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Abstract

The perturbation problem for operators is considered one of the differential equations with operator coefficients;

a possible example of this problem is embedded eigenvalues, which serves as a prototype of this problem.

My research is concerned with two main tasks; first, highlighting the idea of the existence of embedded eigenvalues

(trapped modes) of different operators. These include the stability of the embedded eigenvalues within the

spectrum for the operator on a cylindrical domain. Common threads will be taken from these problems to

subsequently develop a more generalised understanding of the existence of embedded eigenvalues.

The second task is to study the Fredholm properties of an operator pencil. In particular, we detect and ap-

proximate the spectra of the Fredholm operator pencils via a Green’s kernel (contour integral) by considering

exponential solutions of differential equations with operator coefficients. The arguments for this task act on a

class of weighted function spaces which can be modelled on Sobolev spaces.

One of the main motivation behind this research is to gain a deeper understanding the development of aspects of

the theory of ordinary differential equations with operator coefficients by concentrating on some specific examples

of trapped modes.

The results of our first task showed that, in different cases, for sufficiently small potential functions our operator

has an eigenvalue which is contained in the essential spectrum, and hence is an embedded eigenvalue.

According to the result of the second task, it was directly established that Fredholm operator pencil and the
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index could be calculated without the need to consider the adjoint operator. Also, we leveraged certain concepts

to go from the semi-Fredholm property to the Fredholm property using some of the results of the current thesis.
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Chapter 1

Introduction

1.1 Overview

Most mathematical problems that require the theory of ordinary differential equations are generally challenging

to solve [30]. This theory has a wide range of applications in physics and engineering sciences, such as heat con-

duction, meteorology, elasticity, plasticity theory, and thermodynamics. It impacts the development of different

sciences and is considered one of the outstanding creation of the human imagination (see, for example, [32], [34],

and [57]). In essence, this theory forms the basis of the solutions of many problems, for example, perturbation

problems. A canonical example of these problems is the embedded eigenvalues for different operators. Our fo-

cus will be on mathematical problems involving the stability of trapped modes or eigenvalues embedded within

continuous spectra for the Schrödinger operator or Laplace operator with a relatively compact perturbation. We

will highlight the idea of the existence of embedded eigenvalues that occur in various applications arising in

physics, in quantum mechanics, for instance, the eigenvalues of the energy operator correspond to the energy

bonds states (See in [14]). It is known that these problems, that is, with embedded eigenvalues are generally

challenging since the embedded eigenvalues (trapped modes) cannot be separated from the rest of the spectrum

(see, for example, [30], [34], and [57]). The idea of this research is to develop aspects of the theory of ordinary

differential equations with operator coefficients by (at least initially) concentrating on some particular examples
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of embedded eigenvalues. Common threads will be taken from these example problems to subsequently develop

a more general mathematical theory. This thesis is concerned with two basic tasks which are in the embedded

eigenvalues for operators and the Fredholm properties of pencils. Specifically, the first task described in this re-

search is the development of the study of the existence of embedded eigenvalues (trapped modes) within spectra

for the Laplace operator with a potential function −∆− V on cylindrical domains R× [−L,L]. The second task

of this research focuses on understanding the Fredholm properties of operator pencils BA, , acting on weighted

function spaces modelled on Sobolev spaces W k
α,β , for k ∈ N0 and α, β ∈ R.

The remainder of this introductory chapter is organised as follows: In Section 1.2, we give an outline of the stability

of embedded eigenvalues for the Laplace operator with an added potential function satisfying symmetry conditions

with respect to a cylindrical domain. In Section 1.3, the class of weighted function spaces are introduced with

the study Fredholm properties of pencils. In Section 1.4, we outline the contributions of this thesis to literature.

Finally, Section 1.5 gives the structure of this thesis.

1.2 The Stability of Embedded Eigenvalues for the Operator

It well-known that eigenvalues that belong to discrete spectrum are stable. This property is the basis of perturba-

tion theory for eigenvalues. On the other hand, the behaviour of eigenvalues that are embedded in the continuous

spectrum completely different (see [54]). An example of instability of embedded eigenvalues was given by Colin

de Verdire [65]. In this work, we give an overview of the idea of stability of embedded eigenvalues, which means

the study of the behaviour of the existence of eigenvalues in the continuous spectrum of the operator.

1.2.1 Introduction

A waveguide, which represents a unique distribution of transverse and longitudinal components of electric and

magnetic fields (see [7]). From the mathematical point of view, a waveguide is defined as type of boundary

condition on the wave equation such that the wave function must be equal to zero on the boundary and that the

allowed region is finite in all diminsion but one (an unfinitely long cylinder is an example)(see [7]). We study a

two-dimensional acoustic waveguide for the domain described by two parallel lines containing an abstraction of
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fairly general shape that is symmetric about the centreline of the waveguides. It is demonsrated that there exist

at least one trapped mode of oscillation that corresponds to a local oscillation at particular frequency, in the

absence of excitation, which decays with distance down the wavegides away from abstraction. Mathematically,

this trapped mode is related to an eigenvalue of the Laplace operator in the waveguide. Our main aim is to show

that trapped modes always exist. For waveguids, the eigenvalue associated with the trapped mode is said to be

embedded in the continuous spectrum of the operator. As we shall see, the main difficulty with demonstrating

this fact is that this eigenvalue is embedded in the spectrum, which prevent us from using the standard functional

analysis technique. Normally, eigenvalues embedded in a continuous spectrum are a very rare occurrence; their

study requires special methods and there must be particular reasons for their existence. In our case, we need

to define the symmetry operator which allow us to reduce our consideration to the more simple problem for

which the spectrum of the our operator. Furthermore, there are references to achievements made in the last 30

years with regards to the theorems on the existence of trapped modes, see [15]. In order to discuss this task, we

highlight the idea of the existence of embedded eigenvalues for the Laplace operator ∆. Namely, C∞(R) which

is defined by the class of all infinitely differentiable functions on Ω ⊂ Rd for d ≥ 1. We seek to find pairs (λ, u)

consisting of λ, which is an eigenvalue of the Laplace operator, and a non-zero function u ∈ C∞(Ω), which is

the eigenfunction of the Laplace operator corresponding to the eigenvalue λ so that the following condition is

satisfied: 
−∆u = λu, in Ω

u satisfies Dirichlet boundary conditions on ∂Ω .

(1.1)

Such eigenvalue/eigenfunction pairs have creation properties which we will now explore. The eigenvalue problems

involving the Laplace operator remind us of the basic result in the elementary theory of partial differential

equations, which asserts that the problem possesses an unbounded sequence of eigenvalues. We have the following

that:

Theorem 1.2.1. (General result for the Laplace operator on a bounded domain). The spectrum (which is defined

in mathematics, particularly in functional analyis, is a generalisaition of the set of eigenvalues. Specifically a
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complex number λ which is said to be in the spectrum of a bounded operator A if A−λI is not invertable, where

I is the identity operator) of the Laplace operator is discrete when Ω is a bounded open set in Rd for d ≥ 1

with a smooth (or piecewise smooth) boundary ∂Ω. By piecewise smooth, we mean that ∂Ω is a union of a finite

number of smooth arcs or pieces of curves, for example, a rectangle (see [21]). Moreover, the eigenvalue of the

problem (1.1) has an unbounded sequence of eigenvalues

0 ≤ λ0 ≤ λ1 ≤ ... ≤ λn ≤ ...·

(λ = 0 occurs for Neumann boundary conditions). This celebrated result goes back to the Riesz-Fredholm theory

of self-adjoint and compact operators in Hilbert spaces (see [35], pp. 378− 380). In what concerns λ0 being the

lowest eigenvalue of (1.1), can be characterised from a variational point of view as the minimum of the Rayleigh

quotient, that is,

λ0 = inf
u∈C∞(Ω)

∫
Ω

|∇u|2 dx∫
Ω

u2 dx

, (1.2)

where the infimum is taken over C∞(Ω) of the domain of the Laplace operator with Dirichlet and Neumann

boundary conditions. Moreover, it is known that λ0 is simple, that is, all the associated eigenfunctions are

merely multiples of each other (see, for example, Gilbarg and Trudinger [11] and further details in Section 3.2 of

this thesis).

1.2.2 The Spectrum and Essential Spectrum

Definition 1.2.1. Let A be a bounded self-adjoint operator and Λ a Borel set of R (which is defined as any set in

space that can be formed from open sets through the operations of countable unions, countable intersections, and

relative complements). PΛ ≡ χΛ(A) is called a spectral projection of an operator A such that χΛ is an indicator

function, i.e., a spectral projection is the image of Λ under an indicator function defined on its spectrum, which is

hence an orthogonal projection on some closed subspace. See Section 2.6 of this thesis and [36] and the definition

of χΛ is in theorem 2.7.2.

Definition 1.2.2. For a self-adjoint operator A, if λ ∈ σ(A) and P(λ−ε,λ+ε)(A) is finite dimensional for some

ε > 0, λ ∈ σdis(A) is a discrete spectrum of A, where P(λ−ε,λ+ε)(A) is a spectral projection of operator A.
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The reader can see the associated definition in Section 2.6 for more details and [36].

Definition 1.2.3. The essential spectrum of the operator A is the complement in the spectrum of the discrete

spectrum and is denoted by σess(A) i.e.,

σess(A) = σ(A)\σdis(A).

See the definition in Section 2.6 and [36].

The following theorem, we obtain the result for the relation between spectrum and essential spectrum, that is

used in the first task.

Theorem 1.2.2. Let A be a self-adjoint operator and suppose (a, b) ⊂ σ(A) for some open interval (a, b). Then,

(a, b) ⊂ σess(A).

See the proof of this theorem in Section 2.6.

As per the definition of the essential spectrum, it is straightforward to observe the role of this spectrum in the

following concepts:

Definition 1.2.4. A subset of Hilbert space is called a relatively compact if its closure is compact (see Section

2.6 of this thesis and [39]).

Theorem 1.2.3. Let A be a self-adjoint operator and let V be a relatively compact perturbation of A. Then,

� A− V defined with Dom(A− V ) = Dom(A) is a closed operator.

� If V is symmetric, then (A− V ) is a self-adjoint operator.

� σess(A) = σess(A− V ).

See Section 2.6.3 of this thesis and its proof in [39] on page 113.

With a bit more work, the following regularity result shows that multiplication by V defines a relatively compact

perturbation with respect to operator A.
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Definition 1.2.5. (Cone property)

For each u ∈ Ω is the vertex of a cone contained in Ω and congruent to cone where Ω is union of congruent cones.

Theorem 1.2.4. Let Ω be domain in Rd for d ≥ 1 and Ω has a cone property. Let −∆ be the Laplacian on Ω

with any of the boundary conditions (Dirichlet, Neumann or a mixture (Dirichlet and Neumann)). Suppose V is

a continuous function with bounded support then multiplication by V defines a relatively compact perturbation

with respect to operator −∆.

The reader is referred to the proof of the previous theorem in Section 3.8 of the current thesis.

1.2.3 Embedded Eigenvalues for −∆− V.

Here, we need consider the Laplace operator, where the domain is C∞c (Ω), which is smooth and has compactly

supported functions on Ω ⊆ Rd for d ≥ 1, and which is dense in L2(Ω). See [51]. For u ∈ C∞(Ω), we can define

the Laplace operator by

−∆u = −
d∑
j=1

∂2u

∂t2j
.

We note that −∆ is again a smooth compactly supported function, and is bounded and lies in L2(Ω) for further

details, see Section 2.8.2.

To set the scene, as a consequence of all the above concepts, this part has, as the underlying domain, the cylinder

R× [−L,L] = {(t, s)|t ∈ R, s ∈ [−L,L]} and the Laplace operator on the cylinder which describes by

−∆ = −(
∂2

∂t2
+

∂2

∂s2
).

This shows that the operator

−∆− V

on R × [−L,L] has embedded eigenvalues for certain positive symmetric potential functions V. Moreover, the

following theorem is considered a principal result in this task:

Theorem 1.2.5. (Has been published in March 2020)[41].

Consider on R× [−L,L] the operator

−∆D − V
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with Dirichlet boundary conditions on R× {−L} and R× {L}. Suppose V for a sufficiently small, non-negative

continuous real valued function on R× [−L,L] with bounded support, is symmetric, i.e.,

V (t, s) = V (t,−s)

for t, s ∈ R× [−L,L]. Then,

σess(−∆D − V ) = [λ1,∞) ⊆ σ(−∆D − V ),

where λ1 =
π2

4L2
, while there exists λ > λ1 such that λ is an eigenvalue of −∆D − V ; more precisely there exists

u 6= 0 and

u ∈ Dom(−∆D − V ) ⊂ L2(R× [−L,L])

such that

(−∆D − V )u = λu.

Similarly, we can consider the operator

−∆N − V

on R× [−L,L] with Neumann boundary conditions on R×{−L} and R×{L}. Suppose V for a sufficiently small,

non-negative continuous real valued function on R× [−L,L], with bounded support is symmetric, i.e,.

V (t, s) = V (t,−s)

for t, s ∈ R× [−L,L]. Then

σess(−∆N − V ) = [λ0,∞) ⊆ σ(−∆N − V ),

where λ0 = 0, while there exists λ > λ0 such that λ is an eigenvalue of −∆N − V ; more precisely there exists

u 6= 0 and

u ∈ Dom(−∆N − V ) ⊂ L2(R× [−L,L])

such that

(−∆N − V )u = λu.
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In both cases, for a sufficiently small V, the operator −∆−V has an eigenvalue λ which is contained in the essential

spectrum, and is hence an embedded eigenvalue. The arguments of this result combine the ideas discussed in

Chapters 2 and 3; we can see the proof of this result at the end of Chapter 3.

1.3 Fredholm Properties of Pencils

Here, the idea underlying the second task is based on the theory of the ordinary differential equations with

operator coefficients. We study Fredholm properties, which are related to the spectra of pencils. In particular,

we detect and approximate the spectra of the Fredholm operator pencil via Green’s kernel with power-exponential

solutions for non-homogeneous equations. Then, we calculate the kernel and co-kernel explicitly to establish a

Fredholm operator pencil and its index without consider its adjoint.

1.3.1 Operator pencil

First, in order to proceed with further results for Fredholm properties of pencils, one needs to consider the

following space:

Definition 1.3.1. The the space Hk for k = 0, 1, 2, ... is set by

Hk =


∞∑
j=0

ajuj : ((1 + λ2
j )

k
4 aj)j∈N0

∈ `2(N0)

 .

This is a linear subspace of the Hilbert space H with the norm given by

‖u‖2Hk =

∞∑
j=0

(1 + λ2
j )

k
2 |aj |2,

for u ∈ Hk.

We have, for j ≤ k and u ∈ Hk. Then,

‖u‖2Hj ≤ ‖u‖
2
Hk
.

The reader can see the properties of these spaces in Section 4.1.
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Now, we define the operator Dt = −i d
dt

on R. We need to consider to get an idea of the solutions studied in this

report the equation

(D2
tA0 +DtA1 +A2)U(t) = 0, (1.3)

where Aj for j = 0, 1, ..., k is a non-negative self-adjoint operator in a Hilbert space L2(R) with the domain

Dom(A) = H2(R). We are interested in the solutions of equation (1.3) which have the form

U(t) = eiµ0t
k∑
j=0

(it)j

j!
uk−j (1.4)

where µ0 is a complex number, uk ∈ L2(R) for k = 0, 1, 2 and u0 6= 0. By inserting U(t) in (1.3) we arrive at the

equations for u0, u1, u2 :

(µ2A0 + µA1 +A2)u0 = 0. (1.5)

Non-trivial solutions of (1.4) are called eigenvectors of the quadratic operator pencil

C 3 µ→ BA = µ2A0 + µA1 +A2 : H2(R)→ L2(R), (1.6)

which correspond to the eigenvalue µ0 of the pencil. By C we denote the set of complex numbers and by operator

pencils we call polynomial operator pencil in µ ∈ C with operator coefficient.

A similar description of all solutions can be given the general equation

(

k∑
j=0

Ak−jD
k−j
t )U(t) = 0, (1.7)

with constant operator coefficients acting in a pair of Hilbert spaces Hk(R)→ L2(R) for k = 0, 1, 2, ...·

We introduce the operator pencil BA by:

BA : C→ B(Hk(R), L2(R)),

which is defined by

BA(µ) =

k∑
j=0

Ak−jµ
j .

where Aj ∈ B(Hk(R), L2(R)). (By B(Hk(R), L2(R)) we mean the space of linear bounded operators acting from

Hk(R) to L2(R)) for k = 0, 1, 2, ...·
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Matrix polynomials are a good example of an operator pencil that act in finite-dimensional Hilbert spaces.

The literature on this topic is extensive, but see, for example, [13] and [25]. There have been several studies

on the spectral theory which is the study of spectra and related properties of operators in infinite dimensional

Hilbert spaces which dealt with self-adjoint operators that appear in quantum mechanics and, indeed, in classical

mechanics for conservative systems. The spectrum of a self-adjoint operator is real, and the related questions of

interest are ones of the existence of the lower bounds to the spectrum and of the essential spectrum, the number

of negative eigenvalues, the possible existence of spectral gaps, etc. However, even when dealing with conservative

systems, it is sometimes more natural and convenient to consider a quadratic operator pencil (see, for example,

[6]).

In particular, in this report, we have an operator pencil

BA : C→ B(H2, H0),

which is defined as:

BA(µ) = µ2 +A− λ, (1.8)

where the collection of Hilbert spaces

{Hj}2j=0

with norm ‖.‖j such that H2 ⊂ H1 ⊂ H0, , and that substitute λ for A in the definition of BA. The above

embeddings are dense since H2 is dense to H0. See example page 44 of the current thesis. We suppose the

operator A is a bounded operator from Hj into H0 for j = 0, 1, 2 and a scalar µ0 ∈ C is called an eigenvalue of

BA, if BA(µ0) is not injective. Hence, the eigenvalue problem is to find µ0 and u 6= 0 and u ∈ H2, such that:

BA(µ0)u = 0. (1.9)

A specific example of non-trivial operator A satisfying this condition: e.g. Volterra integral operator may be

defined a function u ∈ L2[0, 1] and a value t ∈ [0, 1] is defined by

V (u)(t) =

∫ t

0

u(s)ds.
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V is a bounded liner operator between Hilbert spaces with adjoint

V ∗(u)(t) =

∫ 1

t

u(s)ds.

V is a Hilbert-Schmid operator, hence in particular is compact.

σ(V ) = {λ ∈ C|V − λI is not invertable}.

V has no eigenvalue and by the spectral theory of compact operator, its spectrum σ(V ) = 0. See [12].

These problems are used to study the dispersion and damping properties of waves [49]. In a physical sense, we

consider the wave equation, especially on a waveguide, to be a good example of an operator pencil. We have the

domain defined on the three dimension (t, z, x) ∈ R×R×Ω where Ω ⊂ R2 is a bounded domain with a boundary

∂Ω. For the scalar field Ψ(t, z, x) we have the wave equation,

∂2
t Ψ− ∂2

zΨ−∇2
ΩΨ = 0,

that allows us to obtain the solution,

Ψ(t, z, x) = eiωteiµzψ(x),

which gives

∇2
Ωψ − µ2ψ + ω2ψ = 0.

The operator pencil is considered by B(−∇2
Ω)(µ). Similarly, the eigenvalue problem is to find µ such that

B(−∇2
Ω)(µ) = ((∇2

Ω − µ2 + ω2)ψ)∇2
Ω

(µ) = 0,

where µ = ω2. See [40].

Now, the spectrum σ(BA(µ)) of this operator function is the set of all µ ∈ C such that σ(BA) is not invertible

in B(H2, H0) and the resolvent set is defined as the complement ρ(BA) = C \ σ(BA) (see [9] and [58] for further

details). The geometric and algebraic multiplicity of any µ0 ∈ σ(BA) can be defined as dim kerBA(µ0) and the

sum of the length of a set of maximal Jordan chains corresponding to µ0, respectively. (See Section 4.4 of this

thesis and [58], for details).
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In order to define the function space on which A given in (1.8) and values of parameters α and β, which are

related to approximate eigenvalues of an operator pencil BA, we need to introduce the exponential weighted

function spaces modelled on Sobolev spaces to examine the operator pencil.

Definition 1.3.2. We have a finite norm,

‖u‖2Wk
α,β

:=

k∑
j=0

∫ 0

−∞
e2αt

∥∥∥Dj
tu
∥∥∥2

Hk−j
dt+

k∑
j=0

∫ ∞
0

e2βt
∥∥∥Dj

tu
∥∥∥2

Hk−j
dt;

where W k
α,β denotes the set of u : R→ Hk, for k ∈ N0, and α, β ∈ R.

For further details, the reader is referred to Section 4.2 of this thesis and [31], [50], [51], [66]. As a consequence

of the above concepts, it is easy to show that for α, β ∈ R, the operator

BA(Dt) = D2
t +A− λ,

defines a bounded map W 2
α,β → W 0

α,β . With a bit more work, it is also possible to show that the inclusion

W 2
α,β ↪→W 1

α′ ,β′
defines a compact map whenever α

′
> α and β

′
< β, the proof of which is given in Section 4.6.

The projection of σ(BA) onto the imaginary axis is of particular importance. It plays a significant role in this

research and is denoted by Γ(BA), that is,

Γ(BA) = {=µ|µ ∈ σ(BA)} ⊂ R.

The above discussion implies that Γ(BA) consists of isolated points and, given γ ∈ Γ(BA), the total algebraic

multiplicity of all those µ ∈ σ(BA) with =µ = γ is finite. See Section 4.4 and [9], and [58].

We determine all eigenvalues of BA inside a given closed contour denotes by SR and guarantee that, at each stage

of approximation the equations are as well-conditioned as the original eigenvalue problem, which is in the form

of equation (1.9). Now, we consider a simple definition of the resolvent operator (inverse operator) to investigate

various results in the following definitions, which the reader can find in Chapter 5.

Definition 1.3.3. Let Ω be a domain in Complex plane C. An operator function

Υ(µ) : Ω→ B(H2, H0)
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is referred to as holomorphic on Ω when it can be represented as a power series

Υ(µ) =

∞∑
j=0

Υj(µ− µ0)j , Υj ∈ B(H2, H0),

which is convergent in B(H2, H0) in the neighbourhood of µ0 ∈ Ω (see Section 5.2 and [58]).

Definition 1.3.4. The resolvent operator can be represented as

B−1
A (µ) =

J∑
k=1

mk−1∑
h=0

Pk,h
(µ− µ0)mk−h

+ Υ(µ), (1.10)

where,

Pk,h =

h∑
s=0

〈., ψk,s〉H0ϕk,h−s,

where ϕk,s is a canonical system of Jordan of BA corresponding to µ0, and ψk,s is a canonical system of jordan

of B∗A (Adjoint pencil which is defined in Section 4.5) corresponding to µ0 for k = 1, 2, ..., J and s = 0, ...,mk− 1,

and Υ is a holomorphic function in the neighbourhood of µ0.

See theorem 5.2.3, [58] and [59].

In addition, for certain functional eitµ, one is required to evaluate the integrals

1

2π

∫
=µ
eitµB−1

A (µ)dµ,

which is called Green’s Kernel. Throughout this research, the Green function associated with BA helps, among

other things, to study the spectra of BA. In particular, we construct the Green’s function and obtain asymptotic

formula of this function at infinity based on the definition of B−1
A (µ) (Theorem 5.2.3 of the current thesis).

Furthermore, we have the following regularity result relating to Γ(BA), where α, τ ∈ R, α /∈ Γ(BA), the inverse

operator which is defined in (1.10) and a bounded map of BA : W 2
α,α →W 0

α,α to give that

u(t) =

∫
R
G(t− τ)f(τ)dτ,

for f ∈W 0
α,α = L2(R, H0). The reader can find the proof this result in Section 5.3. We can consider the ordinary

differential equation with constant operator coefficients,

BA(Dt)u = f, (1.11)
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Therefore, the Green’s function G(t), which is considered the main object to investigeation, is the solution of

(1.11). In other words, the numerical method we used for our purpose is based on integrals of the generalised

resolvent B−1
A by using the construction Green’s kernel. The state-of-the-art results in the contour integration-

based methods for solving non-linear matrix eigenvalue problems are presented in [38] and [63], and references

therein. However, the results of the contour integration based on the solution of the methods for eigenvalue

problems can be found in [64]. We use the, as obtained from the asymptotic formula for Green’s function at

infinity based on definition (1.10), to achieve new asymptotic representation of this function in the following

formulae in (1.12) and (1.13) as t→ ±∞ of power-exponential solutions of (1.11) in the Sobolev space W 0
α,β .

A new Green’s kernel is defined by

G(β)(t) =
1

2π

∫
=µ=β

eitµB−1
A (µ)dµ,

see the definition in Section 5.3.2 of the current thesis. To understand this relation between G(t) and G(β)(t),

consider the following theorem:

Theorem 1.3.1. Suppose there are no eigenvalues of the operator pencil BA on the lines =µ = β, and
∑
α±

=

{µ ∈ σ(BA) : =µ ≶ α}. Then,

G(t)−G(β)(t) =
∑

µ∈
∑
α+

eiµtPv(t), (1.12)

G(t)−G(β)(t) = −
∑

µ∈
∑
α−

eiµtPv(t), (1.13)

where the operator Pv(t) is defined by

Pv(t) =
1

2π

∫
Sv

eit(µ−µv)B−1
A (µ)dµ.

where Sv denotes the small circle centred µv. Further details are given in Section 5.3.2.

1.3.2 Fredholm operator pencil BA

Now, we base the following arguments on the Fredholm property which is related to the spectra of pencils. First,

we can consider an operator A ∈ B(H2, H0) to be a Fredholm operator if the dimensions of its null space Ker(A)
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and of the orthogonal complement of its range Co-Ker(A) = Ran(A)⊥ are finite (see [13]). Let Φ(H2, H0) denote

the set of all Fredholm operators, where the number

Index(A) = dim(Ker(A))− Codim(Ran(A)),

is called the index of A. Subsequently, we assume that BA(µ) ∈ Φ(H2, H0) for all µ ∈ C. If, in addition, the

resolvent set of such BA(µ) is non-empty, the analytic Fredholm theorem, for example, [53] implies that the

generalised resolvent µ → B−1
A (µ) is finitely meromorphic. This in turn implies that the spectrum σ(BA) is

countable and the geometric multiplicity of µ0, that is (dim(Ker(BA)), is finite. Moreover, the associated Jordan

chains of generalised eigenvectors have finite length bounded by the algebraic multiplicity. We refer the readers

to [53], [58] and Section 5.2 of this thesis for further details. The above discussion helps to obtain results for the

Fredholm property of pencils BA and the Fredholm index. The projection of σ(BA) onto the imaginary axis has

been related to the mapping properties of operator BA; we have the following theorem:

Theorem 1.3.2. (Published in [43], April, 2021. (Under review)).

Let Γ = Γ(BA) and α, β ∈ R \ Γ. Set δ = dist(α,Γ) > 0. Then the map

BA(Dt) = D2
t +A− λ : W 2

α,β −→W 0
α,β (1.14)

is an isomorphism map.

Refer the reader can see the prove of this theorem in Section 4.6 of this thesis. This result is a special case of

a general theory that has been developed for differential equations with operator coefficients (see [9] and [58]).

The fact that Theorem 1.3.2 (or Theorem 4.6.2 of the current thesis) does not extend to α, β ∈ R \ Γ has to

do with the existence of exponential solutions of BA(µ0)u = 0, for u ∈ W 2
α,α and these solutions give the link

between the isomorphisms for different values for α and β. We consider Σα,β to denote the linear span of the set

of all exponential solutions corresponding to µ0 ∈ σ(BA). However, from the result (Theorem 5.3.7), which offers

a new representation of G(t) (see Section 5.3), we offer the following proposition which is found as the difference

of two solutions of to (1.11)

Proposition 1.3.3. Let f ∈W 0
α,α ∩W 0

β,β , uα ∈W 2
α,α and uβ ∈W 2

β,β be the solutions of

A(α)uα = f and A(β)uβ = f,
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respectively. Then

uα(t)− uβ(t) =
∑

µ∈Σα,β

mk−1∑
h=0

∫
R
eiµ0(t−s)Pk,hf(s)ds.

The reader can find the proof this result in Section 5.4 of the current thesis. The following results are used to

generalise theorem 1.3.2 to deal with BA mapping between spaces:

Corollary 1.3.4. If α ≤ β ∈ R. Then,

W 0
α,β = W 0

α,α ∩W 0
β,β

while,

W 0
β,α = W 0

α,α +W 0
β,β .

See the proof in Section 4.6 of this thesis. However, the result that establishes the semi-Fredholm property (See

Theorem 5.5.1 of the current thesis) needs to provide the following result and certain concepts.

Theorem 1.3.5. For α, β ∈ R \ Γ, choose α < α
′

and β
′
< β. Then, there exists c and for all u ∈ W 2

α,β , such

that

‖u‖W 2
α,β
≤ c[‖BA(Dt)u‖W 0

α,β
+ ‖u‖W 1

α
′
,β
′
].

The reader can find the proof this result in Section 4.6 of this thesis. According to the Fredholm property of

operator pencils through the set Γ:

Theorem 1.3.6. Let α, β ∈ R \ Γ(BA), Suppose

A(α) = BA(Dt) : W 2
α,α →W 0

α,α

and

A(β) = BA(Dt) : W 2
β,β →W 0

β,β

are isomorphism. Then A(α) and A(β) are Fredholm with index 0. See Section 5.5 of the current thesis.

We obtain another results for the Fredholm property and semi-Fredholm property in Section 5.5, but the argument

of Fredholm index and its dependence on the parameters α and β is considered the principal result in this section,

which is in the following theorem:
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Theorem 1.3.7. (Published in [42], April, 2021).

Suppose α < β ∈ R\Γ. Then the maps

A(α,β) = BA(Dt) : W 2
α,β −→W 0

α,β

and

A(β,α) = BA(Dt) : W 2
β,α −→W 0

β,α

are Fredholm with

IndexA(α,β) : W 2
α,β −→W 0

α,β = −|Σα,β | = − IndexA(β,α) : W 2
β,α −→W 0

β,α.

See the proof of this Theorem or (Theorem 5.5.5 in Section 5.5) of the current thesis.

1.4 Contribution of the Thesis

Despite the existence of several studies in the above areas of this research, there is still the need for further research

aimed at tackling the challenges presently faced when adopting this approach. These areas are dependent on

the development of the idea of the classical theory of ordinary differential equations with operator coefficients.

Of particular interest are problems involving the stability of ”trapped modes”, or eigenvalues embedded within

continuous spectra. In this setting, we obtain the results of the following types, which parallel those of the

standard theory of the ordinary differential equations with operator coefficients:

1. Development of the construction of trapped modes for acoustic waveguides given by Evans et al. (1991),

where this construction can be adapted to produce examples of embedded eigenvalues for Laplace operators

with potential function.

2. The typical results which show the existence of embedded eigenvalues when we demonstrate the operator

−∆ − V on a cylindrical domain with different boundary conditions (Dirichlet or Neumann) such that V

is a symmetric, positive, and continuous function.

3. Using the Cauchy’ Residue Theorem and inverse operator pencil to obtain asymptotic representation for

Green’s kernel at infinity.
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4. The typical results which demonstrate the Fredholm property for operator pencil, where this property acts

between certain weighted function spaces.

5. Dependence of the Fredholm index on the parameters of the weighted function spaces.

The main objective of the first task is to develop aspects of the theory of differential equations, concentrating on

particular examples of embedded eigenvalues; these include the stability of trapped modes within the continuous

spectrum for operators. Trapped modes are localised oscilations which have finite energy and their existence in

acoustic guides at wave numbers below the first antisymmetric cut-off has been well-documented (see [7]). For

wave numbers above the cut-off the eigenvalue assioated with trapped mode is said to embdded in the continouous

spectrum of the relevant operator. In a previous paper [15], it was demonstrated that existence of trapped modes

is related to an eigenvalue of operator. In 1951, Ursell demonstrated the existence of trapped modes through

a horizintal circular cylinder with a suffeciently small radius in water (see [22]). Jones used deep results on

unbounded operator to extended Ursell’s proof to a wide class of horizontal cylindrical obstacles in finite depths

of water [14]. Jones’ results, as applied to the water-wave problem, formed just a small part of his paper in which

a number of results were obtained that showed the spectrum of the Laplace operator to satisfy the boundary

conditions of semi-infinite domains [14]. Motivated by problems in water waves, a series of recent papers has been

concerned with both demonstrating the existence of, and numerical algorithms for the computation of embedded

eigenvalues (trapped modes) for different geometries. For example, Evans and Linton (1991) used some of the

techniques described by the Ursell method (1951) to demonstrate the existence of trapped modes and provided a

numerical technique for computing these modes in the vicinity of a vertical cylinder [16]. In 1993, Evan, Linton

and Ursell considered the case of an abstract shape which can be described by two long parallel lines or walls

of the channel, where it is not possible to seperate the problem into solutions (symmetric or antisymmetric)

with respect to the centreplane, and showed that, in this case, a trapped mode could exist. Evan and Linton

used a Green’s function to construct a homogenenous equation for the trapped modes in the case of a cylinder

and showed that the trapped modes frequencies agreed numerically with the previous results for the circular

and recangular cross-section. Then, they identified these trapped mode frequencies as eigenvalues of the Laplace

operator on an unbounded domain, and which established the existence of the smallest eigenvalue using the
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Rayleigh quotient, (see Evans et al., 1993 [15]). Their results also prove the existence of trapped modes for thin

obstacles aligned with the guide walls in higher dimensions. Further extensions to higher dimensions have been

made by Linton and Mciver [7], who showed that trapped modes exist for axisymmetric bodies in cylindrical

waveguides by exploiting the symmetry of the problem and looking for modes which have a specific azimuthal

variation. Howover, in this work, we indicate in Chapter 3 how the method can be applied to the case of the the

operator

−∆− V

with an additional positive symmetric potential function V on a cylindrical domain R× [−L,L] with Dirichlet, or

Neumann boundary conditions on R×{−L} and R×{L}; that is, we successfully combined all ideas discussed in

the thesis and proved for both cases that our operator has an embedded eigenvalue. This approach was applicable,

for the sufficiently small V which satisfies the symmetry condition, when the operator −∆−V has an eigenvalue

λ which is contained in the essential spectrum in the cylindrical domain. Moreover, if no restrictions are placed

on the symmetry of the solutions then the trapped modes occur at frequencies that correspond to eigenvalues

that are embedded in the continuous spectrum of the Laplace operator with V . However, if the structure is

symmetric about the centreline of the channel and the motion is split into symmetric and antisymmetric parts,

then the operator may be decomposed, so that the essential spectrum of the antisymmetric part has a non-zero

lower limit and the trapped mode corresponds to an eigenvalue which is below this value. In this case, standard

variational methods may be used to prove the existence of trapped modes. The numerical method employed to

determine the trapped mode frecunecies uses the ideas of Evans and Porter [17]. This result, which is developed

in Section 3.9, predicts that the method can be applied to the case of a two-dimensional acoustic waveguide that

can support trapped modes. Future work will investigate the structure in detail for the case where the deformed

obstacles are of different geometries.

The second task of this thesis, as discussed in Chapters 4 and 5, is the consideration of the Fredholm operator and

its properties with regards to pencils. The motivation behind this work came from applications to the mechanics

and electrodynamics of continua. Fredholm operators, which were introduced by the Swedish mathematician Erik

Ivar Fredholm (1866− 1927), are useful for treatment perturbation problems that can be expressed as compact
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perturbations of invertible operators (see, for example, [40]).

However, there appears some areas of this task that are related to the results presented here. The earliest of

these studies were focused on the problem of operator pencils on a domain with singularity on the boundary that

appeared in [60]. The general approach to these problems was refined on the Sobloev spaces and was developed

by differnt authours, for example, Maz’ya and Kozlov [58] and [60].

Furthermore, in Chapter 4, the fundamental results of the present research are related to the investigation of the

quadratic operator pencil

BA(µ) = µ2 +A− λ.

Theorems 4.6.1 and 4.6.2 are proved with regard to some of the properties of pencils. The latter (Theorem 4.6.2)

is a special case of a general theory that has been developed for differential equations with operator coefficients

(see [58]); for the operator pencil BA it can also be obtained directly with elementary arguments if one moves to

fourier space (see [10], [11] and [58]). We then determined some of the associated consequences, for examples,

4.6.4 and 4.6.6 of the current thesis could help to generalise Theorem 4.6.2. These consequences were introduced

by Elton (see [10]), and were proved in the current thesis. The present work extends the existing work in its

consideration of more general types of function spaces. Apart from filing numerous gaps in the existing collection

of results, numerous new type of spaces are considered; perhaps the most important of these are the weighted

function spaces W k
α,β Sobolev spaces of arbitrary real order; see Section 4.2 for further information.

Finally, this task seeks to develop an approach considered in Chapter 5. Although the presumed existence

of parallel results for the Fredholm properties of pencils has been remarked upon by several studies ( see, for

example, [9] and [58]); in this task, we deal with solutios of equation, where we systematically employ basic facts

about the theory of Fredholpm operator pencils. One meet such power-exponential solutions in basic courses on

ordinary differential equation with either scalar or matrix coefficient see [58]. In the infinite dimentional cases

thes solutions also play an important role. In particular, they determine the asymptotics at infinity of arbitrary

solutions and are used for constructing of the Green’s kernel; see Maz’ya and Kozlov [58]. Furthermore, we have

representations of Green’s kernels of different types, where these new representations can be used to find the

solutions of BA(Dt)u = f in Sobolev space W 0
α,β . The Fredholm property, which is related to the spectrum of
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the associated operator pencil BA through the set of Γ(BA) with the specialisation of the results of developing

some arguments of Fredholm operators’ indices with their applications, were developed by Kozlov, Maz’ya, and

Rossmann in [59] and Elton in [9]. Here, we made the case of the Fredholm property of pencils dependent

determination of the parameters α and β which move between components of R \ Γ. Furthermore, there was

a simplified setting which allowed for a simpler argument; for example, kernel and co-kernel can be calculated

explicitly. This means that the Fredholm operator can be established directly and the index calculated without

the need to consider an adjoint operator (see Theorem 5.5.5) in the current thesis. The techniques of the above

work seems to be well suited to operators which appropriate bounded perturbation of differentiaion in one variable

and even allows for the computations of the index and the charctrerisation of the kernel and co-kernels in certain

cases. However these tchniques do not appear to generlise easily to cover differnt operators. In [9] there was an

attempt to use techniques similar to those employed here, and Theorems 5.5.2, and 5.5.5 were established for

the weighted function space W 0
α,β . In this thesis, as in the majority of the literature cited above, the necessary

Fredholm properties of pencils are proved locally with weighted function space results. Due to the more general

function space setting of the present work, a more complete set of related weighted function space results has

been obtained here. However, it should be pointed out that many of these results probably appear in the function

space literature.

1.5 Structure of the Thesis

This thesis contains eight chapters with four main chapters 2, 3, 4 and 5. Chapter 1 is the introductory chapter

where we discuss the relevant historical and theoretical basis of our research.

Chapter 2 is primarily concerned with the study of the some fundamental notations that will be used during this

thesis. After recalling the notions of bounded, unbounded and closed operators on a Hilbert space H, we present

the basic concepts of adjoint for unbounded operator, and symmetric operators. Then, we focus on the spectrum

of an operator with certain properties. We give the definition of an essential spectrum with an important result

which is related to this kind of this spectrum. In Section 2.7, we present a compact operator with certain results

that will be used during this thesis. Finally, we discuss Friedrichs extension theorem and its properties to build
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the Laplace operator.

The next chapter, Chapter 3 contains our first original work. We used the tools introduced in Chapter 2 to

help investigate certain results. We introduce the concept of boundary conditions with a focus on the spectrum

of the Laplacian for a bounded domain. Moreover, we give some examples on different domains (bounded and

unbounded domains to compute the eigenvalues and eigenfunctions). We give the definition of the Symmetry

operator. We detail the formulation of variational principle to calculate the following inequality:

inf(σ(−∆− V )) < λ0

in Section 3.7. In Section 3.8, there is an important theorem of the first task which is proved a relatively compact

function V with respect to the Laplace operator in the Hilbert space L2(Ω) where Ω ⊂ Rd for d ≥ 1. In Section

3.9, we demonstrate that the operator

−∆− V

on R × [−L,L] has embedded eigenvalues for a sufficiently small real valued non-negative continuous function

with bounded support and which is a symmetric function.

In Chapter 4, we give the definitions of Sobolev spaces and operator Pencil with some fundamental results.

Section 4.1 defines the space Hk for k = 0, 1, 2, ... with some of its properties. The majority of Section 4.2,

is devoted to establishing the basic properties of the Sobolev spaces W k
α,β for k ∈ N0 and α, β ∈ R that are

necessary in order to work with them. The operator pencil to which our results apply is introduced in Section

4.4 (see Definition 4.4.1). We then consider the adjoint of pencils with some of their properties. At the end

of this chapter, we give the result, which is Theorem 1.3.1 (or Theorem 4.6.2). Additionally, it is shown that

certain arguments can be used to help generalise previous theorem to deal with operator pencil mapping between

Sobolev spaces in Corollary 1.3.4 (or Corollaries 4.6.4, and 4.6.6).

In Chapter 5, we give the definition of Fredholm operator and define its properties. Later, we give the definition

of the resolvent operator of Fredholm operator pencil B−1
A (µ). We focus on the Green’s function G(t) and its

properties, which are played a significant role in this thesis. Then, we obtain the asymptotic the formula of the

Green’s function at infinity based on Theorem 5.2.3 and we observe certain results that help to achieve a new

asymptotic representation of this function as t→ ±∞ to the exponential solution of BA(Dt)u = f in the Sobolev
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space W 0
α,β . In the final section, we give some of the results of the semi-Fredholm property (see theorem 5.5.1)

and index formula of the Fredholm operator pencils BA, which forms the basis of this chapter (see theorem 5.5.5).

In Chapter 6, there is an appendix which gives further examples.

In Chapter 7, we give a review of what we have achieved in this thesis, outline the limitations of the study and

draw conclusions on our finding.

In Chapter 8, we have list of the publications including three internal thesis and publications and one external

research.
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Chapter 2

Fundmental Ideas and Preliminaries

In this chapter, we define the space Hk where k = 0, 1, 2, ... in Section 2.1. In Section 2.2, we give some lemmas

and theorems for the Fourier transform and inverse Fourier transform on R and Rd for d ≥ 1. We give definitions

of bounded and unbounded linear operators on the Hilbert space H in Section 2.3. In Section 2.4, we define

the self-adjoint for unbounded operators, symmetric operators and essentially self-adjoint operators. We define

the spectrum of the linear operator in Section 2.5. The definition of Essential spectrum is given in Section 2.6.

In Section 2.7, we define a compact operator with some properties. In Section 2.8, we observe the Friedrichs

extension theorem and the representation theorem that characterises the linear operator in the Hilbert space H.

2.1 Notations

To avoid confusion, we begin by making explicit some notations that will be frequently used during the current

thesis. Let L2(R) be the Hilbert space of complex-valued square integrable functions on R with inner product

〈u, v〉L2(R) =

∫
R
u(t)v(t)dt,

and where the norm is defined by

‖u‖2L2(R) =

∫
R
|u(t)|2dt.
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We will also encounter the space in this research, denoted as H1(R), which is similar to the space of complex

valued function and is refinement of L2(R) such that a function u : R → C is said to be in H1(R) if u ∈ L2(R)

and its distributional gradient ∇u is a function that is in L2(R). Here, C is the field of complex numbers. Now,

the inner product and norm of H1(R) are given by respectively,

〈u, v〉H1(R) = 〈u, v〉L2(R) + 〈∇u,∇v〉L2(R)

=

∫
R
u(t)v(t)dt+

∫
R
∇u(t)∇v(t)dt,

and

‖u‖2H1(R) = ‖u‖2L2(R) + ‖∇u‖2L2(R)

=

∫
R
|u(t)|2dt+

∫
R
|∇u(t)|2dt.

See [18], [44] and [52].

Remark 1. We have the following notes:

i) In this research, we encounter the space L∞(R) which is defined a Banach space of complex-valued functions

on R and its norm is defined by

‖u‖2L∞(R) = sup
t∈R
|u(t)|,

where a function u : R→ C.

ii) The form 〈., .〉 is antilinear in the first argument and linear in the second argument (see [18], [44] and [52]).

Now, we can define the space H1 on Rd for d ≥ 1.

Definition 2.1.1. The space H1(Rd) for d ≥ 1 can be defined as

H1(Rd) =

{
u ∈ L2(Rd) :

∂u

∂ti
∈ L2(Rd), i = 1, 2, ..., d

}
,

where
∂u

∂ti
is the distributional derivative. The space H1(Rd) is equipped with the norm

‖u‖2H1(Rd) = ‖u‖2L2(Rd) +

d∑
i=1

∥∥∥∥ ∂u∂ti
∥∥∥∥2

L2(Rd)

=

∫
Rd
|u(t)|2dt+

d∑
i=1

∫
Rd

∣∣∣∣ ∂u∂ti
∣∣∣∣2 dt,
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(see [44], [50], [51] and [52]). Moreover, for k = 0, 1, 2, ... the following definition is the generalisation of the

previous notation where we define the space Hk on R and Rd for d ≥ 1.

Definition 2.1.2. The space Hk where k = 0, 1, 2, ... is defined by

Hk(R) =
{
u ∈ L2(R) : ∇ju ∈ L2(R), 0 ≤ j ≤ k

}
,

and the norm of this space is defined by

‖u‖2Hk(R) =
∑

0≤j≤k

‖∇ju‖2L2(R) =
∑

0≤j≤k

∫
R
|∇ju(t)|2dt,

where a distributional derivative as ∇j for 0 ≤ j ≤ k. In particular, H0(R) = L2(R), (see [18], [44] and [52]).

Definition 2.1.3. For d ≥ 1, a distributional derivative can be represented as

Dαu =
∂|α|u

∂tα1
1 ∂tα2

2 .....∂tαdd
,

for a multi-index α which is a vector in Nd0. We can write

α = (α1, α2, ..., αd),

and the degree of α as defined to be

|α| = α1 + α2 + ...+ αd.

The space Hk where k = 0, 1, 2, ... on Rd is defined by

Hk(Rd) =
{
u ∈ L2(Rd) : Dαu ∈ L2(Rd) for all |α| ≤ k

}
,

and the norm of this space is defined by

‖u‖2Hk(Rd) =
∑

0≤|α|≤k

∫
Rd
|Dαu|2dt =

∑
0≤|α|≤k

‖Dαu‖2L2(Rd).

See [44], [50], [51] and [52].

2.2 Fourier Transform in R and Rd

In this section, we define the Fourier transform and its inverse in R. Then, we give some lemmas and some

theorems of the Fourier transform and inverse Fourier transform in Rd for d ≥ 1.

26



Remark 2. The Fourier transform of the function u for τ ∈ R is defined as

û(τ) =
1√
2π

∫
R
e−itτu(t)dt,

and the inverse Fourier transform will be

u(t) =
1√
2π

∫
R
eitτ û(τ)dτ.

The Plancherel theorem for the functions in L2(R) gives

‖u‖2L2(R) =

∫
R
|u(t)|2dt =

∫
R
|û(τ)|2dτ = ‖û‖2L2(R).

See [50], [51] and [62]. The following result is considered useful to prove some arguments in the current thesis.

Lemma 2.2.1. For τ ∈ R, then

∇̂ku(τ) = (iτ)kû(τ),

where ∇ is a distributional gradient.

Proof. We use the mathematical induction to prove that

∇̂ku(τ) = (iτ)kû(τ).

We prove that the statement is true for k = 0, which is trivial. Assuming that the statement is true for k − 1,

we have

∇̂k−1u(τ) = (iτ)k−1û(τ).

Now, we will prove that the statement is true for k. Integrating by parts, we get

∇̂ku(τ) =
1√
2π

∫
R
∇ku(t)e−itτdt =

1√
2π

(∇k−1u(t)e−itτ ) |∞−∞ +
iτ√
2π

∫
R
∇k−1u(t)e−itτdt

= 0 + (iτ)∇̂k−1u(τ)

= (iτ)kû(τ).

Therefore,

∇̂ku(τ) = (iτ)kû(τ),

for τ ∈ R.
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Now, the following Lemma proves that the equivalent norms of spaces.

Lemma 2.2.2. u ∈ Hk(R) if and only if (1 + τ2)
k
2 û ∈ L2(R) and the norms ‖u‖Hk(R) and

[∫
R
(1 + τ2)k|û(τ)|2

] 1
2

dτ

are equivalent.

Proof. We need to find the constants c1 and c2 such that

c1

k∑
r=0

|τ r|2 ≤ (1 + τ2)k ≤ c2
k∑
r=0

|τ r|2. (2.1)

We have

k∑
r=0

|τ r|2 =

k∑
r=0

|τ2r| =
k∑
r=0

τ2r ≤
k∑
r=0

(
k

r

)
τ2r = (1 + τ2)k =

k∑
r=0

(
k

r

)
τ2r ≤ 2k

k∑
r=0

τ2r,

so we can take c1 = 1 and c2 = 2k where 1 ≤
(
k
r

)
≤ 2k because

(
k
r

)
≤
∑k
s=0

(
k
s

)
= (1+1)k = 2k. Now, to complete

this proof, we use the Plancherel theorem for functions in L2(R) for k = 0, 1, 2, ...;

‖u‖2Hk(R) =

∫
R
|∇ku(t)|2dt+

∫
R
|∇k−1u(t)|2dt+ ...+

∫
R
|u(t)|2dt

= ‖∇ku‖2L2(R) + ‖∇k−1u‖2L2(R) + ...+ ‖u‖2L2(R)

= ‖∇̂ku‖2L2(R) + ‖∇̂k−1u‖2L2(R) + ...+ ‖û‖2L2(R).

By Lemma 2.2.1, to get that,

‖∇̂ku‖2L2(R) + ‖∇̂k−1u‖2L2(R) + ...+ ‖û‖2L2(R)

=

∫
R
|∇̂ku(τ)|2dτ +

∫
R
|∇̂k−1u(τ)|2dτ + ...+

∫
R
|û(τ)|2dτ

=

∫
R

(1 + τ2k + τ2k−2 + ...+ τ2)|û(τ)|2.

However, by using (2.1)

∫
R

(1 + τ2k + τ2k−2 + ...+ τ2)|û(τ)|2 ≤ 1

∫
R

(1 + τ2)k|û(τ)|2dτ

= ‖(1 + τ2)
k
2 û‖2L2(R).
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Similarly, on the other side

∫
R

(1 + τ2k + τ2k−2 + ...+ τ2)|û(τ)|2 ≥ 2−k
∫
R
(1 + τ2)k|û(τ)|2dτ

= 2−k‖(1 + τ2)
k
2 û‖2L2(R).

Now, the above definition of the Fourier transform can be generalised in Rd for d ≥ 1. The Fourier transform

û(τ) is defined by

û(τ) =
1

(2π)
d
2

∫
Rd
e−iτ ·tu(t)dt,

and the inverse Fourier transform will be

u(t) =
1

(2π)
d
2

∫
Rd
eiτ ·tû(τ)dτ,

where τ, t ∈ Rd and τ · t is the dot product of these vectors. The dot product is sometimes written as 〈τ, t〉. The

Plancherel theorem for the functions in L2(Rd) gives

‖u‖2L2(Rd) =

∫
Rd
|u(t)|2dt =

∫
Rd
|û(τ)|2dτ = ‖û‖2L2(Rd).

Remark 3. If α = (α1, α2, ...αd) ∈ Nd0 and τ ∈ Rd, set

τα =

d∏
j=1

τ
αj
j .

Lemma 2.2.3. If u ∈ Hk(Rd) with multi-index α and τ ∈ Rd, then

D̂αu(τ) = (iτ)αû(τ).

Proof. By definition 2.1.3, we have D̂αu, and use integration by parts

D̂αu(τ) =
1

(2π)
d
2

∫
Rd
Dαu(t)e−iτ ·tdt

=
(−1)|α|

(2π)
d
2

∫
Rd
u(t)Dαe−iτ ·tdt,
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Then, we have

D̂αu(τ) =
(−1)|α|

(2π)
d
2

∫
Rd
u(t)

∂|α|e−iτ ·t

∂tα1
1 ∂tα2

2 .....∂tαdd
dt

=
(−1)|α|

(2π)
d
2

∫
Rd
u(t)

∂|α|(e−iτ1t1e−iτ2t2 .....e−iτdtd)

∂tα1
1 ∂tα2

2 .....∂tαdd
dt

=
(−1)|α|

(2π)
d
2

∫
Rd
u(t)

∂α1e−iτ1t1

∂tα1
1

∂α2e−iτ2t2

∂tα2
2

.....
∂αde−iτdtd

∂tαdd
dt

=
(−1)|α|

(2π)
d
2

∫
Rd
u(t)(−iτ)α1e−iτ1t1(−iτ)α2e−iτ2t2 .....(−iτ)αde−iτdtddt.

To complete the proof, we use Remark 3 to get

D̂αu(τ) =
(−1)|α|

(2π)
d
2

∫
Rd
u(t)(−i)α1+α2+....+αd

d∏
j=1

τ
αj
j e−i(τ1t1+τ2t2+....+τdtd)dt

=
(−1)|α|

(2π)
d
2

∫
Rd
u(t)(−i)α1+α2+....+αd

d∏
j=1

τ
αj
j e−iτ ·tdt

= (−1)|α|(−i)|α|
d∏
j=1

τ
αj
j û(τ)

= (i)|α|ταû(τ)

= (iτ)αû(τ).

The following lemma is a generalisation of Lemma 2.2.2.

Lemma 2.2.4. There are constants c1 and c2, such that

c1‖u‖2Hk(Rd) ≤ ‖(1 + τ2)
k
2 û(τ)‖2L2(Rd) ≤ c2‖u‖

2
Hk(Rd),

holds for all u ∈ Hk(Rd).

Proof. We find the constants c1 and c2 such that

c1
∑
|α|≤k

|τα|2 ≤ (1 + |τ |2)k ≤ c2
∑
|α|≤k

|τα|2 (2.2)

for τ ∈ Rd. Writing α = (j1, j2, ..., jd) and setting j0 = k − |α|, we get |α| = j1 + j2 + ...+ jd and k = j0 + |α|.
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It follows that k = j0 + j1 + j2 + ...+ jd, so we have

∑
|α|≤k

|τα|2 =
∑
|α|≤k

τ2α =
∑

j0,j1,...,jd≥0
j0+j1+...+jd=k

(τ2
1 )j1(τ2

2 )j2 ...(τ2
d )jd .

The observation 1 ≤
(

k
j0,j1,j2,...,jd

)
and using the multinomial theorem, we get

∑
j0,j1,...,jd≥0
j0+j1+...+jd=k

(τ2
1 )j1(τ2

2 )j2 ...(τ2
d )jd ≤

∑
j0,j1...,jd≥0

j0+j1+...+jd=k

(
k

j0, j1, j2, ..., jd

)
1j0(τ2

1 )j1(τ2
2 )j2 ...(τ2

d )jd

=
∑

j0,j1...,jd≥0
j0+j1+...+jd=k

k!

j0!j1!j2!...jd!
1j0(τ2

1 )j1(τ2
2 )j2 ...(τ2

d )jd

= (1 + τ2
1 + τ2

2 + ...+ τ2
d )k

= (1 + τ2)k,

and we can take c1 = 1.

On the other hand, by using the multinomial theorem again, we have

(1 + τ2)k = (1 + τ2
1 + τ2

2 + ...+ τ2
d )k

=
∑

j0,j1...,jd≥0
j0+j1+...+jd=k

(
k

j0, j1, j2, ..., jd

)
1j0(τ2

1 )j1(τ2
2 )j2 ...(τ2

d )jd

≤ (1 + d)k
∑
|α|≤k

|τα|2,

where we have

(
k

j0, j1, j2, ....., jd

)
≤

∑
n0,n1...,nd≥0

n0+n1+...+nd=k

(
k

n0, n1, n2, ..., nd

)
(1n01n11n2 ...1nd) = (1 + d)k,

and can take c2 = (1 + d)k.

Now, we have,

‖u‖2Hk(Rd) =
∑
|α|≤k

‖Dαu‖2L2(Rd).
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By using the Plancherel theorem for functions in L2(Rd) and Lemma 2.2.1, we get that

‖u‖2Hk(Rd) =
∑
|α|≤k

‖D̂αu‖2L2(Rd)

=
∑
|α|≤k

∫
Rd
|D̂αu(τ)|2dτ

=
∑
|α|≤k

∫
Rd
|(iτ)αû(τ)|2dτ

=

∫
Rd

∑
|α|≤k

|(iτ)α|2
 |û(τ)|2dτ

=

∫
Rd

∑
|α|≤k

|τα|2
 |û(τ)|2dτ.

From (2.2), it follows that ∫
Rd

∑
|α|≤k

|τα|2
 |û(τ)|2dτ ≤ 1

∫
Rd

(1 + τ2)k|û(τ)|2dτ

= ‖(1 + τ2)
k
2 û‖2L2(Rd),

and similarly, ∫
Rd

∑
|α|≤k

|τα|2
 |û(τ)|2dτ ≥ 1

(1 + d)k

∫
Rd

(1 + |τ2|)k|û(τ)|2dτ

= (1 + d)−k‖(1 + τ2)
k
2 û‖2L2(Rd).

Thus, the proof is complete.

2.2.1 Example

In this section, we will define an isomorphism map on Hk for k = 0, 1, ... by giving example, this definition will

be used to investigate some results during the current thesis. The following map:

∇− 1 : H1(R)→ H0(R) = L2(R),

is an isomorphism map, by Lemma 2.2.1, we have

̂(∇− 1)u = ∇̂u− û = (iτ − 1)û(τ).
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Now, we can get

‖ ̂(∇− 1)u‖2L2(R) =

∫
R
|(iτ − 1)û(τ)|2dτ.

It would imply,

‖ ̂(∇− 1)u‖2L2(R) =

∫
R
|(iτ − 1)|2|û(τ)|2dτ

=

∫
R

(|τ |2 + 1)|û(τ)|2dτ

= ‖(τ2 + 1)
1
2 û‖2H1(R)

= ‖u‖2H1(R).

Therefore, it has be taken that c2 = c1 = 1.

Without invoking Fourier transform, we have, L = ∇ − 1 : H1(R) → H0(R) = L2(R) where ∇ =
d

dt
. To prove

the mapping is isomorphism we need to get two constants c1 and c2 such that for all u ∈ H1(R)

c1‖u‖H1(R) ≤ ‖Lu‖H0(R)=L2(R) ≤ c2‖u‖H1(R),

where ‖u‖H1(R) =
∫
R(|∇u|2 + |u|2)dt. We will prove this inequality we can consider

‖Lu‖2L2(R) = ‖(∇− 1)u‖2L2(R) =

∫
R
|(∇− 1)u(t)|2dt

=

∫
R
|(∇− 1)u(t)|2dt

=

∫
R
|∇u− u|2dt

=

∫
R

(|∇u|2 −∇uu−∇uu+ |u|2)dt

=

∫
R

(|∇u|2 + |u|2)dt

= ‖u‖2H1(R),

where we have noted that

∫
R

(∇uu+∇uu)dt =

∫
R

(∇u)u+ (∇u)udt =

∫
R
∇(uu)dt =

∫
R
∇|u|2dt = [|u|2]∞−∞ = 0,
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since ∇u = ∇u. Thus

‖Lu‖2L2(R) =

∫
R

(|∇u|2 + |u|2)dt

= ‖u‖2H1(R),

and we can take c1 = c2 = 1. Therefore,

c1‖u‖H1(R) ≤ ‖ ̂(∇− 1)u‖L2(R) ≤ c2‖u‖H1(R).

2.3 Linear Operator

In this section, we introduce some of the concepts of bounded and unbounded operators on a Hilbert space H.

Definition 2.3.1. A linear operator A on a Hilbert space H is a pair consisting of a dense linear subspace

Dom(A) of H together with a linear map A : Dom(A)→ H, which maps linearly Dom(A) in H, that is

A(u+ v) = A(u) +A(v)

A(cu) = cA(u)

for all u, v ∈ Dom(A), c ∈ C, and Dom(A) denotes the domain of A. See [48] and [52].

Definition 2.3.2. A linear operator A : Dom(A)→ H is said to be a bounded operator if there exists a positive

constant m such that

‖Au‖H ≤ m‖u‖Dom(A) for each u ∈ Dom(A). (2.3)

The collection of all bounded linear operators from Dom(A) into H is denoted by B(Dom(A), H) or B(H) =

B(H,H). If A is a bounded linear operator, then its norm ‖A‖op is the smallest k for which (2.3) holds, that is,

‖A‖op = sup
u6=0

‖Au‖H
‖u‖Dom(A)

.

See [48] and [52].

Remark 4. For a bounded operator A : Dom(A)→ H, and for all u ∈ H and u 6= 0, it has

‖Au‖H
‖u‖Dom(A)

≤ ‖A‖op.
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Thus, we get that

‖Au‖H ≤ ‖A‖op‖u‖Dom(A). (2.4)

This also holds when u = 0.

Lemma 2.3.1. Let H be a Hilbert space and A,B : H → H be bounded operators, then

‖AB‖op ≤ ‖A‖op‖B‖op.

Definition 2.3.3. (Unbounded linear operator)

A linear operator A is unbounded if there exists a sequence {un}n∈N ⊂ Dom(A) that is convergent in H such

that limn→∞ ‖Aun‖H →∞. See the definition in [19].

Definition 2.3.4. (Closed operator)

The operator A on H with domain Dom(A) is called closed if for all sequences {un}n∈N in Dom(A) with limit

u ∈ H, and there exists v ∈ H such that limn→∞Aun = v. It follows that u ∈ Dom(A) and that Au = v. See

[19].

2.4 Adjoint for an Unbounded Linear Operator

Definition 2.4.1. Given A : Dom(A)→ H and B : Dom(B)→ H are densely defined linear operators (possibly

unbounded operators), then we say B is the adjoint of A if for all u ∈ Dom(A) and v ∈ Dom(B), then 〈Au, v〉 =

〈u,Bv〉. We write B = A∗. It is easy to show that the adjoint operator is always a closed operator (see [19]).

Definition 2.4.2. If A : Dom(A)→ H is a densely defined operator (possibly unbounded operator) on H, then

A is a symmetric operator if

〈Au, v〉 = 〈u,Av〉 for all u, v ∈ Dom(A).

From the last two definitions, it is easy to conclude that if A is a symmetric operator, then A∗ is a closed extension

of it

A∗ |Dom(A)= A.

It is a general fact that the domain of the adjoint operator Dom(A∗) contains the domain Dom(A).
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Definition 2.4.3. An operator A is said to be self-adjoint if it is symmetric operator and Dom(A) = Dom(A∗)

(see [19]).

Definition 2.4.4. A symmetric operator A is called essentially self-adjoint if its closure A is a self-adjoint

operator (see [19]).

Remark 5. We have the following notes:

� If A : H → H is a linear operator, Ker(A) and Ran(A) stand for the kernel and range of A respectively,

which are defined by:

Ker(A) = {u ∈ Dom(A) : Au = 0}.

Ran(A) = {Au : u ∈ Dom(A)}.

� Every self-adjoint linear operator A : H → H is a symmetric operator. On the contrary, symmetric

operators need not be self-adjoint operators and the reason is that A∗ may be a proper extension of A, that

is

Dom(A∗) 6= Dom(A).

See [36].

Proposition 2.4.1. Let A be a symmetric operator on a Hilbert space. Then, the following properties are

equivalent:

(1) The operator A is an essentially self-adjoint operator.

(2) We have Ker(A∗ ± i) = {0}.

(3) The subspaces Ran(A± i) are dense in H.

See the book by Reed and Simon [36].

Remark 6. There are similar statements with ±i replaced by λ and λ for any fixed λ ∈ C\R that are also valid.
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2.5 The Spectrum of a Linear Operator

In this section, we define the spectrum of a linear operator in the domain and some important concepts that are

related to the spectrum. Suppose A is a closed densely defined linear operator on a Hilbert space H with domain

Dom(A); the resolvent set of A denoted by ρ(A) is the set of all complex numbers λ such that

(A− λI) : Dom(A)→ H is bijection,

where I is the identity operator on the Hilbert space H. The spectrum of A denoted by σ(A) is the complement

of the resolvent set in C, meaning that σ(A) = C \ ρ(A) (see [19]).

If A−λI is one-to-one and onto, then the open mapping theorem implies that (A−λI)−1 is bounded. Therefore,

the operator

(A− λI)−1 : H → H

is called the resolvent operator and can be denoted as R(λ,A) (see, for example, [19]).

Now, we focus on an important concept in the present research, which is the spectrum. It is known that the

spectrum σ(A) has three disjoint components:

σdis(A) ∪ σc(A) ∪ σr(A) = σ(A),

such that:

� the discrete spectrum σdis(A) or σp(A) point spectrum of A consists of all λ ∈ σ(A) such that (A−λI) fails

to be an injective equivalent Ker(A − λI) is non-trivial. In this case, λ is called the eigenvalue of A, and

the non-zero elements of Ker(A− λI) are the corresponding eigenfunctions. See [8].

� σc(A) is the continuous spectrum of A that consists of all λ ∈ σ(A) such that (A−λI) is injective and does

have a dense image in H, but it fails to be surjective. See [8].

� σr(A) is the residual spectrum, that is, the collection of complex numbers λ such that (A− λI) is injective

but does not have a dense image. See [8].
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2.6 The Essential Spectrum

Here, we discuss one of the main types of the spectrum in a Hilbert space H, which is called the essential

spectrum.

2.6.1 The Definition of the Essential Spectrum

We have already looked at the characterisation of the spectrum. Now, from a perturbation point of view, there

is another characterisations of spectral decomposition that reduce for the self-adjoint operators in the Hilbert

spaces H to the following:

� The discrete spectrum σdis(A).

� The essential spectrum σess(A).

We have the class of operator on the Hilbert spaces which is called the projection.

Definition 2.6.1. Let B(H) denotes the set of all bounded operators in a Hilbert space H and let P ∈ B(H)

and P 2 = P. Then, P is called projection. The range of projection is always a closed subspace on which P acts

as the identity (see [36]).

The following definition of the spectral projection because it will be used to investigate the essential spectrum of

the operator.

Definition 2.6.2. Let A be a bounded self-adjoint operator and Λ a Borel set of R (which is defined as any set in

space that can be formed from open sets through the operations of countable unions, countable intersections, and

relative complements). PΛ ≡ χΛ(A) is called a spectral projection of an operator A such that χΛ is an indicator

function. I.e., a spectral projection is the image of Λ under an indicator function defined on its spectrum, which

is hence an orthogonal projection on some closed subspace. See [36].

Remark 7. χΛ is an indicator function of the single point λ, then the corresponding spectral projection χΛ

for the operator A is indeed orthogonal projection on the kernel A − λI, i.e. the eigenvector for λ. If λ is not

eigenvalue, that the projection is 0.
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Proposition 2.6.1. λ ∈ σ(A) if and only if P(λ−ε,λ+ε)(A) 6= 0 for any ε > 0. See in [36].

Definition 2.6.3. If A is a self-adjoint operator and if λ ∈ σ(A) and P(λ−ε,λ+ε)(A) is a finite dimensional for

some ε > 0, we say λ ∈ σdis(A) is the discrete spectrum of A. See in [36].

Proposition 2.6.2. Let A be an self-adjoint operator. A real λ is in the discrete spectrum if and only if λ is

an isolated point in σ(A) and if the λ is eigenvalue of the finite multiplicity. See Section 3.3 and the standard

reference in [36].

Definition 2.6.4. The essential spectrum of the operator A is the complement in the spectrum of the discrete

spectrum and is denoted by σess(A, ) that is

σess(A) = σ(A)\σdis(A).

Theorem 2.6.3. The essential spectrum of operator A is always closed.

Proof. See in [36].

Basic Examples

� Intuitively, the point of the essential spectrum of the operator A corresponds

– either to a point in the continuous spectrum of an operator A,

– to a limit point of a sequence of eigenvalues with finite multiplicity,

– or to an eigenvalue of infinite multiplicity (see [36]).

� The Laplacian on Rd for d ≥ 1 and −∆ is a self-adjoint operator on L2(Rd). The spectrum is continuous

and equal to R+. The essential spectrum is also R+, and the operator has no discrete spectrum. See Section

3.4 of the current thesis.

In the following result, we focus on the relationship between the spectrum and essential spectrum of the operator

A. This theorem is used to prove the main result of the first task (see Section 3.9, Chapter 3 of the current

thesis).

39



Theorem 2.6.4. Let A be a self-adjoint operator and suppose (a, b) ⊂ σ(A) for some open interval (a, b). Then,

(a, b) ⊂ σess(A).

Proof. Let λ ∈ (a, b), ε > 0 and N ∈ N. Let I1, I2, · · · , IN denote N non-empty open disjoint intervals contained in

interval (λ−ε, λ+ε)∩(a, b). Now, PIj 6= 0, (because PIj = 0 would imply Ij∩σ(A) = ∅). Hence, dim RanPIj ≥ 1.

Because Ij is disjoint and contained in (λ− ε, λ+ ε), then

dim RanP(λ−ε,λ+ε) ≥
N∑
j=1

dim RanPIj ≥ N.

Because N was arbitrary, it follows that

dim RanP(λ−ε,λ+ε) =∞.

From the definition of essential spectrum, we have that λ ∈ σess(A). Hence, (a, b) ⊂ σess(A).

2.6.2 Essential Spectrum of Self-adjoint Operators

In this section, we give the definition of a Wely sequence with an important theorem and nice example.

Definition 2.6.5. A sequence {un}n∈N is called a Wely sequence for the operator A and λ if there exists

{un}n∈N ⊂ Dom(A), such that ‖un‖Dom(A) = 1 and limn→∞ ‖(A − λI)un‖Dom(A) = 0 (see the definition in [36]

and [47]).

Theorem 2.6.5. (Weyl’s Criterion)

Let A be a self-adjoint operator in a Hilbert space H. Then, λ ∈ σess(A) if and only if there exists a Weyl

sequence {un}n∈N for A and λ (see [36] and Theorem V11.12 in [47]).

Remark 8. If λ ∈ σpt and we choose un to a single eigenfunction. I.e., Above statements are still true if the

convergent is replaced by weak convergence.

In the following example, we use a self-adjoint operator −∆ to apply the Weyl Criterion and observe the rela-

tionship between this operator with an essential spectrum. See the properties of this operator in Section 2.8.2 in

this Chapter.
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Example 1. Let a self-adjoint operator −∆ = − ∂2

∂t2
on R and for λ > 0. Then, λ ∈ σess(−∆), by using Weyl’s

criterion.

Firstly, we build a sequence {un}n∈N of approximate eigenfunctions that satisfy the conditions of Weyl’s criterion.

Consider an explicit function ϕ : R → R such that ϕ(t) = 0 if |t| > 1 with ‖ϕ‖L2(R) = 1, so ‖ϕ′‖L2(R) < ∞ and

‖ϕ′′‖L2(R) <∞. Set

ψn(t) =
1√
n
ϕ(
t

n
),

for n ≥ 1. Then, to build the sequence, we get that un(t) is defined by

un(t) = eiktψn(t),

where k2 = λ. Now, the norm of ψn(t) is defined by

‖ψn‖2L2(R) =

∫
R

∣∣∣∣ 1

n
1
2

ϕ(
t

n
)

∣∣∣∣2 dt =
1

n

∫
R

∣∣∣∣ϕ(
t

n
)

∣∣∣∣2 dt =

∫
R
|ϕ(s)|2ds = ‖ϕ‖2L2(R),

and, the norm of the first derivative of ψn(t) to get

‖ψ
′

n‖2L2(R) =

∫
R

∣∣∣∣ 1

n
1
2

1

n
ϕ
′
(
t

n
)

∣∣∣∣2 dt =
1

n

1

n2

∫
R

∣∣∣∣ϕ′( tn )

∣∣∣∣2 dt =
1

n2

∫
R
|ϕ
′
(s)|2ds =

1

n2
‖ϕ
′
‖2L2(R).

Then, the second derivative of ψn(t) has

‖ψ
′′

n‖2L2(R) =

∫
R

∣∣∣∣ 1

n
1
2

1

n2
ϕ
′′
(
t

n
)

∣∣∣∣2 dt =
1

n

1

n4

∫
R

∣∣∣∣ϕ′′( tn )

∣∣∣∣2 dt =
1

n4

∫
R
|ϕ
′′
(s)|2ds =

1

n4
‖ϕ
′′
‖2L2(R).

Now, the norm of the sequence {un}n∈N will be of the form

‖un‖2L2(R) = ‖eiktψn‖2L2(R) =

∫
R
|eiktψn(t)|2dt =

∫
R
|eikt|2|ψn(t)|2 =

∫
R
|ψn(t)|2dt = ‖ψn‖2L2(R);

where we use |eikt| = 1, and

‖un‖2L2(R) = ‖ψn‖2L2(R) = ‖ϕ‖2L2(R) = 1.

Now, we will prove ‖ −∆un − λun‖L2(R) → 0 as n→∞. We can consider,

(−∆− λ)un = (−∆− λ)(eiktψn(t))

= −∆(eiktψn(t))− λ(eiktψn(t))

= k2eiktψn(t)− 2ikeiktψ
′

n(t)− eiktψ
′′

n(t)− λ(eiktψn(t))

= −2ikeiktψ
′

n(t)− eiktψ
′′

n(t).
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Because λ = k2 and for k ∈ R. Thus, by using the triangle inequality

| −∆(eiktψn(t))− λeiktψn(t)|2 = | − 2ikeiktψ
′

n(t)− eiktψ
′′

n(t)|2

≤ |4k2eiktψ
′

n(t)|2 + 2|2ikeiktψ
′

n(t)||eiktψ
′′

n(t)|+ |eiktψ
′′

n(t)|2

≤ 2
{
|4k2eiktψ

′

n(t)|2 + |eiktψ
′′

n(t)|2
}
,

we can take the norm

‖ −∆eiktψn − λeiktψn‖2L2(R) ≤ 2(4k2‖ψ
′

n‖2L2(R) + ‖ψ
′′

n‖2L2(R))

≤ 2(4k2 1

n2
‖ϕ
′
‖2L2(R) +

1

n4
‖ϕ
′′
‖2L2(R)).

It follows that ‖ −∆eiktψn − λeiktψn‖L2(R) → 0 as n→∞.

Now, generalise this problem to obtain for a self-adjoint operator −∆ = −
∑d
i=1

∂2

∂t2i
on Rd for d ≥ 1; we need to

prove for λ > 0 that λ ∈ σess(−∆) by using Weyl’s criterion. It will build a sequence {un}n∈N of approximate

eigenfunctions that satisfy the conditions of Weyl’s criterion. Consider an explicit function ϕ : Rd → R such that

ϕ(t) = 0 if |t| > 1, ‖ϕ‖L2(Rd) = 1, ‖∇ϕ‖L2(Rd) <∞ and ‖∆ϕ‖L2(Rd) <∞. Set

ψn(t) =
1

n
d
2

ϕ(
t

n
).

Then, we can build the sequence {un}n∈N by

un(t) = ei〈k,t〉ψn(t),

where |k|2 = λ for k = (k1, k2, ..., kd) in Rd. Recall that t ∈ Rd.

Now, we can take the norm of ψn(t) to get

‖ψn‖2L2(Rd) =

∫
Rd

∣∣∣∣ 1

n
d
2

ϕ(
t

n
)

∣∣∣∣2 dt =
1

nd

∫
Rd

∣∣∣∣ϕ(
t

n
)

∣∣∣∣2 dt =

∫
Rd
|ϕ(s)|2ds = ‖ϕ‖2L2(Rd),

and, the norm of the first derivative of ψn(t) to get

‖∇ψn‖2L2(Rd) =

∫
Rd

∣∣∣∣ 1

n
d
2

1

n
∇ϕ(

t

n
)

∣∣∣∣2 dt =
1

nd
1

n2

∫
Rd

∣∣∣∣∇ϕ(
t

n
)

∣∣∣∣2 dt =
1

n2

∫
Rd
|∇ϕ(s)|2ds =

1

n2
‖∇ϕ‖2L2(Rd).

Then, the second derivative of ψn(t) has

‖∆ψn‖2L2(Rd) =

∫
Rd

∣∣∣∣ 1

n
d
2

1

n2
∆ϕ(

t

n
)

∣∣∣∣2 dt =
1

nd
1

n4

∫
Rd

∣∣∣∣∆ϕ(
t

n
)

∣∣∣∣2 dt =
1

n4

∫
Rd
|∆ϕ(s)|2ds =

1

n4
‖∆ϕ‖2L2(Rd).
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We have the norm of the sequence {un}n∈N

‖un‖2L2(Rd) = ‖ei〈k,t〉ψn‖2L2(Rd) =

∫
Rd
|ei〈k,t〉ψn(t)|2dt =

∫
Rd
|ei〈k,t〉|2|ψn(t)|2 =

∫
Rd
|ψn(t)|2dt = ‖ψn‖2L2(Rd),

where we use |ei〈k,t〉| = 1, and

‖un‖2L2(Rd) = ‖ψn‖2L2(Rd) = ‖ϕ‖2L2(Rd) = 1.

Now, we will prove ‖ −∆un − λun‖L2(Rd) → 0 as n→∞. We consider that,

(−∆− λ)un = (−∆− λ)ei〈k,t〉ψn(t)

= −∆(ei〈k,t〉ψn(t))− λ(ei〈k,t〉ψn(t))

= |k|2ei〈k,t〉ψn(t)− 2iei〈k,t〉k · ∇ψn(t)− ei〈k,t〉∆ψn(t)− λ(ei〈k,t〉ψn(t)),

where we have |k|2 = λ for k ∈ Rd. Thus, by using triangle inequality

| −∆ei〈k,t〉ψn(t)− λei〈k,t〉ψn(t)|2 = | − 2iei〈k,t〉k · ∇ψn(t)− ei〈k,t〉∆ψn(t)|2

≤ |4|k|2ei〈k,t〉∇ψn(t)|2 + 2|2iei〈k,t〉k · ∇ψn(t)||ei〈k,t〉∆ψn(t)|

+ |ei〈k,t〉∆ψn(t)|2

≤2
{
|4|k|2ei〈k,t〉∇ψn(t)|2 + |ei〈k,t〉∆ψn(t)|2

}
.

We can take the norm,

‖ −∆ei〈k,t〉ψn − λei〈k,t〉ψn‖2L2(Rd) ≤ 2(4|k|2‖∇ψn‖2L2(Rd) + ‖∆ψn‖2L2(Rd))

≤ 2(4|k|2 1

n2
‖∇ϕ‖2L2(Rd) +

1

n4
‖∆ϕ‖2L2(Rd)).

It follows that ‖ −∆ei〈k,t〉ψn − λei〈k,t〉ψn‖2L2(Rd) → 0 as n→∞.

Remark 9. We have noted that:

� Let a self-adjoint operator −∆ = − ∂2

∂t2
on R and for λ = 0. Then, λ ∈ σdis(−∆).

� For readers, we give a good example for an explicit function ϕ : R → R such that ϕ(t) = 0 if |t| > 1 with

‖ϕ‖L2(R) = 1, so ‖ϕ′‖L2(R) <∞ and ‖ϕ′′‖L2(R) <∞ in Appendix.1 of the current thesis.
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2.6.3 Essential Spectrum and Relatively Compact Perturbation

The purpose of this part is to observe the relatively compact perturbation theory and its effect on the essential

spectrum.

Definition 2.6.6. A subset of Hilbert space is called a relatively compact if its closure is compact (see [39]).

Definition 2.6.7. An operator is called a compact map if it is a linear operator from a Hilbert space to another

such that the image under the linear operator of any bounded subset is relatively compact (see, for example,

[39]).

Definition 2.6.8. An operator V with Dom(A) ⊂ Dom(V ) is called a relatively compact perturbation with

respect to the self-adjoint operator A if and only if V (A− i)−1 is compact (see [39]).

Remark 10. If V is a relatively compact, then V (A − z)−1 is a compact for z ∈ ρ(A), and if V (A − z)−1 is a

compact for some z ∈ ρ(A), then V a is relatively compact. See [39].

Theorem 2.6.6. Let A be a self-adjoint operator and let V be a relatively compact perturbation of A. Then,

� A+ V defined with Dom(A+ V ) = Dom(A) is a closed operator.

� If V is a symmetric operator, then A+ V is a self-adjoint operator.

� σess(A) = σess(A+ V ).

Proof. See the proof in [39], pp. 113.

Example 2. Let the operator −∆ is defined on L2(R3) by using the Foureir transform one can easily see that

σess(−∆) = [0,∞). Let V ∈ L2 +L∞ then, V (−∆+1)−1 is compact. For, we can find Vn ∈ L2 with V −Vn ∈ L∞

and limn→∞ ‖Vn−V ‖∞ = 0. Thus Vn(−∆ + 1)−1 converges in norm to V (−∆ + 1)−1 so we need only show that

Vn(−∆+1)−1 is compact for each n. But, Vn(−∆+1)−1 is an integral operator with kernel Vn(x)e−|x−y|/4π|x−y|,

which is in L2(R6). Thus Vn(−∆ + 1)−1 is Hilbert-Schmidt and so compact. Since V (−∆ + 1)−1 is compact, V

is relatively compact and so σess(−∆ + V ) = σess(−∆) = [0,∞). See more details in [39] and Section 3.3.
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Remark 11. The specital case of Theorem 2.6.6 when V is a compact operator is Wely’s original classical

theorem. See [36]

Proposition 2.6.7. The essential spectrum σess(A) for a self-adjoint operator A satisfies:

� σess(A) ⊂ σ(A).

� σess(A) is closed,

� If V is a self-adjoint compact operator, then σess(A) = σess(A+ V )

Proof. (see [36] and [45]).

Lemma 2.6.8. The following statements are equivalent:

� λ ∈ σess(A).

� (Weyl Criterion) there exists a Weyl sequence {un}n∈N for A and λ.

� λ is an eigenvalue of infinite multiplicity (dim(Ker(A − λI)) = ∞), or there exists λn ∈ σ(A) such that

λn → λ.

� For any self-adjoint compact operator V then, λ ∈ σ(A+ V ). Refer the reader can see [36] and [45].

Remark 12. We have the following notes:

� With the definition of a discrete spectrum, we say that for a self-adjoint operator with a compact resolvent

(A − λI)−1, the spectrum is reduced to the discrete spectrum. For a compact self-adjoint operator, the

spectrum is discrete outside 0. This case that the discrete spectrum is not closed See in [3].

� The essential spectrum of an operator with a compact resolvent is empty. For example, Laplace operator

−∆ on a bounded domain Ω = [−L,L]. See Section 3.3 of this thesis.
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2.7 Compact Operators

Here, we provide the definition for a compact operator with some properties. Later, we give some lemmas and

theorems related to this operator and will be used in the current thesis.

Definition 2.7.1. Let H be the Hilbert space and A : Dom(A) → H is called a compact operator if for every

sequence {un} in Dom(A) with ‖un‖Dom(A) ≤ 1 for all n there exists the subsequence {uni} for i = 1, 2, ...,∞

such that {Auni} is convergent in H.

We define Bc(Dom(A), H) = {A : Dom(A) → H : A is compact} and set Bc(H) = Bc(H,H). By definition, a

compact operator is a linear operator, and we have that all compact operators are bounded. Thus, it will turn

out that Bc(H) ⊆ B(H). In fact, we have Bc(H) is a closed subspace of B(H). The reader can see this definition

in [1] and [57].

Remark 13. We have the following notes:

� The set of compact operators is a subspace of B(H). In particular, each scalar multiple of a compact

operator or the sum of two compact operators results in another compact operator (see [18] Satz II.3.2 (a)

and [57]).

� If A ∈ Bc(H) is a compact operator and B ∈ B(H) is a linear bounded operator, then the superposition

AB is a compact operator. To verify this, we employ the definition of a compact operator and omit the

index i in the subsequence {uni}i∈N. Let {un}n∈N in H. Then, {Aun} is a bounded sequence as well.

Because ‖Aun‖H ≤ ‖A‖op‖un‖H for each linear bounded operator A. Hence, there is v ∈ H so that

‖BAun − v‖H → 0 (see [57]).

� If dim(Dom(A)) =∞ and A : Dom(A)→ H is invertible, then A is not compact (see [45]).

Definition 2.7.2. A sequence {un}n∈N of continuous function of closed interval I = [a, b] is an uniformly bounded

if there exists m such that |un(t)| ≤ m for all n and t ∈ I.

Definition 2.7.3. A sequence {un}n∈N from a closed interval I = [a, b] to a Hilbert space H is said to be
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equicontinuous if for every ε > 0 there exists δ > 0 such that for all n ∈ N

|un(t)− un(s)| ≤ ε,

whenever |t− s| < δ and t, s ∈ I.

See, for example, [1], pp. 54 and [57].

Lemma 2.7.1. Let u ∈ L2(R) with supp ˆ(u) ⊆ [−R,R]. Then,

i) ‖u‖L∞(R) ≤
√
R

π
‖u‖L2(R). (L∞ is defined in Remark 1).

ii) |u(h)− u(s)| ≤ R|h− s| 12 ‖u‖L2(R), for all h, s ∈ R.

Proof. i) Let t ∈ R, and then, the inverse Fourier transform of u(t) is

u(t) =
1√
2π

∫
R
û(τ)eiτtdτ

by the Holder inequality and by the Parseval identity, we get

‖u‖2L∞(R) ≤
1

2π

∫ R

−R
|û(τ)|dτ ≤ 1

2π

∫ R

−R
|1|2dτ

∫ R

−R
|û(τ)|2dτ

≤ R

π

∫ R

−R
|û(τ)|2dτ

=
R

π
‖û‖2L2(R)

=
R

π
‖u‖2L2(R).

ii) For h, s ∈ R, we have

u(h)− u(s) =

∫ h

s

∇u(t)dt,

so, we get that

|u(h)− u(s)|2 ≤

(∫ h

s

|∇u(t)|dt

)2

.
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By the Holder inequality, we get

|u(h)− u(s)|2 ≤

(∫ h

s

|∇u(t)|dt

)2

≤
∫ h

s

|1|2dt
∫ h

s

|∇u(t)|2dt

≤ |h− s|‖∇u‖2L2(R).

Because ∇̂u(τ) = iτ û(τ) by Lemma 2.2.1, the Parseval identity and supp ˆ(u) ⊆ [−R,R], we have

‖∇u‖2L2(R) = ‖∇̂u‖2L2(R)

= ‖τ û(τ)‖2L2(R)

=

∫ R

−R
|τ |2|û(τ)|2dτ

≤ R2

∫
R
|û(τ)|2dτ

≤ R2‖u‖2L2(R).

Therefore,

|u(h)− u(s)|2 ≤ R2|h− s|‖u‖2L2(R).

Now, we consider some spaces and operators which are used to investigate some of concepts in the current

research:

Remark 14. We have the following spaces:

� The space C∞(R) denotes the class of all infinitely differentiable functions on R.

� The space C∞0 (R) denotes the space of all infinitely differentiable functions on R with compact support.

� The space C1
0 (R) denotes the space of all continuously differentiable functions on R with not compact.

� The space C0
0 (R) denotes the space of all continuous functions which vanish at infinity (i.e., with not

compact). The reader will see all of the previous definitons of these spaces in [35], and [52].
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Remark 15. For g in C∞0 (R), an operator g(D) is defined by

g(D)u(t) =
1√
2π

∫
R
g(τ)û(τ)eitτdτ

for t, τ ∈ R.

Theorem 2.7.2. If f and g in C∞0 (R). Then,

f(t)g(D) : L2(R)→ L2(R)

is a compact map.

Proof. Choose R such that

supp(f) ⊆ [−R,R] and supp(g) ⊆ [−R,R].

Set χR = χ[−R,R] such that

χ[−R,R] =


0 if t /∈ [−R,R]

1 if t ∈ [−R,R],

(χR is an indicator function, it is in Definition 2.6.2), and we can write

f = fχR and g = χRg.

Then, we have

f(t)g(D) = f(t)χ[−R,R](t)χ[−R,R](D)g(D);

it is clear to observe f(t) : L2(R)→ L2(R) and g(D) : L2(R)→ L2(R) are bounded maps. (By the Lemma 2.7.1

‖f‖L∞ and ‖g‖L∞ are bounded maps). To complete the proof, we need to prove the following lemma:

Lemma 2.7.3. We have,

χ[−R,R](t)χ[−R,R](D) : L2(R)→ L2(R), (2.5)

is compact.
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Proof. Choose a sequence {ui}i∈N ⊆ {u ∈ L2(R) : ‖u‖L2(R) ≤ 1}, which is bounded. We can set

Vi = χ[−R,R](t)χ[−R,R](D)ui(t) ∈ L2(R).

Because we have

‖χ[−R,R]‖L∞(R) = sup
t∈[−R,R]

|χ[−R,R](t)| = 1,

we have

‖Vi‖L∞(R) ≤ ‖ui‖L2(R) ≤ 1.

To check this we observe

‖Vi‖L∞(R) = sup
t∈R
|Vi(t)|

= sup
t∈R
|χ[−R,R](t)χ[−R,R](D)ui(t)|

≤ sup
t∈R
|χ[−R,R](t)| sup

t∈R
|χ[−R,R](D)ui(t)|

= sup
t∈R
|χ[−R,R](D)ui(t)|.

Now, let w(t) = χ[−R,R](D)ui(t), and we have

supp(w) = suppχ[−R,R](τ) ∩ supp(ui)(τ) ⊆ [−R,R],

and we have

|ŵ(τ)|2 ≤ sup
τ∈[−R,R]

χ[−R,R](τ)|ûi(τ)|2.

Then, ∫
R
|ŵ(τ)|2dτ ≤

∫
R
|ûi(τ)|2dτ.

We can get the norm and by Parseval’s identity have

‖ŵ‖2L2(R) ≤ ‖ûi‖
2
L2(R) = ‖ui‖2L2(R) ≤ 1.

Therefore,

‖Vi‖L∞(R) ≤ ‖ui‖L2(R) ≤ 1.

Now, by Lemma 2.7.1 we get
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� ‖Vi‖L∞(R) ≤
R

π
‖Vi‖L2(R),

� |Vi(h)− Vi(s)| ≤ R|h− s|
1
2 ‖Vi‖L2(R) for h, s ∈ R.

These imply that {Vi}i∈N is an equicontinuous family in L∞(R). On the other hand, the boundedness implies that

the functions are uniformly bounded in L∞(R). Hence, by the Arzela-Ascoli theorem, there exists a subsequence

{Vim}m∈N that is uniformly convergent on the bounded interval [−R,R] (see [52]). Because

‖χRVin − χRVim‖2L2(R) =

∫ R

−R
|χRVin(t)− χRVim(t)|2dt

≤ 2R‖Vin − Vim‖2L∞([−R,R]),

we can get ‖Vin − Vim‖L∞([−R,R]) → 0 as n,m → ∞. We have {χR(t)Vim}m∈N = {χR(t)χR(D)uim}m∈N is a

Cauchy sequence and is convergent in L2(R) for all m ∈ N. Thus χ[−R,R](t)χ[−R,R](D) is a compact map.

Now, to complete our argument, we have that f(t) and g(D) are bounded operators and the operator χ[−R,R](t)χ[−R,R](D)

is a compact map. This implies, χ[−R,R](t)χ[−R,R](D) is a bounded operator (see, for example, [57]). Therefore,

the reader can see that as in [52] and above notes in this section, the composition (product) of two bounded

operators is again a bounded operator. That is fχ[−R,R] and χ[−R,R]g are bounded operators, and it is easy to

obtain this by Lemma 2.3.1 in Section 2.4 of this thesis,

‖fχ[−R,R]χ[−R,R]gu‖L2(R) ≤ ‖fχ[−R,R]‖op‖χ[−R,R]gu‖L2(R)

≤ ‖fχ[−R,R]‖op‖χ[−R,R]g‖op‖u‖L2(R).

It follows that by [57], the product of a compact operator with bounded operators is a compact operator. Thus,

f(t)g(D) is a compact map. See [4] Chapter 4.

Lemma 2.7.4. Let f and g ∈ C0
0 (R). Then,

f(t)g(D) : L2(R)→ L2(R)

is a compact map.

Proof. Choose ϕ,ψ ∈ C∞0 such that
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� supp(ϕ) ⊆ [−2, 2], 0 ≤ ϕ ≤ 1 and ϕ(t) = 1 for t ∈ [−1, 1].

� ψ ≥ 0 and
∫
ψ(t)dt = 1.

For any N ∈ N, we set the following sequences

ϕN (t) = ϕ(
t

N
) and ψN (t) = Nψ(tN).

Therefore, we put

fN = ϕN (ψN ∗ f) and gN = ϕN (ψN ∗ g).

Thus, (fN )N∈N and (gN )N∈N ⊆ C∞0 such that

‖fN − f‖L∞(R) = sup
t∈R
|fN (t)− f(t)|

= sup
t∈R
|ϕN (ψN ∗ f)(t)− f(t)|

≤ sup
t∈R
|ϕN (t)(ψN ∗ f)(t)|+ sup

t∈R
|f(t)|

≤ sup
t∈R
|ϕ(

t

N
)(Nψ(tN) ∗ f)(t)|+ sup

t∈R
|f(t)| → 0

as N →∞, that is ‖fN − f‖L∞(R) → 0 as N →∞ (by definition of f).

Similarly, ‖gN − g‖L∞(R) → 0 as N →∞ (by definition of g).

Now, we can observe that by Lemma 2.7.1

‖fg − fNgN‖op = ‖fg − fgN + fgN − fNgN‖op

≤ ‖f(g − gN )‖op + ‖(f − fN )gN‖op

≤ ‖f‖op‖(g − gN )‖op + ‖(f − fN )‖op‖gN‖op

≤ ‖f‖L∞(R)‖g − gN‖L∞(R) + ‖f − fN‖L∞(R)‖gN‖L∞(R) → 0.

It follows that fN (t)gN (D)→ f(t)g(D) in an operator norm as N →∞.

However, fN (t)gN (D) is a compact map by Theoreom 2.7.2, and the set of compact operators is closed in an

operator norm (see [29]). Therefore, f(t)g(D) is compact.
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Lemma 2.7.5. Let g ∈ C0
0 and f, f

′ ∈ C1
0 . Then,

f(t)g(D) : H1(R)→ H1(R)

is a compact map.

Proof. We can set Af,g = f(t)g(D).

First, we prove the map

Af,g = f(t)g(D) : H1(R)→ L2(R) (2.6)

is a compact map. We can consider the inclusion

i : H1(R) ↪→ L2(R)

is a bounded map. It is clear from definitions of the norms of H1(R) and L2(R) in Section 2.1. That is

‖u‖2H1(R) = ‖u‖2L2(R) + ‖∇u‖2L2(R).

Then, we can observe the map

Af,g = f(t)g(D) : L2(R)→ L2(R)

is a compact map from Lemma 2.7.4. Therefore,

Af,g = f(t)g(D) : H1(R)→ L2(R) (2.7)

is compact. Second, we have the derivative of Af,g being defined by

∇Af,gu = ∇f(t)g(D)u(t) = f(t)g(D)∇u(t) + f
′
(t)g(D)u(t)

= Af,g∇u+ f
′
g(D)u

= Af,g∇u+Af ′ ,gu.

Now, we need to prove the map

∇Af,gu = Af,g∇u+Af ′ ,gu : H1(R)→ L2(R)

is a compact map. First, we see the derivative of Af,g

∇Af,g : H1(R)→ L2(R)
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is a bounded map. And we have again

Af,g : L2(R)→ L2(R)

is a compact map (from Lemma 2.7.4). We note also, the inclusion

i : H1(R) ↪→ L2(R)

is a bounded map, and finally, we have

Af ′ ,g : L2(R)→ L2(R)

is a compact map again (from Lemma 2.7.4).

We observe the derivative of Af,g as composition

H1(R)→ L2(R)→ L2(R) +H1(R) ↪→ L2(R)→ L2(R).

Because every step is bounded and compact, the map

∇Af,g : H1(R)→ L2(R) (2.8)

is a compact map.

Now, combining (2.7) and (2.8), we obtain

(1 +∇)Af,g : H1(R)→ L2(R),

which is a compact map.

In fact, we conclude that

(1 +∇)−1 : L2(R)→ H1(R)

is an isomorphism map. Hence,

Af,g = f(t)g(D) : H1(R)→ H1(R)

is a compact map.
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2.8 The Friedrichs Extension

The Friedrichs extension theorem says that a semi-bounded (or at least bounded below) symmetric operator is

guaranteed to have a self-adjoint extension and, this gives us a particular distinguished example, namely the

form closure. If we have A, which is a densely defined symmetric operator and we are looking for extensions that

are self-adjoint, we need to enlarge the domain of this operator. The idea is to determine this domain, and then,

we need to know some definitions related to find the extension of the self-adjoint operator.

2.8.1 Quadratic Form

One of the main results of the Riesz Lemma is that there is an injection between bounded quadratic forms

and bounded operators. However, we are discussing this relationship between quadratic forms and unbounded

operators (see [37]). Firstly, we have the definition of a quadratic form and its properties. The standard refrences

are in ([57], Chapter VI) and ([37], Section VIII.6) or ([19], Section 4.4).

Definition 2.8.1. A quadratic form is a map q : Q(A)×Q(A)→ C with domain Q(A) in H such that

� Q(A) is a dense linear subset of a Hilbert space H called the form domain.

� q(λ1u1 + λ2u2, v) = λ1q(u1, v) + λ2q(u2, v) for λ1, λ2 ∈ C and u1, u2, v ∈ Q(A).

� q(u, λ1v1 + λv2) = λ1q(u, v1) + λ2q(u, v2) for λ1, λ2 ∈ C and u, v1, v2 ∈ Q(A).

If q(u, v) = q(v, u) for all u, v ∈ Q(A), then q is said to be a symmetric operator. If q(u, u) ≥ 0 for all u ∈ Q(A),

then q is non-negative and q is called semi-bounded by m ∈ R if q(u, u) ≥ m‖u‖2Q(A) for all u ∈ Q(A).

It is easily shown that the positivity of q implies its semi-boundedness operator, and the semi-boundedness

operator implies its symmetry. See [37], Section VIII.6. Now, we define the notion of the closedness of a

quadratic form in analogy with that of the closedness of operators.

Definition 2.8.2. A quadratic form q in a Hilbert space H is said to be a closed if for any sequence {un} ⊂

Q(A), and u ∈ H with limn→∞ un = u and q(un − um, un − um) → 0 as n,m → ∞, we have u ∈ Q(A) and

q(un − u, un − u)→ 0 as n→∞.
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We say q is closable if for any sequence {un} ⊂ Q(A) with limn→∞ un = 0 and q(un − um, un − um) → 0 as

n,m→∞, we have q(un, un)→ 0 as n→∞. See [46].

Lemma 2.8.1. Let q : Q(A) × Q(A) → C be a semi-bounded quadratic form in a Hilbert space H and choose

m ∈ R such that q(u, u) ≥ m‖u‖2Q(A) for all u ∈ Q(A). Let

〈u, v〉Q(A) = q(u, v) + (m+ 1)〈u, v〉, u, v ∈ Q(A).

Then, the following holds:

� q is closed if and only if (Q(A), 〈·, ·〉Q(A)) is a Hilbert space.

� If q is closable, then there is a closed extension q̂ : Q(Â)×Q(Â)→ C of q to a quadratic form q̂, and it is

called the clousre denoted by q̂ of q, such that

q̂(u, v) = q(u, v)

for all u, v ∈ Q(A). See the proof in [46].

We focus on quadratic forms and their closures, which are strongly connected with symmetric operators and their

self-adjoint extensions. Moreover, we need to define the operator to be non-negative or semi-bounded operator.

Definition 2.8.3. An operator A is semi-bounded or bounded below iff there is some m ∈ R for which

〈Au, u〉 ≥ m‖u‖2Dom(A)

for all u ∈ Dom(A).

Definition 2.8.4. Let H be a Hilbert space. An operator A is called non-negative if 〈Au, u〉 ≥ 0 for all u ∈ H.

We write A ≥ 0 if A is non-negative and A ≤ B if B −A ≥ 0.

Now, we see some theorems with propositions to constructs a specific self-adjoint extension from a quadratic

form that is associated with a symmetric positive operator such as the Laplace operator.

Theorem 2.8.2. (Representation Theorem)

Suppose q is a closed semi-bounded quadratic form. Then, there is a unique semi-bounded self-adjoint operator
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A such that Dom(A) ⊂ Q(A) and

q(u, v) = 〈Au, v〉

for all v ∈ Q(A) and u ∈ Dom(A). Furthermore, if v ∈ Q(A) and there exist w ∈ H such that

q(u, v) = 〈u,w〉

for all u ∈ Q(A), then v ∈ Dom(A) and Av = w. Refer the reader [36], pp. 278− 279.

Theorem 2.8.3. Let A be a non-negative self-adjoint operator in a Hilbert space H with quadratic form q.

Then, there exists a map that is bounded for v ∈ Dom(A) if and only if v ∈ Q(A) and also w such that

q(u, v) = 〈u,w〉

for all u ∈ Q(A). In this case, we have Av = w.

See [19], pp. 81.

Proposition 2.8.4. If q̂ is a closed semi-bounded form, then there is a unique self-adjont operator Â so that

Dom(Â) ⊂ Q(Â) and

q̂(u, v) = 〈Âu, v〉

if v ∈ Q(Â) and u ∈ Dom(Â) (see, for example, [46]).

In the next theorem, we give a general theorem that constructs a specific self-adjoint extension called the Friedrichs extension.

Friedrichs published the proof of the theorem in 1934. In fact, the first statement and proof of this theorem oc-

cured in the book Spektraltheorie der unendlichen Matrizen by Aurel Wintner (1929), and it is obtained from a

quadratic form associated with a symmetric positive operator such as the Laplace operator (see [56]).

Theorem 2.8.5. (Friedrichs extension Theorem)

Let q be the quadratic form defined in the domain Dom(A) of a non-negative symmetric operator A by

q(u, v) = 〈Au, v〉 for all u, v ∈ Dom(A).

Then, q is a closable quadratic form, and its closure q̂ is the quadratic form of a unique self-adjoint operator

Â. Â is the only self-adjoint extension of A whose domain is contained in the form domain of q̂ (see [37], pp.

177− 178).
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2.8.2 Application for Friedrichs Extension Theorem: The Laplace operator

We highlight one of the most important objects in the spectral theory of unbounded (differential) operators,

namely the Laplace operator. Although there are different generalisations beyond this setting, we use it and

restrict our attention to the Laplace operator in open subsets in space Rd for d ≥ 1. It is not the case that the

Laplace operator is an essentially self-adjoint operator in general therefore, we can not use the self -adjointness

of Proposition 2.4.1. To do this, it is easy to apply the Laplace operator from Friedrichs extension Theorem, to

show that there is a specific self-adjoint extension for this operator. We consider the Laplace operator, which is

initially defined as follows:

� The domain is C∞c (Ω), which is smooth and has compactly supported functions on Ω ⊆ Rd for d ≥ 1, which

is dense in L2(Ω). See [51].

� For u ∈ C∞c (Ω), we use

−∆u = −
d∑
j=1

∂2u

∂t2j
.

We note that −∆ is again a smooth compactly supported function, and it is bounded and lies in L2(Ω). Now, we

are progressing toward showing that −∆ is a self-adjoint operator or that a least there is a self-adjoint extension.

Proposition 2.8.6. Let Ω ⊆ Rd be a non-empty open subset for d ≥ 1 and (C∞c (Ω),−∆) be the Laplace

operator defined above. The following properties of the Laplace operator −∆:

(1) The Laplace operator is symmetric on C∞c (Ω). That is we have 〈−∆u, v〉 = 〈u,−∆v〉, for all u, v ∈ C∞c (Ω).

(2) The Laplace operator is non-negative on C∞c (Ω). That is we have 〈−∆u, u〉 ≥ 0, for all u ∈ C∞c (Ω).

Proof. (1) Using integration by parts twice and the fact that the functions in the domain are compactly

supported with respect to any fixed coordinate, we obtain

〈−∆u, v〉 = −
∫

Ω

∆u(t)v(t)dt = −
d∑
j=1

∫
Ω

∂2
tju(t)v(t)dt = −

d∑
j=1

∫
Ω

u(t)∂2
tjv(t)dt = 〈u,−∆v〉,

for u, v ∈ C∞c (Ω), so −∆ is a symmetric operator.

58



(2) We have

〈−∆u, u〉 =

∫
Ω

−∆u(t)u(t)dt = −
d∑
j=1

∫
Ω

∂2
tju(t)u(t)dt =

d∑
j=1

∫
Ω

|∂tju(t)|2dt =

d∑
j=1

‖∂tju‖2Ω ≥ 0,

for all u ∈ C∞c (Ω) so −∆ is a non-negative operator.

Remark 16. If there was not a negative sign in the definition, the Laplace operator would have been negative.

Theorem 2.8.7. Let Ω ⊂ Rd a non-empty open subset for d ≥ 1. Then, the Laplace operator −∆ admits

self-adjoint extension.

Proof. This follows from the general previous theorem: Friedrichs extension Theorem.
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Chapter 3

Existence of Embedded Eigenvalues for

Operator −∆− V.

This chapter has a main result of the first task of the current thesis. In Section 3.1, we introduce the concept

of boundary conditions with some properties. We focus on the spectrum of the Laplacian in Section 3.2. Then,

we give some examples in different domains to compute the eigenvalues and eigenfunctions from Section 3.3

to Section 3.5. In Section 3.6, we define a Symmetry operator S and its properties. Then, we consider the

definition of the symmetry operator S with operator (−∆ − V ) in Section 3.6.3. In Section 3.8, we discuss the

Variational principle and calculate the inf(σ(−∆ − V )). In Section 3.9, we observe the result of the relatively

compact perturbations with respect to the operator −∆. Finally, in Section 3.9, we give the main result: The

Existence of embedded eigenvalues of operator (−∆− V ) on the Cylindrical domain R× [−L,L].

3.1 Boundary Conditions

There are different types of boundary conditions that can be imposed on the boundary of the domain, for

example, Dirichlet and Neumann boundary conditions (see, for example, [19], [53]). In the following part, we

study Dirichlet and Neumann boundary conditions for Laplace operator −∆ which acting in L2(Ω) where Ω is a
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open region on Rd for d ≥ 1, we can observe the following:

� The Dirichlet Laplacian for Ω denoted by −∆Ω
D as the unique self-adjoint operator in L2(Ω) whose quadratic

form is the closure of

q(u, v) =

∫
Ω

∇u · ∇vdt

with domain C∞c (Ω).

� The Neumann Laplacian for Ω denoted by −∆Ω
N as the unique self-adjoint operator on L2(Ω) whose

quadratic form is

q(u, v) =

∫
Ω

∇u · ∇vdt

with domain H1(Ω) = {u ∈ L2(Ω) | ∇u ∈ L2(Ω)}, where ∇u is the distributional gradient.

Both these definitions for the Dirichlet and Neumann operators are equivalent when closing C∞c (Ω) with the

quadratic form q defined above, and using the self-adjoint operator given by Friedrichs extension theorem and

the above definitions do not show their association with the boundary conditions (see Section 2.8). One way to

understand this is to define A as the operator closure of ∇ over C∞c (Ω). Closing via the operator norm means that

both the functions and their gradients converge in L2. The functions that converge in this norm must converge

point-wise. Given any function in the domain of A, this requires that it both vanish on the boundary and have

a distributional gradient. Then, A is defined on H1(Ω). Here, A∗ is the closure of −∇ defined on C∞c (Ω). No

boundary condition is imposed because the boundary term drops out in the definition of the adjoint because the

domain of A requires all functions to vanish. The domain of the operator A∗A is a subset of H1(Ω), and A∗A is

a self-adjoint operator, so it must be the Dirichlet Laplacian by its uniqueness in Friedrichs extension Theorem.

The domain of AA∗ is a subset of H1(Ω), so for the same reason, it must be the Neumann Laplacian. Refer the

reader can see [19] and [53]. Now, we can see the most common boundary conditions are the following:

� Dirichlet boundary conditions: This is used for instance when your domain Ω ⊂ R2 is a membrane and

you fix its boundary as if Ω was a drum. Because you donot have any vibrations on the rim of a drum you

must have u|∂Ω = 0. See [19] and [53].
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� Neumann boundary conditions: ∂u
∂ν |∂Ω = 0, Here ν is the unit outward normal vector for the boundary ∂Ω.

This conditions can be used when a surface has a prescribed heat flux, such as perfect insulator(the heat

doesnot go through the boundary). See [19] and [53].

3.2 Spectrum of the Laplacian

As in the Chapter 1, we consider the eigenvalue problem for the Laplacian on a domain. Namely, the space

C∞(Ω) which is defined by the space of all classes of infinitely differentiable functions on Ω ⊂ Rd for d ≥ 1. We

seek to find pairs (λ, u) consisting of λ, which is called an eigenvalue of the Laplace operator −∆, and a non-zero

function u ∈ C∞(Ω) which is the eigenfunction of the Laplace operator −∆ corresponding to the eigenvalue λ so

that the following condition is satisfied:
−∆u = λu, in Ω

u satisfies Dirichlet conditions on ∂Ω .

(3.1)

Such eigenvalue/eigenfunction pairs have some very nice properties, some of which we will explore here. The

study of eigenvalue problems involving the Laplace operator goes back to a basic result in the elementary theory

of partial differential equations that asserts that the problem possesses an unbounded sequence of eigenvalues.

See [21] and [25].

Theorem 3.2.1. (General result for the Laplace operator on a bounded domain). The spectrum of the Laplace

operator is discrete when Ω is a bounded open set in Rd for d ≥ 1 with a smooth (or piecewise smooth) boundary

∂Ω. By piecewise smooth, we mean that ∂Ω is the union of a finite number of smooth arcs or pieces of curves, for

example, a rectangle (see [21]). Moreover, the eigenvalue problem (3.1) has an unbounded sequence of eigenvalues

0 ≤ λ0 ≤ λ1 ≤ ... ≤ λn ≤ ...·

This result goes back to the Riesz-Fredholm theory of self-adjoint and compact operators on Hilbert spaces (see

[25] ,pp. 378− 380). In what concerns λ0 being the lowest eigenvalue of problem (3.1), we remember that it can
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be characterised from a variational point of view as the minimum of the Rayleigh quotient, that is,

λ0 = inf
u∈C∞(Ω)

∫
Ω

|∇u(t)|2 dt∫
Ω

|u(t)|2 dt
, (3.2)

where the infimum is taken over C∞(Ω) of the domain of the Laplace operator with Dirichlet and Neumann

boundary conditions. Moreover, it is known that λ0 is simple that is all the associated eigenfunctions are merely

multiples of each other (see, e.g., Gilbarg and Trudinger [11]).

In the following sections, we aim to solve the eigenvalue equations with boundary conditions (Dirichlet, Neumann

or mixture (Dirichlet and Neumann)) in different spaces.

3.3 Laplacian on a Bounded Domain

In this Section, we determine the eigenvalues and eigenfunctions of the problem −∆u = λu in one dimension,

such as a closed interval [0, b]. Then, we generalise these examples from [0, b] to an arbitrary interval [a, b] for

a, b ∈ R with the different boundary conditions.

Example 1

Consider the eigenvalue equation

−∆u = λu (3.3)

on an interval [0, L] with Dirichlet boundary conditions u(L) = u(0) = 0. Then, we can consider three cases on

λ :

� If λ = 0, the general solution is

u(t) = At+B

where A,B are constants then, u(0) = B = 0 and u(L) = AL+B = 0. It follows that 0 is not an eigenvalue

for this problem.
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� If λ < 0 so that λ = −µ2 < 0 for µ > 0, then the eigenvalue equation

−∆u = λu,

has the general solution of the form

u(t) = A exp(−µt) +B exp(µt).

Therefore, u(t) = 0 is a trivial function, and this problem has no negative eigenvalues.

� If λ > 0 and λ = µ2 such that µ > 0, then the equation

−∆u = λu

has the general solution

u(t) = A cos(µt) +B sin(µt).

To observe that, the eigenfunctions are

un(t) = sin(
nπ

L
t) for n ≥ 1;

with the eigenvalues

λ = (
nπ

L
)2 for n ≥ 1.

Example 2

Consider the equation

−∆u = λu (3.4)

on [0, L] with Neumann boundary conditions that are u
′
(L) = u

′
(0) = 0. Similarly, consider three cases on λ :

� If λ = 0, the general solution is

u(t) = At+B.

So λ = 0 is an eigenvalue with a corresponding eigenfunction u = 1 6= 0 where we take B = 1 for

convenience.
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� If λ < 0 so that λ = −µ2 < 0 for µ > 0, then the equation

−∆u = λu

has a general solution

u(t) = A cosh(−µt) +B sinh(µt).

We have that,

u
′
(t) = −µA sinh(−µt) + µB cosh(µt).

So, λ < 0 is not an eigenvalue for this problem.

� If λ > 0, let λ = µ2 then, the general solution is

u(t) = A cos(µt) +B sin(µt),

giving

u
′
(t) = −µA sin(µt) + µB cos(µt).

Therefore,

λ = λn =
n2π2

L2
for n ≥ 0.

Therefore, the eigenfunctions are

un(t) = cos(
nπ

L
t) for n ≥ 0.

Example 3

The eigenvalue problem

−∆u = λu (3.5)

on [0, L] with mixed conditions (Dirichlet and Neumann boundary conditions), u(L) = 0 and u
′
(0) = 0.

Consider three cases on λ :
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� If λ = 0, the general solution is

u(t) = At+B,

where A and B are constants. Here, 0 is not an eigenvalue for this problem.

� If λ < 0, with λ = −µ2 < 0 for µ > 0, then the general solution is

u(t) = A exp(−µt) +B exp(µt).

Then,

u
′
(t) = −µA exp(−µt) + µB exp(µt).

This problem has no negative eigenvalues.

� If λ > 0 with λ = µ2, then the general solution is

u(t) = A cos(µt) +B sin(µt).

Then,

u
′
(t) = −µA sin(µt) + µB cos(µt).

The eigenfunctions are

un(t) = cos(
nπ

L
)t for n = 1,3,5,...,

with eigenvalues

λ =
n2π2

4L2
for n = 1,3,5,...·

Remark 17. In the previous examples, we observe the eigenfunctions that have corresponding eigenvalues for

the equation −∆u = λu on [0, L] with Dirichlet, Neumann or mixed boundary conditions. We can generalise this

equation to be on [−L,L] to observe the eigenvalues in this domain. Instead, we simply specify that the solution

must be the same for the two boundaries and the derivative. Also, this type of boundary condition will typically

be on an interval of the form [−L,L] instead of [0, L]. In summary, for the equation:

−∆u = λu. (3.6)
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on [−L,L] with Dirichlet boundary conditions, we can observe the eigenfunctions

sin
nπ(t+ L)

2L
= sin(

nπt

2L
+
nπ

2
) =


(−1)n sin

nπt

2L
n is even

(−1)n cos
nπt

2L
n is odd

with eigenvalues

λ =
n2π2

4L2
for n = 1,2,3,...·

In general, for any arbitrary closed interval [a, b], the eigenfunctions will be

sin
nπ

b− a
(t− a),

with eigenvalues

λn =
n2π2

(b− a)2
.

Similarly, the same steps can be followed for Neumann boundary conditions and mixed boundary conditions.

Note that: In an appendix 3, 4 and 5, there are certain examples to calculate the eigenvalues and eigenfunctions.

3.4 Laplacian on an Unbounded Domain

The Partial differential equations when encountered on an unbounded domain require additional considerations

(see [30]). In this section, we give an important problem occurring on unbounded domains when computing

eigenvalues for the equation −∆u = λu. In particular, we place an emphasis on the following steps of which the

Fourier transform may be seen as coming from:

(a) Unbounded domain Ω ⊂ R, especially whole space domain.

(b) The appearance of a continuous spectrum for the partial differential operator.

(c) Fourier transform of arbitrary functions.

Consider the equation

−∆u = λu,
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on R, we can rewrite the equation by

−(
d2u

dt2
) = λu(t).

The main tool for solving this equation on an unbounded domain is the Fourier Transform

U : L2(R)→ L2(R)

given by

Uu(t) =

∫
R
u(t)e−2πitdt.

Integrating by parts we have

U(∂tju)(t) = 2πtUu(t),

and would imply,

U(−∆u)(t) = 4π2‖t‖2Uu(t),

for u ∈ Dom(−∆).

Lemma 3.4.1. Now, we prove that −∆ is an essentially self-adjoint operator.

Proof. By showing Ran(−∆ + z) is a dense in L2(R), that is by using Proposition 2.4.1. Let z = ±i to show that

Ran(−∆± i) is a dense in L2(R). It is easily to prove its orthogonal complement, that is

Ran(−∆± i)⊥ = {0}.

Suppose u ∈ L2(R) be such that

〈u, (−∆± i)v〉 = 0,

for all v ∈ Dom(−∆) = C∞c (R). Because the Fourier transform is an unitary [33], we get

0 = 〈Uu,U(−∆± i)v〉.

For v ∈ C∞c (R), and U(−∆u)(t) = 4π2‖t‖2Uu(t) so this becomes

0 = 〈Uu, (4π2‖t‖2 ± i)Uv〉.
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We need to prove u = 0, we can get that 〈(4π2‖t‖2∓i)Uu,Uv〉, for all v ∈ Dom(−∆). Because the Fourier

transform is unitary again, Dom(−∆) is dense in L2(R) and so is U Dom(−∆) is dense in L2(R), so this would

imply 0 = (4π2‖t‖2∓i)Uu, it follows, u = 0. Thus, −∆ is an essentially self-adjoint operator.

Also, the formula above shows the Laplace operator (Dom(−∆),−∆) is unitarily equivalent with the multipli-

cation operator M on U Dom(−∆). This is an essentially self-adjoint operator. We can define the multiplication

operator (D,M) acting on L2(R) by

Mu(t) = 4π2‖t‖2u(t),

where

D = {u ∈ L2(R)| t→ ‖t‖2u(t) ∈ L2(R)},

and ‖t‖2 is the norm of R. Indeed (D,M) is a self-adjoint operator, and so is the closure of (U Dom(∆),M).

Now, by using the inverse Fourier transform, it follows that the closure of −∆ is unitarily equivalent to (D,M).

Thus, Mu(t) is the Fourier transform of the function −∂
2u

∂t2
, which is continuous of compact support in L2(R),

meaning we can write

−∆ = U−1MU.

Finally, since the range (or the essential range) of the multiplication operator is [0,∞), it follows that

σ(−∆) = [0,∞).

The spectrum is a continuous spectrum since it is clear that there is no eigenvalue of the multiplication operator

(see, for example, [29]).

3.5 Laplacian on a Cylindrical Domain

Consider an unbounded domain of the form R × Ω, where Ω ⊆ Rd−1 for d ≥ 1 is a bounded domain and the

eigenvalue equation

−∆u = λu
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is everywhere on R and the Laplacian coincides with the decoupled operator

−∆ = (−∆R)⊗ I + I ⊗ (−∆Ω) (3.7)

on L2(R)⊗ L2(Ω) = L2(R×Ω), where I denotes the identity operator for the appropriate spaces. The operator

−∆Ω is a self-adjoint Laplatian operator on a bounded region Ω ⊆ Rd−1 for d ≥ 1. Now, we find the spectrum

of −∆ we have: First, the spectrum of the operator −∆Ω is

σ(−∆Ω) = {λ0, λ1, ...}.

The reader can refer back to Section 3.3. Second, the spectrum of the operator −∆R is

σ(−∆R) = [0,∞).

The reader can refer back to Section 3.4. In view of the equation (3.7) and [36, Corollary page 301], this is proved

the straight strip has continuous spectrum starting from the first eigenvalue of the Laplacian

σ(−∆) = σ(−∆R) + σ(−∆Ω)

= [0,∞) + {λ0, λ1, ...}.

Therefore,

σ(−∆) = ∪∞j=0[0,∞) + λj

= ∪∞j=0[λj ,∞)

= [λ0,∞) ∪ [λ1,∞) ∪ ...

= [inf
j=0

λj ,∞)

= [λ0,∞).

In view of 3.7 and [36, Thm VIII.33] this is shown the spectrum of −∆ on unbounded domain is the form

σ(−∆) = [λ0,∞),

where λ0 is the smallest eigenvalue of (−∆Ω).
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3.6 Symmetry Operator S

In this section, we investigate some properties of a symmetry operator S and understand the commutativity

between a bounded operator and an unbounded operator.

3.6.1 Properties of the Symmetry operator S

Now, we consider a symmetry operator S when it acts on any function u(t) in L2(R) is defined as

S : L2(R)→ L2(R)

by

Su(t) = u(−t).

Lemma 3.6.1. There are some important properties of a Symmetry operator S:

� The symmetry operator is a bounded linear operator.

� S2 = I and S is a symmetric operator hence, self-adjoint operator and unitary.

� The eigenvalues of symmetry operator S are ±1,

σ(S) ⊆ {−1, 1}.

� The eigenfunctions of the operator S are the symmetric (even function) or antisymmetric (odd function)

with the respective eigenvalues λ = +1 and λ = −1. See, for example, [20], pp. 257− 266.

Proof. 1) We need to prove S is a bounded linear operator, that is, there exists a constant m > 0 such that

‖Su‖L2(R) ≤ m‖u‖L2(R).

We can consider the norm,

‖u‖2L2(R) =

∫ ∞
−∞
|u(t)|2dt.

Then,

‖Su‖2L2(R) =

∫ ∞
−∞
|Su(t)|2dt =

∫ ∞
−∞
|u(−t)|2dt.
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Now, let −t = w. It follows dt = −dw such that

t = −∞⇒ w =∞

and

t =∞⇒ w = −∞.

Thus,

‖Su‖2L2(R) =

∫ ∞
−∞
|u(−t)|2dt =

∫ ∞
−∞
|u(w)|2dw = ‖u‖2L2(R).

Therefore, we can take m = 1, and S is a bounded operator.

2) Now, we want to prove S is a symmetric operator

〈Su1, u2〉 = 〈u1, Su2〉.

We can consider that

〈Su1, u2〉 =
∫∞
−∞ Su1(t)u2(t)dt

=
∫∞
−∞ u1(−t)u2(t)dt.

Now, let −t = w. It follows dt = −dw such that

t = −∞⇒ w =∞,

and

t =∞⇒ w = −∞.

Therefore,

〈Su1, u2〉 =

∫ ∞
−∞

u1(w)u2(−w)dw

=

∫ ∞
−∞

Su2(w)u1(w)dw

=

∫ ∞
−∞

u1(w)Su2(w)dw

= 〈u1, Su2〉.

So, S is symmetric hence S is a self-adjoint operator.
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3) Suppose λ is an eigenvalue of S with eigenfunction u we have the eigenvalue equation

Su(t) = λu(t).

That is,

S2u(t) = S · Su(t) = S · λu(t) = λ2u(t).

But, S2 = I gives

u(t) = λ2u(t).

That is, λ2 = 1. The only possible eigenvalues of S are

λ = +1, Su(t) = u(t) even function,

and

λ = −1, Su(t) = −u(t) odd function.

3.6.2 Commutativity

We say that a closed densely defined operator A is defined in a Hilbert space H has a symmetry operator S if

[A,S] = 0, (3.8)

that is, A commutes with S. It is called the commutativity of an unbounded operator with a bounded operator

(see, for example, [20]). The importance of commuting operators is that these operators have simultaneous

eigenfunctions whenever there exist. Suppose u 6= 0 is an eigenfunction of A with eigenvalue λ, that is,

Au(t) = λu(t).

Now, u may not be an eigenfunction of S. However, A commutes with S that is, [A,S] = 0. Then, we have

A(Su(t)) = S(Au(t)) = S(λu(t)) = λ(Su(t)).
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This equation states that the function Su 6= 0 is also an eigenfunction of the operator A with the eigenvalue λ,

together with the eigenfunction u. Now, we set

u± =
1

2
(I ± S)u =

1

2
(u± Su).

Then, u+ and u− will be also eigenfunctions of A with an eigenvalue λ while

Su± = S(
1

2
(I ± S)u)

=
1

2
(Su± S2u)

=
1

2
(Su± u)

= ±u.

So, u+ and u− are eigenfunctions of S with the eigenvalues are +1 and −1. Also, note that

u(t) =
1

2
[u(t) + u(−t)− u(−t) + u(t)] =

1

2
[u(t) + u(−t)] +

1

2
[u(t)− u(−t)] = u+ + u−.

It follows that when we look for the eigenfunctions of A, it is sufficient to look for eigenfunctions that are

simultaneous eigenfunctions of A and S. We have previously seen examples of an eigenvalue equation that is

either symmetric or antisymmetric with respect to the origin with different boundary conditions. However, now,

we consider the below example for an eigenvalue equation on the interval [−L,L] with observation the symmetry

operator when it affects on this equation. We observe the simultaneous eigenfunctions of operators A and S.

Example

Consider the operator A = −∆ and the eigenvalue problem is

−∆u = λu

on the closed interval [−L,L] with Dirichlet conditions u(−L) = u(L) = 0. As we saw in Section 3.3 for Example

(1), the eigenfunctions are

un(t) = sin
nπ(t+ L)

2L
= sin(

nπt

2L
+
nπ

2
) =


(−1)n sin

nπt

2L
n is even

(−1)n cos
nπt

2L
n is odd,

(3.9)
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with corresponding eigenvalues

λn =
π2n2

4L2
for n = 1,2,3,.... (3.10)

Symmetry consideration

Now, we want to observe the simultaneous eigenfunctions of Laplace operator −∆ and S. We apply the symmetry

operator S on

−∆u(t) = λu(t).

It is easy to check the operators −∆ commutes with S, that is [−∆, S] = 0. Therefore, u(−t) = u(t) or u(−t) =

−u(t) with u(−L) = u(L) = 0. This leads to separate the function into

1) −∆u(t) = λu(t), u(−L) = u(L) and u is even.

2) −∆u(t) = λu(t), u(−L) = −u(L) and u is odd.

If u is even, it means u(−t) = u(t) and u
′
(0) = 0. So, it is enough to consider the operator Ae = −∆ on [0, L]

with the mixed boundary conditions

u(L) = 0 and u
′
(0) = 0.

Referring to the Section 3.3, Example (3). Then, the eigenfunctions will be

uen(t) = cos(
nπ

L
)t for n = 1,3,5,..., (3.11)

with eigenvalues

λen =
π2n2

4L2
for n = 1,3,5,...· (3.12)

Similarly, if u is odd, it means u(−t) = −u(t) and u(0) = 0. So it is enough to consider Ao = −∆ on [0, L] with

Dirichlet boundary conditions

u(L) = 0 and u(0) = 0.

Refer back to the Section 3.3, Example (1). The eigenfunctions are

uon(t) = sin(
nπ

L
)t for n ≥ 1, (3.13)
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with the eigenvalues

λon =
n2π2

L2
for n ≥ 1. (3.14)

Symmetries can often be used to simplify the problem at hand. It means, at our work if we combine the spectrum

of the operators Ae and Ao, we have

σ(Ae) ∪ σ(Ao)

=

{
π2n2

4L2
, n = 1,3,5,...

}
∪
{
π2n2

L2
, n = 1,2,3,...

}
=

{
π2n2

4L2
, n = 1,3,5,...

}
∪
{
π2n2

4L2
, n = 2,4,6,...

}
=

{
π2n2

4L2
, n = 1,2,3,...

}
= σ(A).

Therefore, σ(A) = σ(−∆) = {π
2n2

4L2
, n = 1,2,3,...}. This means that the eigenfunctions corresponding to the

above eigenvalues are simultaneous eigenfunctions of −∆ and S. One of the goals of this example is to understand

the role the symmetry property to observe the simultaneous eigenfunctions which preserves this property in the

sense above. In other words, the symmetry operator S can always be split into even and odd functions, and if

we add the spectrum of the even operator with the spectrum of odd operator together, we would get the main

spectrum of Laplace operator on the interval [−L,L]. We again observe the spectrum of eigenvalues of Laplace

operator (main operator) decompose into pairs of spectrum because of the presence of the symmetry operator.

3.6.3 For a Symmetric Potential V and [−∆− V, S] = 0

We have the operator A = −∆− V with potential V, which is a symmetric (an even function) V (t, s) = V (t,−s)

for t, s ∈ R, and we consider S is a symmetry operator in two dimensions defined by S : L2(R × [−L,L]) →

L2(R× [−L,L]) such that Su(t, s) = u(t,−s). The operator of the form is

−∆− V = − ∂2

∂t2
− ∂2

∂s2
− V (t, s).

76



First we show this operator −∆ − V commutes with the operator S. In particular, we have S(−∆u) = −∆Su

and SV u = V Su. Since, V is symmetric and from the definition of S we have

(−∆− V )Su(t, s) = (− ∂2

∂t2
− ∂2

∂s2
− V (t, s))Su(t, s)

= (− ∂2

∂t2
− ∂2

∂s2
− V (t, s))u(t,−s)

= −∂
2u

∂t2
(t,−s)− ∂2u

∂s2
(t,−s)− V (t, s)u(t,−s).

On the other hand,

S((−∆− V )u(t, s)) = S(− ∂2

∂t2
− ∂2

∂s2
− V (t, s))u(t, s)

= S(−∂
2u

∂t2
(t, s)− ∂2u

∂s2
(t, s)− V (t, s)u(t, s))

= −∂
2u

∂t2
(t,−s)− ∂2u

∂s2
(t,−s)− V (t,−s)u(t,−s),

where V (t, s) = V (t,−s). Therefore,

[−∆− V, S] = 0.

See Figure 3.1
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(a) The Symmetrical state wavestate represented by two finite square wells. 
 
 
 
 
 
 
 
 
 
 
 

 

 

(b) The Antisymmetrical  wavestate. 

Figure 3.1: The Symmetrical and Anti-symmetrical wavestate
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3.6.4 Symmetry operator in Physics applications

The fact that the symmetry operator is Hermitian means that it is, technically, an observable. As above we

observed the eigenstate of symmetry are particularly useful when symmetry commutes with unbounded operator.

Definition 3.6.1. (Ground state)

Ground state of a quantum-mechanical system its lowest energy state; the energy of the ground state is known

as the zero-point energy of the system. See [34].

Symmetry as a Quantum Number

The fact that the symmetry operator is Hermitian means that it is technically, an observable. More pertinently,

we can find eigenstate of the symmetry operator

s|ψ〉 = ηψ|ψ〉,

where ηψ is called the symmetry of the state |ψ〉. Using the fact that s2 = 1. The symmetry eigenstates are

particularly useful when symmetry with the Hamiltonian H,

sHs† = H ⇔ [s,H] = 0.

In this case, the energy eigenstates can be assigned definite symmetry. This follows immediately when the energy

level is non-degenerate. But, even when the energy level is degenerate, general theorems of linear algebra ensure

that we can always pick a basis within the eigenspace which have definite symmetry. See [20].

Example: Harmonic Oscillator

As a simple example, we can consider the one-dimensional harmonic oscillator. The Hamiltonian is

H =
1

2m
p2 +

1

2
mw2x2.

The simplest way to build the Hilbert space is introduce raising and lowering operator a ∼ (x + ip/mw) and

a† ∼ (x − ip/mw) (up to a normalisation constant). The ground sate |0〉 obeys a|0〉 = 0 while higher state are
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built by |n〉 ∼ (a†)n|0〉. The Hamiltonian is invariant under symmetry [s,H] = 0 which means that all energy

eigenstates must have a definite symmetry. Since the creation operator a† is linear in x and p, we have

sa†s = −a†

This means that the symmetry of the state |n+ 1〉 is

s|n+ 1〉 = sa†|n〉 = −a†s|n〉 then ηn+1 = −ηn.

We learn that the excited states alternate in their symmetry. To see their absolute value we need only determine

the symmetry of the ground state. This is

ψ0(x) = 〈x|0〉 ∼ e(−mwx2

2h ).

Since the ground state doesn’t change under reflection we have η0 = +1 and, in general ηn = (−1)n. See [20].

3.7 Variational Principle and inf(σ(−∆− V ))

The variational principle, is a very powerful tool when studying a self-adjoint linear operators A on a Hilbert

space H. There are many things that can be proved by using the variational princilple methods, for example, the

bounds for eigenvalues and monotonicity of eigenvalues (see, for example, [39]). For a given function w on a set

Ω ⊂ Rd for d ≥ 1, we define the classical variational principle based on the Rayleigh functional of w on Ω as

〈Aw,w〉
‖w‖2L2(Ω)

,

applies only to a semi-bounded operator (see, for example, [39]). In this section, we consider this principle to

obtain a quantitv estimate of eigenvalues and for comparing the eigenvalues of different operators (see [19]). This

principle allows us to calculate an upper bound for the ground state energy (The energy of the ground state is

known as the zero-point energy of a quantum-mechanical system) by finding a trial wave function u for which

the integral is minimised. More precisely, the goal of this section is to find u 6= 0 and u ∈ L2(R×Ω) for Ω ⊆ Rd

and d ≥ 1 such that the inequality

〈(−∆− V )u, u〉 < λ0‖u‖2L2(R×Ω)
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holds where λ0 is an eigenvalue of the operator −∆. Note that 〈(−∆−V )u, u〉 is a quadratic form of the operator

−∆− V for this u. The proof of this is simple. We claim the ground state of the operator −∆− V is less than

the ground state energy λ0 by using the Variational principle. We consider again the operator

−∆− V,

on R×Ω where a sufficiently regular, real-valued, continuous and bounded support function V on C∞0 (R×Ω) is

called potential with V ≥ 0. Let ψ0 be a ground state eigenfunction with the ground state energy eigenvalue λ0

of the operator −∆Ω. In particular,

−∆Ωψ0(s) = λ0ψ0(s).

Lemma 3.7.1. We have,

inf(σ(−∆− V )) < λ0, (3.15)

for V ≥ 0 and V 6≡ 0.

Proof. For R > 0, we can define a trial wave function uR by

uR(t, s) = ϕR(t)ψ0(s),

where ϕR is defined by (see Figure 3.2)

ϕR(t) =



1 |t| ≤ R

2− |t|
R

R < |t| < 2R

0 |t| ≥ 2R

and the distributional gradient will be

∇uR(t, s) = (ϕ
′

R(t)ψ0(s), ϕR(t)∇sψ0(s)).
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The norm of uR is then given by

‖uR‖2L2(R) =

∫ 2R

−2R

ϕ2
R(t)dt

∫
Ω

|ψ0(s)|2ds

= [2R+
2R

3
]

∫
Ω

|ψ0(s)|2ds

=
8R

3

∫
Ω

|ψ0(s)|2ds.

In addition, the norm of distributional gradient ∇uR is given by

‖∇uR‖2L2(R) = 〈−∆uR, uR〉 =

〈
−(

d2

dt2
+ ∆Ω)uR, uR

〉
= 〈−∆ΩuR, uR〉+

∥∥∥∥ ddtuR
∥∥∥∥2

L2(R)

=

∫ 2R

−2R

ϕ2
R(t)dt 〈−∆Ωψ0, ψ0, 〉+

∥∥∥∥ ddtuR
∥∥∥∥2

L2(R)

+

=

∫ 2R

−2R

ϕ2
R(t)dt 〈λ0ψ0, ψ0〉+

∥∥∥∥ ddtuR
∥∥∥∥2

L2(R)

=

∫ 2R

−2R

ϕ2
R(t)dt

∫
Ω

λ0|ψ0(s)|2ds+

∫ 2R

−2R

|ϕ
′

R(t)|2dt
∫

Ω

|ψ0(s)|2ds

=
8R

3
λ0 ‖ψ0‖2L2(R) +

2

R
‖ψ0‖2L2(R) .

Given a non-trivial function V ≥ 0, we can find ε > 0, I ⊆ R, and Π ⊆ Ω such that V ≥ ε > 0 for any

(t, s) ∈ I ×Π, and ∫
Π

|ψ0(s)|2ds > 0.

Here, ψ0(s) is solution of the eigenvalue equation. However, by the Classical unique continuation principle for

the eigenvalue equation, (−∆− V )ψi = 0 in a open set Ω for i = 1, 2 and if ψ1 = ψ2 on Ω
′

where Ω
′ ⊆ Ω is open

and non empty set, then ψ1 = ψ2 on Ω, meaning the difference of two solutions vanish at the space at some point

and the solutions must be identical in all the space (see [39], pp. 240).

Now, V has a bounded support (by assumption), then there exists R0 such that supp(V ) ⊆ [−R0, R0] × Ω. If

R > R0, then

uR(t, s) = 1 · ψ0(s)

for (t, s) ∈ supp(V ), so

V uR = V ψ0.
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Therefore, we have

〈V uR, uR〉 ≥ ε|I|
∫

Π

|ψ0(s)|2ds = δ.

Then,

inf(σ(−∆− V )) <

∫
Ω

|∇uR|2dtds−
∫

Ω

V (t)|uR(t)|2dtds∫
Ω

|uR(t)|2dtds

<
(

2

R
+

8R

3
λ0) ‖ψ0‖2L2(R) − δ

8R

3
‖ψ0‖2L2(R)

< λ0 +
3

8R
(

2

R
− δ

‖ψ0‖2L2(R)

)

< λ0,

when R > 2(
‖ψ0‖2L2(R)

δ
) since

3

4R2
− 3δ

8R ‖ψ0‖2L2(R)

< 0.

Therefore,

inf(σ(−∆− V )) < λ0,

by the variational principle.
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Figure 3.2: Potential function
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3.8 Relatively Compact Perturbations

In this section, we observe the Relatively compact perturbations which, is mentioned in a simple way in Section

2.6.3; we will use this argument in the main result of the first task of the current thesis.

Theorem 3.8.1. Let A be a self-adjoint and semi-bounded operator on a Hilbert space H. An operator V with

Dom(A) ⊆ Dom(V ) is a compact map from the 〈Dom(A), ‖.‖Dom(A)〉 into H if and only if V is a relatively

compact perturbation with respect to the operator A, where the norm of the Dom(A) is given by

‖u‖2Dom(A) = ‖u‖2L2(R) + ‖Au‖2L2(R).

(See [39], pp. 113 and Section 2.6.3).

Definition 3.8.1. (Cone property)

For each u ∈ Ω is the vertex of a cone contained in Ω and congruent to cone where Ω is union of congruent cones.

Theorem 3.8.2. Let Ω be a domain in Rd for d ≥ 1 and Ω has a cone property. Let A = −∆ be the Laplacian on

Ω with any of the boundary conditions (Dirichlet, Neumann or a mixture). Suppose V is a continuous function

with bounded support; then, multiplication by V defines a relatively compact perturbation with respect to the

operator −∆.

Proof. First, we need to prove that multiplication by V defines a compact map

Dom(−∆)→ L2(Ω).

Since −∆ is a non-negative operator so that, 〈−∆u, u〉 ≥ 0 for u ∈ Dom(−∆).

Consider the inclusion map,

Dom(−∆) ↪→ Q(−∆);

we need to prove this map is continuous when Dom(−∆) has the norm

‖u‖2Dom(−∆) = ‖u‖2L2(R) + ‖∆u‖2L2(R)

and Q(−∆) has the norm

‖u‖2Q(−∆) = 〈−∆u, u〉+ ‖u‖2L2(R).
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By the Cauchy-Schwartz inequality, it is easy to see

|〈−∆u, u〉| ≤ ‖ −∆u‖L2(R)‖u‖L2(R) ≤
1

2
(‖u‖2L2(R) + ‖∆u‖2L2(R))

=
1

2
‖u‖2Dom(−∆).

Thus, the inclusion map from Dom(−∆) into Q(−∆) is continuous.

We have Q(−∆) ⊆ H1(Ω) (recall Section 2.8).

Suppose Ω
′ ⊆ Ω is a bounded open set. Then, the restriction gives us a compact embedding

H1(Ω)→ L2(Ω
′
) = H0(Ω

′
)

by the Rellich-Kondarchov Theorem. See, for example, [50, Thm 6.2 Part 1 and 2, pp. 144]. We choose Ω
′

such

that

supp(V ) ∩ Ω ⊆ Ω
′
,

(recall that V has a bounded support). Here, V ∈ L∞(Ω
′
) multiplication by V gives us a bounded map

L2(Ω
′
)→ L2(Ω

′
).

Then, we can extend by 0 to get a bounded map

L2(Ω
′
)→ L2(Ω).

Since supp(V ) ⊆ Ω
′
. Thus, the composition

Dom(−∆) ↪→ Q(−∆) ↪→ H1(Ω)→ L2(Ω
′
)→ L2(Ω),

is a simply multiplication by V as a map

Dom(−∆)→ L2(Ω).

Because every step is bounded and the restriction is compact. Therefore, the map

V : Dom(−∆)→ L2(Ω)

is a compact map. Second, by Theorem 3.8.1, it follows that V is a relatively compact perturbation with respect

to the operator −∆.
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3.9 Existence of Embedded Eigenvalues

In this section, we combine the ideas discussed in the previous sections and previous concepts to demonstrate

that the operator

−∆− V

on R× [−L,L] has embedded eigenvalues for some positive symmetric potential functions V.

Theorem 3.9.1. (Has been published in [41], March, 2020).

Consider on R× [−L,L], the operator

−∆D − V,

with Dirichlet boundary conditions on R×{−L} and R×{L}. Suppose V denotes a sufficiently small non-negative

continuous real valued function on R× [−L,L] with bounded support which is symmetric

V (t, s) = V (t,−s)

for t, s ∈ R× [−L,L]. Then,

σess(−∆D − V ) = [λ1,∞) ⊆ σ(−∆D − V ),

where λ1 =
π2

4L2
while there exists λ > λ1 such that λ is an eigenvalue of −∆D − V ; more precisely, there exists

u 6= 0 and

u ∈ Dom(−∆D − V ) ⊂ L2(R× [−L,L])

such that

(−∆D − V )u = λu.

Similarly, we can consider the operator

−∆N − V,

on R× [−L,L] with Neumann boundary conditions on R×{−L} and R×{L}. Suppose V denotes a sufficiently

small, non-negative continuous real valued function on R× [−L,L] with bounded support which is symmetric

V (t, s) = V (t,−s)
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for t, s ∈ R× [−L,L]. Then,

σess(−∆N − V ) = [λ0,∞) ⊆ σ(−∆N − V ),

where λ0 = 0 while there exists λ > λ0 such that λ is an eigenvalue of −∆N − V ; more precisely, there exists

u 6= 0 and

u ∈ Dom(−∆N − V ) ⊂ L2(R× [−L,L])

such that

(−∆N − V )u = λu.

Proof. If V = 0, then the operator −∆D on R× [−L,L] has a continuous spectrum, in particular

σ(−∆D) = [λ1,∞) =

[
π2

4L2
,∞
)
,

with Dirichlet boundary conditions or

σ(−∆N ) = [λ0,∞) = [0,∞)

with the second case Neumann boundary conditions (see Section 3.5). Now, suppose V is a symmetric non-

negative continuous real valued function on R× [−L,L] with bounded support. Making use of the symmetry (see

Section 3.6), we can decompose the spectrum of the operator −∆− V as

σ(−∆D − V ) = σ(Ao − V ) ∪ σ(Ae − V ), (3.16)

where Ao = −∆D on R× [0, L] with Dirichlet boundary conditions on R×{0} and Ae = −∆D on R× [0, L] with

Neumann boundary conditions on R × {0}; both operators have the original Dirichlet boundary conditions on

R× {L}. To explain that, we have

1) −∆Du(t, s) = λu(t, s), u(−L, s) = u(L, s) and u is even.

2) −∆Du(t, s) = λu(t, s), u(−L, s) = −u(L, s) and u is odd.

If u is odd, it means u(−t, s) = −u(t, s) and u(0, s) = (0, s). So it is enough to consider Ao = −∆D on R× [0, L]

with Dirichlet boundary conditions

u(L, s) = (0, s) and u(0, s) = (0, s).
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Refer back to the Section 3.3, Example (1). Similarly, if u is even, it means u(−t, s) = u(t, s) and u
′
(0, s) = (0, s).

So, it is enough to consider the operator Ae = −∆D on R× [0, L] with the mixed boundary conditions

u(L, s) = (0, s) and u
′
(0, s) = (0, s).

Referring to the Section 3.3, Example (3). To calculate the spectrum of Ao, we can use the result in Section 3.5

and Example (1) in Section 3.3 to get

σ(Ao) = [µ1,∞) =

[
π2

L2
,∞
)
.

Similarly, to calculate the spectrum of Ae, we can use the result in Section 3.5 and Example (3) in Section 3.3

to get that,

σ(Ae) = [µ0,∞) =

[
π2

4L2
,∞
)
.

Note that µ1 is the smallest eigenvalue of the operator − d2

ds2
on [0, L] with Dirichlet boundary conditions at 0

and L, but µ0 is the smallest eigenvalue of the operator − d2

ds2
on [0, L] with Neumann boundary conditions at 0

and Dirichlet boundary conditions at L. By Theorem 2.6.4, it follows that

σess(Ao) = σ(Ao) = [µ1,∞),

and

σess(Ae) = σ(Ae) = [µ0,∞).

Next, we have that V is a relatively compact perturbation of the operators Ao and Ae (by Theorems 3.8.2 and

2.6.6). Therefore,

σess(Ao − V ) = σess(Ao) = [µ1,∞).

Similarly,

σess(Ae − V ) = σess(Ae) = [µ0,∞).
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By equality (3.16), it follows that

σess(−∆− V ) = σess(Ao − V ) ∪ σess(Ae − V )

= [µ1,∞) ∪ [µ0,∞)

= [µ0,∞).

Now, by the variational principle (see Section 3.7), we can observe that σ(Ao − V ) contains an eigenvalue below

µ1 i.e.,

inf(σ(Ao − V )) < µ1.

However, if V is sufficiently small, this eigenvalue will be above µ0 (note that µ0 < µ1). Combining our obser-

vations we can see that for a sufficiently small V, the operator −∆D − V has an eigenvalue in (µ0, µ1) hence an

embedded eigenvalue.

Now, similarly consider the operator

−∆N − V

on R× [−L,L] with Neumann boundary conditions on R× {−L} and R× {L}. We can follow the same steps of

the Dirichlet boundary conditions case to decompose the spectrum of the operator −∆N − V as

σ(−∆N − V ) = σ(A
′

o − V ) ∪ σ(A
′

e − V ), (3.17)

where A
′

o = −∆N on R × [0, L] with Dirichlet boundary conditions on R × {0}, and A
′

e = −∆N on R × [0, L]

with Neumann boundary conditions on R×{0}; both operators have the original Neumann boundary conditions

on R× {0}.

1) −∆Nu(t, s) = λu(t, s), u(−L, s) = u(L, s) and u is even.

2) −∆Nu(t, s) = λu(t, s), u(−L, s) = −u(L, s) and u is odd.

If u is even, it means u(−t, s) = u(t, s) and u
′
(0, s) = (0, s). So, it is enough to consider the operator A

′

e = −∆N

on R× [0, L] with the Neumann boundary conditions

u
′
(L, s) = (0, s) and u

′
(0, s) = (0, s).

90



Referring to the Section 3.3, Example (2). Similarly, if u is odd, it means u(−t, s) = −u(t, s) and u
′
(0, s) = (0, s).

So it is enough to consider A
′

o = −∆N on R× [0, L] with mixed boundary conditions

u(L, s) = (0, s) and u
′
(0, s) = (0, s).

Refer back to the Section 3.3, Example (3).

However,

σ(A
′

o) = [µ
′

1,∞) =

[
π2

4L2
,∞
)
,

and

σ(A
′

e) = [µ
′

0,∞) = [0,∞).

Looking at the result in Section 3.5 and Examples (2), (3) in Section 3.3, µ
′

1 is the smallest eigenvalue of the

operator − d2

ds2
with Dirichlet boundary conditions at 0 and Neumann boundary conditions at L, but µ

′

0 is the

smallest eigenvalue of the operator − d2

ds2
with Neumann boundary conditions at 0 and L. By Theorem 2.6.4, it

follows that

σess(A
′

o) = σ(A
′

o) = [µ
′

1,∞),

and

σess(A
′

e) = σ(A
′

e) = [µ
′

0,∞).

Next, V is a relatively compact perturbation of the operators A
′

o and A
′

e (by Theorems 3.8.2 and 2.6.6). Therefore,

σess(A
′

o − V ) = σess(A
′

o) = [µ
′

1,∞),

and

σess(A
′

e − V ) = σess(A
′

e) = [µ
′

0,∞).

By equality (3.17), it follows that

σess(−∆− V ) = σess(A
′

o − V ) ∪ σess(A
′

e − V )

= [µ
′

1,∞) ∪ [µ
′

0∞)

= [µ
′

0,∞).
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Now, by the variational principle method (see Section 3.7), we can observe that σ(A
′

o−V ) contains an eigenvalue

below µ
′

1.

inf(σ(A
′

o − V )) < µ
′

1.

However, if V is sufficiently small, this eigenvalue will be above µ
′

0 (note that µ
′

0 < µ
′

1). Then, for a sufficiently

small V, the operator −∆− V an eigenvalue in (µ
′

0, µ
′

1) hence an embedded eigenvalue.

Remark 18. We have that:

� In both cases for sufficiently small V the operator −∆ − V has an eigenvalue λ which is contained in the

essential spectrum hence an embedded eigenvalue.

� For sufficiently small V we can define by:

‖V ‖∞ < µ1 − µ0 = µ0,

where we have,

inf(σ(− d2

ds2
− V )) > inf(σ(− d2

ds2
)− ‖V ‖L∞) = µ1 − µ1 + µ0 = µ0,

and µ0 is the smallest eigenvalue of the operator − d2

ds2
with Dirichlet boundary conditions at 0 and L.

Similarly for Neumann boundary condition case.

3.9.1 Application in Physics

� Infinity square well: In this case the barriers are infinitely high. We have, the problem consists of solving

the time-independent Schrödinger equation, normally written for ψ(t)

(− ~2

2m
∇2 + V (t)− E)ψ(t) = 0, (3.18)

for E ∈ R. That can be rearranged to give

d2ψ

dt2
=

2m

~2
(V − E)ψ,

where h is the reduced planck constant, m is the mass, E the energy of the particle.
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In regions (2) and (3). See 3.3, ψ2 = ψ3 = 0. (Otherwise, potential energy term goes to infinity).

In region (1), V = 0 : ψ1(t) = Aeikt +Be−ikt, we have k =

√
2mE

h2
.

Apply boundary conditions:

Match only the wave functions, not derivative. Since ψ2 = ψ3 = 0 and derivative are also zero, the wave

function would have to be 0 as well.

The infinity large barrier step makes it so that we don’t have to force derivative to much.

At t = 0 : ψ1(0) = ψ2(0), and A+B = 0,

ψ1(t) = A[eikt − e−ikt] = (i2A) sin(kt) = A
′
sin(kt).

At t = L : ψ1(L) = ψ3(L), and A
′
sin(kt) = 0, kL = nπ where n > 0.

We can consider the energy:

E = n2 ~2k2

2m
.

So only particular values of energy are allowed. For each allowed energy, there is a corresponding wave

functions. An energy and its corresponding wave function define a state of the system. The lowest state is

called ground state:

E1 =
~2k2

2m
.

Now, the Symmetry of the potential energy function, we expect to see the symmetry properties of the

potential show up in the physical characteristics of the particle moving in the potential:

ψ∗(
L

2
− t)ψ∗(L

2
− t) = ψ(

L

2
+ t)ψ(

L

2
+ t),

ψ(
L

2
− t) = ±ψ(

L

2
+ t).

The wave function itself can be symmetric or anti-symmetric.
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We use the symmetry as tool in helping to solve problems. In this case, we might have considered putting

t = 0 at the center of the well. See Figure 3.3 and [34] and [49].

� Finite square well.

Now, we consider the case of the finite well, where a potential region is confined by equal barriers an either

of height V0 The step potential is simply the of V0 the height of the barrier. We have the following piecewise

continuous finite potential energy:

V (t) =



V0 t < 0

0 0 ≤ t ≤ L

V0 L < t

Now, we want to solve Schrödinger’s equation for this potential to get the wavefunction and allowed energies

for E < V0.

I will refer to the three regions 1, 2 and 3 with associated wavefunction ψ1, ψ2 , ψ3. See Figure 3.3.

In region (1) ψ1(t) = A
′
eikt +B

′
e−ikt,

In region (2) ψ2(t) = C
′
eα2t +D

′
e−α2t,

In region (3) ψ3(t) = F
′
eα3t +G

′
e−α3t.

We have, D
′

= F
′

= 0, Exponential must remain finite for t→ ±∞, and C
′

= Ce
αL
2 and G

′
= Ge

−αL
2 .

Therefore,

In region (1) ψ1(t) = A
′
eik1t +B

′
e−ik1t,

In region (2) ψ2(t) = Ceα(t+L
2 ),

In region (3) ψ3(t) = Ge−α(t−L2 ).
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It is convenient to define two variable (both positive) one for region (1) and (3) and one for region (2) they

are wavenumbers:

α2
2 = α2

3 =
2m

h2
(V0 − E) = α and k2

1 =
2m

h2
E = k,

and the Schrödeinger’s equation becomes

d2ψ0,2

dt2
= k2

0ψ0,2 for t < 0 or L < t.

And we have,

d2ψ1

dt2
= −k2

1ψ1 for 0 < t < L.

In this case the finite potential well is symmetrical, so symmetry can be exploited to reduce the necessary

calculations.

Symmetric:

ψ(−t) = ψ(t) G = C and A
′

= B
′
ψ1(t) = Acos(kt)

Anti-symmetric:

ψ(−t) = −ψ(t) G = −C and A
′

= −B′ ψ1(t) = Asin(kt)

Symmetric (even):

In region (1) ψ1(t) = Acos(kt),

In region (2) ψ2(t) = Ceα(t+L
2 ),

In region (3) ψ3(t) = Ce−α(t−L2 ).

Anti-symmetric (odd):

In region (1) ψ1(t) = Asin(kt),

In region (2) ψ2(t) = Ceα(t+L
2 ),

In region (3) ψ3(t) = Ce−α(t−L2 ).

The next step is to match boundary conditions. Then we can determine the allowed energies. Note that

because of the symmetry, the information gained by matching boundary conditions at t =
L

2
will be
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exactly the same as what is learned from matching at t = −L
2
. Meaning that we can match at one side

only. Symmetric(even) case:

ψ1(L2 ) = ψ3(L2 ) and A cos(
kL

2
) = C.

∂ψ1(t)

∂t
|t=L

2
=
∂ψ3(t)

∂t
|t=L

2
and Ak sin(

kL

2
) = −αC.

To determine the allowed energies. We don’t care that much about A and C. Take the coefficient out of the

picture by dividing the second equation by the first. We get the characteristic equation for the symmetric

case:

k tan(
kL

2
) = α. Then, we can solve this equation to get E. See [34].

Symmetric(odd) case: Matching boundary conditions at x =
L

2
. ψ1(L2 ) = ψ3(L2 ) and A sin(

kL

2
) = C.

∂ψ1(t)

∂t
|t=L

2
=
∂ψ3(t)

∂t
|t=L

2
and Ak cos(

kL

2
) = −αC.

Dividing the first BC equation into the second gives the characteristic equation for the symmetric case:

k cot(
kL

2
) = α. The same mathematical steps to get E. See [34].

Without solving the entire problem we can make some conclusion about the wavefunction and the allowed

energy level. Recall that for the region inside the well V (t) = 0 and equation 3.18 reduce to for an finite

square well potential of width L the allowed are quantised and

Eψ2 = − h2

2m

d2ψ2

dt2
,

the wavefunction is not zero outside the well.

Note that: We consider a basic results: in one-dimensional potential there cannot be two or more bound

state for any given energy:

– There is no degeneracy for bound states in one-dimensional potentials.

– The second result, the energy eigenstates ψ(t) can be chosen to be real.

– If the potential is an even function of t : V (−t) = V (t) the eigenstate can be chosen to be even or odd

under t→ −t.
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We note that: Energy is smaller than the potential for t → ±∞; Energy is smaller than potential for

t → −∞; Energy is larger than the potential for t → ∞. The spectrum in this work has three kinds of

spectrum in different regions discrete spectrum, continuous spectrum and non-degenerate, and continuous

spectrum and doubly degenerate. See Figure 3.3, [34] and [49].
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Figure 3.3: Square quantum wells
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Chapter 4

Operator pencil and its properties

In this chapter, we start to define the space Hk for k = 0, 1, 2, ... with some properties for this space and some

results. The Sobolev space W k
α,β for k ∈ N0 and α, β ∈ R are defined in Section 4.2, and we prove some arguments

depend on the properties of these spaces. Then, we base on the operator pencil in Section 4.4. We define the

class of the quadratic operator pencil BA(µ) to be studied in what follows. Next, we introduce some properties

of the spectrum of the operator pencil BA(µ) and investigate the projection of the spectrum of this operator. In

Section 4.5, we define the adjoint pencil, which is denoted by B∗A(µ) with its properties. Finally, in Section 4.6,

the main results of the operator pencil which, will be used in Chapter 5 are presented.

4.1 The space Hk

Here, we define the space Hk for k = 0, 1, 2, ...·

Definition 4.1.1. A set {uj}j∈N0 is an orthonormal set in a Hilbert space H if

〈uj , uk〉 = δj,k =


0 if j 6= k

1 if j = k,

where δjk is the Kronecker delta.
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Definition 4.1.2. A set {uj}j∈N0 is the basis for H if every u ∈ H can be written uniquely in the form

u =

∞∑
j=0

ajuj ,

for constants aj . If additionally {uj}j∈N0 is an orthonormal set, then, {uj}j∈N0 is an orthonormal basis. If

{uj}j∈N0
is the basis, then it is a linearly independent set. Indeed, if

∑∞
j=0 ajuj = 0, then aj = 0.

Proposition 4.1.1. Let {uj}j∈N0 be an orthonormal set in a Hilbert space H. Then, the following statements

are equivalent:

� {uj}j∈N0 is basis in H.

� For each u ∈ H. Then, u =
∑∞
j=0〈u, uj〉uj .

� For each u ∈ H. Then, ‖u‖2H =
∑∞
j=0 |〈u, uj〉|2 (Parseval’s identity).

� If 〈u, uj〉 = 0 for all j ∈ N0. Then, u = 0.

� The linear span of {uj}j∈N0
is dense in H. See [36] and [44].

Now, suppose A is a lower semi-bounded self-adjoint operator on a Hilbert space H and the operator A has a

discrete spectrum; thus, σ(A) consists of eigenvalues λ0 ≤ λ1 ≤ λ2, ... with corresponding orthonormal eigen-

functions u0, u1, u2, ... ∈ Dom(A). In particular, Auj = λjuj for all j, while {uj}j∈N0
is an orthonormal basis in

H. Let q be the quadratic form defined on the form domain Q(A) of the operator A

q(u, u) = 〈Au, u〉 for all u ∈ Dom(A) ⊂ Q(A).

Additionally, q is a semi-bounded quadratic form, so there exists m ∈ R with

q(u, u) ≥ −m‖u‖2Q(A).

The reader can refer back to Section 2.8.1 for more details.

� Now, the space Hk for k = 0, 1, 2, ... is set by

Hk =


∞∑
j=0

ajuj : ((1 + λ2
j )

k
4 aj)j∈N0

∈ `2(N0)

 .
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This is a linear subspace of the Hilbert space H with the norm given by

‖u‖2Hk =

∞∑
j=0

(1 + λ2
j )

k
2 |aj |2,

for u ∈ Hk.

� (The form 〈., .〉 is anti-linear in the first argument and linear in the second argument). To observe that the

mapping u → (〈u, uj〉)j∈N0
is an isometry from H into `2(N0); for u =

∑∞
j=0 ajuj (see, for example, [36]).

Now, we can consider that

〈u, uj〉 = 〈
∞∑
k=0

akuk, uj〉

=

∞∑
k=0

ak〈uk, uj〉

=

∞∑
k=0
k 6=j

ak · 0 +

∞∑
k=0
k=j

ak · 1 = aj .

The space H0 is given by

H0 =


∞∑
j=0

ajuj : (aj)j∈N0
∈ `2(N0)

 .

Note that H0 = H, particularly {uj}j∈N0
is an orthonormal eigenbasis of H0. Hence, the norm of u ∈ H0,

is the norm of H which by Parseval’s identity we have

‖u‖2H0
=

∞∑
j=0

|〈u,uj〉|2 =

∞∑
j=0

|aj |2.

� The space H1 is given by

H1 =


∞∑
j=0

ajuj : ((1 + λ2
j )

1
4 aj)j∈N0

∈ `2(N0)

 .

Note that H1 = Q(A) is the form domain of A; we have

Au =

∞∑
j=0

A(ajuj) =

∞∑
j=0

aj(Auj) =

∞∑
j=0

ajλjuj .

From the above discussion, the norm of the form domain Q(A) is defined by (see Section 2.8.1).

Lemma 4.1.2. For u ∈ Q(A) we have,

‖u‖2Q(A) =

∞∑
j=0

(λj +m+ 1)|aj |2. (4.1)
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Proof. We can consider,

‖u‖2Q(A) = 〈Au, u〉+ (m+ 1)〈u, u〉

= 〈
∞∑
j=0

Aajuj ,

∞∑
j=0

ajuj〉+ (m+ 1)〈
∞∑
j=0

ajuj ,

∞∑
j=0

ajuj〉

= 〈
∞∑
j=0

λjajuj ,

∞∑
j=0

ajuj〉+ (m+ 1)〈
∞∑
j=0

ajuj ,

∞∑
j=0

ajuj〉

=

∞∑
j,k=0

ajakλj〈uj , uk〉+ (m+ 1)

∞∑
j,k=0

ajak〈uj , uk〉

=

∞∑
j=0

λj |aj |2 + (m+ 1)|aj |2

=

∞∑
j=0

(λj +m+ 1)|aj |2.

Lemma 4.1.3. For constants c1 and c2 we have

c1

∞∑
j=0

(1 + λ2
j )

1
2 |aj |2 ≤

∞∑
j=0

(λj +m+ 1)|aj |2 ≤ c2
∞∑
j=0

(1 + λ2
j )

1
2 |aj |2. (4.2)

Proof. To prove the equivalent norms, it suffices to find c1 and c2 such that

c21(1 + λ2
j ) ≤ (λj +m+ 1)2 ≤ c2(1 + λ2

j ),

for all j. Now, we have

(λj +m+ 1)2 ≤ 3(λ2
j +m2 + 1)

= 3(λ2
j + 1) + 3m2

≤ 3(1 +m2)(λ2
j + 1).

So, we take c2 =
√

3(1 +m2). On the other hand, 〈Au, u〉 ≥ −m‖u‖2Q(A) holds, for all u ∈ Q(A). Taking

u = uj gives 〈Auj , uj〉 ≥ −m‖uj‖2Q(A). It follows that 〈λjuj , uj〉 ≥ −m‖uj‖2Q(A). Then,

λj〈uj , uj〉 ≥ −m‖uj‖2Q(A) as 〈uj , uj〉 = 1.
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Therefore, λj ≥ −m, hence λj +m ≥ 0. Now, we have

λ2
j = ((λj +m+ 1)− (m+ 1))2

≤ 2(λj +m+ 1)2 + 2(m+ 1)2.

To observe that λj +m+ 1 ≥ 1 and 2(m+ 1)2 + 1 ≥ 1 > 0. Hence,

λ2
j + 1 ≤ 2(λj +m+ 1)2 + 2(m+ 1)2 + 1

≤ 2(λj +m+ 1)2 + (2(m+ 1)2 + 1)(λj +m+ 1)2

= (2(m+ 1)2 + 3)(λj +m+ 1)2.

Therefore, we can take c1 =
√

2(m+ 1)2 + 3.

� The space H2 is given by

H2 =


∞∑
j=0

ajuj : ((1 + λ2
j )

1
2 aj)j∈N0

∈ `2(N0)

 .

Note that H2 = Dom(A); and the norm on H2 is the usual norm on the domain of A.

Lemma 4.1.4. For u ∈ Dom(A) we have,

‖u‖2Dom(A) =

∞∑
j=0

(1 + λ2
j )|aj |2 = ‖u‖2H2

. (4.3)

Proof. We can consider,

‖u‖2Dom(A) = ‖Au‖2H + ‖u‖2H

= 〈
∞∑
j=0

Aajuj ,

∞∑
j=0

Aajuj〉+ 〈
∞∑
j=0

ajuj ,

∞∑
j=0

ajuj〉

= 〈
∞∑
j=0

λjajuj ,

∞∑
j=0

λjajuj〉+ 〈
∞∑
j=0

ajuj ,

∞∑
j=0

ajuj〉

=

∞∑
j=0

|ajλj |2 +

∞∑
j=0

|aj |2

=

∞∑
j=0

(1 + λ2
j )|aj |2 = ‖u‖2H2

.
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Lemma 4.1.5. For j ≤ k and u ∈ Hk. Then,

‖u‖2Hj ≤ ‖u‖
2
Hk
.

Proof. By definition, we can observe

‖u‖2Hj =

∞∑
n=0

(1 + λ2
n)

j
2 |an|2,

and because j ≤ k, we get

∞∑
n=0

(1 + λ2
n)

j
2 |an|2 ≤

∞∑
n=0

(1 + λ2
n)

k
2 |an|2

= ‖u‖2Hk .

Lemma 4.1.6. For u ∈ H2. Then,

‖Au‖H0
≤ ‖u‖H2

.

Proof. It is clear to observe that by equality (4.3).

Example

Let −∆ be the Laplacian on H0 = L2[−L,L] with any of the boundary conditions (Dirichlet, Neumann or

mixture), where −∆[−L,L] = − ∂2

∂t2 is bounded operator from H2 = Dom(−∆[−L,L]) into H0 = L2[−L,L] such

that −∆ϕn = λnϕn, and H1 = Q(−∆[−L,L]) is a quadratic form domain for −∆. Therefore,

H2 ⊂ H1 ⊂ H0,

Dom(−∆[−L,L]) ⊂ Q(−∆[−L,L]) ⊂ L2[−L,L].

In the case of Dirichlet boundary condition ϕ(L) = ϕ(−L) = 0, the eigenvalues are

λn =
π2n2

4L2
for n = 1,2,3,...

with corresponding eigenfunctions

ϕn(t) = sin
nπ

2L
(t+ L) for n ≥ 1.
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4.2 Sobolev spaces

Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp norms of the

function itself as well as its derivatives up to a given order. The derivatives are understood in a suitable weak

sense to make the space complete, thus a Banach space. We begin with the classical definition of Sobolev spaces:

Definition 4.2.1. Let 1 ≤ p ≤ ∞, k = 0, 1, ....· Define the Sobolev space is defined as the space of function

u ∈ Lp(Rd) all of whose distributional derivative are also in Lp(Rd) for all multi-indices α that satisfy |α| ≤ k.

This space is normed by the expression

‖u‖Wk,p =
∑

0≤|α|≤k

‖Dαu‖Lp .

One can extend this to the case p =∞ with the norm using the essential supremum by

‖u‖Wk,∞ = max
0≤|α|≤k

‖Dαu‖L∞ .

For the simplicity and convenience of discuss, we will only deal in the case of one dimensional. In the one-

dimensional case it is enough to assume that the (k−1) derivative u(k−1) is differentiable almost everywhere and

is equal almost everywhere to the Lebesgue integral of its derivative (this excludes irrelevant examples such as

Cantor’s function). Also, one of the most elegant and useful ways of measuring differentiability properties of

functions is in terms of L2 norms. One of the reason for this is L2 is a Hilbert space and the other is the Fourier

transform is unitary isomorphism on L2. Now, from previous section and definition of space Hk for k = 0, 1, ...

we have that

Definition 4.2.2. By L2(R, Hk) we denote the space vector valued function u : R→ Hk for k = 0, 1, 2, ... with

the finite norm

‖u‖2L2(R,Hk) =

∫
R
‖u(t)‖2Hkdt.

Definition 4.2.3. LetW k(R) be the space of distributions u on R with values inHk such thatDj
t ∈ L2(R, Hk−j), j =

0, 1, ..., k. We equip W k(R) = W k,2(R) with the norm:

‖u‖2Wk(R) =

∫
R

∑
0≤j≤k

∥∥∥Dj
tu(t)

∥∥∥2

Hk−j
dt <∞.
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Note that W 0 = L2(R, H0). Each W k is a Hilbert space with respect to the inner product

〈u, v〉Wk =

∫
R

∑
0≤j≤k

Dj
tu(t)Dj

t v(t)dt <∞,

for u, v ∈ W k. It is easy to prove that u ∈ W k(R) if and only if u→ u(t) lies in L2(R, Hk − j). Many problems

of mathematical physics and variational calculus are not sufficient to deal the classical solutions of differential

equations. It is necessary to introduce the weighted functions spaces. They were explicity defined in different

references, for example, [31], [50], [51], and [66]. In particular, we introduce the exponential weight continuous

function modelled on Sobolev spaces W k
α,β on R which is played a big role in the current thesis.

4.3 Weighted Sobolev spaces W k
α,α and W k

α,β

We introduce the spaces we define the operator Dt = −i d
dt

on R. For α, β ∈ R and k ∈ N0. Let W k
α,β denotes

the set of u : R→ Hk such that

‖u‖2Wk
α,β

:=

k∑
j=0

∫ 0

−∞
e2αt

∥∥∥Dj
tu(t)

∥∥∥2

Hk−j
dt+

k∑
j=0

∫ ∞
0

e2βt
∥∥∥Dj

tu(t)
∥∥∥2

Hk−j
dt,

is finite.

For k = 0. Then, W 0
α,β is defined to be the set of u : R→ H0 such that

‖u‖2W 0
α,β

=

∫ 0

−∞
e2αt‖u(t)‖2H0

dt+

∫ ∞
0

e2βt‖u(t)‖2H0
dt

is finite.

For k = 1. Then, W 1
α,β is defined to be the set of u : R→ H1 such that

‖u‖2W 1
α,β

=

∫ 0

−∞
e2αt(‖Dtu(t)‖2H0

+ ‖u(t)‖2H1
)dt+

∫ ∞
0

e2βt(‖Dtu(t)‖2H0
+ ‖u(t)‖2H1

)dt

is finite.

For k = 2, an equivalent definition for W 2
α,β is the set of u : R→ H2 such that

‖u‖2W 2
α,β

=

∫ 0

−∞
e2αt

[∥∥D2
t u(t)

∥∥2

H0
+ ‖u(t)‖2H2

]
dt+

∫ ∞
0

e2βt
[∥∥D2

t u(t)
∥∥2

H0
+ ‖u(t)‖2H2

]
dt

is finite.
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Remark 19. For α ∈ R and k ∈ N0, it is easy to define W k
α,α, which denotes the set of u : R→ Hk by such that

‖u‖2Wk
α,α

:=

k∑
j=0

∫ ∞
−∞

e2αt
∥∥∥Dj

tu(t)
∥∥∥2

Hk−j
dt

is finite.

Now, the reader can see the proof of the next theorem to understand the equivalent of norms of space W 2
α,β when

α = β.

Theorem 4.3.1. For α ∈ R. Then, the norms

‖u‖2W 2
α,α

=

∫ ∞
−∞

e2αt(
∥∥D2

t u(t)
∥∥2

H0
+ ‖u(t)‖2H2

)dt, (4.4)

and ∫ ∞
−∞

e2αt(
∥∥D2

t u(t)
∥∥2

H0
+ ‖Dtu(t)‖2H1

+ ‖u(t)‖2H2
)dt (4.5)

are equivalent.

Proof. We find constants c1 and c2, which satisfy the following statement:

c1‖u‖2W 2
α,α
≤
∫ ∞
−∞

e2αt(
∥∥D2

t u(t)
∥∥2

H0
+ ‖Dtu(t)‖2H1

+ ‖u(t)‖2H2
)dt ≤ c2‖u‖2W 2

α,α
. (4.6)

First, using the definitions of previous Section 4.1

∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt =

∞∑
j=0

∫ ∞
−∞

e2αt(1 + λ2
j )

1
2 |Dtaj(t)|2dt,

we consider u =
∑∞
j=0 ajuj and aj : R→ C. So Dtu =

∑∞
j=0(Dtaj)uj .

Now, integrating by parts, we get

∞∑
j=0

∫ ∞
−∞

e2αt(1 + λ2
j )

1
2 |Dtaj(t)|2dt =

∞∑
j=0

∫ ∞
−∞

e2αt(1 + λ2
j )

1
2Dtaj(t)Dtaj(t)dt.
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Then we have,

∞∑
j=0

∫ ∞
−∞

e2αt(1 + λ2
j )

1
2 |Dtaj(t)|2dt =

∞∑
j=0

(1 + λ2
j )

1
2 e2αtaj(t)Dtaj(t)|∞−∞

+

∞∑
j=0

∫ ∞
−∞

(1 + λ2
j )

1
2 e2αtaj(t)D

2
t aj(t)dt

− 2iα

∞∑
j=0

∫ ∞
−∞

(1 + λ2
j )

1
2 e2αtaj(t)Dtaj(t)dt

=

∞∑
j=0

∫ ∞
−∞

(1 + λ2
j )

1
2 e2αtaj(t)D

2
t aj(t)dt

− 2iα

∞∑
j=0

∫ ∞
−∞

(1 + λ2
j )

1
2 e2αtaj(t)Dtaj(t)dt.

By Cauchy Schwartz inequality, we have∣∣∣∣∣∣
∫ ∞
−∞

∞∑
j=0

(1 + λ2
j )

1
2 [e2αtaj(t)D

2
t aj(t)]dt

∣∣∣∣∣∣ ≤
 ∞∑
j=0

∫ ∞
−∞

(1 + λ2
j )e

2αt|aj(t)|2dt

 1
2
 ∞∑
j=0

∫ ∞
−∞

e2αt|D2
t aj(t)|2dt

 1
2

=

∫ ∞
−∞

e2αt
∞∑
j=0

(1 + λ2
j )|aj(t)|2dt

 1
2
∫ ∞
−∞

e2αt
∞∑
j=0

|D2
t aj(t)|2dt

 1
2

=

(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2
(∫ ∞
−∞

e2αt‖D2
t u(t)‖2H0

dt

) 1
2

.

(4.7)

Similarly, using Cauchy Schwartz inequality for the other term gives∣∣∣∣∣∣−2iα

∞∑
j=0

∫ ∞
−∞

(1 + λ2
j )

1
2 e2αtaj(t)Dtaj(t)dt

∣∣∣∣∣∣ ≤ |2α|
∫ ∞
−∞

e2αt
∞∑
j=0

(1 + λ2
j )|aj(t)|2dt

 1
2 (∫ ∞

−∞
e2αt|Dtaj(t)|2dt

) 1
2

= |2α|
(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2
(∫ ∞
−∞

e2αt‖Dtu(t)‖2H0
dt

) 1
2

.

(4.8)

From (4.7) and (4.8), we have∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt ≤

(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2
(∫ ∞
−∞

e2αt‖D2
t u(t)‖2H0

dt

) 1
2

+ |2α|
(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2
(∫ ∞
−∞

e2αt‖Dtu(t)‖2H0
dt

) 1
2

.

(4.9)

Therefore, we can write (4.9) by∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt− |2α|

(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2
(∫ ∞
−∞

e2αt‖Dtu(t)‖2H0
dt

) 1
2

≤
(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2
(∫ ∞
−∞

e2αt‖D2
t u(t)‖2H0

dt

) 1
2

.

(4.10)

108



Now, we can consider∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt =

∫ ∞
−∞

e2αt
[(
‖Dtu(t)‖2H1

dt
) 1

2 − |α|
(
‖u(t)‖2H2

dt
) 1

2 + |α|
(
‖u(t)‖2H2

dt
) 1

2

]2
≤ 2

∫ ∞
−∞

e2αt
((
‖Dtu(t)‖2H1

dt
) 1

2 − |α|
(
‖u(t)‖2H2

dt
) 1

2

)2

+ 2α2

∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

= 2

∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt− 4|α|

(∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt

) 1
2
(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2

+ 2α2

∫ ∞
−∞

e2αt‖u(t)‖2H2
dt+ 2α2

∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

= 2

∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt− 4|α|

(∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt

) 1
2
(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2

+ 4α2

∫ ∞
−∞

e2αt‖u(t)‖2H2
dt.

(4.11)

By (4.10), we get∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt ≤ 2

∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt− 4|α|

(∫ ∞
−∞

e2αt‖Dtu(t)‖2H1
dt

) 1
2
(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2

+ 4α2

∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

≤ 2

(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

) 1
2
(∫ ∞
−∞

e2αt‖D2
t u(t)‖2H0

dt

) 1
2

+ 4α2

∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

≤
∫ ∞
−∞

e2αt‖u(t)‖2H2
dt+

∫ ∞
−∞

e2αt‖D2
t u(t)‖2H0

dt+ 4α2

∫ ∞
−∞

e2αt‖u(t)‖2H2
dt

≤ (1 + 4α2)

(∫ ∞
−∞

e2αt‖u(t)‖2H2
dt+

∫ ∞
−∞

e2αt‖D2
t u(t)‖2H0

dt

)
.

(4.12)

Substitute
∫∞
−∞ e2αt‖Dtu(t)‖2H1

dt in (4.6) to consider

∫ ∞
−∞

e2αt
[∥∥D2

t u(t)
∥∥2

H0
+ ‖Dtu(t)‖2H1

+ ‖u(t)‖2H2
dt
]
≤ (2 + 4α2)

[∫ ∞
−∞

e2αt‖D2
t u(t)‖2H0

dt+

∫ ∞
−∞

e2αt ‖u(t)‖2H2
dt

]
,

so, we can take c2 = 2 + 4α2. On the other side, we get

‖u‖2Wα,α
=

∫ ∞
−∞

e2αt
[∥∥D2

t u(t)
∥∥2

H0
+ ‖u(t)‖2H2

]
dt ≤

∫ ∞
−∞

e2αt(
∥∥D2

t u(t)
∥∥2

H0
+ ‖Dtu(t)‖2H1

+ ‖u(t)‖2H2
)dt.

So, we can take c1 = 1. Thus, the proof is complete.

Lemma 4.3.2. For u ∈W 0
α,α. Then,

‖u‖W 0
α,α

= ‖eαtu‖W 0
0,0
.
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Proof. For α ∈ R, consider

‖u‖2W 0
α,α

=

∫ ∞
−∞

e2αt‖u(t)‖2H0
dt

=

∫ ∞
−∞
‖eαtu(t)‖2H0

dt

= ‖eαtu‖2W 0
0,0
.

Lemma 4.3.3. There are the constants c
′

1 and c
′

2 such that

c
′

1‖u‖W 2
α,α
≤ ‖eαtu‖W 2

0,0
≤ c

′

2‖u‖W 2
α,α

for u ∈W 2
α,α.

Proof. Note that Dt(e
αt)u(t) = eαt(Dt − iα)u(t). So,

‖eαtu‖2W 2
0,0

=

∫ ∞
−∞

[‖D2
t e
αtu(t)‖2H0

+ ‖eαtu(t)‖2H2
]dt

=

∫ ∞
−∞

[‖eαt(Dt − iα)2u(t)‖2H0
+ ‖eαtu(t)‖2H2

]dt

=

∫ ∞
−∞

e2αt[‖(Dt − iα)2u(t)‖2H0
+ ‖u(t)‖2H2

]dt

=

∫ ∞
−∞

e2αt[‖(D2
t − 2iαDt − α2)u(t)‖2H0

+ ‖u(t)‖2H2
]dt

≤ 3

(∫ ∞
−∞

e2αt[‖D2
t u(t)‖2H0

+ ‖ − 2iαDtu(t)‖2H0
+ ‖ − α2u(t)‖2H0

+ ‖u(t)‖2H2
]dt

)
= 3

(∫ ∞
−∞

e2αt[‖D2
t u(t)‖2H0

+ 4α2‖Dtu(t)‖2H0
+ α4‖u(t)‖2H0

+ ‖u(t)‖2H2
]dt

)
≤ 3(4α2 + α4 + 1)

(∫ ∞
−∞

e2αt[‖D2
t u(t)‖2H0

+ ‖Dtu(t)‖2H0
+ ‖u(t)‖2H0

+ ‖u(t)‖2H2
]dt

)
.

From Lemma 4.1.5

‖eαtu‖2W 2
0,0
≤ 3(4α2 + α4 + 1)

(∫ ∞
−∞

e2αt[‖D2
t u(t)‖2H0

+ ‖Dtu(t)‖2H1
+ ‖u(t)‖2H2

+ ‖u(t)‖2H2
]dt

)
≤ (2)(3)(4α2 + α4 + 1)

(∫ ∞
−∞

e2αt[‖D2
t u(t)‖2H0

+ ‖Dtu(t)‖2H1
+ ‖u(t)‖2H2

]dt

)
≤ 6(4α2 + α4 + 1)‖u‖2W 2

α,α
,

110



we can take c
′

2 =
√

6(α4 + 4α2 + 1).

On the other side, we get

‖u‖2W 2
α,α

=

∫ ∞
−∞

e2αt[‖D2
t u(t)‖2H0

+ ‖u(t)‖2H2
]dt

=

∫ ∞
−∞

(‖eαtD2
t u(t)‖2H0

+ ‖eαtu(t)‖2H2
)dt

=

∫ ∞
−∞

(‖(Dt + iα)2eαtu(t)‖2H0
+ ‖eαtu(t)‖2H2

)dt

≤ 3

(∫ ∞
−∞

[‖D2
t e
αtu(t)‖2H0

+ ‖2iαDte
αtu(t)‖2H0

+ ‖α2eαtu(t)‖2H0
+ ‖eαtu(t)‖2H2

]dt

)
= 3

(∫ ∞
−∞
‖D2

t e
αtu(t)‖2H0

+ 4α2‖Dte
αtu(t)‖2H0

+ α4‖eαtu(t)‖2H0
+ ‖eαtu(t)‖2H2

]dt

)
≤ 3(4α2 + α4 + 1)

(∫ ∞
−∞
‖D2

t e
αtu(t)‖2H0

+ ‖Dte
αtu(t)‖2H0

+ ‖eαtu(t)‖2H0
+ ‖eαtu(t)‖2H2

dt

)
.

From Lemma 4.1.5

‖u‖2W 2
α,α
≤ 3(4α2 + α4 + 1)

(∫ ∞
−∞
‖D2

t e
αtu(t)‖2H0

+ ‖Dte
αtu(t)‖2H1

+ ‖eαtu(t)‖2H2
+ ‖eαtu(t)‖2H2

dt

)
≤ (2)(3)(4α2 + α4 + 1)

∫ ∞
−∞

[‖D2
t e
αtu(t)‖2H0

+ ‖Dte
αtu(t)‖2H1

+ ‖eαtu(t)‖2H2
]dt

≤ 6(4α2 + α4 + 1)‖eαtu‖2W 2
0,0
,

so we can take c
′

1 =
1√

6(α4 + 4α2 + 1)
.

Remark 20. We have the following notes:

� If u ∈ L2(R, H0) = W 0
0,0, the Fourier transform of u is given by

û(τ) =
1√
2π

∫ ∞
−∞

e−iτtu(t)dt.

So, by the Plancherel Theorem, û ∈ L2(R, H0) = W 0
0,0.

� For any u : R → H0 can be written as u(t) =
∑∞
j=0 aj(t)uj for some aj : R → C can be defined by

aj(t) = 〈u(t), ej〉 (the form 〈., .〉 is anti-linear in the first argument and linear in the second argument). So

the Fourier transform of u is defined by

û(τ) =

∞∑
j=0

(â)j(τ)ej .
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We can observe the following notation:

(â)j(τ) = 〈û(τ), ej〉

= 〈 1√
2π

∫
R
e−iτtu(t)dt, ej〉

=
1√
2π

∫
R
e−iτt〈u(t), ej〉dt

=
1√
2π

∫
R
e−iτtaj(t)dt

= âj(τ).

� We can recall the norm of ‖û‖Hk is given by

‖û‖2Hk =

∞∑
j=0

(1 + λ2
j )

k
2 |âj |2.

Lemma 4.3.4. u ∈W 2
0,0 if and only if

‖u‖2W 2
0,0

=

∞∑
j=0

∫ ∞
−∞

(τ4 + 1 + λ2
j )|âj(τ)|2dτ

is finite.

Proof. We have

‖u‖2W 2
0,0

=

∫ ∞
−∞

(‖D2
t u(t)‖2H0

+ ‖u(t)‖2H2
)dt <∞. (4.13)

From the Plancherel theorem and Lemma 2.2.1, we get

‖u‖2W 2
0,0

=

∫ ∞
−∞

(‖D2
t u(t)‖2H0

+ ‖u(t)‖2H2
)dt =

∫ ∞
−∞

(‖τ2û(τ)‖2H0
+ ‖û(τ)‖2H2

)dτ

=

∫ ∞
−∞

(

∞∑
j=0

τ4|âj(τ)|2 +

∞∑
j=0

(1 + λ2
j )|âj(τ)|2)dτ

=

∞∑
j=0

∫ ∞
−∞

(τ4 + 1 + λ2
j )|âj(τ)|2dτ.

Thus, the proof is complete.

In the following arguments, we define the space Hj(R, Hk−j) and we have a nice remark that will be used in the

current thesis.

112



Definition 4.3.1. The space Hj(R, Hk−j) is defined by:

Hj(R, Hk−j) =
{
u ∈ L2(R, Hk−j) : ∇lu ∈ L2(R, Hk−j), 0 ≤ l ≤ j

}
and its norm is given by

‖u‖2Hj(R,Hk−j) =

∫
R

∑
0≤l≤j

‖∇lu(t)‖2Hk−jdt,

where u : R→ Hk−j .

Remark 21. For α, τ ∈ R and k ∈ N0, we have

u ∈W k
α,α if and only if eαtu ∈W k

0,0 = ∩kj=0H
j(R, Hk−j).

It follows that

êαtu(τ) = û(τ + iα) ∈ L2(R, Hk−j),

where

êαtu(τ) =
1√
2π

∫
R
eαtu(t)e−iτtdt =

1√
2π

∫
R
u(t)e−it(τ+iα)dt = û(τ + iα).

4.4 Operator pencil and its basic Properties

This section is considered the main section of this chapter. As in Chapter 1, we define the operator Pencil BA

and investigate some properties for this operator such as the spectrum of the operator pencil and the definition

of the projection Γ(BA).

Definition 4.4.1. Let A be as introduced in Section 4.1. An operator pencil

BA : C→ B(H2, H0)

which is defined by

BA(µ) = µ2 +A− λ for µ ∈ C, (4.14)

where the collection of Hilbert spaces H2 ⊂ H1 ⊂ H0. A is a bounded operator from H2 into H0 and a scalar

µ0 ∈ C is called an eigenvalue of BA if BA(µ0) is not injective. Hence, the eigenvalue problem is to find µ0 and
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u 6= 0 and u ∈ H2 such that

BA(µ0)u = 0, (4.15)

and u is called an eigenfunction of BA.

Definition 4.4.2. The geometric and algebraic multiplicity of any µ0 ∈ σ(BA) can be respectively defined as

dim(KerBA) and the sum of the lengths of a set of maximal Jordan chains coresspoding to µ0. See, for example,

[9] and [58], pp. 406− 407.

Definition 4.4.3. Let µ0 ∈ C. We say µ0 is in the spectrum of BA if BA(µ0) is not invertible from H2 to H0.

σ(BA) = {µ0 ∈ C : BA(µ0) is not invertible}.

Proposition 4.4.1. Consider the operator pencil BA given by (4.14). If λ /∈ σ(A), then the spectrum σ(BA) is

given as follows

� If λ < λ0. Then,

σ(BA) = {±i
√
λj − λ, j ∈ N0}.

� If λm−1 < λ < λm for some m ∈ N, then

σ(BA) = {±
√
λ− λj , j = 0, 1, 2, ...,m− 1} ∪ {±i

√
λj − λ, j = m,m+ 1, ...}.

Proof. For µ0 ∈ C, we have µ0 ∈ σ(BA) if and only if

BA : H2 → H0 is not invertable,

that is

A− (λ− µ2
0) : H2 → H0 is not invertable.

This holds if and only if λ−µ2
0 ∈ σ(A) or equivalently λ−µ2

0 = λj for some j ∈ N0. The latter can be written as

µ0 =


±
√
λ− λj if λ > λj

±i
√
λj − λ if λ < λj .

Therefore, we have two cases:

114



� If λ < λ0, then

σ(BA) = {±i
√
λj − λ, j ∈ N0}.

� If λm−1 < λ < λm for some m ∈ N, then

σ(BA) = {±
√
λ− λj , j = 0, 1, 2, ...,m− 1} ∪ {±i

√
λj − λ, j = m,m+ 1, ...}.

Remark 22. The eigenvectors of BA which are corresponding to eigenvalue

µ0 =


±
√
λ− λj if λ > λj

±i
√
λj − λ if λ < λj .

are given by

BA(µ0)u = 0.

Then,

BA(µ0)u = (µ2
0 +A− λ)u = 0

for u 6= 0 and u ∈ H2. It follows that

(−λj +A)u = 0.

Hence,

Au = λju.

Therefore, u is the eigenfunction of A. See Section 4.1 of the current thesis.

Remark 23. We have the following notes:

� A collection of functions {ϕk,s} for k = 1, ..., J and s = 0, ...,mk−1 is called a Jordan chains corresponding

to µ0 ∈ σ(BA) if and only if ϕ1,0 is an eigenfunction corresponding to µ0 ∈ σ(BA) and the meromorphic

function Φ(µ) defined by

Φ(µ) =

mk−1∑
s=0

ϕk,s
(µ− µ0)mk−s
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satisfies,

BAΦ(µ) = O(1),

as µ→ µ0, for k = 1, ..., J. It can be seen that this is equivalent to the condition

n∑
s=0

1

s!
∂sµBA(µ0)ϕk,s = 0

for s = 0, 1, ...,mk − 1. See, for example, [10] and [58].

� By turning to the pencil BA = µ2 + A − λ, the operator A is a positive definite and the spectrum of A

consists of the eigenvalues λj , satisfying 0 ≤ λ0 ≤ λ1 ≤ ..... and λj →∞. By J, we denote the multiplicity

of λj and assume J is finite. Let u0, u1, ... be the orthonormal eigenvectors of A corresponding to λj . See

Section 4.1. The eigenvalues ±i
√
λj − λ and ±

√
λ− λj have geometric and algebraic multiplicities are

equal to J. If λ = λm−1, then 0 ∈ σ(BA) has geometric multiplicity 1 and algebraic multiplicity 2. See, for

example, [10] and [58], pp. 7− 9.

� In an Appendix.5, there is a good example of the operator pencil is defined from C to the set of all bounded

operators B(C2,C2) ∼= M2×2(C).

Definition 4.4.4. Let Γ(BA) denote the projection of the spectrum of BA onto the imaginary axis, that is,

Γ(BA) = {=µ| µ ∈ σ(BA)} ⊆ R.

Remark 24. We can observe from Proposition 4.4.1 for any λ /∈ σ(A) and the operator Pencil BA(µ) defined in

(4.14). The projection of σ(BA) as follows:

� If λ < λ0, then

Γ(BA) = {±
√
λj − λ, j ∈ N0}.

� If λm−1 < λ < λm for some m ∈ N, then

Γ(BA) = {0} ∪ {±
√
λj − λ, j = m,m+ 1, ...}.
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4.5 Adjoint Pencil

Definition 4.5.1. Let H be a Hilbert space and H∗ be its dual space, which is defined as the space of all

bounded linear functional on H and by the scalar product 〈., .〉 is given on H ×H∗. This scalar product satisfies

the following properties:

� The form 〈., .〉 is a linear with respect to the first argument and an anti-linear with respect to the second

argument.

� For all u ∈ H and v ∈ H∗, we have

|〈u, v〉| ≤ ‖u‖H‖v‖H∗ .

� For any ϕ ∈ H∗, there exists ψ ∈ H∗ such that ϕ(u) = 〈u, ψ〉 for all u ∈ H (see, for example, [58], pp. 404).

Definition 4.5.2. We introduce a collection of dual Hilbert spaces of {H∗j }2j=0 with norm 〈., .〉 such that

H∗0 ⊂ H∗1 ⊂ H∗2 .

An adjoint Pencil

B∗A(µ) : C→ B(H∗0 , H
∗
2 ),

which is defined by

B∗A : µ2 +A∗ − λ for µ ∈ C,

where A∗ is a bounded operator from H∗0 into H∗2 and an adjoint of A.

Remark 25. We have the following notes:

� If µ0 is an eigenvalue of BA, then µ0 is an eigenvalue of B∗A, and their geometric and algebraic multiplicity

coincide.

� Therefore, the eigenvalues of B∗A are defined by

µ0 =


∓
√
λ− λj if λ > λj

∓i
√
λj − λ if λ < λj .
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Therefore, we have two cases

– If λ < λ0, then

σ(B∗A) = {∓i
√
λj − λ, j ∈ N0}.

– If λm−1 < λ < λm for some m ∈ N, then

σ(B∗A) = {∓
√
λ− λj j = 0, 1, 2, ...,m− 1} ∪ {∓i

√
λj − λ, j = m,m+ 1, ...}.

Definition 4.5.3. Let Γ(B∗A) denote the projection of spectrum of adjoint pencil B∗A onto the imaginary axis

Γ(B∗A) = {=µ| µ ∈ σ(B∗A)} ⊆ R.

Remark 26. We have the following notes:

� We can observe from a previous Proposition 4.4.1 again for any λ /∈ σ(A∗) and the adjoint pencil

B∗A(µ) = µ2 +A∗ − λ.

The projection of σ(B∗A) is

1) If λ < λ0, then

Γ(B∗A) = {∓
√
λj − λ, j ∈ N0}.

2) If λm−1 < λ < λm for some m ∈ N, then

Γ(B∗A) = {0} ∪ {∓
√
λj − λ, j = m,m+ 1, ...}.

� In fact, given the canonical system of Jordan chains corresponding to µ0 ∈ σ(BA), we can find a unique

canonical system of Jordan chains {ψk,s}, for s = 0, ...,mk−1 and k = 1, ..., J corresponding to µ ∈ σ(B∗A).

Example

We can consider the operator

BA = A+ λ2 : H → H.
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where A is self-adjoint operator inH defined on the Hilbert space H ⊂ H. Suppose A is positive definite and

the spectrum of A consists the eigenvalues γk k ≥ 1 satisfying 0 < γ1 < γ2 < ... and γk → ∞. Denote by Jk

the multiplicity of γk and Jk is finite. Let α
(k)
1 , ...α

(k)
Jk

be the eigenvectors of A corresponding to γk. Clearly the

spectrum of the pencil BA consists of the eigenvalues

λv =


i
√
γv for v = 1, 2, ...

−i√γv for v = −1,−2, ...,

and the corresponding eigenvectors are given by

ϕv =


α

(v)
s if v ≥ 1

α
(−v)
s if v ≤ −1,

The equation for the generalised eigenvector Aϕ1 = −2λϕ0 where ϕ0 is an eigenvector corresponding to λ.

Furthermore, both the algebraic and geometric multiplicities are equal to J|v|. The adjoint pencils B∗A has the

same form A+λ2 except that the new one A is a continuous extension of old one, with domain H and range H∗.

See [58].

4.6 Main Results of the operator pencil

In this section, we give many consequences of the operator pencil and its properties. Theorems 4.6.1 and 4.6.2

are provided the key results concerning in the next chapter. However, Theorem 4.6.2 is a result that has been

developed for the theory of ordinary differential equations with operator coefficients (see, for example, [10] and

[58]).

Theorem 4.6.1. For α, β ∈ R, then

BA(Dt) = D2
t +A− λ : W 2

α,β →W 0
α,β (4.16)

is a bounded map.
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Proof. To prove the map BA(Dt) : W 2
α,β → W 0

α,β is bounded, we can observe from Section 4.2, W 2
α,β has an

equivalent finite norm,

‖u‖2W 2
α,β

=

∫ 0

−∞
e2αt(

∥∥D2
t u(t)

∥∥2

H0
+ ‖u(t)‖2H2

)dt+

∫ ∞
0

e2βt(
∥∥D2

t u(t)
∥∥2

H0
+ ‖u(t)‖2H2

)dt,

and W 0
α,β has a finite norm,

‖u‖2W 0
α,β

=

∫ 0

−∞
e2αt ‖u(t)‖2H0

dt+

∫ ∞
0

e2βt ‖u(t)‖2H0
dt.

Now, we can consider the norm of BA(Dt) in W 0
α,β , then, we use Lemmas 4.1.5 and 4.1.6

‖BA(Dt)u‖2W 0
α,β

=

∫ 0

−∞
e2αt

∥∥(D2
t +A− λ)u(t)

∥∥2

H0
dt+

∫ ∞
0

e2βt
∥∥(D2

t +A− λ)u(t)
∥∥2

H0
dt

≤ 3

[∫ 0

−∞
e2αt(‖D2

t u(t)‖2H0
+ ‖Au(t)‖2H0

+ ‖λu(t)‖2H0
)dt

]
+ 3

[∫ ∞
0

e2β(‖D2
t u(t)‖2H0

+ ‖Au(t)‖2H0
+ ‖λu(t)‖2H0

)dt

]
≤ 3

[∫ 0

−∞
e2αt(‖D2

t u(t)‖2H0
+ ‖u(t)‖2H2

+ λ2‖u(t)‖2H2
)dt

]
+ 3

[∫ ∞
0

e2β(‖D2
t u(t)‖2H0

+ ‖u(t)‖2H2
+ λ2‖u(t)‖2H2

)dt

]
= 3

[∫ 0

−∞
e2αt(‖(D2

t u(t)‖2H0
+ (1 + λ2)‖u(t)‖2H2

)dt

]
+ 3

[∫ ∞
0

e2β(‖(D2
t u(t)‖2H0

+ (1 + λ2)‖u(t)‖2H2
)dt

]
≤ 3(1 + λ2)

[∫ 0

−∞
e2αt(‖(D2

t u(t)‖2H0
+ ‖u(t)‖2H2

)dt

]
+ 3(1 + λ2)

[∫ ∞
0

e2β(‖(D2
t u(t)‖2H0

+ ‖u(t)‖2H2
)dt

]
≤ 3(1 + λ2) ‖u‖2W 2

α,β
.

Thus, the proof is complete.

Theorem 4.6.2. (Published in [43], April, 2021. (Under review)).

Let Γ = Γ(BA) and α ∈ R \ Γ. Set δ = dist(α,Γ) > 0. Then, the map

BA(Dt) = D2
t +A− λ : W 2

α,α −→W 0
α,α

is an isomorphism map.
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Proof. To prove the mapping is an isomorphism map (see Section 2.2.1), we find the constants c
′′

1 and c
′′

2 such

that

c
′′

1 ‖v‖W 2
α,α
≤ ‖BA(Dt)v‖W 0

α,α
≤ c

′′

2 ‖v‖W 2
α,α

. (4.17)

By Theorem 4.6.1, we get the first side

‖BA(Dt)v‖W 0
α,α
≤ c

′′

2‖v‖W 2
α,α
.

However, we need to get c
′′

1

c
′′

1 ‖v‖W 2
α,α
≤ ‖BA(Dt)v‖W 0

α,α
≤ c

′′

2 ‖v‖W 2
α,α

,

for all v ∈W 2
α,α. Write v = e−αtu. We have

‖BA(Dt)v‖2W 0
α,α

=
∥∥(D2

t +A− λ)v
∥∥2

W 0
α,α

= ‖(D2
t +A− λ)(e−αtu)‖2W 0

α,α

= ‖e−αt((Dt + iα)2 +A− λ)u‖2W 0
α,α
.

From Lemma 4.3.4, we get

‖BA(Dt)v‖2W 0
α,α

= ‖e−αt((Dt + iα)2 +A− λ)u‖2W 0
α,α

= ‖((Dt + iα)2 +A− λ)u‖2W 0
0,0
.

Letting u(t) =
∑∞
j=0 aj(t)uj , and back to Section 4.1, we get

((Dt + iα)2 +A− λ)u(t) = ((Dt + iα)2 +A− λ)

∞∑
j=0

aj(t)uj

=
∞∑
j=0

[
(Dt + iα)2aj(t)uj + aj(t)Auj − λaj(t)uj

]
=

∞∑
j=0

[
(Dt + iα)2aj(t)uj + aj(t)λjuj − λaj(t)uj

]
=

∞∑
j=0

[
(Dt + iα)2aj(t) + λjaj(t)− λaj(t)

]
uj ,

so now, we have

∥∥((Dt + iα)2 +A− λ)u)
∥∥2

W 0
0,0

=

∞∑
j=0

∫
R
|((Dt + iα)2 + λj − λ)aj(t)|2dt.
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So, by Lemma 2.2.1 and Parseval’s identity, we get

∞∑
j=0

∫
R
|((Dt + iα)2 + λj − λ)aj(t)|2dt =

∞∑
j=0

∫
R
|((τ + iα)2 + λj − λ)âj(τ)|2dτ

=

∞∑
j=0

∫
R
|(τ + iα)2 + λj − λ|2|âj(τ)|2dτ,

that is

‖((Dt + iα)2 +A− λ)u)‖2W 0
0,0

=

∞∑
j=0

‖((τ + iα)2 + λj − λ)âj(τ)‖2L2(R). (4.18)

By Lemma 4.3.4 and finding c1, then we get c
′′

1 to satisfy (4.17)

c21(τ4 + λ2
j + 1) ≤ |(τ + iα)2 + λj − λ|2. (4.19)

First, we need to prove

δ4 ≤ |(τ + iα)2 + λj − λ|2 = (τ2 − α2 + λj − λ)2 + 4α2τ2, (4.20)

for all j ∈ N0 and τ ∈ R. Fix j. So, we find the stationary points are given by

d

dτ
[(τ2 − α2 + λj − λ)2 + 4α2τ2] = 2τ(τ2 − α2 + λj − λ+ 4α2)

= 2τ(τ2 + 3α2 + λj − λ) = 0.

It follows that τ = 0 or τ2 = −3α2 − λj + λ. Then, we observe the Global (Absolute) minimum of (τ2 − α2 +

λj − λ)2 + 4α2τ2 in τ occurs when

τ = 0 or τ2 = −3α2 − λj + λ.

� If τ = 0, then

(τ2 − α2 + λj − λ)2 + 4α2τ2 = (−α2 + λj − λ)2.

� If τ2 = −3α2 − λj + λ, then

(τ2 − α2 + λj − λ)2 + 4α2τ2 = 16α4 − 12α4 + 4α2(−λj + λ)

= 4α2(α2 − λj + λ).
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This case can only occurs if 4α2 ≤ α2 − λj + λ. The Global minimum points are

(0, (−α2 + λj − λ)2) and (τ2, 4α2(α2 − λj + λ)).

See [23].

Now, we consider two cases on λ :

Case 1. If λj > λ, then λ− λj < 0, and it follows −3α2 − λj + λ < 0, but

τ2 = −3α2 − λj + λ.

This is contradiction. Because it follows that τ2 < 0, and α2 − λj + λ < 4α2. Hence,

4α2 ≤ α2 − λj + λ

is not satisfied. Then, we have only one case τ = 0 to get

(τ2 − α2 + λj − λ)2 + 4α2τ2 ≥ (−α2 + λj − λ)2 ≥ δ4.

Case 2. If λ > λj , then λ− λj ≥ 0, so it follows that 0 ∈ Γ and hence α2 ≥ δ2 > 0. Because

δ = dist(α,Γ) = inf
γ∈Γ
|α− γ| ≤ |α− 0| = |α|.

Therefore,

α2 − λj + λ ≥ α2 ≥ δ2.

So,

(−α2 + λj − λ)2 ≥ δ4 and 4α2(α2 − λj + λ) ≥ 4δ4.

It follows that

(τ2 − α2 + λj − λ)2 + 4α2τ2 ≥ δ4. (4.21)

Now, we can move back to proving (4.19), and we set the following constant:

cα,λ = max{2|λ+ α2|+ 1, 3 max{0,−λj : j = 1, 2, ....}}.

Then, we have two cases:
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Case (i) If τ2 + λj ≥ cα,λ, we observe

τ2 − α2 + λj − λ =
1

2
(τ2 + λj) +

1

2
(τ2 + λj − 2(λ+ α2))

≥ 1

2
(τ2 + λj + 1) > 0.

Now, we note that τ2 + λj ≥ −3λj (from the definition of constant cα,λ), so τ2 + 1 ≥ −4λj implies

λj ≥
−1

4
(τ2 + 1). It follows that

2λj(τ
2 + 1) ≥ −1

2
(τ2 + 1)2. (4.22)

Substitute (4.22) in the following equality to observe

(τ2 + λj + 1)2 = (τ2 + 1)2 + 2λj(τ
2 + 1) + λ2

j

≥ (τ2 + 1)2 − 1

2
(τ2 + 1)2 + λ2

j

≥ 1

2
(τ2 + 1)2 + λ2

j

≥ 1

2
(τ4 + λ2

j + 1).

Therefore,

(τ2 − α2 + λj − λ)2 + 4α2τ2 ≥ 1

4
(τ2 + λj + 1)2

≥ 1

4
(
1

2
(τ2 + 1)2 + λ2

j )

≥ 1

8
(τ4 + λ2

j + 1)

for all λj .

Case(ii). If τ2 + λj < cα,λ, then by (4.20), we can get

(τ2 − α2 + λj − λ)2 + 4α2τ2 ≥ δ4 > δ4 (τ2 + λj)
2 + 1

c2α,λ + 1

>

δ4

2
(τ4 + λ2

j ) + 1

c2α,λ + 1

>
δ4

2(c2α,λ + 1)
(τ4 + λ2

j + 1),

where we have noted that the same arguments of case (i),

τ2 + λj ≥ −3λj ,
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so τ2 ≥ −4λj . It implies λj ≥
−1

4
τ2, and all of these lead to 2λjτ

2 ≥ −1

2
τ4.

Then, we get

(τ2 + λj)
2 = (τ2)2 + 2λj(τ

2) + λ2
j

≥ τ4 − 1

2
τ4 + λ2

j

≥ 1

2
τ4 + λ2

j

≥ 1

2
(τ4 + λ2

j ).

Now, combining cases (i) and (ii), it follows that

(τ2 − α2 + λj − λ)2 + 4α2τ2 ≥ c21(τ4 + λ2
j + 1),

for all τ, j ∈ R, with c21 = min

{
1

8
,

δ4

2(c2α,λ + 1)

}
.

Therefore, from (4.19) and Lemma 4.3.3, we get

∥∥((Dt + iα)2 + λj − λ)aj(t)
∥∥2

W 0
0,0
≥ c21

∞∑
j=0

∫
R

(τ4 + λ2
j + 1)|âj(τ)|2dτ

= c21 ‖u‖
2
W 2

0,0

≥ c21c
′′ ∥∥e−αtu∥∥2

W 2
α,α

= c21c
′′
‖v‖2W 2

α,α
,

where we take c
′′

1 = c21c
′′
. Thus, the proof is complete.

The following propositions and corollaries describe some properties of Sobolev spaces and which will be used in

the last chapter of the current thesis.

Proposition 4.6.3. Let α, β, α
′
, β
′ ∈ R such that α ≤ α′ and β

′ ≤ β. Then,

W 0
α,β ⊂W 0

α′ ,β′
. (4.23)

Further, the inclusion map i : W 0
α,β −→W 0

α′ ,β′
is continuous.
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Proof. It is clear that

∀t ≤ 0 e2α
′
t ≤ e2αt

and

∀t ≥ 0 e2β
′
t ≤ e2βt,

whenever α ≤ α′ and β
′ ≤ β. With this, if u(t) ∈ H0, we can write

∫ 0

−∞
e2α

′
t‖u(t)‖2H0

dt+

∫ ∞
0

e2β
′
t‖u(t)‖2H0

dt ≤
∫ 0

−∞
e2αt‖u(t)‖2H0

dt+

∫ ∞
0

e2βt‖u(t)‖2H0
dt. (4.24)

Now, assume that u ∈ W 0
α,β . Then, the right-hand side of (4.24) is finite, and by (4.24) itself, its left-hand side

(which is clearly positive) is also finite. We then deduce that u ∈W 0
α′ ,β′

. In other words, (4.24) is equivalent to

‖u‖W 0

α
′
,β
′
≤ ‖u‖W 0

α,β
,

which in turn, means that the inclusion map i : W 0
α,β −→W 0

α′ ,β′
is continuous. The proof is complete.

The following corollary is a consequence of the previous result.

Corollary 4.6.4. Let α ≤ β. Then, we have

W 0
α,β ⊂W 0

α,α ∩W 0
β,β . (4.25)

Proof. In fact, if u ∈W 0
α,β , then by (4.23), we immediately obtain u ∈W 0

α,α and u ∈W 0
β,β . That is,

u ∈W 0
α,α ∩W 0

β,β .

We now state the following result that ensures that the inverse inclusion of (4.25) holds without any condition

between α and β.

Proposition 4.6.5. Let α and β be arbitrary real numbers. Then,

W 0
α,α ∩W 0

β,β ⊂W 0
α,β . (4.26)
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Proof. Let u ∈W 0
α,α ∩W 0

β,β , then u ∈W 0
α,α, and u ∈W 0

β,β and by definition,

∫ ∞
−∞

e2αt‖u(t)‖2H0
dt <∞ and

∫ ∞
−∞

e2βt‖u(t)‖2H0
dt <∞.

But, for any α and β, we can write

∫ 0

−∞
e2αt‖u(t)‖2H0

dt+

∫ ∞
0

e2βt‖u(t)‖2H0
dt ≤

∫ ∞
−∞

e2αt‖u(t)‖2H0
dt+

∫ ∞
−∞

e2βt‖u(t)‖2H0
dt <∞.

It follows that u ∈W 0
α,β . The proof is complete.

Combining (4.25) and (4.26), we immediately obtain the following corollary:

Corollary 4.6.6. Suppose α ≤ β. Then,

W 0
α,α ∩W 0

β,β = W 0
α,β

holds.

We now state another result of interest.

Proposition 4.6.7. Assume that α ≤ β. Then, we have

W 0
α,α +W 0

β,β ⊂W 0
β,α.

Proof. By (4.23) of Proposition 4.6.3, we immediately have

W 0
α,α ⊂W 0

β,α and W 0
β,β ⊂W 0

β,α.

It follows that

W 0
α,α +W 0

β,β ⊂W 0
β,α, (4.27)

because W 0
β,α is a linear vector space.

Proposition 4.6.8. For α ≤ β. Then, we have

W 0
β,α ⊂W 0

α,α +W 0
β,β .
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Proof. Suppose w ∈W 0
β,α. Define

u(t) =


w(t) for t < 0

0 for t ≥ 0,

and

v(t) =


0 for t < 0

w(t) for t ≥ 0.

Hence, w(t) = u(t) + v(t). Now, by definitions of u(t) and v(t), we can observe,

‖u‖2W 0
β,β

=

∫ 0

−∞
e2βt‖u(t)‖2H0

dt+

∫ ∞
0

e2βt‖u(t)‖2H0
dt

=

∫ 0

−∞
e2βt‖w(t)‖2H0

dt

≤
∫ 0

−∞
e2βt‖w(t)‖2H0

dt+

∫ ∞
0

e2αt‖w(t)‖2H0
dt

= ‖w‖2W 0
β,α

<∞.

Therefore, u ∈W 0
β,β . Similarly,

‖v‖2W 0
α,α

=

∫ 0

−∞
e2αt‖v(t)‖2H0

dt+

∫ ∞
0

e2αt‖v(t)‖2H0
dt

=

∫ ∞
0

e2αt‖w(t)‖2H0
dt

≤
∫ 0

−∞
e2βt‖w(t)‖2H0

dt+

∫ ∞
0

e2αt‖w(t)‖2H0
dt

= ‖w‖2W 0
β,α

<∞.

Hence, v ∈W 0
α,α. It follows that u+ v ∈W 0

β,β +W 0
α,α, that is w ∈W 0

β,β +W 0
α,α. Hence,

W 0
β,α ⊂W 0

α,α +W 0
β,β . (4.28)

The desired result is obtained.

Combining (4.27) and (4.28), we immediately obtain the following corollary:
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Corollary 4.6.9. Suppose α ≤ β. Then,

W 0
α,α +W 0

β,β = W 0
β,α

holds.

Now, we provide an important corollary related to the properties of Sobolev spaces. Indeed, it will have a large

role in proving some results in the next results of this thesis.

Remark 27. For t, α and β ∈ R, we can define the weight continuous function wα,β(t) by

wα,β(t) =


eαt t ∈ (−∞, 0)

eβt t ∈ (0,∞).

The multiplication by wα,β gives an isomorphism map between W 0
α,β and L2 = W 0

0,0 such that

‖wα,βu‖2W 0
0,0

=

∫ 0

−∞
‖wα,βu(t)‖2H0

dt+

∫ ∞
0

‖wα,βu(t)‖2H0
dt

=

∫ 0

−∞
w2
α,β‖u(t)‖2H0

dt+

∫ ∞
0

w2
α,β‖u(t)‖2H0

dt.

Corollary 4.6.10. If α
′
> α and β

′
< β, then, the inclusion map

i : W 2
α,β ↪→W 1

α′ ,β′

is a compact map.

Proof. We have α
′
> α and β

′
< β. So,

α
′
− α > 0 > β

′
− β.

We have that the function wα′−α,β′−β ∈ C∞(R).

To prove

i : W 2
α,β ↪→W 1

α′ ,β′

is compact. Firstly, the multiplication by wα,β defines an isomorphism map

W 2
α,β → H2.
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Then, we consider the map

(1 +D2)
1
2 : H2 → H1

is an isomorphism map.

Again, the multiplication by wα′−α,β′−β defines a compact map

(1 +D2)
−1
2 : H1 → H1,

by Lemma 2.7.5. In fact, the multiplication w−α′ ,−β′ gives an isomorphism map

H1 →W 1
α′ ,β′

.

Hence, the inclusion as composition of

W 2
α,β → H2 → H1 → H1 →W 1

α′ ,β′
.

Because the first step, second step and fourth step are isomorphism maps and the third step is a compact map.

Therefore,

i : W 2
α,β ↪→W 1

α′ ,β′

is a compact map.

We finish this section by giving the following result for the operator Pencils BA by using some arguments from

previous results and some restriction on α, β.

Theorem 4.6.11. For α, β ∈ R \ Γ, choose α < α
′

and β
′
< β. Then, there exists c, and for all u ∈W 2

α,β , such

that

‖u‖W 2
α,β
≤ c[‖BA(Dt)u‖W 0

α,β
+ ‖u‖W 1

α
′
,β
′
].

Proof. Choose χ± ∈ C∞. Where,

� Ranχ± ⊆ [0, 1]

� supp(χ±) ⊆ ±[−1,∞)

� supp(∇χ±) ⊆ [−1, 1]
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� χ+ + χ− = 1.

We set u± = χ±u, and v = BA(Dt)u, so we consider v± = χ±v, and w± = [BA(Dt), χ
±]u.

So

u = 1.u = (χ+ + χ−)u = χ+u+ χ−u = u+ + u−.

Similarly,

v = 1.v = (χ+ + χ−)v = χ+v + χ−v = v+ + v−.

By definition of a commutator, we can observe

v± = χ±BA(Dt)u = BA(Dt)χ
±u− [BA(Dt), χ

±]u = BA(Dt)u
± − w±.

Now, we have supp(u+) ⊆ [−1,∞) and supp(u−) ⊆ (−∞, 1] and we can note by Corollary 4.6.6 the following: If

u ∈W 2
α,β , then u− ∈W 2

α,α and u+ ∈W 2
β,β .

Similarly, if v ∈W 0
α,β , then v− ∈W 0

α,α and v+ ∈W 0
β,β .

In particular, we find a constant c1 because χ± is a bounded operator, by Lemma 2.3.1, and then by Proposition

4.6.3, we observe that

‖u−‖W 2
α,β

= ‖χ−u‖W 2
α,β
≤ ‖χ−‖op‖u‖W 2

α,β
≤ c1‖u−‖W 2

α,α
.

Similarly,

‖u+‖W 2
α,β

= ‖χ+u‖W 2
α,β
≤ ‖χ+‖op‖u‖W 2

α,β
≤ c1‖u+‖W 2

β,β
.

To get constant c2 and we have to use Proposition 4.6.3

‖v−‖W 0
α,α

+ ‖v+‖W 0
β,β
≤ c2[‖v−‖2W 0

α,β
+ ‖v+‖2W 0

α,β
]
1
2

≤ c2[‖χ−v‖2W 0
α,β

+ ‖χ+v‖2W 0
α,β

]
1
2

≤ c2[‖(χ− + χ+)v‖2W 0
α,β

]
1
2

= c2‖v‖W 0
α,β
.
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Also, by definition of a commutator, we have that for t ∈ R,

[BA(Dt), χ
±]u(t) = [D2

t +A− λ, χ±]u(t)

= (D2
t +A− λ)(χ±(t)u(t))− χ±(t)(D2

t +A− λ)u(t)

= D2
t (χ
±(t)u(t)) +A(χ±(t)u(t))− λ(χ±(t)u(t))− χ±(t)(D2

t u(t))− χ±(t)Au(t) + χ±(t)λu(t)

= χ±(t)D2
t u(t) +Dtχ

±Dtu(t) +D2
t (χ
±(u(t)) +Dtχ

±Dtu(t)− χ±(t)(D2
t u(t))

= 2(Dtχ
±)(Dtu)(t) + (D2

t (χ
±)(u(t)).

Because we have Ranχ± ⊆ [0, 1], [BA(Dt), χ
±] with coefficients that are bounded, and supp(∇χ±) ⊆ ±[−1, 1]

(by assumption). Then, we can use the same argument of Theorem 4.6.1, Proposition 4.6.3 and Lemma 4.1.5 to

prove the map

[BA(Dt), χ
±] : W 1

α′ ,β′
→W 0

α,β

is a bounded map whenever α < α
′

and β
′
< β To check this, we can look at the following:

∥∥(BA(Dt), χ
±)u

∥∥2

W 0
α,β

=

∫ 0

−∞
e2αt

∥∥(BA(Dt), χ
±)u(t)

∥∥2

H0
dt+

∫ ∞
0

e2βt
∥∥(BA(Dt), χ

±)u(t)
∥∥2

H0
dt2

=

∫ 0

−∞
e2αt ‖2(Dtu(t)) + u(t)‖2H0

dt+

∫ ∞
0

e2βt ‖2(Dtu)(t) + u(t)‖2H0
dt2

≤ 4

[∫ 0

−∞
e2αt(‖Dtu(t)‖2H0

+ ‖u(t)‖2H0
)dt

]
+ 4

[∫ ∞
0

e2β(‖Dtu(t)‖2H0
+ ‖u(t)‖2H0

dt

]
= 4

[∫ 0

−∞
e2αt(‖(Dtu(t)‖2H0

+ ‖u(t)‖2H1
)dt

]
+ 4

[∫ ∞
0

e2β(‖(Dtu(t)‖2H0
+ ‖u(t)‖2H1

)dt

]
≤ 4

[∫ 0

−∞
e2α

′
t(‖(Dtu(t)‖2H0

+ ‖u(t)‖2H1
)dt+

∫ ∞
0

e2β
′

(‖(Dtu(t)‖2H0
+ ‖u(t)‖2H1

)dt

]
= 4 ‖u‖2W 1

α
′
,β
′
.

Now, we find constants c3,0, c3 such that by Proposition 4.6.3 and boundedness

‖w−‖W 0
α,α
≤ c3,0‖w−‖W 0

α,β
= c3,0‖[BA(Dt), χ

−]u‖W 0
α,β
≤ 4c3‖u‖W 1

α
′
,β
′
,

and similarly for

‖w+‖W 0
β,β
≤ c3,0‖w+‖W 0

α,β
= c3,0‖[BA(Dt), χ

+]u‖W 0
α,β
≤ 4c3‖u‖W 1

α
′
,β
′
.
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By Theorem 4.6.2, we set the maps BA(Dt) : W 2
α,α → W 0

α,α and BA(Dt) : W 2
β,β → W 0

β,β by A(α) and A(β) are

isomorphism maps, respectively. So we find c4 such that (by assumption)

‖u−‖W 2
α,α
≤ c4‖A(α)u−‖W 0

α,α

≤ c4(‖v−‖W 0
α,α

+ ‖w−‖W 0
α,α

)

and

‖u+‖W 2
β,β
≤ c4‖A(β)u+‖W 0

β,β

≤ c4[‖v+‖W 0
β,β

+ ‖w+‖W 0
β,β

].

Put everything together, we get

‖u‖W 2
α,β
≤ ‖u−‖W 2

α,α
+ ‖u+‖W 2

β,β
≤ c1[‖u−‖W 2

α,α
+ ‖u+‖W 2

β,β
]

≤ c1c4[‖v−‖W 0
α,α

+ ‖v+‖W 0
β,β

+ ‖w−‖W 0
α,α

+ ‖w+‖W 0
β,β

]

≤ c1c4[c2‖v‖W 0
α,β

+ 4c3‖u‖W 1

α
′
,β
′
].

Hence,

‖u‖W 2
α,β
≤ c1c4[c2‖BAu‖W 0

α,β
+ 4c3‖u‖W 1

α
′
,β
′
].

The proof is complete.

Conclusion

Weighted function spaces were introduced in the beginning of this chapter with some results. The operator

Pencil was defined with some arguments that used the ideas from the theory differential equations, for example,

Theorem 4.6.2. Then, we generalise this theorem to deal with BA mapping between such spaces by proving the

corollaries 4.6.6 and 4.6.9.
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Chapter 5

The Fredholm Properties of Pencils and

the Main Results

In the last Chapter, we start the prerequisites of the Fredholm operator and with the definition of the semi-

Fredholm operator in Section 5.1. In Section 5.2, we introduce the definition of the Fredholm operator pencil

and we observe the resolvent operator pencils (inverse operator) B−1
A (µ) with some properties. In Section 5.3,

we investigate the Green’s function G(t) and we obtain asymptotic formula for this function at infinity which is

based on Theorem 5.2.3. At the end of this chapter, we give certain results of the semi-Fredholm property, and

main consequences which provide a key step for Fredholm properties of pencils, and the formula of the index (see

Theorem 5.5.5).

5.1 Prerequisites of Fredholm Operators

Remark 28. We introduced a collection of Hilbert spaces {Hj}2j=0 with norm 〈., .〉j as in Section 4.1 such that

H2 ⊂ H1 ⊂ H0.
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B(H2, H0) is denoted the Hilbert space of all bounded linear operators. Let A be an operator in B(H2, H0) and

use the notations Ker(A) and Ran(A) for the set of kernel and the range of the operator A respectively. Let

κ(A) := dim(KerA) ∈ N0 ∪ {∞}, and η(A) := Codim(RanA) ∈ N0 ∪ {∞}.

Definition 5.1.1. An operator A which has a closed range and for which either κ(A) or η(A) is a finite-

dimensional, it is called a semi-Fredholm operator.

Definition 5.1.2. (Fredholm operator)

A linear operator A. We say that:

� A is an upper semi-Fredholm operator if Ran(A) is closed in H0 and κ(A) <∞;

� A is a lower semi-Fredholm operator if Ran(A) is closed in H0 and η(A) <∞;

� A is a Fredholm operator if Ran(A) is closed in H0, κ(A) <∞, and η(A) <∞.

The sets of upper and lower semi-Fredholm operators set is denoted by Φ+(H2, H0) and Φ−(H2, H0)

respectively, while the set of Fredholm operators set is denoted by Φ(H2, H0). See [45].

In particular, each Fredholm operator has a Fredholm index.

Definition 5.1.3. If A is a Fredholm operator, then the integer

Index(A) = κ(A)− η(A)

is called the Index of A.

Lemma 5.1.1. Let A is a bounded linear operator, the following are equivalent:

� κ(A) is finite dimensional and Ran(A) is closed.

� Every bounded sequence {un}n∈N ⊆ H2 with {Aun}n∈N ⊆ H0 convergent has a convergent subsequence

(see, for example, [3] and [8]).

For properties of the Fredholm operator and their proofs. There exists a vast number of literatures on this topic,

for example, [5], [24], and [55].
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However, in the following part we shall apply some properties of the duality of Fredholm operator. We give

quantities κ(A) and η(A) for an operator A with closed range are dual to each other and that a Fredholm

operator and its dual operator have opposite Fredholm indices.

Proposition 5.1.2. (Adjoint Fredholm operator)

If A ∈ B(H2, H0) is a Fredholm operator then A∗ ∈ B(H∗0 , H
∗
2 ) is also Fredholm and

Index(A) = − Index(A∗).

Theorem 5.1.3. Let A ∈ B(H2, H0) be operator with closed ranges then

κ(A∗) = η(A) and η(A∗) = κ(A).

See [45], [58] and the adjoint Fredholm operator is also used in [60].

Proposition 5.1.4. (Adjoint (semi-) Fredholm operator)

Let A ∈ B(H2, H0) be an operator. Then:

� A is an upper semi-Fredholm operator if and only if A∗ is a lower semi-Fredholm operator.

� A is a lower semi-Fredholm operator if and only if A∗ is an upper semi-Fredholm operator.

Refer the reader can see the lecture notes of Banach spaces and thier operators, for example, [45].

5.2 Fredholm Operator Pencil

In this section, we define basic facts of the Fredholm operator Pencil and its adjoint; these are collected without

proof. Then, we can structure of the formula of B−1
A (µ) near the pole.

Definition 5.2.1. We can consider the operator Pencil BA which is defined in (in Section 4.5) such that

BA : C→ B(H2, H0)

BA(µ) = µ2 +A− λ for µ ∈ C.

is called Fredholm for all µ ∈ C, and it is invertible at least one value of µ (see, for example, [58] and [59]).
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Theorem 5.2.1. Let Ω be in the domain C. Suppose the operator Pencil BA(µ) satisfies the following conditions:

1) BA(µ) ∈ Φ(H2, H0) for all µ ∈ Ω.

2) There exists a number µ ∈ Ω such that the operator BA(µ) has a bounded inverse.

Then, the spectrum of operator pencil BA(µ) consists of isoloted eigenvalues with finite algebraic multiplic-

ity. See, for example, [58] and [59].

In what follows, we consider the operator pencil again and the definition of adjoint operator which is defined in

Section 4.5.

Definition 5.2.2. The adjoint operator Pencil B∗A : C → B(H∗0 , H
∗
2 ) is a Fredholm operator for all µ ∈ C and

invertible at least one value and therefore its spectrum is discrete. See [58].

Proposition 5.2.2. Let BA be a Fredholm operator pencils. Then,

� µ0 ∈ C is an eigenvalue of BA if and only if µ0 is an eigenvalue of B∗A.

� The geometric and algebraic multiplicity of µ and µ coincide.

Proof. The reader can see the proof of this proposition in [58] and [59].

The main purpose in the following part is defined the inverse operator B−1
A of operator pencil BA near an

eigenvalue µ0, we need the notion of holomorphic function. Then, we consider some properties of this operator

which will be used to investigate some arguments of this thesis.

Definition 5.2.3. Let Ω be a domain in Complex plane C. An operator function

Υ(µ) : Ω→ B(H2, H0)

is called holomorphic on Ω when it can be represented as a power series

Υ(µ) =

∞∑
j=0

Υj(µ− µ0)j , Υj ∈ B(H2, H0),

which is convergent in B(H2, H0) in a neighbourhood of µ0 ∈ Ω (see [58]).
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Theorem 5.2.3. Let µ0 be an eigenvalue of BA and let J and m1, ...,mJ be its geometric multiplicity and partial

multiplicity respectively. Suppose that

{ϕk,s}, s = 0, ...,mk − 1, k = 1, ..., J

is a canonical system of Jordan of BA corresponding to µ0. (Refer back to Section 4.4).

(i) There exits a unique

{ψk,s}, s = 0, ...,mk − 1, k = 1, ..., J

is a canonical system of Jordan of B∗A corresponding to µ0. (Refer back to Section 4.5).

Such that in a neighbourhood of µ0, the resolvent operator (inverse operator) can be represented as

B−1
A (µ) =

J∑
k=1

mk−1∑
h=0

Pk,h
(µ− µ0)mk−h

+ Υ(µ), (5.1)

where,

Pk,h =

h∑
s=0

〈., ψk,s〉H0
ϕk,h−s, (5.2)

and Υ is a holomorphic function in the neighbourhood of µ0.

(ii) The system {ψk,s} is a canonical system of Jordan of B∗A corresponding to µ0 satisfies the bi-orthogonal

condition that is,
d∑
s=0

mk+s∑
n=s+1

1

n!
(B(n)
A (µ0)ϕk,mk+s−n, ψj,d−s)H0

= δkδd (5.3)

for k, j = 1, ..., J, and d = 0, ...,mk − 1.

(iii) Suppose ψj,0, ..., ψj,mj−1 for j = 1, ..., J is a collection of Jordan chain of B∗(A) corresponding to µ0 which

is subject to (5.3), then the collection ψj,0, ..., ψj,mj−1 is a canonical system satisfying (i).

Proof. The reader can see the proof in [58] and [59].

Remark 29. We have the following notes:

� Let J and m1, ...,mJ be geometric multiplicity and partial multiplicity respectively of µ0.
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We have

{ϕk,s}, s = 0, ...,mk − 1, k = 1, ..., J

is a canonical system of Jordan of BA corresponding to µ0. Let

Φk(µ) =

mk−1∑
s=0

ϕk,s(µ− µ0)s−mk

is the set generating system if and only if {ϕk,s} is a conical set of Jordan chain.

We can consider the solution of the equation

BA(Dt)U = 0,

of the form

U(t) = eiµ0t
m∑
n=0

(it)n

n!
um−n (5.4)

By definition of a canonical system of Jordan chain of BA corresponding to µ0, one directly verifies (5.4) is

a solution of BA(Dt)U = 0 if and only if µ0 is an eigenvalue of Pencil, u0 is an eigenfunction corresponding

to µ0.

Then, the following collection

eiµ0tDs
tΦk(it), s = 0, ...,mk − 1, k = 1, ..., J

form the solutions, where

Φk(z) =

mk−1∑
h=0

zh

h!
ϕk,s.

� Similarly, we have

{ψk,s}, s = 0, ...,mk − 1, k = 1, ..., J

is a canonical system of Jordan of B∗A corresponding to µ0.

However, we can consider the solution of the equation

B∗A(Dt)V = 0,
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of the form

V (t) = eiµt
m∑
n=0

(it)n

n!
vm−n (5.5)

Then the collection

eiµ0tDtΨk(it) s = 0, ...,mk − 1, k = 1, ..., J

form the solutions where,

Ψk(z) =

mk−1∑
h=0

zh

h!
ψk,s.

See, for example, [58], and [59].

5.3 Green’s Kernel

What is a Green’s function? Mathematically, it is the kernel of an integral operator that represent the inverse

of a differential operator (see [25]). In this section, we construct bases to define the Green’s function with some

properties. Then, we obtain an asymptotic the formula of the Green’s function at infinity based on Theorem 5.2.3

and we observe some results to achieve asymptotic new representation of this function as t→ ±∞ of exponential

solution of BA(Dt)u = f in the Sobolev space W 0
α,β .

5.3.1 The Definition of a Green’s Kernel

This section is devoted to estimate of Green’s operator of the equation BA(Dt) = f. We observe the following

assertion will use to define a Green’s function of the resolvent operator and the bounded map BA(Dt) : W 2
α,α →

W 0
α,α.

Lemma 5.3.1. Suppose α /∈ Γ(BA) = =(σ(BA)), that is the line =(σ(BA)) does not contain eigenvalues of the

operator Pencils BA(µ).

Then the Green’s function is defined by

G(t) =
1

2π

∫
=µ=α

eitµB−1
A (µ)dµ. (5.6)
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Proof. We can set

A(α) = BA(Dt) = D2
t +A− λ : W 2

α,α →W 0
α,α,

and by Theorem 4.6.1, A(α) is a bounded map.

If u ∈W 2
α,α, and by Remark 21, in Section 4.2, we have that

Â(α)u(τ + iα) = BA(τ + iα)û(τ + iα),

for α, τ ∈ R.

Since α /∈ Γ(BA) = =(σ(BA)), and α, τ ∈ R.

We have BA(τ + iα) is an invertible for all τ ∈ R by Theorem 5.2.1, (1), it follows that

û(τ + iα) = B−1
A (τ + iα)f̂(τ + iα), (5.7)

where f = A(α)u ∈W 0
α,α.

Now, by definition of the inverse of Fourier transform, by Remark 21 (again), and by (5.7), we can get that

eαtu(t) =
1√
2π

∫
R
eiτtû(τ + iα)dτ,

so,

eαtu(t) =
1

2π

∫ ∫
R2

eiτtB−1
A (τ + iα)e−is(τ+iα)f(s)dsdτ.

It follows that,

u(t) =
1

2π

∫ ∫
R2

ei(t−s)(τ+iα)B−1
A (τ + iα)f(s)dsdτ

=

∫
R
G(t− s)f(s)ds,

where we can introduce the operator

G(t) =
1

2π

∫
R
eit(τ+iα)B−1

A (τ + iα)dτ,

is called Green’s Kernel.

For µ = τ + iα, we can get that

G(t) =
1

2π

∫
=µ=α

eitµB−1
A (µ)dµ.
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However, the following proposition, we observe the integral of the inverse operator is convergent in the norm of

B(H0, H2) to determine G(t).

Proposition 5.3.2. For α /∈ Γ(BA), i.e., the line =(σ(BA)) does not contain eigenvalues of the operator pencils

BA(µ). Then for t 6= 0, the limit

lim
R→∞

∫ R+iα

−R+iα

eitµB−1
A (µ)dµ,

exists in B(H0, H2).

Proof. We need to prove that

lim
R→∞

∫ R+iα

−R+iα

eitµB−1
A (µ)dµ (5.8)

exists, by differentiating B−1
A (µ), Theorems 5.2.1, (1), and 4.6.2, we can get

‖DµB−1
A (µ)‖C ≤ c|µ|. (5.9)

By using the integrating by parts and we know that Dµe
itµ = iteitµ, we have

lim
R→∞

∫ R+iα

−R+iα

eitµB−1
A (µ)dµ = −1

t

∫ R+iα

−R+iα

eitµDµB−1
A (µ)dµ

− 1

it
(eit(R+iα)B−1

A (R)− e−it(R−iα)B−1
A (−R)).

Therefore, by using (5.9) which implies that this operator sequence to get that,

−1

t

∫
R
eitµDµB−1

A (µ+ iα)dµ,

in the space B(H0, H2).

Thus for t 6= 0, we have that

lim
R→∞

∫ R+iα

−R+iα

eitµB−1
A (µ)dµ = −1

t

∫
R
eitµDµB−1

A (µ)dµ, (5.10)

where the last integral is absolute convergent in the norm of B(H0, H2). See, for example, [27] and [58].
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Remark 30. From above arguments, we have the operator

G(t) =
1

2π

∫
=µ=α

eitµB−1
A (µ)dµ.

explained in sense of the Cauchy integral. By (5.10) we get that,

G(t) = − 1

2πt

∫
=µ=α

eitµDµB−1
A (µ)dµ

with absolute convergent in B(H0, H2).

The following proposition, we have some properties of G(t) :

Proposition 5.3.3. For α /∈ Γ(BA and we set Σα± = {µ ∈ σ(BA) : =µ ≶ α}. Then, the operator

G(t) =
1

2π

∫
=µ=α

eitµB−1
A (µ)dµ

i) it does not depend on α ∈
∑
α±
,

ii) For all t and |t| ≤ 1,

‖DtG(t)‖H2
≤ cγe−γt,

such that γ is an arbitrary number in
∑
α±

.

Proof. See the proof in [58] and [61].

5.3.2 Representations for G(t)

Now, we observe the difference between G(t) and G(β)(t).

According to Proposition 5.3.3(i), G(t) does not depend on α, we can set Σα± = {µ ∈ σ(BA) : =µ ≶ α} and we

consider =µ = β.

A new Green’s kernel is defined by

G(β)(t) =
1

2π

∫
=µ=β

eitµB−1
A (µ)dµ.

To understand this relation between G(t) and G(β)(t), we have the following theorems.
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Theorem 5.3.4. Let the operator is defined by

Pv(t) =
1

2π

∫
Sv

eit(µ−µv)B−1
A (µ)dµ,

where Sv is a small circle centred at the eigenvalue µv. Then, we have that

Pv(t) = i

J∑
k=1

mk−1∑
h=0

(it)h

h!
Pk,h, (5.11)

where, Pk,h is defined in (5.2), i.e.,

Pk,h =

h∑
s=0

〈., ψk,s〉H0ϕk,h−s, (5.12)

and J be a geometric multiplicity of µ0.

Proof. By using the definition of B−1
A in (5.1), we have

B−1
A (µ) =

J∑
k=1

mk−1∑
h=0

Pk,h
(µ− µ0)mk−h

+ Υ(µ), (5.13)

where,

Pk,h =

h∑
s=0

〈., ψk,s〉H0
ϕk,h−s, (5.14)

And, by using Cauchy’s Residue theorem to solve the following integral, we get that

1

2π

∫
Sv

eit(µ−µv)B−1
A (µ)dµ = 2πi

J∑
k=0

Res(eit(µ−µv)B−1
A (µ))

= i

J∑
k=0

mk−1∑
h=0

(it)h

h!
lim
µ→µ0

(µ− µ0)h−mkeit(µ−µ0)B−1
A (µ)

= i

J∑
k=0

mk−1∑
h=0

(it)h

h!
lim
µ→µ0

(µ− µ0)h−mk(eit(µ−µ0) Pk,h
(µ− µ0)mk−h

+ Υ(µ0))

= i

J∑
k=0

mk−1∑
h=0

(it)h

h!
Pk,h.

To get the operator,

Pv(t) = i

J∑
k=1

mk−1∑
h=0

(it)h

h!
Pk,h. (5.15)

See for example, [58] and [61].
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Remark 31. For the convenience of the readers, we give the example to compute the residue of the integral in

the closed contour SR in Appendix.6.

Theorem 5.3.5. Suppose there are no eigenvalues of the operator Pencil BA on the lines =µ = β, and Σα± =

{µ ∈ σ(BA) : =µ ≶ α}. Then

G(t) =
∑

µ∈
∑
α+

eiµtPv(t) +G(β)(t), (5.16)

G(t) = −
∑

µ∈
∑
α−

eiµtPv(t) +G(β)(t). (5.17)

Proof. Firstly, we need to prove (5.16), from Proposition 5.3.2 we have

‖DµB−1
A (µ)‖C ≤ c|µ|, (5.18)

we can get the difference between G(t) and G(β)(t), which equals to the sum of integrals in the operator

Pv(t) =
1

2π

∫
Sv

eit(µ−µv)B−1
A (µ)dµ,

which is multiplied by eiµt, with the summation to get extended the eigenvalues µ ∈ Σα± , we can get

G(t)−G(β)(t) =
∑

µ∈
∑
α+

eiµtPv(t), (5.19)

for t > 0.

Similarly, we can prove that the equation (5.17) for t < 0.

Therefore, the formula (5.16) and (5.17) are the new representation of G(t) as t → ±∞. See for example, [58]

and [61].

Theorem 5.3.6. For k = 1, 2, ..., J and s = 0, ...,mk−1, and these conditions hold for all µ ∈ Σα± then we have

mk−1∑
h=0

(it− iτ)h

h!
Pk,mk−1−s =

mk−1∑
h=0

〈., DτΨ(it)ψk〉H0
DtΦk(it),

where Ψk and Φk are defined in Remark 29.
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Proof. We have that in the second term of the right-hand side, to get

mk−1∑
h=0

〈., DτΨ(it)ψk〉H0
DtΦk(it) =

mk−1∑
h=0

〈.,
mk−1−s∑
j=0

(it)j

j!
ψk,mk−1−h−j〉H0

h∑
s=0

(it)s

s!
ϕk,h−s

=

mk−1∑
j=0

mk−1−j∑
s=0

mk−1−j∑
h=s

(−it)j

j!

(it)s

s!
〈., ψk,mk−1−h−j〉H0

ϕk,h−s

=

mk−1∑
j=0

mk−1−j∑
s=0

mk−1−j−s∑
h=0

(−it)j

j!

(it)s

s!
〈., ψk,mk−1−h−j−s〉H0ϕk,h.

We can take n = s+ j to obtain the last equality by,

mk−1∑
n=0

n∑
s=0

mk−1−n−s∑
h=0

(−it)n−s

(n− s)!
(it)s

s!
〈., ψk,mk−1−n−h〉H0

ϕk,h

=

mk−1∑
n=0

(it− iτ)n

n!

mk−1−n∑
h=0

〈., ψk,mk−1−n−h〉H0ϕk,h.

Since we have Pk,h is defined in (5.2),

Pk,h =

h∑
s=0

〈., ψk,s〉H0
ϕk,h−s,

we have,

mk−1∑
h=0

〈., DτΨ(it)ψk〉H0
DtΦk(it) =

mk−1∑
n=0

(it− iτ)n

n!
Pk,mk−1−s.

Thus, the proof is complete. See for example, [58] and [61].

Theorem 5.3.7. For k = 1, 2, ..., J and s = 0, ...,mk − 1, and these conditions hold for all µ then the Green’s

kernel has new representation

G(t)−G(α)(t) = −i
∑

µ∈Σα+

J∑
k=0

mk−1∑
h=0

eiµ0t〈., ψk,s〉H0ϕk,h−s.

Proof. By combining Theorems 5.3.5 and 5.3.6, we have directly

G(t)−G(α)(t) = −i
∑

µ∈Σα+

eiµ0tPk,h

= −i
∑

µ∈Σα+

eiµ0t
J∑
k=0

mk−1∑
h=0

(it)h

h!
Pk,h

= −i
∑

µ∈Σα+

J∑
k=0

mk−1∑
h=0

eiµ0t〈., ψk,h−s〉H0ϕk,h−s,
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where ϕk,s is a canonical system of Jordan of BA corresponding to µ0, and ψk,s is a canonical system of Jordan

of B∗A corresponding to µ0 for k = 1, 2, ..., J and s = 0, ...,mk − 1, and these conditions hold for all µ ∈ Σα,β .

We can consider the function G(β)(t) by the following lemma:

Lemma 5.3.8. For α /∈ Γ(BA), and we set Σα± = {µ ∈ σ(BA) : =µ ≶ α}. Then,

G(β)(t) =


i
∑
µ∈Σα+

Res(eitµB−1
A (µ);µ) if t > 0

−i
∑
µ∈Σα−

Res(eitµB−1
A (µ);µ) if t < 0.

The following Lemma, we can generalise the new representation of Gβ(t).

Lemma 5.3.9. Suppose α, β ∈ R \ Γ(BA), and We have note that Σβ+ ⊆ Σα+ , Σα− ⊆ Σβ− , and Σα,β =

Σα+
\ Σβ+

= Σβ− \ Σα− . Then,

G(β)(t)−G(α)(t) =


i
∑
µ∈Σβ+

Res(eitµB−1
A (µ);µ)− i

∑
µ∈Σα+

Res(eitµB−1
A (µ);µ) t > 0

−i
∑
µ∈Σβ−

Res(eitµB−1
A (µ);µ) + i

∑
µ∈Σα−

Res(eitµB−1
A (µ);µ) t < 0,

It follows,

G(β)(t)−G(α)(t) = −i
∑

µ∈Σα,β

Res(eitµB−1
A (µ);µ) for all t. (5.20)

Lemma 5.3.10. If

B−1
A (µ) = 〈., ψk,h−s〉H0ϕk,s(µ− µ0)h−mk + Υ(µ)

for µ is neighbourhood of µ0. Then,

BA(µ)ϕk,s = 0.

Proof. By Theorem 5.3.7 and by a Cauchy Integral Formula, we get that

Pk,h =
1

2πi

∮
Sv

B−1
A (µ)dµ,
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where B−1
A (µ) is analytic function and Sv is a small circle.

Now, we get by the Contour Residue Theorem,

BA(µ)Pk,h = BA(µ)
1

2πi

∮
Sv

B−1
A (µ)dµ

=
1

2πi

∮
Sv

(I − (BA(µ)− BA(µ0)))B−1
A (µ)dµ = 0,

where BA(µ)− BA(µ0) is Holomorphic for µ near µ0.

We can remove factor of µ− µ0 from BA(µ)− BA(µ0). Then,

BA(µ)ϕk,h−s =
1

‖ψk,s‖2H0

BA(µ)Pk,hψk,s = 0,

where Pk,h = 〈., ψk,s〉ϕk,h−s since ϕk,h−s 6= 0 and ψk,s 6= 0 as otherwise B−1
A (µ) would have a removable

singularity at µ0. Hence, µ0 /∈ σ(BA). This is contradiction.

Corollary 5.3.11. Similarly, the adjoint of BA we have that

B∗A(µ)ψk,s = 0,

such that P ∗k,h = 〈., ϕk,h−s〉H∗ψk,h−s for ψk,s is a canonical system of Jordan of B∗A corresponding to µ0 and

ϕk,h−s is a canonical system of Jordan of BA corresponding to µ0, to get that

B∗A(µ)ψk,s =
1

‖ϕk,s‖2H0

B∗A(µ)Pk,hϕk,h−s = 0

for all µ, k = 1, ..., J and s = 0, ...,mk − 1.

5.4 Exponential Solutions

We back to the previous arguments in Section 4.6 we have the fact that Theorem 4.6.2 does not extend to

α ∈ Γ(BA) has to do with existence of exponential solutions of homogeneous equation

BA(Dt)u = 0, (5.21)

for u ∈W 2
α,α. See [10].
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According Section 5.2, µ0 is an eigenvalue of B∗A and its geometric and algebraic multiplicities coincide with

those of µ0 is eigenvalue of BA. By Theorem 5.2.3 there exits {ψk,s}mk−1
s=0 is a canonical system of Jordan of B∗A

corresponding to µ0 and {ϕk,s}mk−1
s=0 is a canonical system of Jordan of BA corresponding to µ0 and the canonical

system {ψk,s}mk−1
s=0 satisfies the bi-orthogonality condition i.e.,

d∑
s=0

mk+s∑
n=s+1

1

n!
B(n)
A (µ)ϕk,mk+s−n, ψj,d−s)H0

= δkδd,

for k and d = 0, ...,mk − 1.

By Remark 29, we defined the solution of (5.21) if and only if µ0 is an eigenvalue BA. Refer back to Section 5.2,

[58] and [59].

However, in Section 5.3, Theorem 5.3.7 achieves to find the solution for the difference two solutions of non-

homogeneous equation

BA(Dt)u = f. (5.22)

We have α ≤ β and Σα,β denote the linear span of the set of all exponential solutions corresponding to µ0 ∈ σ(BA).

Then, we have the following propositions:

Proposition 5.4.1. Let α ≤ β ∈ R \ Γ(BA) and suppose f ∈ W 0
α,α ∩W 0

β,β . Choose the unique uα ∈ W 2
α,α and

uβ ∈W 2
β,β such that

BA(Dt)uα = f and BA(Dt)uβ = f.

Then, the difference uα − uβ lies in Σα,β (see, for example, [10] and [58]).

Proposition 5.4.2. For α, β ∈ R \ Γ, and we have the maps

A(α) = D2
t +A− λ : W 2

α,α −→W 0
α,α, (5.23)

A(β) = D2
t +A− λ : W 2

β,β −→W 0
β,β , (5.24)

are isomorphisms.

Let f ∈W 0
α,α ∩W 0

β,β , and uα ∈W 2
α,α, uβ ∈W 2

β,β be the solutions of

A(α)uα = f and A(β)uβ = f,
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respectively. Then,

uα(t)− uβ(t) =
∑

µ∈Σα,β

∫
R
eiµ0(t−s)Pk,hf(s)ds. (5.25)

Proof. By Lemma 5.3.1, and Theorem 5.3.7 we can observe directly,

uα(t)− uβ(t) =

∫
R
G(α)(t− s)f(s)ds−

∫
R
G(β)(t− s)f(s)ds

=

∫
R
(G(α) −G(β))(t− s)f(s)ds

=
∑

µ∈Σα,β

mk−1∑
h=0

∫
R
eiµ0(t−s)Pk,hf(s)ds.

Where Pk,h = ϕk,h−s〈ψk,s, .〉H0 for ϕk,h−s is a canonical system of Jordan of BA corresponding to µ0, and ψk,h−s

is a canonical system of Jordan of B∗A corresponding to µ0 and Σα,β denote the linear span of the set of all

exponential solutions corresponding to µ0 ∈ σ(BA).

Remark 32. For {ϕk,s}mk−1
s=0 is a canonical system of Jordan of BA corresponding to µ0, and {ψk,h−s}mk−1

s=0 is a

canonical system of Jordan of B∗A corresponding to µ0 for k = 1, ..., J and s = 0, ...,mk − 1, and these conditions

hold for all µ ∈ Σα,β , by Remark 29 and by Theorem 5.3.7, we can set

uµ(t) = −ieiµ0tϕk,s,

and

vµ(t) = eiµ0tψk,h−s,

for k = 1, ..., J and s = 0, ...,mk − 1.

Thus, uµ and vµ are called exponential solutions of BA(Dt)uµ = 0, and B∗A(Dt)vµ = 0, respectively, (see [58], pp.

10− 11).

Proposition 5.4.3. We have uµ(t) = −ieiµ0tϕk,h−s, and vµ(t) = eiµ0tψk,s, and by using Proposition 5.4.2, we

150



can get

(A(β))−1f − (A(α))−1f =

∫
R

(G(β) −G(α))(t− s)f(s)ds

=
∑

µ∈Σα,β

mk−1∑
h=0

∫
R

(−ieiµ0tϕk,h−s)〈eiµ0sψk,s, f(s)〉H0
ds

=
∑

µ∈Σα,β

uµ〈vµ, f〉H0 .

5.5 Main Results

In this section, we aim to provide a key step for both Fredholm properties and further results for BA. We start

by the result which is established the semi-Fredholm property in Theorem 5.5.1. Later, we observe consequences

that are corresponding the change of the index formula of Fredholm operator.

The establishing the following property of (semi-Fredholm) is proved by using Corollary 4.6.10 and Theorem

4.6.11.

Theorem 5.5.1. Published in [42], April 30, 2021.

Let α, β ∈ R \ Γ(BA). Then, BA(Dt) : W 2
α,β →W 0

α,β is semi-Fredholm with a finite-dimensional kernel.

Proof. For the proof of this result, suppose we have a sequence satisfying the following terms:

� {ui}i∈N ⊆W 2
α,β ,

� ‖ui‖W 2
α,β
≤ 1,

� BA(Dt)ui → 0 in W 0
α,β .

First, with the constant c and by Theorem 4.6.11, we have

‖uin − uim‖W 2
α,β
≤ c

(
‖BA(Dt)uin − BA(Dt)uim‖W 0

α,β
+ ‖uin − uim‖W 1

α
′
,β
′

)
, (5.26)

for all n,m ∈ N. By the first term of the right-hand side of (5.26), we can observe that

‖BA(Dt)uin − BA(Dt)uim‖W 0
α,β
→ 0

as n,m→∞, as {BA(Dt)ui}i∈N → 0 in W 0
α,β (by assumption).
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On the other hand, we choose α
′
> α and β

′
< β, the inclusion

W 2
α,β ↪→W 1

α′ ,β′
,

is a compact map by Corollary 4.6.10, hence we can find a subsequence {uin}n∈N which is convergent in W 1
α′ ,β′

.

Furthermore, it is true for the second term of the right-hand side of (5.26). That is,

‖uin − uim‖W 1

α
′
,β
′
→ 0,

as {uin}n∈N is convergent in W 1
α′ ,β′

.

Thus, {uin} for n ∈ N is a Cauchy sequence since {ui}i∈N is a bounded sequence in W 2
α,β (by assumption) and

it has a convergent subsequence {uik} for k ∈ N (by Bolzano-Weierstrass) (see [28]) and we check that

‖uin − ui‖W 2
α,β
≤ ‖uin − uik‖W 2

α,β
+ ‖ui − uik‖W 2

α,β
→ 0.

i.e., {uin}n∈N is convergent in W 2
α,β as n→∞.

Summarising, we have shown any sequence that the sequence satisfying has a subsequence is convergent in W 2
α,β .

A standard argument ( Lemma 5.1.1 of this thesis) can now use to show

BA(Dt) : W 2
α,β →W 0

α,β

has a finite-dimensional kernel and a closed range.

Theorem 5.5.2. Let β ∈ R. Then, the map A(β) = BA(Dt) : W 0
β,β →W 0

β,β has a finite-dimensional kernel.

Proof. Choose α ∈ R \ Γ(BA) with α ≤ β and A(α) = BA(Dt) : W 0
α,α → W 0

α,α we have a continuous inclusion

i : W 0
α,α ↪→W 0

β,β from Proposition 4.6.3. So,

KerA(β) ⊆ KerA(α).

On the other hand, α ∈ R \ Γ(BA) so, KerA(α) must be finite-dimensional by Theorem 5.5.1.

We complete this section with further consequences of Fredholm properties of Pencils BA with some restriction

on α, β.
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Proposition 5.5.3. For α ≤ β, we can consider the maps

A(α,β) = BA(Dt) : W 2
α,β →W 0

α,β ,

and

A(β,α) = BA(Dt) : W 2
β,α →W 0

β,α,

and we have that solutions {uµ : µ ∈ Σα,β} and {vµ : µ ∈ Σα,β} of the equations BA(Dt)uµ = 0 and BA(Dt)vµ =

0, respectively, and are linearly independent sets.

To observe the following claims:

� Claim (i):

KerA(α,β) = {u ∈W 2
α,β : A(α,β)u = 0} = {0}.

Proof. Let u ∈ KerA(α,β) ⊆W 2
α,β .

Since by Theorem 4.6.2

A(α) = BA(Dt) : W 2
α,α →W 0

α,α

and

A(β) = BA(Dt) : W 2
β,β →W 0

β,β ,

are isomorphism.

That is,

KerA(α) = {0} and KerA(β) = {0}.

By Corollary 4.6.6, we have

W 2
α,β = W 2

α,α ∩W 2
β,β .

We have

u ∈ KerA(α) ⊂W 2
α,α and u ∈ KerA(β) ⊂W 2

β,β .

Then, u ∈ KerA(α,β) ⊆W 2
α,β .
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That is,

KerA(α,β) = {u ∈W 2
α,β : A(α,β)u = 0} = {0}.

� Claim (ii):

RanA(α,β) = {f ∈W 0
α,β : 〈vµ, f〉 = 0 for all µ ∈ Σα,β}.

Proof. Let f ∈W 0
α,β = W 0

α,α ∩W 0
β,β , by Corollary 4.6.6.

Then, we set

uα = (A(α))−1f ∈W 2
α,α and uβ = (A(β))−1f ∈W 2

β,β .

If 〈vµ, f〉 = 0 for all µ ∈ Σα,β ,

then uα = uβ by Proposition 5.4.3.

So, we have that

uα = uβ ∈W 2
α,α ∩W 2

β,β = W 2
α,β ,

and

f = A(α,β)uα ∈ RanA(α,β) ⊂W 0
α,β .

Furthermore, if f = A(α,β)uµ ∈W 0
α,β for some uµ ∈W 2

α,β , then uniqueness of isomorphism inverse gives

uα = (A(α))−1f = uµ = (A(β))−1f = uβ .

Hence, 〈vµ, f〉 = 0 for all µ ∈ Σα,β (uµ is linearly independent set).

Then,

RanA(α,β) = {f ∈W 0
α,β : 〈vµ, f〉 = 0 for all µ ∈ Σα,β}.

� Claim (iii):

KerA(β,α) = Span{uµ : µ ∈ Σα,β}.
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Proof. Suppose A(β,α)uµ = 0 for some uµ ∈ W 2
β,α = W 2

β,β + W 2
α,α by Corollary 4.6.9, we can write

uµ = uα + uβ for some uα ∈W 2
α,α and uβ ∈W 2

β,β .

Then,

A(α)uα +A(β)uβ = A(β,α)uµ = 0.

So,

f ∈ A(β)uβ = −A(α)uα ∈W 0
α,α ∩W 0

β,β .

Now, we have by Proposition 5.4.3,

uµ = uβ + uα = (A(β))−1f − (A(α))−1f ∈ Span{uµ : µ ∈ Σα,β}.

Therefore,

KerA(β,α) = Span{uµ : µ ∈ Σα,β}.

� Claim (iv): We have

RanA(β,α) = W 0
β,α.

Proof. Let f ∈ W 0
β,α = W 0

α,α +W 0
β,β . So, f = fα + fβ for some fα ∈ W 0

α,α and fβ ∈ W 0
β,β , and A(α), A(β)

are isomorphism for uµ ∈W 2
β,α.

Then,

uµ = (A(α))−1fα + (A(β))−1fβ ∈W 2
β,α.

and

A(β,α)uµ = A(α)(A(α))−1fα +A(β)(A(β))−1fβ = fα + fβ = f.

Therefore,

RanA(β,α) = W 0
β,α.
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Corollary 5.5.4. Let α, β ∈ R \ Γ(BA), Suppose

A(α) : W 2
α,α →W 0

α,α

and

A(β) : W 2
β,β →W 0

β,β

are isomorphism maps. Then, A(α) and A(β) are Fredholm maps with index 0.

We finish this section, by the last result in the current thesis which shows how the index of the Fredholm maps

A(α,β) and A(β,α) varies when we change α and β.

Theorem 5.5.5. Published in [42], April 30, 2021.

Suppose α < β ∈ R\Γ. Then the maps

A(α,β) : W 2
α,β −→W 0

α,β

and

A(β,α) : W 2
β,α −→W 0

β,α

are Fredholm maps with

IndexA(α,β) : W 2
α,β −→W 0

α,β = −|Σα,β | = − IndexA(β,α) : W 2
β,α −→W 0

β,α.

Proof. We have uµ and vµ consist of exponential functions with different exponents, then {uµ : µ ∈ Σα,β} and

{vµ : µ ∈ Σα,β} are linearly independent set.

First we need to prove A(α,β) is Fredholm:

By Claim (ii) RanA(α,β) = {vµ : µ ∈ Σα,β}⊥, so

RanA(α,β) is closed with the η(A(α,β)) = |Σα,β |, and by claim (i) KerA(α,β) = {0}, it follows that κ(A(α,β)) = 0.

Then, we have that

A(α,β) : W 2
α,β −→W 0

α,β

is a Fredholm map (by definition of the Fredholm in Section 5.1).
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The index of this operator,

IndexA(α,β) = κ(A(α,β))− η(A(α,β)) = 0− |Σα,β |.

Now, to prove that A(β,α) is a Fredholm map, we observe that, by claim (iv) RanA(β,α) = W 0
β,α so, it is closed

with η(A(β,α)) = 0.

Also, by Claim (iii), we observe κ(A(β,α)) = |Σα,β |, that is, the dimension of kernel is finite.

Therefore,

A(β,α) : W 2
β,α −→W 0

β,α

is a Fredholm map (by definition of the Fredholm in Section 5.1).

Therefore, the index of A(β,α) is

IndexA(β,α) = κ(A(β,α))− η(A(β,α)) = |Σα,β | − 0.

Conclusion

In general, we observed the definition of inverse Fredholm operator Pencil. The properties of the Green’s kernels

were proved by Maz’ya and Kozlov [58]. Also, we had representations of Green’s kernels of different types (5.16)

and (5.17), these results used for the solutions of BA(Dt)u = f in Sobolev spaces W 0
α,β . At the end of this chapter,

we considered the semi-Fredholm property, we observed the parameters α and β are varied so that move between

components of R\Γ then the index of the corresponding maps would change.
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Chapter 6

Appendix

6.1 Appendix.1 (Explicit function)

Lemma 6.1.1. For any k we have

lim
u→∞

uk exp(−u) = 0.

Proof. For any fixed positive integer N > 0 and u > 0, we have

exp(u) =

∞∑
n=0

un

n!
= 1 + u+

u2

2
+
u3

6
+ .... ≥ uN

N !

Thus we can write

0 < uk exp(−u) <
uk

uN

N !

= N !uk−N .

For N > k, we have uk−N → 0 as u→∞, therefore

lim
u→∞

uk exp(−u) = 0.

Q1 : Find an explicit function ϕ : R→ R such that ϕ(x) = 0 if |x| > 1, ‖ϕ‖ = 1, and ‖ϕ′‖ <∞, ‖ϕ′′‖ <∞.
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Solution: For ϕ ∈ L2(R) we can consider the function given by

ϕ(x) =


ce

(
−1

1−x2

)
|x| < 1

0 otherwise

where c is a constant.

� We can see that from the definition ϕ(x) = 0 if |x| > 1.

� For the second condition, we can choose the constant c to the normalize ϕ(x). Firstly, for −1 < x < 1 we

have −∞ < −2
1−x2 ≤ 0, therefore 0 < e

−2

1−x2 ≤ 1, therefore 0 <
∫ 1

−1
e
−2

1−x2 dx ≤ 2 <∞. We can now define

c =

√√√√ 1∫ 1

−1
e

(
−2

1−x2

)
dx
.

Then

‖ϕ‖2L2(R) =

∫ 1

−1

∣∣∣∣ce( −1

1−x2

)∣∣∣∣2 dx
= |c|2

∫ 1

−1

∣∣∣∣e( −1

1−x2

)∣∣∣∣2 dx
= |c|2

∫ 1

−1

e

(
−2

1−x2

)
dx = 1.

� Now, we will prove the function is continuous and its derivatives are bounded; this allows us to show the

norms of these derivatives are finite. We have

ϕ(x) = c


e

(
−1

1−x2

)
−1 < x < 1

0 otherwise

Since x→ 1− implies that 1− x2 → 0+ so u =
1

1− x2
→ +∞ it follows that

lim
x→1−

e
( −1

1−x2 )
= lim
u→∞

e−u = 0.

Therefore the function ϕ is continuous at x = −1. Similarly, the function is continuous at x = 1, so ϕ is

continuous at every point on the interval [−1, 1].
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Secondly, we will prove the first derivative of the function ϕ(x) is continuous. We have

ϕ
′
(x) = c



2x

(1− x2)2
e

(
−1

1−x2

)
−1 < x < 1

0 otherwise

Since x→ 1− implies 1− x2 → 0+ so u =
1

1− x2
→ +∞ it follows from Lemma 6.1.1 that

lim
x→1−

2x

(1− x2)2
e

( −1

1−x2 )
= lim
x→1−

2x · lim
u→∞

u2e−u = 2 · 0 = 0.

Therefore the first derivative of the function ϕ is continuous at x = −1, and similarity at x = 1. Thus ϕ
′

is continuous at every point on the interval [−1, 1], and hence the function is bounded. So, there exists

0 < M <∞ such that |ϕ′(x)| ≤M. Hence

‖ϕ
′
‖ ≤

(∫ 1

−1

M2

) 1
2

dx ≤
√

2M <∞,

so, ‖ϕ′‖2L(R) is finite.

Similarly, to show that the second derivative of the function ϕ(x) is bounded it suffices to prove it is

continuous. Now,

ϕ
′′
(x) = c



2(5x4 − 4x2 + 1)

(1− x2)4
e

(
−1

1−x2

)
−1 < x < 1

0 otherwise

Since x→ 1− implies 1− x2 → 0+, so u =
1

1− x2
→ +∞, Lemma 1 gives

lim
x→1−

2(5x4 − 4x2 + 1)

(1− x2)4
e

(
−1

1−x2

)
= lim
x→1−

(5x4 − 4x2 + 1) · lim
u→∞

u4e−u = 2 · 0 = 0

It follows that the second derivative of the function ϕ is continuous at x = −1, and similarity at x = 1, so

ϕ
′′

is continuous at every point on the interval [−1, 1] and hence the function is bounded. So, there exists

0 < M <∞ such that that |ϕ′′(x)| ≤M, which implies

‖ϕ
′′
‖ ≤

(∫ 1

−1

M2

) 1
2

dx ≤
√

2M <∞,

thus, ‖ϕ′′‖L2(R) is finite.
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6.2 Appendix.2 (Disc)

We compute the eigenvalues and eigenfunctions on a disc and use the polar coordinates r and θ. That is,

r =
√
t2 + s2 and θ = arctan

s

t
.

We can consider the Disc

Ω = {0 ≤ r < a, 0 ≤ θ ≤ 2π}.

Now, the partial derivative u with respect t and s, we have

∂u

∂t
=
∂u

∂r

t

r
− ∂u

∂θ

s

r2
;

and

∂u

∂s
=
∂u

∂r

s

r
+
∂u

∂θ

t

r2
.

Therefore,

∂2u

∂t2
=
∂2u

∂r2

t2

r2
+
∂u

∂r

s2

r3
− 2

∂2u

∂r∂θ

ts

r3
+ 2

∂u

∂θ

ts

r4
+
∂2u

∂θ2

s2

r4
;

and,

∂2u

∂s2
=
∂2u

∂r2

s2

r2
+
∂u

∂r

t2

r3
+ 2

∂2u

∂r∂θ

ts

r3
− 2

∂u

∂θ

ts

r4
+
∂2u

∂θ2

t2

r4
.

It follows that the Laplacian applied to u has the form

−∆u = −∂
2u

∂s2
− ∂2u

∂t2
= −∂

2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
.

Now, we find the solution of the eigenvalue equation

−∆u = λu.

We can rewrite this equation as follows

urr +
1

r
ur +

1

r2
uθθ = −λu, (6.1)

with u(r, θ) = 0 and 0 ≤ θ ≤ 2π.
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By using a separation of variable, let

u(r, θ) = R(r) · Φ(θ).

Therefore, equation (6.1) becomes

Φ(Rrr +
1

r
Rr) +

1

r2
RΦθθ = −λRΦ.

Rearranging to separate the variables, we have

r2

R
(Rrr +

1

r
Rr + λR) = −Φθθ

Φ
.

Because the right-hand side depends only on θ and the left-hand side depends only on r, both sides are equal to

some constant. Therefore,

Rrr +
1

r
Rr + (λ− µ

r2
)R = 0. (6.2)

Here, R(a) = 0 and 0 ≤ r < a.

And the another equation is

Φθθ + µΦ = 0, (6.3)

with Φ(θ) = Φ(2π) and 0 ≤ θ ≤ 2π.

The solution of equation (6.3) is given by

Φ(θ) = A sin
√
µθ +B cos

√
µθ.

Therefore, the boundary condition gives us
√
µ = n for n ∈ N0. Thus,

Φn(θ) = An sinnθ +Bn cosnθ

for arbitrary constants An and Bn.

Now, we can refer back to equation (6.2)

Rrr +
1

r
Rr + (λ− µ

r2
)R = 0,

with R(a) = 0 and 0 ≤ r < a. We set the variable t =
√
λr to get

dR

dr
=
dR

dt
· dt
dr

=
√
λ
dR

dt
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and

d2R

dr2
= λ

d2R

dt2
.

Then, we substitute in equation (6.2) to get that

t2Rtt + tRt + (t2 − n2)R = 0,

such that R(
√
λa) = 0, and 0 ≤ t <

√
λa. This is the Bessel differential equation, which has the solution Jn(t),

where Jn(t) is the Bessel function of the first kind of order n, is defined by

Jn(t) =

∞∑
k=0

(−1)k

k!(n+ k)!
(
t

2
)n+2k.

See [26]. Then, the solution of the equation where t =
√
λr is given by R(r) = Jn(

√
λr). Therefore,

un(r, θ) = Jn(
√
λr).[An sinnθ +Bn cosnθ].

In the case of Dirichlet boundary conditions

Consider u(a, θ) = 0 implies that Jn(
√
λr) = 0. We deduce that

√
λa is the zero of the Bessel function. However,

Jn(t) has an infinity sequence of positive zeros for n = 0, 1, 2, ... and m = 1, 2, 3, ..., so we order them

0 < αn,1 < αn,2 < ... < αn,m < αn,m+1 < ...·

Thus,
√
λn,ma = αn,m and the eigenvalues of the eigenvalue problem are given by

λn,m = (
αn,m
a

)2,

for n = 0, 1, 2, 3, ... and m = 1, 2, 3, ..., (see [2]).

Remark 33. We have the following notes:

(1) If n = 0, then λ has multiplicity 1. This eigenvalue has a corresponding eigenfunction, which is simply the

multiples of J0(α0,mr).

(2) If n 6= 0, then λ has multiplicity 2 and the eigenfunctions of the form:

un,m(r, θ) = Jn((
αn,m
a

)2r) · (An,m sinnθ +Bn,m cosnθ), n,m ∈ N,

with An,m and Bn,m as the arbitrary constants.
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In the case of Neumann boundary conditions

un,m(r, θ) = Jn(
√
λr) · (An,m sinnθ +Bn,m cosnθ), n,m ∈ N.

∂un,m
∂r

(r, θ) = 0 on the boundary condition.

This implies

√
λJ
′

n(
√
λa) · (An,m sinnθ +Bn,m cosnθ) = 0,

since the eigenvalue is not zero, so

J
′

n(
√
λa) = 0.

The derivative of the Bessel function Jn has infinitely many positive zeros:

0 < α
′

n,1 < α
′

n,2 < ... < α
′

n,m < α
′

n,m+1 < ...

for n > 0 and

0 = α
′

n,1 < α
′

n,2 < ... < α
′

n,m < α
′

n,m+1 < ...

for n = 0. Thus, the eigenvalue of the Neumann eigenvalue problem is given by:

λn,m = (
α
′

n,m

a
)2,

for n = 0, 1, 2, 3, ... and m = 1, 2, 3, ..., (see [2]).

Remark 34. We have the following notes:

(1) If n = 0, then λ has multiplicity 1. This eigenvalue has corresponding eigenfunction, which is simply the

multiples of J0(α
′

0,mr).

(2) If n 6= 0, then λ has multiplicity 2 and the eigenfunctions of the form

un,m(r, θ) = Jn((
α
′

n,m

a
)2r) · (An,m sinnθ +Bn,m cosnθ), n,m ∈ N,

with An,m and Bn,m as arbitrary constants.
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6.3 Appendix.3 (Rectangular)

Now, we need to find the eigenvalues and eigenfunctions when we consider Ω = [0, L]×[0,M ] (product of intervals

or a rectangle).

The two dimensional eigenvalue equation is

−∆u = λu, (6.4)

on Ω, i.e.,

utt + uss + λu = 0, (6.5)

such that 
u(0, s) = 0 = u(L, s), 0 ≤ s ≤M

u(t, 0) = 0 = u(t,M), 0 ≤ t ≤ L .

To find the eigenvalues, we solve the equation by separating the variables. Let u(t, s) = T (t)S(s).

Then, the substitution in (6.5) gives

T
′′
S + TS

′′
+ λTS = 0.

Hence,

T
′′

T
+
S
′′

S
+ λ = 0.

Letting λ = µ2 + ν2 and using the boundary conditions.

The Dirichlet boundary conditions are T (0) = T (L) = 0 and S(0) = S(M) = 0.

Hence,

T
′′

+ µ2T = 0,

and

S
′′

+ ν2S = 0.
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Therefore, the solutions of these are the same as for one dimensional eigenvalue equations: µn =
nπ

L
and

νm =
mπ

M
for m,n = 1, 2, 3, ...· Hence,

Tn(t) = sin(
nπt

L
),

and

Sm(s) = sin(
mπs

M
).

To obtain the eigenfunctions

u(t, s)n,m = sin(
nπt

L
) sin(

mπs

M
) for n,m ≥ 1,

with eigenvalues

λn,m = (
nπ

L
)2 + (

mπ

M
)2 for n,m ≥ 1.

Similarly, Neumann boundary conditions are T
′
(0) = T

′
(L) = 0 and S

′
(0) = S

′
(M) = 0. Therefore, the

eigenfunctions are

u(t, s)n,m = cos(
nπ

L
t) cos(

mπ

M
s) for n,m ≥ 0,

with eigenvalues

λn,m = (
nπ

L
)2 + (

mπ

M
)2 for n,m ≥ 0.

6.4 Appendix.4 (Circle)

The equation

−∆u = λu,

on the unit circle

S1 = {(cos θ, sin θ), 0 ≤ θ ≤ 2π}.

In this case, we use a polar coordinate θ such that 1 = t2 +s2 and θ = arctan
s

t
. The ordinary differential equation

in polar coordinates is of the form;

−∆u(θ) = λu(θ), (6.6)
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such that −∆ = − ∂2

∂θ2
for S1 with boundary conditions u(0) = u(2π) and u′(0) = u′(2π).

Consider three cases on λ :

If λ = 0, the general solution of the ordinary differential equation −∆u = 0 is

u(θ) = Aθ +B,

where A,B are constants. Then, u(0) = A(0) +B and u(2π) = 2Aπ+B. It follows that 2Aπ+B = B, so A = 0.

This means u(θ) = B is constant and 0 is an eigenvalue for this problem with multiplicity 1.

Next, if λ < 0 then the general solution of the ordinary differential equation −∆u(θ) = λu(θ) is

u(θ) = A cosh
√
−λθ +B sinh

√
−λθ.

Then,

u(0) = A cosh
√
−λ(0) +B sinh

√
−λ(0).

and

u(2π) = A cosh
√
−λ(2π) +B sinh

√
−λ(2π).

From the first boundary condition, we have

A = A cosh
√
−λ2π +B sinh

√
−λ2π. (6.7)

Now, we have that

u
′
(0) =

√
−λA sinh

√
−λ(0) +

√
−λB cosh

√
−λ(0),

u
′
(2π) =

√
−λA sinh

√
−λ(2π) +

√
−λB cosh

√
−λ(2π).

From the second boundary condition, we have

√
−λB =

√
−λA sinh

√
−λ(2π) +

√
−λB cosh

√
−λ(2π). (6.8)
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From the equations (6.7) and (6.8) we have
A = A cosh

√
−λ(2π) +B sinh

√
−λ(2π)

√
−λB =

√
−λA sinh

√
−λ(2π) +

√
−λB cosh

√
−λ(2π).

To solve the system of equations,
A = A cosh

√
−λ(2π) +B sinh

√
−λ(2π)

B = A sinh
√
−λ(2π) + B cosh

√
−λ(2π),

or, equivalently, 
0 = A(cosh

√
−λ(2π)− 1) +B sinh

√
−λ(2π)

0 = A sinh
√
−λ(2π) +B(cosh

√
−λ(2π)− 1).

Multiply the first equation by (− sinh
√
−λ(2π)) and the second equation by (cosh

√
−λ(2π) − 1). Then, this

would imply

0 = −B sinh2
√
−λ(2π) +B(cosh

√
−λ(2π)− 1)2.

Therefore,

2B cosh
√
−λ(2π) = 0, (6.9)

( because cosh2 θ − sinh2 θ = 1. So, B = 0 as cosh
√
−λ(2π) 6= 0). Then, we have

0 = A sinh
√
−λ(2π) +B(cosh

√
−λ(2π)− 1),

it would imply

A sinh
√
−λ(2π) = 0,

( because sinh 0 = 0 at λ = 0 for A 6= 0). It is impossible because λ < 0. This means the problem has no negative

eigenvalues.
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If λ > 0, then the general solution of the ordinary differential equation

−∆u(θ) = λu(θ)

will be of the form

u(θ) = A cos
√
λθ +B sin

√
λθ.

Then, we have

u(0) = A cos
√
λ(0) +B sin

√
λ(0),

and

u(2π) = A cos
√
λ2π +B sin

√
λ2π.

From the first boundary condition, we have

A = A cos
√
λ2π +B sin

√
λ2π. (6.10)

Now, to get the derivative of u at t = 0

u
′
(0) = −

√
λA sin

√
λ(0) +

√
λB cos

√
λ(0),

and at t = 2π

u
′
(2π) =

√
λA sin

√
λ(2π) +

√
λB cos

√
λ(2π).

From the second boundary condition

√
λB = −

√
λA sin

√
λ(2π) +

√
λB cos

√
λ(2π). (6.11)

From (6.10) and (6.11), we can obtain
A = A cos

√
λ(2π) +B sin

√
λ(2π)

√
λB = −

√
λA sin

√
λ(2π) +

√
λB cos

√
λ(2π),
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or, equivalently, 
0 = A(cos

√
λ(2π)− 1) +B sin

√
λ(2π)

0 = A sin
√
λ(2π) +B(cos

√
λ(2π)− 1).

Multiply the first equation by (sin
√
λ(2π)) and the second equation by (− cos

√
λ(2π)− 1) of the above system

to have

0 = B sin2
√
λ(2π) +B(cos

√
λ(2π)− 1)2.

Then, it would imply

B(sin2
√
λ(2π) + cos2

√
λ(2π))− 2B cos

√
λ(2π) + 2B = 0,

It follows that 2B cos
√
λ(2π) = 0 because cos2

√
λ(2π) + sin2

√
λ(2π) = 1.

So, A sin
√
λ(2π) = 0 and A 6= 0, it would imply λ = (

n

2
)2 for λ > 0. Hence, there are positive eigenvalues for

this problem, which are

λ = n2 for n = 1,2,3,...

The eigenfunctions are

un(θ) = A
′
cosnθ +B

′
sinnθ for n = 1,2,3,...,

where A
′

and B
′

are arbitrary constants.

6.5 Appendix.5 (Operator pencils)

Let us consider the following 2× 2 matrix

A =


µ2 µ+ 2

−µ+ 2 µ2 + 2


. (6.12)
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We can write it by A(µ) = µ2A0 + µA1 +A2, i.e.,

A =


µ2 0

0 µ2


+


0 µ

−µ 0


+


0 2

2 2


, (6.13)

it follows that

A = µ2


1 0

0 1


+ µ


0 1

−1 0


+


0 2

2 2


, (6.14)

therefore,

A0 =


1 0

0 1


,

A1 =


0 1

−1 0


,

and

A2 =


0 2

2 2


all A’s are bounded operators from C2 → C2, such A(µ) is called a quadratic operator pencil and gives a mapping

from C to the set of all bounded operators B(C2,C2) ∼= M2×2(C), for µ ∈ C.

Firstly, We will find the spectrum of this operator For µ ∈ C. We have µ ∈ σ(A), iff A : C2 → C2 is not

invertible i.e., A2 − (−µA1 − µ2A0) : C2 → C2 is not invertible, it means the characteristic polynomial of matrix

is
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det(A(µ)) = µ2(µ2 + 2)− (−µ+ 2)(µ+ 2) = 0,

it follows that

µ4 + 3µ2 − 4 = 0,

therefore,

σ(A) = {±1,±2i},

and the projection of spectrum of operator pencil A onto the imaginary axis, that is

Γ(A) = {0} ∪ {±2}.

We say that µ0 is an eigenvalue of A if there exists 0 6= u ∈ C2 such that A(µ0)u = 0 and u is called an

eigenfunction of A. To find these eigenvectors with respect to eigenvalues, we need to solve the homogeneous

system and we will find them latter in this part.

6.6 Appendix.6 (Closed Contour)

Here, we have a closed contour SR such that SR+ gives a anti-clock wise contour and SR− gives a clock wise

contour.

For µ be a sufficiently large, for a constant c
′
, by the same arguments in the previous propositions, we can get

that

‖B−1
A (µ)‖C ≤ c|µ| ≤ c

′
. (6.15)

For µ be a sufficiently large, for a constant c
′

‖B−1
A (µ)‖C ≤ c|µ| ≤ c

′
. (6.16)

For θ ∈ [0, π], let µ = iα+Reiθ and dµ = iReiθdθ, then we can get,

|eitµ| = |eit(iα+Reiθ)| = |e−αteitRe
iθ|

= |e−αte−tR sin θ|.

172



For a sufficiently large R we obtain,

‖eitµB−1
A (µ)‖C ≤ c

′
e−αte−tR sin θ.

Now, for t > 0 it follows that, ∣∣∣∣∣
∫
SR+

eitµB−1
A (µ)dµ

∣∣∣∣∣ ≤ c′Re−αt
∫ π

0

e−tR sin θdθ.

and t < 0 it follows that, ∣∣∣∣∣
∫
SR−

eitµB−1
A (µ)dµ

∣∣∣∣∣ ≤ c′Re−αt
∫ π

0

e+tR sin θdθ.

Then the integral is absolutely convergent at 0 as R→∞, we have

lim
R→∞

∣∣∣∣∣
∫
SR±

eitµB−1
A (µ)dµ

∣∣∣∣∣ ≤ lim
R→∞

c
′
Re−αt

∫ π

0

e±tR sin θdθ = 0.

From the previous Proposition 5.3.2 we have that

lim
R→∞

∫ R+iα

−R+iα

eitµB−1
A (µ)dµ, (6.17)

exists to complete our argument.

If R is a sufficiently large, by the Cauchy’s Residue Theorem gives

∫ R+iα

−R+iα

eitµB−1
A (µ)dµ+

∫
SR±

eitµB−1
A (µ)dµ = ±2πi

∑
µ∈Σ±α

Res(eitµB−1
A (µ);µ).
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Chapter 7

Conclusion and Future Work

Here, we present chapter by chapter summary of the major problems tackled of this thesis, highlighting some

salient points and limitations. We also suggest some follow up studies in order to surmount some identified

challenges in this area.

7.1 Existence Eigenvalues for −∆− V on Cylindrical Domain

The main work of the first task of this thesis was in Chapter 3. It was to gain a deeper understanding the

development of aspects of the theory of partial differential equations with operator by concentrating on some

particular examples of trapped modes. It was dependent on several studies on existence of trapped modes through

horizontal circular cylinder sufficiently small radius in water, and which was proved by Ursell in (1951). Then,

it was developed in (1991) by Evans and Linton when they used some techniques of Ursell method and they

had been concerned with both existence of trapped modes and numerical algorithm. However, in this thesis we

investigated the stability of embedded eigenvalues within spectrum for the operator

−∆− V
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on cylindrical domain R × [−L,L] for a sufficiently small, non-negative continuous real valued function V on

R× [−L,L] with bounded support, which is symmetric, i.e.,

V (t, s) = V (t,−s)

for t, s ∈ R× [−L,L]. The result of this part observed the above operator has an eigenvalue λ is contained in the

essential spectrum, hence an embedded eigenvalue. Although the arguments which were appeared to have the

embedded eigenvalues for the Laplacian operator with added a potential function on the cylindrical domain, there

could be several other better arguments to do this and obtain even much better results by using previous studies.

For example, some conditions on potentials V which adds to the different operator. It would be interesting to

explore this further.

7.2 Operator pencil and Main Results

Chapter 4 was divided into two main parts: The first part defined the spaces Hk for k = 0, 1, 2, ... Then, there

were definitions of weighted functions spaces with some fundamental ideas. The majority of this part devoted to

establishing the basic properties of the weighted functions spaces W k
α,β for k = 0, 1, 2, ... and α, β ∈ R that were

necessary in order to work with them. The second part of this chapter, there was some results of properties of

pencils which were used to build some ideas of this research. We proved

BA(Dt) = D2
t +A− λ : W 2

α,β →W 0
α,β (7.1)

is an isomorphism. This result was special case of a general theory that has been developed for ordinary equations

with operator coefficient. We also observed the fact of this theorem did not extend to α, β ∈ R\Γ has to do with

the existence of exponential solutions of BA(µ0)u = 0, for u ∈W 2
α,α and these solutions gave a link between the

the isomorphisms for different values for α, β. Then, there were some corollaries and lemmas at the end of this

chapter which were proved some properties of Sobolev spaces.
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7.3 Fredholm Properties of pencils

Chapter 5 of this thesis contained the Fredholm properties of operator pencils BA. In particular, we detected

and approximated the spectra of operator pencils via Green’s kernel with interesting of exponential solutions for

equations BAu = f . We obtained some results for Fredholm property and semi-Fredholm property in Section

5.5. Then, we calculated the Kernels and Co-kernels explicitly to establish a Fredholm operator and its index

without consider its adjoint. By using some arguments and techniques from previous studies, for example, [10]

and [58]. The argument of Fredholm index and its dependence on the parameters α, β is considered the main

result Theorem 5.5.5 in this section the maps

A(α,β) = BA(Dt) : W 2
α,β −→W 0

α,β

and

A(β,α) = BA(Dt) : W 2
β,α −→W 0

β,α

are Fredholm with

IndexA(α,β) : W 2
α,β −→W 0

α,β = −|Σα,β | = − IndexA(β,α) : W 2
β,α −→W 0

β,α.

for α < β ∈ R\Γ.

In conclusion, we focused on the classical theory of ordinary differential equations with operator coefficients

in this research. In particular, we studied the perturbation problems for operators with existence embedded

eigenvalues (trapped modes) which is related to an eigenvalue of different operators on cylindrical domain and

then we studied a Fredholm propriety of operator pencils by using the Green’s kernel to detect spectra of operator

pencils. Again, these problems need more studies to be addressed first before a substantial progress could be

made of the fact. There are studies will focus on this arguments in the future research for example, the stability

these eigenvalues for different operators on different spaces and arguments uses to develop the formula of the

index of a Fredholm map with many new applications to apply this theory of ordinary differential equations with

operator coefficients.
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Chapter 8

Publication

� Stability of embedded eigenvalues for operator N. Altaweel. (2019) . The stability of embedded eigenvalues

for Laplace operator. Scholars’ press. ID CMM-2019−103. https://onlinelibrary.wiley.com/journal. Printed

by Schaltungsdienst lange o.H.G., Berlin.ISBN:978-613-8-92424-1 (Published in March,2020).

� Fredholm properties for Pencils N. Altaweel. (2021) Fredholm properties for Pencils. American Re-

view of Mathematics and Statistics ID: MAS-1351 ISSN 2374 − 2348 (Print) 2374 − 2356 (Online) DOI:

10.15640/arms. Vol. 9 NO. 1. Publication date: April 30, 2021.

� Operator pencils and its properties: AIMS Press. The manuscript number Math20210668. April 08, 2021.

(Under review).

� Numerical Range of Generalized Aluthge Transformation. AIMS Press. The manuscript number Math20210499.

February 28, 2021. (Under review).
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