significant variation in foraging movements and spatial scales of 

operation between species, both within and across existing functional groups. Specifically, we 

show that movements and space-use range from low frequency foraging bouts separated by short 

distances and tight turns across a small area, to high frequency, far-ranging forays separated by 

wide sweeping turns. Overall, we add to the burgeoning evidence that nuanced behavioural 

differences can underpin considerable complementarity within existing functional classifications, 

and that species assemblages may be considerably less redundant than previously thought.  

Keywords: complementarity, coral reefs, foraging behaviour, functional traits, movement  
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5.2 Introduction 

Understanding how, why and when different species contribute to essential ecosystem functions 

has gained increased focus in recent years, with the aim to both advance fundamental knowledge 

and improve management (Tilman et al. 1997, Dı́az and Cabido 2001, Folke et al. 2004; Bellwood 

et al. 2019). For both fundamental and applied research, it is not only important to identify species 

that are key to the maintenance of essential functions, but also to establish the extent to which 

species are functionally similar (underpinning redundancy) or different (underpinning 

complementarity) (Lawton and Brown 1993, Frost 1995, Nyström 2006, Blüthgen and Klein 2011, 

Burkepile and Hay 2011, Brandl et al. 2019). Complementarity essentially describes niche 

partitioning in an Eltonian, functional context (Brandl et al. 2019; Bellwood et al. 2019). 

Substantial complementarity has been documented within superficially homogeneous groups of 

flying insect pollinators (Blüthgen and Klein 2011), grazing subtidal urchins (Brandt et al. 2012), 

savannah ungulates (Pringle et al. 2014), and small desert herbivores (Thibault et al. 2010). 

However, for practical purposes a delicate balance is necessary between the benefits of tractability 

and the risks of oversimplification. On the one hand, it is necessary to ensure tractability or utility 

of functional groups, which requires collapsing diverse species into groups of ecologically similar 

entities, e.g., trophic groups or guilds. On the other hand, groupings may oversimplify ecological 

dynamics, masking important differences between species within the same functional category and 

their contributions to ecological processes (Körner 1994).  

Ecosystems with high inherent species richness, such as coral reefs and tropical rainforests are 

characterized by a complex mosaic of biological interactions, and a wide variety of available of 

microhabitats (Gentry 1982, Reaka-Kudla 1997, Graham and Nash 2013). This complexity has 

spurred the development of functional group classifications, on coral reefs in particular (Bellwood 
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et al. 2004; Nyström 2006; Darling et al. 2012). Nevertheless, species within these groups may 

differ in a number of ways that could impact the delivery of their functions. Thus, to ensure that 

functions are maintained as species assemblages change, we need to know the extent to which 

species within the same broad functional entity differ from one another. It is doubtful that there is 

‘true redundancy’ within functional groups; rather there will be some degree of complementarity, 

dependent on the scale at which behaviour is assessed (Brandl and Bellwood 2014). Within 

functional entities, complementarity of functional delivery can be a result of fine-scale partitioning 

of resources, which can be based on species-specific differences in targeted resources, or temporal 

and spatial patterns in their exploitation (Wellborn and Cothran 2007, Fründ et al. 2013). Species 

foraging patterns are likely to reflect all of these elements, thus providing a window into the extent 

of functional complementarity among species. 

Foraging movements are determined by economic decisions to optimize the food resource gained 

per unit of energy expended (MacArthur and Pianka 1966). Thus, while not the only factors 

affecting movement, foraging movements depend both on dietary preferences and the abundance 

and patchiness of the food resources targeted (Stephens and Krebs 1986). For example, to account 

for long travel times and their associated costs, patchy food resources require long patch residence 

times (Charnov 1976). Additionally, low-quality patches will be depleted quickly below an energy 

gain per unit effort that maintains optimum foraging (McNair 1982). As a result, species that focus 

their diets on patchy or lower quality food items may have shorter patch residence times and greater 

exploration times (Stephens and Krebs 1986). Because foraging movement decisions are made 

based on the density and location of food resources, even among closely related species, these 

types of small differences in dietary preference can favor different foraging strategies (Pyke 1984).  
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In addition to these factors, patch use may also be impacted by the threat of predator (Brown et al. 

1992, Catano et al. 2015) or competitor species (Mitchell et al. 1990). 

Variations in foraging strategy are the result of adaptive changes that facilitate coexistence among 

species competing for space and resources (Tilman 1982, Chesson 2000). However, different 

foraging strategies are also likely to affect the spatial extent over which species perform their role 

(Nash et al. 2013, Nash et al. 2016). Efforts to identify a forager’s spatial scale of operation through 

home-range assessments are useful but feeding activity can be heterogenous and concentrated 

within certain areas of the animal’s range (Welsh and Bellwood 2012, Streit et al. 2019). As a 

result, assessments of animals’ foraging movements can benefit from various types of behavioural 

observations across multiple spatial and temporal scales. 

Coral reef fishes can overlap heavily in their broad use of habitats and in their contributions to 

ecosystem functions (Mouillot et al. 2014). Conservation actions have been adopted on the basis 

of these strategies to manage coral reef ecosystems with a particular focus on the role of 

herbivorous fishes (Green and Bellwood 2009, Adam et al. 2015a + 2015b, Chung et al. 2019). 

Herbivory by coral reef fishes was originally divided into four broad functional categories based 

on foraging strategies: grazers, browsers, scrapers, and bioeroders (Bellwood et al. 2004, Nyström 

2006, Green and Bellwood 2009). These categories cover a suite of functions that facilitate reef 

resilience to disturbance, and can prevent them from shifting to less desirable, alternate states 

dominated by algae (Hughes et al. 2007). However, species within these groups are far from 

homogenous in their niches (Brandl et al. 2019; Bellwood et al. 2019). For example, browser 

species can differ strongly in their preference for algal food resources (Rasher et al. 2013; Streit et 

al. 2015, Puk et al. 2016), while grazers separate into species targeting the tips of algae (e.g. , 

croppers) and species targeting particulate matter within algal turfs (e.g., Brandl and Bellwood 
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2016; Tebbett et al. 2017). Similarly, scraping and bioeroding parrotfishes differ substantially in 

their ingestion and post-ingestion treatment of resources (Clements et al. 2016, Adam et al. 2018, 

Nicholson and Clements 2020), leading to various refinements of the initial categories over the 

years (Brandl & Bellwood 2016; Siqueira et al. 2019). However, these classifications still focus 

primarily on diet and resources acquisition method.  Few consider spatial dimensions of resource 

use. While reef herbivores are known to vary in their specific microhabitat use (e.g., horizontal, 

vertical, underside) (Fox and Bellwood 2013, Brandl and Bellwood 2014, Adam et al. 2018, Puk 

et al. 2020), fine-scale foraging movements and spatial resource partitioning in coral reef fishes 

remains poorly understood (Streit et al. 2019). Yet it is at this scale that resource partitioning and 

complementarity may be most strongly expressed, with significant effects for reef functioning 

(Ruttenberg et al. 2019).  

We investigate the degree to which differences in foraging behaviour can transcend boundaries set 

by traditional functional group classifications. Specifically, we assess the fine-scale foraging 

movements of three coral reef herbivores: two grazer/cropper species (Siganus corallinus and 

Siganus vulpinus) and one scraper (Scarus schlegeli). We ask: How does foraging behaviour and 

space-use vary between species? Specifically, (1) which traits (speed, turning angle etc.) define 

the differences between their foraging paths? (2) Do short-term hourly movement patterns (in situ 

behavioural observations) reflect longer-term daily patterns of space use (assessed via active 

acoustic telemetry)? (3) Are there substantial differences in the scale of operation among species, 

and does this affect the spatial extent over which these species perform their functional role? 

5.3 Methods 

Field sites were located on reefs at Lizard Island, a granitic mid-shelf island on the Great Barrier 

Reef. We studied three species: two rabbitfishes Siganus vulpinus and Siganus corallinus (Fig. 
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5.1), and one parrotfish Scarus schlegeli. The two rabbitfishes are categorized as cropping 

herbivores that take discrete bites from small algae or cyanobacteria (i.e., grazers) (Brandl and 

Bellwood 2016; Hoey et al. 2013) and occur almost exclusively in stable pairs (Brandl and 

Bellwood 2013; 2015). By contrast, Scarus schlegeli lives in small groups and is a scraping 

herbivore that ingests the entire epilithic algal matrix (i.e., scraper) (Clements et al. 2016).  

 

Figure 5.1 Photo of two Siganus corallinus individuals (credit: Victor Huertas). 

While the vast majority of grazing herbivores on reefs have limited home ranges and exhibit strong 

site fidelity at the reef scale, there is considerable variation in the movements among both 

rabbitfishes (Brandl & Bellwood 2013; Fox & Bellwood 2011) and parrotfishes (Welsh & 

Bellwood 2011, 2012). The three species in the present study were selected to permit a comparison 

between two species commonly considered to be functionally equivalent (the two cropping 
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rabbitfishes), while anchoring these observations within the broader classification of grazing 

herbivores by including a functionally-different species (the scraping parrotfish). Foraging path 

observations were performed on Big Vicki’s Reef (5 hectares) from Feb 7 th – Feb 11th 2014, while 

the acoustic tracking was performed on Watson’s Reef (2 hectares) from Apr 25 th – May 4th 2012. 

Both reefs are on the leeward side of the island and represent typical backreef sites with low wave 

energy and depths between two and five meters. The two reefs are separated by a distance of 

approximately 2 km and represent broadly similar lagoonal habitats dominated by corals and turf 

algae. We chose to perform the two parts of the study on different reefs for several reasons: 1) 

since acoustic tracking involves the capture and manipulation of fishes, which may modify the 

individual’s reactions to observers in the water, we considered it safer to avoid the reef that fishes 

were tagged on; 2) Big Vicki’s reef offered a more expansive and slightly deeper reef environment, 

thus allowing for higher replication without the risk of re-sampling the same individuals, while 

ensuring a minimal observer effect from the snorkeler in the water. 

5.3.1 Focal foraging path observations 

We quantified the fishes’ foraging movements in situ. A single snorkeler (SJB), equipped with a 

handheld global positioning system (GPS) unit in a waterproof case, which was set to 

automatically record its position every five seconds, performed the observations. We 

opportunistically located an adult of one of the three target species and followed the fish for 30 to 

45 minutes. We followed the fish as closely as possible (snorkeling offering one of the least 

disturbing methods of observation; Welsh and Bellwood 2011), recording different behaviours 

(i.e., swimming and feeding behaviour). For each behaviour, the observer recorded the exact time 

of the event (hh:mm:ss) using a digital wristwatch that was precisely synchronized with the GPS 

unit. All focal observations occurred between 08:00 – 17:00, a time window during which most 
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herbivorous fish species are actively foraging. We considered a foraging bout to be finished once 

the fish stopped biting the substratum and assumed a horizontal position characteristic of 

swimming activity (Nash et al. 2012). During all observations, we ensured positioning directly 

above the focal individual (which restricted our observations to areas with depths >2m to ensure 

fishes were undisturbed by the observer). After 30 to 45 minutes (or when the focal individual 

showed signs of behavioural modification due to being followed by the snorkeler or contact was 

lost due to depth or visibility), the observer abandoned the focal individual in search of an 

individual of one of the other two species. Once individuals in all three species were followed, the 

observer took a haphazard turn, swam for at least 100 meters, and searched for another individual 

in any of the three target species. To avoid duplication, we spread efforts across different sections 

of the reef and took notes on size and color patterns of the observed fish.  

5.3.2 Acoustic telemetry 

To obtain a more detailed assessment of space use in the two rabbitfish species, we used active 

acoustic telemetry on five adult individuals of Siganus corallinus (in three pairs; SC1 and SC2, 

SC4, SC5 and SC6) and three adult individuals of Si. vulpinus (in two pairs; SV2, SV3 and SV4). 

An additional individual was tagged in each species but disappeared shortly after release, probably 

due to predation (Khan et al. 2016). While the behaviour of paired individuals will not be wholly 

independent from their partner, separation of individuals or exclusive treatment of only one partner 

can result in changes of behavioural patterns. To tag the individuals, we caught pairs using barrier 

nets on Watson’s Reef and transported them immediately to Lizard Island Research Station in 

large bins full of fresh seawater, ensuring pairs were maintained. At the station, we placed pairs in 

separate large (300l) flow-through seawater aquaria. In the evening of the day of capture, we 

anesthetized each fish in a saline solution of tricaine methanesulphonate (MS-222, 0.13 g l−1) and 
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surgically implanted an acoustic transmitter (Vemco V9-6L) into the gut cavity (cf. Brandl and 

Bellwood 2013). After closing the incision with sutures and ensuring full recovery from anesthesia, 

we held fishes in their tanks overnight. We returned the fishes to the exact site of capture the next 

morning. 

Fish were allowed 48 hours to recover, after which we started acoustically tracking each fish from 

a 3.1 m kayak using a calibrated directional hydrophone (VH110) and an acoustic receiver 

(VR100, both Vemco) (Fox and Bellwood 2011; Brandl and Bellwood 2013). Tracking continued 

from 30 min before dawn to 30 min after dusk 117ifferex. 06:30 – 18:00). We maneuvered the 

kayak to obtain maximum signal strength from the respective tag every 15 minutes, while the 

receiver recorded the kayak’s GPS position. We tracked each fish for three non-consecutive days 

and verified the identity and normal behaviour of the tracked individual via a short in situ 

validation by a snorkeler each day (identifying the tagged fishes through the visible surgical 

incision; Brandl and Bellwood 2013). 

5.3.3 Data analysis 

We performed all data analyses in R (R Core Team, 2019). For the snorkeler-based observations, 

we matched timed GPS recordings with recorded times for each feeding event to quantify the path 

between successive feeding events for each. From these, we calculated six traits to characterize 

different aspects of foraging behaviour or space use: 1) 95% minimum convex polygon (MCP) of 

space used during the observation, 2) mean swimming speed, 3) mean turning displacement 

(higher displacement = sharper turns) between successive movement bearings, 4) overall tortuosity 

of the feeding path, 5) number of feeding events minute-1, and 6) average distance between feeding 

events (inter-foray distance). We computed MCPs using the package adehabitatHR (Calenge 

2006), and distances (using the Haversine method) and bearings between points, using the package 
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geosphere (Hijmans 2016). We calculated overall path tortuosity as the ratio of the straight -line 

distance between the start and end locations, and the total distance travelled by the fish (following 

Secor 1994, Fulton and Bellwood 2002). We tested for differences between the three species in 

each of these traits with Analyses of Variance (ANOVA). To ensure normality and 

homoscedasticity of variances, it was necessary to log transform the MCP values. After 

transformation, MCP values for Si. vulpinus became normally distributed (Shapiro-Wilk: 0.88, p 

= 0.12) and MCP variance among species was homogenous (Bartlett: 5.64, df = 2, p = 0.06). 

Furthermore, we visualized inter- and intraspecific variation in these traits with a non-metric 

multidimensional scaling (MDS) ordination based on a Bray-Curtis dissimilarity matrix (Gauch 

1973). We ran the ordination on a square root Wisconsin transformed matrix to ensure that 

differences in scale between trait values did not influence the analysis (Del Moral 1980). We used 

a Permutational Analysis of Variance (PERMANOVA) to test for significant differences in the 

overall foraging strategies of the three species and tested for homogeneous multivariate dispersion 

between species using PERMDISP. Lastly, we used the SIMPER analysis to determine which 

traits contributed most to differences in foraging behaviour between species. PERMANOVA, 

PERMDISP and SIMPER tests were run on the transformed dissimilarity matrix using the package 

vegan (Oksanen et al. 2016). 

For the active tracking data, we used the GPS points from each 15-minute intercept (choosing the 

highest-strength signal around the 15-minute mark) to compute kernel utilization distributions 

(KUDs) for each individual, which we used to estimate 95% daily foraging areas and 50% core 

areas for each individual (Brandl and Bellwood 2013). We calculated KUDs for each day and the 

cumulative GPS points across all days. We again used the package adehabitatHR (Calenge 2006). 
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We tested differences in cumulative daily foraging areas and core areas between the two 

rabbitfishes with two-sample t-tests. 

Lastly, we also computed overall feeding rates (bites/min) and movement rates (meters/min) for 

each fish observed on snorkel. Specifically, our rationale was that differences in foraging strategy 

between species may be underpinned by fine-scale dietary differences. Differences in feeding 

efficiency between species may help to highlight this, as diets may provide more or less energy 

per bite. Feeding rates were calculated based on the total time spent feeding within each 

observation (with each feeding event estimated as five seconds), multiplied by previously 

established bite rates during feeding events, for each species (Brandl and Bellwood 2014). Feeding 

efficiency was calculated by dividing each individual’s feeding rate by its movement rate. As with 

the six traits above, for these three factors we tested differences between species with ANOVA.  

5.4 Results 

Overall, we followed 29 individual fishes (counts: Siganus corallinus = 9 individuals; Si. vulpinus 

= 10 individuals; Scarus schlegeli = 10 individuals). Overall observation time totaled 17.4 hours 

(mean observation times: Siganus corallinus = 35.9 min ± 2.21 SE; Si. vulpinus = 34.5 min ± 2.54; 

Scarus schlegeli = 37.4 min ± 1.82) during which we recorded 1,190 feeding events. Foraging 

patterns differed for the three fish species, both within and across functional group boundaries. 

Variation in short-term foraging movements (Fig. 5.2) was mirrored by daily space use in the two 

rabbitfishes, where both 95% daily foraging areas and 50% core areas of Si. vulpinus were 

significantly larger than those of Si. corallinus (t(6) = -6.00, p < 0.001, and t(6) = -6.28, p < 0.001, 

respectively (Fig. 5.3). Overall, we found significant variation between species for five of the six  

 



  Chapter 5 – Complementary foraging behaviour 

 

120 

 

 

Figure 5.2 Foraging paths and resulting size and distribution of short-term feeding areas (direct 

observation). A-C) Example foraging paths for all three species. Green = the parrotfish Sc. 

schlegeli, yellow and blue = the rabbitfishes, Si. vulpinus and Si. corallinus, respectively. Dots 

represent foraging locations, while lines represent vectors between foraging events. Path insets not 

scaled by area, but relative size can be seen in the wider figure. D) Distribution of feeding areas 

(MCP) for each species on Big Vicki’s Reef with inset showing location of Big Vicki’s Reef on 

Lizard Island, colors as above. 

 

movement traits we investigated (Fig. 5.4). Specifically, there were significant differences in the 

log of foraging area covered (F2,26 = 21.96, p > 0.001), mean speed of travel  (F2,26 = 3.98, p = 

0.031), mean turn angle (F2,26 = 4.71, p = 0.018), feeding frequency (F2,26 = 9.44, p > 0.001), and 

meaninter-foray distance (F2,26 = 7.41, p = 0.003). Si. corallinus had the smallest mean foraging 

area, while Si. vulpinus had the largest. We found a similar relationship for mean speed, with Si.  
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Figure 5.3 Relative size of daily foraging areas (acoustic telemetry). (A) Spatial distribution of 

daily foraging areas on Watson’s Reef. Dotted and dashed lines mark the 95% Kernel Utilization 

Distributions (KUDs), while filled, transparent areas mark the 50% core areas. Fish numbers are 

given for all paired and the two singular individuals. Colors as above. (B) Location of Watson’s 

Reef on Lizard Island. 

 

vulpinus travelling at greater speeds than Si. corallinus. Si. vulpinus also took wider turns between 

feeding bouts compared to Si. corallinus and Sc. schlegeli (Fig. 5.4). However, despite difference 

in turning angles, we found no significant differences for the overall tortuosity of foraging paths. 

While mean tortuosity did not differ, variance in path tortuosity was substantially larger for the 

rabbitfishes than for Sc. schlegeli. Sc. schlegeli had more frequent foraging bouts than Si. 

corallinus, and Si. vulpinus had longer inter-foray distances than either of the other species. As 

would be expected from the results above, species identity was significant in determining foraging 

behaviour, explaining 42% of variance among individuals (R2 = 0.42, p < 0.001, Fig. 5.5). 

All species showed similar levels of intraspecific variability in foraging traits; mul tivariate 

dispersions were not significantly different between species (p = 0.060). Despite not differing 

significantly in the univariate analysis, path tortuosity contributed to differences between species  
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Figure 5.4 Differences in the six metrics used to evaluate foraging paths of the three species. 

Asterisks indicate significant differences among species via ANOVA. Si. vulpinus foraging 

movements are characterized by: large areas, wide turns, higher speeds, and longer inter-foray 

distances; Si. corallinus foraging movements are characterized by: small areas, sharp turns, low 

feeding frequency, low speed, and short inter-foray distances; Sc. schlegeli occupy intermediate 

positions but display the highest frequency of foraging. Boxplots represent the median and 

interquartile range of each foraging trait. Dashed lines separate the two grazing rabbitfishes from 

the scraping parrotfish 

 

within the multivariate analysis. Differences between species were most strongly predicted by the 

size of their foraging areas, the tortuosity of their foraging paths and the mean turning angle 

between feeding events, with each of these traits explaining over 20% of the difference between 

any two species. Mean speed was the least informative trait, explaining < 10% of the average 

difference between any two species. Differences between the parrotfish Sc. schlegeli and the 

rabbitfish Si. corallinus, were mostly driven by a tighter (18%), smaller (19%) and more tortuous  
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Figure 5.5 Non-metric multidimensional scaling ordination depicting differences in foraging paths 

of three species: the rabbitfishes Siganus vulpinus (yellow), Si. corallinus (blue), and the parrotfish 

Scarus schlegeli (green). Convex hulls represent minimum convex polygons for all individuals of 

a species. Vectors represent the loadings. 

 

feeding path (24%) for the rabbitfish. Similar differences were reflected between the two 

rabbitfish, with large proportions of variance defined by tighter turns (26%), and a smaller feeding 

area (29%) for Si. corallinus, however a less tortuous path (20%) than Si. vulpinus. Differences 

between Sc. schlegeli and Si. vulpinus were also most strongly determined by a larger (19%) more  
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Figure 5.6 Feeding Rate, Movement Rate, and Feeding Efficiency of the three species. Asterisks 

indicate significant differences among species via ANOVA. Boxplots represent the median and 

interquartile range of each foraging trait. Dashed lines separate the two grazing rabbitfishes from 

the scraping parrotfish. 

 

tortuous feeding path (21%) for the rabbitfish, as well as a faster feeding frequency (21%) for the 

parrotfish.  

Lastly, species differed significantly in their feeding rates (F2,26 = 44.55, p > 0.001), movement 

rates (F2,26 = 4.33, p = 0.024), and their resulting feeding efficiency (F2,26 = 12.71, p > 0.001) (Fig. 

5.6). Si. corallinus had the lowest movement rates, with both Si. vulpinus and Sc. schlegeli moving 
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faster. Based on unique foraging events and bite rates, the parrotfish took many more bites per 

minute than either rabbitfish species. Due to these differences, the feeding eff iciency of the 

parrotfish was higher than either rabbitfish. While across the three species, a positive relationship 

between movement and bite rates was visible, only Si. corallinus showed an intraspecific trend 

where individuals traveling farther took more bites per unit time.  

5.5 Discussion 

Categorization of species based on their functional roles is a useful concept in ecology and 

conservation. However, behavioural differences among species within the same group may result 

in functional variation that is unaccounted for in broad categories. Our results demonstrate 

behaviourally-mediated diversity in functional roles of herbivorous fishes within and across 

functional groups, resulting in complementarity in their niches and spatial differences in the 

delivery of their functional roles. The differences in fine-scale foraging paths of the grazers, Si. 

corallinus and Si. vulpinus, are reflected in their broad-scale, reef-scape movements. Both fine-

scale activities and sustained broad-scale movements are critical components of animals’ energy 

budgets, but they also shape their functional roles within ecosystems, especially in a spatial 

context.  

In our analysis, we found clear differences in foraging behaviour between the three fish species, 

even those within the same functional group and genus, i.e., grazing rabbitfish. Feeding frequency 

was the primary trait that differentiated the two functional groups, both in terms of the number of 

forays per minute and the number of bites per minute. This difference could be expected as scrapers 

primarily remove epithelial algal matrix from flat or convex surfaces, which can be more readily 

located without disrupting movement (Brandl and Bellwood 2014, Clements et al. 2016). The two 
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grazers, on the other hand, will inspect holes or crevices for patches of algae to crop (Fox and 

Bellwood 2013; Brandl and Bellwood 2015), leading to slower bite rates and less frequent feeding 

events. As a result of its fast feeding rate and intermediate movement rate, the parrotfish appears 

to be the most efficient, or least selective, forager, taking the largest number of bites while traveling 

only short distances between those bites.  

As well as the expected behavioural differences between functional groups (i.e., grazers vs. 

scrapers), there were substantial differences between the two grazers. Si. corallinus moved slowly, 

focusing feeding effort within a very small area of the reef, and took sharp turns to stay within this 

core area. In contrast, Si. vulpinus ranged widely over a considerably larger feeding territory and 

travelled substantial distances between forays in a roughly circular, and remarkably predictable 

pattern. Though sample sizes for acoustic tracking were limited and included non-independent 

paired individuals, we have considerable confidence that these differences were reflected in the 

daily foraging areas of each species as well, with Si. corallinus occupying a much smaller foraging 

area than Si. vulpinus. Complementary scales of space use among these two species indicate that 

both species will contribute more strongly to algal grazing than either could alone, which holds 

important implications for the management of herbivory on coral reefs (Topor et al. 2019). 

Some of the differences in the foraging search patterns of the rabbitfish species could be driven by 

differences in their diets. While both are considered grazers, Si. corallinus primarily targets small, 

dense red algae, while Si. vulpinus mostly consumes cyanobacteria (Hoey et al. 2013). 

Furthermore, Si. vulpinus, with its extremely elongated snout, appears to obtain most of its food 

from deep crevices and interstitial microhabitats compared to Si. corallinus, which targets 

shallower crevices that it can exploit with its more moderate head morphology (Brandl and 

Bellwood 2014, 2016). Differences in foraging behaviour between the two species may be driven 
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by the spatial organization of these resources on reefs and their patchiness; while small red algae 

and shallow crevices can be expected to occur frequently throughout the reef matrix, deeper 

crevices with dense mats of cyanobacterial growth are less common (Brandl et al. 2015, Harris et 

al. 2015). These differences closely resemble those recorded in a range of wrasse species on coral 

reefs (Fulton and Bellwood 2002). Additionally, cases of food distribution affecting foraging 

strategies, like those seen here, have been seen in a variety of systems, including ant colonies 

(Lanan 2014). However, we currently lack detailed information on the spatial organization of algal 

resources needed to determine the exact relationships between resource distributions and the 

fishes’ foraging movements. Differences in foraging paths may be influenced by many aspects of 

the targeted food resources, including their patchiness, within patch density, or their nutritional 

and energetic quality (Schatz and McCauley 2007). 

While both red algae and cyanobacteria are thought to be nutritionally poor, cyanobacteria appear 

physically less dense than corticated red algae, lacking the same hard external tissues. A lack of 

hard tissues could make cyanobacteria easier to mechanically process when feeding, consistent 

with observations of larger handling times for crustacean prey (Hoyle and Keast 1987). Under the 

patch model of optimal foraging theory, a foraging strategy involving long travel to distant patches 

is linked with low quality of nearby patches (Charnov 1976). A forager will leave a patch and 

continue searching when the rate of energy gain in a patch has been reduced below what could be 

obtained elsewhere (Stephens and Krebs 1986). If cyanobacteria are particularly easy to process, 

then the “quality” (here related directly to quantity) of cyanobacteria patches may be reduced 

sooner than that of red algae, prompting patch exit and further exploration. These differences could 

result in a foraging strategy with shorter patch residence times, and larger territory sizes on average 
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(Charnov 1976, Stephens and Krebs 1986). Corticated algae patches on the other hand may 

maintain their quality long enough to favor long patch occupancy, and smaller range sizes.  

Another difference between these two food sources is that cyanobacteria are considered 

unpalatable for many species and produce metabolites to deter their consumption (Paul et al. 1990, 

1992; Capper et al. 2006). Toxin constraint models predict foragers should exhibit partial food 

preferences, consuming multiple food types even when a toxin-producing food item is most 

nutritionally profitable (Stephens and Krebs 1986). In this way profitability of food items will be 

balanced against toxins they contain. This balance was illustrated for reef herbivores in a study by 

Hay et al. (1994) where, when given a choice between a control food source and one supplemented 

with metabolites, reef and seagrass parrotfishes almost exclusively consumed the control food 

sources. Because of this, Si. vulpinus may need to supplement its diet with other food sources that, 

while less preferred, produce less toxin. For instance, dense, mat-forming species of cyanobacteria 

(e.g. genus Lyngbya) are expected to produce more toxins than their sparser counterparts (Cissel 

et al. 2019). Consequently, short patch residence times and wide movements for Si. vulpinus may 

be due to the quicker depletion of less-dense cyanobacteria patches that produce less toxin. 

However, without similar choice experiments on these species, it is unclear how much rabbitfishes 

are constrained by cyanobacterial metabolites.  

The feeding efficiency approach given here reveals some intriguing differences between species. 

However, without clear information on nutritional content and assimilation efficiency these 

comparisons are solely exploratory. Energy budgets are complex and, in addition to these 

nutritional factors, are a result of other properties like body size and swimming style/speed. The 

two families differ substantially in their locomotion: while rabbitfishes rely largely on undulating 

caudal and pectoral-caudal propulsion, wrasses (such as parrotfishes) almost exclusively use 
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flapping pectoral propulsion (Fulton 2007). Energetic studies have suggested that flapping, 

pectoral propulsion (labriform swimming) is more energy efficient than undulating (Korsmeyer et 

al. 2002) or rowing pectoral propulsion, the latter of which rabbitfishes frequently employ for fine-

scale maneuvering (Jones et al. 2007). Thus, in principle, one may expect that the parrotfish could 

meet energetic demands with lower feeding efficiency than the two rabbitfish species. 

Nevertheless, there are important other considerations that can underpin energetic demands, such 

as energy and nutrient content of food items. First, given the strong relationship between body 

mass and metabolism, a Sc. schlegeli of 20cm (192 g, estimated using length-weight relationships) 

would have a resting metabolism approximately nearly 50% higher than than a Si. corallinus of 

equal length (117 g) and would require substantially more energy (Clarke and Johnston 1999). 

Second, by scraping microbes from the calcareous reef matrix and winnowing through unwanted 

material, energetic and nutritional net gains per bite may be low for the parrotfish (Clements et al. 

2016), thus necessitating high ration of bites per unit distance covered during foraging despite the 

lower energetic demands of labriform locomotion. In contrast, procurement of algae may be 

relatively easy for the two rabbitfishes. Our findings highlight the important need to investigate 

reef herbivores through an energetic and nutritional lens to fully understand the drivers and 

consequences of their foraging patterns.  

Protecting valuable ecosystem functions requires an understanding of variations within and 

between functional entities (Brandl et al. 2019). Our work highlights the importance of foraging 

behaviour as an important dimension in species management, as nuanced behavioural differences 

among fish species can indicate strong species-specific patterns of space and resource use that can 

result in complementarity in functional roles. This complementarity is ultimately driven by 
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differences in species’ energy budgets, which emphasizes the need for detailed examinations of 

consumer species, their food choices, and the functional consequences of this interaction. 

5.6 Contribution of Authors 

RFS extracted relevant foraging traits from GPS data, developed the primary research questions 

along with SJB, performed all data analyses, and wrote the first draft of the manuscript. SJB 

performed all focal observations and managed acoustic tracking efforts. All authors contributed 
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6. General Discussion 
 

6.1 Key Findings 

In this thesis I have focused on the value of understanding changes and variations in foraging 

behaviour, both within and between species. My work evaluated potential behavioural responses 

to human-induced rapid environmental change (Sih et al. 2011, Tuomainen and Candolin 2011), 

specifically bottom-up effects of altered food availability (Wong and Candolin 2015, Wilson et al. 

2020). Using coral reef mortality and corallivorous fish as a model system, I evaluated species-

level and community-level outcomes for changes in two important aspects of corallivore 

behaviour: dietary specialization and patch use. These efforts highlighted the importance of 

understanding change and diversity in foraging behaviour among species. I then applied a similar 

framework to a species group critically important to coral reef management. I investigated 

interspecific variation in the foraging behaviour of coral herbivores, as well as possible dietary and 

physiological explanations for these differences, and  their potential conservation implications.  

In Chapter 2, I reviewed the extent to which bottom-up effects have been seen to alter three 

important aspects of foraging behaviour: home range size, feeding distances, and aggression. I 

found taxonomic biases in the resulting research, with most studies focused on either mammals or 

birds. These make sense given existing biases toward these groups in conservation and behaviour 

research overall (Bonnet et al. 2002, Clark and May 2002, Rosenthal et al. 2017). As predicted 

from optimal foraging relationships (Ford 1983, Covich 1976), studies on territory size and feeding 

distance frequently observed a negative relationship with food availability, however this was not 

a significant effect for home range size. Additionally, studies on aggressive behaviour were split 

evenly between negative and positive relationships with food availability, as predicted (Enquist 
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and Leimar 1987, Peiman and Robinson 2010). The strict data requirements of the study led to a 

limited number of datasets (n= 43) that could be included in the meta-analysis. However, there 

was some indication of context-specific factors that may have a weak moderating effect on the 

strength of a space-use response. The two factors that were seen to have the largest effect on the 

strength of the response were predator taxonomy (mammals were more likely to show an increase 

in space-use under lower food availability) and prey seasonality (predators with seasonally 

fluctuating food sources were less likely to show an increase in space-use under lower food 

availability). Notably, the stronger responses for mammals are a particular concern when 

generalizing predictions from optimal foraging theory to less frequently studied groups. To 

reasonably predict changes in forager behaviour for management purposes, a deeper understanding 

of these constraints is needed. 

In Chapter 3, I evaluated how reduced food availability (bleaching-induced coral mortality) 

affects dietary specialization, and how resulting dietary changes affect the structure of coral -

corallivore networks. Consistent with predictions of the optimal diet model (Emlen 1966), I found 

that after coral mortality, coral-feeding fish had broader and more even diets. Moreover, these 

changes in diet appeared to be driven by a weakening of dietary preferences, rather than resulting 

from prey-switching (Murdoch 1969, Cornell 1976). This response led to a reduction of resource 

overlap at the genus-level, as many corallivores had specialized on Acropora corals prior to 

bleaching and these were most strongly affected by the bleaching event (Marshall and Baird 2000, 

Loya et al. 2001). Dietary changes led to substantial change in the coral-corallivore network, with 

a majority of this change due to rewiring of interactions. These changes in network structure 

continued in the second year following the coral bleaching event. After bleaching, the overall 
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interaction network was more connected, less specialized, and interactions were spread more 

evenly among species.  

In Chapter 4, I investigated the degree to which butterflyfish foraging behaviour varies between 

low and high-coral environments, whether this differs substantially between species (particularly 

between specialists and generalists), and whether differences in foraging behaviour follow 

predictions from optimal foraging theory. I found that there are significant differences in foraging 

traits, with some of these shared among species, and others unique to individual species. For 

example, all species increased their instantaneous bite rates in low-coral areas in line with 

expectations from compensatory grazing behaviour in terrestrial herbivores (Chen et al. 2013). 

However, the most notable difference was that the specialist, C. trifascialis, has much shorter patch 

residence times within low-coral territories, a sharp difference from its strong territorial behaviour 

under normal conditions. In spite of altered behaviour in the specialist, it maintained a significantly 

lower overall bite rate in low-coral territories, which, in combination from expected lower 

nutritional quality of alternate prey (Pratchett et al. 2004, Berumen et al. 2005), could explain rapid 

population declines for these species after disturbance (Wilson et al 2014). 

In Chapter 5, I applied a similar framework to a species group critical to coral reef management. 

I evaluated the extent to which foraging movement behaviour varies within and between different 

functional groupings of coral reef herbivore species, whether differences in short-term movements 

reflect overall differences in daily space-use, as well as any potential dietary or physiological 

explanations for these differences in behaviour. Among the three herbivore species evaluated there 

was substantial variation in movement behaviour both within and across species, with intergroup 

differences (between grazer and scrapers) primarily defined by differences in movement speed and 

feeding frequency, and with intragroup differences (among grazers) primarily defined by turn 
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angle and  territory size. These differences may stem partially from the differential distribution, 

processing efficiency, or nutritional quality / palatability of their preferred food sources. 

Particularly, the differences in movement behaviour among grazer species highlights potential 

complementarity in the scale of their functional delivery and together these species may contribute 

more strongly to grazing than either could alone. 

6.2 Synthesis 

6.2.1 Interplay between optimal foraging responses 

Chapter 2 illustrates several potential constraints on optimal foraging responses, however another 

possible source of context-specific outcomes not explored in this systematic review is better 

highlighted by the interplay between the results of Chapter 3 and Chapter 4. After food loss, 

butterflyfish species appear to change their dietary specialization in a similar fashion, but the same 

is not true for their patch usage. This highlights the potential for change in one aspect of foraging 

behaviour to prevent, or alter, change in another aspects. The reasons for this may stem from how 

optimal foraging models are structured.  

Optimal foraging models have evolved in a variety of ways over the years since their inception, 

tackling issues such as incomplete information / learning (Stephens 1987, Dall et al. 2005, Dunlap 

and Stephens 2012), variable handling times (Sih 1980, Anderson 1984), and multiple currencies 

(Simpson and Raubenheimer 1993, Simpson et al. 2004). However, the initial versions of these 

models as used here made a number of assumptions that can lead to issues when multiple aspects 

of foraging behaviour change. Emlen’s optimal diet model predicts a diet based on the energetic 

benefit of an item's inclusion, taking into account its handling time and abundance within the 

environment (Emlen 1966, Charnov 1976a). To keep calculations simple, this model assumes a 
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set handling time for each food type, and doesn’t account for  how changes in foraging behaviour 

might affect the ease with which food items are obtained and processed. Similarly, in its initial 

form, the marginal value theorem predicts optimal patch usage based on the gain of energy within 

a given patch, relative to the average potential energy gain across the environment (Charnov 

1976b). It assumes a set gain function for a given forager within a patch, and doesn’t account for 

how changes in diet might affect the relative gain of different patches. If these factors are not 

directly accounted for, the predictive quality of either of these models is subject to the degree of 

interplay between changes in diet and foraging behaviour. 

Results of Chapter 4 provide a couple of interesting patterns that may be likely to play out when 

both diet and foraging behaviours are predicted to change. These patterns may tie in closely with 

a given species’ initial level of dietary specialization. In some cases, changes in both diet and 

foraging behaviour could occur independently from one another, with a change in one having no 

bearing on the ability or likelihood of changing another. This may be especially true for generalists, 

for which, because of their already diverse diets, further dietary expansion should have little 

influence on whether changes in patch usage are beneficial. On the other hand, for a specialist such 

as Chaetodon trifascialis, the behavioural changes predicted from optimal foraging theory 

(increased patch residence time) may not prove as beneficial if the species is also experiencing a 

notable dietary expansion. As a result, we instead see a shift in patch use behaviour in the opposite 

direction, with patch usage in low-coral areas more similar to that of the generalists. If the diet of 

C. trifascialis had remained specialized on tabular Acropora corals in low-coral conditions, then 

the predicted changes in patch usage behaviour may have been observed. 

Moreover, another difficulty in applying these models is the assumption that all prey of a given 

type provide equal nutrition (Emlen 1966, Charnov 1976a). In reality, food items of the same 
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species can vary substantially in size (Werner and Hall 1974, Turner 1982) and quality (Chapman 

et al. 2003, Mitra and Flynn 2005). It is for this reason that many tests of the optimal diet model 

treat prey of different size classes as separate diet entities (e.g. Werner and Mittelbach 1981), as 

predators may have clear patterns of size selection. However, nutritional quality is less easily 

determined visually. In the case of corals, while there are some trends in nutritional quality among 

taxa (Graham 2007, Masterman 2012), corals may also vary in nutritional quality from colony to 

colony, particularly as a result of bleaching and subsequent coral health (Grottoli et al. 2004). For 

example, mucus-feeding corallivores often seek out recently bleached tissue (Cole et al. 2009), as 

thermal stress induces corals to produce more nutritious mucus (Wright et al. 2019). However, in 

general corallivores avoid bleached colonies after this initial increase, as bleached colonies can 

often be depleted of nutritious lipid reserves (Grottoli et al. 2004). As a result of bleaching, corals 

will often use-up stored lipids to compensate for losses in photosynthetic capability (Fitt et al. 

1993). A complete understanding of dietary selection will have to account for changes in the 

nutritional quality of corals as a food source. 

6.2.2 The functional importance of altered corallivory 

Chapter 5 considers the foraging behaviour of reef herbivores from a functional perspective, 

showing the importance of variation or change in reef fish behaviour, and how this may impact 

management. Chapter 3 and Chapter 4 on the other hand, primarily focused on the effects of 

altered corallivory on the corallivores themselves. However, it will be equally important to 

evaluate corallivory from a functional perspective and consider the effects of altered corallivory 

on corals and their survival after bleaching. Butterflyfish grazing of coral tissues is generally 

thought to be less harmful to corals than consumption by scrapers and bioeroders, because 

butterflyfish typically remove individual coral polyps, with minimal damage to the coral skeleton 
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(McClanahan et al. 2005, Rotjan and Lewis 2008). Nonetheless, changes in butterflyfish diet and 

foraging behaviour may raise important concerns regarding the recalcification of corals following 

disturbance, the spread of coral disease, and the reuptake of coral symbionts.  

While physical damage from butterflyfish corallivory is minimal compared to other taxa, the 

combined effect of tissue removal across butterflyfish populations can add up. Recent estimates 

project that butterflyfish corallivory can remove an average of 9-14% of a reef’s live tissue biomass 

annually, and this undoubtedly places some energetic strain on colonies (Cole et al. 2011). 

Chapter 3 further evidenced how butterflyfish corallivory is directed primarily onto Acropora 

species and this is reflected in consumption estimates, with the annual consumption of tabular 

Acropora reflecting 52-79% of those species’ annual energy production (Cole et al. 2012). 

Acropora corals are among the fastest growing corals, with high linear extension rates (Pratchett 

et al. 2015). However, after bleaching-induced mortality of Acropora colonies, these feeding 

efforts are then redirected onto other genera such as Montipora and Pocillopora. It is unclear how 

shifting of butterflyfish corallivory onto slower growing species may affect their health and 

survival in the long term and this is an important avenue for future research. 

Work has shown that, in several cases, corallivore species may contribute to the spread of coral 

disease (Rice et al. 2019). Specifically, with regard to butterflyfishes, these results are mixed. 

Some butterflyfishes may preferentially seek out diseased tissue (Chong-Seng et al. 2011, Noonan 

and Childress 2020), and overall butterflyfish abundance is positively correlated with disease 

presence (Raymundo et al. 2009). Simultaneously, aquarium studies of direct spread have shown 

Chaetodon capistratus can accelerate the spread of disease (Aeby and Santavy 2006), whereas 

Chaetodon plebeius feeding might not damage coral tissues enough to sufficiently promote 

infection (Nicolet et al. 2018). Nonetheless, careful consideration must be given to any potential 



   Chapter 6 – General Discussion 

 

143 

 

role butterflyfishes can play in disease spread or management. Just as increases in dietary breadth 

form new connections within interaction networks, it is possible these connections may also serve 

as a vector for disease transmission among colonies that were previously isolated from one another. 

Moreover, it is possible that if feeding by butterflyfishes cannot cause direct infection, then 

consumption of diseased tissue by butterflyfishes could actually slow the spread of disease 

(Chong-Seng et al. 2011). Additional efforts are needed to identify the exact role butterflyfish 

corallivory plays in disease spread, and how changes in dietary specialization may affect these 

functional impacts. 

In spite of these potential risks, corallivory may contribute important functional benefits to reef 

recovery as well. Recent work has shown that corallivory may serve an important role in the 

transfer of coral symbionts, as corallivore feces can serve as reservoirs for live symbionts (Castro-

Sanguino and Sánchez 2012). In particular, some of the strongest impacts may delivered by 

obligate corallivore species, with their waste containing live cell concentrations five to seven 

orders of magnitude higher than in the surrounding sediment or water (Grupstra et al. 2021). Just 

as new connections between coral and corallivore may serve as sources of potential infection, so 

may they help coral species access symbiont reservoirs. This means that while continued 

corallivory by butterflyfishes poses potential risks to corals through consumption or disease, the 

continued presence of these fishes may also be critical in ensuring that bleached colonies can 

reuptake algal symbionts and recover from bleaching. Further efforts must be taken to understand 

the functional importance of corallivory, both in light of this new information, as well as 

considering how broadened corallivore diets may modulate their positive and negative effects on 

the coral community. In particular, a broad understanding of the functional traits and contributions 

within and across corallivore species (sensu Mouillot et al. 2014), is a valuable research need. 



   Chapter 6 – General Discussion 

 

144 

 

6.3  Future Research 

This work opens up a variety of new avenues for future research. Specifically, this thesis highlights 

a need to better understand the nutritional benefit of corallivory, changes within coral reef 

interaction networks, and the full extent of behavioural overlap among reef herbivores.  

6.3.1 Fine-scale understanding of the nutritional quality of corals as prey 

The simplest optimal foraging models reduce prey consumption to a single currency, often long-

term energetic gain (Houston and McNamara 2014), however in reality, each food item provides 

a variety of nutrients which must be balanced against one another (Simpson et al. 2004, Simpson 

and Raubenheimer 1993). Any robust predictions of dietary selection by corallivores will require 

an understanding of the variety of coral species preyed upon and the relative concentrations of 

different nutrients within their tissues. Recently, estimates for nutritional quality of corals have 

been limited in scope, evaluating corals at the genera level or using broad nutritional metrics (e.g. 

Graham 2007, Masterman 2012). Additionally, nutrient concentrations alone are not sufficient as 

the realized nutritional benefit for corallivore species consuming a given coral will also depend on 

differences in their gut morphology and digestion (Masterman 2012, Berumen et al. 2011), which 

may influence nutrient uptake (sensu Clements et al. 2016, in parrotfishes). A full investigation of 

each of these factors in tandem is needed to understand the energetic and nutritional pathways for 

post-bleaching mortality and sublethal effects among corallivores. 

6.3.2 Understanding and functionally grounding coral-reef interaction networks 

Limiting Chapter 3 to just coral-corallivore interactions helped to focus clearly on the bottom-up 

effects of coral mortality. It also allowed for rapid collection of dietary data as coral and 

butterflyfish species identities can be determined quickly in-situ. However, there is immense value 
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in visualizing broader coral reef food webs, and recent advances make this a possible direction for 

future research. Bleaching-induced changes in fish diets foraging behaviour identified here (as 

well as the broader effects of coral bleaching and mortality) are likely to substantially affect 

interactions beyond the coral-corallivore system. Coral reefs are known to be incredibly diverse 

and complex (Reaka-Kudla 1997), including a variety of small cryptic organisms whose 

interactions are critical to reef energy budgets (Brandl et al. 2018). However, the overall structure 

of coral reef networks is relatively unknown, and this makes it difficult to predict how disturbances 

will propagate throughout coral reef food webs (Loreau et al. 2001). Recent advances in gut 

content metabarcoding make it possible to reveal the complexities of coral reef feeding interactions 

(Casey et al. 2019). These techniques now provide an exceptional opportunity to evaluate the 

effects of coral bleaching and mortality on food web structure, and this is a major component of 

my planned postdoctoral research. I hope to use gut content metabarcoding to reconstruct healthy 

and disturbed coral reef networks, compare differences in their topology, and investigate the 

relative strength and diversity of their contributions to essential coral reef functions (Brandl et al. 

2019) 

6.3.3 Broad assessment of behavioural overlap among herbivores 

Chapter 5 highlights important differences in foraging behaviour between reef herbivores. 

Unfortunately, this study faced time limitations in the field, and because of the large amount of 

effort involved acoustically tracking each individual over several days, efforts were focused just 

on three of the most abundant species. However, herbivory on coral reefs is maintained by a diverse 

suite of organisms (Green and Bellwood 2009), and given the number of other different ways 

herbivores vary in foraging behaviour (Adam et al. 2018, Brandl and Bellwood 2014), the patterns 

of inter- and intraspecific variation in movement behaviour seen here are important to quantify 
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across the herbivores overall. A full understanding of the dietary and behavioural overlap would 

be valuable for management purposes (Chung et al. 2019). 

6.4 Conclusion 

In summary, this work highlights the importance of interspecific variance in foraging behaviour, 

as well as the importance of change in foraging behaviour as a result of bottom-up effects on food 

supply. Optimal foraging theory serves as a valuable tool to understand and predict bottom up 

effects, but there are a variety of reasons why optimal foraging responses may not occur as 

predicted. These changes in foraging behaviour can be critically important to the survival of the 

foragers themselves but may also have wide-reaching impacts that restructure ecological 

communities and alter important aspects of ecosystem functioning. 
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Appendices 
 

APPENDIX A: SUPPLEMENTAL MATERIAL 

 

Ch2 Supplemental Material 

 
Table S2.1 All papers used for quantitative analyses, the study taxon, and whether they observed 

a positive or negative relationship between food availability and the given foraging trait . 

 

Citation Trait Species Taxa 
Response 

(N vs. P) 
Pechacek and 

d’Oliere-

Oltmanns (2004) 

Biol. Conserv. 

Home 

Range Picoides tridactylus Birds N 

Palphramand et 

al. (2007) Behav. 

Ecol. Sociobiol. 

Home 

Range 
Meles meles Mammals N 

Kubiak et al. 

(2017) J. Zool. 

Home 

Range 
Ctenomys minutus Mammals N 

Combreau et al. 

(2000) J. Arid 

Env. 

Home 

Range 

Chlamydotis 

macqueenii 
Birds P 

Combreau et al. 

(2000) J. Arid 

Env. 

Home 

Range 

Chlamydotis 

macqueenii 
Birds P 

Chandler et al. 

(2016) PLoS 

ONE 

Home 

Range 
Chaetodon triangulum Fish N 

Lehmann and 

Boesch (2003) 

Behav. Ecol. 

Home 

Range 
Pan troglodytes verus Mammals P 

Campera et al. 

(2014) Int. J. 

Primatol. 

Home 

Range 
Eulemur collaris Mammals N 

Hansen and 

Closs (2005) 

Behav. Ecol. 

Home 

Range 
Galaxias argenteus Fish N 

Hansen and 

Closs (2005) 

Behav. Ecol. 

Home 

Range 
Galaxias argenteus Fish P 

Hansen and 

Closs (2005) 

Behav. Ecol. 

Home 

Range 
Galaxias argenteus Fish P 
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Hansen and 

Closs (2005) 

Behav. Ecol. 

Home 

Range 
Galaxias argenteus Fish P 

Marshall and 

Cooper (2004) 

Ecology 

Home 

Range 
Vireo olivaceus Birds N 

Romanach et al. 

(2005) J. 

Mammal. 

Home 

Range 
Geomys attaweri Mammals N 

Romanach et al. 

(2005) J. 

Mammal. 

Home 

Range 
Geomys bursarius Mammals N 

Romanach et al. 

(2005) J. 

Mammal. 

Home 

Range 
Thomomys bottae Mammals P 

Engstrom and 

Sanders (1997) 

Wilson Bull. 

Home 

Range 
Picoides borealis Birds N 

Loveridge et al. 

(2009) Ecography 

Home 

Range 
Panthera Leo Mammals N 

Li et al. (2014) 

Mammalia 

Home 

Range 

Trachypithecus 

francoisi 
Mammals N 

Grueter et al. 

(2008) Int. J. 

Primatol. 

Home 

Range 
Rhinopithecus bieti Mammals P 

Schmidt (2008) 

Acta Theriol. 

Home 

Range 
Lynx lynx Mammals N 

Klein and 

Cameron (2012) 

J. Mammlal. 

Home 

Range 
Peromyscus leucopus Mammals N 

Margalida et al. 

(2017) Ecol. 

Indic. 

Home 

Range 
Gypaetus barbatus Birds P 

Winnie et al. 

(2008) Ecology 

Home 

Range 
Syncerus caffer Mammals N 

Pejchar et al. 

(2005) Ecol. Appl. 

Home 

Range 
Hemignathus munroi Mammals N 

Di Pierro et al. 

(2008) Ecol. Res. 

Home 

Range 
Sciurus vulgaris Mammals N 

Di Pierro et al. 

(2008) Ecol. Res. 

Home 

Range 
Sciurus vulgaris Mammals N 

Di Pierro et al. 

(2008) Ecol. Res. 

Home 

Range 
Sciurus vulgaris Mammals N 

Bohr et al. (2011) 

Int. J. Primatol. 

Home 

Range 
Microcebus griseorufus Mammals N 

Bohr et al. (2011) 

Int. J. Primatol. 

Home 

Range 
Microcebus griseorufus Mammals N 

Lappan et al. 

(2017) Anim. 

Behav. 

Home 

Range 

Symphalangus 

syndactylus 
Mammals N 
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Dussault et al. 

(2005) Can. J. 

Zool. 

Home 

Range 
Alces alces Mammals P 

Dussault et al. 

(2005) Can. J. 

Zool. 

Home 

Range 
Alces alces Mammals N 

Zhou et al. (2011) 

Int. Zool. 

Home 

Range 

Trachypithecus 

francoisi 
Mammals N 

Leiner and Silva 

(2007) Acta 

Theriol. 

Home 

Range 
Marmosops paulensis Mammals N 

Redhead et al. 

(2016) Ecol. Appl. 

Feeding 

Distance 
Bombus ruderatus Insects N 

Carvell et al. 

(2012) Oikos 

Feeding 

Distance 
Bombus pascuorum Insects N 

Burkle and 

Montevecchi 

(2009) J. Zool. 

Feeding 

Distance 
Uria aalge Birds N 

Vandenberghe et 

al. (2009) Basic 

Appl. Ecol. 

Feeding 

Distance 
Anthus pratensis Birds N 

Britschgi et al. 

(2006) Biol. 

Conserv. 

Feeding 

Distance 
Saxicola rubetra Birds N 

Tremblay et al. 

(2005) Ibis 

Feeding 

Distance 
Parus caeruleus Birds N 

Bruun and Smith 

(2003) Biol. 

Conserv. 

Feeding 

Distance 
Sturnus vulgaris Birds N 

Rauter and 

Reyer (1997) Ibis 

Feeding 

Distance 
Anthus spinoletta Birds N 

López-Bao et al. 

(2014) J. Anim. 

Ecol. 

Aggression Lynx pardinus Mammals N 

Powers and 

McKee (1994) 

The Condor 

Aggression Lamporis clemenciae Birds P 

Powers and 

McKee (1994) 

The Condor 

Aggression Lamporis clemenciae Birds N 

Crofoot (2007) 

Behaviour 
Aggression Cebus capucinus Mammals P 

Smith et al. 

(2012) The 

Condor 

Aggression Setophaga caerulescens Birds P 

Eide et al. (2004) 

J. Anim. Ecol 
Aggression Alopex lagopus Mammals N 
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Ch3 Supplemental Material 

Figure S3.1 Map of Iriomote, Japan. Main panel shows Iriomote’s location in the East China Sea, 

near Taiwan. Black circles on the inset indicate the three reef locations (from West to East): Sonai, 

Unarizaki, and Nata.  
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Figure S3.2 Hurlbert’s Probability of Interspecific Encounter for A) the coral community, and B) 

butterflyfish diets, before and after bleaching. Dashed lines indicate the bleaching event. Blue 

represents these communities before bleaching, orange is after bleaching. Lettering above the box 

plots indicates significant differences among years. 
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Figure S3.3 Null model analysis of network metrics. Comparisons of A) Alatalo Interaction 

Evenness, B) Shannon Diversity, C) Nestedness. Blue indicates a comparison before bleaching, 

red indicates after bleaching. Vertical lines indicate the observed network metric. Histograms 

represent predicted network metrics using reshuffled networks (method: vaznull). 
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Table S3.1 Details of primary model selection. All models are GAMMs produced in package 

‘gammlss’. All contain two random intercept effects for fish identity of the two fish in each 

comparison. 

Step Model Description (Fixed Effects) AIC 

1) Specialization ~ CoralCover + Species + Site + Year + Evenness 160.5073 

2) Specialization ~ CoralCover + Species + Year + Evenness 157.6594 

3) Specialization ~ CoralCover + Species + Evenness 156.115 

4) Specialization ~ CoralCover + Species  155.4499 

 

 

Table S3.2 Total abundance of butterflyfishes (Chaetodon spp.) on transects over time. 

Species 2016 2017 2018 

C. argentatus 3 16 1 

C. baronessa 0 2 0 

C. bennetti 1 2 1 

C. citrinellus 11 29 26 

C. kleinii 3 2 0 

C. lunulatus 115 110 42 

C. melannotus 2 2 2 

C. ornatissimus 4 8 3 

C. plebeius 8 13 2 

C. rafflesii 11 11 4 

C. reticulatus 0 0 0 

C. speculum 0 3 4 

C. trifascialis 10 10 4 

C. unimaculatus 7 15 13 

All Species 175 223 102 

 

 

Table S3.3 Observed network metrics before (2016) and after (2017 + 2018) coral mortality. All 

metrics calculated in package ‘bipartite’. 

 Before Disturbance After Disturbance 

Alatalo Interaction Evenness 0.43 0.56 

Shannon Diversity 3.98 4.62 

Connectance 0.22 0.25 

Nestedness 14.36 15.07 

H2’ 0.39 0.32 

 

 

 



   Appendices 

 

158 

 

Ch4 Supplemental Material 

Figure S4.1 Comparison of model predictions between the formal analysis (A-C, random effect 

of fish ID), and this alternate set of models (D-F, random effect of fish ID + random effect of reef 

site). Note that a linear effect for coral cover was not included in the optimal model of bites per 

foray but is shown here (panel E) for direct comparison. 
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Table S4.1 Comparison of model fitting results between the formal analysis (random effect of fish 

ID), and this alternate set of models (random effect of fish ID + random effect of reef site). Optimal 

models for each are bolded and highlighted in light gray. 

Trait Candidate Model AIC 

Random Identity Random Identity + 

Random Site 

Residence 

Time 

 

Time ~ Coral + Patchiness + Species 8853.8 8853.2 

Time ~ Coral + Species 8853.9 8853.3 

Time ~ Coral * Species 8849.1 8847.2 

Time ~ Species 8855.1 8852.6 

Time ~ Intercept Only 8860.2 8860.6 

Movement 

Duration 

 

Time ~ Coral + Patchiness + Species 12134.0 12129.6 

Time ~ Coral + Species 12132.9 12128.2 

Time ~ Coral * Species 12130.5 12139.3 

Time ~ Species 12131.2 12126.8 

Time ~ Intercept Only 12142.1 12139.3 

Bites Per 

Foray 

 

Bites ~ Coral + Patchiness + Species 8720.1 8713.3 

Bites ~ Coral + Species 8721.0 8714.5 

Bites ~ Coral * Species 8722.5 8716.8 

Bites ~ Species 8725.7 8712.8 

Bites ~ Intercept Only 8852.0 8849.9 

Bites Per 

Patch 

Bites ~ Coral + Patchiness + Species 6644.5 6645.3 

Bites ~ Coral + Species 6644.6 6645.0 

Bites ~ Coral * Species 6640.3 6640.7 

Bites ~ Species 6644.7 6645.2 

Bites ~ Intercept Only 6736.2 6738.2 
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APPENDIX B: PAPERS ARISING FROM THIS THESIS 

Semmler, R.F, Brandl, S.J., Keith, S.A., and D.R. Bellwood (2021) Fine-scale foraging behaviour reveals 

differences in the functional roles of herbivorous reef fishes. Ecology & Evolution DOI: 

10.1002/ece3.7398. 
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1  | INTRODUC TION

Understanding how, why, and when different species contribute to 
essential ecosystem functions has gained increased focus in recent 
years, with the aim to both advance fundamental knowledge and 
improve management (Bellwood et al., 2019; Díaz & Cabido, 2001; 
Folke et  al.,  2004; Tilman et  al.,  1997). For both fundamental 

and applied research, it is not only important to identify species 
that are key to the maintenance of essential functions, but also 
to establish the extent to which species are functionally similar 
(underpinning redundancy) or different (underpinning comple-
mentarity) (Blüthgen & Klein, 2011; Brandl et al., 2019; Burkepile 
& Hay, 2011; Frost et al., 1995; Lawton & Brown, 1993; Nyström, 
2006). Complementarity essentially describes niche partitioning 
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in an Eltonian, functional context (Bellwood et  al.,  2019; Brandl 
et al., 2019). Substantial complementarity has been documented 
within superficially homogeneous groups of flying insect polli-
nators (Blüthgen & Klein, 2011), grazing subtidal urchins (Brandt 
et al., 2012), savannah ungulates (Pringle et al., 2014), and small 
desert herbivores (Thibault et  al.,  2010). However, for practical 
purposes a delicate balance is necessary between the benefits of 
tractability and the risks of oversimplification. On the one hand, it 
is necessary to ensure tractability or utility of functional groups, 
which requires collapsing diverse species into groups of ecolog-
ically similar entities, for example, trophic groups or guilds. On 
the other hand, groupings may oversimplify ecological dynamics, 
masking important differences between species within the same 
functional category and their contributions to ecological pro-
cesses (Körner, 1994).

Ecosystems with high inherent species richness, such as coral 
reefs and tropical rainforests are characterized by a complex mosaic 
of biological interactions, and a wide variety of available of micro-
habitats (Gentry, 1982; Graham & Nash, 2013; Reaka-Kudla, 1997). 
This complexity has spurred the development of functional group 
classifications, on coral reefs in particular (Bellwood et  al.,  2004; 
Darling et al., 2012; Nyström, 2006). Nevertheless, species within 
these groups may differ in a number of ways that could impact 
the delivery of their functions. Thus, to ensure that functions are 
maintained as species assemblages change, we need to know the 
extent to which species within the same broad functional entity dif-
fer from one another. It is doubtful that there is “true redundancy” 
within functional groups; rather there will be some degree of com-
plementarity, dependent on the scale at which behavior is assessed 
(Brandl & Bellwood, 2014). Within functional entities, complemen-
tarity of functional delivery can be a result of fine-scale partitioning 
of resources, which can be based on species-specific differences 
in targeted resources, or temporal and spatial patterns in their ex-
ploitation (Fründ et al., 2013; Wellborn & Cothran, 2007). Species 
foraging patterns are likely to reflect all of these elements, thus 
providing a window into the extent of functional complementarity 
among species.

Foraging movements are determined by economic decisions 
to optimize the food resource gained per unit of energy expended 
(MacArthur & Pianka, 1966). Thus, while not the only factors affect-
ing movement, foraging movements depend both on dietary pref-
erences and the abundance and patchiness of the food resources 
targeted (Stephens & Krebs, 1986). For example, to account for long 
travel times and their associated costs, patchy food resources require 
long patch residence times (Charnov, 1976). Additionally, low-quality 
patches will be depleted quickly below an energy gain per unit effort 
that maintains optimum foraging (McNair,  1982). As a result, spe-
cies that focus their diets on patchy or lower quality food items may 
have shorter patch residence times and greater exploration times 
(Stephens & Krebs,  1986). Because foraging movement decisions 
are made based on the density and location of food resources, even 
among closely related species, these types of small differences in di-
etary preference can favor different foraging strategies (Pyke, 1984). 

In addition to these factors, patch use may also be impacted by the 
threat of predator (Brown et al., 1992; Catano et al., 2015) or com-
petitor species (Mitchell et al., 1990).

Variations in foraging strategy are the result of adaptive changes 
that facilitate coexistence among species competing for space 
and resources (Chesson,  2000; Tilman,  1982). However, different 
foraging strategies are also likely to affect the spatial extent over 
which species perform their role (Nash et al., 2013, 2016). Efforts to 
identify a forager's spatial scale of operation through home-range 
assessments are useful but feeding activity can be heterogenous 
and concentrated within certain areas of the animal's range (Streit 
et al., 2019; Welsh & Bellwood, 2012). As a result, assessments of 
animals' foraging movements can benefit from various types of be-
havioral observations across multiple spatial and temporal scales.

Coral reef fishes can overlap heavily in their broad use of hab-
itats and in their contributions to ecosystem functions (Mouillot 
et al., 2014). Conservation actions have been adopted on the basis 
of these strategies to manage coral reef ecosystems with a particular 
focus on the role of herbivorous fishes (Adam et al., 2015a, 2015b; 
Chung et al., 2019; Green & Bellwood, 2009). Herbivory by coral reef 
fishes was originally divided into four broad functional categories 
based on foraging strategies: grazers, browsers, scrapers, and bio-
eroders (Bellwood et al., 2004; Green & Bellwood, 2009; Nyström, 
2006). These categories cover a suite of functions that facilitate reef 
resilience to disturbance, and can prevent them from shifting to less 
desirable, alternate states dominated by algae (Hughes et al., 2007). 
However, species within these groups are far from homogenous in 
their niches (Bellwood et al., 2019; Brandl et al., 2019). For example, 
browser species can differ strongly in their preference for algal food 
resources (Puk et al., 2016; Rasher et al., 2013; Streit et al., 2015), 
while grazers separate into species targeting the tips of algae (e.g., 
croppers) and species targeting particulate matter within algal turfs 
(e.g., Brandl & Bellwood, 2016; Tebbett et al., 2017). Similarly, scrap-
ing and bioeroding parrotfishes differ substantially in their inges-
tion and postingestion treatment of resources (Adam et  al.,  2018; 
Clements et al., 2016; Nicholson & Clements, 2020), leading to var-
ious refinements of the initial categories over the years (Brandl & 
Bellwood, 2016; Siqueira et al., 2019). However, these classifications 
still focus primarily on diet and resources acquisition method. Few 
consider spatial dimensions of resource use. While reef herbivores 
are known to vary in their specific microhabitat use (e.g., horizontal, 
vertical, underside) (Adam et al., 2018; Brandl & Bellwood, 2014; Fox 
& Bellwood, 2013; Puk et al., 2020), fine-scale foraging movements 
and spatial resource partitioning in coral reef fishes remains poorly 
understood (Streit et al., 2019). Yet it is at this scale that resource 
partitioning and complementarity may be most strongly expressed, 
with significant effects for reef functioning (Ruttenberg et al., 2019).

We investigate the degree to which differences in foraging be-
havior can transcend boundaries set by traditional functional group 
classifications. Specifically, we assess the fine-scale foraging move-
ments of three coral reef herbivores: two grazer/cropper species 
(Siganus corallinus and Siganus vulpinus) and one scraper (Scarus 
schlegeli). We ask: How does foraging behavior and space use vary 
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between species? Specifically, (a) which traits (speed, turning angle 
etc.) define the differences between their foraging paths? (b) Do 
short-term hourly movement patterns (in situ behavioral observa-
tions) reflect longer-term daily patterns of space use (assessed via 
active acoustic telemetry)? (c) Are there substantial differences in 
the scale of operation among species, and does this affect the spatial 
extent over which these species perform their functional role?

2  | METHODS

Field sites were located on reefs at Lizard Island, a granitic mid-
shelf island on the Great Barrier Reef. We studied three species: 
two rabbitfishes Siganus vulpinus and Siganus corallinus (Figure  1), 
and one parrotfish Scarus schlegeli. The two rabbitfishes are cate-
gorized as cropping herbivores that take discrete bites from small 
algae or cyanobacteria (i.e., grazers) (Brandl & Bellwood, 2016; Hoey 
et  al.,  2013) and occur almost exclusively in stable pairs (Brandl 
& Bellwood,  2013; Brandl & Bellwood, 2015). By contrast, Scarus 
schlegeli lives in small groups and is a scraping herbivore that ingests 
the entire epilithic algal matrix (i.e., scraper) (Clements et al., 2016). 
While the vast majority of grazing herbivores on reefs have limited 
home ranges and exhibit strong site fidelity at the reef scale, there 
is considerable variation in the movements among both rabbitfishes 
(Brandl & Bellwood, 2013; Fox & Bellwood, 2011) and parrotfishes 
(Welsh & Bellwood, 2011, 2012). The three species in the present 
study were selected to permit a comparison between two species 
commonly considered to be functionally equivalent (the two crop-
ping rabbitfishes), while anchoring these observations within the 
broader classification of grazing herbivores by including a func-
tionally different species (the scraping parrotfish). Foraging path 
observations were performed on Big Vicki's Reef (5 hectares) from 
February 7th to February 11th 2014, while the acoustic tracking was 
performed on Watson's Reef (2 hectares) from April 25th to May 4th 
2012. Both reefs are on the leeward side of the island and represent 
typical backreef sites with low wave energy and depths between 2 
and 5 m. The two reefs are separated by a distance of approximately 

2 km and represent broadly similar lagoonal habitats dominated by 
corals and turf algae. We chose to perform the two parts of the study 
on different reefs for several reasons: (a) since acoustic tracking in-
volves the capture and manipulation of fishes, which may modify 
the individual's reactions to observers in the water, we considered 
it safer to avoid the reef that fishes were tagged on; (b) Big Vicki's 
reef offered a more expansive and slightly deeper reef environment, 
thus allowing for higher replication without the risk of re-sampling 
the same individuals, while ensuring a minimal observer effect from 
the snorkeler in the water.

2.1 | Focal foraging path observations

We quantified the fishes' foraging movements in situ. A single snor-
keler (SJB), equipped with a handheld global positioning system (GPS) 
unit in a waterproof case, which was set to automatically record its 
position every 5  s, performed the observations. We opportunisti-
cally located an adult of one of the three target species and followed 
the fish for 30–45 min. We followed the fish as closely as possible 
(snorkeling offering one of the least disturbing methods of observa-
tion; Welsh & Bellwood,  2011), recording different behaviors (i.e., 
swimming and feeding behavior). For each behavior, the observer 
recorded the exact time of the event (hh:mm:ss) using a digital wrist-
watch that was precisely synchronized with the GPS unit. All focal 
observations occurred between 08:00 and 17:00, a time window 
during which most herbivorous fish species are actively foraging. 
We considered a foraging bout to be finished once the fish stopped 
biting the substratum and assumed a horizontal position character-
istic of swimming activity (Nash et al., 2012). During all observations, 
we ensured positioning directly above the focal individual (which 
restricted our observations to areas with depths >2  m to ensure 
fishes were undisturbed by the observer). After 30–45 min (or when 
the focal individual showed signs of behavioral modification due to 
being followed by the snorkeler or contact was lost due to depth or 
visibility), the observer abandoned the focal individual in search of 
an individual of one of the other two species. Once individuals in all 
three species were followed, the observer took a haphazard turn, 
swam for at least 100 m, and searched for another individual in any 
of the three target species. To avoid duplication, we spread efforts 
across different sections of the reef and took notes on size and color 
patterns of the observed fish.

2.2 | Acoustic telemetry

To obtain a more detailed assessment of space use in the two rab-
bitfish species, we used active acoustic telemetry on five adult indi-
viduals of Siganus corallinus (in three pairs; SC1 and SC2, SC4, SC5, 
and SC6) and three adult individuals of Si. vulpinus (in two pairs; SV2, 
SV3 and SV4). An additional individual was tagged in each species 
but disappeared shortly after release, probably due to predation 
(Khan et al., 2016). While the behavior of paired individuals will not 

F I G U R E  1   Photo of two Siganus corallinus individuals (credit: 
Victor Huertas)
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be wholly independent from their partner, separation of individu-
als or exclusive treatment of only one partner can result in changes 
of behavioral patterns. To tag the individuals, we caught pairs using 
barrier nets on Watson's Reef and transported them immediately to 
Lizard Island Research Station in large bins full of fresh seawater, 
ensuring pairs were maintained. At the station, we placed pairs in 
separate large (300 L) flow-through seawater aquaria. In the evening 
of the day of capture, we anesthetized each fish in a saline solution 
of tricaine methanesulfonate (MS-222, 0.13 g/L) and surgically im-
planted an acoustic transmitter (Vemco V9-6L) into the gut cavity 
(cf. Brandl & Bellwood, 2013). After closing the incision with sutures 
and ensuring full recovery from anesthesia, we held fishes in their 
tanks overnight. We returned the fishes to the exact site of capture 
the next morning.

Fish were allowed 48 hr to recover, after which we started acous-
tically tracking each fish from a 3.1 m kayak using a calibrated direc-
tional hydrophone (VH110) and an acoustic receiver (VR100, both 
Vemco) (Brandl & Bellwood, 2013; Fox & Bellwood, 2011). Tracking 
continued from 30 min before dawn to 30 min after dusk (approx. 
06:30–18:00). We maneuvered the kayak to obtain maximum signal 
strength from the respective tag every 15 min, while the receiver 
recorded the kayak's GPS position. We tracked each fish for three 
nonconsecutive days and verified the identity and normal behavior 
of the tracked individual via a short in situ validation by a snorkeler 
each day (identifying the tagged fishes through the visible surgical 
incision; Brandl & Bellwood, 2013).

2.3 | Data analysis

We performed all data analyses in R (R Core Team, 2019). For the 
snorkeler-based observations, we matched timed GPS recordings 
with recorded times for each feeding event to quantify the path be-
tween successive feeding events for each. From these, we calculated 
six traits to characterize different aspects of foraging behavior or 
space use: (a) 95% minimum convex polygon (MCP) of space used 
during the observation, (b) mean swimming speed, (c) mean turning 
displacement (higher displacement = sharper turns) between succes-
sive movement bearings, (d) overall tortuosity of the feeding path, 
(e) number of feeding events per minute, and (f) average distance 
between feeding events (interforay distance). We computed MCPs 
using the package adehabitatHR (Calenge,  2006), and distances 
(using the Haversine method) and bearings between points, using 
the package geosphere (Hijmans, 2016). We calculated overall path 
tortuosity as the ratio of the straight-line distance between the start 
and end locations, and the total distance travelled by the fish (follow-
ing Fulton & Bellwood, 2002; Secor, 1994). We tested for differences 
between the three species in each of these traits with Analyses of 
Variance (ANOVA). To ensure normality and homoscedasticity of 
variances, it was necessary to log transform the MCP values. After 
transformation, MCP values for Si. vulpinus became normally distrib-
uted (Shapiro–Wilk: 0.88, p = 0.12) and MCP variance among species 
was homogenous (Bartlett: 5.64, df = 2, p = 0.06).

Furthermore, we visualized inter- and intraspecific variation in 
these traits with a nonmetric multidimensional scaling (MDS) ordi-
nation based on a Bray–Curtis dissimilarity matrix (Gauch,  1973). 
We ran the ordination on a square root Wisconsin transformed ma-
trix to ensure that differences in scale between trait values did not 
influence the analysis (Del Moral, 1980). We used a Permutational 
Analysis of Variance (PERMANOVA) to test for significant differ-
ences in the overall foraging strategies of the three species and 
tested for homogeneous multivariate dispersion between species 
using PERMDISP. Lastly, we used the SIMPER analysis to determine 
which traits contributed most to differences in foraging behavior be-
tween species. PERMANOVA, PERMDISP, and SIMPER tests were 
run on the transformed dissimilarity matrix using the package vegan 
(Oksanen et al., 2016).

For the active tracking data, we used the GPS points from each 
15-min intercept (choosing the highest-strength signal around the 
15-min mark) to compute kernel utilization distributions (KUDs) for 
each individual, which we used to estimate 95% daily foraging areas 
and 50% core areas for each individual (Brandl & Bellwood, 2013). We 
calculated KUDs for each day and the cumulative GPS points across 
all days. We again used the package adehabitatHR (Calenge, 2006). 
We tested differences in cumulative daily foraging areas and core 
areas between the two rabbitfishes with two-sample t tests.

Lastly, we also computed overall feeding rates (bites/min) and 
movement rates (meters/min) for each fish observed on snorkel. 
Specifically, our rationale was that differences in foraging strategy 
between species may be underpinned by fine-scale dietary differ-
ences. Differences in feeding efficiency between species may help 
to highlight this, as diets may provide more or less energy per bite. 
Feeding rates were calculated based on the total time spent feeding 
within each observation (with each feeding event estimated as 5 s), 
multiplied by previously established bite rates during feeding events, 
for each species (Brandl & Bellwood, 2014). Feeding efficiency was 
calculated by dividing each individual's feeding rate by its movement 
rate. As with the six traits above, for these three factors we tested 
differences between species with ANOVA.

3  | RESULTS

Overall, we followed 29 individual fishes (counts: Siganus coralli-
nus = 9 individuals; Si. vulpinus = 10 individuals; Scarus schlegeli = 10 
individuals). Overall observation time totaled 17.4  hr (mean ob-
servation times: Siganus corallinus  =  35.9  min  ±  2.21 SE; Si.  vulpi-
nus  =  34.5  min  ±  2.54; Scarus schlegeli  =  37.4  min  ±  1.82) during 
which we recorded 1,190 feeding events. Foraging patterns differed 
for the three fish species, both within and across functional group 
boundaries. Variation in short-term foraging movements (Figure 2) 
was mirrored by daily space use in the two rabbitfishes, where both 
95% daily foraging areas and 50% core areas of Si. vulpinus were sig-
nificantly larger than those of Si. corallinus (t(6) = −6.00, p < 0.001, 
and t(6) = −6.28, p < 0.001, respectively) (Figure 3). Overall, we found 
significant variation between species for five of the six movement 
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traits we investigated (Figure  4). Specifically, there were signifi-
cant differences in the log of foraging area covered (F2,26 = 21.96, 
p  >  0.001), mean speed of travel (F2,26  =  3.98, p  =  0.031), mean 
turn angle (F2,26 = 4.71, p = 0.018), feeding frequency (F2,26 = 9.44, 
p > 0.001), and mean interforay distance (F2,26 = 7.41, p = 0.003). 
Si. corallinus had the smallest mean foraging area, while Si. vulpinus 
had the largest. We found a similar relationship for mean speed, with 
Si. vulpinus travelling at greater speeds than Si. corallinus. Si. vulpinus 
also took wider turns between feeding bouts compared to Si. coralli-
nus and Sc. schlegeli (Figure 4). However, despite difference in turning 
angles, we found no significant differences for the overall tortuos-
ity of foraging paths. While mean tortuosity did not differ, variance 
in path tortuosity was substantially larger for the rabbitfishes than 
for Sc. schlegeli. Sc. schlegeli had more frequent foraging bouts than 
Si. corallinus, and Si. vulpinus had longer interforay distances than ei-
ther of the other species.

As would be expected from the results above, species identity 
was significant in determining foraging behavior, explaining 42% 

of variance among individuals (R2 = 0.42, p < 0.001, Figure 5). All 
species showed similar levels of intraspecific variability in foraging 
traits; multivariate dispersions were not significantly different be-
tween species (p = 0.060). Despite not differing significantly in the 
univariate analysis, path tortuosity contributed to differences be-
tween species within the multivariate analysis. Differences between 
species were most strongly predicted by the size of their foraging 
areas, the tortuosity of their foraging paths and the mean turning 
angle between feeding events, with each of these traits explaining 
over 20% of the difference between any two species. Mean speed 
was the least informative trait, explaining <10% of the average dif-
ference between any two species. Differences between the parrot-
fish Sc. schlegeli and the rabbitfish Si. corallinus, were mostly driven 
by a tighter (18%), smaller (19%) and more tortuous feeding path 
(24%) for the rabbitfish. Similar differences were reflected between 
the two rabbitfish, with large proportions of variance defined by 
tighter turns (26%), and a smaller feeding area (29%) for Si. coralli-
nus, however a less tortuous path (20%) than Si. vulpinus. Differences 

F I G U R E  2   Foraging paths and resulting size and distribution of short-term feeding areas (direct observation). (a–c) Example foraging 
paths for all three species. Green = the parrotfish Sc. schlegeli, yellow and blue = the rabbitfishes, Si. Vulpinus, and Si. corallinus, respectively. 
Dots represent foraging locations, while lines represent vectors between foraging events. Path insets not scaled by area, but relative size 
can be seen in the wider figure. (d) Distribution of feeding areas (MCP) for each species on Big Vicki's Reef with inset showing location of Big 
Vicki's Reef on Lizard Island, colors as above
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between Sc.  schlegeli and Si.  vulpinus were also most strongly de-
termined by a larger (19%) more tortuous feeding path (21%) for 
the rabbitfish, as well as a faster feeding frequency (21%) for the 
parrotfish.

Lastly, species differed significantly in their feeding rates 
(F2,26 = 44.55, p > 0.001), movement rates (F2,26 = 4.33, p = 0.024), 
and their resulting feeding efficiency (F2,26  =  12.71, p  >  0.001) 
(Figure 6). Si. corallinus had the lowest movement rates, with both 
Si. vulpinus and Sc. schlegeli moving faster. Based on unique forag-
ing events and bite rates, the parrotfish took many more bites per 
minute than either rabbitfish species. Due to these differences, the 
feeding efficiency of the parrotfish was higher than either rabbit-
fish. While across the three species, a positive relationship between 
movement and bite rates was visible, only Si. corallinus showed an in-
traspecific trend where individuals traveling farther took more bites 
per unit time.

4  | DISCUSSION

Categorization of species based on their functional roles is a useful 
concept in ecology and conservation. However, behavioral differ-
ences among species within the same group may result in func-
tional variation that is unaccounted for in broad categories. Our 
results demonstrate behaviorally mediated diversity in functional 
roles of herbivorous fishes within and across functional groups, 
resulting in complementarity in their niches and spatial differ-
ences in the delivery of their functional roles. The differences in 
fine-scale foraging paths of the grazers, Si. corallinus and Si. vulpi-
nus, are reflected in their broad-scale, reef-scape movements. 
Both fine-scale activities and sustained broad-scale movements 
are critical components of animals' energy budgets, but they also 

shape their functional roles within ecosystems, especially in a spa-
tial context.

In our analysis, we found clear differences in foraging behavior 
between the three fish species, even those within the same func-
tional group and genus, that is, grazing rabbitfish. Feeding frequency 
was the primary trait that differentiated the two functional groups, 
both in terms of the number of forays per minute and the number 
of bites per minute. This difference could be expected as scrapers 
primarily remove epithelial algal matrix from flat or convex surfaces, 
which can be more readily located without disrupting movement 
(Brandl & Bellwood, 2014; Clements et al., 2016). The two grazers, 
on the other hand, will inspect holes or crevices for patches of algae 
to crop (Brandl & Bellwood, 2015; Fox & Bellwood, 2013), leading to 
slower bite rates and less frequent feeding events. As a result of its 
fast feeding rate and intermediate movement rate, the parrotfish ap-
pears to be the most efficient, or least selective, forager, taking the 
largest number of bites while traveling only short distances between 
those bites.

As well as the expected behavioral differences between func-
tional groups (i.e., grazers vs. scrapers), there were substantial differ-
ences between the two grazers. Si. corallinus moved slowly, focusing 
feeding effort within a very small area of the reef, and took sharp 
turns to stay within this core area. In contrast, Si.  vulpinus ranged 
widely over a considerably larger feeding territory and travelled 
substantial distances between forays in a roughly circular, and re-
markably predictable pattern. Though sample sizes for acoustic 
tracking were limited and included nonindependent paired individ-
uals, we have considerable confidence that these differences were 
reflected in the daily foraging areas of each species as well, with 
Si. corallinus occupying a much smaller foraging area than Si. vulpinus. 
Complementary scales of space use among these two species indi-
cate that both species will contribute more strongly to algal grazing 

F I G U R E  3   Relative size of daily foraging areas (acoustic telemetry). (a) Spatial distribution of daily foraging areas on Watson's Reef. 
Dotted and dashed lines mark the 95% Kernel Utilization Distributions (KUDs), while filled, transparent areas mark the 50% core areas. Fish 
numbers are given for all paired and the two singular individuals. Colors as above. (b) Location of Watson's Reef on Lizard Island
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than either could alone, which holds important implications for the 
management of herbivory on coral reefs (Topor et al., 2019).

Some of the differences in the foraging search patterns of the 
rabbitfish species could be driven by differences in their diets. While 
both are considered grazers, Si.  corallinus primarily targets small, 
dense red algae, while Si. vulpinus mostly consumes cyanobacteria 
(Hoey et al., 2013). Furthermore, Si. vulpinus, with its extremely elon-
gated snout, appears to obtain most of its food from deep crevices 
and interstitial microhabitats compared to Si.  corallinus, which tar-
gets shallower crevices that it can exploit with its more moderate 
head morphology (Brandl & Bellwood, 2014, 2016). Differences in 
foraging behavior between the two species may be driven by the 
spatial organization of these resources on reefs and their patchiness; 
while small red algae and shallow crevices can be expected to occur 
frequently throughout the reef matrix, deeper crevices with dense 
mats of cyanobacterial growth are less common (Brandl, Robbins, 
& Bellwood, 2015; Harris et al., 2015). These differences closely re-
semble those recorded in a range of wrasse species on coral reefs 
(Fulton & Bellwood, 2002). Additionally, cases of food distribution 
affecting foraging strategies, like those seen here, have been seen in 
a variety of systems, including ant colonies (Lanan, 2014). However, 

we currently lack detailed information on the spatial organization 
of algal resources needed to determine the exact relationships be-
tween resource distributions and the fishes' foraging movements. 
Differences in foraging paths may be influenced by many aspects 
of the targeted food resources, including their patchiness, within 
patch density, or their nutritional and energetic quality (Schatz & 
McCauley, 2007).

While both red algae and cyanobacteria are thought to be nu-
tritionally poor, cyanobacteria appear physically less dense than 
corticated red algae, lacking the same hard external tissues. A 
lack of hard tissues could make cyanobacteria easier to mechan-
ically process when feeding, consistent with observations of 
larger handling times for crustacean prey (Hoyle & Keast, 1987). 
Under the patch model of optimal foraging theory, a foraging 
strategy involving long travel to distant patches is linked with low 
quality of nearby patches (Charnov,  1976). A forager will leave a 
patch and continue searching when the rate of energy gain in a 
patch has been reduced below what could be obtained elsewhere 
(Stephens & Krebs,  1986). If cyanobacteria are particularly easy 
to process, then the “quality” (here related directly to quantity) 
of cyanobacteria patches may be reduced sooner than that of red 

F I G U R E  4   Differences in the six metrics used to evaluate foraging paths of the three species. Asterisks indicate significant differences 
among species via ANOVA. Si. vulpinus foraging movements are characterized by: large areas, wide turns, higher speeds, and longer 
interforay distances; Si. corallinus foraging movements are characterized by: small areas, sharp turns, low feeding frequency, low speed, and 
short interforay distances; Sc. schlegeli occupy intermediate positions but display the highest frequency of foraging. Boxplots represent the 
median and interquartile range of each foraging trait. Dashed lines separate the two grazing rabbitfishes from the scraping parrotfish
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algae, prompting patch exit and further exploration. These differ-
ences could result in a foraging strategy with shorter patch resi-
dence times, and larger territory sizes on average (Charnov, 1976; 

Stephens & Krebs,  1986). Corticated algae patches on the other 
hand may maintain their quality long enough to favor long patch 
occupancy, and smaller range sizes.

Another difference between these two food sources is that cy-
anobacteria are considered unpalatable for many species and pro-
duce metabolites to deter their consumption (Capper et al., 2006; 
Paul et al., 1990, 1992). Toxin constraint models predict foragers 
should exhibit partial food preferences, consuming multiple food 
types even when a toxin-producing food item is most nutritionally 
profitable (Stephens & Krebs, 1986). In this way profitability of food 
items will be balanced against toxins they contain. This balance was 
illustrated for reef herbivores in a study by Hay et al. (1994) where, 
when given a choice between a control food source and one sup-
plemented with metabolites, reef and seagrass parrotfishes almost 
exclusively consumed the control food sources. Because of this, 
Si. vulpinus may need to supplement its diet with other food sources 
that, while less preferred, produce less toxin. For instance, dense, 
mat-forming species of cyanobacteria (e.g., genus Lyngbya) are 
expected to produce more toxins than their sparser counterparts 
(Cissell et al., 2019). Consequently, short patch residence times and 
wide movements for Si. vulpinus may be due to the quicker deple-
tion of less-dense cyanobacteria patches that produce less toxin. 
However, without similar choice experiments on these species, it is 
unclear how much rabbitfishes are constrained by cyanobacterial 
metabolites.

The feeding efficiency approach given here reveals some in-
triguing differences between species. However, without clear info 

F I G U R E  5   Nonmetric multidimensional scaling ordination 
depicting differences in foraging paths of three species: the 
rabbitfishes Siganus vulpinus (yellow), Si. corallinus (blue), and the 
parrotfish Scarus schlegeli (green). Convex hulls represent minimum 
convex polygons for all individuals of a species. Vectors represent 
the loadings

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

NMDS1

N
M

D
S

2

MCP
Tortuosity

Average Turn Displacement

Feeding Frequency

Average Speed
Average Step 
Distance

F I G U R E  6   Feeding rate, movement 
rate, and feeding efficiency of the three 
species. Asterisks indicate significant 
differences among species via ANOVA. 
Boxplots represent the median and 
interquartile range of each foraging trait. 
Dashed lines separate the two grazing 
rabbitfishes from the scraping parrotfish

** ******

******

4

8

12

S. corallinus S. vulpinus S. schlegeli

M
ov

em
en

t R
at

e 
(M

et
er

s/
M

in
)

2.5

5.0

7.5

S. corallinus S. vulpinus S. schlegeli

Fe
ed

in
g 

R
at

e 
(B

ite
s/

M
in

)

0.5

1.0

S. corallinus S. vulpinus S. schlegeli

Fe
ed

in
g 

E
ffi

ci
en

cy
 (B

ite
s/

M
et

er
)

2.5

5.0

7.5

2.5 5.0 7.5 10.0 12.5
Movement Rate (Meters/Min)

Fe
ed

in
g 

R
at

e 
(B

ite
s/

M
in

)



4906  |     SEMMLER et al.

on nutritional content and assimilation efficiency these comparisons 
are solely exploratory. Energy budgets are complex and, in addition 
to these nutritional factors, are a result of other properties like body 
size and swimming style/speed. The two families differ substantially 
in their locomotion: while rabbitfishes rely largely on undulating cau-
dal and pectoral-caudal propulsion, wrasses (such as parrotfishes) 
almost exclusively use flapping pectoral propulsion (Fulton, 2007). 
Energetic studies have suggested that flapping, pectoral propul-
sion (labriform swimming) is more energy efficient than undulating 
(Korsmeyer et al., 2002) or rowing pectoral propulsion, the latter of 
which rabbitfishes frequently employ for fine-scale maneuvering 
(Jones et al., 2007). Thus, in principle, one may expect that the par-
rotfish could meet energetic demands with lower feeding efficiency 
than the two rabbitfish species. Nevertheless, there are important 
other considerations that can underpin energetic demands, such as 
energy and nutrient content of food items. First, given the strong 
relationship between body mass and metabolism, a Sc. schlegeli of 
20  cm (192  g, estimated using length-weight relationships) would 
have a resting metabolism approximately nearly 50% higher than 
than a Si. corallinus of equal length (117 g) and would require substan-
tially more energy (Clarke & Johnston, 1999). Second, by scraping 
microbes from the calcareous reef matrix and winnowing through 
unwanted material, energetic and nutritional net gains per bite may 
be low for the parrotfish (Clements et al., 2016), thus necessitating 
high ration of bites per unit distance covered during foraging despite 
the lower energetic demands of labriform locomotion. In contrast, 
procurement of algae may be relatively easy for the two rabbitfishes. 
Our findings highlight the important need to investigate reef herbi-
vores through an energetic and nutritional lens to fully understand 
the drivers and consequences of their foraging patterns.

Protecting valuable ecosystem functions requires an under-
standing of variations within and between functional entities 
(Brandl et al., 2019). Our work highlights the importance of forag-
ing behavior as an important dimension in species management, 
as nuanced behavioral differences among fish species can indicate 
strong species-specific patterns of space and resource use that can 
result in complementarity in functional roles. This complementar-
ity is ultimately driven by differences in species' energy budgets, 
which emphasizes the need for detailed examinations of consumer 
species, their food choices, and the functional consequences of this 
interaction.
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